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ABSTRACT 
One of the fundamental decisions in content networks is how the information about the existing contents 
is deployed and accessed. In particular, there are two main alternatives, either to publish the information 
when contents are changed, or to search for the contents when a query is received. Even if some 
networks only use one of these alternatives, in general it is better to employ a mix of both strategies. 
This implies evaluating the tradeoff between these alternatives, in order to decide the characteristics of 
the mix. In this work we develop a simplified model of the costs and restrictions associated with cache 
expiration dates in a cache node in a content network; these expiration dates regulate the proportion of 
queries which will be answered on the basis of published information, vs. those which will give rise to 
additional searches in the network backbone. Based on this model, we present a mathematical 
programming formulation which can be useful to determine the optimal cache expiration dates in order 
to maximize the total information discovered, while respecting the operational constraints of the 
network. 

Keywords 
Peer-to-peer networks, mathematical programming, optimization. 

RESUMEN 
En las redes de contenido, uno de los puntos fundamentales es la decisión sobre cómo acceder y 
distribuir la información sobre los contenidos existentes. En particular, hay dos alternativas principales, 
publicar la información cuando los contenidos cambian, o buscar los contenidos cuando se recibe una 
consulta.  En general, se emplea una combinación de ambas alternativas, debiéndose evaluar la mejor 
manera de realizar la misma. En este trabajo, desarrollamos un modelo simplificado de los costos y 
restricciones asociados con las fechas de expiración de cache en nodos cache. Estas fechas regulan la 
proporción de consultas que serán contestadas en base a la información publicada, y aquellas que darán 
lugar a una búsqueda en el backbone. Basados en este modelo, presentamos una formulación de 
programación matemática que puede ser empleada para determinar las fechas de expiración óptimas de 
manera de maximizar el total de información encontrada, respetando las restricciones operacionales (de 
ancho de banda disponible en los nodos cache).  

Palabras clave 
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Redes de pares, programación matemática, optimización.  

1. INTRODUCTION 
A content network is a network where the addressing and the routing of the information is based on 

the content description, instead of on its physical or logical location [7][8][10]. Content networks are 
usually virtual networks based over the IP infrastructure of Internet or of a corporative network, and use 
mechanisms to allow accessing a content when there is no fixed, single, link between the content and the 
host or the hosts where this content is located. Even more, the content is usually subject to re-
allocations, replications, and even deletions from the different nodes of the network.  

In the last years many different kinds of content networks have been developed and deployed in widely 
varying contexts: they include peer-to-peer networks, collaborative networks, cooperative Web caching, 
content distribution networks, subscribe-publish networks, content-based sensor networks, backup 
networks, distributed computing, instant messaging, and multiplayer games. The ability of content 
networks to take into account different application requirements and to gracefully scale with the number 
of users have been a main factor in this growth [12][13][14].  

As we have previously discussed, in a content network the addressing and routing are based on the 
content description, instead of on its location. This means that every content network is actually a 
knowledge network, where the knowledge is the information about the location of the nodes where each 
specific content is to be found: this is "meta-information", in the sense of being the information about 
the information contents themselves. 

The objective of the network is to be able to answer each content query with the most complete possible 
set of nodes where this content is to be found; this corresponds to discover the content location in the 
most effective and efficient possible way. 

There are two main strategies to discover the meta-information, namely publication and search. By 
publication we mean the process by which a network node unrequestedly sends meta-information it 
possesses to the remaining nodes. By search we mean the process by which a node asks the remaining 
ones to send it the meta-information they possess. By analogy with logistics, we can say that publication 
is an "information push" strategy, and search an "information pull" strategy. 

As both nodes and contents are continuously going in and out of the network, the task of maintaining 
updated the network meta-information is very difficult and represents an important communication cost. 
Both publishing and search can contribute towards this task, but their relative efficiency varies, so that 
there is a tradeoff between their frequency and modality of application. In this context, cache nodes are 
used to hold the available meta-information; as this information is continuously getting outdated, the 
cache nodes must decide when to discard it, which means increasing communication overhead for the 
sake of improving the quality of the answers. 

These last years have seen an explosion on the design and deployment of different kinds of content 
networks, in most cases without a clear understanding of the interaction between the network 
components neither of the tuning of the network architecture and parameters to ensure robustness and 
scalability and to improve performances. This in turn has lead to a still small but growing number of 
empirical studies (based on large number of observations of a given network activity) 
[6][14][15][16][20], and of analytical models which can be fitted to the observations in order to better 
understand and eventually to predict different aspects of  network behavior  [3][12][13][17][18].  

In this work, we develop a simplified model of a content network, and in particular of the number of 
correct answers to a query as a function of the information expiration times used at the cache nodes, 
presented in Section 2; to the best of our knowledge, this is an aspect that has not been previously 
treated analytically in the literature. This model gives rise to a mathematical programming formulation 
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discussed in Section 3, which can be used to find the expiration times maximizing the correct answers to 
the queries received; a numerical illustration is shown in Section 4, followed by some conclusions in 
Section 5. 

2. CONTENT CACHING PROBLEM FORMULATION  

This section formalizes the problem of caching meta-information in a content network in order to 
maximize the number of correct answers to the queries, while respecting the bandwidth constraints; this 
will be our Content Caching Problem (CCP).  

2.1 Network components description 
We will look at the content network as composed of source nodes and querying nodes (which may be 
the same), of cache nodes (also called aggregation nodes), and of a backbone (which will not be further 
modeled); a graphical representation can be seen in Figure 1. This division is actually virtual, as a same 
physical node may act at the same time as a source node, a querying node, a cache node, and a backbone 
node. We will also separately model the contents of the network (which will belong to a set C). The 
content network is considered to be in steady state, so that we will not need to explicitly model the time; 
this assumption is justified by the fact that the time rate at which contents appear and disappear, and 
cache expiration times, are usually much faster than the times by which the statistical properties of the 
user population change. 

 

Figure 1: Simplified view of a content network 

 

The users of the network will query about each content k with a different query frequency kf  . We 
suppose that the number of users is large enough so that for each content, the queries follow a Poisson 

process of rate kf  This means that ( )TSk , the number of queries for content k in a given time interval T, 
will have the following distribution:  

( )( ) ( ) +
−
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k
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k
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Also kS
T , the time between two consecutive queries, will be an exponentially distributed random 

variable with parameter kf : 
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The contents will be located in the source nodes; each source node decides when to start and when to 
end lodging the different contents. This leads to a different birth-and-death process for each content k, 

which we will suppose will be of ∞M/M/  type and parameters kλ and kµ (respectively, the rates of start 

and end of lodgement of content k at a source node); if we suppose that at moment 0t  the network is in 

stationary state, and ( )0tAk  is the (random) number of source nodes lodging content k at 0t  we have 
that: 

( )( ) .,  
!0 ℵ∈∀∈∀
�
�
�

�
�
	

==

−

nCk
n

e
ntAp

k
kn

k

k

k

µ
λ

µ
λ

. 

 

From this distribution, we can find the expected number of source nodes lodging content k (i.e., the 
expected number of times this content will be replicated in the network): 
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The only routing nodes we will consider are aggregation nodes. In general, querying nodes are not able 
to search directly in the backbone, and usually connect to at least one aggregation node in order to route 
their queries. The aggregation node concentrates all queries of its connected nodes and consults the 
backbone when it is not able to directly answer the queries received. One of the objectives of having 
aggregation nodes is to minimize the number of searches in the backbone; to do this, aggregation nodes 
maintain a cache of the results of recent queries, and are then also called cache nodes. The behavior of a 
cache node is very simple: when a query over content k arrives, if the answer is present in the cache it is 
returned; otherwise, the cache node starts a search in the backbone to obtain the information and answer 

the query; this information is then stored in the cache, for a prefixed time kd , afterwards it expires.  

One of the reasons for deleting out-dated information is that the results of a query will only be valid for 
a given time interval, as the nodes which hosted this content can disconnect or delete the content of 
interest, and new nodes can connect or start to publish the content. Suppose the cache node queried the 

backbone at time 0t  for content k and received in answer the information about ( )0tAk  source nodes 
which hosted this content at that time. From then on, we can consider that the number of valid locations 
for content k known to the cache node will evolve like a stochastic pure-death process, with death 

parameter kµ , as the source nodes will disconnect or delete the contents, until a new query is routed to 
the backbone. 
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We can then compute the mean number of valid locations known by a cache node at time 0t + t when the 

last query answered by the backbone has been at time 0t : 
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The behavior of a cache node is then essentially composed of a repeated cycle, which starts with a first 
query of content k, leading to a backbone search; then a period of fixed duration kd , where all queries 
arriving are answered with the information contained in the cache memory; and then, after the expiration 
of the cache contents, a period of random duration, until a new query for content k arrives, re-starting all 
the cycle again. By the hypothesis of Poisson arrivals for queries, this last period follows an exponential 
distribution, of parameter kf  (the query frequency). Figure 2 shows a scheme of this cycle, where we 
denote by the period where the contents are cached, and by the period where the contents are not cached. 

kC dT
k

=
kNCT  The mean length of the cycle is then 

k
k fd 1+ ; in each cycle there is only a single 

search in the backbone (when the cycle starts), this can be used to compute the rate of backbone searches 
as follows: 

( ) .
11

1
  timecycle  total

searches #
 unit  per  time  searches  backbone

kk

k

k
k fd

f

fd +
=

+
==  

Queries

Backbone searches

Time

Answer is in the cache

Answer is not in the cache

Queries

Backbone searches
 

Figure 2 – cyclic behavior at cache nodes. 
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As the query frequency is fixed externally, the only free variables we can adjust at cache nodes to define 
their behavior are the content expiration dates kd  for every content k.  

 
2.2 Bandwidth constraints  

Cache nodes have input and output bandwidth constraints, which can limit the number of queries they 
can receive, process, answer and eventually pass on to the backbone. We will try to formulate these 
constraints in terms of the previously defined parameters and of the free variables kd . 

We denote by INBW  and OUTBW  the maximum input and output bandwidth a cache node is able to 
employ. We suppose that each query the cache nodes receives employs Sβ bytes in mean, and that its 
answer employs Sα bytes per location information to be sent (then, the answer varies in size depending 
the number of known node locations where a content is stored). We also use as additional parameters 

Bβ ,the message size of queries to be sent to the backbone, and Bα which is the message size per location 
of the answers received from the backbone.  

 

Then, the input bandwidth to be used by the cache node corresponds to the sum of the size of the queries 
received from the querying nodes (at a rate kf per content k), and of the answers sent by the backbone 

when queried about a specific content. As we know that the backbone search frequency is 
kk

k

fd
f

+1
, and 

the mean number of content k locations in the backbone is 
k

k
kA µ

λ= , we arrive to the following 

formula: ( ) 
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Similarly, the output bandwidth corresponds to the sum of the queries transmitted to the backbone plus 
the content locations answered to the querying nodes in response to their queries, leading to the 

formulation ( ) 


∈∈ +

+=
Ck kk

k
B

Ck
kkS fd

f
Af

1
bandwidthoutput  βα . 

We can then mathematically formulate the bandwidth constraints as follows: 
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2.3 Expected number of correct answers  
The network primary objective is to be able to give the most complete correct information to the queries 
received. To formalize this objective, we develop an expression for the number of correct answers (i.e., 
the number of valid content locations) answered to the querying nodes. In particular, if we denote by 

kR the random variable corresponding to the number of content locations answered to a query for 
content k, we want to compute its expected value 

kR  . We know that during a cache node cycle, there 
will be at least one query (at the start of the cycle), and a random number of additional queries during 
the period where the content locations are stored in the cache, of duration kd  (as when the cache 
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contents expire, the first query arriving will lead to the start of a new cycle). This leads to the following 
formulation for each content k:  
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where NC,kR is the answer to the inicial query (transmitted to the backbone, and whose answers are 

stored in the cache), and Cn,kC,k R...R 1  are the answers to the following queries during the time period 

starting with the first query and of duration kd . 

The expected number of correct responses to the first query is exactly the expected number of nodes 

hosting the contents, { }
k

k
kNC,k AR

µ
λΕ == . 

For the following queries, we use on one hand the fact that query arrivals follow a Poisson process of 
rate kf , so that the probability of observing n arrivals during a time interval of length kd  is : 
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On the other hand, it is a well-known fact (see for instance the discussion in [5]) that the distribution of 
the arrivals of a Poisson process within a fixed interval follow an uniform distribution. This means that 
the expected mean value of the number of answers received to the queries during this interval will be 
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Combining all these results, we find  
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Finally, we can compute the expected number of correct answers taking into account all contents; this is 
the function we would like to maximize:  
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3. MATHEMATICAL PROGRAMMING FORMULATION 
 
If we put together the network objective and the bandwidth restrictions discussed in the previous section, 
we arrive to the following formulation of our CCP problem: 
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This is a non-linear optimization problem, both in the restrictions and in the objective function. If we 
study it in detail, we can see that both the feasible solution space and the objective function are convex. 
As the problem is stated as a maximization one, a convex objective function will in general lead to 
multiple local optima. 

 

3.1 Content class based alternative formulation. 
In most cases, content networks manage a very large number of different contents. These means that the 
previous formulation will have a large class of decision variables kd , an additional difficulty for the 
numerical solution of the problem. On the other hand, for simplicity design reasons, the networks will in 
general treat in the same way contents that have similar characteristics. It is then possible to group all 
contents in a certain number of content classes, such that all contents within a class have relatively 
homogenous characteristics. 

Formalizing,, we suppose that all contents Cc ∈  are grouped into K content classes, such that if two 
contents belong to the same class, all their parameters are identical: 
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The size of class k , denoted by kl , is the number of contents of this class: [ ]K..k lC kk 1∈∀= . 

The total number of contents in the network is then: 


∈∈

==
Kk

k
Kk

k lCC  

We now define the Content Class Caching Problem. We enumerate the parameters of the problem (and 
give their dimensional units between brackets): 

• kl : number of contents belonging to class k  ( [ ] 1=kl ).  

• kf : query rate for class k  contents k  ( [ ] .sec
1fk = ).  

• kλ : rate for source arrival for class k  contents ( [ ] .sec
1

k =λ ) .  

• kµ : rate for content deletion in sources for class k  contents. ( [ ] .sec
1

k =µ ) .  

• Sα : size per location answered in response to a content query ( [ ] bytesS =α ).  

• Bα : size per location answered in response to a backbone search ( [ ] bytesB =α ).  

• Sβ : size of a content query packet ( [ ] bytesS =β ).  

• Bβ : size of a backbone search packet ( [ ] bytesB =β ).  

• OUTIN BW,BW : input and output bandwidth restrictions in the cache node 

( [ ] [ ] .sec
bytesBWBW OUTIN == ). 

• kd : cache expiration times for class k  contents. ( [ ] sec.k =d )  
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The problem is then formalized as follows: 
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4. NUMERICAL ILLUSTRATION 
4.1 Content caching problem  case study. 

In this section we present a numerical illustration over a case study, where the data was generated with 
information available in different literature sources especially referring to Gnutella or similar peer-to-
peer (P2P) file sharing networks [1][4][9][15][19]. We have chosen P2P networks which are a specially 
successful category of content networks, for which there is also much quantitative information available.  

Parameters Values 
T : time units 1 hour 
C : number of different contents 878691 
f : average content query rate  0.037938251 hr-1 

maxf : maximum content query rate 1000 hr-1 

λ : average content storage rate  11.09749966 hr-1 

µ : average content location validity rate 1 hr-1 

max

��
�

�
��
�

	

µ
λ

: maximum allowed number of locations 

answered in response to a content query 

200 

Sα : size of a the answer to a  content query  100 bytes 

Bα : size of the answer of a backbone search  310 bytes 

Sβ : size of a content query  94 bytes 

Bβ : size of a backbone search packet 291.4 bytes 

INBW : input bandwidth  921600000 bytes/hr. 

OUTBW : output bandwidth 460800000 bytes/hr. 
Table 1: parameter values for the case study. 
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Table 1 summarizes the main parameters of the case study. We generated ten instances of this detailed 
case study (using a random number generator with different seeds),  including the data for the 878691 
different contents (which correspond to the number of Gnutella contents in the study by Chu [1] ), where 
the distributions for the query frequency follow a modified Pareto distribution law taking into account 
the "fetch-at-most-once" effect (see [4] for a discussion of this observed network behavior). Regarding 
the frequency of arrival of new storage locations for each content, we suppose that it is linearly related to 
the query frequency, following the hypothesis mostly used in the literature (an exception is the work by 
Qin [9] which also studies a square root dependency).  For the bandwidth constraints, we suppose that 
the cache nodes will be equipped with an ADSL 2/1 Mbps connection as reference value. 

4.2 Class content caching problem  case study. 
As we discussed in Section 3, it is next to impossible to directly solve the CCP problem generated, a 
non-linear problem in 878691 independent variables (one for each content). As an alternative, we cluster 
the contents into a small number of homogeneous content classes, and solve the resulting CCCP 
problem.  As it is not a-priori clear what is the best number of classes to use, we experimented with five 
different values, namely 2, 8, 16, 32, and 128 classes, for each of the 10 different CCP problems 
generated.   

In order to solve the different problems formulated, we used AMPL, an algebraic modeling language for 
mathematical programming problems, in conjunction with MINOS (version 5.5), an optimization solver. 
In the Appendix, we give some examples of how the optimization problem is formulated in terms of the 
AMPL language, and of the commands to be used to find a numerical solution.  

All experiments were run on a  PIII 800 MHz computer, with 320 Mb RAM space. The results obtained 
are summarized in Table 2. The objective function has been normalized, using a tight upper bound, so 
that the values can be compared directly. Among other observations, we can see that when the number 
of classes grow, the available resources are being increasingly used. Also, the computational times 
required to solve the model grow, albeit they remain very modest. 

Table 2: Average results for 10 (randomly generated) cases. 

 

We have also looked in detail at the solutions given by the optimization model. As a representative, we 
can look at the results of one of the instances of the 16 class CCCP model. In Figure 3, we can see on the 
left the distribution (in logarithmic scale) of the query rates for the different content classes; the 
difference between query rates go across 6 magnitude orders. On the left, we can see (also in logarithmic 
scale) the results of the optimization, namely the values of the cache expiration dates for each of the 16 
content classes. It is clear that, although here we can also appreciate wide differences in scale, there is no 
direct relation with the input data shown on the left.  

 

 

Number of 
content classes 

Normalized
Objective 
function 

Execution 
time (secs.) 

Input bandwidth 
employed (bytes/hr) 

Output bandwidth 
employed (bytes/hr) 

2 0.999379 0.001 823707506 298854619 
8 0.991449 0.031 865591906 371027243 
16 0.990825 0.201 870184506 377776027 

32 0.997348 0.197 871334506 379988698 
128 0.999432 0.347 871674006 380579793 
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Figure 3 -  input data and output results for a 16 class CCCP instance.  

5. CONCLUSIONS 
In this paper, we have developed a model of the impact that cache expiration times have on the total 
number of correct answers to queries in a content network, and on the bandwidth usage. This model has 
been used to develop a mathematical programming formulation, which allows to find optimal values for 
the cache expiration times in order to maximize the number of correct answers, subject to bandwidth 
limitations. In order to cope with the explosion of free variables, we have also developed an alternative 
formulation based on treating identically groups of similar contents. To show the feasibility of 
employing the mathematical programming formulation, we used a set of test cases generated randomly 
in such a way that they comply with previously published information about existing networks.  The 
results show that the computational requirements are modest, and that the model results can lead to non-
intuitive solutions giving high performance levels. We think that models of this kind lead to improved 
understanding of the behavior of content networks, and can be used to test their performance in a wide 
variety of potential scenarios, which are difficult to test in practice. 
Future work could include using the model with test cases corresponding to content network of different 
characteristics (although the model is generic, the test data shown in this paper corresponds to a peer-to-
peer file sharing network,). It is also possible to refine the model to take into account additional features 
(for example, the search answer packet sizes could be divided into a fixed part plus a variable, per 
location answered, part; additional constraints could be added to represent particular features of specific 
networks). Another interesting point is doing a more detailed analysis of the impact of the number of 
content classes chosen on the quality of the results obtained, as well as on the computational 
requirements imposed by the solution methods. Finally, a more difficult challenge is to integrate 
backbone behavior details into this model, in order to have a more wide perspective on the tradeoffs 
between information publication and search in a content network. 
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7.  APPENDIX: AMPL code  examples 
We give here more information regarding the AMPL code used for modeling and solving the CCCP 
problem instances. Figure 4 corresponds to the  CCCP model.  Figure 5 contains the AMPL commands 
used to solve the problem.  Figure 6 shows the detailed data corresponding to one of the 8 class 
instances (generated with seed 1). 
 

param K >=0, integer;  
set CLASS = {1..K};  
param f {k in CLASS}; 
param lamda {k in CLASS}; 
param mu {k in CLASS}; 
param l {k in CLASS};  
 
param alphaS >=0;  
param alphaB >=0;  
param betaS >=0;  
param betaB >=0;  
param BWin >=0;  
param BWout >=0;  
 
var d {k in CLASS} >=0.000001 default 0.000001; 
 
maximize epsilon:  
 (sum {k in CLASS} l[k]*lamda[k]/mu[k]/mu[k]/d[k]*( 
  mu[k]*(1-exp(-f[k]*d[k])) +  
  f[k]*(1-exp(-mu[k]*d[k])) -  
  1/d[k]*(1-exp(-f[k]*d[k]))*(1-exp(-mu[k]*d[k]))  
     ) 
 )/(sum {k in CLASS} l[k]*lamda[k]/mu[k]*f[k]); 
 
subject to bitsIn : 
 0 <= betaS*(sum {k in CLASS} l[k]*f[k]) +  

 alphaB*(sum {k in CLASS} l[k]*lamda[k]/mu[k]*f[k]/(1+d[k]*f[k]))  
    <= BWin; 
 
subject to bitsOut:  
 0 <= alphaS*(sum {k in CLASS} l[k]*lamda[k]/mu[k]*f[k]) +  
   betaB*(sum {k in CLASS} l[k]*f[k]/(1+d[k]*f[k]))  
    <= BWout; 

Figure  4: AMPL model for CCCP problem 

 

option ampl_include '.'; 
 
option solver minos; 
option minos_options 'crash_option=0 \ 
 feasibility_tolerance=1.0e-8 scale=no \ 
 summary_file=6 summary_frequency=5 \ 
 timing= 1'; 
 
model cccp.mod; 
data cccp.dat; 
solve; 
display epsilon; 
display bitsIn.lb, bitsIn.ub, bitsIn.body, bitsIn.slack; 
display bitsOut.lb, bitsOut.ub, bitsOut.body, bitsOut.slack; 
display d; 
expand bitsIn, bitsOut;  

Figure 5: AMPL commands for solving the CCCP problem 
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param K        := 8;  
 
param alphaS   := 100.00000000;  
param alphaB   := 310.00000000;  
param betaS    := 94.00000000;  
param betaB    := 291.40000000;  
param BWin     := 921600000.00000000;  
param BWout    := 460800000.00000000;  
 
param f :=  
         1 1000.00000000  
         2 216.15859672  
         3 32.96348528  
         4 5.12742726  
         5 0.81727228  
         6 0.14024312  
         7 0.02464053  
         8 0.00447485; 
param lamda :=  
         1 200.00000000  
         2 200.00000000  
         3 200.00000000  
         4 200.00000000  
         5 171.38934707  
         6 41.02318819  
         7 7.20772083  
         8 1.30896076; 
param mu :=  
         1 1.00000000  
         2 1.00000000  
         3 1.00000000  
         4 1.00000000  
         5 1.00000000  
         6 1.00000000  
         7 1.00000000  
         8 1.00000000; 
param l :=  
         1 4.00000000  
         2 15.00000000  
         3 98.00000000  
         4 629.00000000  
         5 3944.00000000  
         6 22981.00000000  
         7 130797.00000000  
         8 720223.00000000; 

Figure 6: Detailed data for one of the 8-class instances of CCCP 


