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Abstract

In this paper we present the version 0.98 (September 2006) of the C5
compiler including the functions C5 printf and C5 scanf.

C5 is a superset of the C programming language. The main difference
between C and C5 is that the type system of C5 supports the definition of
types of dependent pairs, i.e., the type of the second member of the pair
depends on the value of the first member (which is a type).

Another C5 extension is the type initialization expression which is a
list of dependent pairs that can be attached to type expressions in a type
declaration.

These extensions provide C5 with dynamic type inspection at run time
and attribute type definition. The result is a powerful framework for
generic programming.

The paper presents the improvements of the version 0.98 including the
functions C5 scanf, C5 printf, C5 lenSearch and C5 idxSearch.

Keywords: dynamic type; dependent pair type ; generic programming ; parser
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1 Introduction

1.1 Inodoro’s dream

27 years ago, Inodoro Pereira –our C programming teacher– had a dream.
He was presenting the C functions printf and scanf in the undergraduate

course of programming at the Instituto de Computación of Montevideo when
his famous dream came up:

I think that printf and scanf are poor implementations of a
good idea. Their arguments are limited to atomic types without
type check. In other words, the functions are unsafe and limited to
a few types.

I would like to see new versions of these functions with type
checking and defined for the entire C type system.

Let us see an example of my dream functions:

typedef struct NODE{
int element;
struct NODE *nect;
} *MyType;

main(){
MyType ils;
scanf(" %MyType ", ils);
printf(" %MyType ", ils);
}

The type MyType is a recursive structure used to implement a linked
list in the C language. My dream scanf reads the standard input
and constructs a linked list assigned to ils, provided that the input
match with the values required by the type MyType.

My dream printf prints the integers of the linked list in the
standard output. As you can see the program does not do too much;
it just prints the input.

Let us suppose that there exist more dream functions:

• element occurrences
The function returns the number of occurrences of an element
identified by its type name.

• search element
The function returns the value of the ith occurrence of an ele-
ment identified by its type name.

• search type
The function returns the format string of the ith occurrence of
an element identified by its type name.

So, we can now write a more interesting dream program:
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typedef struct NODE{
int element;
struct NODE *nect;
} *MyType;

main(){
MyType ils;
int i;
scanf(" %MyType ", ils);
for(i=occurrences(" %MyType ", ils,"element")-1;i>=0;i--)

printf(search_type(i," %MyType ", ils,"element"),
search_element(i," %MyType ", ils,"element"));

}

This program prints the input in reverse order.
The point here is that the program above is not dependent of the

type definition of MyType.
For instance, we can define MyType as a four element array of

integer:

typedef int element;
typedef element MyType[4];

main(){
MyType ils;
int i;
scanf(" %MyType ", ils);
for(i=occurrences(" %MyType ", ils,"element")-1;i>=0;i--)

printf(search_type(i," %MyType ", ils,"element"),
search_element(i," %MyType ", ils,"element"));

}

In this case, the (same) program reads 4 integers and prints them in
reverse order.

Further more, we can change the type of the elements and the
program still works:

typedef char * element; /* string */
typedef element MyType[4];

main(){
MyType ils;
int i;
scanf(" %MyType ", ils);
for(i=occurrences(" %MyType ", ils,"element")-1;i>=0;i--)

printf(search_type(i," %MyType ", ils,"element"),
search_element(i," %MyType ", ils,"element"));

}

This program reads the input one two three four and prints –as
we expect– four three two one .
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I don’t know if my dream functions are implementable in C.
However, this is my dream.

Inodoro Pereira left his academic career in 1980.
There is a non-confirmed version indicating that Inodoro lives in Argentina,

in the country (the pampa), working with wild horses.
20 years later, a group of Inodoro’s followers started the construction of C5,

a real version of Inodoro’s dream.
The name C5 comes from the Spanish CCinco that means The InCo C

Compiler ( InCo is a trademark of the Instituto de Computación of Montevideo,
Uruguay).

Today C5 is a well-known programming language by the undergraduate stu-
dents at InCo and the examples of Inodoro’s dream are now real programs in
C5:

/* The list of integer example */

DT_typedef struct IntL{
int element;
struct IntL * {0} next;
} *MyType;

main(){
DPT dp;
MyType obj;
int i;
dp= DT_pair(MyType, obj);
C5_scanf(dp);
for(i=C5_lenSearch(dp,"element")-1;i>=0;i--)

C5_printf(C5_idxSearch(i,dp,"element"));
}

/* The array of string example */
DT_typedef char * element;
DT_typedef element MyType[4];
main(){

DPT dp;
MyType obj;
int i;
dp= DT_pair(MyType, obj);
C5_scanf(dp);
for(i=C5_lenSearch(dp,"element")-1;i>=0;i--)

C5_printf(C5_idxSearch(i,dp,"element"));
}

In this paper, we present the version 0.98 of the C5 compiler including the
functions C5 printf, C5 scanf, C5 lenSearch and C5 idxSearch.
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1.2 Dynamics in C

Polymorphic functions are a well known tool for developing generic programs.
For example, the function pop of the Stack ADT

pop : ∀ T. Stack of T → Stack of T

has a single algorithm that will perform the same task for any stack regardless
of the type of its elements. In this case, we say that the pop algorithm is similar
for different instantiations of T .

A more complex and powerful way to express generic programs are the func-
tions with dependent type arguments (i.e., the type of an argument may depend
on the value of another) that perform different tasks depending on the argument
type. These functions may inspect the type of the arguments at run time to
select the specific task to be performed.

The C printf and scanf functions are two widely used examples of this kind
of generic programs that are defined for a finite number of argument types. As
we will see later, the type of these useful functions cannot be determined at
compile time by a standard C compiler.

Even more powerful generic programs are achieved when we extend the finite
number of argument types to the entire type system. This class of generic
functions can perform different tasks depending on the argument type extending
its expression power to include generic programs like parser generators (a top
paradigm in generic programming).

C5 is a superset of the C programming language. The extensions intro-
duced in C5 are the notion of Dependent Pair Type (DPT) and that of a Type
Initialization Expression (TIE).

These extensions provide C5 with dynamic type inspection at run time and
attribute type definition.

C5 is a minimal C extension that express a wide class of generic programs
where the functions C5 printf and C5 scanf presented in this paper are repre-
sentative examples.

1.3 The type of printf

The C creators [15] warn about the consequences of the absence of type checking
in the printf arguments:

” ... printf, the most common C function with a variable number
of arguments, uses information from the first argument to determine
how many other arguments are present and what their types are. It
fails badly if the caller does not supply enough arguments or if the
types are not what the first argument says.”

Let us see through the simple example in Figure 1 how printf works. The
first argument of printf, called the format string, determines the type of the
other two: the expressions 4s and 6.2f indicate that the type of the second
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main(){
double n=42.56;
char st[10]="coef";
printf("%4s %6.2f",st,n);
}

Figure 1: A simple C printf example.

argument is an array of characters while the third argument is a floating point
notation number.

In the case of printf and scanf, the types declared in the format string are
restricted to atomic, array of character and character pointer types. There is
also some numeric information together with the type declaration (4 and 6.2
in our example) that defines the printing format of the second and third argu-
ments. These numeric expressions (attributes) will be called Type Initialization
Expressions (TIEs) in C5.

A standard C compiler cannot type check statically the second and third
arguments of the example presented in figure 1 because their types depend on
the value of the first one (the format string).

In functions like printf and scanf, expressiveness is achieved at a high cost:
type errors are not detected and, as a consequence unsafe code is produced.

However, some C compilers (e.g. the -Wformat option in gcc [10]) can check
the consistence of the format string with the type of the arguments of printf
and scanf. In this case, the format argument is a constant string (readable at
compile time) and the C syntax is extended with the format string syntax.

This is not an acceptable solution of the problem because the syntax of the
format string is specific for the functions printf and scanf.

A better solution can be found in Cyclone [21], a safe dialect of C. In this case,
the type of the arguments of printf and scanf is a tagged union containing all
of the possible types of arguments for printf or scanf. These tagged unions are
constructed by the compiler (automatic tag injection) and the functions printf
and scanf include the code to check at run time the type of the arguments
against the format string.

Similar results can be obtained with other polymorphic disciplines in stati-
cally typed programming languages such as finite disjoint unions (e,g, Algol 68)
or function overloading (e.g. C++).

This kind of solution of the printf typing problem has the following restric-
tions:

• The consistency of the format string and the type of the arguments is
checked at run time and

• the set of possible types of the arguments of printf and scanf is finite
and included in the declaration (program) of the functions.
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However, the concept of object with dynamic types or dynamics for short,
introduced by Cardelli [6] [1] provides an elegant and general solution for the
printf typing problem.

A dynamics is a pair of an object and its type. Cardelli also proposed
the introduction in a statically typed language of a new datatype (Dynamic)
whose values are such pairs and language constructs for creating a dynamic pair
(dynamic) and inspecting at run time its type tag (typecase).

Figure 2 shows a functional program using the typecase statement where dv
is a variable of type Dynamics constructed with dynamic, Nat (natural numbers)
and X * Y (the set of pairs of type X and Y) are types to be matched against
the type tag of dv, ++ is a concatenation operator, and fst amd snd return the
first and second member of a pair.

typetostring(dv:Dynamics): Dynamics -> String
typecase dv of

(v: Nat) " Nat "
(v: X * Y) typetostring(dynamic fst(v):X)

++ " * "
++ typetostring(dynamic snd(v):Y)

else "??"
end

Figure 2: The statement typecase

Tagged unions or finite disjoint unions can be thought of as finite versions
of Dynamics: they allow values of different types to be manipulated uniformly
as elements of a tagged variant type, with the restriction that the set of variants
must be fixed in advance.

C5 offers a way to embed dynamics within the C language that follows the
concepts proposed by Cardelli.

The goal of the C5 language is to experiment with generic programs based
on functions with dependent arguments under the following conditions:

• the type dependency of the arguments is checked at compile time and

• the functions accept (and are defined for) arguments of any type.

2 The C5 extensions

Dynamics has been implemented in C5 as an abstract data type called DPT
(Dependent Pair Type). Instead of the statement typecase there are a set of
functions that construct DPT pairs, inspect the type tag and read or assign
values.

Since the use of DPTs is limited to a special class of generic functions, there
is a C5 statement called DT typedef to declare valid type definitions for the
DPT library.
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The major difference of the DPT library with Cardelli’s Dynamics is con-
cerned with the communication between the static and the dynamic universes:

• In the case of dynamics, there is a pair constructor (dynamic) for pass-
ing a static object to the dynamic universe. The inverse operation –the
typecase statement– is a selector that retrieves the dynamic object to the
static universe provided it matches with a given static type.

• In the case of the DPT library, the constructor DT pair is the dynamic
counterpart, but nothing equivalent to typecase can be found in C5. The
only way to inspect a DPT object is by using a generic object selector
(C5 gos) that encodes the static C selectors into the dynamic universe. In
other words, it is easy to transfer a static object to the dynamic universe
but the inverse is limited to atomic types. In compensation, it is possible
to do some object processing within the dynamic universe.

This difference allows C5 to construct new dynamic objects at run-time without
the Dynamics type checking requirements.

2.1 Dependent pairs in C5

For the sake of readability, we will simplify the C type system to int, double,
char , struct , union, array, pointer, defined and function types.

The following is a brief introduction to the most important functions of the
DPT library:

• DPT DT pair( C Type t, t object)
The function returns a dependent pair where the type tag is the dynamic
representation of the first argument t and the object member is a reference
to the second argument object. The C5 compiler assures that DPTs are
well formed by checking that the second argument is a variable whose type
is the value of the first which is a DT typedef type definition.

• DPT C5 gos(DPT dp, int i)
The function is a universal selector for DPT pairs. If the type tag of dp
is a struct or a union, then C5 gos yields a DPT pair with the type and
value of the ith field. If dp is an array, then C5 gos returns a DPT pair
with the type of the array elements and the ith element of the array. If dp
is a pointer or DT typedef DPT, then C5 gos(dp,1) yields a DPT pair
constructed from the type of the referenced object and the object itself
respectively. If i is out of range, an dynamic pair with error information
is returned.

C5 gos is not defined for atomic or function types.

• DPT C5 fapply(DPT functionp, DPT List args)
If functionp is a function pointer, C5 fapply type checks the function
against the argument list contained in args.
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If type checking is successful, C5 fapply applies the function of functionp
to the n arguments of args and returns a DPT with the result value.
Otherwise, the returned DPT includes error information.

• int C5 gtype(DPT)
The DPT library is defined for the following type classes:

1. INT - The int type in C.
2. CHAR - The char type in C.
3. DOUBLE - The double type in C.
4. STRUCT - The set of C struct types.
5. UNION - The set of C union types.
6. ARRAY - The set of Ctype[C expr] types.
7. POINTER - The set of ∗ Ctype types.
8. TYPEDEF - The set of DT typedef type definitions.
9. FUNCTION - The set of function types.

Note that the C types unsigned, short long, float, void, and enum are
not included.

The function C5 gtype yields the type class of the dynamic pair argument.

• int C5 isDUnion( DPT )
C Unions are not interesting for the DPT Library because there is no way
to know the current field of an union at run time. For example, C5 gos
cannot be defined for C unions.

Instead of this kind of union , DPT functions recognize discriminated
unions as a special case of the struct type.

A struct with two fields where the first is an union and the second an
integer is matched as a C5 Discriminated Union. In this case, the integer
field is supposed to keep the information about the current field of the
union.

The function C5 isDUnion returns 1 when the type of a dynamic pair is
a Discriminated Union. Otherwise returns 0.

• int C5 isFunction(DPT)
In the C language, the declaration of function types cannot be directly
expressed. Instead, we declare the type of function pointer.

The function C5 isFunction returns 1 if the type of the argument is a
function pointer. Otherwise returns 0.

• int C5 gsize(DPT)
If the type tag of the argument is a struct, union or function the function
returns respectively the field quantity, the size or the arguments number.
If the tagged type is an atomic type C5 size returns 0, and in case of
pointers or defined types the function returns 1.
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• char * C5 gname(DPT)
The function yields a string equal to the current type or field name of the
type tag of the dynamic pair.

• int C5 gpin(DPT)
The function returns the C5 pin number of the type member of the pair.
Each C5 type has a unique pin number.

• int C5 gint(DPT, int)
double C5 gdouble(DPT, double)
char C5 gchar(DPT, char)
char *C5 gstr(DPT, char *)
These functions return the value of the pair if the type tag is respectively
int, double, char and char pointer or array of char, In case of type
mismatch the second argument is returned.

• int C5 int ass(DPT dp, int v)
int C5 double ass(DPT dp, double v)
int C5 char ass(DPT dp, char v)
int C5 str ass(DPT dp, char *v)
If the type tag of dp matches, these functions assign the value of the
second argument to the second member of the first argument pair and the
returned value is 1.

In case of type mismatch no assigning is performed and the functions
return 0.

The equivalence of the DPT library with Dynamics is showed in the following
program which is a C5 version of the example presented in Figure 2:

void typetostring(DPT dv){
switch(C5_gtype(dv)){

case INT: printf(" Int ");
break;"

case STRUCT: if(C5_gsize(dv)==2){
typetostring(C5_gos(dv,1));
printf(" * ");
typetostring(C5_gos(dv,2));
}

else printf(" ?? ");
break;

default: printf(" ?? ");
}

}

We will use DPTs to express the C5 version of printf with the form:

void C5 printf(DPT )
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where the format string of the C printf function is expressed by the dynamic
type of the pair argument. Notice that in this version the type dependency of the
argument is checked at compile time while the possible types of the argument
are not fixed.

The program below is a first C5 approach to the C printf example presented
in figure 1:

DT_typedef char String[5];
DT_typedef float Fnr;
main(){

String st="coef";
Fnr n=42.56;
c5_printf(DT_pair(String,st));
c5_printf(DT_pair(Fnr,n));
}

Note that the declared types String and Fnr are the arguments of the function
DT pair.

This is not a complete version of printf because the numeric information
of the format argument is absent.

2.2 DPT list and atomic DPT constructors.

The DPT library includes an ADT of DPT list and a set of atomic DPT con-
structors to simplify the use of DPTs:

• DPT list dpnil()
The null list constructor.

• DPT list dpcons(DPT, DPT list)
The inductive list constructor.

• int dpempty(DPT list)
Returns 1 if the argument is a null list.

• DPT dphd(DPT list)
It returns the head of the list. If the argument is the null list, the function
returns the null DPT.

• DPT list dptl(DPT list)
It returns the tail of the list. If the list is empty returns the null list.

• int dplen(DPT list)
It returns the length of the list.

• DPT list dpappend(DPT ,DPT list)
It appends the DPT argument to the end of the list.
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• DPT dp In(int)
DPT dp Ch(char)
DPT dp Do(double)
DPT dp St(char * )
The functions construct dynamic pairs using predefined types and the
value of the argument. For example, dpIn(124) is equivalent to the fol-
lowing C5 code:

DT_typedef int IntType;
...
IntType vn=124;
DT_pair(IntType,vn);

The next example presents a DPT list constructed with elements of different
types:

dpcons(DT_pair(DPT,dp_Ch(’A’)), dpcons( dp_Do(0.57),
dpcons( dp_St("Hello"), dpnil())));

Note that the first element of the list is a dynamic containing a dynamic. DPT
and DPTi list are predefined types of the DPT library.

2.3 The Type Initialization Expression (TIE)

A TIE is a DPT list attached to a C5 type.
The syntax of a TIE is a comma-separated sequence of DPTs enclosed by

brackets.
Constant expressions of atomic types do not need DPT constructors in a

TIE declaration.
For example, the TIE { ’A’, 0.57, "Hello" } is correct and is translated

by the C5 compiler to

dpcons(dp_Ch(’A’),dpcons(dp_Do(0.57),dpcons(dp_St("Hello"),dpnil())));

This TIE declaration is equivalent to the TIE { dp Ch(’A’), dp Do(0.57),
dp St("Hello") }.

There is a simple syntactical rule for inserting TIEs into a type declaration:
a TIE is placed on the right of the related type.
The next example shows two type definitions with TIEs:

DT_typedef int{1} Numbers[10]{2} [20]{3};
DT_typedef struct{

Numbers{4} nrs;
char{5} *{6} String_ptr;
}{7} Rcrd;

In the first type definition, the TIE {1} is attached to an int type and the TIEs
{2} and {3} are attached to a double array. In the second definition, the TIEs
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{4}, {5}, {6} and {7} are attached to the types Numbers, char, pointer of char
and struct respectively.

TIEs can be inspected at run time using the following functions of the DPT
library:

• DPT list C5 gtie(DTP)
It returns the DPT list in order to be directly manipulated. If the dynamic
pair has no TIE, the null DPT list is returned.

• int C5 gTIE length(DPT)
the function returns the size of the TIE of the type tag of the dependent
pair argument. If the TIE does not exist, the function returns 0.

• int C5 gTIE type(DPT, int idx)
the function applies C5 gtype to the TIE element indexed by idx. If the
TIE does not exist, the function returns 0.

• int C5 gTIE int(DPT, int, int)
double C5 gTIE double(DPT, int, double)
char C5 gTIE char(DPT, int, char)
The functions yield the value of the TIE element indexed by the second
argument. If the TIE element to be read does not exist, the function
returns the third argument. In case of type mismatch a warning message
is printed.

• int C5 TIE ass(DPT dp, int, DPT tieval)
The function assigns the value of tieval to the TIE of dp indexed by the
second argument. If the assignment is successful the returned value is 1.
If the TIE does not exist or the index is out of range or in case of type
mismatch a warning message is printed.

After the introduction of TIEs, the C printf example presented in figure 1
can be completely expressed in C5 as follows:

DT_typedef char String[5] {4};
DT_typedef float {6,2} Fnr;
main(){

String st="coef";
Fnr n=42.56;
c5_printf(DT_pair(String,st));
c5_printf(DT_pair(Fnr,n));
}

The TIEs {4} and {6,2} are respectively attached to the array and float types.
Notice that TIE declarations are optional: in this program the char type of the
first type definition has no TIE.
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2.4 C5 Type equality.

In most cases, C5 functions (e.g. C5 fapply) require structural type equality.
In the next type definitions, the types T1 and T2 are not equally defined.

DT_typedef struct AT{
int nr1, nr2;
struct{ char *String; struct AT *link; } ST;
} * T1;

DT_typedef int Integer;
DT_typedef struct BT {

Integer cod;
int age;
struct{ char * name; struct BT * next; } ns;
} * T2;

However, they are structurally equal ( struct{int,int, struct{char ptr,
rec ptr}}ptr). This is the kind of equality used by C5 functions.

The structural equality of C5 types is checked by the C5 type seq function.
It returns 1 if the types of two dynamic pairs are at least structurally equal:
Otherwise, the function returns 0.

int C5_type_seq(DPT d1, DPT d2){

if(C5_gpin(d1)==C5_gpin(d2)) return(1);/* identical types */

/* skip typedefs */

if(C5_gtype(d1)==VTYPEDEF)

return(C5_type_seq(C5_gos(t1,1),t2));

if(C5_gtype(d2)==VTYPEDEF)

return(C5_type_seq(t1,C5_gos(t2,1)));

if(C5_gtype(d1)==C5_gtype(d2))a /* same type class */

switch(C5_gtype(d1)){

case INT: case CHAR: case DOUBLE: return(1);

case STRUCT: case UNION:

if(C5_gsize(d1)==C5_gsize(d2)){

int i;

for(i=1;i<=C5_gsize(d1);i++)

if(C5_type_seq(C5_gos(t1,i),

C5_gos(t2,i))==0) return(0);

return(1);

}

return(0);

case VARRAY:

if(C5_gsize(d1)==C5_gsize(d2))

return(C5_type_seq(C5_gos(t1,0),

C5_gos(t2,0)));

return(0);

case POINTER:

if(C5_rec_ptr(t1) && C5_rec_ptr(t2)){

int p1=
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is_ptr_checked(C5_gpin(t1),ptr_table);

int p2=

is_ptr_checked(C5_gpin(t2),ptr_table);

if(p1==NChk || p2==NChk) /* not checked */

return(C5_type_seq(V_gfield(t1,1),

V_gfield(t2,1)));

if(p1==Chkd && p2==Chkd) /*both checked*/

return(1);

}

else if(!C5_rec_ptr(t1) && !C5_rec_ptr(t2))

return(C5_type_seq(C5_gos(t1,1),

C5_gos(t2,1)));

return(0);

default:return(0);

}

return(0);

}

Note that in the case of pointers, the function avoids infinite loops by using
a table to assure that recursive pointers are checked once.

3 A generic version of printf

Since C5 printf accepts type expressions (DPTs) as arguments, it is straight-
forward to extend the restricted argument types of C printf (strings and atomic
types) to the entire C type system.

For example, the type definition with TIEs presented in Figure 3 is an
acceptable argument for the C5 printf function.

DT_typedef struct{
char ref[12];
double {2,3} *coef;
struct{

char name[40];
int {5} box_nrs[3];
} client;

} Client_Record;

Figure 3: A type definition with TIEs.

The next program shows a simplified and verbose version of the C5 printf
function defined for the int, double, char, struct, DT typedef, pointer and
array types.

void C5_printf(DPT dp){

int i;

char format[100];
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switch(C5_gtype(dp)){

case INT:

sprintf(format,"%%%dd",C5_gTIE_int(dp,0,6));

printf(format,C5_gint(dp,0)); break;

case DOUBLE:

sprintf(format,"%%%d.%df",C5_gTIE_int(dp,0,6),

C5_gTIE_int(dp,1,6));

printf(format,C5_gdouble(dp,0.0)); break;

case CHAR: printf("%c",C5_gchar(dp,’!’)); break;

case STRUCT:

printf("\n struct %s={ ",C5_gname(dp));

for(i=1;i<=C5_gsize(dp);i++){

printf(" ");

C5_printf(C5_gos(dp,i));

}

printf("}\n"); break;

case ARRAY:

printf("\n array %s=[ ",C5_gname(dp));

for(i=0;i<C5_gsize(dp);i++){

if(C5_gtype(C5_gos(dp,i,ErrorDp))==CHAR)

if(C5_gchar(C5_gos(dp,i),’!’)==’\0’)

break;

else if(i>0) printf(" ,");

C5_printf(C5_gos(dp,i));

}

printf(" ]\n"); break;

case POINTER: case TYPEDEF:

C5_printf(C5_gos(dp,1)); break;

}

}

The following C5 printf example prints an object of the type Client Record
presented in Figure 3:

main(){
Client_Record cr;
double r=2.8672;
strcpy(cr.ref,"0037731443");
cr.coef=&r;
cr.client.box_nrs[0]= 1204;
cr.client.box_nrs[1]= 82761;
cr.client.box_nrs[2]= 464;
strcpy(cr.client.name,"Carlos Gardel");
C5_printf(DT_pair(Client_Record,cr));
}

with the following result:

struct Client_Record={
array ref=[ 0037731443 ]
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2.867
struct client={
array name=[ Carlos Gardel ]
array box_nrs=[ 1204 ,82761 , 464 ]
}
}

There is also a C5 version of fprintf

int C5 fprintf(FILE ∗ , DPT )

4 A generic version of scanf

The scanf function of the C language scans input according to the format string
argument which specifies the type and conversion rules of the other arguments.
The types specified in the format argument are restricted to (references to)
atomic and string types. The results from these conversions are stored in the
arguments of the function.

As we did with printf, we introduce a generic version of scanf in C5:

DPT C5 scanf(DPT )

where the format string of the C scanf function is expressed by the dynamic
type of the DPT argument.

C5 scanf interprets the dynamic type of the argument as the grammar for
parsing the input and, if the parsing is successful, the object member of the
argument pair is constructed accordingly to the input. If the input cannot be
parsed, C5 scanf returns a dependent pair with information about the error.

The resulting program includes a parser generator that can be compared
with Yacc [14] and a scanner like Lex [17].

There is also a counterpart of C fscanf in C5:

DPT C5 fscanf(FILE ∗ , DPT )

We introduce the C5 scanf function by first explaining the lexical meaning
of the C types that belong to the lexical analyzer and then the grammatical
meaning of the types related to the syntax analyzer.

4.1 The lexical analyzer

Atomic and string types are the lexical or token elements of C5 scanf. The
actual version of C5 scanf accepts the following lexical types: int, double,
char, character pointer and array of characters.

These types are interpreted in C5 scanf as follows:

• int is interpreted as the regular expression (RE) [0-9]+. If the type is
attached with { Signed} then the RE is [+-]?[0-9]+.
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• double is interpreted as the RE [0-9]+.[0-9]+. If the type is attached
with { Signed} then the RE is [+-]?[0-9]+.[0-9]+.

• char {ch} will match a character equal to ch.

• char A[N] {Word} will match a string equal to Word if its length is less
than N and starts with a letter or punctuation char followed of printable
(excluded space) chars. An error is reported if no TIE is declared.

• char *{RE} will match the input according with the regular expression
RE. If the TIE is absent the default RE is [A-Za-z][A-Za-z0-9 ]*.

C5 scanf uses token type declarations to construct a regular expression table
(in the Lex style) with the following order:

1. arrays of chars

2. characters

3. character pointers, double and int numbers.

There are also special functions to extend the table with comments and spacing
characters. The default table has no comments and the spacing characters are
′\r′,′\t′,′ ′ and ′\n′.

In case of ambiguous specifications, C5 scanf chooses the longest match. If
there are more than one RE matching the same number of characters, the RE
found first in the table is selected.

The example below shows how a string can be scanned according to the RE
[AB]+:

DT_typedef char * {"[AB]+"} AB;
main(){

AB ab;
addComment("/*","*/");
C5_printf(C5_scanf(DT_pair(AB,ab)));
}

The function addComment enables comments with the declared start and ending
strings. The program accepts the following input

AABBBAAAA /* A C5_scanf example */

and the output will be

"AABBBAAAA"

The next input string

AA12xy /* this string is not acceptable by the scanner */

cannot be parsed and therefore the output is an error message:

struct ErrorMessage={ "Syntax error"
struct near_at_line={ "AA" 1 }
}
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4.2 The syntax analyzer

The types with a syntactic meaning in C5 scanf are: structures, arrays (array of
char is excluded), type definitions , discriminated unions, pointers (char pointer
is excluded) and recursive declarations.

4.2.1 Structures and arrays

A struct or an array type is a sequence of syntactic or lexical types. The set
of strings accepted by this grammar (type) is the cartesian product

< S0, S1, ... , Sn >

where S0, S1, ..., Sn are the sets of strings of the fields or elements of a given
structure or array respectively.

4.2.2 Pointers and definition types

The set of strings accepted by pointer and definition types are the same than
the referenced and the defined type respectively.

The next program shows a type (grammar) that includes the structured,
pointer and defined types:

DT_typedef double Real;
DT_typedef struct{ int n; Real r; } *IntReal[2];
main(){

IntReal ir;
C5_printf(C5_scanf(DT_pair(IntReal,ir)));
}

For example, the string "123 0.432 21 0.55" is an acceptable input for this
program.

4.2.3 Discriminated unions

C unions cannot be used to express alternative grammars because they are not
discriminated, that is, the compiler does not know which field of the union is
currently stored.

By convention, we will represent alternative grammars in C5 scanf by the
following type:

DT typedef struct{
union{ d0, .., di, .., dn } < id >;
int < id >;
} < id >;

where d0, .., di, .., dn are the fields of the union and the integer field is called the
union discriminator and is supposed to keep the information about the current
field of the union. Thus, the discriminator field has no grammatical meaning.
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The discriminated union type represents in C5 scanf the union of the sets
of strings accepted by the fields (grammars) d0, .., di, .., dn.

4.2.4 The empty rule

The concept of empty rule is implemented in two ways:

1. explicit way

The empty rule is a special field in discriminated unions. the empty fiels
is a nullable token called emptyProd which is defined as follows:

DT_typedef char {’\0’} emptyProd;

2. implicit way

The empty rule is an alternative in fields of recursive pointer including the
TIE {0}:

struct NODE * {0} next;

If the empty rule is matched, the pointer is assigned with the standard C
NULL value.

This implementation is based on the proposal of Aycock and Horspool [4].

4.2.5 Recursive declarations

Recursive type declarations of discriminated unions allow us to express un-
bounded sets of strings.

For example, the program below accepts sequences of numbers and the con-
structed object will be a linked list of integers:

DT_typedef struct IntL{
union{

int n;
struct{ struct IntL *next; int n; } RecProd;
} UU;

int discriminator;
} * Int_List;

main(){
Int_List il;
C5_printf(C5_scanf(DT_pair(Int_List,il)));
}

Another version of this program can be done with the standard C declarations
of linked lists:
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DT_typedef struct IntL{
int n;
struct{ struct IntL * {0} next; int n; } RecProd;
} * Int_List;

main(){
Int_List il;
C5_printf(C5_scanf(DT_pair(Int_List,il)));
}

Note the TIE {0} in the recursive pointer. In this case C5 scanf uses the hidden
discriminated union of the C NULL value for null pointers.

4.3 BNF notation

In most parser generators, grammars are expressed in BNF (Backus-Naur no-
tation) or EBNF (Extended BNF).

The following example is a BNF grammar in Yacc syntax:

exp : NUMBER
| exp ’+’ exp
;

where exp is a nonterminal symbol and NUMBER and ’+’ are terminals (tokens).
In C5 scanf, this BNF grammar can be expressed by the next type declaration:

DT_typedef struct EXP{
union{
int number;
struct{
struct EXP *e1; char{’+’} pl; struct EXP *e2;
} RecP;

} UU;
int discriminator;
} *exp;

4.4 The parsing algorithm

The algorithm of the C5 scanf parser generator is an implementation of the
Earley algorithm [9] with a lookahead of k = 1. This algorithm is a chart-based
top-down parser that accepts the complete set of context free grammar (CFG)
and avoids the left-recursion problem.

The algorithm runs in O(n3) time order where n is the number of symbols
to be parsed.

The algorithm has been modified to construct an object of the type that
represents the grammar. This is done by programming the recognizer so that it
builds an object during the recognition process.

C5 scanf will produce parsers even in the presence of conflicts. There are
some disambiguating rules in the Yacc style. For instance, the if-else and the
arithmetic expression conflicts are solved in C5 scanf.
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4.4.1 The if-else conflict

The program below is an example of the if-else conflict in C5 scanf:

DT_typedef char Else[5] {’e’,’l’,’s’,’e’};
DT_typedef char If[3] {’i’,’f’};
DT_typedef struct IFE{

union{
char {’e’} exp;
struct{ If i; struct IFE *e; } If_stmt;
struct{ If i; struct IFE *e1;

Else s; struct IFE *e2;} If_Else_stmt;
} UU;

int discriminator;
} * Stat;

main(){
Stat il;
C5_printf(C5_scanf(DT_pair(Stat,il)));
}

The input if if e else e produces two possible outputs for the same input
if (if e else e) and if (if e) else e.

The ambiguity is detected by C5 scanf returning a diagnostic message:

C5_scanf: Disc. union "Stat" ambiguous in
field 3 "If_Else_stmt" and
field 2 "If_stmt".
Suggestion: attach an int TIE to the "Stat" discriminator
specifying the preferred alternative ({3} or {2}).

If we attach the TIE {2} to the discriminator field of Stat then the ambiguity
is solved and the output will be

struct If_stmt={
array If=[ if ]
d_union Stat={
struct If_Else_stmt={
array If=[ if ]
d_union Stat={ e}
array Else=[ else ]
d_union Stat={ e}
}

}
}

4.4.2 Arithmetic expressions

The next token declaration in Yacc:
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%left ’+’ ’-’
%left ’*’ ’/’

describes the precedence and associativity of the four arithmetic operators. The
four tokens are left associative, and plus and minus have lower precedence than
star and slash.

The next type declaration is the C5 scanf version of the above Yacc token
declaration:

DT_typedef char {’+’} PLUS;
DT_typedef char {’-’} MINUS;
DT_typedef char {’*’} TIMES;
DT_typedef char {’/’} DIV;

DT_typedef PLUS {LeftAss, 1} Plus;
DT_typedef MINUS {LeftAss, 1} Minus;
DT_typedef DIV {LeftAss, 2} Div;
DT_typedef TIMES {LeftAss, 2} Times;

These disambiguating rules are declared in TIEs attached to type definitions
related to token (or lexical) types. The first and second members of the TIE
are respectively the associative and precedence rules.

4.5 Semantic Actions

Semantic actions in the Yacc style are simulated using the function C5 compil.
The nexr program shows the use of an action TIE in a simple grammar:

DT_typedef struct{
char {’<’} l;
char *id;
char {’>’} r;
} {"id"} IdExp[2] {1};

main(){
IdExp ie;
C5_printf(C5_compil(C5_scanf(DT_pair(IdExp,ie))));
}

The TIE {1} selects the second element of the array and { "id" } selects the
second field of the structure.

For example, this program accepts the string " < one > < two > " and the
output is "two".

Programming with C5 scanf.

The following C5 programs are three motivating examples that illustrate the
use of the C5 scanf function.
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Matrix

The example below prints an element of a 2×3 matrix constructed by C5 scanf:

DT_typedef int Matrix[2][3];
main(){

Matrix mtx;
if(C5_scanfError(C5_scanf(DT_pair(Matrix, mtx)))

printf("Cannot read the matrix.\n");
else printf("mtx[1][2]=%d\n",mtx[1][2]);
}

Notice the way the variable mtx is used to communicate the dynamic and the
static universes. This is an useful programming methodology in C5: the user
constructs an object in the dynamic universe which is processed in the static
universe.

A desk calculator

The next program shows a desk calculator that includes associative and prece-
dence rules to avoid ambiguous grammars:

/* Tokens */

DT_typedef char {’+’} PLUS;

DT_typedef char {’-’} MINUS;

DT_typedef char {’*’} TIMES;

DT_typedef char {’/’} DIV;

/* C5 functions */

DT_typedef int Number;

Number c5_Add( Number a, Number b){ return(a+b); }

Number c5_Mul( Number a, Number b){ return(a*b); }

Number c5_Dvd( Number a, Number b){ return(a/b); }

Number c5_Sub( Number a, Number b){ return(a-b); }

Number c5_Umi( Number a ){ return(-a); }

/* The grammar and semantic actions */

#define Ae_ struct Aexp *

DT_typedef struct Aexp{

union{

Number number;

struct{ char {’(’} lp; Ae_ e; char {’)’} rp;}

{"e"} parProd;

struct{ Ae_ e1; PLUS {LeftAss, 2} add; Ae_ r1;}

{dp_Fn(c5_Add),"e1","r1"} addProd;

struct{ Ae_ e2; TIMES {LeftAss, 3} times; Ae_ r2;}

{dp_Fn(c5_Mul),"e2","r2"} mulProd;

struct{ Ae_ e3; MINUS {LeftAss, 2} minus; Ae_ r3;}

{dp_Fn(c5_Sub),"e3","r3"} subProd;

struct{ Ae_ e4; DIV {LeftAss, 3} div; Ae_ r4;}
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{dp_Fn(c5_Dvd),"e4","r4"} dvdProd;

struct{ MINUS {LeftAss, 4} um; Ae_ e; }

{dp_Fn(c5_Umi),"e"} uminusProd;

} uu;

int disc;

} *AritihmeticExp;

main(){

AritihmeticExp aexp;

addComment("||","\n");

C5_printf(C5_compil(C5_scanf(DT_pair(AritihmeticExp,aexp))));

}

For example, this calculator accepts the input 10 + 2 * 4 / - 2 - 2 and
produces the output 4.

XML checker.

The example below shows a partial and simplified version of a well-formed XML
document checker.

DT_typedef char *{"[^<&>]+"} charD;

DT_typedef struct{ char {’<’} l; char *id; char {’>’} r; } {"id"} STag;

DT_typedef struct{ char l[3] {"</"}; char *id; char {’>’} r;} {"id"} ETag;

DT_typedef struct{ char {’<’} l; char *id; char r[3]{"/>"};} EmptyElemTag;

DT_typedef struct{

union{ charD chd; char * id; } UU;

int discriminator;

} CharData;

DT_typedef struct CharDL{

union{

emptyProd nil;

struct{ struct CharDL *c; CharData cd;} CDls;

} DU;

int discriminator;

} *CharDataList;

DT_typedef struct{

CharDataList cdl;

struct XML_EL_LS *els;

} {"els"} XMLcontent;

int c5_cmpstr( char * s1, char * s2, int rec){

if(strcmp(s1,s2))

printf("Error: incorrect nested tags %s %s.\n",s1,s2);

return(rec);

}

DT_typedef struct XML_EL{
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union{

EmptyElemTag eet;

struct{ STag start; XMLcontent c; ETag end; }

{dp_Fn(c5_cmpstr),"start","end","c"} elem;

} DU;

int discriminator;

} *XMLelement;

DT_typedef struct XML_EL_LS{

union{

emptyProd {0} nil;

struct{ struct XML_EL_LS *next; struct XML_EL *el;}

{"next","el"} els;

} DU;

int discriminator;

} *XMLelementList;

main(){

XMLelement xmldoc;

C5_compil(C5_scanf(DT_pair(XMLelement,xmldoc)));

}

This program accepts the following XML document

<message>
<to>juanma@adinet.com</to>
<from>marcos@adinet.com</from>
<subject>XML test </subject>
<text>

--Can you check this with C5_scanf? ...
</text>

</message>

However, it rejects this input text with incorrect nested tags:

<message>
<subject> XML test of nested tags. </message>

</subject>

Notice that in the case of a successful check, the variable xmldoc contains a
structured XML document that can easily be inspected or processed.

5 Searching values in a DPT pair.

The DPT library includes functions to search values by their type identifiers:

• int C5 lenSearch( DPT , char * ident )
The function returns the number of ident occurrences in the first argu-
ment.
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• DPT c5 idxSearch( int idx, DPT , char * ident )
The function returns the dynamics of the idxth occurrence of ident in
the first argument. 0 is the first occurrence of ident. A null dynamics is
returned if idx is not valid.

The functions follow the next searching rules:

1. the functions check the name of the current dynamic type. In case of
non-atomic types, the functions may inspect the type expression.

2. int, double, char, char pointer, array of char and functions are atomic
objects.

3. array elements are recursively inspected from 0 to the upper bound.

4. structure fields are recursively inspected from the first to the last.

5. C5 discriminated unions are inspected and evaluated according to the
discriminator value.

6. Type definitions and non-null pointers are evaluated to the defined and
referenced object respectively.

5.1 Examples

5.1.1 Type name count.

The next program prints 3 for the input w1 w2 :

DT_typedef char * Words[2];
main(){
Words ws;
printf(" len=%d\n",C5_lenSearch(

C5_scanf(DT_pair(Words,ws)),"Words"));
}

As this example shows, type names may be shared by different types.
C5 lenSearch founds first the array Words and then two strings that are also

identified with the type name Words are founded when the function inspects the
array elements.

5.1.2 Reverse order.

The next program reads words from the input and prints them in reverse order:

DT_typedef char * {"[^ ]+"} element;
DT_typedef struct IntL{

element el;
struct IntL * {0} next;
} *MyType;
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main(){
DPT dp;
MyType obj;
int i;
dp= DT_pair(MyType, obj);
C5_scanf(dp);
for(i=C5_lenSearch(dp,"element")-1;i>=0;i--)

C5_fprintf(stdout,C5_idxSearch(i,dp,"element"));
}

The input 1 two --- |||| five5 6 produces the output 6 five5 |||| ---
two 1.

We can replace the linked list declaration by a matrix and the program still
works:

DT_typedef char * {"[^ ]+"} element;
DT_typedef element MyType[2][3];
main(){

DPT dp;
MyType obj;
int i;
dp= DT_pair(MyType, obj);
C5_scanf(dp);
for(i=C5_lenSearch(dp,"element")-1;i>=0;i--)

C5_fprintf(stdout,C5_idxSearch(i,dp,"element"));
}

Likewise the previous example the input 1 two --- |||| five5 6 produces
the output 6 five5 |||| --- two 1.

6 About the C5 compiler (version 0.98, Septem-
ber 2006).

The C5 compiler has been developed in 1999 at the Instituto de Computación
(InCo) in Montevideo, Uruguay. The compiler translates C5 programs into C
code.

The C5 parser is a extended C parser with few grammatical modifications.
The compiler consists on about 5500 lines where 900 of them are the actual type
checker. The compiler parses C5, does type checking of DPT constructors and
translates the generated syntax tree to C code.

In case of a successful compilation, C5 produces three C files:

1. C5 defs.h
Type definitions and extern declarations.

2. C5 out.c
It includes the functions C5 gos and C5 fapply, and the type database
required by the DPT library.
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3. C5 prog.c
This file has the translated C5 source code.

The C5 type checker is simple: for every DT pair invocation C5 checks
statically if the first argument is a DT typedef type definition and if the second
is a variable of the same type than the value of the first argument.

The current implementation of C5 (Version 0.98, September 2006) with a
sample of C5 programs can be found on the Web at

http://www.fing.edu.uy/~jcabezas/c5

C5 scanf has been implemented in C5 and consists on about 2300 lines
where 700 of them belong to the lexical analyzer.

7 Related work

The statically typed programming languages Amber [6] and Modula-3 [7] include
notions of a dynamic type and a typecase statement. This idea can also be found
in functional programming [16] [20] [8] and in type-safe C dialects like Ccured
[18] where dynamics are used for converting C in a type safe language.

Although C5 may assign accurate types to untyped C programs like printf,
it is not a type-safe C dialect but rather a C-based framework for generic pro-
gramming.

In our knowledge, C5 is the first C extension with dynamics developed for
generic programming.

The extension of functional languages with dependent types is another in-
teresting alternative for generic programming: Cayenne [2] –a Haskell-like [12]
language with dependent types– is powerful enough to encode predicate logic
at the type level and thus express generic functions like printf without restric-
tions.

In a close research line to dependent types, the Generic Programming com-
munity [5][11]. is developing another approach. PolyP [13] is an example of this
work that achieves an expressive power similar to that of dependent types by
parameterizing function definitions with respect to data type signatures.

7.1 C5 scanf

Most parsers in use today are based on efficient linear-time algorithms that
accept a subset of CFGs (LL,LR or LALR) [14].

The primary objection to the Earley’s algorithm is not functionality but
with its run-time response.

Nevertheless, the practical use of Earley parsing has become an interesting
alternative in the last years: Accent [19] is the first Earley parser generator
along the lines of Yacc and DEEP [3] is an efficient directly-executable Earley
parsing.

Finally, we did not found parser generators that accept grammars denoted
with C types in the C5 scanf style.
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8 Conclusions

The generic functions C5 printf and C5 scanf show that a static typed lan-
guage extended with DPTs (dynamics) and TIEs can be powerful enough to
express a wide class of generic functions in a straightforward, compact and safe
way.

Even though the communication between static and dynamic types is also
restricted to avoid typing conflicts, we have not detected practical limitations
when implementing generic functions like C5 scanf.

The C5 version of Inodoro’s dream examples shows clearly the abstraction
level that this language can achieve.

The improvements of version 0.98 of the C5 compiler have transformed
C5 scanf, C5 compil, C5 lenSearch and C5 idxSearch in a powerful parsing
framework.

The most remarkable property of C5 scanf is the object construction. The
user just need to define a type. The parsing result is an object of that type.
Thus, the user may inspect or process the resulting object using the C5 compil,C5 lenSearch
and C5 idxSearch functions.

The parsing process becomes transparent to the user in C5 scanf. This is a
good example of generic programming in C5.
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