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Abstract—The Random Dot Product Graph (RDPG) is a
popular generative graph model for relational data. RDPGs
postulate there exist latent positions for each node, and specifies
the edge formation probabilities via the inner product of the
corresponding latent vectors. The embedding task of estimating
these latent positions from observed graphs is usually posed
as a non-convex matrix factorization problem. The workhorse
Adjacency Spectral Embedding offers an approximate solution
obtained via the eigendecomposition of the adjacency matrix,
which enjoys solid statistical guarantees but can be computation-
ally intensive and is formally solving a surrogate problem. In this
paper, we bring to bear recent non-convex optimization advances
and demonstrate their impact to RDPG inference. We develop
first-order gradient descent methods to better solve the original
optimization problem, and to accommodate broader network
embedding applications in an organic way. The effectiveness
of the resulting graph representation learning framework is
demonstrated on both synthetic and real data. We show the
algorithms are scalable, robust to missing network data, and
can track the latent positions over time when the graphs are
acquired in a streaming fashion.

Index Terms—Graph Representation Learning; Gradient De-
scent; Non-convex Optimization; Random Dot Product Graphs

I. INTRODUCTION

One of the most popular generative models for random
graphs is the Random Dot Product Graph (RDPG). Under this
model each node i ∈ {1, . . . , N} in a simple, undirected graph
G has an associated latent position vector xi ∈ X ⊂ Rd, and
edge (i, j) exists with probability Pij = x⊤

i xj , independent
of all other edges. In other words, letting A ∈ {0, 1}N×N

be the random symmetric adjacency matrix of G and X =
[x1, . . . ,xN ]⊤ ∈ RN×d the matrix of latent vertex positions,
the RDPG model specifies that given X, edges are condition-
ally independent with Aij ∼ Bernoulli(x⊤

i xj). The model’s
popularity stems from its simplicity and expressiveness; e.g.
the Erdös-Rényi and Stochastic Block Model (SBM) families
are included as particular cases [1]. Furthermore, the resulting
embeddings are easy to interpret: nodes with large ∥xi∥2 tend
to exhibit higher connectivity, whereas a small angle between
xi and xj indicates higher “affinity” among i and j.
Background on RDPG inference. Let us now discuss the
associated inference (or node embedding) problem, which is
the focus of the methods presented here. Given a realization
of a graph (or a sequence of graphs), we look for the latent
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position matrix X̂ which best explains the given adjacency ma-
trix A under the RDPG model. Since the maximum-likelihood
estimator is intractable beyond toy graphs [2], moving forward
we note that A is a noisy observation of P = XX⊤, the
rank-d matrix of edge probabilities Pij , since E

[
A

∣∣X]
= P.

Therefore, and remembering that the diagonal entries of P are
zero, we want to solve the following problem [2]:

X̂ ∈ argmin
X∈RN×d

∥M ◦ (A−XX⊤)∥2F , (1)

where ◦ is the Hadamard product, and M = 11⊤ − I is a
mask matrix, with zero-diagonal and ones everywhere else.

In the RDPG framework, the usual approach to obtain an
approximate solution of (1) is to slightly modify the problem in
order to avoid the zero-diagonal constraint (either by replacing
the main diagonal of A, or simply ignoring the constraint) [1]:

X̂ ∈ argmin
X

∥A−XX⊤∥2F , s. to rank(X) = d. (2)

Its solution can be computed as X̂ = V̂Λ̂
1/2

, where A =
VΛV⊤ is the eigendecomposition of A, Λ̂ ∈ Rd×d is a diago-
nal matrix with the d largest eigenvalues of A, and V̂ ∈ RN×d

are the corresponding d eigenvectors. This estimator is known
as the Adjacency Spectral Embedding (ASE).
Contributions and paper outline. Inspired by related matrix-
factorization problems, we propose to tackle the non-convex
problem (1) via gradient descent (GD). As we show in Section
II-A, our method scales better than the spectral-based ASE,
and therefore may be used for graphs with several tens
of thousands of vertices. Very recent papers [3] explicitly
comment on the difficulty of scaling these RDPG approaches
for large graphs and streaming settings. In this context, ours is
the first work to develop scalable algorithms to compute RDPG
embeddings, by proposing a proper formulation and bringing
to bear recent advances in first-order non-convex optimization.

Furthermore, our framework allows to solve exactly the
more appropriate problem formulation (1) [instead of (2)].
This limitation was recognized more than a decade ago [2],
yet to the best of our knowledge it has not been satisfac-
torily addressed in the recent RDPG literature. The existing
alternative [2], where the ASE is repeatedly computed and
the diagonal entries of A are completed with the diagonal
of X̂X̂⊤, lacks convergence guarantees and multiplies the
ASE complexity by the number of iterations. Moreover, as
we discuss in Section III, the proposed algorithmic framework



can seamlessly accommodate missing or unobserved data. All
in all, our approach offers a better representation at a lower
computational cost, in more general settings.

The last contribution is an online, lightweight method for
tracking and visualizing ASEs of dynamic networks. Observe
that the RDPG model (and the solutions of (2) and (1)), are
invariant to orthogonal transformations. This poses a challenge
when the goal is to embed a sequence of graphs and subse-
quently compare the estimated vectors. Existing alternatives
to align the resulting estimates rely on eigendecomposition
of a matrix whose size increases linearly with the number of
graphs in the sequence [3]–[5]. In Section II-B we propose
to use our first-order method to embed sequences of graphs,
maintaining a certain alignment between the latent positions
by virtue of warm restarts, while scaling favorably with the
number of graphs involved. Tracking the latent nodal positions
of dynamic graph streams is presented in Section IV.

II. ESTIMATION VIA GRADIENT DESCENT

We propose to solve the smooth problem (1), and em-
bedding tasks for other RDPG generalizations, using a GD
approach. Although the formulation is not convex with respect
to X, there exist recent results showing convergence under
very reasonable assumptions. Note that the objective function
is indeed convex with respect to Z = XX⊤, since it becomes
∥M ◦ (A− Z)∥2F .

Let us denote by f : Rn×d → R the objective function
f(X) = ∥M ◦ (A−XX⊤)∥2F . The GD algorithm is

Xt+1 = Xt − α∇f(Xt), t = 0, 1, 2, . . . (3)

where α > 0 is the step size and ∇f(X) =
4
[
M ◦ (XX⊤ −A)

]
X, for symmetric A and M. When

applied to this class of problems where the objective function
depends on the product XX⊤, and in general is convex with
respect to Z = XX⊤, this approach is sometimes called
factorized GD [6], or Procrustes flow [7]. There have been
several noteworthy advances in the study of its convergence,
rate of convergence, and accelerated variants [6]–[10].

For the RDPG embedding problem dealt with here, the main
result states that if the initial condition is close to the solution,
the iteration (3) converges with linear rate to X̂ [6], [11].

Proposition 1: Let X̂ be a solution of (1). Then there exist
δ > 0 and 0 < κ < 1 such that, if ∥X0 − X̂∥F ≤ δ, we have

d(Xt, X̂) ≤ κtd(X0, X̂), ∀t > 0 (4)

where Xt is the sequence of GD iterates (3) with an appropri-
ate constant stepsize, and d(X, X̂) := min

W∈Od×d
∥XW − X̂∥2F

accounts for the orthogonality invariance.
See [11] and references therein for a similar version of this
proposition. Although there are some very specific initializa-
tions which correspond to stationary points (and therefore do
not lead to global convergence), in our experience the method
converges to the global optimum when initalizated randomly.
Generalizations. The RDPG model can be extended to de-
scribe more general graph families. For instance, the General-
ized RDPG model [12] can capture disassortative connectivity
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Fig. 1. Execution time for SBM graphs up to N = 24000 nodes. As N grows,
GD exhibits markedly better scaling than the state-of-the-art ASE algorithm.

patterns by including a diagonal matrix Dp,q , with p elements
with value +1 and q elements with value −1. The formulation
(1) can be then readily adapted for this model, resulting in

X̂ ∈ argmin
X∈Rn×d

∥M ◦ (A−XDp,qX
⊤)∥2F , (5)

which also allows to compute embeddings with missing data.
Indeed, via the binary mask M one can encode which entries
of A are observed and which are missing. The gradient step
in (3) only differs in the computation of the gradient itself.

The RDPG model can only represent undirected graphs,
since the product XX⊤ is always symmetric. Extensions to
accommodate directed graphs (digraphs) are possible [1], [13],
whereby each node i of the digraph has two vectors associated,
denoted by xl

i and xr
i . This way, the Directed RDPG (D-

RDPG) model is defined as

P
(
A

∣∣X)
=

∏
i ̸=j

[(xl
i)

⊤xr
j ]

Aij [1− (xl
i)

⊤xr
j ]

1−Aij . (6)

For this case, the corresponding embedding problem (which
also allows to work with missing data) becomes

{X̂l, X̂r} = argmin
Xl∈Rn×d,Xr∈Rn×d

∥M ◦ (A−Xl(Xr)⊤)∥2F .

Here, GD can be thought as comprising two gradient steps,
one with respect to Xl and the other with respect to Xr.

A. Complexity and execution time analyses

The per-iteration computational cost incurred to evaluate
∇f(X) is dominated by the matrix multiplication, which is
Θ(N2d) for a naı̈ve implementation. The number of iterations
depends on X0, but in our experience even with random
initializations the runtime is still markedly lower than the
SVD-based ASE. Further time complexity improvements may
be obtained by using Nesterov-type acceleration methods [14].
In Figure 1 we compare the execution times of GD and the
ASE as a function of N . For the latter, we use the SciPY im-
plementation of the eigendecomposition in Python, as in state-
of-the-art RDPG inference packages such as Graspologic
[15]. For GD, we test two different initializations: a uniform
random matrix X, and one based on a fast eigendecomposition
computation using the randomized-SVD (RSVD) [16] (we
account for the RSVD in the overall execution time). In all



cases, the methods converge to a solution of the inference
problem. The obtained cost function is very similar for each
run, with slightly lower values for the GD method because it
is solving the problem with the zero-diagonal restriction.

For each N , we sampled several 2-block SBM graphs, with
connection probabilities of p = 0.5 (within community) and
q = 0.2 (across communities). Community sizes are N/3 and
2N/3. The embedding dimension was set to d = 2 in all
cases. Results are averaged over 10 Monte Carlo replicates,
and corresponding standard deviations are depicted in Figure
1. As N grows, GD attains significant reductions in wall-
clock time relative to the state-of-the-art ASE implementation,
especially when GD is initialized using the RSVD.

B. Warm restart for embedding graph sequences

As mentioned in Section I, the embedding matrix X̂ in the
RDPG model can only be determined up to rotations. This
challenges network inference tasks where the data comes from
multiple graphs, e.g., sequential graphs over time. For instance,
problems like hypothesis testing to determine whether two
graphs are drawn from the same RDPG model, or tracking
nodal embeddings over time, heavily rely on the correspon-
dence of nodes across different networks.

For the hypothesis testing problem, a test is put forth in [17]
which involves solving a Procrustes problem to align the em-
beddings. A joint so-termed Omnibus embedding of m graphs
is proposed in [4], by forming an mN ×mN matrix from the
adjacency matrices and computing its ASE latent positions.
More recently, the Unfolded Adjacency Spectral Embedding
(UASE) was proposed in [3], [5]. The UASE also relies on
an auxiliary matrix, this time by horizontally stacking the
adjacency matrices of all graphs, and then computes its SVD
to obtain the joint embeddings. Both these approaches come
with asymptotic statistical guarantees under some technical
assumptions. However, from a computational standpoint they
do not scale well with the number of nodes N of each graph,
or the total number of graphs m.

The GD algorithm of this paper can be initialized using
the latent positions of another related graph. This so-termed
warm restart will not only decrease processing time, but is
also likely to yield embeddings that are closely aligned with
those of previous graphs in the squence.
Numerical example. To illustrate this desirable behaviour, we
borrow the motivating experiment and code from [3]. The
goal is to compute the embedding of two SBMs with four
communities, that change their connection probabilities. Two
graphs are respectively generated according to the following
SBMs, whose inter-community probabilities are given by

B1 =

(
0.08 0.02 0.18 0.10
0.02 0.20 0.04 0.10
0.18 0.04 0.02 0.02
0.10 0.10 0.02 0.06

)
,B2 =

(
0.16 0.16 0.04 0.10
0.16 0.16 0.04 0.10
0.04 0.04 0.09 0.02
0.10 0.10 0.02 0.06

)
.

Notice how communities 1 and 2 merge in the second
model, while community 4 retains the same probabilities
with the other three groups. In [3], the authors comment
how their UASE approach manages to capture the merger of
communities 1−2, while keeping the latent positions of nodes

Fig. 2. Embeddings of two SBM graph realizations, where communities 1 and
2 merge, while community 4 keeps the connection probabilities with other
groups. Observe how the GD approach (far right) manages to capture this
behaviour, while providing the best representation for each graph individually
(quantified by the smallest cost function values). Code adapted from [3].

in community 4 largely unchanged. The Omnibus approach, or
independent embedding of both graphs, fails in accomplishing
at least one of these objectives; see Figure 2.

We tested the GD algorithm in this numerical example, and
confirmed that the obtained embeddings also reflect the desired
behaviour regarding communities 1, 2, and 4. Moreover, GD
provides a better overall representation for each graph (similar
to independent embeddings of the graph). We quantify this
via the cost function of (1) evaluated at each solution. These
values are also presented in Fig. 2, and show the favorable
representation quality obtained by the GD algorithm.

Another example of this alignment method via warm restarts
is outlined in Section IV, using a real-world application
involving model tracking for Wi-Fi network monitoring.

III. INFERENCE WITH MISSING DATA

We now show an example of how GD-based inference can
be useful for problems with missing data. In this setup we
have a bipartite graph that simulates a two-party senate. Nodes
correspond to senators and laws, and the fact that senator i has
voted affirmatively for law j is indicated by the edge (i, j).

Each of the two parties can submit a law for voting, with
affirmative votes being more likely for senators from the party
that introduced the law, and less likely for senators from
the opposing party. There are also bipartisan laws, for which
affirmative votes are more similar across parties. Furthermore,
for each law, there is a subset of senators that have a 30%
chance of being absent from the voting. So in our formulation
the mask matrix M in (1) will encode whether those senators
were present in the voting of each law.

We simulated such a graph with 50 senators of each
party and a total of 230 proposed laws, and compared the
embeddings given by the ASE and by GD. Results are shown
in Fig. 3. Both methods result in a clear alignment between
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Fig. 3. Embeddings with missing data. Naive ASE (left) and GD with mask
matrix encoding present and absent voters (right). Our approach is able to
assign the absent voters to the correct group.

the embeddings of laws and senators from the same party, and
opposing groups are embedded as almost orthogonal clusters
(which is consistent with a small inner product, i.e. small
connection probability). The difference is that GD assigns
the senators that are absent to the same cluster as the rest
of the senators in their party, while the ASE assigns them to a
smaller, independent cluster. GD is able to correctly handle the
missing information in this setup, producing a representation
that is faithful to the underlying structure of the data.

IV. MODEL TRACKING FOR DYNAMIC GRAPHS

Consider now a monitoring scenario, where we observe a
stream of graphs Gt (where t denotes time), and the goal is to
track the underlying model. We will assume that there exists a
correspondence between nodes at different times, and that all
these graphs stem from an RDPG with latent positions given
by Xt ∈ RN×d. We focus on the vanilla model for ease of
exposition, and consider other variants in the numerical tests.

There is a growing interest in the above setting, with several
applications arising with the online change-point detection
problem; i.e., flagging if and when the underlying generative
model changed [13], [18]–[20]. Here we take a step further,
and strive at actually tracking the model. Applications may
include recommender systems (where rankings are revealed
or even change over time) [21] or, as we discuss below,
monitoring wireless networks [22].

Suppose then that at time t we observe a window of length
m of the past graphs in the sequence, which we may safely
assume stem from the same RDPG model; i.e., Xt−m = . . . =
Xt = X. In this case the best estimate of X is the ASE of
the averaged adjacency matrix Āt = 1/m

∑t
k=t−m Ak [23].

Applying GD iterations (3) when A← Āt yields updates:

X̂t = X̂t−1 − α∇X̂∥M ◦ (Āt − X̂t−1X̂
⊤
t−1)∥2F . (7)

The algorithm (7) suggests a tracking system as the one
depicted in Figure 4, where we have substituted Āt with the
output of an entry-wise filter F(z) applied to the stream of
incoming adjacency matrices At. A moving average as the
one discussed before is readily recovered by considering a
FIR filter with all its m taps set to 1/m, although a single-
pole IIR filter would be preferable in terms of memory and

Fig. 4. A diagram of the proposed RDPG tracking system. If the entry-wise
filter F(z) is a moving average, we would obtain Bt = Āt, resulting in
embedding the average adjacency matrix.
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processing. We may even drop the filtering stage altogether
(setting m = 1) to yield a least mean squares (LMS)-type
stochastic gradient algorithm .
Simulated numerical results. Let us consider a synthetic
example, where a stream Gt of SBMs digraphs with two
communities of N/2 = 100 nodes each changes from an
assortative to a disassortative behaviour. That is to say, until
t = 200 nodes belonging to the same community would
connect with probability p = 0.5 and with members of the
other community with probability q = 0.2. This is reversed so
that p = 0.2 and q = 0.5 after t = 200, meaning that nodes
now tend to connect more to nodes of the other community.

The temporal evolution of the relative error between the
true Pt and the estimated X̂l

t(X̂
r
t )

⊤ obtained via our tracking
system is shown in Fig. 5. Different curves correspond to
different values of α and the pole’s value of F(z). In all
cases, the ASE of the first graph is used as the initial estimate
of X̂l

0 and X̂r
0. Firstly, note how when no filter is applied

(i.e. a pole at 0) excellent estimates of the latent positions are
found, provided that a small enough step size is used. Else,
the resulting estimate is no better than the single graph one.
Note however that what is lost in precision is gained in speed,
as after t = 200 the error is the same as before in very few
iterations for α = 0.01, whereas the more precise α = 0.001
takes almost 150 iterations to find the new embeddings.

Secondly, note how including the filter and a judicious
choice of α may result in better accuracy-speed tradeoffs.
When the incoming graphs’ generative model do not change,
the averaging performed by the filter allows to use larger
values of α without compromising precision. This in turn may
result in faster convergence after the change (see the curve
corresponding to α = 0.01 and a pole at 0.9).
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t (right) using d = 2 for the RSSI example. Color
palettes identify the nodes and a lighter tone indicate larger values of t. Best
viewed in a color display. The network’s change at t ≈ 310 is clearly visible:
the AP that was moved (i = 4) is now closer to the upper cluster of nodes.

Real-world dataset. We also study the dataset described
in [24], which includes the Received Signal Strength Indicator
(RSSI) measurements between Wi-Fi access points (APs) in
a Uruguayan school. In particular we considered a network
consisting of N = 6 APs, with measurements collected hourly
during almost four weeks, corresponding to m = 655 graphs.
The AP corresponding to i = 4 was moved at t ≈ 310. As
RSSI is measured in dBm (and are negative), we have first
added an offset to all weights so that they become positive
and larger values still mean “stronger” edges. We thus have
a directed (as power measurements between APs are not
necessarily symmetric) and weighted graph sequence.

The GD estimates X̂l
t and X̂r

t for d = 2 are shown in Fig. 6.
We have used α = 0.01 and F(z) with a pole at 0.9. Different
color palettes identify the nodes and as t increases the color
becomes lighter. Note how at first all the embeddings are
relatively static (cf. darker colors), with two almost orthogonal
clusters of nodes, in addition to node 4 in a somewhat
intermediate position. When the network is modified, this node
approaches the upper cluster. The node is apparently moved
nearer node 5 than 3, and not so far away from node 1. Note
how the movement of nodes in the clusters are radial and result
in an unchanged inner product between them.

V. CONCLUDING SUMMARY

In this paper we proposed a new algorithmic framework
to estimate latent positions of RDPG models, by bringing
to bear non-convex optimization techniques that have been
recently developed for low-rank matrix factorization problems.
This allows to solve the associated nodal embedding problem
by taking into account the (often overlooked) zero-diagonal
constraint, which is relevant for graphs with no self loops.
The general formulation also offers the possibility to compute
the RDPG embeddings in the presence of unobserved data.
We tested the computational complexity of the method, and
provided examples of applications with missing data, and to
track latent positions of nodes in graph sequences, both with
synthetic and real data.
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