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Science is what we understand

well enough to explain to a computer.

Art is everything else we do.

Donald Knuth.
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RESUMEN

AspectAG es un lenguage de dominio espećıfico embebido (EDSL) que

codifica gramáticas de atributos (AGs) como ciudadanos de primera clase.

AspectAG garantiza la buena formación de las AGs en tiempo de compilación

por medio del uso de registros extensibles y predicados, codificados gracias al

uso de caracteŕısticas antiguas de programación a nivel de tipos, como clases

multiparámetro y dependencias funcionales.

AspectAG sufre las desventajas usuales de los EDSLs: cuando ocurren er-

rores de tipado, los mensajes de error reportados no se expresan en términos

del dominio, sino del lenguage anfitrión. También es usual que detalles de im-

plementación del EDSL se vean filtrados en estos mensajes. El uso de técnicas

de programación a nivel de tipos agrava la situación porque los mecanismos de

abstracción a nivel de tipos son pobres. Además, las técnicas de programación

a nivel de tipos usadas en AspectAG son esencialmente no tipadas, lo que es

inconsistente con nuestro enfoque de tipado fuerte.

Usando extensiones modernas al sistema de tipos de Haskell, proponemos

una nueva versión de la biblioteca AspectAG, abordando los problemas antes

mencionados. Las nuevas definiciones de AGs son más seguras tanto a nivel de

tipado como a nivel de kinds (tipado a nivel de tipos). Además, un conjunto

identificado de errores espećıficos del dominio son reportados con mensajes

referentes al mismo. Para lograr esto, definimos y utilizamos un framework

para manipular errores de tipado, que puede ser aplicado a cualquier EDSL.

Mostramos la pragmática de AspectAG definiendo lenguajes y ex-

tendiéndoles con nueva sintaxis y con nueva semántica. Utilizamos el lenguaje

MateFun, un lenguaje funcional puro utilizado para enseñar matemáticas como

caso de estudio.

Palabras claves:

Programación a nivel de tipos, Lenguajes de dominio espećıfico, Manejo de

errores, Gramáticas de atributos, Diseño de compiladores.

vi



ABSTRACT

AspectAG is a Haskell-embedded domain-specific language (EDSL) that

encodes first-class attribute grammars (AGs). AspectAG ensures the well-

formedness of AGs at compile time by using extensible records and predicates

encoded using old-fashioned type-level programming features, such as multi-

parameter type classes and functional dependencies.

AspectAG suffers the usual drawbacks of EDSLs: when type errors occur

they usually do not deliver error messages that refer to domain terms, but

to the host language. Often, implementation details of the EDSL are leaked

in those messages. The use of type-level programming techniques makes the

situation worse since type-level abstraction mechanisms are quite poor. Addi-

tionally, old-fashioned type-level programs are untyped at type-level, which is

inconsistent with the general approach of strongly-typed functional program-

ming.

By using modern Haskell extensions and techniques we propose a reworked

version of AspectAG that tackles those weaknesses. New AG definitions are

safer, both at the level of types and at the level of kinds. Furthemore, a set of

identified domain-specific errors are reported with DSL-oriented messages. To

achieve this, we define and use a framework for manipulating type errors that

can be used in any EDSL.

We show the pragmatics of AspectAG by defining languages and extend-

ing them both with new syntax and semantics. We use MateFun, a purely-

functional language used to teach mathematics as a case study.

Keywords:

Type-level programming, DSLs, Error Handling, Attribute Grammars,

Compiler Design.
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Chapter 1

Introduction

Compiler construction is a central topic in computer science. Compilers are

translators from one formal language to another, according to a given semantic

specification. Parsers build abstract syntax trees (ASTs), which are tree rep-

resentations of the syntactic structure of words in the language. Typical stages

of the compiler front-end as object binding, type checking, or the generation

of code in an intermediate representation are tree-processing tasks.

Functional programmers have available higher-order functions such as map

and fold as powerful abstraction tools to manipulate terms [Gibbons, 2003],

and therefore, to build compilers. Fold captures the structural recursion asso-

ciated to a data type requiring a function for each constructor that combines

contained data and recursive calls. Altogether these functions form an alge-

bra, capturing semantics for the grammar -data type- and the fold builds the

computation.

In practice, however, when constructing real-world compilers some prob-

lems arise. ASTs tend to have a lot of constructors, meaning huge algebras.

Some information such as symbol tables must flow top-down (while this can

be implemented with folds in a higher-order language as Haskell, perhaps it is

not so intuitive). But a more notorious issue overshadows the previous ones:

adding a constructor in an AST means breaking every implemented seman-

tics. Note that this is not an infrequent scenario: it is usual for programming

languages to evolve over time.

More generally, given any functional program, extending data (e.g. if a data

type is extended with a new case construct) is not easy. Each case expression

where a value of the extended type is matched has to be inspected and modified

1



accordingly. However, it is trivial to extended the program by defining new

functions that process the data type.

On the other side, object-oriented programing languages excels when defin-

ing new data: users can implement algebraic data types with a composite

design pattern, and by simply adding a new class the job is done. However,

to define a new function for a data type, all the existing subclasses must be

modified to add a new method.

In some sense, those programming paradigms are dual: functional program-

ming simplifies extending semantics, while object-oriented programming sim-

plifies extending syntax. This duality was first noted by Reynolds [Reynolds,

1975] and later referred by Wadler [Wadler, 1998]. Wadler coined the name

“The expression problem” for the challenge of finding a formalism where we

can easily extend syntax and semantics (while maintaining type safety).

Attribute grammars (AGs, for short) offer an approach to tackle the

expression problem. AGs were originally introduced to describe semantics

for context-free languages [Knuth, 1968]. Given a context-free grammar,

attributes are associated to each of its productions. Attribute values are com-

puted in every node of the AST, according to semantic rules that are expressed

in terms of the attribute values of the children and the parent. Attributes are

classified in at least two sets: synthesized attributes (where information flows

bottom-up) and inherited attibutes (where it flows top-down). AGs have not

only proven useful to implement programming language semantics, but as a

general purpose programming paradigm.

AGs can be thought of a particular case of a domain-specific language

(DSL). DSLs are a useful abstraction tool to solve problems using specialized

domain terms. DSLs can be implemented as a standalone language, intro-

ducing a full compiler toolchain, or embedded as a library in a host language

(embedded DSLs, EDSLs for short). EDSLs have some advantages. For in-

stance, all constructs of the host language and its libraries are available to the

users. Furthemore, the amount of work required compared to the standalone

approach is minimal. In higher-order functional programming languages such

as Haskell, the embedded approach is widely used and successful [Hudak,

1998,Gibbons, 2013].

An important drawback of EDSLs is that they are simply embedded li-

braries, thus, when type errors occur they usually do not deliver error mes-

sages that refer to domain terms, leaking in addition implementation details in

2



those messages. This breaks all abstraction mechanisms that may have been

taken into account in building the library. The problem is even worse if we use

type-level programming techniques to implement the DSL.

AspectAG is a Haskell EDSL introduced by Viera [Viera et al., 2009], that

implements first-class AGs. It uses extensible polymorphic records and pred-

icates encoded using old-fashioned type-level programming features, such as

multi-parameter type classes [Peyton Jones et al., 1997] and functional depen-

dencies [Jones, 2000], to ensure the well-formedness of AGs at compile time.

Type errors were of course a weakness, aggravated by the fact that an AG

is a structure that can be easily ill-formed. For instance, for the grammar

implementer it is a common mistake to try to use attributes that are not

defined in some production. In the specific case of the original AspectAG

library, the type-level programming techniques that were used were really ad-

hoc, exploiting extensions originally introduced for other uses. In particular,

at type level, programming was essentially untyped.

More recent versions of GHC provide extensions to the type system to sup-

port a more robust and trustworthy programming at the type level. By using

such extensions, in this thesis we propose a reworked version of AspectAG1 that

tackles some of its most important weaknesses. The used type-level program-

ming techniques allowed us to program in a strongly-typed fashion at type

level (we say, strongly kinded). We also define a framework to manipulate

type errors, keeping track of the context of the possible sources of errors, to

show precise (DSL oriented) messages when they occur.

The contributions of this thesis are the following:

• We introduce a reworked version of the AspectAG library using modern

type-level programming techniques. In particular, this results in a system

with strongly-kinded types, having a strongly typed discipline both at

the level of terms and at the level of types. We also explore new features

such as polymorphism.

• We develop the library poly-rec to implement the main data structure

used in AspectAG, the extensible record. We use type-level programming

techniques to have a very general structure that can be specialized in

many concrete instances.

• We develop require, a framework to manage user-defined type errors

1 http://hackage.haskell.org/package/AspectAG
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in EDSLs. We use the framework to implement both AspectAG and

poly-rec.

• We develop a case study consisting of a modular compiler for a functional

programming programming language called MateFun.

In Chapter 2, we introduce preliminary concepts of our topic of study.

In Chapter 3, we show an overview of the reimplementaion of the AspectAG

library, while using a simple expression language as an example. In Chapter 4

we define a set of errors that AG coders might make when building an AG, and

we show how the GHC compiler reports compile-time domain-specific error

messages when those mistakes are commited writting code in the AspectAG

EDSL. In Chapter 5 we show the implementation details of the library to

explain how everything was achieved: from the definition of a framework to

handle errors to the data structures in which AspectAG is built. In Chapter 6

we show a case study where we implement a compiler for the MateFun language

[Carboni et al., 2018]. Finally, in Chapter 7 we discuss our conclusions and we

outline possible lines of future work.

4



Chapter 2

Preliminaries.

In this chapter, we present the main concepts that are used as a foundation

to build this thesis. In Section 2.1 a brief presentation of attribute grammars

is given. In Section 2.2 we review the main techniques of type-level program-

ming in Haskell. In Section 2.3 we present a well-known problem in program-

ming language design: “the expression problem”. Finally, in Section 2.4 we

briefly discuss the concept of embedded domain-specific languages, focusing in

AspectAG.

2.1 Attribute grammars.

Attribute grammars (AGs, for short) were introduced by Knuth [Knuth,

1968, Knuth, 1990] to define semantics for context-free languages. Context-

free languages are formal languages defined by context-free grammars. In this

section, we formally define this domain of discourse.

2.1.1 Formal languages.

Given an alphabet (a set of symbols) Σ, we denote as Σ∗ the set of strings (lists

of elements, words) over Σ. Given v, w ∈ Σ∗ we denote the concatenation of

v and w as vw. Given a ∈ Σ we overload the notation and also denote as a

the singleton list with the character a. For instance, if Σ = {a, b} then u := a,

v := ab, w := bba are all elements of Σ∗ and so is uvw = aabbba.

A language L over the alphabet Σ is any subset of Σ∗.

5



2.1.2 Context-free grammars.

Some languages, like those usually used in computer science, can be described

from formal grammars. Context-free grammars are a particular class of formal

grammars.

A context-free grammar is defined as a tuple (T,N, S, P ) where:

• T is a set of symbols, called terminal symbols.

• N is a finite set of symbols, called non-terminal symbols. N and T

satisfy N ∩ T = ∅. The set V := N ∪ T is the set of grammar symbols.

• S ∈ N is called the start symbol.

• P is a set of productions. A production is a pair (l, r) where l ∈ N and

r ∈ (V ∪ P(T ))∗, where P(T ) is the powerset of T . We usually write

l → r instead of (l, r). We refer to l and r as the left and right hand

side, respectively, of the production. More explicitly, productions have

the shape X → X1X2 . . . Xn where X ∈ N and Xi ∈ V ∪P(T ).

In the literature, T is usually restricted to be finite, and r ∈ V ∗. We

generalize the definition in order to be able to put sets of terminals (such as

the set of integers, or the set of strings) in the right hand side of rules (see

Example 1).

Given a grammar G = (T,N, S, P ) and u, v ∈ V ∗, we say that u ∈ V ∗

yields v, if for a, b ∈ V ∗, l → r ∈ P we have that u = alb and v = ar′b, where

r′ ∈ V ∗ is equal to r except that each occurence of a set is swapped by an

element belonging to that set. We say that v is the result of applying the rule

l → r to u. This definition induces a relation R ⊆ V ∗ × V ∗. We write u ⇒ v

if (u, v) ∈ R. Rules can be applied many times. We write u ⇒∗ v if v can

be obtained from u applying a finite number of rules (possibly zero). In other

words the ⇒∗ relation is defined as the reflexive-transitive closure of ⇒.

Now, we can specify the language LG defined from a grammar G as:

LG = {w ∈ T ∗ : S ⇒∗ w}

Example 1. Given sets N, V representing natural numbers and strings. The

following tuple is a grammar:

(N ∪ V ∪ {+}, {S,E}, S, {(S,E), (E,E+E), (E,N), (E,V)})

6



In EBNF notation it would be written as:

S →E

E →E+E

E →N

E →V

Note that in the last two rules we use sets of terminals in the right hand

side, hence the condition r ∈ (V ∪ P(T ))∗ in the definition of a grammar.

Note that N and V can be alternatively defined as context-free languages from

a finite set of symbols. As long as we use context-free languages in the right

hand side of rules, our approach of taking a potentially infinite number of

terminal symbols and using sets in the right hand side of rules does not add

power to the formalism with respect to the traditional definition.

In this example, considering 0, 1 ∈ N, "x" ∈ V, we can assert that S ⇒∗

0 + 1 + "x". To verify it, note that S ⇒ E ⇒ E + E ⇒ E + E + E ⇒
0 + E + E ⇒ 0 + 1 + E ⇒ 0 + 1 + "x".

A derivation tree of a string v ∈ LG generated by G = (T,N, S, P ) is a tree

where:

1. Each node is labelled by a symbol of V (recall V = N ∪ T ).

2. The label of the root is S.

3. If a node labelled X has children labelled X1 . . . Xn then there is a pro-

duction in P of the shape X → Y1 . . . Yn where Yi = Xi if Xi ∈ V or

Yi ∈ Xi if Xi ∈ P(T ).

4. The leaves of the tree concatenated left to right form v.

Example 2. Consider the grammar defined in Example 1. In Figure 2.1 we

show two different derivation trees for 0 + 1 + "x":

There can be many ways in which we can apply rules to prove a symbol

belongs to a language. However, some chains are inherently different: when

the corresponding derivation trees are different. When at least one word of a

language has more than one derivation tree we say the language is ambiguous.

Precedence rules are used to disambiguate the meaning of concrete words.

Building the “correct” derivation tree for a grammar specification and a set

7
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+ E
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Figure 2.1: Two possible derivation trees for the expression 0 + 1 + "x".

of precedence rules is a parsing problem. We will consider derivation trees are

given, so discussions about how to handle operator precedence are out of our

scope.

We must note that context-free grammars are not general enough to de-

scribe all useful languages. Examples of such languages can be given, such as

the set of prime numbers, but this is also true for what interests us as com-

piler designers: programming languages. Many programming languages have

context-dependent constructs. For instance, in C-like languages, every variable

that occurs in a program should be declared before.

So, why are context-free grammars important? Dealing with context-

dependent grammars is cumbersome. A widely used approach that works well

when building a compiler is to recognize a context-free language and check

context dependencies later on. This makes context-free grammars interesting

because they are a compromise, being useful and manageable at the same time.

2.1.3 Attribute Grammars.

Attribute grammars [Knuth, 1968, Knuth, 1990] were introduced to describe

semantics for context-free languages. Given a context-free grammar, attributes

are associated to each of its productions. Attribute values are computed in

every node of the abstract syntax tree, according to semantic rules that are

expressed in terms of the attribute values of the children and the parent.

An AG is a tuple (G,A,R) where:

• G is a context-free grammar.
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• A is a finite set of attributes. Each symbol has a set of attributes A(X),

so A = ∪X∈VA(X).

• R is a finite set of semantic rules. We will specify its nature later.

Usually each symbol X ∈ V has its finite set of attributes A(X) par-

titioned in disjoint sets I(X), S(X) of inherited and synthesized attributes,

respectively. Terminal symbols do not have inherited attributes. Some pre-

sentations [Paakki, 1995] forbid the start symbol to have inherited attributes

also.

We say a production p ≡ X0 → X1 . . . Xn ∈ P , has an attribute occurence

Xi.a if a ∈ A(Xi), (0 6 i 6 n).

The semantic rules of the set R are formal constructions of the form Xi.a =

f(γ1, . . . , γk), k > 0, where either i = 0 and a ∈ S(Xi) or 1 6 i 6 n and

a ∈ I(Xi), and each γj is an attribute occurence in p.

Intuitively, rules specify how to compute attribute values. Synthesized at-

tributes are output of LHS symbols (parents), and inherited attributes are

output of RHS symbols (children). Inherited attributes of parents and synthe-

sized attributes of children are inputs of rules.

An attributed tree for a word v is a derivation tree where each node labelled

by X is attached with attribute instances that correspond to the attributes of

X.

The attribute evaluation is a process for computing the values of all at-

tribute instances according to the semantic rules of the grammar.

An AG is well defined if for any word v and any derivation tree T of v

the values of the attribute instances can be unambiguously computed by the

attribute evaluation process.

This means:

1. For each production p ∈ P there are rules to compute each attribute

occurence.

2. The rules to compute attributes are acyclic.

Note that given an attributed tree, rules introduce dependencies over at-

tributes, when some value is needed to compute another one. We can think

in a graph with each attribute instance and an edge for each dependency. An

acyclic set of rules means the graph is acyclic for any attribute tree. We will

not formalize this concept further. For our purposes, the condition (2) will be

lifted since with non-strict semantics circular programs can be productive.
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E

E

0

eval = 0

+

env = x 7→ 5
eval = 1

E

1

eval = 1

+

env = x 7→ 5
eval = 6

E

”x”

env = x 7→ 5
eval = 5

Figure 2.2: Attributed tree for an expression.

The condition (1) is the one we wish to control with the AspectAG EDSL,

as we will see.

Example 3. Consider the grammar G defined in the Example 1. Consider A =

{eval, env} and R = {S.eval = E.eval, E.eval = E1.eval + E2.eval, E.eval =

v(N), E.eval = (E.env)(v(V)), E1.env = E.env,E2.env = E.env}1.
Then, the tuple ∆ = (G,A,R) is a well-formed AG with I(E) = {env},

S(E) = {eval}, S(S) = {eval}. Note that each rule is related to an attribute

occurence, hence to a production. In this case we do not write the relations

explicitly since they can be inferred from the attribute occurences used in each

rule.

Example 4. In Figure 2.2 the attributed tree for the expression (0 + 1 + "x")

for the AG ∆ is given. We write x 7→ 5 to denote the mapping with the

singleton domain {”x”} that maps ”x” to 5.

2.2 Type-level programming in Haskell.

Type-level programming is a term widely used in the strongly-typed func-

tional programming community, especially in the Haskell community. The

term refers to the practice of programming within the type system (to the

1 In the rules we consider some notational devices: we named E1 and E2 the ocurrences
of E in the right-hand side of the production representing the addition. v(N)/v(V) denotes
the natural number/string denoted by the symbol in the right-hand side. The value of the

attribute env is a function from strings to integers, so it make sense to apply it as we did.
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extent that it allows it) code that will “run” at compile time. This allows the

encoding of expressive properties at the type level that must be satisfied by

the corresponding code at the value level. Type-level programming techniques

allow programmers to simulate dependent types in a type system where types

and terms mantain their level independence. This independence is important

because type inference can be mantained at some extend.

Haskell was standardized in the 1998 report [Jones, 2002], with no support

to do type-level programming at first. On the other hand, compiler developers

kept experimenting with extensions. This was true for GHC, the nowadays de

facto standard Haskell implementation, as for more compilers at that time.

Extensions such as MultiParamTypeClasses [Peyton Jones et al., 1997]

and FunctionalDependencies [Jones, 2000] are worth to be mentioned.

Haskell was designed with type classes restricted to be parametrized by only

one argument. This decision was motivated because type classes was a very ex-

perimental feature in the early ’90s and language designers were cautious [Pey-

ton Jones et al., 1997]. MultiParamTypeClasses extended the language to lift

this restriction, allowing programmers to define relations on types. This in-

troduces a technical subtlety: when a class method had no occurrence of a

class type parameter in its type, occurrences of the method will have am-

biguous types. The FunctionalDependencies extension was introduced to

make type class relations functional, which helped the compiler to pick class

instances. Other extensions such as FlexibleContexts, FlexibleInstances,

UndecidableInstances existed to lift restrictions to type class definitions that

existed to ensure the termination of the type checker.

The interaction between those extensions results to be very powerful: the

possibility to express functional relations means programmers can write type

functions. Haskell programmers can take advantage of this expressiveness. A

demonstration of these techniques are given in [McBride, 2002], in the original

incarnation of AspectAG [Viera et al., 2009], or in case studies such as [Silva

and Visser, 2006].

Once type-level programming was born, further extensions emerged to

make the job more pleasant. Typefamilies [Chakravarty et al., 2005a,

Chakravarty et al., 2005b,Eisenberg et al., 2014] allowed to define proper type-

level functions. The DataKinds extension introduces data promotion. With

this extension enabled, the kind system is enriched with type-level data types

(named data kinds). Each time the programmer defines a data type, it is
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defined at both levels. This also motivates the introduction of kind polymor-

phism. KindSignatures provides the possibility to do type-level annotations

just as with types. Generalized algebraic data types are enabled by the GADTs

extension. This extension allows programmers to define type-indexed families.

TypeOperators and TypeApplications are not groundbreaking but help with

notation.

With all this machinery the expressiveness of types is enhanced and a great

portion of what programmers can express in a dependently typed language can

now be written in Haskell. For instance, the following code is an implementa-

tion of heterogeneous lists in modern Haskell:

data HList (l :: [Type ]) :: Type where

HNil :: HList ′[ ]

(:::) :: a → HList l → HList (a : l)

infixr 5 :::

The type is defined as a GADT indexed by a -promoted- list with elements

of kind Type (which is an alias for the nowadays deprecated kind ∗). Data

promotion implies some notation overloading. Most of the time, whether a

constructor occurrence is a term or a type it is clear from the context. If

not, promoted constructors can be prepended with a backslash. This is what

we do in the first constructor; otherwise, the compiler cannot deduce if [ ] is

the promoted empty list or the list constructor. For the type operator (:)

-the promoted cons- in the return type of the second constructor this is not

necessary.

With this definition, the term:

l = ’a’ ::: False ::: "" ::: HNil

is an heterogeneous list of type HList ′[Char ,Bool , String ].

Now we can define functions as safeHead :

safeHead :: HList (t : ts)→ t

safeHead (x ::: ) = x

Contrary to the head function defined in the Haskell prelude over standard

lists, safeHead is total, since it cannot be applied to an empty list. More-

over, the pattern matching used to define the function is exhaustive, since the

constructor HNil has a type that would mismatch with the declared type.
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Using type families programmers can define functions over types. The

following type family defines the type-level append:

type family (l :: [Type ]) :++: (m :: [Type ]) :: [Type ]

type instance ′[ ] :++: l = l

type instance (x ': xs) :++: l = x ': (xs :++: l)

Alternatively, programmers can define the same type-level function using a

closed [Eisenberg et al., 2014] type family notation:

type family (l :: [Type ]) :++: (m :: [Type ]) :: [Type ] where
′[ ] :++: l = l

(x ': xs) :++: l = x ': (xs :++: l)

With any of the previous definitions the type ′[Char ] :++:′ [Bool , String ] reduces

to ′[Char ,Bool , String ].

Both the open and the closed styles are useful and most of the time inter-

changeable. The difference is that open type families can be extended with

new cases. This is useful considering that the kind Type is extensible. We can

add inhabitants of the kind Type by declaring new types and extend functions

over types of kind Type adding type instances for the new type. On the other

hand, the drawback of open type families is that overlapping equations are not

permitted (otherwise the compiler won’t know which instance to pick). Closed

type families are usual non-extensible functions, and overlapping equations are

permitted. As in term-level pattern matching, reduction tries the equations in

order.

A downside is that we must write the same functions twice (at term and

type levels). For instance, the append algorithm is already defined in the

Haskell’s Prelude for value-level lists. This issue can be tackled promoting

functions to type families by using Template Haskell [Eisenberg and Stolarek,

2014]. We will not use the technique in this thesis.

Using the type-level append we can define a term-level append function for

heterogeneous lists:

(+++) :: HList l → HList m → HList (l :++: m)

HNil +++ l = l

(x ::: xs) +++ l = x ::: (xs +++ l)

Pattern matching is performed in the first argument. When matching is done

over a GADT, the type constraints each GADT constructor introduces are

available in the corresponding body definition.
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After matching with the HNil constructor in the first equation the compiler

knows the first argument of (+++), in this case, has type HList ′[ ]. This implies

the result of the function type must be of type HList (′[ ] :++: m), which is the

same as HList m after applying a type reduction according to the type family

definition. For that reason, the compiler accepts the occurrence of l on the

right hand side.

Analogously, after matching the first argument with the pattern (x ::: xs)

in the second clause, the compiler learns that l ∼ (t ': ts) 2 and therefore the

result of the function must be of type HList ((t ': ts) :++: m). This expression

can be reduced into HList (t ': (ts :++: m)), that is, the type of the right hand

side expression x ::: (xs +++ l).

Readers with knlowledge of dependently typed programming should notice

these definitions look just identical to the ones given in a dependently typed

language, although formally we never mixed types and terms. Also, just as in

dependently typed programming languages, the definition of (+++) type checks

because it is defined over the first argument just as the (:++:) family.

Suppose alternatively we want to encode the (rather inefficient) version of

append where we use the first argument as an accumulator. We perform the

recursion over the second list, putting each element of the second list at the

end of the accumulator. Assuming we have available the snoc function one

would think that the following is enough:

(+++) :: HList l → HList m → HList (l :++: m)

l +++ HNil = l

l +++ (x ::: xs) = snoc l x +++ xs

Unfortunately, that code does not compile. Looking at the first clause of the

pattern matching, where the second argument is HNil the compiler learns that

m ∼ ′[ ], so the result should be of type HList (l :++:′ [ ]) while l is of type

HList l . While it is true that (l :++:′ [ ]) ∼ l for all instances of l this does

not follow from the computation of the (:++:) family. For the second clause, a

similar problems arise.

The solution is well-known for the dependently typed programmer. One

needs to provide evidence to the compiler that those types are equal using

propositional equality. The same we will do so.

2 The notation (t ∼ u) stands for an equality constraint [The GHC team, 2020], and means

that the types t and u need to be the same.
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The module Data.Type.Equality of the current GHC base library defines

the type:

data a ∼= b where

Refl :: a ∼= a

The goal is to build an inhabitant of l ∼= l : ++ :′ [ ] for each l , just

as the dependently typed programmer would try to build a term of type

Πl ∈ [Type] (l ∼= l :++:′ [ ]). Then the equality proof can be used to “rewrite”

types. Figure 2.3 shows the complete implementation of the alternative ver-

sion of (+++). The function lem neutApp builds a proof of l ∼= l :++:′ [ ] given

a term of type HList l . The proof is built recursively in the list argument,

and corresponds to prove by induction over l . Then, the lemma is used in the

implementation of (+++) with the castWith function. Analogously the lemma

lem snocApp is used to type the recursive case. Figure 2.4 shows the types of

some combinators to manipulate equality.

Of course, all this “fake” dependently typed programming has a big hole:

GHC does not run a termination checker, which means that the whole logic is

inconsistent because we can write loops as proofs, like the following:

bottom :: ∀ a.a

bottom = bottom

This does not mean proving over Haskell is not useful at all, but program-

mers should be careful to dodge unproductive proofs.

2.2.1 Type-level programming design patterns.

In this section we discuss a set of specific techniques used by Haskell program-

mers to emulate dependently-typed features.

2.2.1.1 Singletons.

In a full spectrum dependently typed language such as Agda [Bove et al.,

2009], Coq [Bertot and Castéran, 2013] or Idris [Brady, 2013], the distinction

between types and terms is blurred. To simulate dependent types in Haskell,

where types and terms are still separated we need to find some way to relate

the type and value representations of data types.

To show that, let us define a less noisy data type example, as the natural

numbers:
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lem neutApp
:: HList l → l ∼= l :++:′ []

lem neutApp HNil
= Refl

lem neutApp (x ::: xs)
= let r = lem neutApp xs

in apply Refl r

th snocApp
:: HList l → a → HList m →

HList ((l :++:′ [a ]) :++: m)
∼= HList (l :++: (a : m))

th snocApp HNil a l = Refl
th snocApp (x ::: xs) a l

= let k = th snocApp xs a l
s = inner k

in apply Refl (apply Refl s)

snoc :: HList l → a
→ HList (l :++:′ [a ])

snoc HNil a
= a ::: HNil

snoc (x ::: xs) a
= x ::: snoc xs a

(+++) :: HList l → HList m
→ HList (l :++: m)

l +++ HNil
= castWith (apply Refl

(lem neutApp l))
$ l

l +++ (x ::: xs)
= castWith (th snocApp l x xs)
$ snoc l x +++ xs

Figure 2.3: Alternative implementation of append .

sym :: (a ∼= b)→ b ∼= a
trans :: (a ∼= b)→ (b ∼= c)→ a ∼= c
castWith :: (a ∼= b)→ a → b
apply :: (f ∼= g)→ (a ∼= b)→ f a ∼= g b
inner :: (f a ∼= g b)→ a ∼= b
outer :: (f a ∼= g b)→ f ∼= g

Figure 2.4: Propositional equality manipulation.
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data Nat = Z | S Nat

We assume we have the DataKinds extension enabled and therefore we

have available both the type Nat and the kind Nat . Let us define type-level

addition:

type family m :+n where

Z :+n = n

(S m) :+n = S (m :+n)

Now we want to prove that Z is the right neutral element of (:+). In other

words, let us try to build an inhabitant of the type m :+Z ∼= m for any m.

This is done using structural induction, but how do we apply induction? We

need a way to pattern match over m, but m is a type, and pattern matching

is done over terms. The solution is to build singleton types. A singleton type

is a GADT indexed by a type we are trying to represent dynamically. There

is exactly one inhabitant for each index3. The definition is given as follows:

data SNat (n :: Nat) where

SZ :: SNat Z

SS :: SNat n → SNat (S n)

The constructor SZ is the value representation of the type Z . Given a term

representation of the type n of kind Nat , SS builds the term representation

for the type (S n).

Using this machinery, when matching over terms of type SNat n we do it

over the type n at the same time. The following proof can then be written:

th plusNeut :: SNat n → n :+Z ∼= n

th plusNeut SZ = Refl

th plusNeut (SS n) = apply Refl (th plusNeut n)

Singletons can be used any time we need dynamic information over Nats.

For instance, the following is an implementation of take for HLists:

3 This is true if we do not consider bottom, of course.
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type family Take (n :: Nat) (l :: [Type ]) where

Take Z = [ ]

Take ′[ ] = [ ]

Take (S n) (t ': ts) = t ': Take n ts

hTake :: SNat n → HList l → HList (Take n l)

hTake SZ = HNil

hTake HNil = HNil

hTake (SS n) (x ::: xs) = x ::: hTake n xs

We defined the type-level function Take. The value-level function hTake

takes a natural number represented with a singleton, and a list. Note that the

first argument cannot be just of type Nat , otherwise there is no way to refer

to that argument in the return type.

Sometimes we do not need to define singletons at all, but just apply the

idea. For instance consider the type of a function we defined before:

lem neutApp :: HList l → l ∼= l :++:′ [ ]

We used a full heterogeneous list as an argument, while we just needed the

type l . While HList is not a singleton type it plays the same role here: we use

the list to pattern match over the type l .

2.2.1.2 Proxies.

In some contexts we do not need all the runtime information of a data type

dynamically, but just a value that carries a type to use it in compile time. A

proxy is a value isomorphic to () (the unit value) at the level of values, but

indexed by a certain type. We define it as follows:

data Proxy (a :: k) :: Type where

Proxy :: Proxy a

The Proxy type is kind polymorphic; if the k variable is instantiated then

the a variable can be instantiated only to a type of that kind. We can, for

instance, instantiate k to Nat and a to S Z .

proxy1 = Proxy @ (S Z )

where the operator ( @ ) denotes type application. Then the value proxy1 can

be used to fix types at any place. We can for instance implement the following:
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class TakeI (n :: Nat) (l :: [Type ]) where

takeI :: Proxy n → HList l → HList (Take n l)

instance TakeI Z l where

takeI = HNil

instance TakeI n ′[ ] where

takeI = HNil

instance TakeI n l

⇒ TakeI (S n) (t ': l) where

takeI (x ::: xs)

= x ::: takeI (Proxy @ n) xs

This is another way to write a dependent function. In some way, this is the

version of take using an implicit argument, hence its name. The expression

(takeI proxy1 l) has type (HList ′[Char ]), just as (hTake (SS SZ ) l). They

are similar in complexity: hTake does recursion over the structure of the nat-

ural number in runtime, while takeI does it over the dictionaries used in the

implementation of type classes.

Singletons and proxies are not always interchangeable. Singletons are

stronger, allowing programmers to manipulate dynamic data. They have the

disadvantage that they need to be built, while a proxy can be trivially con-

structed if its index is in scope. In AspectAG, we use proxies extensively, which

makes sense since the library users specify a static structure.

Proxies are useful in other idioms. For instance, they can also act as an

explicit application of a type to a polymorphic expression.

2.2.1.3 Class-directed programming.

The definition of takeI shows a technique to define dependently-typed Haskell

functions. With no singleton GADT for natural numbers to pattern match

against, the way to pattern match against the arguments is to define a type

class declaration. This should not be a surprise: type classes are the way of

implementing ad-hoc polymorphism, and takeI is just a polymorphic function

with parameters n and l .

This idiom is sometimes used even when we have the GADT available. In

Figure 2.5 another definition of append is shown.

There are advantages of doing so. One is to define the related type families

as indexed type families as we do with (:++:), keeping everything in the same
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class Append (l :: [Type ]) (m :: [Type ]) where
type l :++: m :: [Type ]
(+++) :: HList l → HList m → HList (l :++: m)

instance Append ′[ ] m where
type ′[ ] :++: m = m
HNil +++ m = m

instance
Append l m ⇒ Append (t ': l) m where
type (t ': l) :++: m = t ': l :++: m
(x ::: xs) +++ m = x ::: xs +++ m

Figure 2.5: Definition of append using type classes.

place. Another reason is that when we declare the instances, all the information

of the refined types is in scope with names that can be used (if the extension

ScopeTypeVariables is enabled), as we do in the recursive case of takeI with

the parameter n. The main disadvantage, on the other hand, is verbosity with

a somewhat heavy notation.

2.2.1.4 Advanced overlap.

Type classes simulate pattern matching over type-level data, but this idiom

has some disadvantages. Overlapping patterns are handy, but GHC does not

allow overlapping instances (and this is good for many reasons out of our

scope). In Figure 2.6 a function extracting all booleans from an HList is

defined. Unfortunately, it does not compile since the last two instances do

overlap when the first type of the heterogeneous list is Bool . One could think

of adding a constraint such as (a == Bool ∼ ′False) in the last declaration,

but the problem would persist. Type class resolution does not backtrack. The

type checker only decides upon head declarations. There is no way to decide

instances depending on their context. The solution is to put that information

in the head, as an extra parameter.

In Figure 2.7 we implement a working solution. The GetBoolsR class has an

extra parameter indicating if the head type of a non-empty heterogeneous list

is Bool . The proper class implementing the function, GetBools is a wrapper,

depending on GetBoolsR with the suitable instance. The (==) type family
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class GetBools (l :: [Type ]) where
getBools :: HList l → [Bool ]

instance GetBools ′[ ] where
getBools = [ ]

instance GetBools l ⇒ GetBools (Bool ': l) where
getBools (x ::: xs) = x : getBools xs

instance GetBools l ⇒ GetBools (a': l) where
getBools (x ::: xs) = getBools xs

Figure 2.6: Definition of getBools not compiling due to overlapping instances.

class GetBools (l :: [Type ]) where
getBools :: HList l → [Bool ]

instance GetBools ′[ ] where
getBools = [ ]

instance (GetBoolsR (t == Bool) (t ': ts))⇒ GetBools (t ': ts) where
getBools = getBoolsR (Proxy @ (t == Bool))

class GetBoolsR (headIsBool :: Bool) (l :: [Type ]) where
getBoolsR :: Proxy headIsBool → HList l → [Bool ]

instance GetBools l ⇒ GetBoolsR ′True (Bool ': l) where
getBoolsR (b ::: xs) = b : getBools xs

instance GetBools l ⇒ GetBoolsR ′False (t ': l) where
getBoolsR (b ::: xs) = getBools xs

Figure 2.7: Definition of getBools.
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is exported by the Data.Type.Equality and works just as the term-level (==)

function.

2.3 The expression problem.

The expression problem is a challenge to the expressiveness of programming

languages. The name was given by Wadler [Wadler, 1998] in a famous mailing

list post, though the concept was already known at that time, discussed, for

instance, by Reynolds [Reynolds, 1978].

In Wadler’s words: “The Expression Problem is a new name for an old

problem. The goal is to define a data type by cases, where one can add new

cases to the data type and new functions over the data type, without recompiling

existing code, and while retaining static type safety (e.g., no casts).”

The expression problem is stated in terms of data types, but that is just

another way to talk about languages: algebraic data types and context-free

grammars are in some sense equivalent formalisms, where a data type term is

equivalent to a corresponding parse tree.

There are two orthogonal ways a language can be extended: new syn-

tax constructs (new cases in a data type) and new semantics (new functions

consuming it). The expression problem consists in finding a way to define a

formalism in which languages can be extended easily in both directions.

Traditionally object-oriented programming and functional programming

shine solving extensionality in one direction, failing the other way.

Given an algebraic data type in a functional programming language, it is

easy to define new functions over it, but if we wish to add a new construct, we

must modify the proper data type declaration and every function consuming

it must be potentially refactored to handle the extra case.

In object-oriented programming, algebraic data types can be implemented

using a class (for instance using a composite pattern [Gamma et al., 1994]).

New classes can be easily extended to the hierarchy in new modules. But to

add a new method means that we need to potentially modify and recompile

every class.

AGs are one of the proposals to tackle the expression problem. Given an AG

defining a language, it is natural to add new constructs by adding productions

(and appropriate rules to compute the already defined attributes). It is also

natural to define new semantics by adding new attributes.
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There is a significant number of AG implementations. Some implementa-

tions are standalone compilers or generators like LRC [Saraiva, 2002], UUAGC

[Swierstra et al., 1999], LISA [Mernik and Žumer, 2005], JastAdd [Ekman and

Hedin, 2007] or Silver [Van Wyk et al., 2010]. Others are embbeded in lan-

guages like Scala [Sloane et al., 2009] or Haskell [de Moor et al., 1999,de Moor

et al., 2000,Viera et al., 2009,Viera et al., 2018,Martins et al., 2013,Balestrieri,

2015].

2.4 EDSLs and the AspectAG library.

Domain-specific Languages (DSLs, for short) [Fowler, 2010] are computer lan-

guages specialized in a particular domain. In contrast, usual general-purpose

programming languages aim to cover a broad domain set. When using a DSL,

solutions are expressed in domain terms, making them easier to understand

for any programmer and approachable even for domain experts that are non-

programmers.

DSLs can be implemented as a standalone language, introducing a complete

compiler toolchain, or embedded as a library in a host language (what is usually

called an embedded DSL, EDSL for short). The embedded approach has its

advantages. One of them is that all constructs of the host language and its

libraries are available to users. Also, the amount of work required compared to

the standalone approach is minimal. In higher-order functional programming

languages such as Haskell, the embedded approach is commonly used and

successful.

Type-level programming in Haskell offers convenient features to support

EDSLs since complex properties can be encoded in types. It allows the EDSL

developer to precisely specify the domain modeled, checking properties of the

client code at compile time.

The embedded approach has drawbacks as well. Error handling is perhaps

one of the main ones. When type errors are raised, they do not deliver error

messages that refer to domain terms, but to host language aspects. This makes

errors hard to understand, especially for users that are not experts in the host

programming language.

Additionally, it is usual that error messages leak implementation details,

breaking all abstraction mechanisms that may have been considered when

building the library. The leaking problem is even worse if we use type-level
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programming techniques to implement the EDSL. Type-level programming

historically evolved in a somewhat unplanned way. For that reason, type-

level Haskell lacks some desirable abstraction features. For instance, types

are normalized before they are printed in an error message, showing unfolded

definitions that perhaps the library designer wants to hide.

AspectAG is a Haskell EDSL, introduced by Viera et al [Viera et al., 2009],

that implements first-class AGs. By first-class, we mean that all pieces of the

AG are Haskell values (and types) and can be manipulated as such.

Initially, AspectAG used extensible polymorphic records and predicates en-

coded using old fashioned type-level programming features, such as Multi-

parameter type classes [Peyton Jones et al., 1997] and functional dependen-

cies [Jones, 2000], to ensure well-formedness of AGs at compile time.

In AspectAG users define types for every building block an attribute gram-

mar has, such as productions, children, and attributes. Collections of at-

tributes, called attributions are defined as extensible records mapping attribute

names to values. Semantic rules are implemented as functions from a so-called

input family (inherited attributes of the father and synthesized ones from chil-

dren) to an output family (synthesized attributes of the father and inherited

ones to children). This definition is more general than the one we give in Sec-

tion 2.1. In AspectAG there is exactly one rule per production. However, note

that this is just an implementation detail. Rules to compute each individual

attribute are a particular case and they are still the ones defined in practice

when using AspectAG. Then they are combined to form those bigger rules.

Sets of rules are combined into aspects, which are implemented as mappings

from productions to rules. Semantic functions take aspects and some repre-

sentation of parse trees to compute the global output family, and implicitly

the full attribute evaluation.

The use of extensible records means every attribute used in every rule is

known at compile-time, so the type system checks if a grammar is well de-

fined. Users do not explicitly define attribute occurrences. Instead, users

define computation rules, and the semantic function checks that all dependen-

cies are fulfilled. This approach helps modularity since dependencies are lazily

inferred from the set of rules used in each case.

AspectAG was tested in concrete case studies such as a modular compiler

for a dialect of the Oberon language [Viera and Swierstra, 2015]. While it

proved to be useful, type errors were the main weakness. The fact that an
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AG can be easily ill-formed due to its entangled structure, and the use of an

embedded language using type-level programming explains this.
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Chapter 3

Kind safe AspectAG - overview.

In this chapter, we explain the main features of the AspectAG library using

a running example. We start with a simple expression language consisting

of integer values, variables, and the addition operation. We endow the lan-

guage with semantics, implementing an evaluator. After that, to show how

AspectAG tackles the expression problem we extend the language in two ways:

semantically, defining new ways to compute from expressions; and syntacti-

cally, adding a new construct: function calls. Finally, we add a polymorphism

mechanism, which allows us to define a family of languages parametrized by

their terminal symbols.

This chapter is partially based on the overview given in [Garćıa-Garland

et al., 2019], though the library has evolved. The most notable additions from

then on are what we call the “deforested” approach (already used in [Viera

and Swierstra, 2015]) and the addition of polymorphism.

This chapter is a literate program [Knuth, 1984].1 To show how AspectAG

supports compositional compiler construction each of the sections 3.1, 3.2, 3.3,

and 3.5 compiles as an independent module. Section 3.4 is divided among two

modules.

As in every Haskell module part of a bigger system, we must declare each

module giving it a name, and a list of module imports (at least the AspectAG

library modules in this case). Usually, the user also declares a set of prag-

mas, like the set of extensions to use. We omit import headers and pragma

declarations for brevity. In Figure 3.1 the dependencies among modules are

represented (an arrow from A to B means A imports B).

1 The source code can be found at https://gitlab.fing.edu.uy/jpgarcia/tesis in the

directory ./AAGExample
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Figure 3.1: Module dependencies for the language of expressions.

In Section 3.1 we show how to declare a grammar for the expression lan-

guage in terms of AspectAG. In Section 3.2 we specify a semantics for the

language. In Section 3.3 we orthogonally define a new semantics. In Section

3.4 we show how we can add new syntax in a modular way, also defining se-

mantics for it. Finally, in Section 3.5 we explore how polymorphism interacts

with AspectAG definitions.

3.1 Grammar specification.

The abstract syntax of our expression language is given by the following gram-

mar:

expr → Intval

expr → Stringvar

expr → exprl + exprr

where Int and String are terminals corresponding to integer values and vari-

able names, respectively. In the third production, there are two non-terminal
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symbols. The indexes (l , r , var , val) are names for each symbol occurrence

(children) so that we can refer to each one unambiguously.

We declare the syntax of the expression language in the Expr.Syn mod-

ule. The Language.Grammars.AspectAG module contains all the constructs

of the AspectAG EDSL. The Language.Grammars.AspectAG.TH module con-

tains some useful Template Haskell [Sheard and Jones, 2002] utilities to gen-

erate some boilerplate for us. We import both, but it is relevant to note that

AspectAG can be used alone with no Template Haskell requirement. AspectAG

modules can be plain Haskell modules with no preprocessing.

To declare a grammar in AspectAG we need to declare all the ingredients:

terminal and nonterminal symbols, productions, and children. Since our goal

is to use all this information at compile-time, the information will be explicit

at the type level. At the value level, all these objects are trivial, used only

to be passed as arguments. In AspectAG all these objects are of type Label ,

which is defined exactly as the Proxy type. We do not use Proxy directly just

to use a more mnemonic name.

In AspectAG, the specified grammar is declared as follows. First, we declare

the non-terminal for expressions:

type NtExpr = ‘NT "Expr"

ntExpr = Label @ NtExpr

Non-terminals are defined by introducing a name (like "Expr") at the type

level using a promoted string literal (which has kind Symbol , a special built-

in kind for type-level strings). We use the TypeApplications extension of

GHC to associate type information to a label. The @ character denotes type

application.

Productions are also identified by a name and they are related to a non-

terminal, the one on the left-hand side of the production:

type PV al = ‘Prd "Val" NtExpr

pVal = Label @ PV al

type PV ar = ‘Prd "Var" NtExpr

pVar = Label @ PV ar

type PAdd = ‘Prd "Add" NtExpr

pAdd = Label @ PAdd

The last ingredient of the grammar declaration is given by the introduction of

the children that occur in the productions:
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chAddl = Label @ (‘Chi "Add_l" PAdd (NonTerminal NtExpr))

chAddr = Label @ (‘Chi "Add_r" PAdd (NonTerminal NtExpr))

chV alval = Label @ (‘Chi "Val_val" PV al (Terminal Integer))

chV arvar = Label @ (‘Chi "Var_var" PV ar (Terminal [Char ]))

Each child has a name and it is related to a production. Children can be either

non-terminals or terminals. In the latter case, the type of values they denote

must be provided. Note that any type can be used as a terminal. In this case,

we use types with an infinite number of inhabitants. This is natural in an

implementation but not necessarly as an abstract definition of languages. We

incidentally reduced the gap when we defined grammars such as in Chapter 2.

Summing up the provided information, we can see that our grammar dec-

laration indirectly contains the same information that would be given in the

Haskell data type representation of its abstract syntax tree:

data Expr

= Add { l :: Expr , r :: Expr }
| Var {var :: String }
| Val {val :: Integer }

By defining this data type we have a way to embed terms of the expression lan-

guage in Haskell. Then, we can consume those terms according to a semantic

specification. So far there is no relationship defined among the labels previ-

ously introduced and the data type Expr . The relationship between AspectAG

definitions and a data type representation is given by the semantic functions.

The following code defines the semantic function for the expression language:

semExpr asp (Add l r)

= knitAspect pAdd asp $ chAddl .=. semExpr asp l

.∗. chAddr .=. semExpr asp r

.∗. emptyGenRec

semExpr asp (Var var)

= knitAspect pVar asp $ chV arvar .=. semLit var

.∗. emptyGenRec

semExpr asp (Val val)

= knitAspect pVal asp $ chV alval .=. semLit val

.∗. emptyGenRec

The semantic function semExpr takes the argument asp, an aspect (a se-

mantics definition) and an expression represented by a tree of type Expr , to

29



build a function from Attributions (inherited attributes, an environment) to

Attributions (synthesized attributes, which correspond to the computation).

It is not even explicit from the definition that a function is built. To

understand it, consider that knitAspect takes four arguments. Details of how

knitAspect is implemented are given in Section 5.3.6.

What should be clear from this definition is that the relationship between

labels defined with AspectAG constructs and the specified grammar (and the

Expr data type) is now explicit. For instance, in the first clause, where we are

taking an AST representing an addition, we are stating the following:

• The constructor Add corresponds to the production pAdd.

• The subexpressions l and r in the data type correspond to non-terminals

chAddl and chAddr in the AspectAG definition.

• Subexpressions will be processed recursively with the same semantic

function.

The definition of the grammar is now complete. If the user prefers, there

is a way to define it in a form more similar to an EBNF notation. All the

previous code as it is can be generated by Template Haskell splices which are

special expressions that evaluate at compile time to generate Haskell source

code at that point of the program they occur.

The following splices generate the labels:

$ (addNont "Expr")

$ (addProd "Val" NtExpr [("val",Ter ′′Integer)])

$ (addProd "Var" NtExpr [("var",Ter ′′String)])

$ (addProd "Add" NtExpr [("l", NonTer NtExpr),

("r", NonTer NtExpr)])

The following splices generate the data type Expr , and the semantic func-

tion semExpr, respectively:

$ (closeNT NtExpr)

$ (mkSemFunc NtExpr)

To extend the definition of the grammar in AspectAG by adding new produc-

tions we can add suitable labels. This can be done even in a new module as

we will do in Section 3.4 in the module ExprExt.Syn. However, this approach

has an issue: the grammar as a collection of labels is open, but when we build
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a Haskell data type such as Expr , since Haskell data types are closed, there is

no way to extend it.

The solution we present in [Garćıa-Garland et al., 2019] is to make an

updated “copy” of Expr and semExpr in the new module with the new con-

structors either by hand or by calling the closeNT and mkSemFunc splices

there. We avoid ambiguity by using qualified names: AST .Expr is the data

type for the original grammar, while ASTExt .Expr is the extended data type.

This duplication is not nice. Someone could argue that our approach to

tackling the expression problem is avoiding recompilation by actually rewriting

the compiled code. This is partially true, but still, this approach has something

to give us. Firstly, semantic definitions will be reusable for both versions of

the grammar. As we shall see later in Section 3.2 rules to compute aspects

are tied (by their type) to a production. They can be used in any grammar

where that production exists. Secondly, using Template Haskell splices this

duplication is hidden to the programmer, offering a solution similar to libraries

like uuagc [Swierstra et al., 1999]. Still, we can push in this direction, as we

will see in Section 3.6.

Note that this grammar is similar to the one declared in Chapter 2, but

there is no start symbol declared. AspectAG handles the start symbol and the

attribute occurrences implicitly.

3.2 Semantics definition.

In this section we will show how to define concrete instances of semantics in

AspectAG.

With the aim to provide semantics, AGs decorate the productions of

context-free grammars with attribute computations. In an expression lan-

guage as the one defined, the usual semantics is the evaluation semantics.

This can be defined by using two attributes: eval , to represent the result of

the evaluation, and env , to distribute the environment containing the values

for variables. In this section we explain how the evaluation semantics can be

implemented using our library. All the source code of this section is part of

the MF.Sem module.

Attributes in AspectAG are also defined as Labels. They have attached the

type of the computation that they represent.
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eval = Label @ (‘Att "eval" Integer)

env = Label @ (‘Att "env" Env)

The attribute eval computes a value of type Integer , while the attribute env

computes an environment of type Env .

The environment contains the value of the variables in a scope. We use

the Map datatype provided by the GHC’s base library (qualified as M ) to

represent environments:

type Env = M .Map String Integer

There is no information specifying that eval and env are respecively a synthe-

sized and inherited attributes. In AspectAG attributes are just declared giving

a name and a type. They can be used in any role.

Now we can build the proper rules. To compute the attribute eval in the

production pAdd we take the values of eval at each child, which are the integers

denotated by the subexpressions, and sum them up. This is written as follows:

addeval = syndefM eval pAdd $ (+) @ Integer

<$> at chAddl eval

~ at chAddr eval

The name addeval is just a Haskell identifier. We adopt this name convention

for rules: the uncapitalized name of the production followed by the name of

the attribute.

The rule is defined using the function syndefM , which is the library oper-

ation to define synthesized attributes. It takes an attribute label (the one for

which the semantics is being defined), a production label (where it is being

defined), and the respective computation rule for the attribute (in a Reader

monad).

Using an applicative interface, the computation means that we take the

values of the eval attibute at children chAddl and chAddr , and combine them

with the operator (+). In the expression at chAddl eval/at chAddr eval we pick

up the attribute eval from the collection of synthesized attributes of the child

chAddl/chAddr . We refer to these collections of attributes as attributions.

This definition expects that the eval attribute is defined in those subex-

pressions. This is explicit on its type as a constraint. Rules keep at type level

all the information about attributes and children referred. The whole structure
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of the grammar is known at compile time, which is used to compute precise

errors, for instance if a subexpression has no rule to compute eval , a suitable

type error will be raised, as we shall see later.

In the case of literals, semantics is given by the integer that the literal

denotes. This is defined as follows:

valeval = syndefM eval pVal (ter chV alval)

At the pVal production the value of the terminal corresponds to the semantics

of the expression. In terms of our implementation the attribute eval is defined

as the value of the terminal chV alval . The combinator ter is simply a reserved

keyword in our EDSL used to access the terminal value.

Finally, with variables, the eval attribute is computed by looking up the

value of the variable in the environment.

vareval = syndefM eval pVar (do

env ← at lhs env

x ← ter chV arvar

case M .lookup x env of

Just e → return e)

We take the inherited environment and the variable name. Then we lookup for

the value associated with that name. Here we use do notation, i.e. a monadic

interface. The name lhs is a reserved word like ter indicating that we receive

the env attribute from the parent2. Note that the use of the monadic notation

in the case of vareval is just a matter of convenience. Users can use any style

(monadic or applicative) they want to.

The reader may be concerned with the pattern matching we do in the result

of the lookup as it is not exhaustive. In fact, if the environment does not

contain the variable we are looking for this would generate a runtime failure.

For brevity, we will not handle name binding in this example language, but it

can be handled with another attribute in an orthogonal way (for instance, in

a new, independent module). We will see more details in chapter 6.

We can combine all these rules in an aspect :

aspeval = traceAspect (Proxy @ (‘Text "eval")) $

addeval / valeval / vareval / emptyAspect

2 The LHS names an idiom widely used in AG systems. Note that parents are on the

left-hand side of the production in the EBNF notation
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The operator (/) is a combinator that adds a rule to an aspect ((/) asso-

ciates to the right). An aspect is a collection of rules. Here we build an aspect

with all the rules for a given attribute, but the users can combine them in

the way they want (for example, by production). Aspects can be orthogonal

among them, but this is not required.

The function traceAspect and also -implicitly- each application of syndefM

tag definitions to show more information on type errors. This is useful to have

a hint where the error was actually introduced. For instance, note that aspeval

clearly depends on an attribute env with no rules attached to it at this point,

so it is not -yet- useful at all. We cannot decide locally if the definition is

wrong since the rules for env could be defined later (as we will do), or perhaps

in another module that the compiler does not even know about yet! If we use

aspeval calling it on a semantic function there will be a type error but it will be

raised on the semantic function application, once some of the constraints about

attribute and children dependencies fail to be solved. Programmers not used

to library internals may find this misleading. Showing the trace is helpful as

we will see in Chapter 4. A function traceRule is also provided so the user can

apply it to rules instead of aspects. Actually, traceAspect is a sort of mapping

of traceRule to every rule contained in the aspect.

To define the inherited attribute env we use de inhdefM combinator. It

takes three labels: an attribute, a production where the rule is being defined,

and a child to which the information is being distributed. Then, the rule

is defined. In our example we define rules addenvl and addenvr to copy the

environment to children in the case of additions:

addenvl = inhdefM env pAdd chAddl (at lhs env)

addenvr = inhdefM env pAdd chAddr (at lhs env)

Then, we can combine those rules in an aspect. We add trace information

again.

aspenv = traceAspect (Proxy @ (‘Text "env")) $ addenvl / addenvr / emptyAspect

Finally we can combine aspects aspeval and aspenv . For that puropose

AspectAG provides the (./) operator.

aspsem = aspeval ./ aspenv
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Note that in this case no new tag was added to the trace, but we could do it

if we want to.

Finally we can implement the evaluation function. Let us work with the

forestated approach, taking an Expr tree as an argument:

evaluator :: Expr → Env → Integer

evaluator exp envi =

semExpr aspsem exp (env =. envi ∗. emptyAtt) #. eval

The semExpr function takes the semantic definition and an expression to build a

semantic function. Semantic functions take an attribution (inherited attributes

for the expression) and return an attribution (synthesized attributes). The

expression env =. envi ∗. emptyAtt is the inherited attribution at the root,

consisting in only one attribute, env with the value of envi . The expression

env =. envi is building an attribute while (∗.) is a cons-like operator. So,

the expression semExpr aspsem exp (env =. envi ∗. emptyAtt) computes the

synthesized attributes of the root. In this case, it is an attribution with only

one attribute eval containing the result of the computation. The operator (#.)

extracts it.

3.3 Semantics extension and modification.

Our approach allows the users to define alternative semantics or extending

already defined ones in a simple and modular way. For instance, suppose that

we want to collect the free variables in an expression (this means all variables,

since there are no binders in our expression language). We collect them in the

order they occur, if they can occur many times, they will appear many times

in the result.

Let us define this new interpretation in a new module called Expr.FV.

It depends on the Expr.Syn module but it is completely independent of the

Expr.Eval module.

Now, let us define an attribute to collect the variables:

fv = Label @ (‘Att "fv" [String ])

We define the aspect with the rules to compute the new attribute:
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aspfv = syndefM fv pAdd ((++) <$> at chAddl fv ~ at chAddr fv)

/ syndefM fv pVar ((:[ ]) <$> ter chV arvar)

/ syndefM fv pVal (pure [ ])

/ emptyAspect

In this case we defined and combined all rules in the same expression. In the

pAdd production we concatenate variables occuring in each child. In the pVar

expression we obtain the terminal representing the variable and wrap it in a

singleton list. In the case of the pVal production we simply return the empty

list.

Again, we can implement a traversal to collect all free variables of an ex-

pression by applying the defined aspect to the semantic funcion:

freeVars e = semExpr aspfv e emptyAtt #. fv

We can also modify already defined semantics definitions in a modular

way. Suppose that, instead of collecting all variable occurences, we only want

to collect the first one (i.e. get all occuring variables once, in their occuring

order). We can take the aspfv aspect and modify the rule for the pAdd expression

as follows:

asp ′fv = synmodM fv pAdd (Data.List .union <$> at chl fv ~ at chr fv)

/ aspfv

This redefinition of the semantics can be defined in a new module (in this

case depending on Expr.Sem since aspfv must be imported) with no need to

recompile the original one.

3.4 Syntactic Extension.

In the previous section we showed how to extend a language with new semantics

in AspectAG, but in fact, that is not a great accomplishment since the host

language is already purely functional, and purely functional languages solve

well that axis of the expression problem.

In this section, we show how users of the library can extend the syntax of

the language. Suppose that we want to add a new syntactic construct: function

calls. In other words, we add a new production to the grammar defining the

expression language. Using the EBNF notation this new production can be

written as follows:
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expr → fname (expr)

An expression can be a function application, consisting in a function

name and an argument expression. We implement this in a new module

ExprExt.Syn.

We declare the required labels as follows:

type PCall = ‘Prd "Call" NtExpr

pCall = Label @ PCall

chCallfun = Label @ (‘Chi "Call_fun" PCall (Terminal String))

chCallarg = Label @ (‘Chi "Call_arg" PCall (NonTerminal NtExpr))

We add a production label pCall. The "Call" production is a rewrite rule for

the non terminal NtExpr. It has two children. The chCallfun child is a terminal

of type String , representing the name of the applyed function. The chCallarg

child is a non terminal, the argument expression.

Recall that we can add the production using the Template Haskell splices

instead of explicitly defining the labels:

$ (addProd "Call" ′′Nt Expr [("fun",Ter ′′String),

("arg",NonTer ′′Nt Expr)])

We can also reify the grammar in scope as a Haskell data type using a

splice with closeNT , and generate the semantic functions with a splice with

mkSemFunc.

$ (closeNT NtExpr)

$ (mkSemFunc NtExpr)

The derived data type is a new copy of the Expr .Syn.Expr data type, with the

new constructor.

data Expr

= Add { l :: Expr , r :: Expr }
| Var {var :: String }
| Val {val :: Integer }
| Call {fun :: String , arg :: Expr }

deriving (Show ,Eq ,Read)
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Now, it is time to add semantics to the extended language. The following

code is part of a new module ExprExt.Eval. We extend the evaluation seman-

tics with function calls. In our expression language there is no way to define

functions yet, so let us assume that there is a set of known built-in functions.

It makes sense to make them available in an environment at a given scope, so

it could be extended with new definitions in a future extension.

To minimize the complexity of the running example we keep it simple here.

Consider an environment of functions named by Strings. We use a call-by-value

regime.

Let us define an inherited attribute for this environment:

fenv = Label @ (‘Att "fenv" (M .Map String (Integer → Integer)))

We must pass down this environment from parents to children in each non-

terminal. For instance, we can implement the rule for the left argument of the

sum as:

addfenvl = inhdefM fenv pAdd chAddl (at lhs fenv)

Note that this is almost the same definition as in addenvl in Section 3.2. We

are only passing the attribute untouched from the parent to the children. One

big advantage of using the AG System as an EDSL is that we can abstract

this pattern easily as a Haskell function, and then build a rule such as for any

argument given. We can, for instance, build a function that given an attribute,

builds an aspect with rules that copy that attribute in each recursive definition.

Moreover, we can for instance define a copy rule to all recursive children and

use inhmodM exactly in those special productions where the environment is

modified. We will see examples in Chapter 6.

We must also note that this pattern -passing information from top to down,

untouched- is very common when using AGs: they are called copy rules in the

AG jargon. The AspectAG library has some builtin constructs to build this

type of rule, such as copyAtChi that builds the copy rule given an attribute

and a child.

Then, we can define the rules to copy the environment in the following way:

addfenvl = copyAtChi fenv chAddl
addfenvr = copyAtChi fenv chAddr

For the new production pCall, we also need to copy the environment in the

function argument child.
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addfenvarg = copyAtChi fenv chCallarg

We also need to define rules for the previously defined attributes eval and

env in the new production. Let us combine both rules at once with the (�)
operator, that combines a pair of rules for a given production.

callevalenvarg = copyAtChi env chCallarg

� (syndefM eval pCall (do

fe ← at lhs fenv

fn ← ter chCallfun
argv ← at chCallarg eval

case M .lookup fn fe of

Just f → return (f argv)))

For the env attribute we use a copy rule. To compute the value of the eval

attribute we get the inherited function environment, and the function name

(that is a terminal). We look at the synthesized eval attribute at the argument

child and apply the function. Again we do not care about undefined functions

for now.

Finally we can write the new evaluator for the expression language as:

type FEnv = M .Map String (Integer → Integer)

evaluator :: Expr → (Env ,FEnv)→ Integer

evaluator exp (envi , fenvi) =

semExpr asp ′sem exp (env =. envi ∗.
fenv =. fenvi ∗.
emptyAtt) #. eval

where

asp ′sem = addfenvl

/ addfenvr

/ addfenvarg

/ callevalenvarg

/ aspsem

Given an expression, and the two environments, the evaluator computes the

denotation of the expression.
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3.5 Polymorphism in AspectAG.

In the previous sections, we showed how the expression problem can be tack-

led using AspectAG. How well the expression problem is tackled is a good

measurement of modularity, but it is not the only one we are interested in.

Functional programming provides tools to achieve modularity such as higher-

order functions and lazy evaluation [Hughes, 1989]. Polymorphism is another

useful feature to modularize programs since it adds the possibility to code a

function once to manipulate many data structures. As a DSL embedded in

Haskell AspectAG can exploit the benefits of polymorphic, higher-order func-

tional programming. We briefly discussed in the previous sections a couple of

examples of how to use lazy evaluation (partial functions in attribute defini-

tions that will not crash) and polymorphism (the copyAtChi template). But

since AspectAG is a language used to create other languages it is natural to

wonder if the generated language can be itself polymorphic or if we can produce

higher-order functions from the application of semantic functions.

For instance, consider the Data.List module in GHC’s base library. It is

an EDSL used to manipulate lists, and most functions in it are polymorphic

and higher-order. Can we program functions in Data.List using AspectAG? In

fact, an arbitrarily chosen subset of them is included in an example program

in the AspectAG package distribution.

When using AspectAG to build abstract syntax for compilers (i.e. not

embedded languages such as the expression language, but to implement the

backend for a full compiler toolchain) there are also good reasons to make the

generated abstract syntax polymorphic. One could parametrize the abstract

syntax tree to add type information. One could also build extensible data

types using trees that grow [Najd and Jones, 2017]. There is another useful

use that we will extensively exploit in the case study presented later. It is to

parametrize the language over its terminals. This is the same we do in the

List DSL over the type of the contained elements.

To show the benefits of parametrization over terminals let us come back

to the expression language. Suppose that we want to add the possibility to

manipulate real numbers instead of integers. We can drop the pVal production

as it is and introduce an alternative, say pV alR, with the correct type. Unfortu-

nately our semantics for the eval and env attributes will no longer be reusable

since they have the Integer type attached. We can define a new pair of at-
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tributes, and define rules to compute them, but note that those rules will be

written the same way as for eval and env . For eval we would take the terminal

on pVal , sum the recursive denotations in pAdd, and lookup the environment in

pVar . For env we use copy rules.

Moreover, if instead of swapping integers by real numbers we want to ma-

nipulate both real numbers and integers in the expression language, things

will get more complicated. pVal and pV alR productions can coexist, but the

rule to compute eval on the pAdd production will be ill typed (even using the

polymorphic addition). The issue can be solved by computing the evaluation

as a sum type and combining it properly in the case of addition. Nevertheless,

this does not scale well if adding more productions.

All these patterns can be factored and repetition avoided. We can think

of the expression language as a way to build variables, additions, and values

of some abstract type. We can delegate the responsibility of how values are

handled to the abstract type.

Let us implement it to see how it works. The NtExpr non-terminal and the

pAdd and pVar productions remain as they were already defined. We build an

alternative production for values, pV alP that contains a polymorphic terminal:

type PV alP = (‘Prd "ValP" NtExpr)

pV alP = Label @ PV alP

chValPval
:: ∀ v .Label (‘Chi "val" PV alP (Terminal v))

chValPval
= Label

Note that actually the pVal label does not change, the children definition is the

one that differs from the definition in Section 3.1. We make the type of the

value contained in the child polymorphic.

Now, we define a polymorphic attribute evalP , abstracting the type in the

same way.

evalP :: ∀ v .Label (‘Att "evalP" v)

evalP = Label

Now we define an interface for the abstract type of our values. We call it

Number and whatever it is, the type implementing the interface must support

addition. We do it with a type class.

class Number v where

add :: v → v → v
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To document types better we can have this class as a constraint in the poly-

morphic type v of evalP and chValPval
, but it is not necessary at all. Now we

define the semantics for the evalP attribute.

add evalP = λ(Proxy :: Proxy v)→
syndefM (evalP @ v) pAdd

$ add

<$> at chAddl (evalP @ v)

~ at chAddr (evalP @ v)

Those definitions are very similar to the ones in Section 3.2. The difference

is that we added a Proxy parameter with the type of values and applied that

type to all polymorphic labels. That Proxy argument solves a subtle technical

issue. As we will see in Chapter 5 AspectAG structures are implemented with

extensible records. When a record contains polymorphic values and we look

up fields (either with polymorphic or monomorphic values) variables may not

unify. Even if we could deduce they do, GHC inference algorithm may not,

and type inference may get stuck. The solution is to pass the type explicitly

and force unification early.

With this approach, there are no relevant differences in the definition of

the semantic function or with data type definitions. As an example we can

show the type that we would generate with the forested approach:

data Expr a

= Add { l :: Expr a, r :: Expr a }
| Var {var :: String }
| Val {val :: a }

We can show that we can get what we had before. If we implement the instance

of Number for the type Integer we get the same language defined in Section

3.1. The evaluator looks like:

evaluator :: Expr Integer → Env Integer → Integer

evaluator exp envi =

semExpr (aspsem (Proxy @ Integer)) exp

((envP @ Integer) =. envi ∗. emptyAtt) #. (eval @ Integer)

where aspsem is built by a combinator similar to (./) (actually the same, since in

the current AspectAG implementation it is polymorphic) that combines poly-

morphic rule definitions (it passes the proxy to every rule). We omitted the
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definition of the attribute envP and the rules to compute it, since it is straight-

forward and does not offer any new insight.

The news is that we also got a family of languages, each type implementing

the Number interface. If we want to combine Integers, real numbers (say,

represented as Double) and unary naturals, we can:

data MyNum = I Integer | R Double | N Nat

data Nat = Z | S Nat

instance Number MyNum where

add = ...

How they are combined when added up will depend on the implementation of

the add method.

Finally, we must note that we do not lose any expressivity with polymor-

phic attributes. The language can still be extended with new productions. If

we need more functions to combine elements of the type of terminals (suppose,

for instance, if we add a production to model other operation than addition)

we can implement a subclass of Number and proper instances for each imple-

mentation of terminals.

3.6 A deforested approach.

In Section 3.1 we discussed how to define context-free grammars in AspectAG.

Pieces of a grammar are defined by labels, and then the full grammar is reified

in a data type. Semantic functions take the rol of relating the labels and the

reified data type.

When a grammar is extended, new data types are defined, possibly ‘sharing’

many constructors, and new semantic functions are defined, possibly sharing

many clauses in its definitions. While namespaces in modules offer a solution

to handle them unambiguously, this duplication of the source code violates one

condition of the statement of the expression problem as stated in Section 2.3.

To avoid the code duplication, there are many possible solutions. One

possibility is to use actual extensible algebraic data types. Vanilla Haskell does

not support them, but there are ways to mimic them [Swierstra, 2008, Najd

and Jones, 2017,Henry, 2020]. Unfortunately, these encodings are heavyweight,

generating complex types. AspectAG is already implemented using advanced

43



type-level programming, therefore, adding more complexity to types does not

seem to be wise.

The alternative is not to use data types at all, building terms of the expres-

sion language using a shallow embedding [Fowler, 2010]. Instead of defining

the semantic function semExpr as a traversal over a data type, we define ex-

pressions directly as a composition of semantic functions. Let us see how it

works.

First, consider the following alternative definition of the semantic function:

sem Expr Add ′ asp sl sr =

knitAspect pAdd asp $

chAddl .=. sl .∗.
chAddr .=. sr .∗. emptyGenRec

sem Expr Val ′ asp val =

knitAspect pVal asp $

chV alval .=. semLit @ Integer val .∗. emptyGenRec

sem Expr Var ′ asp var =

knitAspect pVar asp $

chV arvar .=. semLit @ String var .∗. emptyGenRec

Instead of pattern matching over the data type Expr , we define a function

for each production. The semantics of nonterminal subexpressions like in the

sem Expr Add ′ function are given themselves in terms of semantic functions.

For example, the expression 4 + x was

expressed as (Add (Val 4) (Var "x")) before. Now it can be implemented

as:

e = λasp → sem Expr Add ′ asp (sem Expr Val ′ asp 4)

(sem Expr Var ′ asp "x")

Now, to add a new production to our expression language we can add suitable

labels and the new semantic function. Even if e was precompiled and the

new production is defined in another module, e becomes an expression of the

extended language, for free.

Perhaps the reader is worried about the verbosity of the new representation

for terms. We can hide the argument asp with a reader monad [Jones, 1995],
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or use a fixed one when we are working with a concrete semantics. We can

then build smart constructors to actually write the term in a readable way

such as add (vl 4) (vr "x").

There is a subtle flaw with this approach as we presented it. As we will

see in the following sections, when building aspects by adding rules, we build

a polymorphic expression with constraints defining the types of the rules for

each production. In the forested approach, semantic functions instantiate those

expressions further by applying the function knitAspect (or its variants, such as

the more primitive function knit), as we will see in Section 5.3.6. The function

knit does indireclty a lot of work, in particular it is where we decide the set of

children in each production. Note that while children are tied to productions

by their type, productions are not tied to children anywhere else (and this is

good, because we can extend productions easily).

In the deforested approach we can build expressions that do not use every

production with rules defined in the aspect, which means some type variables

are not instantiated by any application of knit . Being them ‘too polymorphic’,

a type error will be raised.

Fortunately, this can be solved in a relatively easy way, combining those too

polymorphic aspects with empty rules that have their arguments instantiated

enough.

There is a solution of compromise: to avoid grouping rules of different

productions in aspects at all, just grouping semantics in a production basis.

The following is yet another possible definition of the semantic functions:

sem Expr Add ′′ asp add sl sr =

knit Proxy asp add $

chAddl .=. sl .∗.
chAddr .=. sr .∗. emptyGenRec

sem Expr Val ′′ asp val val =

knit Proxy asp aval $

chV alval .=. semLit @ Integer val .∗. emptyGenRec

sem Expr Var ′′ asp var var =

knit Proxy asp var $

chV arvar .=. semLit @ String var .∗. emptyGenRec
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The alternative definition for the expression e in this context would be e ′

defined such as:

e ′ = sem Expr Add ′′ asp add (sem Expr Val ′′ asp val 4)

(sem Expr Var ′′ asp var "x")

where asp add , asp val and asp var are rules for each production, instead of

aspects. We gain the hability to use e ′ without issues if the language grows

syntactically, but at the same time we tied e ′ to a concrete definition of se-

mantics. However, when implementing compilers such as in the case study

of Chapter 6, at the time of defining a tangible function that process a pro-

gram, we know all the semantics defined at that point, so definitions such as

e ′ are adequate. Definitions of expressions like e make sense if we want to use

AspectAG to implement an embedded DSL.

What should be clear from this section is that, AspectAG is powerful enough

to solve the expression problem avoiding recompilation.
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Chapter 4

Error Messages.

In an EDSL implemented using type-level programming type error messages

are usually hard to understand and they often leak implementation details.

The AspectAG library is designed to provide good, domain-specific error mes-

sages for the typical errors the programmer may make.

In this chapter, we identify which domain-specific type errors should be

captured and we show examples of how they are printed to the user. How this

is achieved will be shown in Chapter 5.

4.1 Identifying domain-specific type errors.

To capture type errors in a domain-specific manner, we need to understand how

the domain is encoded and how the errors that users can make are materialized.

The AspectAG library is implemented using extensible records. Each pro-

duction has a record of children. Synthesized and inherited attributions are

implemented as records of attributes. The AspectAG library user defines at-

tribute computations (1) using references to attributes (2) and children (3).

We analyze the point of failures in those.

1. When defining attribute computations, since attributes are typed, the

computation defined must be of the same type as the defined attribute

(4.2.1). Another thing we must control is that attributes are unique.

There should be only one definition to compute an attribute in a given

production (4.2.2). This is a design decision: we could admit more than

one definition where the latter one overrides the previous ones. For

this kind of use case the synmodM and inhmodM combinators exist,
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where a new opportunity to make mistakes rises: we can modify rules

for attributes only if they already have rules attached (4.2.3).

2. When referencing attributes, the programmer could make two kinds of

mistakes: refer to attributes using the incorrect type (4.2.4), and refer

to attributes for which there is no defined behavior (4.2.5). The latter

one is tricky since this information is nonlocal, as we will explain later.

3. When referencing children, they must be valid ones (i.e. to have in their

type the correct production). This is true when accessing to a child, and

when defining an inherited attribute (4.2.6).

4.2 Examples of error messages.

To illustrate examples of error messages consider the expression language de-

fined in the previous chapter. In Figure 4.1 we condense the definitions of the

Expr.Eval module defined in Section 3.2. We made some small refactoring,

adding calls to traceAspect to better show how adding traces will help.

In this section we show how the error messages are printed to the user when

introducing errors in the example.

4.2.1 Type mismatch in attribute definition.

Attributes are typed. When defining an attribute, the type of the expression

that computes its value should match the type of the attribute.

For instance, if in Line 4 of Figure 4.1 we use an attribute with a type

different from the one expected, writing env instead of eval :

addeval = syndefM env pAdd ((+) @ Integer

<$> at chAddl eval

~ at chAddr eval)

we obtain a type error telling us there is a mismatch between the declared type

of the attribute and the type of the expression we used to define its semantics.

The error points out to Line 4. The message is the following:

• Error: Map String Integer /= Integer

type mismatch in attribute definition

attribute type does not match with the computation that defines it

trace: - syndef: definition of Attribute (env:Env)
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1 type Env = M .Map String Integer

2 eval = Label @ (‘Att "eval" Integer)
3 env = Label @ (‘Att "env" Env)

4 addeval = syndefM eval pAdd ((+) @ Integer
5 <$> at chAddl eval
6 ~ at chAddr eval)
7 valeval = syndefM eval pVal (ter chV alval)
8 vareval = syndefM eval pVar (do env ← at lhs env
9 x ← ter chV arvar

10 case M .lookup x env of
11 Just e → return e)

12 aspeval = traceAspect (Proxy @ (‘Text "combination of rules for Eval"))
13 $ addeval / valeval / vareval / emptyAspect

14 addenvl = inhdefM env pAdd chAddl (at lhs env)
15 addenvr = inhdefM env pAdd chAddr (at lhs env)

16 aspenv = traceAspect (Proxy @ (‘Text "combination of rules for Env"))
17 $ addenvl / addenvr / emptyAspect

18 aspsem = traceAspect (Proxy @ (‘Text "combination of aspects Eval and Env"))
19 $ aspeval ./ aspenv

20 evaluator :: Expr → Env → Integer
21 evaluator exp envi =
22 semExpr aspsem exp (env =. envi ∗. emptyAtt) #. eval

Figure 4.1: Evaluation Semantics for expressions.
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in Production Add of Non-Terminal Expr

• In the expression:

syndefM env p_Add ((+) <$> at ch_Add_l eval <*> at ch_Add_r eval)

In an equation for ‘add_eval’:

add_eval

= syndefM

env p_Add ((+) <$> at ch_Add_l eval <*> at ch_Add_r eval)

> add_eval = syndefM env p_Add ( (+) at Integer

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^...

Probably a more realistic example of this type of error, is, instead of grossly

confusing attribute labels, to make the mistake when writing the rule compu-

tation. For example, if we drop line 8 of Figure 4.1 and define vareval with the

following declaration:

vareval = syndefM eval var $ lookup <$> ter ch var var ~ at lhs env

the defined computation has type Maybe Integer , while the declared type of

the attribute eval is Integer . Hence, the following type error is raised:

• Error: Integer /= Maybe Integer

type mismatch in attribute definition

attribute type does not match with the computation that defines it

trace: - syndef: definition of attribute (eval:Integer)

in production (Var of Non-Terminal Expr)

• In the expression: syndefM eval var

In the expression:

syndefM eval var $ M.lookup <$> ter ch_Var_var <*> at lhs env

In an equation for ‘var_eval’:

var_eval

= syndefM eval var $ M.lookup <$> ter ch_Var_var <*> at lhs env

> var_eval = syndefM eval var

^^^^^^^^^^^^^^^^

In both cases there is also a trace information, showing the context where

the error appears. In these examples traces do not offer new insight, they show

information that the programmer can deduce by looking at the expression

50



where the error is detected. In these cases, is the place where the error was

actually made. We will see later in this chapter some examples where this

information will be more helpful.

4.2.2 Duplication of Attributes.

Attributes must have a rule to compute them in every place they are used.

Rules to compute attributes at a given production must be unique. As we said

before we could opt for a different design decision and make rules overridable.

We consider this would not be a good decision. In fact, by avoiding the possi-

bility to override rules, our implementation is safer since programmers know at

every time which rules are defined. There is no way to accidentally override a

rule, which is a threat in medium to big-sized developments. Also, the current

implementation satisfies the property that the combination of rules and as-

pects is commutative if we avoid the use of rule modifications (like synmodM ),

which is a nice property if users want to reason about the AG definition.

If two or more rules are defined to compute an attribute in a production,

an error is raised. Suppose that we have the following instead of the definition

in Line 12:

aspeval = traceAspect (Proxy @ (‘Text "combination of rules for Eval"))

$ addenvl / addeval / valeval / vareval / emptyAspect

Then, we get the following error:

• Error: cannot extend Attribution

collision in attribute (env:Map String Integer)

trace: - inhdef: definition of attribute (env:Env)

in production (Add of Non-Terminal Expr)

- traceAspect: combination of rules for Eval

- traceAspect: combination of aspects Eval and Env

• In the first argument of ‘sem_Expr’, namely ‘asp_sem’

In the first argument of ‘(#.)’, namely

‘sem_Expr asp_sem exp (env =. envi *. emptyAtt)’

In the expression:

sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

> sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

^^^^^^^

51



pointing to the Line 21. Why does it point to the line where evaluator is defined

when the error was actually done in Line 12? To allow easy composability

of rules, the type of expressions such as aspeval is not a ground type. It is

polymorphic and required record fields translate to type class constraints. As

a result incompatible constraints are not detected until they are solved. This

is performed when the aspect aspeval is actually used as an argument for a

semantic function in the evaluator definition.

This is an example of how EDSL type errors are hard to handle. While the

error is caught by the Haskell compiler, with the help of the domain knowledge

one can diagnose it with more precision by analyzing the program. We cannot

modify where the error is raised since we are “trapped” in GHC, but what we

do in AspectAG is to provide the trace. Trace contents are actually pointers to

the source code. The previous trace gives the user the following information:

• The error was raised because we combined the rule defined by inhdef for

the attribute env in the production Add of non-terminal Expr . This first

entry of the trace is a pointer to Line 14.

• This ill-typed definition appears when we combine the rules for eval .

This is the second entry in the trace, a pointer to the tag added in Line

12. Note that the message printed is the one we put in the traceAspect

application.

• Then we combined the aspects Eval and Env . This is the third entry in

the trace, a pointer to the tag added in Line 19.

Following the trace information bottom-up, the user can infer the problem-

atic occurrence of the rule addenvl that was introduced. Are traces enough to

always get this information unambiguously? This depends on the tags added

by the programmer. Let us see two extreme cases:

• If we drop all tags (traceAspect calls in the code are erased), the error

only shows the first trace entry. We know the collision occurs because we

added a rule for env defined by inhdef . We do not know which rule is the

problematic one. This is actually enough information for this example!

The rule addenvl was used twice and removing any occurrence is enough.

• We could add a tag for every rule manipulation. If we add a tag entry

at every use of operators (/) and (./) we always get the exact trace

from the semantic function call to the rule expresssion where the error
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is raised. Of course, traces will be huge, and their interpretation could

be cumbersome.

In our experience, the approach followed in the example -tagging in combina-

tions of aspects- works well in practice.

4.2.3 Modifying undefined attributes.

The previous error arises when we combine two definitions of the same at-

tribute. If the intention is to override a definition, we can use the combinators

(e.g. inhmodM or synmodM ) to do that. To override a rule definition, there

must be already some rule for the given attribute. Suppose that instead of

Line 7 of Figure 4.1 where the rule valeval is defined, we put:

valeval = synmodM eval pVal (ter chV alval)

Then we get an error pointing to Line 21.

• Error: field not Found on Attribution

updating the attribute(eval:Integer)

trace: - synmod: redefinition of attribute (eval:Integer)

in production (Val of Non-Terminal Expr)

- traceAspect: combination of rules for Eval

- traceAspect: combination of aspects Eval and Env

• In the first argument of ‘sem_Expr’, namely ‘asp_sem’

In the first argument of ‘(#.)’, namely

‘sem_Expr asp_sem exp (env =. envi *. emptyAtt)’

In the expression:

sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

> sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

^^^^^^^

The type error reports that we tried to update an attribute that was not found

in the attribution.

4.2.4 Type mismatch in attribute reference.

This kind of error occurs when we refer to an attribute value in a rule definition

that has type different from the one expected. In order to not abuse the swap

53



of eval and env in examples, suppose we have an attribute pp of type String ,

that collects a pretty printed representation of the expression.

pp = Label @ (‘Att "pp" String)

Now, suppose that instead of the definition for the rule addeval given in Line 4

of Figure 4.1, we give the following:

addeval = syndefM eval pAdd ((+) @ Integer

<$> at chAddl pp

~ at chAddr eval)

We get a type error, pointing to that line:

• Error: [Char] /= Integer

ill-typed attribute computation.

trace: - syndef: definition of attribute (eval:Integer)

in production (Add of Non-Terminal Expr)

• In the second argument of ‘(<>)’, namely ‘at ch_Add_l pp’

In the first argument of ‘(<*>)’, namely

‘(+) Integer <> at ch_Add_l pp’

In the third argument of ‘syndefM’, namely

‘((+) Integer <> at ch_Add_l pp <*> at ch_Add_r eval)’

<> at ch_Add_l pp

^^^^^^^^^^^^^^

Note that while the custom type error does not show all information (like

the attribute/child where the error arises) this is not necessary since the exact

line is pointed. But we could print more information with little effort if we

want to.

4.2.5 Not defined attribute reference.

When the value of an attribute (at some child, or at the lhs) is used when

defining a rule, but there is no defined rule to compute that attribute in that

position, an error occurs.

Let us suppose we ignore the definition of the rule addenvr given in Line 15

of Figure 4.1, and, of course, we do not combine this nonexistent rule in Line

17.

Then, we would get the following type errors:
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• Error: field not Found on Attribution

looking up the attribute (env:Map String Integer)

trace: - syndef: definition of attribute (eval:Integer)

in production (Var of Non-Terminal Expr)

- traceAspect: combination of rules for Eval

- traceAspect: combination of aspects Eval and Env

• In the first argument of ‘sem_Expr’, namely ‘asp_sem’

In the first argument of ‘(#.)’, namely

‘sem_Expr asp_sem exp (env =. envi *. emptyAtt)’

In the expression:

sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

^^^^^^^

• Error: field not Found on Attribution

looking up the attribute (env:Map String Integer)

trace: - inhdef: definition of attribute (env:Map String Integer)

in production (Add of Non-Terminal Expr)

- traceAspect: combination of rules for Env

- traceAspect: combination of aspects Eval and Env

• In the first argument of ‘sem_Expr’, namely ‘asp_sem’

In the first argument of ‘(#.)’, namely

‘sem_Expr asp_sem exp (env =. envi *. emptyAtt)’

In the expression:

sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

^^^^^^^

Both type errors point again to the Line 21. This happens for the same

reason we explained before: in that position the full attribution is analyzed

and constraints are solved.

In this case it should be clear that we can hardly do a better effort to

catch the error before, because there exists no error before!. While aspsem
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is incomplete1, an incomplete aspect could be extended later. If we consider

aspsem ill-typed, so it is, for instance, aspeval , because rules in aspeval depend

on the attribte env .

Allowing users to manipulate aspects that do not represent well-behaved

semantics in their own is necessary to allow modular construction. When we

apply an incomplete aspect to a semantic function, that is the place where the

error is really made.

If the user wants to check if an aspect is ‘complete‘ (i.e. all dependencies are

fulfilled for the rules, so it can be used as the argument of a semantic function),

then the user can test if the application type checks. AspectAG provides a

function called checkAspect that performs the check given a semantic function

and an aspect. It can be used like an assert with no runtime overhead since

it operates purely on types.

In the example, the errors obtained are due to the use of the incomplete

aspect aspsem with a semantic function.

The trace of the first type error points out to the Line 8 of Figure 4.1

where we are using the attribute env at the lhs to compute the denotation of

variables. This error is what we should expect since the attribute env is no

longer distributed top-down.

The second type error points out that in the definition of addenvl in Line

14 of Figure 4.1 the attribute env was missed. This makes perfect sense since

we are no longer copying env to the right subexpressions, so in any node not

in the left spine of an expression the attribute is missed.

We used an inherited attribute but in the same way this kind of error can

be found with synthesized attributes.

Suppose in Line 13 of Figure 4.1 we forget to add the addeval rule, so the

aspeval definition would be the following:

aspeval = traceAspect (Proxy @ (‘Text "eval"))

$ valeval / vareval / emptyAspect

We get the following error when applying the semantic function:

• Error: field not Found on Attribution

looking up the attribute (eval:Integer)

1 In other words, the defined grammar with the set of rules given in aspsem is not well-
defined according to the definition given in Section 2.1. In terms of the AspectAG EDSL,

there are rules with undefined dependencies.
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trace: looking up attribute (eval:Integer)

• In the expression:

sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

In an equation for ‘evaluator’:

evaluator exp envi

= sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Suppose, that we forget to combine vareval instead of aspeval , thus Line 12

of Figure 4.1 is redefined as:

aspeval = traceAspect (Proxy @ (‘Text "eval"))

$ addeval / valeval / emptyAspect

In that case we get the following error:

• Error: field not Found on Aspect

looking up the production named (Var of Non-Terminal Expr)

trace: knit(Var of Non-Terminal Expr)

• In the first argument of ‘(#.)’, namely

‘sem_Expr asp_sem exp (env =. envi *. emptyAtt)’

In the expression:

sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

In an equation for ‘evaluator’:

evaluator exp envi

= sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

sem_Expr asp_sem exp (env =. envi *. emptyAtt) #. eval

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Note that this error is different from the previous one. The reason is that

since the rule vareval was the only one defined for the Var production, the

modified version of the aspeval aspect does not have a rule for the production

Var . This is the error reported here.
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4.2.6 Children reference mismatch.

When defining a rule to compute an attribute the user provides an aspect

for which the computation rule is being defined, and a production where it is

defined. To compute that attribute the value of inherited attributes can be

used, as well as the values of synthesized ones at some children. Those children

should actually belong to the production for which we are defining the rule.

Suppose that we change the Line 7 of Figure 4.1 for the following one:

valeval = syndefM eval pVal (ter chV arvar)

We get the following type error:

• Error:

Child Var_var of producion (Var of Non-Terminal Expr)

/= Child Var_var of producion (Val of Non-Terminal Expr)

trace: - syndef: definition of attribute (eval:Integer)

in production (Val of Non-Terminal Expr)

Data.Type.Require.ShowCTX ctx

• In the third argument of ‘syndefM’, namely ‘(ter ch_Var_var)’

In the expression: syndefM eval p_Val (ter ch_Var_var)

In an equation for ‘val_eval’:

val_eval = syndefM eval p_Val (ter ch_Var_var)

val_eval = syndefM eval p_Val (ter ch_Var_var)

^^^^^^^^^^^^^^

When defining a rule to compute an inherited attribute with the inhdef

family of combinators, users must provide a production, and a child. Chil-

dren are associated to productions, and that information is visible on types.

AspectAG does the check, and in case of a mismatch, an error is reported.

Finally, suppose instead of Line 14 of Figure 4.1 we define addenvl as:

addenvl = inhdefM env pAdd chV arvar (at lhs env)

We get the error:

• Error: (Add of Non-Terminal Expr) /= (Var of Non-Terminal Expr)

production and child mismatch in inherited attribute definition

trace: - inhdef: definition of attribute (env:Env)
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in production (Add of Non-Terminal Expr)

Data.Type.Require.ShowCTX ctx

• In the expression: inhdefM env p_Add ch_Var_var (at lhs env)

In an equation for ‘add_env_l’:

add_env_l = inhdefM env p_Add ch_Var_var (at lhs env)

add_env_l = inhdefM env p_Add ch_Var_var (at lhs env)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
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Chapter 5

Implementation details

In this chapter, we show the details of how the AspectAG library is imple-

mented. This includes all the machinery developed to make it possible to get

domain-specific type errors like the ones shown in Chapter 4.

In Section 5.1, we present a framework to manage user-defined type errors.

While initially conceived as an abstraction layer for AspectAG, the framework

works well in many scenarios, so it evolved into a standalone library: the

requirements library.

In Section 5.2 we present the poly-rec library, implementing extensible,

polymorphic-kinded (from now on, polykinded) records, the basic building

block for AspectAG data structures.

Finally, in Section 5.3 we present the design and implementation of

AspectAG’s data structures and combinators. The general structure of the im-

plementation resembles the presentation given in [de Moor et al., 2000,de Moor

et al., 1999]. This same architecture was already implemented in Haskell [Viera

et al., 2009]. The new contribution is to do it in a kind-safe manner, combined

with the requirements library to get good type errors, and the addition of

polymorphism.

5.1 The requirements library.

We introduce the requirements library. This tool is used to program user-

defined type errors uniformly. Firstly, in Section 5.1.1 we introduce the main

technique we developed: the ‘Require’ pattern. Afterwards, in section 5.1.2

we abstract over one particular case that will be used extensively in practice.
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5.1.1 The Require pattern.

In order to show the generality of the tackled problem we avoid using records

(the structure we will extensively use in the AspectAG implementation) in the

running examples on this section.

Let us revisit the example of type-level programming in Haskell given in

Section 2.2: the EDSL of heterogeneous lists. In Figure 5.1 we refresh the

most relevant definitions and define some new utilities. The definitions given

are the following:

• The data type Nat (and the promoted kind).

• The singleton type SNat .

• The HList data structure.

• A type family Length that computes the length of a promoted list.

• A type family (:<) that computes the “less than or equal” relation over

naturals (as a boolean result).

• A type family (:! :) that computes the lookup in the list given a natural

number index.

Now, we aim to program the function (!)1. Given a natural number m and

a heterogeneous list of length n, by applying the function (!) we get the m-th

position of the list (positions start at zero, as usual). To do this in a type-safe

way we should ensure that m < n. There are many well-known ways to do

this. One of them is to use a bounded natural as argument (the Fin type,

well known in the literature) so the user cannot ask for an element outside the

limit n. Another solution is requiring a proof of m < n.

With those “explicit” approaches only function calls that satisfy the con-

ditions will be allowed. While it is nice to forbid programmers to even write

ill-typed expressions, this approach has some drawbacks. For instance, it leads

to data duplication (using Fin means adding yet another way to represent

natural numbers). Another drawback is that to produce a well-typed term,

programmers must use the correct arguments, meaning they need to be aware

of more information.

When the domain is complex, writing legal programs can be difficult (for

instance, building a well-formed AG!). We thing a good strategy is to let pro-

1 Note that in the Haskell terminology ‘!’ is an operator. In most situations Haskell users
would refer to “the operator ‘!’ ”, instead of “the function ‘(!)’ ”. Since the term “operator”

already has a meaning in the context of the requirements library, we deliberately avoid it.
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data Nat = Z | S Nat

data SNat (n :: Nat) where
SZ :: SNat Z
SS :: SNat n → SNat (S n)

data HList (l :: [Type ]) :: Type where
HNil :: HList ′[ ]
(:::) :: a → HList l → HList (a : l)

infixr 5 :::

type family Length (l :: [Type ]) :: Nat where
Length ′[ ] = Z
Length ( ': l) = S (Length l)

type family (:<) m n where
Z :< S = True
Z :< Z = False
S :< Z = False
S n :< S k = n :< k

type family (:! :) l n where
[t ] :! : Z = t
(t : ts) :! : (S n) = ts :! : n

Figure 5.1: Summary of definitions for heterogeneous lists.
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class Get (l :: [Type ]) (n :: Nat) where
(!) :: HList l → SNat n → l :! : n

instance Get ′[t ] Z where
(HCons a ) ! SZ = a

instance (Get ts n)⇒ Get ′( t ': ts) (S n) where
(HCons as) ! (SS n) = as ! n

Figure 5.2: Conventional implementation of a dependent function in Haskell.

grammers to write their programs and then analyze them in order to precisely

report inconsistencies in case they exist.

Going back to the running example, once we have singleton naturals de-

fined, our goal is to have a function with a type similar to the following:

(!) :: HList l → SNat n → l :! : n

Using (!) whenever (n > Length l) should raise a type error. This can be

easily accomplished in Haskell by defining a function (!) in a type class, such

that we only define instances for n ≤ m. Figure 5.2 shows an implementation.

Writing an expression accessing indexes out of bounds generates a vanilla type

error saying that there is no instance for the type class.

To get domain-specific error reports one can write class instances for the

ill-typed cases to trigger the evaluation of the TypeError type family provided

by GHC. That function is exported by the module GHC.TypeLits of the base

library. It takes a type-level string as an argument, and prints it as a compile

error whenever it is evaluated at compile time. It is the type-level counterpart

of the error function.

The problem that arises, is that coding each possible error scenario is cum-

bersome. Instead, what the requirements framework does is to provide a

unified, standarized way to do this.

Requirements are type-level conditions that are demanded by functions

that we call operations. Since operations can be of any arity, to manage all

operations uniformly we uncurry them, grouping all arguments in a data type.

We call those data types operators.

For instance, to implement the (!) operation we must build an operator,

defining a data type such as the following:
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instance (TypeError
(Text "Error: " :�: m :$$:
Text "trace: " :�: ShowCTX ctx ))

⇒
Require (OpError m) ctx where
type ReqR (OpError m) = ()
req = error "unreachable"

Figure 5.3: Implementation of an error requirement.

data OpGet (n :: Nat) (l :: [Type ]) :: Type where

OpGet :: SNat n → HList l → OpGet n l

The requirements library provides the Require class, that is used to im-

plement operations.

class

Require (op :: Type) (ctx :: [ErrorMessage ]) where

type ReqR op :: Type

req :: Proxy ctx → op → ReqR op

The argument op is an operator (with its arguments applied, e.g OpGet n l).

The indexed type family ReqR computes the resulting type of the operation.

The function req implements the semantics of the operation at the value level.

Given an operator (i.e. all the operation arguments) req computes a value

of the result type (ReqR op). The extra Proxy argument exists to help the

type checker to carry a context ctx . A context is a list of messages. Users

of the library can push messages that will be printed to the users in case an

error occurs (as type-level strings). We will see later how contexts are used to

implement the traces we showed in Chapter 4.

The requirements library exports an especial operator, OpError , with no

constructors carrying only information at type-level.

data OpError (m :: ErrorMessage) :: Type where { }

The instance of Require for the operator (OpError m) prints the error m and

the contents of the context at that time.
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The type family ReqR and the function req are defined with dummy val-

ues, since they are never used.2 We use the type family TypeError as a con-

straint (this is valid since it has a polymorphic return kind), since in the

context of the class ctx is in scope. We could have used TypeError in the

right-hand side of the ReqR type family definition instead. In that case type

errors would be raised in the same scenarios, but only m is in scope to pro-

duce the error message. Passing the context in operators is possible, but we

prefer the implemented solution, where operators carry just information re-

lated to the algorithm they implement. The type family ShowCTX has kind

([ErrorMessage ]→ ErrorMessage). It combines a list of messages in the order

they appear.

When a requirement is not fulfilled, the programmer can add a constraint

with an instance of Require for the operator OpError . To see an example of

how this is done, let us implement all cases for the operator OpGet .

First, note that we must decide the fulfillment of a requirement for

(OpGet n l) according to the condition (n < length l). We could program

the instances based on an induction principle for that relation, but it is more

convenient to delegate the work of deciding the relation to the type family

(:<) and then pattern match on the result. To pattern match on a boolean

in a type class instance declaration, the boolean must occur in the head of

the class definition. We need to use the “advanced overlap” design pattern we

introduced in Section 2.2.1.4. To perform that, we define an auxiliary operator

OpGet ′, as follows:

data OpGet ′ (b :: Bool) (n :: Nat) (l :: [Type ]) :: Type where

OpGet ′ :: Proxy b → SNat n → HList l → OpGet ′ b n l

The implementation of the instance of Require for the operator OptGet is done

just calling the instance for OptGet ′:

2 Definitions can be omitted. In that case, the compiler shows a warning that can be lifted

with the -Wno-missing-method flag.
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instance

Require (OpGet ′ (n :< Length l) n l) ctx

⇒
Require (OpGet n l) ctx where

type ReqR (OpGet n l)

= ReqR (OpGet ′ (n :< Length l) n l)

req proxy (OpGet n l)

= req proxy (OpGet ′ (Proxy @ (n :< Length l)) n l)

When the boolean condition is met, the proper algorithm for lookup is imple-

mented in the following instances of Require for OptGet ′.

instance

Require (OpGet ′ True Z (t : ts)) ctx where

type ReqR (OpGet ′ True Z (t : ts)) = t

req proxy (OpGet ′ (a ::: )) = a

instance

Require (OpGet ′ True n ts) ctx

⇒
Require (OpGet ′ True (S n) (t : ts)) ctx where

type ReqR (OpGet ′ True (S n) (t : ts)) = ReqR (OpGet ′ True n ts)

req proxy (OpGet ′ p (SS n) ( ::: as)) = req proxy (OpGet ′ p n as)

We do pattern-matching on the natural number. We focus on the well-

kinded cases where (b ∼ True) (and therefore, the type-level list l is non-

empty).

The first instance is the base-case. When looking up a heterogeneous list in

the index Z we just return the head value, of type t (since the heterogeneous

list had index type (t : ts)).

The second instance is the recursive case. When the given position is non-

zero, we perform the lookup recursively in the tail list.

The ill-typed cases are captured by requiring the OpError operation, as

defined in Figure 5.4:

Whenever (b ∼ False) it means (Length l > n). All the information in

scope (the types n and l) is used to produce an informative error message.

Then, it is possible to define the function (!) as:

l ! n = req emptyCtx (OpGet n l)
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instance
Require (OpError (Text "Type error!" :$$:

Text "Index " :�: ShowType n
:�: Text " out of bounds."

:$$: Text "List of type ‘" :�: ShowType (HList l)
:�: Text "’, of length: " :�: ShowType (Length l)
)) ctx
⇒

Require (OpGet ′ False n l) ctx where { }

Figure 5.4: Definition of the OpError instance.

where emptyCtx is a Proxy containing an empty list.

The following type error will be produced if we try to get the third index

(SS (SS (SS SZ ))) from a list of type HList ′[Char ,Bool , [Char ] ].

• Error: Type error!

Index ’S (’S (’S ’Z)) out of bounds.

List of type ‘HList ’[Char, Bool, [Char]]’,

of length: ’S (’S (’S ’Z))

The core idea behind the requirements library is just what we have pre-

sented. As simple as it is, this design pattern proved to be very useful in many

use-cases, justifying to factor it out as the standalone library.

The requirements library also provides extra functionalities, like a set of

functions to combine error messages, and a set of use-cases to document the

library to new users. For instance, one type family exported by requirements

is the -open- family ShowTE , of kind (k → ErrorMessage). It works as the

show function at type level building error messages. In the Figure 5.4, when

defining the error message for OptGet we used the more primitive type function

ShowType, exported by the module GHC.TypeLits. While ShowType prints the

types as they are written syntactically, the type family ShowTE can be used

to implement a custom way to print types in error messages.
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5.1.2 Equality requirements.

A common pattern when using requirements is to require two types to be equal.

We will show that it can be performed with the presented technique, but as it

is a common pattern, then we abstract a way to handle it.

Consider an EDSL to represent and manipulate figures of different dimen-

sions (e.g. 2-dimensional objects, a 3-dimensional bodies, etc). In a real imple-

mentation, it should probably have more attributes, but dimension is enough

for the example. Two figures can be combined, whenever they have the same

dimension. An idiomatic way to implement this in Haskell using modern type-

level programming features is by a data type indexed by a type of a kind

representing dimensions.

data Dim = D2 | D3

data family Figure (d :: Dim)

The use of a data family construction makes it possible to define a data type

for each instance of Dim. For instance, for D2 we can define the following

data type:

data instance Figure D2 = Rectangle Float Float

| Triangle Float Float

Now, we aim to program a function that takes two figures of the same

dimension and builds a new figure. This is easy for a Haskell programmer,

and it is natural to use the type system to ensure the desired property about

dimensions. The type of the function can be given as:

combine :: Figure d → Figure d → Figure d

If we try to compile an expression (combine f g) where (f :: Figure D2 ) and

(g :: Figure D3 ) we get the following error message:

. Couldn’t match type ‘’D3’ with ‘’D2’;

Expected type: Figure ’D2

Actual type: Figure ’D3

This is perhaps acceptable for a Haskell programmer but it is not idiomatic

for the user of an EDSL implemented in Haskell. Moreover, the error is clear

just because the data type is simple, but in real-world DSLs users will face

more complex cases. We aim to get a custom, more expressive type error.
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data OpCombine d d ′ where
OpCombine :: Figure d → Figure d ′ → OpCombine d d ′

data OpCombine ′ (b :: Bool) d d ′ where
OpCombine ′ :: Proxy b → Figure d → Figure d ′ → OpCombine ′ b d d ′

instance Require (OpCombine ′ (d == d ′) d d ′) ctx
⇒

Require (OpCombine d d ′) ctx where
type ReqR (OpCombine d d ′) = ReqR (OpCombine ′ (d == d ′) d d ′)
req proxy (OpCombine f g)

= req proxy (OpCombine ′ (Proxy @ (d == d ′)) f g)

instance
Require (OpCombine ′ True d d) ctx where
type ReqR (OpCombine ′ True d d) = Figure d
req proxy (OpCombine ′ f g)

= combine f g

-- the well behaved implementation:
combine ′ = req (Proxy @ ′[ ])

instance
Require (OpError (

Text "Cannot combine figures. Dimension mismatch"

:$$: Text "The first argument is of dimension " :�: ShowTE d
:$$: Text "The second argument is of dimension " :�: ShowTE d ′

)) ctx
⇒

Require (OpCombine ′ False d d ′) ctx where { }

Figure 5.5: Combination implementation.
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In Figure 5.5 an implementation is given using the technique presented in

Section 5.1. First, we define an operator OpCombine that takes the two argu-

ments needed to implement the combination operation. We use the advanced

overlap pattern building an operator with the explicit requirement condition

(equality of dimensions, in this case) visible. Then we write the wrapper in-

stance (the instance for OpCombine that uses the instance for OpCombine ′),

the well-typed case, and the ill-typed case requiring an error operator. The

type error that is printed if users try to combine images of different dimensions

is implemented in the last instance definition. Let us assume an implementa-

tion of the family ShowTE for Dim that prints integer literals (e.g "2" instead

of "D2") is given, we would get the following error:

. Cannot combine figures. Dimension mismatch.

The first argument is of dimension 2

The second argument is of dimension 3

Note that in the well-typed case we call the function combine of type

(Figure d → Figure d → Figure d). There should not be a surprise that

this is accepted by the compiler, since in this instance the dimensions of both

figures were unified.

While this is an acceptable solution, such a common pattern as equality

is worth systematizing. To do so, we introduce a type family RequireEq with

kind (k → k → [ErrorMessage ]→ Constraint). We use it to require that two

types (of kind k) are equal. The third argument is the usual context that can

be given to print more information with the error case.

The following is a valid implementation for combination of figures:

combine ′′ :: RequireEq d d ′ ctx ⇒ Figure d → Figure d ′ → Figure d

combine ′′ = combine

The type family RequireEq , exported in the requirements library is defined

as follows:

type RequireEq (t :: k) (t ′ :: k) (ctx :: [ErrorMessage ])

= (AssertEq t t ′ ctx , t ∼ t ′)

type family AssertEq (t :: k) (t ′ :: k) ctx :: Constraint where

AssertEq a a ctx = ()

AssertEq a b ctx = Require (OpError (Text "\n " :�: ShowTE a

:�: Text "\n/= " :�: ShowTE b)) ctx
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To be more clear, let us analyze it using the type variables that occur

in the type of combine ′′. The constraint (RequireEq d d ′ ctx ) reduces into

a pair of constraints (AssertEq d d ′ ctx , d ∼ d ′). The first constraint,

(AssertEq d d ′ ctx ) is used to compute the type error in the cases where d 6∼ d ′.

If the arguments are equal it reduces into the empty constraint (). On the other

hand, if the arguments are not equal, it reduces into an instance of Require

applied to the operator OpError , that will further reduce to an application of

TypeError , which means a type error will be raised. A peculiarity in this code

is the use of non-linear pattern matching in the definition of AssertEq . This

feature is not available at the value level in Haskell but it can be used in type

family definitions.

The second constraint, (d ∼ d ′) is perhaps surprising. At a first sigh the

reader could think that the constraint (t ∼ t ′) in the type family definition

is redundant once we have (AssertEq t t ′ ctx ), since the constraint AssertEq

cannot be satisfied whenever t 6∼ t ′. However, the compiler cannot perform

this sophisticated reasoning over the semantics of AssertEq . Moreover, note

that the function combine ′ cannot compile if we do not state somewhere that

d and d ′ are equal, since it calls the function combine, that has arguments of

the same type.

In general, in presence of constraints, GHC typechecks analyzing at first the

shape of types, while collecting constraints, and then it solves the constraints.

We cannot use the syntactical equality in the type of combine ′′ (writing it as

Figure d → Figure d → Figure d) as we did in the function combine since

the compiler will report the domain-agnostic type error before doing anything

else. What we do is to de-unify equal type variables in the type of the function,

and push the equality into constraints, to “defer” checking the equality. If the

types d and d ′ are equal the compiler will accept the definition since the call

to combine is legal. If d and d ′ are not equal, an application of TypeError will

appear in the constraints and an error will be raised.

Somehow, this is the dual to the “advanced overlap” technique. Instead

of pulling information from the constraints to force the compiler to decide

earlier, we push information to constraints to force the compiler to decide

later enough to trigger a TypeError application. This is the spirit behind the

requirements library pragmatics: pushing the properties we want to check to

produce domain-specific errors to context.

In case we apply arguments of different dimensions to the function
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combine ′′, the type error printed is:

. Error:

R2 /= R3

That is still very general, we do not win almost anything in comparison

with the default error that GHC shows in the original combine implementation.

The reason is that we used a very general RequireEq class that knows anything

about how to precisely report the error. But using the ideas presented we can

improve the result.

Since type families are not parametric (we can decide depending on the

kinds in the polymorphic arguments) the type family RequireEq could decide

how to report the errors depending on the kind of d and d ′, but that means

the user must implement the specific type family instance. As seen before,

technicalities of the type system arise, and we want to avoid burdening users

of the EDSL with that responsibility.

For an ordinary functional programmer, who is used to work at the value

level, the solution should be obvious: abstracting the algorithm that produces

the error message and passing it as an argument to RequireEq .

However, at type level, type functions are not first-class citizens. In par-

ticular, an expression involving type families should be always saturated when

passed as an argument. Though there is research to add the feature to

GHC [Kiss et al., 2019], this is, not implemented in the main compiler branch.

Fortunately, this issue can be tackled by using the defunctionalization tech-

nique [Reynolds, 1972, Danvy and Nielsen, 2001]. Originally presented as a

compile-time technique to eliminate higher-order functions, it can be used as a

programming technique as well. In Figure 5.6 a solution is provided. A similar

idea is already implemented in the First-class families library [Xia, 2018], and

presented in [Eisenberg and Stolarek, 2014].

We give a type family RequireEqWithMsg of kind (k → k → (k → k →
Type) → [ErrorMessage ] → Constraint). The third argument is a data con-

structor that plays the role of a function symbol. It represents the function

that prints a type error reporting that the arguments given are not equal types.

An open type family Eval , of kind (Type → k) takes a function symbol

and the arguments of the function it represents. Users can extend it with new

semantics for each function symbol they introduce.
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type family RequireEqWithMsg (t :: k) (t ′ :: k) (mkmsg :: k → k →
Type)(ctx :: [ErrorMessage ]) :: Constraint

type instance RequireEqWithMsg t t ′ mkmsg ctx =
(AssertEq t t ′ mkmsg ctx , t ∼ t ′)

type family AssertEq (t :: k) (t ′ :: k)
(mkmsg :: k → k → Type) ctx :: Constraint

where
AssertEq t t mkmsg ctx = ()
AssertEq t t ′ mkmsg ctx = Require (OpError (Eval (mkmsg t t ′))

) ctx

Figure 5.6: RequireEqWithMsg implementation.

data DimEq (d :: Dim) (d ′ :: Dim)
type instance Eval (DimEq d d ′) =

Text "Cannot combine figures. Dimension mismatch"

:$$: Text "The first argument is of dimension " :�: ShowTE d
:$$: Text "The second argument is of dimension " :�: ShowTE d ′

combine ′′′ :: RequireEqWithMsg d d ′ DimEq ′[ ]⇒
Figure d → Figure d ′ → Figure d

combine ′′′ = combine

Figure 5.7: Shorter implementation of combination.

In Figure 5.7, we provide an improved solution. The symbol DimEq is

introduced, and the corresponding instance of the type family Eval . This

solution is shorter, and generally lighter than the more general approach of

defining an operator, while as general in the kind of errors users can program.

Users get the following error if they try to combine figures of dimensions 2

and 3:

. Error: Cannot combine figures. Dimension mismatch

The first argument is of dimension 2

The second argument is of dimension 3
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type family IsEmptyCtx (ms :: [ErrorMessage ]) :: Bool where
IsEmptyCtx ′[ ] = True
IsEmptyCtx (m': ms) = IsEmptyMsg m ∧ IsEmptyCtx ms
IsEmptyCtx = True

type family IsEmptyMsg (m :: ErrorMessage) :: Bool where
IsEmptyMsg (Text "") = True
IsEmptyMsg (l :�: r) = IsEmptyMsg l ∧ IsEmptyMsg r
IsEmptyMsg other = False

type family ShowCTX (ctx :: k) :: ErrorMessage where
ShowCTX (′[ ] :: [ErrorMessage ])

= Text ""
ShowCTX ((m :: ErrorMessage)': (ms :: [ErrorMessage ]))

= m :$$: ShowCTX ms

Figure 5.8: Manipulation of context messages.

5.1.3 Printing context in type errors.

As we have shown, the class Require has a parameter ctx of kind

[ErrorMessage ]. Figure 5.3 shows how the context is appended to the gen-

erated error message. In Figure 5.8 we show the implementation of the type

families involved, which consists of a simple traversal to generate one error

message.

The context can be instantiated the way the users want to. One way to

provide contexts is to give a proxy argument to the req function, as we have

seen. In Figure 5.5 we used an empty context, but any message can be defined.

For instance, adding the information that the function combine was used.

A good way to take advantage of contexts is to have in mind that when

using EDSLs the compiler can detect errors that were introduced in different

places of the source code. In fact, the main motivation to introduce contexts

was to use them as traces. In Chapter 4 examples of outputs were given, where

type errors raised in an application of a semantic function traced us to the rule

definitions introducing the bug.

The main idea is to make types of our EDSL carry a context argument.

When applying functions, the contexts in the arguments and in the return type

can be combined. For instance, instead of using the type (Figure d) we can use

a type (CFigure d ctx ). To have a simple way to manipulate contexts without
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complex type annotation it is handy to have available a proxy argument with

the context. The following is a possible definition for CFigure:

newtype CFigure d (ctx :: [ErrorMessage ])

= CFigure {mkCFigure :: Proxy ctx → Figure d }

We present this pattern here because we will use it later. We are using a

standard idea of putting contexts in an argument, and just packing everything

into a data type. This can be abstracted using a reader monad [Jones, 1995].

In Section 5.3.7 we will study a concrete case.

5.2 Polykinded Extensible Records

In computer science, a record is a basic data structure consisting of a collection

of fields storing values of -possibly- different types, indexed by names. Con-

ceptually, they can be thought of as partial mappings from names to values.

For that reason, we will refer to the set of labels of a record as its domain.

Extensible records, are records that can be extended with new fields. Ex-

tensible records are a well-known feature in the strongly typed functional pro-

gramming community. There is a theoretical basis to add extensible records in

type systems based on the Hindley-Milner type system such as the Haskell’s

one [Gaster and Jones, 1996, Leijen, 2004, Leijen, 2005]. In the Hugs Haskell

compiler they were implemented as a non-standard extension [Gaster and

Jones, 1996]. In Purescript [PureScript developers, 2017], a modern close

descendant of Haskell, the feature is implemented.

Although not implemented in GHC Haskell, extensible records can be en-

coded using type-level programming. There are libraries solving the prob-

lem already. The HList library [Kiselyov et al., 2004] popularized extensi-

ble records. Other implementations such as Vinyl [Sterling, 2012] or CTRex

[van der Ploeg, 2013] are available.

One usual way of implementing a record is by using a GADT indexed by

the list of types of the values stored in its fields. These types are usually of

kind Type, which makes sense since Type is the kind of all inhabited types, and

records store values. However, in AspectAG we have a complex use-case: we

will consider children records in productions where we store attributions that

are also implemented by records. We would like to be able to reflect some of

this structural information at the indexes of the record. This can be achieved
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if records are polymorphic in the kind of the types corresponding to the record

fields. This is a feature the record data structure we use must provide. To

our best knowledge, no available record library provides that feature. For that

reason, we implement the poly-rec library, from scratch.

We will use the requirements library to manage type errors of poly-rec.

But note, that we could build an interface combining requirements with any

already available record library. The main motivation to build poly-rec is

having kind-polymorphic records.

The achieved data structure will have the following features:

• It implements extensible records.

• Records implemented are intended to be general, so many record-like

data structures can be implemented specializing the general definition.

We call concrete specializations record instances.

• The data structure is type-safe, but also kind-safe. In particular, records

are polymorphic in the kind of the contained values to enforce properties

over the structure of the stored values.

• Records use first-class labels, meaning labels can be manipulated as any

Haskell value.

• Type errors in the interface of the library will produce domain-specific

error messages.

5.2.1 Record definition.

Records in poly-rec are implemented as a GADT, as follows:

data Rec (c :: k) (r :: [(k ′, k ′′)]) :: Type where

EmptyRec :: Rec c ′[ ]

ConsRec :: LabelSet (′(l , v)': r)

⇒ TagField c l v → Rec c r → Rec c (′(l , v)': r)

The GADT is indexed by two types: c and r . The index c is a tag for the type

of record we are using. Each specific record instance implemented using Rec

will have a different tag c. The index r represents the mapping from labels (of

kind k ′) to values (indexed by k ′′).

There are two constructors: EmptyRec builds an empty Record, where the

index r is instantiated as the empty type-level list. The constructor ConsRec

76



extends a record given a value of type TagField . The data type TagField is

defined as follows:

data TagField (c :: k) (l :: k ′) (v :: k ′′) where

TagField :: Label c → Label l →WrapField c v → TagField c l v

A tagged field is a value, tagged with the phantom types c and l .

The constructor TagField takes a pair of label arguments to instantiate c

and l easily. Labels are isomorphic to proxies, defined with the following data

type:

data Label (t :: k) = Label

The data type Label is polymorphic in the type and the kind of its ar-

gument, and is computational irrelevant at the value level. Note that labels

have a value-level representation, which means they can be manipulated as any

Haskell value; they can be passed as arguments, generated programmatically,

etc. This, in the jargon, means labels are first-class citizens, which is a feature

that not necessarily all record implementations have.

The third argument of TagField represents the proper value contained in

the field. If the type v is any type of kind Type (i.e. the polymorphic kind

k ′′ is instantiated as Type) it would make sense to have a constructor of type

(Label c → Label l → v → TagField c l v). However, in poly-rec, the type v

can have a rich structure. For instance, if the fields of the record are records

themselves, v can be a list of pairs.

Those rich type-level structures do not have kind Type, so they are not

inhabited. The type (Label c → Label l → v → TagField c l v) is ill-kinded if

v is instantiated to any type of kind different from Type.

That is the reason why we use the open type family WrapField , defined as

follows:

type family WrapField (c :: k ′) (v :: k) :: Type

Since it is open, we can add new instances when we add new record instances.

Example 5. The motivation to use kind polymorphism and the WrapField

family will be more clear with an example. Consider a record r with a field

named “x” of type Bool , and a field named “y” of type Char. Its type would

be:
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r :: Rec Dim1 [("x",Bool), ("y",Char)]

where Dim1 is the type used as a tag indicating that the record is one-

dimensional. Defined simply as:

data Dim1

The value r is built by applying two times the constructor ConsRec to

glue two values t1 of type (TagField Dim1 "x" Bool) and t2 of type

(TagField Dim1 "y" Char). To build t1 we apply TagField to two suitable

labels, and to a value of type Bool . Then, (WrapField Dim1 Bool) should

reduce to Bool , and is implemented as such:

type instance WrapField Dim1 b = b

Example 6. Now suppose we want to build a 2-dimensional record (i.e. a

record having records in its fields), and we want to reflect this in types and

kinds. Suppose the record m has fields named "a" and "b" and each one

contains a copy of r .

The type would be as:

m :: Rec Dim2 [("a", [("x",Bool), ("y",Char)]),

("b", [("x",Bool), ("y",Char)])]

We can write this because we used kind polymorphism in the definition. In

this case, fields are build by applying TagField to suitable labels, and the record

r. Note that the type ([("x",Bool), ("y",Char)]) is not inhabited, we need a

value of type Rec Dim1 [("x",Bool), ("y",Char)]. So (WrapField Dim2 v)

should reduce to (Rec Dim1 v), and the type family instance is implemented

as such:

type instance WrapField Dim2 v = Rec Dim1 v

Actually, we could avoid all this complexity and design Tagfield so it always

take a type of kind Type. A matrix such as m of Example 6 can still be built,

of type:

m ′ :: Rec Dim2 [("a",Rec Dim1 [("x",Bool), ("y",Char)]),

("b",Rec Dim1 [("x",Bool), ("y",Char)])]
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Type constructors can work as a way of “cheating” on the kind system because

they hide any kind information building a Type. However, in this case, at kind-

level nothing prevents extending the matrix with a field that is not a record.

In the value m the variable r of the Rec definition has its kind instantiated

to [(Symbol , [(Symbol ,Type)])]. On the other hand, in m ′ to [(Symbol ,Type)],

where those variables of kind Type hide a record structure.

We gain some guarantees in the definition using polykinded records. At

the same time, the implementation still can admit a mix of records and non-

records as fields with a suitable WrapField instance, so we just built a safer

system without losing any flexibility.

Going back to the definition of the data type Rec, note that the constructor

ConsRec definition, has a LabelSet constraint. The definition of this family is

given in as follows:.

type family LabelSetF (r :: [(k , k ′)]) :: Bool where

LabelSetF [ ] = True

LabelSetF [(l , v)] = True

LabelSetF ((l , v)': (l ′, v ′) : r) = Cmp l l ′ == LT ∧ LabelSetF (′(l ′, v ′) : r)

type family LabelSet r = RequireEq (LabelSetF r) True

Note that we use the constraint RequireEq of the requirements library. The

constraint LabelSet ensures that labels of the record are unique, and ordered.

In some iterations during the development of the library, we did not care about

how labels were ordered [Garćıa-Garland et al., 2019]. Nevertheless, ordering

the labels simplifies all record operations except insertion3. A drawback is that

to be ordered, labels must implement a comparison operation, while without

ordering labels, equality is enough. We choose to pay that cost. For this

reason, the kind of the labels must implement the type family Cmp:

type family Cmp (a :: k) (b :: k) :: Ordering

Since records have their labels ordered, the constructor ConsRec cannot be

used to build arbitrary records (we can use ConsRec only with a new key

smaller than the ones in the domain). A smart constructor ( .∗. ) is provided

to extend a record with any label (raising a type error in case of a label clash).

3 The use of ordered labels makes the LabelSet constraint irrelevant. Records will be built
by extending them with a smart constructor that raises type errors if we try to duplicate

labels. It still works as a sanity check.
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Three more type family instances are required to be implemented to prop-

erly define a record instance if we want pretty error messages. Depending on

the c index, we decide how to call records with the ShowRec type family, and

how to call its fields with the ShowField type family. How labels are printed,

is handled by the ShowLabel type family.

type family ShowRec c :: Symbol

type family ShowField c :: Symbol

type family ShowLabel c :: Symbol

How do we use those families will be clear in Section 5.2.3.

5.2.2 Examples of record instances.

In the previous section, we defined the data structure Rec and discussed briefly

the motivation to use polymorphic kinds in fields. We drafted what is necessary

to implement a record instance. In this section, we properly implement two

record instances, and we show how to use some Haskell features to implement

records while hiding the complexity of poly-rec.

5.2.2.1 “Vanilla” extensible records

Firstly, we present a “classic” extensible record: mappings from names to

types, where the keys consist of type-level strings (types of kind Symbol).

We introduce an index to name this kind of record:

data Reco

Then, we implement the type families WrapField , ShowRec, ShowField , and

ShowLabel .

type instance WrapField Reco (v :: Type) = v

type instance ShowRec Reco = "Record"

type instance ShowField Reco = "field named"

type instance ShowLabel s = s

type instance Cmp (a :: Symbol) (b :: Symbol) = CmpSymbol a b

The poly-rec library already exports an implementation of the Cmp family

for Symbols. Just for completeness, we show the implementation here, calling

the type family CmpSymbol exported by the module GHC.TypeLits.

80



Now, we can implement the Record type, by instantiating Rec:

type Record = Rec Reco :: [(Symbol ,Type)]→ Type

The type Record is, of course Rec applied to Reco, and by annotating its kind

we instantiate the kinds k ′, k ′′. In the same manner, tagged fields can be

specialized:

type Tagged (l :: Symbol) (v :: Type) = TagField Reco l v

Note that by exporting the types Record and Tagged , while hiding the types

Rec and TagField , clients are not aware that we used the general polykinded

definition behind the scenes. By hiding the constructors we lose the ability to

perform pattern matching, but we can use pattern synonyms [Pickering et al.,

2016] to recover pattern matching:

pattern Tagged :: v → Tagged l v

pattern Tagged v = TagField Label Label v

The name of the data type Tagged was chosen because it behaves exaclty

as the type defined in the Data.Tagged module of the well-known tagged

library [Kmett, 2009].

We can define a pretty operator to build tagged fields:

infix 4.== .

(.== .) :: Label l → v → Tagged l v

l .== .v = Tagged v

In Section 5.2.3 we will show some operations on generic records. For instance,

the operator ( .∗. ) is a smart constructor for record extension. It has type

LabelSet (′(l , v)': r) ⇒ TagField c l v → Rec c r → Rec c (′(l , v)': r), the

same type as the constructor ConsRec, but inserting the field in its correct

position to mantain labels ordered. We can also specialize this operation:

infixr 2 .∗∗.
(lv :: Tagged l v) .∗∗. r = lv .∗. r

The operator ( .∗∗. ) has type

LabelSet (′(l , v)': r)⇒ Tagged l v → Record r → Record (′(l , v)': r)

which is more concrete than the type of ( .∗. ). In the same way we can define

a smart constructor for the empty record:
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emptyRecord :: Record (′[ ] :: [(Symbol ,Type)])

emptyRecord = EmptyRec

Finally, we have all the machinery to define records such as:

r = (Label @ "integer".== .3)

.∗∗. (Label @ "boolean".== .True)

.∗∗. emptyRecord

The record r has type (Record [("boolean",Bool), ("integer", Integer)]), as

one would expect. Note that in the type the order of the fields was inverted,

because field names are ordered in lexicographic order.

Using ( .∗∗. ), (.== .) and emptyRecord we can hide the implementation

of Rec. However, at the same time note that if the primitive constructors of

polykinded records are visible to clients, generic operations over the type Rec

can be used for Record . For instance, the following definition is equivalent to

r :

r ′ = (Label @ "integer".== .3)

.∗. (Label @ "boolean".== .True)

.∗. emptyRecord

While ( .∗. ) is more general than ( .∗∗. ), its type in this occurence is instantiated

to the type of ( .∗∗. ) since we have enough context to instantiate the variable

c of the generic record definition, by the use of emptyRecord or (.== .).

5.2.2.2 Two Dimensional Records

Now we implement two dimensional records. We call them matrices 4. To

illustrate how a different type of label can be used, labels will be type-level

naturals.

We build an index:

data Mat

then, we define the Matrix type:

type Matrix = Rec Mat :: [(Nat , [(Symbol ,Type)])]→ Type

4 Actually, we define ragged matrices with labelled columns, -dependently- labelled rows,

and heterogeneous values.
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Note the double list. Each natural label (say, the columns) maps to fields that

are a full map from names to values. Those fields have an index that is a

type-level list of pairs, not inhabited. Actual field values have a type, built by

a type constructor that wraps the index:

type instance WrapField Mat (r :: [(Symbol ,Type)]) = Record r

Recall we must define information to print errors:

type instance ShowRec Mat = "Matrix"

type instance ShowField Mat = "record named"

type instance ShowLabel (l :: Nat) = ShowNat l

where the type family ShowNat computes the string representation of a num-

ber. The last type family to implement is Cmp, to give a total order for labels.

We use the type-level naturals comparison GHC .TypeNats .CmpNat :

type instance Cmp (m :: Nat) (n :: Nat) = CmpNat m n

To avoid extending the length of this example, we can now use the functions

over GenRec to build a matrix example. The following definition consists of a

matrix with the vector r defined in Section 5.2.2.1 in the column tagged by 1

and the empty vector in the column tagged by 2:

m = let tf = (TagField :: ∀ l r .

Label Mat → Label l → Record r → TagField Mat l r)

in tf Label (Label @ 1) r

.∗. tf Label (Label @ 2) emptyRecord

.∗. EmptyRec

We must use an annotated instance of TagField to help the type checker.

Perhaps the reader would expect the following -cleaner- definition to be enough:

m = TagField (Label @ Mat) (Label @ 1) r

.∗. TagField (Label @ Mat) (Label @ 2) emptyRecord

.∗. EmptyRec

Unfortunately, this definition does not type check. The first TagField con-

structor expects a value of type (WrapField Mat r) for some r . The record

r has type (Record [("boolean",Bool), ("integer", Integer)]). The compiler

cannot deduce that (r ∼ [("boolean",Bool), ("integer", Integer)]), because
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WrapField is not injective, which means that (Record r) does not need to be

necessarily a result of reducing (WrapField Mat r). Many other instances for

WrapField could be defined reducing to a Record ! In fact the WrapField type

family does not need to be injective, in general.

These technical difficulties arise only if we use generic operations eagerly

without giving further typing context, and can be avoided by using specialized

definitions, though.

5.2.3 Operations over records.

In this section we show how record operations over the polykinded definition

are implemented. In this section we will use the term “record” to refer to the

general, polykinded definition.

Record lookup given a label, update at a label, and extension are the

minimum set of operations needed by AspectAG. However, as it evolved to a

general-purpose library, more operations were implemented in poly-rec such

as right and left joins, traversals and so on. To implement record operations

we use the standard type-level programming techniques, in combination with

the use of the requirements library to generate domain-specific type errors.

We use the programming patterns presented in Section 5.1. For each operation

over records, we build a requirements operation. This means, we define an

operator, where all arguments are grouped.

We just give one full example: record lookup. Other operations does not

offer new insight, they are just applications of the techniques we have devel-

oped.

5.2.3.1 Example: Lookup

We build the OpLookup operator as an algebraic data type in the following

way:

data OpLookup (c :: k) (l :: k ′) (r :: [(k ′, k ′′)]) :: Type where

OpLookup :: Label l → Rec c r → OpLookup c l r

The lookup operation takes as arguments a label to be looked up, and a record

to look up. Lookup is defined recursively. Since labels are ordered, by inspect-

ing the label of the first field of the record we can decide either to return the

head value, to perform a recursive call or to fail depending on how it orders
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respect to the looked up label. That means we must decide the type of the

result based on this comparison, so we use the advanced overlap pattern to put

it in the head of the class definition. For that reason, we define the OpLookup ′

operator, that adds a new index of kind Ordering .

data OpLookup ′ (b :: Ordering) (c :: Type) (l :: k) (r :: [(k , k ′)]) :: Type

where

OpLookup ′ :: Proxy b → Label l → Rec c r → OpLookup ′ b c l r

To define instances of Require we will also pattern match over r , since when

(r ∼ ′[ ]) an error must be reported. The instance of Require for OpLookup

for nonempty records is implemented as follows:

instance

Require (OpLookup ′ (Cmp l l ′) c l (′(l ′, v)': r)) ctx

⇒
Require (OpLookup c l (′(l ′, v)': r)) ctx where

type ReqR (OpLookup c l (′(l ′, v)': r)) =

ReqR (OpLookup ′ (Cmp l l ′) c l (′(l ′, v)': r))

req ctx (OpLookup l r) =

req ctx (OpLookup ′ (Proxy @ (Cmp l l ′)) l r)

We simply compute the type (Cmp l l ′) to put it explicitly on the head of

the class we require as context. At the value level we copy the arguments and

add the annotated proxy.

Now we implement instances of Require for the auxiliar operator. If the

argument label is equal to the head of the record, we have found the field:

instance

Require (OpLookup ′ ′EQ c l (′(l , v)': r)) ctx where

type ReqR (OpLookup ′ ′EQ c l (′(l , v)': r)) =

WrapField c v

req Proxy (OpLookup ′ Proxy Label (ConsRec (TagField v) )) =

v

the type of the value returned is of course WrapField c v .

If the label looked up is greater than the one in the head, that means we

should keep traversing the record seeking for the label. We implement the

recursive case, calling a lookup with the tail of the record:
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instance (Require (OpLookup c l r) ctx )

⇒
Require (OpLookup ′ ′GT c l (′(l ′, v)': r)) ctx where

type ReqR (OpLookup ′ ′GT c l (′(l ′, v)': r)) =

ReqR (OpLookup c l r)

req ctx (OpLookup ′ Proxy l (ConsRec r)) =

req ctx (OpLookup l r)

Note that this time, in the instance for OpLookup ′ we call the instance for

OpLookup. In constrat, in Section 5.1.1 we stuck to OpGet ′ after the first call.

The reason is that here we need to update the ordering at each step.

Now we can write the ill-typed cases. If the label we are looking up is

smaller than the one in the head of the record, we know the looked up label is

not in the record domain, since labels are ordered. We require an instance of

OpError , as follows:

instance Require (OpError (LookupError c l)) ctx

⇒
Require (OpLookup ′ ′LT c l (′(l ′, v)': r)) ctx where { }

The case of looking up in an empty record is similar:

instance

Require (OpError (LookupError c l) ctx

⇒
Require (OpLookup c l (′[ ] :: [(k , k ′)])) ctx where { }

In both error cases, the OpError operator takes an error message depending

on l and c. LookupError is a type family that computes the string showed to

the user.

type family LookupError c l

type instance LookupError c l =

Text "field not Found on " :�: Text (ShowRec c)

:$$: Text "looking up the " :�: Text (ShowField c)

:�: Text " " :�: ShowLabel l)

Now it should be clear how ShowRec, ShowField , and ShowLabel play their

role here. Ill-typed lookups for the type Record (Section 5.2.2.1) or Matrix

(Section 5.2.2.2) raise type errors such as:
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Error: field not Found on Record

looking up the field named z

or

Error: field not Found on Matrix

looking up the record named 3

respectively, by evaluating the same type family.

Errors such as the one showed in Section 4.2.5 are also the result of print-

ing this error. Note that the domain-specific type errors only show infor-

mation about the looked up label and the record instance, since the family

LookupError depends only on arguments l and c. In particular, information

about the full type of the original looked up record is not showed. This was

a decision we made to keep errors simple and small, but it is important to

note that the developed techniques allow us to do that if desired. Note that,

in this case it wouldn’t be enough to pass the record index r as an argument

to the type family LookupError , because the record being looked up when we

decide to raise an error is a ‘suffix’ of the original one. One way to solve this

problem is to add the type of the original record as an argument of OpLookup

and OpLookup ′ (as a phantom type, at value level we do not require anything).

Another way is to simply push that information to the context (that, by the

way, is untouched in the previous implementation) the first time we call the

lookup operation.

Finally, we can write a pretty operator (#) for lookup. This is useful for

cosmetic reasons and to hide the use of the requirements framework to users.

The implementation is the following:

r # l = req emptyCtx (OpLookup l r)

Here we used emptyCtx , a proxy of type (Proxy ′[ ]), but as discussed we could

use any context (in particular we have the indexes c, l , and r in scope if we

want to use them).

In a similar way, we programmed the operations OpExtend and OpUpdate.

The implementation is public in the AspectAG repository.
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5.3 Implementation of AspectAG.

In this section we show how AspectAG internal structures are implemented

using the techniques presented in the previous sections. A more condensed

presentation can be found in [Garćıa-Garland et al., 2019]. In AspectAG users

define building blocks of attribute grammars (productions, children, attributes)

as labels. How to define AspectAG labels is shown in Section 5.3.1.

Collections of attributes, called attributions, are defined as extensible

records mapping attribute names to values, using the poly-rec library. The

details are given in Section 5.3.2.

Semantic rules are implemented as functions from input families to output

families. Data structures for families, rules and collections of rules (aspects)

are defined in Section 5.3.3.

The interface to define concrete rules is provided in Sections 5.3.4 and 5.3.5.

In Section 5.3.6 we define the knit function. The knit function does the job

of computing the values of the synthesized attributes of a node in a syntax tree,

given an aspect and the values of the inherited attributes at the node. The

function knit is the main engine behind the AG system, building a tangible

function to compute the attributed tree from the semantics definitions.

In Section 5.3.7 we show how to use the contexts given in requirements

to implement traces.

In Section 5.3.8 we disuss how polymorphic attributes and terminals can be

implemented in a simple way exploiting the type system of the host language,

without affecting the domain-specific type errors.

In Section 5.3.9 we discuss a performance issue that we found when using

the library, and provide an optimization that solves it.

In Section 5.3.10 we give an overview of what have we changed with respect

to the original implementation of the AspectAG library.

5.3.1 Data structures for label types.

Building blocks of AspectAG are defined with values of type Label instantiated

with the types defined in Figure 5.9. We already introduced the type Label

in the poly-rec library. The five defined data types can only be used in its

promoted form as a data kind, since all of them have at least a field of type

Symbol or Type, that have no term-level inhabitants.
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data Att = Att Symbol Type
data Prod = Prd Symbol NT
data Child = Chi Symbol Prod (Either NT T )
data NT = NT Symbol
data T = T Type

Figure 5.9: Definition of data kinds for labels.

Attribute names are implemented with the type Att . Attributes have a

name of kind Symbol and an associated type. Productions are implemented

with the type Prod . A production has a name and it is related to a non-

terminal whereas it belongs. Non-terminals are tagged with a name, imple-

mented in the NT type. Children are implemented with the type Child . They

have a name and they belong to a production. Each child represents a po-

sition in the right-hand side of a production, so a child is related to either a

non-terminal or a terminal, depending to what kind of position it holds in the

production.

5.3.2 Attributes and Attributions.

Once we have labels to name attributes, we can implement a data structure

for attributes. Moreover, we are interested in implementing attributions. At-

tributions are collections of attribute values, i.e. mappings from attributes to

values. Thus, attributions are implemented as a record instance, using the

type Att as the type of labels. In Figure 5.10 the implementation is given.

We define AttReco, the tag to identify the record instance, and the record

type is called Attribution. For the kind Att to represent fields of this record

instance, it must implement an order among its values. This is given in the

extension of the open type family Cmp, that compares attributes by their

names.

To correctly print type errors, type instances for ShowField , ShowRec, and

ShowLabel are given. In the latter one we use the operator (:++), the concate-

nation over symbols. This record instance is called “Attribution” and each

field is called “attribute”. When printing an attribute of name “foo” it is ok

to refer it with the string “attribute named foo”, which explains the definition

of ShowField .

89



data AttReco

type Attribution (attr :: [(Att ,Type)]) = Rec AttReco attr
type instance Cmp (‘Att a ) (‘Att b ) = CmpSymbol a b

type instance ShowRec AttReco = "Attribution"

type instance ShowField AttReco = "attribute named"

type instance ShowLabel (‘Att l t) = "(" :++l :++":" :++ShowType t :++")"

type Attribute (l :: Att) (v :: Type) = TagField AttReco l v
pattern Attribute :: v → TagField AttReco l v
pattern Attribute v = TagField Label Label v

infixr 4 =.
( =. ) :: Label l → v → Attribute l v
Label =. v = Attribute v

infixr 2 ∗.
(l :: Attribute att val) ∗. (r :: Attribution atts) = l .∗. r

emptyAtt = EmptyRec :: Attribution [ ]

Figure 5.10: Attribution definition.
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type ChAttsRec prd (chs :: [(Child , [(Att ,Type)])])
= Rec (ChiReco prd) chs

data ChiReco (prd :: Prod)
type instance WrapField (ChiReco prd) v

= Attribution v
type instance ShowRec (ChiReco prd) = "Children Map"

type instance ShowField (ChiReco prd) = "child labelled"

type instance ShowLabel (Chi l p s)
= "Child " :++l :++" of producion " :++ShowLabel p

Figure 5.11: Children record definition.

A set of specialized combinators is also defined in Figure 5.10 such as the

Attribute constructor, useful for pattern matching; the constructor ( = . )

to build attributes; the operator (∗.) for attribution extension; and the value

emptyAtt , the empty attribution.

As a final clarification, note that when defining the instance for the type

family Cmp for the type Att , we did not consider the second argument of Att ,

neither we consider it later. It is arguably that, since a label of kind (Att s t)

represents an attribute named s ot type t , we should forbid to build values

of type (Attribute (Att s t) t ′) if t 6∼ t ′ (using the requirements library, of

course!). However, just by an implementation decision, instead of controlling

this here, we will take care of it in the AspectAG combinators as we shall see

later.

5.3.3 Families, rules and aspects

A family represents inputs and outputs of computations ocurring in a node of

the attribute grammar. A family contains a single attribution for the father

and a collection of attributions for children. The type Fam is a GADT indexed

by all its components, defined as follows:

data

Fam (prd :: Prod) (c :: [(Child , [(Att ,Type)])]) (p :: [(Att ,Type)]) :: Type

where

Fam :: ChAttsRec prd c → Attribution p → Fam prd c p

91



The collection of children attributions ChAttsRec is another record in-

stance, where labels are children and fields are a full attribution. In Figure

5.11 the most relevant definitions of the instance are given.

A novelty is that we introduce the tag ChiReco with an arity. Children

records belong to a production, so its type, ChAttsRec is indexed by a prd . In

the type Rec we use the argument c to store that phantom type. Also note

the instance for WrapField , this time wrapping the Attribution constructor.

Just as with attributions the full interface is redefined, for instance (.∗)
and (.#) are functions to extend and access children records, and (. =) makes

a field, associating a child and an attribution.

Rules are functions from the input family (inherited attributes from the

parent, and synthesized from the children) to the output family (synthesized

attributes of the parent, inherited to the children). To make families compos-

able an extra arity is added, a technique already defined in [de Moor et al.,

2000]. The type is defined as follows:

type Rule

(prd :: Prod)

(sc :: [(Child , [(Att ,Type)])])

(ip :: [(Att ,Type)])

(ic :: [(Child , [(Att ,Type)])])

(sp :: [(Att ,Type)])

(ic ′ :: [(Child , [(Att ,Type)])])

(sp ′ :: [(Att ,Type)])

= Fam prd sc ip → Fam prd ic sp → Fam prd ic ′ sp ′

One can interpret this as a function that given an input family, it builds a

function that updates the output family constructed thus far.

To print domain-specific type errors using the requirements library, each

rule can save some context information to be shown in case the rule triggers

it, so we will really use rules with attached context, as follows:

newtype CRule (ctx :: [ErrorMessage ]) prd sc ip ic sp ic ′ sp ′

= CRule {mkRule :: (Proxy ctx → Rule prd sc ip ic sp ic′ sp ′)}

Rules of the same production can be combined. Given an input family, to

combine two rules is to compose the resulting applied rules:
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data PrdReco
type instance WrapField PrdReco (rule :: Type)

= rule
type Aspect (asp :: [(Prod ,Type)]) = Rec PrdReco asp
type instance ShowRec PrdReco = "Aspect"

type instance ShowField PrdReco = "production named"

type instance ShowLabel (‘Prd l nt)
= "(" :++l :++" of " :++ShowTE nt :++")"

Figure 5.12: Aspect definition.

ext ′ :: CRule ctx prd sc ip ic sp ic′ sp ′

→ CRule ctx prd sc ip a b ic sp

→ CRule ctx prd sc ip a b ic ′ sp ′

(CRule f ) ‘ext ′‘ (CRule g)

= CRule $ λctx input → f ctx input ◦ g ctx input

The function ext ′ is auxiliar. The real combination controls if the combined

rules belong to the same production:

ext :: RequireEq prd prd ′ (Text "ext" : ctx )

⇒ CRule ctx prd sc ip ic sp ic′ sp ′

→ CRule ctx prd ′ sc ip a b ic sp

→ CRule ctx prd sc ip a b ic′ sp ′

ext = ext ′

The function ext is also exported in AspectAG as the operator (�). We chose to

use the RequireEq constraint here for brevity, but the actual implementation

uses RequireEqWithMsg with a suitable error message format.

An aspect is a set of rules. Aspects are implemented as a mapping from

productions to rules, again, as a record instance, as given in Figure 5.12.

Like rules, user defined aspects are decorated with context, so we define

the proper data structure used as:

newtype CAspect (ctx :: [ErrorMessage ]) (asp :: [(Prod ,Type)])

= CAspect {mkAspect :: Proxy ctx → Aspect asp}

The interface for aspects is a bit different to a set of specialized record oper-

ations. Aspects can be built by a set of combinators. The value emptyAspect
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Left argument Right argument operation exported operator
rule rule none (ext) (�)
rule aspect OpComRA (/)

aspect rule none (flip (/)) (.)
aspect aspect OpComAsp (./)

Figure 5.13: Semantic combinators.

represents the empty aspect, the function singAsp creates an aspect from a

single rule.

emptyAspect = CAspect $ const EmptyRec

singAsp r = r / emptyAspect

Then, aspects can be combined by adding new rules to existing aspects

or by merging already defined aspects. In Figure 5.13 we show the main

combinators that work over rules and aspects.

To combine rules we used the already defined function ext , also defined as

the operator (�).
To combine a rule and an aspect the operator (/) can be used, and for

convenience there is a mirror operator (.). The former associates to the right,

while the latter does to the left, which is useful to write combinations mini-

mizing brackets.

To implement those functions we use the already presented techniques.

In particular, we define an operator OpRuleAsp to do the job using the

requirements library. There are two cases: if the rule is related to a produc-

tion not belonging to the aspect domain, we just extend the mapping (using

record extension). On the contrary, if there is already a rule for that produc-

tion, we combine those rules, updating the record. Then the operator (/) is

implemented as a call to req , and (.) is the flipped version.

Finally, we can combine two aspects by merging them, using the operator

(./). By merging, we mean that when both arguments have rules for a given

production, the rules are combined. This is implemented again using the

techniques of the requirements library, with the operator OpComAsp.

The implementation of these functions does not offer new insights. They

can be found in the repository.
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5.3.4 Defining concrete rules and aspects.

In this section we show how to implement concrete rules. We need to have

available at least a way to define rules to compute either a single synthesized

attribute or a single inherited attributte, given a production. Then, we have

available the combinators defined in the previous section to build more complex

semantics.

5.3.4.1 Synthesized attributes.

The function syndef builds rules to compute a synthesized attribute. It takes

an attribute label att , a production label prd and a function f . The function

f computes the value of the attribute from the input family. The extra arity

is used to carry the context.

syndef

:: Syndef t t ′ ctx att sp sp ′ prd prd ′

⇒ Label (‘Att att t)

→ Label prd

→ (Proxy ctx → Fam prd ′ sc ip → t ′)

→ CRule ctx prd sc ip ic sp ic sp ′

syndef att prd f

= CRule $ λctx inp (Fam ic sp)

→ Fam ic $ req ctx (OpExtend att (f Proxy inp) sp)

The constraint (Syndef t t ′ ctx att sp sp ′ prd prd ′) is implemented as a

type family that reduces to the set of constraints we need to be fullfilled. Each

constraint is a requirement of the requirements library and works to catch a

particular type error of those presented in Chapter 4. In this case in particular,

the type of the attribute according to the label must be equal to the type of the

one computed in f . The type of the label of the production argument must be

equal to the one of the family appearing in the computation f . The resulting

record sp ′ (synthesized attributes of the parent after the rule is applied) must

be the result of updating sp (synthesized attributes of the parent before the

rule was computed). Moreover, the update consists on extending the record

with a field of name (Att att t) with type t .
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type family Syndef t t ′ ctx att sp sp ′ prd prd ′ :: Constraint where

Syndef t t ′ ctx att sp sp ′ prd prd ′ =

(RequireEqWithMsg t t ′ AttTypeMatch ctx

,RequireEqWithMsg prd prd ′ PrdTypeMatch ctx

,RequireR (OpExtend AttReco (‘Att att t) t ′ sp) ctx (Attribution sp ′)

)

The constraint RequireR is an alias for two constraints. When we pattern

match on the result of an application of ReqR, we give an equality constraint

of shape ReqR op ∼ res . This constraint is always paired with one constraint

of shape Require op ctx since ReqR is an associated type in the class Require.

The type family RequireR is defined as follows:

type RequireR op (ctx :: [ErrorMessage ]) res =

(Require op ctx ,ReqR op ∼ res) :: Constraint

As seen in Chapter 3 we used a monadic interface to define rules. Instead

of the function syndef , we used the function syndefM . We hide the context

arguments of f using a reader monad, putting both the proxy carrying context

about the type error and the input family in the environment. So, the monadic

definition can be given as:

syndefM

:: Syndef t t ′ ctx att sp sp ′ prd prd ′

⇒ Label (‘Att att t)

→ Label prd

→ Reader (Proxy ctx ,

Fam prd sc ip) t ′

→ CRule ctx prd sc ip ic sp ic sp ′

syndefM att prd f

= syndef att prd ◦ curry ◦ runReader $ f

The trick is simply to use the usual Reader type to abstract an uncurried

version of a function, in this case f . Then we can apply curry to get an

argument for syndef .

Moreover, recall that we saw in Chapter 4 that syndefM implicitly added

information to the trace. So, the actual definition of syndefM is given as:
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syndefM

:: Syndef t t ′ (MkMsg SyndefMsg att t prd nt ': ctx ) att sp sp ′ prd prd ′

⇒ Label (‘Att att t)

→ Label (‘Prd prd nt)

→ Reader (Proxy (MkMsg SyndefMsg att t prd nt ': ctx ),

Fam (‘Prd prd ′ nt) sc ip) t ′

→ CRule ctx (‘Prd prd nt) sc ip ic sp ic sp ′

syndefM att prd f

= mapCRule (mkMsg (Proxy @ SyndefMsg) att prd ‘consErr ‘)

$ syndef att prd ◦ curry ◦ runReader $ f

The difference with respect to the previous definition is that a message

is ‘pushed’ into the constraints. The type family MkMsg of kind (Type →
Symbol → Type → Symbol → NT → ErrorMessage) simply computes a

pretty printed error message. The function mapCRule has no value-level com-

putational content, it is just a coercion that adds context information. We

define it in Section 5.3.7. Note that we pattern match over the type prd just

because we need its field nt to build the error message.

5.3.4.2 Inherited Attributes.

The function inhdef builds rules to compute an inherited attribute. It is de-

fined with the same techniques as syndef , though it is slightly more complex

since a child comes into the equation. It takes an attribute label att , a produc-

tion label prd , a child chi , and a function f . The function inhdef is defined as

follows:
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inhdef

:: Inhdef t t ′ ctx att r r2 prd prd ′ nt nt ′ chi ntch ic ic′ n

⇒ Label (‘Att att t)

→ Label (‘Prd prd nt)

→ Label (‘Chi chi (‘Prd prd ′ nt ′) ntch)

→ (Proxy ctx → Fam (‘Prd prd nt) sc ip → t ′)

→ CRule ctx (‘Prd prd nt) sc ip ic sp ic′ sp

inhdef att prd chi f =

CRule $ λctx inp (Fam ic sp)→
let ic′ = req ctx (OpUpdate chi catts ′ ic)

catts = req ctx (OpLookup chi ic)

catts ′ = req ctx (OpExtend att (f Proxy inp) catts)

in Fam ic′ sp

Given the input family (Fam ic sp), what the algorithm does is to

lookup the child chi in the inherited attributes of the children ic, to ob-

tain its attribution catts . That attribution is extended with the new field

att with the value returned by f , resulting in the attribution catts ′. Then,

the record ic is updated with the new attribution, resulting in ic′. Fi-

nally the updated family (Fam ic′ sp) is returned. Again, the constraint

(Inhdef t t ′ ctx att r r2 prd prd ′ nt nt ′ chi ntch ic ic′ n) computes all

requirements:

type family Inhdef t t ′ ctx att r r2 prd prd ′ nt nt ′ chi ntch ic ic′ n

where

Inhdef t t ′ ctx att r r2 prd prd ′ nt nt ′ chi ntch ic ic′ n

= (RequireEqWithMsg t t ′ AttTypeMatch ctx

,RequireEqWithMsg (‘Prd prd nt) (‘Prd prd ′ nt ′) ChiPrdMatch ctx

,RequireEqWithMsg nt nt ′ NTMatch ctx

,RequireR (OpExtend AttReco (‘Att att t) t ′ r) ctx (Attribution r2 )

,RequireR (OpUpdate (ChiReco (‘Prd prd nt))

(‘Chi chi (‘Prd prd ′ nt ′) ntch) r2 ic) ctx

(ChAttsRec (‘Prd prd ′ nt ′) ic ′)

,RequireR (OpLookup (ChiReco (‘Prd prd nt))

(‘Chi chi (‘Prd prd ′ nt ′) ntch) ic) ctx (Attribution r)

)

Then, we can define the monadic version inhdefM :
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inhdefM

:: Inhdef t t ′ (MkMsg InhdefMsg att t prd nt ': ctx )

att r r2 prd prd ′ nt nt ′ chi ntch ic ic′ n

⇒ Label (‘Att att t)

→ Label (‘Prd prd nt)

→ Label (‘Chi chi (‘Prd prd ′ nt ′) ntch)

→ Reader (Proxy (MkMsg InhdefMsg att t prd nt ': ctx ),Fam (‘Prd prd nt) sc ip) t ′

→ CRule ctx (‘Prd prd nt) sc ip ic sp ic′ sp

inhdefM att prd chi f = mapCRule (mkMsg (Proxy @ InhdefMsg) att prd ‘consErr ‘)

$ (inhdef att prd chi ◦ def ) f

In a similar manner, more functions such as synmod , inhmod , synmodM ,

and inhmodM are defined, modifying attributes instead of defining new ones.

5.3.5 Monadic selectors.

As we have shown in the running example of Chapter 3, users can use the

monadic interface (or the more general applicative interface) to define the

last argument of functions such as syndefM or inhdefM . Though we could,

we never access to the input family with the ask function the reader monad

interface gives us. Instead, we use a particular interface we provide, with the

at keyword.

The function at takes what we call a ‘position’ and an attribute. A position

can be a child, or the special value lhs . The function at is defined in a typeclass

(since it is ad-hoc polymorphic). The class At is defined as follows:

class (Monad m)⇒ At pos att m where

type ResAt pos att m

at :: Label pos → Label att → m (ResAt pos att m)

We implement one instance for each position.

5.3.5.1 Selecting the parent.

To use the at function with the left hand side, first we define a type to be used

as an instance of pos , and the value-level label:

data Lhs

lhs :: Label Lhs

lhs = Label
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instance
(RequireR (OpLookup @ Att @ Type AttReco (‘Att att t) par) ctx t
,RequireEqWithMsg t t ′ AttTypeMatch ctx )
⇒

At Lhs (‘Att att t) (Reader (Proxy ctx ,Fam prd chi par)) where
type ResAt Lhs (‘Att att t) (Reader (Proxy ctx ,Fam prd chi par))
= ReqR (OpLookup @ Att @ Type AttReco (‘Att att t)

(UnWrap @ Att @ Type (Rec AttReco par)))
at lhs att
= liftM (λ(ctx ,Fam par)→ req ctx (OpLookup att par)) ask

Figure 5.14: Parent selector.

In Figure 5.14 we implement the semantics for the use of the idiom (at lhs att).

What we do is to lift the function that gets the attribute from the input

family into the Reader monad. The function is defined using pattern matching

over the family, to get the inherited attribution. Since the class At is kind-

polymorphic in its first two arguments, we had to convince the compiler that

our definition makes sense annotating kinds in some places.

5.3.5.2 Selecting children.

In the same way we can implement at for children. The code given in Figure

5.15 perhaps looks complicated, but it is actually straightforward. Note that

the formal parameter pos is instantiated with a type of kind Chi , while in the

previous case Lhs had kind Type. This is a valid way to use kind polymorphism,

though one could arguably prefer to use a fixed data kind that considers all

posible type of positions. We preferred the presented approach to make At

extensible for the case that users want to extend the library. For instance, to

implement a way to refer to more distant ancestors or local attributes.
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instance
(RequireR (OpLookup (ChiReco prd ′) (‘Chi ch prd nt) chi) ctx

(Attribution r)
,RequireR (OpLookup AttReco (‘Att att t) r) ctx t ′

,RequireEqWithMsg prd prd ′ PrdTypeMatch ctx
,RequireEqWithMsg t t ′ GetAttTypeMatch ctx
,ReqR (OpLookup @ Att @ Type AttReco (‘Att att t ′)

(UnWrap @ Att @ Type (Rec AttReco r)))
∼ t ′

, r ∼ UnWrap (Attribution r)
)
⇒ At (‘Chi ch prd nt) (‘Att att t) (Reader (Proxy ctx ,Fam prd ′ chi par)) where
type ResAt (‘Chi ch prd nt) (‘Att att t) (Reader (Proxy ctx ,Fam prd ′ chi par))

= ReqR (OpLookup AttReco (‘Att att t)
(UnWrap @ Att @ Type (ReqR (OpLookup (ChiReco prd) (‘Chi ch prd nt) chi))))

at ch att
= liftM (λ(ctx ,Fam chi )→ let atts = req ctx (OpLookup ch chi)

in req ctx (OpLookup att atts)) ask

Figure 5.15: Children selector.

5.3.6 Semantic functions and the knit function.

In this section, we explain how to build semantic functions and what the

function knit does.

5.3.6.1 An algorithm to derive semantic functions.

Semantic functions compute the synthesized attributes of a node given its

inherited attributes.

Semantic functions are parametrized over an aspect that represents con-

crete semantics. In the forested approach, where we define an AST for the

language, semantic functions take an AST. In the deforested approach they

take semantic functions for subexpressions.

All semantic functions can be derived from the grammar structure. When

consuming a node of the abstract suntax tree, we call some variant of a knit

function with the rule to compute attributes at the current production and a

record of semantic functions for recursively calculate on children.

To understand it we use the running example given in Chapter 3. Recall

that we had an expression language where one production represented addi-
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tion of subexpressions. The production was represented with a label pAdd.
5

Children were identified with the values chAddr and chAddl . So, the clause that

defines the semantic function is:

semExpr asp (Add l r)

= knitAspect pAdd asp $ chAddl .=. semExpr asp l

.∗. chAddr .=. semExpr asp r

.∗. emptyGenRec

The function knitAspect is an utility that actually calls knit with the rule

in asp indexed by the production pAdd. So, the following definition would be

equivalent (apart of some context manipulation as we will see later):

semExpr asp (Add l r)

= knit ctx (asp #. pAdd) $ chAddl .=. semExpr asp l

.∗. chAddr .=. semExpr asp r

.∗. emptyGenRec

What we do to define a semantic function is to apply knit to the corre-

sponding rule and a record with all semantic functions of the children. Each

semantic function of the children knows how to compute the synthesized at-

tribution from the inherited one.

5.3.6.2 The function knit .

The function knit does the hard work. It takes the rule for a node and the

record with the semantic functions of the children, and builds a function from

the inherited attributes of the parent to its synthesized attributes.

Recall that a rule is implemented as a function from the input family to the

output family. However, to make rules composable we use an extra arity and

implement rules as a function that takes the input family to build a function

that updates the output family constructed thus far. When we combine rules

we compose those update functions. What we need to start computing at a

node is an initial input family with empty attributions in the parent and in

each children position. We can create this kind of structure at any place where

we have the type information (labels) of the full production, but actually, in

the semantic function definition is where we have it by the first time.

5 Remember that the type of pAdd is Label (Prd "Add" (NT "Expr")). That type infor-
mation is what defines it, as with the other labels. For brevity we just identify the values

here.
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This was designed this way to make the library extensible. We define non-

terminals without fixing the productions to rewrite them, and the producions

without defining the children they have. When we define rules we introduce

some dependencies (a rule for a production expects the children it uses), but

it never defines that set of children.

The function empties builds an empty children record from a collection of

semantic functions:

class Empties (fc :: [(Child ,Type)]) (prd :: Prod) where

type EmptiesR fc :: [(Child , [(Att ,Type)])]

empties :: Record fc → ChAttsRec prd (EmptiesR fc)

The implementation it is a routine application of type-level programming

techniques, where we define the children record inductively using the labels of

the semantic function record. Note that here is the place where the contents of

children records in productions is settled down, and therefore the structure of

attributed trees. The types of the labels determine to which production each

child belongs, but do not determine the set of children a production has, until

this point.

The function kn takes the semantic functions of the children, and the record

with their inputs, to compute a record with the results for each children.

class Kn (fcr :: [(Child ,Type)]) (prd :: Prod) where

type ICh fcr :: [(Child , [(Att ,Type)])]

type SCh fcr :: [(Child , [(Att ,Type)])]

kn :: Record fcr → ChAttsRec prd (ICh fcr)→ ChAttsRec prd (SCh fcr)

This dependent function is defined by induction over the first argument.

From the type of semantic functions all other types can be derived, in particular

we easily compute the indexed families ICh and SCh (inherited and synthesized

attributes of the children).

Finally, we can define the proper knit function:
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knit (ctx :: Proxy ctx )

(rule :: CRule ctx prd (SCh fc) ip (EmptiesR fc) ′[ ] (ICh fc) sp)

(fc :: Record fc)

(ip :: Attribution ip)

= let Fam ic sp = mkRule rule ctx (Fam sc ip) initFam

sc = kn fc ic

ec = empties fc

initFam = Fam ec emptyAtt

in sp

What we do, is to create an empty starting family (initFam) with the

empty children record created with empties and an empty attribution for the

parent. The function mkrule has type (CRule ctx prd sc ip ic sp ic ′ sp ′ →
Proxy ctx → Rule prd sc ip ic sp ic′ sp ′), context matters for printing

type errors, but the important information to understand this algorithm is

that the expression (mkRule rule ctx ) is a rule, i.e it has type with shape

(Fam prd sc ip → Fam prd ic sp → Fam prd ic ′ sp ′). Moreover, some of

those type variables are instantiated, and the expression further applied. The

next arguments are the input family and the initial family. The input family

is given by the expression (Fam sc ip). The inherited attributes of the parent

ip were of course given as a parameter. The synthesized of the children sc

are calculated applying kn. But note, that to apply kn we need the inherited

attributes for the children, wich are actually taken from the output family,

pattern matching on the result. The circularity of the definition should not

surprise any lazy functional programmer. Of course, this could lead to non-

terminating (and worse, non-productive) code. This will depend on how the

rules are built, and we do not consider it a misfeature, but a necessity if we

want a general system.

5.3.6.3 Implementation of terminals.

We implement the terminals of a grammar having a child that always contains

an unique inherited attribute of name "Ter". Note, for instance in the run-

ning example of Chapter 3 we had the following clause to define the semantic

function:
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semExpr asp (Val val)

= knitAspect pVal asp $ chV alval .=. semLit val

.∗. emptyGenRec

Recall chV alval was the child name for the terminal. The semLit function

builds the semantic function “pushing up” the value val (the terminal in the

AST). So, semLit is applied to a value to build a function from the empty

attribution (since terminals have no synthesized attributes) to the attribution

with the unique attribute "Ter" mapped to the value val .

We implement this with a typeclass with an unique instance:

class SemLit a where

semLit :: a → Attribution (′[ ] :: [(Att ,Type)])

→ Attribution [(‘Att "term" a, a)]

lit :: Label (‘Att "term" a)

instance SemLit a where

semLit a = (Label =. a) ∗. emptyAtt

lit = Label @ (‘Att "term" a)

The lit value is the label that references the terminal label.

5.3.7 Trace manipulation.

In this chapter we have already shown that types such as CRule or CAspect

carry context information that it is used in Require constraints to print domain-

specific type error messages. In Chapter 4 we shown how the functions

traceAspect and traceRule were provided to users of AspectAG to assist them in

debugging their definitions. Both functions traceRule and traceAspect are im-

plemented using the more general mapCRule (already used in Section 5.3.4 to

define syndefM and inhdefM ) and mapCAspect . Let us see how we implement

them.

The function mapCRule transforms the context of a rule using a function

that transforms contexts.

mapCRule :: (Proxy ctx → Proxy ctx ′)

→ CRule ctx ′ prd sc ip ic sp ic ′ sp ′

→ CRule ctx prd sc ip ic sp ic′ sp ′

mapCRule fctx (CRule frule) = CRule $ frule ◦ fctx
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Then, we can implement traceRule. It takes a proxy containing an error mes-

sage and a rule, returning a rule with the appended message.

traceRule ( :: Proxy (e :: ErrorMessage))

= mapCRule $ λ( :: Proxy ctx )→
Proxy @ (Text "- traceRule: " :�: e : ctx )

Note that no manipulation is done at the value level.

Perhaps surprisingly, note that the order of the contexts is inverted in the

rules with respect to the proxy arguments. This is not a mistake, in fact, the

type of the function traceRule is the following:

traceRule :: Proxy e

→ CRule ((‘Text "- traceRule: " ′ :<>: e) : ctx ) prd sc ip ic sp ic ′ sp ′

→ CRule ctx prd sc ip ic sp ic′ sp ′

What is going on here? When we apply traceRule we are actually pushing

type information into the type of the argument, instead of the return type.

This can be counterintuitive because one tends to think that information of

functions flows from the arguments to the computed values; and it is true.

However, here we use a type in the right of an (→) to compute the type in the

left, which is a different thing.

Why traceRule makes sense as it is can be more clear with an example.

Consider the following expression:

r = (traceRule (Proxy @ Msga) $ ra)

� (traceRule (Proxy @ Msgb) $ rb)

where ra, rb are suitable rules; and Msga, Msgb different error messages. Ap-

plications of traceRule add the messages Msga/Msgb to the context of ra/rb,

respectively, but the combined rules have the same context (remember that the

operator (�), defined in Section 5.3.3 combines rules with the same context).

Moreover, if we define the following rule:

r ′ = traceRule (Proxy @ Msgr) $ r

we are instantiating further the context of r , and so the contexts of rules ra

and rb! Suppose we use r ′ to build an aspect and use it as the argument of a

semantic function. If an error is raised due to a Require constraint introduced

by the rule ra, then we will see Msgr and Msga in the trace, while if an error
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is raised due to a Require constraint introduced by the rule rb, then we will

see Msgr and Msgb in the trace.

Moreover, the type of the context argument of r ′ will be such as:

Text "- traceRule: " :�: Msgr': ctx

which means ctx can be still instantiated further by new messages, in that case

adding information to the trace of r ′, and to the traces of ra and rb.

The function mapCAspect transforms the context of an aspect using a func-

tion that transforms contexts. However, aspects are implemented as a record

with rules, each one having a context attached. To show context information

added in applications of mapCAspect when a type error is raised by the use of

a rule in the aspect, we must add the type information to each rule. So, just

as with the function mapCRule, the function mapCAspect resembles a usual

map function in the functional programming jargon, though this time being a

recursive traversal.

In Figure 5.16 we implement the auxiliar function MapCtxAsp, and then

we can implement mapCAspect :

mapCAspect fctx (CAspect fasp) = CAspect $ mapCtxRec fctx ◦ fasp ◦ fctx

Finally, traceAspect can be given as:

traceAspect ( :: Proxy (e :: ErrorMessage))

= mapCAspect $ λ( :: Proxy ctx )→
Proxy @ ((Text "- traceAspect: " :�: e) : ctx )

5.3.8 Polymorphism.

In Section 3.5 we discussed how to implement polymorphic languages us-

ing AspectAG. We can define polymorphic attributes and polymorphic non-

terminals. When using them, we endow semantics (rules and aspects) with

a proxy argument holding in its type the polymorphic variables we are con-

sidering. Then, we apply that type variable to occurrences of polymorphic

attributes and non-terminals. Both attributes and non-terminals could be

polymorphic in more than one type variable, in that case, the used proxy

could store a tuple with all the variables on discourse, or we could use more

than one proxy argument. However, an idiom we are going to use is having
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class MapCtxAsp (r :: [(Prod ,Type)]) (ctx :: [ErrorMessage ])
(ctx ′ :: [ErrorMessage ]) where

type ResMapCtx r ctx ctx ′ :: [(Prod ,Type)]
mapCtxRec :: (Proxy ctx → Proxy ctx ′)

→ Aspect r → Aspect (ResMapCtx r ctx ctx ′)

instance MapCtxAsp (′[ ] :: [(Prod ,Type)]) ctx ctx ′ where
type ResMapCtx (′[ ] :: [(Prod ,Type)]) ctx ctx ′ = ′[ ]
mapCtxRec EmptyRec = EmptyRec

instance
(MapCtxAsp r ctx ctx ′)
⇒

MapCtxAsp (′(l ,CRule ctx ′ prd sc ip ic sp ic ′ sp ′)': r) ctx ctx ′ where
type ResMapCtx (′(l ,CRule ctx ′ prd sc ip ic sp ic ′ sp ′)': r) ctx ctx ′

= ′( l ,CRule ctx prd sc ip ic sp ic′ sp ′)': ResMapCtx r ctx ctx ′

mapCtxRec fctx (ConsRec (TagField c l r) rs)
= (ConsRec (TagField c l (mapCRule fctx r)) (mapCtxRec fctx rs))

Figure 5.16: Context mapping over an Aspect.

only one polymorphic argument and making all other types dependent on it

using functional dependencies. This simplifies the task though leads to some

code duplication. We will see this in detail in Chapter 6.

The use of polymorphism within AspectAG does not require to implement

substantial new source code. The introduction of polymorphism is a matter of

the pragmatics of the EDSL and how do we take advantage of the features of

the host language. Anyway, some commonly used combinators are provided.

For instance, in Chapter 3 we used ‘extP ‘, defined as follows:

extP l r = λ(p :: Proxy p)→ l p � r p

The function ‘extP ‘ is the counterpart of (�) (or ext , hence its name). Similarly,

we can define the corresponding counterparts for (/), (./), or (.).

What must concern us is whether what we have achieved in terms of error

messages, as shown in Chapter 4 is not broken by the presence of polymorphic

variables. We will show that everything keeps working, as long as we stick to

the pragmatics.

Two things could go wrong in the presence of polymorphic values. The first

is that error messages could be displayed with ‘noise’ because GHC might not
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know how to print them. The second, arguably more serious, would be that

those type families related with the machinery of the requirements library

get stuck, leading to unsolved constraints that would be displayed instead of

producing the readable error messages we programmed.

For instance, consider the following incorrect implementation of a rule for

the expression language we introduced in Chapter 3. We mistakenly referred

to the production pVal (that was a production of the non-polymorphic version

of the language, different from pV alP that would be the correct one to use):

val evalP ′ = λ(Proxy :: Proxy v)→
syndefM (evalP @ v) pVal (ter (chValPval

@ v))

The following error message is printed:

. Error:

Child val of producion (ValP of Non-Terminal Expr)

/= Child val of producion (Val of Non-Terminal Expr)

trace: - syndef: definition of attribute (evalP:v)

in production (Val of Non-Terminal Expr)

Note how the polymorphic variable was printed. That behavior of the

type families used to show types such as ShowType prevents that garbage is

displayed. The expression ShowType v is printed as "v". So our first concern

is not an issue at all.

Now let us analyze our second concern. There are two types of con-

straints introduced by syndefM . On the one hand, those constraints controlling

whether the rule is legal (the type of the resulting computation must be equal

to the type of the attribute, and children referred must belong to the declared

production). On the other hand, those constraints referring to the properties

of the AG (requirements about records). The former ones report errors in the

proper definition of the rule, while the latter ones generate a laying constraint

that will be solved when more context is known, such as in applications of

semantic functions.

The constraints of the first type are equality constraints (see Section 5.3.4.1

where the type family Syndef was defined). Type equality in Haskell works

well with polymorphic values, in the sense that constraints such as T a ∼ T a

are satisfied, as expected. In our experience, most of the time polymorphic
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rules do not leave those constraints unsolved (whether if the rule compiles or

if a type error is raised).

There are some corner cases where we can achieve unsolved constraints

in those requirements that were solved in the monomorphic definitions. For

instance given a type family F we can write the following rule:

add evalP = λ(Proxy :: Proxy v)→
syndefM (evalP @ v) pAdd

$ add

<$> at chAddl (evalP @ (F v))

~ at chAddr (evalP @ v)

The introduced constraint, (RequireEqWithMsg v (F v) AttTypeMatch ctx )

reduces to (v ∼ F v), that is unsolved until we know more about v (at least

in the most general case, since (F v) could actually reduce to v !).

So, add evalP type checks, even when it could fail for any concrete instance

of v , while a non-polymorphic version of the rule would not. Either way, in this

worst-case the type errors are just being deferred. Once we apply a semantic

function, polymorphic variables are instantiated. Following the example of the

expression language, recall the following definition:

evaluator exp envi =

semExpr (aspsem (Proxy @ Integer)) exp

((envP @ Integer) =. envi ∗. emptyAtt) #. (eval @ Integer)

At this point v is instantiated (with Integer) so stucked constraints will reduce.

For constraints of the second type (those about records), they will also be

solved in this semantic function application. Note that all polymorphic values

are applied to concrete types, so the types in the constraints of aspsem will be

instantiated.

However, we could write an evaluator polymorphic in v . In that case,

it will have a type with laying unsolved constraints. We can even apply it

to polymorphic ASTs. However, eventually, if we want to use the defined

semantics, polymorphic variables must be instantiated and then constraints

will be solved, and existing type errors will be raised.

In conclusion, in the worst cases, the type errors we programmed are just

deferred. This means they could be thrown in a different location of the source

code, but in that case, the traces come into play to help users.
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This is true as long as users stick to the pragmatics we defined, this is,

instantiating polymorphic labels. For instance, the following function:

evaluator exp envi =

semExpr (aspsem Proxy) exp

(envP =. envi ∗. emptyAtt) #. eval

generates a ‘bad’ type error (402 lines of size) reporting unsatisfied constraints.

It starts as follows:

. Could not deduce: Data.Type.Require.ReqR

(Data.GenRec.OpLookup’

’EQ

(Language.Grammars.AspectAG.RecordInstances.ChiReco

(’Prd "Val" Nt_Expr))

(’Chi "Val_val" P_Val (’Right (’T v1)))

’[ ’( ’Chi "Val_val" P_Val (’Right (’T v3)),

’[ ’( ’Att "term" v3, v3)])])

~ Language.Grammars.AspectAG.RecordInstances.Attribution r0

.......

The problem is that the compiler has no way to relate some of the many

occurrences of polymorphic variables. In this case, the type variable of a

looked-up polymorphic terminal cannot be unified to the type variable of the

child in the children’s record. The application of OpLookup is stuck, so is ReqR,

so we never get near to evaluating the logic implemented in the requirements

library.

5.3.9 Performance issues and Optimizations.

AspectAG behaved fine in the tests we performed during development. How-

ever, when implementing a bigger example (see Chapter 6) we had a blow-up

in compilation time and space, apparently exponential (though we cannot as-

sert it rigorously from a limited amount of empirical tests). Time and space

grew in terms of the number of productions considered in the language.

More precisely, performance issues happen when combining big aspects.

Our conjecture is that the constraint solver of GHC is the bottleneck since

algorithms manipulating records are trivially polynomial. Recall that poly-

morphic variables appear everywhere, for instance in the type of families.
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Unfortunately, at least to our knowledge, there are no good tools to perform

profiling of compilation, so understanding this issue better is left as future

work. But the good news is that we can drastically improve the performance

by doing a simple optimization.

Combining all rules of a grammar in an aspect, while handy, is completely

unnecessary. The function knit uses only the combined rule for the correspond-

ing production. In other words, when building aspects we build a record of

rules just to extract the individual rules later.

The optimization we propose is to use a non-extensible Haskell record (ba-

sically a sum type, a tuple) to store rules instead of an extensible record.

This kind of optimization was already discussed within old versions of the

library [Viera et al., 2012].

For instance, consider a language like the one shown in Chapter 3. There

are three productions represented by labels pAdd, pVal and pVar . We had rules

addeval , vareval , valeval , addenvl and addenvr (their names suggest for which pro-

ducions they encode semantics). The following expression denotes the com-

bined aspect:

aspeval = addeval / vareval / valeval / addenvl / addenvr / emptyAspect

Instead of defining aspeval , we could define the following data type:

data Sem add var val = Sem add var val

and then the following value:

asp eval ′ = Sem (addeval � addenvl .+, addenvr )

(vareval)

(valeval)

The expression asp eval ′ works as an alternative to the aspects we defined as

a record instance, once we use the following alternative semantic function:
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Figure 5.17: Time performance comparison among default and optimized aspects.

semExpr asp @ (Sem add var val) (Add l r)

= knit Proxy pAdd add $ chAddl .=. semExpr asp l

.∗. chAddr .=. semExpr asp r

.∗. emptyGenRec

semExpr asp @ (Sem add var val) (Var var)

= knit Proxy pVar var $ chV arvar .=. semLit var

.∗. emptyGenRec

semExpr asp @ (Sem add var val) (Val val)

= knit Proxy pVal val $ chV alval .=. semLit val

.∗. emptyGenRec

In figures 5.17 and 5.18 we compare the performance of the implementa-

tions. The language used is a variation of a lambda calculus (The Core lan-

guage defined in Chapter 6) where we added different recursive productions to

make bigger and bigger versions of the language. With the extensible records,

it was impossible to handle more than 11 productions without running out of
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Figure 5.18: Memory performance comparison among default and optimized as-
pects.
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memory 6. With the optimized implementation, the memory usage is minimal,

while times grow acceptably.

The use of a fixed data type to store semantics is honestly a step backwards

in terms of modularity. For instance, if we extend the language with a new

production we must define a new data type, for instance as follows:

data SemExt add var val call = Sem add var val call

Still, semantics defined with the data type Sem can be extended with simple

functions such as the following:

extSem (Sem add var val) call = SemExt add var val call

Moreover, we can use a similar set of combinatios as those we used with aspects:

(Sem add var val) ././ (Sem add ′ var ′ val ′) =

Sem (add � add ′) (var � var ′) (val � val ′)

We could even reuse the symbol (./) with a suitable abstraction using a type-

class. But the bad thing is that to define extSem and (././) we need to provide

new code for each new defined language, while before we had the general

combinators working in all cases. However, the process could be automatized.

If the forested approach was used we were already doing the same thing for

semantic functions and reification of data types, so we did not lose that much.

Another issue is that Sem and SemExt , as defined, do not enforce that

their fields are actually rules, abeit this can be easily fixed. We did not care

too much because the type of the semantic function will assert that.

5.3.10 Comparison with previous implementations.

There are many AG implementations available. Some of them are imple-

mented as standalone compilers or generators. For instance LRC [Saraiva,

2002], UUAGC [Swierstra et al., 1999], LISA [Mernik and Žumer, 2005], Jas-

tAdd [Ekman and Hedin, 2007] or Silver [Van Wyk et al., 2010].

Other systems are embedded in languages like Haskell ( [de Moor et al.,

1999,de Moor et al., 2000,Viera et al., 2009,Viera et al., 2018,Martins et al.,

2013,Balestrieri, 2015]).

6 Tests were performed in a laptop computer equipped with an 8-core CPU Intel® CoreTM

i7-1065G7 at 1.30GHz, with 8 GB of RAM memory.
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The original implementation of AspectAG was introduced more than a

decade ago [Viera et al., 2009]. The previous attempts at incorporating AGs

as an EDSL in higher-order lazy functional languages always used some form

of extensible records. The way that AspectAG represents grammars (using

records, families, rules, semantic functions based on the knit function and so)

was already implemented in [de Moor et al., 2000]. Their approach lacked of

many static checks. In [de Moor et al., 1999] a safer, similar idea is imple-

mented. However, they used a host language with built-in extensible records,

and implemented a set of combinators to encode record positions explicitly,

leading to a first-class, less flexible system.

AspectAG removed the need for built-in extensible records (as long as some

GHC extensions were available), and achieved at the same time an extensible,

first-class system while ensuring static properties.

There were two big drawbacks that we tackled in the reimplementation:

kind safety and error messages. In the state of the art of GHC extension

ecosystem when the original implementation was released, the type system

used at kind level had only the kind ‘∗’ (latter referred to as Type), and arrows.

This makes the system almost untyped at type level.

In Figure 5.19 we show an implementation of a simple AG (binary trees

and rules to compute the addition of all values) in the old system. There

are many differences with respect to what we have introduced in the new

implementation, but the definition should be familiar to the reader.

The introduced labels are just brand new types. There is no way to discrim-

inate between labels representing non-terminals, productions, children (we only

know the type is a pair) or attributes. Moreover, there is no way to separate

them from other types such as Int or Char . This is also true for the implemen-

tation of records the library use. Heterogeneous collections like records were

essentially nested pairs.

While all that freedom on the kinds can lead to somewhat questionable im-

plementations, for instance, by using labels with controversial criteria7, some

static checks are performed. The occurrences of functions such as (#) intro-

duce constraints over the argument record that will need to be solved when

applying the semantic functions to aspects as in the function sum. The issue is

7 For instance, consider a well-defined program implemented using an AG. Then, swap all
occurrences of two labels, even if they are different types of labels like an attribute and a

production. The program will still work.
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data Nt Tree

data P Leaf ; p Leaf = proxy :: Proxy P Leaf
data P Node; p Node = proxy :: Proxy P Node

data Ch l ; chl = proxy :: Proxy (Ch l , Nt Tree)
data Ch r ; chr = proxy :: Proxy (Ch r ,Nt Tree)
data Ch i ; ch i = proxy :: Proxy (Ch i , Int)

data Tree = Node Tree Tree | Leaf Int

sem Tree asp (Node l r)
= knit (asp # p Node) $ chl .=. sem Tree asp l

.∗. chr .=. sem Tree asp r

.∗. emptyRecord
sem Tree asp (Leaf i)

= knit (asp # p Leaf ) $ ch i .=. semLit i
.∗. emptyRecord

data Att sres; sres = proxy :: Proxy Att sres

node sres (Fam chi par)
= syndef sres (Node ((chi # chl) # sres) ((chi # chr) # sres))

leaf sres (Fam chi par)
= syndef sres (Leaf (chi # ch i))

asp sres = p Node .=. node sres .∗. p Leaf .=. leaf sres .∗. emptyRecord

sum t = sem Tree asp sres t emptyRecord #. sres

Figure 5.19: Grammar implementation in old versions of AspectAG.
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that when constraints do not solve, we get huge type errors reporting missing

instances that can have thousands of lines of length, instead of a domain-

specific type error.

In contrast, all data structures of the reimplementation of the library have

kind information that defines their intended use and restricts how they can be

combined. Thanks to data promotion information is just as expressive as what

we can have in usual types. We used labels as an example before but this is

true for any type of AspectAG. For instance, recall the following definition for

the type Fam:

data Fam (prd :: Prod) (c :: [(Child , [(Att ,Type)])]) (p :: [(Att ,Type)]) :: Type

where

Fam :: ChAttsRec prd c → Attribution p → Fam prd c p

The kind of the Fam type constructor is the following:

Fam :: Prod → [(Child , [(Att ,Type)])]→ [(Att ,Type)]→ Type

That means types of families must be built satisfying it, ensuring many prop-

erties. In comparison, the Fam type in the old implementation is just a pair.

The type (Fam Bool Char) was legal. Of course, if we managed to create a

value type (Fam Bool Char) and used it in a grammar, a type error would

occur somewhere. But now, instead of generating a huge error somewhere else,

we just forbid creating those types.

Once we have forbidden the construction of nonsense combinations of types

by the kind system, we were able to concentrate a relatively limited vari-

ety of possible structural errors of the domain. We caught them using the

requirements library.

The new information in types allows us to perform new checks related

to the structure of the domain. For instance, note that to define a rule in

the modern version of AspectAG we provided a production label. Its type

information was checked against the information of productions of children

in the rule definition. While that would be possible to implement in the old

version, it would only lead to another confusing type error reporting a missing

instance.

Unfortunately, we also found a disadvantage. The new version of the li-

brary introduces a performance penalty in runtime. In Figure 5.20 we show

a comparison between versions 0.3.1 (a release from 2012) and the current

implementation of AspectAG for solutions of the repmin [Bird, 1984] problem.
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Figure 5.20: Runtime performance comparison.

We detect a big linear overhead. This overhead is not surprising consid-

ering all the type constructors the pieces of the library have. Moreover, in

the implementation of terminals (see Section 5.3.6.3) we use a child that has

a trivial attribution with the attribute named "Ter". In old versions of the

library, since everything was unkinded, instead of having an attribution, chil-

dren were just paired with the terminal value. So, in the reimplementation, to

get a terminal we have a linear overhead in both time and space. To under-

stand how much impacts this, note that in a binary tree the number of leaves

is linear with respect to the tree size, so this means a linear overhead just to

traverse the tree.

The good news is that the issue is not fundamental. For instance, to im-

prove performance we could transform all the constructs of an AG to a simpler

(less safe) implementation, and then use it to do the actual computation. If the

transformation is ‘correct’ and users cannot manipulate the generated artifact,

we keep the type safety. This is left as future work.
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Chapter 6

Case Study: The Matefun

Language.

In this chapter, we show how to use the introduced techniques to implement

a prototype implementation of a real-world programming language.

The goal of this project is twofold:

1. To show how the AspectAG library (both the DSL combinators and its

pragmatics) is applied to solve the problems that arise when building a

full compiler implementation.

2. To get a proper modular implementation of MateFun to develop new

features later.

The goal of this chapter is not to show the full codebase of the compiler,

but to show how the techniques are applied to solve the problems that arise

when building a full implementation. So, for instance, we will try not to get

bogged down in the full implementation of some interfaces.

As done during this thesis, we will concentrate in the backend of compila-

tion, manipulating ASTs that we suppose already been given. In particular,

we do not discuss parsing, or concrete syntax in general, except when it is

strictly necessary.

6.1 Introduction to MateFun.

MateFun [Carboni et al., 2018] is a purely functional language. Syntax and

semantics of MateFun were thought to be a tool to express mathematics. The
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Figure 6.1: MateFun web interface.

current MateFun implementation has been used as a didactic tool in previous

projects [da Rosa et al., 2020a, da Rosa et al., 2020b, da Rosa et al., 2021].

MateFun ended up being used in ways that exceed the original expectations of

teaching the concept of function to secondary school students, and has been

a tool to introduce programming concepts to a broad mixture of audiences.

MateFun is constantly evolving considering the feedback given by its users,

such as high school or college students; math, physics, or informatics teachers.

MateFun has currently a reference implementation (written in Haskell) and

it is mainly used in a web integrated development environment (IDE)1. Figure

6.1 shows a screenshot of the IDE. Users can write and manage programs

files in the IDE, and then they evaluate expressions in a read-eval-print-loop

(REPL) console. Writing expressions and viewing the displayed result is the

only way to interact. No side effects can be performed in MateFun, including

input/output.

The syntax of MateFun is minimal and close to the usual mathematical

notation. Functions in MateFun are explicitly annotated with types. Types in

MateFun are called sets.

A MateFun script is a list of definitions of sets and functions over such

sets. Predefined sets such as R (representing real numbers) or Z (representing

integer numbers) are available as built-in constructs.

1 https://www.fing.edu.uy/proyectos/matefun
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Users can define new sets either by set comprehension or by extension just

as usually presented in mathematics courses. In the following example we

define the sets of natural numbers (N), non-zero real numbers (Rno0) and days

of the week (Day):

set N = { x in Z | x >= 0 }

set Rno0 = { x in R | x /= 0 }

set Day = { Mon, Tue, Wed, Thu, Fri, Sat, Sun }

Sets such as Rno0, defined by comprehension, take an existing set (R in

this case) and refine it with a predicate. Predicates can be built by relational

operators and from other predicates by conjunctions.

In type theory, types such as Rno0, that are endowed with a predicate over

its inhabitants are called refinement types [Freeman and Pfenning, 1991].

Sets defined by extension introduce a set of constructors, which are always

0-ary. These are the only ways to define data types, in particular, note that

there is no way to define recursive data types in MateFun.

Functions are defined by giving a signature and a definition. For instance,

one could define the inverse function over the non-zero real numbers:

inv :: Rno0 -> R

inv (x) = 1/x

MateFun supports some of the idioms used to define functions in mathemat-

ics. For instance, piecewise-defined functions can be given2, while, unlike most

functional languages, general pattern matching or conditional expressions are

not supported. The following MateFun definition specifies the absolute value

function over the real numbers:

abs :: R -> R

abs (x) = x if x >= 0

or -x

This program resembles the definition in the usual mathematical notation given

2 https://en.wikipedia.org/wiki/Piecewise.
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by:

abs : R→ R

abs(x) =

x if x > 0

−x otherwise

Functions with multiple variables can be defined using n-tuples (Cartesian

products). Pattern matching is only allowed in tuple arguments. No other

form of pattern matching exists in MateFun. A projection operator (!) is

provided to destruct tuples (for instance, t ! 1 denotes the first component of

t). The following function computes the area of a rectangle, given its width

and height:

rectArea :: R X R -> R

rectArea (h, w) = h * w

Alternatively, it can be written as:

rectArea :: R X R -> R

rectArea (r) = r!1 * r!2

MateFun implements a form of subtyping and overloading. Integer numbers

can be implicitly used as real numbers, while arithmetic operations can be used

(and are closed) in both base sets.

In addition to reals, integers, enumerations and tuples, MateFun provides

sequences. The sequence set A* is defined for any set A. The empty sequence

is given by the value [], while a:as is a sequence whenever a∈A and as∈A*.

Built-in functions such as head and tail are given to destruct sequences.

Subtyping is extended to those sets. Whenever A is a subtype of B, A* is a

subtype of B*.

The language also includes the primitive sets Fig to represent figures and

Color to represent colors. Primitive functions to create and transform figures

and colors is given. For example, the following function returns a red-coloured

circle of a given radius, centred in the (0, 0) point of a Cartesian plane.

redCirc :: R -> Fig

redCirc (r) = color(circ(r), Red)
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In MateFun, animations are sequences of figures. The following function

takes a figure and a number n of steps, and returns an animation in which the

figure is moved n times one unit to the right on the x-axis:

moveRight :: Fig X Z -> Fig*

moveRight (f, n)

= [] if n == 0

or f : moveRight(move(f, (1, 0)), n - 1)

Note how the definition is recursively defined.

When values of type Fig/Fig* are evaluated in the console, figures/anima-

tions are displayed in a tab of the web IDE.

MateFun has an ambitious property: it has functions in the mathematical

sense (total), and a type system based in mathematical sets, with no restriction

on how to build functions. Of course, an ideal type system ensuring those

properties statically is undecidable.

In order to handle this, the philosophy of MateFun is making an effort to to

statically typecheck what is possible, and leaving what it cannot for dynamic

typing.

A first approach is to perform statica type checking considering only the

base types, where MateFun is simple-typed, and then dynamically check the

predicates introduced in the refinement types. In the reference implementation,

there have been experiments extending the static typechecking with heuristics

using SMT solvers [de Moura and Bjørner, 2008, Biere et al., 2009]. A long-

term goal of MateFun developers is to formalize the type system and push the

boundaries of what is statically checked.

6.2 Designing an implementation.

From our experience using MateFun in practice, we discovered a desirable

property of the implementation is modularity. Inspired by GHC extensions,

our goal is to have a set of language features that can be added or removed

depending on the target user (for instance, by using flags). In some sense, in

this approach, we do not implement one language, but a family of languages.

We define the language incrementally, starting from simpler subsets. Let

us refer as the “full-featured” MateFun to the language described in Section
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6.1. Without being exhaustive, we consider some reasons why we think this

kind of modularity is needed:

• The full-featured MateFun language uses real numbers. Any approach

implementing them has its drawbacks. The reference implementation

has used fixed-point and floating-point numbers in different iterations

of its development. There are, of course, representation issues in both

approaches. While it can be considered interesting to introduce rep-

resentation issues to users, some school teachers using the language in

their courses requested a “more precise” computation. While the request

sometimes involved things impossible to accomplish, we think it is a good

idea to have available, for instance, symbolic computation, so values such

as 4π can be manipulated without introducing errors.

• The full-featured MateFun requires types to be annotated in every func-

tion declaration. While this was desirable when the language was de-

signed to teach mathematical functions, where the domain and the

codomain are an explicit part of the definition, this condition could be

lifted, for instance to use MateFun as a programable calculator without

too much boilerplate.

• The full-featured MateFun language implements refinement types, with

unconstrained predicates. A long-term goal of the implementation

project is to try to check as many static properties as possible. We can

take more conservative approaches or more eager ones (for instance using

SMT solvers). We consider it is sane that users can control if they want

to mess up with more eager and experimental approaches that might

imply non-termination or slow type checking, or if they prefer a more

conservative approach using dynamic checking of predicates.

• The implementation using the web interface uses figures and function

graphs. This feature could be disabled in a CLI-based implementation.

• Also related to the web interface, non-terminating programs are an issue

when using a client-server architecture. The reference implementation

bounds the number of reductions that can be performed by an evaluation.

The ability to configure this feature is desirable.

The flexibility in the possible variants of syntax and semantics of real num-

bers and the possibility to add or remove terminals such as figures tune in

well with the parametrization over terminals we have shown it is possible to
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implement with AspectAG. Terminals will satisfy interfaces that each concrete

implementation handles in a particular way. The implementation of that in-

terface is at the same time implementing operational semantics of MateFun.

In algebraic terms, terminals are specified by an algebraic structure. Each

concrete implementation of terminals is an algebra.

Let us set these ideas with a concrete example. Consider a MateFun version

with real numbers and integers. A concrete implementation could use floating-

point numbers and 32-bit integers, while other implementation could use some

implementation of symbolic reals and arbitrary precision integers.

Syntactically equal MateFun programs have different semantics in each

case. To model those we can think that the language is parametrized over an

algebraic structure M with a shape like the following:

M = (R,Z,

rz : R→ Z, zr : Z → R,

+Z : Z → Z → Z,

+R : R→ R→ R, · · · )

There we define the sets that represent reals and integers, and some con-

stants and operations. We can interpret a MateFun expression such as (1+1.5),

over an instance ofM, interpreting constants as members of R and Z and syn-

tax symbols with its corresponding functions in the algebra. So with a suitable

definition we can achieve the interpretation of that expression to be something

like “+R(zr(J1K), J1.5K)”.

Richer sets of terminals could require richer structures. For instance, we

add lists to the surface language, we probably want a richer structureM′ with

lists.

6.3 Architecture of the compiler.

As we stated before the goal of this implementation is twofold. We show how

AspectAG solves the expression problem in a real-world programming language

while we get the proper modular implementation of the MateFun language to
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develop new features in the future.

As a way to organize this developing and having a clear benchmark of

how modularity is gotten, we inspired us in the LDTA 2011 tool challenge3.

The challenge proposed a set of incremental sub-problems organized in a two-

dimensional space. One dimension defined a series of language levels, each one

adding new features. The other dimension consisted of language processing

tasks, such as parsing, pretty-printing, static analysis, optimizations and code

generation. Though we perfectly could, we do not translate exactly the same

levels and tasks to this case study, but adapt the idea to a set of tasks and

language levels we are interested in implementing as developers in the MateFun

project.

The original challenge used Oberon0, a subset of Oberon [Wirth, 1988] as

the language to implement. The original implementation of AspectAG was

used to solve the challenge [Viera and Swierstra, 2015].

In this chapter, we show that the same ideas can be applied to a functional

language and at the same time we show the power of the parametrization

over terminals to solve some subproblems without even touching the grammar

definition.

We define a set of language levels from L1 to L6, and a set of processing

tasks from T1 to T4. In Figure 6.2 they are summarized. Let us explain the

sub-problems further.

For language levels, we have:

(L1) An expression language. This is the language users can input in the

REPL, and also used as a construct to write functions. We take mod-

ularity seriously here, and reuse some of the constructs we used in the

running example of Chapter 3.

(L2) Untyped MateFun programs. They are lists of function definitions that

can be compiled individualy into environments to evaluate programs of

L1. L1 and L2 implement, in principle real numbers and naturals as the

data types to manipulate, but they will be abstract over terminals, so

we could use richer and poorer sets of terminal values.

(L3) Adds lists and enumerations. We do not need to touch AspectAG defini-

tions in this step, but just give an extended implementation of terminals.

We consider this an achievement of our system: it is so modular that we

3 http://ldta.info/tool.html
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L1 Expression language

L2 Programs

L3 Lists and enumerations

L4 Tuples

L5 Simple types

L6 Type definitions and refinements

T1 Pretty-printing

T2 Name binding

T3 Code generation

T4 Type checking

Figure 6.2: Organization of the implementation.

can extend languages without defining new syntax4.

(L4) Adds tuples (just pairs, to keep it simple). Apart from giving an ex-

tended implementation of terminals as in L3, here we extend the syntax

of expressions.

(L5) Adds simple types. Here we add the possibility -and obligation- to de-

clare the domain and codomain of functions.

(L6) Adds type definitions and refinements types. Here we provide the posi-

bility of declaring precise non-base types.

The processing tasks are the following:

(T1) Pretty-printing.

(T2) Name binding/analysis. Basically we need to control that no variable

occurs free.

(T3) Code generation to “Core”, an intermediate language we will define in

Section 6.5.

(T4) Static type checking5.

The combination of a language level and a processing task is called an

“artifact”. Any combination makes sense, though they vary in how useful

they are. For instance, the combination L1-T4 means we implement type

checking to an expression language that had, in principle no types. Type

checking for the expression language will make more sense once expressions

are a subset of richer languages L5 and L6. Still, once types are defined

(semantically, independently of how they are declared in the syntax) some

aspects related to typing can be computed for expressions independently from

any further language extension, like the inference of a least-general simple type

4 We refer to abstract syntax, of course. Concrete syntax is extended. 5 Dynamic checking
of refinements will be considered in T3.
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(like deciding if an expressions denotes an integer, or a real). So, just to help

the reader and having a simple organization in this document we will walk

from L1-T1 to L6-T4 lexicographically in the following chapters.

The implementation is available online6. Figure 6.3 shows the set of mod-

ules in charge of implementing each combination. Essentially, what we have is

a set of modules with qualified names of shape MF.Li.Tj (with more descrip-

tive names). Modules at the same height in the chart implement the same

task, while modules in the same column implement the same language. An

extra “task” we consider apart from L1-L4 is the definition of syntax (mod-

ules named MF.Li.Syn). There are more modules not shown in the Figure

6.3. The modules MF.Terminals.Values and MF.Terminals.Types define

the interfaces (as type classes) for terminal values. The modules MF.Core.Syn

and MF.Core.Eval define the syntax of the target language and an evalua-

tor for it, respectively. MF.Expr.Syn imports syntax defined in MF.Expr and

MF.ExprExt.Syn, modules used in the running example of Chapter 3. There is

yet another family of modules named MF.Li.Close, where we define functions

actually computing over ASTs (i.e. semantic function applications).

In general, modules depend on the syntax definition in their column, but

are otherwise independent among them. In the actual implementation we

introduced some dependencies to reduce the number of modules. For instance,

as we will see later with more detail, the pretty-printed program is computed

with a synthesized attribute spp. We define spp in MF.Expr.Syn (in the smaller

language, that is included in all other language levels), so then we include this

module in every module with the PP suffix. But note that attributes are just

names, so those dependencies could be lifted easily7.

The modules with Close suffix put all pieces together. We implement all

tasks in each one, so each one depends (directly or indirectly) in its corre-

sponding column and all ones at its left.

6 https://gitlab.fing.edu.uy/jpgarcia/tesis/AAGExample/MF
7 Remember that this is also true for syntax. We could implement modules so they do not
depend in syntax definitions (this would be cumbersome, and error-prone, though). More-
over, we could implement every module independently from each other and just importing

all definitions when putting everything together in the application of semantic functions.
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Figure 6.3: Modules implementing language level/task combinations.

6.4 Terminals.

Terminal values are very important in AspectAG because by parametrizing

over them we can concentrate semantics in the implementation of algebraic

structures, abstracting us from language constructs. Note that in this context,

values model computation, not just represent concrete syntax. They could also

have more information, for example, information about the source position

given by the parser that could be used to produce better error messages.

There are two types of terminal values in the simpler languages that we

will implement: operators and values. There will be also terminals for types in

the latter iterations. We show in this section how the interfaces for terminals

data types are defined.

We can implement all terminals in a single data type, and the compiler

(for instance, when parsing) could control if we are using operators or values

in each context. We prefer stronger types and implement one data type for

each type of terminal. In principle, this implies that abstract syntax trees will

be parametrized by two types, or by a pair of types. While it is possible to

implement this in AspectAG we decided to keep it simple and use only one

polymorphic parameter. To perform this, we relate each implementation of

operators and types by a functional dependency. The following is the interface

we use for implementations of MateFun’s terminals:
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class Values op v | op → v , v → op where

type Val2Op v :: ∗
ap :: op → v → v → v

cmp :: Ordering → v → v → Bool

mki :: Integer → v

While data types are trees, this double dependency encapsulates the idea

of a forest. The obvious disadvantage of this approach is that we cannot reuse

implementations of one data type for operators with a different counterpart

for values, or the converse. For instance, to extend our language with a new

operator, without adding any new value we would need to duplicate the data

type used for values. However, this is easily accomplished using a newtype

definition, and a common pattern even with one-parameter classes when we

want to implement more than one class instance (the typical example being

the two natural ways in which integers are a monoid).8.

The interface Values is simple. The method ap means that there is a way

to combine two values with an operator. Operators in our ASTs will be always

binary. A notable exception in the concrete syntax of MateFun is the minus

symbol used to write negative numbers. To avoid an extra production we will

not represent this unary operator in the ASTs of expressions. This can be

handled by the parser, for instance, desugaring expressions such as (−x ) to

(0 − x ). The method cmp implements comparison of values. The method

mki provides a way to create an integer value. This interface is an arbitrary

minimum we decided to require for a simple language of our family (a version

of the MateFun language with just integers). Note that this is more general

than the structure M we drafted in the previous section, since it does not

discriminate reals and integers. If programmers want to specify more details

of an algebra for terminals, we can always define a more specific class as a

subclass of Values .

Implementations of methods, notably op and cmp are not necessarily total.

For instance, in the full-featured MateFun language, we would have figure

values and the product operator, and those cannot be combined. The type

checker has the job of avoiding those operations in runtime. However, we also

implement untyped languages in this chapter; in that case, the semantics of

those operations are confined in the implementation of the instance of Values .

8 GHC language extensions such as GeneralizedNewtypeDeriving are useful in such cases,

to help programmers to reduce the boilerplate while defining new types
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We think this is a good design decision.

Finally, let us refer to the indexed type Val2Op. It works as a way to get

the corresponding operator type given a value type. So, the type of values is

the one we will pass in proxies, and we can get the data type for operators

whenever we need it.

One possible implementation for values and operators, for a language with

integers and reals (as we implement in L1) is the following:

data Op = Add | Times | Div | Minus

data Val = I Integer | R Double

The class instance has the following definition:

instance Values Op Val where

type Val2Op Val = Op

ap Add (I a) (I b) = I $ a + b

ap Add (R a) (R b) = R $ a + b

ap Add (R a) (I b) = R $ a + fromInteger b

ap Add (I a) (R b) = R $ fromInteger a + b

...

The implementation of the methods is simple. We ommit most here since it

does not offer any new insight. Arithmetic operators are overloaded so we can

combine reals and integers, wich leads to many patters in the implementation.

We decided to make the semantics of operators closed when we can. For in-

stance, the result of adding integers is an integer. This is the way the reference

implementation works.

Typed versions of MateFun are introduced as language levels L5 and L6.

Base types9 are not terminal symbols of the languages implemented in L1-

L4. Still, it makes sense to talk about types in any language level. In the

MateFun’s type system, given the types of free variables and functions occuring

in an expression we can infer if the expression is well-typed and in case it is,

its type. In L5 we just introduce a way to write the types of functions, but

given suitable environments with the type of the functions occurring withing

an expression we can implement a type checker already for L1.

The following type class implement the interface used for types:

9 Recall we used the term set in the MateFun jargon to refer to types. Here, in the imple-

mentation we just use the term type.
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class (Values op v)⇒ Types op v t | v → op t , t → v op, op → v t where

type Val2Type v :: ∗
typeOf :: v → Either String t

tyComb :: t → op → t → Either String t

join :: t → t → Either String t

isSubtype :: t → t → Bool

Given a pair of types op and v , the type t completes a triple. The return

types Either String t are used to model failures. If everything goes well a

type t is returned under the Right constructor, otherwise an error message

under the Left constructor. Of course, errors could be represented using more

information than just a string, but as said at the start of this chapter, the

goal of this implementation is to show techniques rather than losing us under

details.

The function typeOf computes the least-general base type of a value. For

instance, given a natural number value, typeOf returns that it is an integer,

instead of a real number. The function tyComb computes the resulting least-

general type of combining two types by using an operator. The function join

computes the union of two types (considering their semantics as sets, for in-

stance the union of the set of naturals and the set of reals numbers will be the

set of real numbers). The name “join” is inspired by the fact that the structure

of MateFun sets is a partially ordered set (using the inclusion relation as the

corresponding order). The function isSubtype is a predicate deciding whether

if one type is a subtype of another (in the semantics, whether if a MateFun

set is a subset of another). Again we have an indexed family, Val2Type that

is used to get a type for types from a type for values, so we can use the latter

always as the proxy we pass in polymorphic grammars.

An initial implementation of a data type for types, representing just inte-

gers and reals is the following:

data Ty =

TyR | TyZ

Then, we can give an implementation of the type class Types10:

10 Note that in this implementation we make all operators closed. This means that, to make
sense, the operator Div should denote an integer division when two integer arguments are

applied.
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instance Types Op Val Ty where

type Val2Type Val = Ty

typeOf (I ) = Right TyZ

typeOf (R ) = Right TyR

tyComb TyZ TyZ = Right TyZ

tyComb = Right TyR

join TyZ TyZ = Right TyZ

join = Right TyR

isSubtype TyZ = True

isSubtype = False

6.5 A Core Language.

The backend of compilation (such as generating machine code) is out of the

scope of this thesis. Before dealing with the modular implementation of the

surface language, we design an intermediate language to use as the target

of our compiler. Operational semantics for evaluation is implemented in the

intermediate language using Haskell as host. We call this language “Core

MateFun” or just “Core”. The “Core” name is inspired by the name of GHC’s

intermediate language.

The main idea behind this design decision is making available a fixed and

closed language to use as the interface between the family of MateFun versions

and low-level manipulation of compiled programs. We can, in the future,

design different implementations of the core evaluation (for instance, pursuing

efficiency). We can perform optimizations, or store precompiled programs,

for instance. All this could be performed by using AspectAG, or with other

approaches.

The Core language must to be simple, otherwise we just would manipulate

the source language. At the same time, the Core language must be powerful

enough to encode any feature we can develop in the surface language levels. We

decided that the Core language is parametrized over the terminals, since they

encode the semantics of values, and untyped, since the most general versions

of MateFun are such.

The implemented Core language is an enriched version of a lambda calculus

[Barendregt, 1985]. The lambda calculus is Turing complete, so any feature
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$ (addNont "Core")

$ (addProd "Val" ′′Nt Core [("val",Ter ′′Poly)])

$ (addProd "Var" ′′Nt Core [("var",Ter ′′String)])

$ (addProd "Lam" ′′Nt Core [("binder",Ter ′′String),
("body", NonTer ′′Nt Core)])

$ (addProd "App" ′′Nt Core [("l",NonTer ′′Nt Core),
("r",NonTer ′′Nt Core)])

$ (addProd "Op" ′′Nt Core [("l", NonTer ′′Nt Core),
("op",Ter ′′Poly),
("r", NonTer ′′Nt Core)])

$ (addProd "Comp" ′′Nt Core [("l", NonTer ′′Nt Core),
("op",Ter ′′Ordering),
("r", NonTer ′′Nt Core)])

$ (addProd "CError" ′′Nt Core [("err",Ter ′′String)]

Figure 6.4: Core definition in AspectAG using splices.

can be encoded, while it is simple.

In Figures 6.4 and 6.5 we present two alternatives to implement in AspectAG

the grammar of the Core language. Both definitions are equivalent, in fact the

version written with splices in Figure 6.4, generates exactly the code in Figure

6.511. From now on, in this chapter we will define grammars by using splices.

The defined language can be synthesized in the following data type:

11 Modulo α-conversion of the variable names used in the polymorphic attributes.
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type NtCore = ‘NT "Core"

nt Core = Label @ NtCore

type PCOp = ‘Prd "COp" NtCore

pCOp = Label @ PCOp

chCOpr = Label @ (‘Chi "COp_l" PCOp (NonTerminal NtCore))
chCOpl = Label @ (‘Chi "COp_r" PCOp (NonTerminal NtCore))
chCOpop = Label :: ∀ op.Label (‘Chi "COp_op" PCOp (Terminal op))

type PCVal = ‘Prd "CVal" NtCore

pCVal = Label @ PCVal

chCValval = Label :: ∀ v .Label (‘Chi "CVal_val" PCVal (Terminal v))

type PCVar = ‘Prd "CVar" NtCore

pCVar = Label @ PCVar

chCVarvar = Label @ (‘Chi "CVar_var" PCVar (Terminal String))

type PCComp = ‘Prd "CComp" NtCore

pCComp = Label @ PCComp

chCCompr = Label @ (‘Chi "CComp_l" PCComp (NonTerminal NtCore))
chCCompl = Label @ (‘Chi "CComp_r" PCComp (NonTerminal NtCore))
chCCompop = Label @ (‘Chi "CComp_op" PCComp (Terminal Ordering))

type PCLam = ‘Prd "CLam" NtCore

pCLam = Label @ PCLam

chCLambinder
= Label @ (‘Chi "CLam_binder" PCLam (Terminal String))

chCLambody
= Label @ (‘Chi "CLam_body" PCLam (NonTerminal NtCore))

type PCApp = ‘Prd "CApp" NtCore

pCApp = Label @ PCApp

chCAppl = Label @ (‘Chi "CApp_l" PCApp (NonTerminal NtCore))
chCAppr = Label @ (‘Chi "CApp_r" PCApp (NonTerminal NtCore))

type PCError = ‘Prd "CError" NtCore

pCError = Label @ PCError

chCErrorerr = Label @ (‘Chi "CError_err" PCError (Terminal String))

Figure 6.5: Core definition in AspectAG.
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data CTerm op v = CVal v

| CVar String

| CLam String (CTerm op v)

| CApp (CTerm op v) (CTerm op v)

| COp (CTerm op v) op (CTerm op v)

| CComp (CTerm op v) Ordering (CTerm op v)

| CError String

While the Core language is parameterized over two types of terminals, oper-

ators, and values, we can use one parameter since op and v determine each

other. We will use one parameter in MateFun syntax, so both styles will be

shown in this document.

We introduced the constructors CVal for values, CVar for variables, CLam

for abstraction and CApp for application, following up a lambda calculus. COp

is natural as the way we have to combine terminals. CComp is introduced

since piecewise definitions of the surface language can have comparations in

conditions. In general, MateFun values are comparable at least by equality,

but we decided to not implement this in the Values interface. Finally, the

constructor CError represents runtime errors.

Note that there is no way to define function calls. We will use applica-

tions and variables for that purpose, combined with an environment mapping

variable names to terms with function definitions in scope.

Expressions introduced in the REPL will be compiled to Core, and evalu-

ated using a context with the program already compiled to Core. Core expres-

sions reduce into core expressions. We should, in principle always get a value

to print (under the CVal constructor), or an error, though this will depend in

the correctness of the compilation of the surface MateFun language.

Note that we can define the Core language formally using an EBNF nota-

tion:
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C →v

C →x

C →λx.C

C →C C

C →C �C

C →C4C

C →e

where V and O represent terminals (values and operators), S strings and S′

error messages12, and 4 ∈ {<,=, >}, � ∈ O, x ∈ S, e ∈ S′, v ∈ V. We

use a usual notational device based on the names introduced in this formal

definition: if t and u are any Core terms, we assume the following are Core

terms: v, x, λx.t, tu, t�u, t4u, and e; without specifying the domains of x,

�, triangle, e.

The induction principle over the Core language ensures that we can define

functions over the full language defining them for those cases. For instance,

the following definition is the identity function over Core terms:

id(v) :=v

id(x) :=x

id(λx.t) :=λx.id(t)

id(tu) :=id(t)id(u)

id(t�u) :=id(t)�id(u)

id(t4u) :=id(t)4id(u)

id(e) :=e

Coming again into the implementation, we also define sem CTerm, the

semantic function for the Core in the standard way (or we can get it with

a one-liner Template Haskell splice). Now that the grammar is encoded in

12 Also strings, but distinguishable from variable names.
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AspectAG we can start defining semantics for the Core language, for instance

the self 13 attribute and an aspect that computes it:

self :: ∀ v op.Values op v ⇒ Label (‘Att "self" (CTerm op v))

self = Label

asp Core id = λ(p :: Proxy v)→
syndefM (self @ v) pCOp (COp <$> at chCOpr (self @ v)

~ ter chCOpop

~ at chCOpl (self @ v))

/ syndefM (self @ v) pCComp (CComp <$> at chCCompr (self @ v)

~ ter chCCompop

~ at chCCompl (self @ v))

/ syndefM (self @ v) pCVal (CVal <$> ter chCValval )

/ syndefM (self @ v) pCVar (CVar <$> ter chCVarvar )

/ syndefM (self @ v) pCLam (CLam <$> ter chCLambinder

~ at chCLambody
(self @ v))

/ syndefM (self @ v) pCApp (CApp <$> at chCAppl (self @ v)

~ at chCAppr (self @ v))

/ syndefM (self @ v) pCError (CError <$> ter chCErrorerr )

/ emptyAspect

The following is a fancy way to implement the identity function for the Core

language:

cterm id :: Values op v ⇒ CTerm op v → CTerm op v

cterm id (e :: CTerm op v)

= sem CTerm (asp Core id (Proxy @ v)) e emptyAtt #. (self @ v)

Note that this implements exactly what we wrote in the definition of id. This is

actually a very inefficient way to implement the identity since we are consuming

a tree to generate a copy of it, but the semantics defined in asp Core id are

much more useful than that, as we will see later.

Another useful aspect we can encode is the one to pass an environment

top-down, the copy rule. We can use the advantages of AspectAG being an

embedded DSL to parametrize this pattern over any attribute, as follows:

13 In the AGs jargon the self attribute has the value of the subterm. In other words, it

computes the identity.
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asp Core env att =

inhdefM att pCOp chCOpr (at lhs att)

/ inhdefM att pCOp chCOpl (at lhs att)

/ inhdefM att pCComp chCCompr (at lhs att)

/ inhdefM att pCComp chCCompl (at lhs att)

/ inhdefM att pCLam chCLambody
(at lhs att)

/ inhdefM att pCApp chCAppl (at lhs att)

/ inhdefM att pCApp chCAppr (at lhs att)

/ emptyAspect

6.5.1 Core Evaluation.

While the main goal of the Core language is to detach us from the low-level

evaluation we will implement an evaluator for completeness.

There are many ways to efficiently compile a lambda calculus, like using

De Bruijn indices [de Bruijn, 1972] or higher-order abstract syntax [Pfenning

and Elliott, 1988]. We will not analyze any of them since it is out of our scope.

We implement an evaluator based on explicit substitutions. Usually, this is,

besides inefficient, considered complicated since capture-avoiding substitution

is non-trivial to implement. However, the terms of the Core language generated

from MateFun code should never have free variables (an error in the surface

language should be thrown before, for instance, in T2). This fact simplifies

the job, avoiding tedious tasks such as generating fresh variables for renaming.

6.5.1.1 Substitution.

We denote as t[x/u] to the substitution of the -free- occurences of x in t by

the term u. It can be defined as:
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v[x/u] :=v

y[x/u] :=y (when y 6= x)

x[x/u] :=u

(λx.t)[x/u] :=λx.t

(λx.t)[y/u] :=λx.t[y/u](when y 6= x)

(tu)[x/u] :=(t[x/u])(u[x := u])

(t�u)[x/u] :=(t[x/u])�(u[x/u])

(t4u)[x/u] :=(t[x/u])4(u[x/u])

e[x/u] :=e

To implement this function using AspectAG the natural approach is to pass

the context (the variable being substituted and the substitutee term) using

inherited attributes, and synthesizing the resulting expression.

We define the ivar inherited attribute to make the variable available:

ivar = Label @ (‘Att "ivar" String)

asp ivar = asp Core env ivar

To distribute the term we substitute by this variable, note that once the

substituted variable appears under the binder, no further transformation is

applied in the subexpression. So, we use an inherited attribute with a value of

type (Maybe (CTerm op v)). A Nothing means that we do not make further

substitutions14.

We define the attribute isubst :

isubst :: ∀ v op.Values op v

⇒ Label (‘Att "isubst" (Maybe (CTerm op v)))

isubst = Label

Note that its type is, of course polymorphic. For that reason, we will use a

Proxy argument when defining rules to have the type available. The semantics

for isubst are trivial in most productions: we just use the copy rule and modify

14 An alternative is to use a boolean attribute to mark if we must make further substitutions.

The “trick” saves us the need to use an extra attribute.
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the semantics at pCLam . In this production, if there is an abstraction binding

the variable we are substituting, we pass down a Nothing value. Otherwise we

keep what we had (perhaps already a Nothing when there is an outer binding

of the variable):

asp isubst = λ(Proxy :: Proxy v)→
inhmodM (isubst @ v) pCLam chCLambody

(

do t ← at lhs (isubst @ v)

x ← ter chCLambinder

x ′ ← at lhs ivar

if x == x ′ then return Nothing else return t

)

/ asp Core env (isubst @ v)

Finally, we need to compute the substituted term. As we can see in the

definition of t[x/u] we gave before, it is similar to the identity function in most

cases, except in the case of a variable and in the case of an abstraction. The

abstraction case was actually handled with the inherited attribute isubst , we

just need to handle variables.

We code te attribute asp subst modifying the aspect (asp Core id) that

we wrote for the attribute self , as follows:

asp subst = λ(Proxy :: Proxy v)→ (

synmodM (self @ v) pCVar (

do x ← at lhs ivar

x ′ ← ter chCVarvar

t ← at lhs (isubst @ v)

case t of

Nothing → return (CVar x ′)

Just t ′ → if x == x ′ then return t ′ else return (CVar x ′)

)

/ asp Core id (Proxy @ v))

And we are done.

The following function computes substitutions:
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subst :: Values op v ⇒
Proxy v → String → CTerm op v → CTerm op v → CTerm op v

subst (p :: Proxy v) x t e = sem CTerm (asp ivar ./ asp subst p

./ asp isubst p)

e (ivar .=. x .∗. isubst .=. Just t .∗. emptyAtt) #. (self @ v)

In this case we decided to require a Proxy argument to instantiate v easily

(and use as the argument of aspects asp subst and asp isubst), but we can

easily extract the proxy from a term of type CTerm op v .

6.5.1.2 β-reduction.

β-reduction is a relation on terms. We define it informally here for the Core lan-

guage, but it is extensively studied and formalized [Barendregt, 1985]. When

we apply an abstraction (i.e we have a term of shape (λx.t)u) it can be reduced

to t[x/u]. Moreover, any term can have subterms of this shape (what is called

a redex -reductible expression-), and we can swap a redex by its reduced form

in any subterm. This idea can be formalized by evaluation contexts, but we

will not do it here. A term with no redexes is in normal form.

The reduction relation for the Core language can be given as a calculus

like in Figure 6.6. We do not consider the error cases here, but we will in the

implementation.

We assume functions ap and cmp over sets V and O as their counterparts in

the class Values . We use some abuse of notation overloading v and w as terms

and members of V and O. In all cases each symbol belongs to the same domain

as in the Core definition given before. In the rule Call the symbol f is a string.

The context Γ is a function from names to Core terms. In the rules Cmpt

and Cmpf we reduce into #t and #f . Those are Church booleans [Jansen,

2013] defined as #t := λ“T”.λ“F”.“T” and #f := λ“T”.λ“F”.“F”. The Core

language has no builtin booleans and this is a nice example of how it is flexible

enough to implement new constructs. We will use uppercase variables when we

need binders to encode new constructs in the Core. Variables from compiled

MateFun are allways lowercase. This will avoid name clashes.

The reduction defined by this set of rules is called parallel reduction in the

literature. It can potentially reduce many redexes at the same time. It can

be proved that the transitive closure of that relation is equal to the transitive

closure of β-reduction with one redex at a time. Since for evaluation we are
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Γ ` t �β t′ Γ ` u �β u′
App

Γ ` tu �β t′u′

Γ ` t �β t′ Γ ` u �β u′
Op

Γ ` t�u �β t′�u′

Γ ` t �β t′ Γ ` u �β u′
Cmp

Γ ` t4u �β t′4u′

Γ ` t �β t′
Lam

Γ ` λx.t �β λx.t′

β

Γ ` (λx.t)u �β t[x/u]

f ∈ Γ Γ(f) = t
Call

Γ ` fu �β tu

v ∈ V w ∈ V
Op2

Γ ` v�w �β ap(�, v, w)

v ∈ V w ∈ V cmp(4, v, w) ≡ True
Cmpt

Γ ` v4w �β #t

v ∈ V w ∈ V cmp(4, v, w) ≡ False
Cmpf

Γ ` v4w �β #f

Figure 6.6: Rules for Core reduction.

interested in getting a normal form, both definitions are equivalent for our

purposes.

Now, let us implement this reduction relation in AspectAG. Let us define

the attribute for the function environment and an aspect that encapsulates its

semantics:

fenv :: ∀ v op.Label (‘Att "fenv" (M .Map String (CTerm op v)))

fenv = Label

asp Core fenv = λ(Proxy :: Proxy v)→ asp Core env (fenv @ v)

And an attribute for reduction:

redu :: ∀ v op.Values op v ⇒ Label (‘Att "redu" (CTerm op v))

redu = Label

The definition for its semantics is given in Figure 6.7 with the definition of

asp redu, being a direct translation of what we defined in Figure 6.6. The main

difference is that we consider error cases in all types of applications (proper

applications, operators and comparissons), propagating the error messages.
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asp redu = λ(p :: Proxy v)→
syndefM (redu @ v) pCVal (CVal <$> ter chCValval )

/ syndefM (redu @ v) pCVar (CVar <$> ter chCVarvar )
/ syndefM (redu @ v) pCLam (CLam <$> ter chCLambinder

~ at chCLambody
(redu @ v))

/ syndefM (redu @ v) pCApp (do
l ← at chCAppl (self @ v)
l ′ ← at chCAppl (redu @ v)
r ← at chCAppr (self @ v)
r ′ ← at chCAppr (redu @ v)
fe ← at lhs (fenv @ v)
case l of

CLam x t → return $ subst p x r t
CVar x → case M .lookup x fe of

Just f → return $ CApp f r
Nothing → return $ CApp l r

CError e → return $ CError e
→ return $ CApp l ′ r ′

)
/ syndefM (redu @ v) pCOp (do

l ← at chCOpr (redu @ v)
r ← at chCOpl (redu @ v)
op ← ter chCOpop

case (l , r) of
(CVal l ′, CVal r ′)→ return (CVal $ ap op l ′ r ′)
(CError e, ) → return $ CError e
( ,CError e) → return $ CError e
(l , r) → return $ COp l op r

)
/ syndefM (redu @ v) pCComp (do

l ← at chCCompr (redu @ v)
r ← at chCCompl (redu @ v)
op ← ter chCCompop

case (l , r) of
(CVal l ′,CVal r ′)→
case cmp op l ′ r ′ of

True → return (CLam "T" (CLam "F" (CVar "T")))
False → return (CLam "T" (CLam "F" (CVar "F")))

(CError e, ) → return $ CError e
( ,CError e) → return $ CError e

→ return (CComp l op r)
)

/ syndefM (redu @ v) pCError (CError <$> ter chCErrorerr )
/ emptyAspect

Figure 6.7: Semantics for parallell reduction in AspectAG.
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Finally, we can define functions such as step to perform a parallel reduction,

and reduce to compute a normal form:

step :: ∀ op v .Values op v ⇒
M .Map String (CTerm op v)→ CTerm op v → CTerm op v

step funs expr = sem CTerm ( asp redu (Proxy @ v)

./ asp Core fenv (Proxy @ v)

./ asp Core id (Proxy @ v))

expr (fenv .=. funs .∗. emptyAtt) #. (redu @ v)

reduce :: (Eq op,Eq v ,Values op v)⇒
M .Map String (CTerm op v)→ CTerm op v → CTerm op v

reduce e ex =

let ex ′ = step e ex

in if ex == ex ′ then ex else reduce e ex ′

We were sloppy in the definition of the function reduce, comparing the resulting

expressions to detect if we got a normal form. This can be easily improved,

for instance, by tracking if the expression changed when computing asp redu.

However, remember that the goal of this evaluaor is to use it to test our

development. For these purposes this is more than enough.

6.6 L1 - MateFun expressions.

It is time to go through the implementation of language levels. L1 is the

expression language of MateFun. In MateFun, expressions are used as the

input in the REPL and in the definition of functions.

Since there is no way to globally bind variables in MateFun programs15,

variables are not used in the language of the REPL. So we could define two

different language levels for expressions. However, this does not offer new

insight according to the goals of this document. Also note that once defined

L1 including variables, we can just implement the parser of REPL expressions

to just not recognize variables. Also, a natural future extension of MateFun is

to add the ability to define variables, so it makes sense also as a design decision

to define the language expression once.

15 A common idiom in MateFun programs is to define a unit type (it can be done with an
enumeration, or latter versions introduce it built-in) and model constants with functions

with the unit domain.
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$ (addNont "Expr")
$ (addProd "Var" ′′Nt Expr [("var",Ter ′′String)])
$ (addProd "Val" ′′Nt Expr [("val",Ter ′′Poly)])
$ (addProd "Op" ′′Nt Expr [("l", NonTer ′′Nt Expr),

("op", Ter ′′Poly),
("r", NonTer ′′Nt Expr)])

$ (addProd "Call" ′′Nt Expr [("fun",Ter ′′String),
("arg",NonTer ′′Nt Expr)])

Figure 6.8: Expression language syntax.

6.6.1 Syntax definition.

MateFun expressions can be variables, values, applications of operators and

function calls. The following EBNF grammar defines this language:

Expr →v

Expr →x

Expr →Expr � Expr

Expr →f(Expr)

where V denotes the set of values, O the set of operators, and S the set of

identifiers, and v ∈ V, x, f ∈ S, and � ∈ O.

As a demonstration of how modular AspectAG is, in the implementation

we reused parts of the code of the running example of Chapter 3. We used the

non-terminal NtExpr and the productions for variables defined in Expr.Syn,

and function calls implemented in ExprExt.Syn. Just to have this chapter

self-contained we show all definitions in Figure 6.8.

We also define semExpr, the semantic function. While the expression lan-

guage has only four productions, it will be part of a bigger language, so to

avoid performance issues we will pack semantics in a non-extensible record.

We just define a polymorphic tuple SemExpr as follows.

147



data SemExpr var val op call

= SemExpr {gvar :: var ,

gval :: val ,

gop :: op,

gcall :: call }

We will keep a convention we have used previously: when defining semantics

for an attribute att at the production prd , we will call the defined rule as

‘att prd’, uncapitalized.

As always, we can reify the syntax definition to build an ordinary Haskell

data to represent expressions, as follows:

data Expr v = Var String

| Val v

| Op (Expr v) (Val2Op v) (Expr v)

| Call String (Expr v)

We used the indexed family Val2Op. Doing things this way the data type

Expr is parametrized by only one polymorphic argument. As we have seen

in the Core implementation we can put any number of arguments in this

datatype, but having many makes it difficult to automatize the generation

using Template Haskell.

6.6.2 T1 - Pretty-printing.

A näıve pretty-printer is simple to implement, while it gets challenging if we

take seriously the quality of the printed code, for instance, taking indentation

into account.

At least, it is important that the printed code is semantically equivalent

to the abstract syntax being printed, which means adding brackets when they

are necessary. The simplest approach is to add brackets everywhere, but in

that case the quality of the generated code is not good.

There are two factors to take into account to avoid redundant brackets

in an expression language: operator precedence and associativity [Ramsey,

1998]. The former is obvious while the latter applies in successive applications

of operators with the same precedence value.

We advisedly took precedence out of the Values interface to avoid dealing

with concrete syntax there, giving the interface a semantic imprint. However,
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type classes are flexible to solve this issue since we can extend them. If we

want to pretty print values, we can use the following interface:

class (Values op v)⇒ PPValues op v | v → op, op → v where

opProperties :: op → (TAssoc, Int)

data TAssoc = RightAssoc | LeftAssoc | NonAssoc

An operator has associativity and precedence values. The higher the prece-

dence value, the tighter the operator “binds”. When printing an expression

we decide if we put brackets in subexpressions depending on the precedence of

the subexpressions last operators and their precedence.

We implement a synthesized attribute slastop that returns the properties

of the operator applied if there is such, or Nothing when there is no operator

at all (in variables, values, and applications).

slastop :: Label (‘Att "lastop" (Maybe (TAssoc, Int)))

slastop = Label

The printed string is computed within a synthesized attribute spp:

spp :: Label (‘Att "pp" String)

spp = Label

The most interesting piece of semantics appears of course in the P Op pro-

duction:

spp op = λ(p :: Proxy v)→
syndefM spp pOp (do

lp ← at chOpr spp

op ← ter (chOpop @ (Val2Op v))

rp ← at chOpr spp

llop ← at chOpr slastop

lrop ← at chOpl slastop

return $ handleParen lp op rp llop lrop

)

We just collect all the interesting information and use the ordinary Haskel func-

tion handleParen to produce the string. The reader can refer to the codebase

to see the details of this function.
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All other rules are simple:

spp var = const $ syndefM spp pVar (ter chV arvar)

spp val = λ(p :: Proxy v)→
syndefM spp pVal (show @ v <$> ter (chV alval @ v))

spp call = const $ syndefM spp pCall (do

fname ← ter chCallfun
argp ← at chCallarg spp

return $ fname ++ "(" ++ argp ++ ")"

)

slastop var = const $ syndefM slastop pVar (return Nothing)

slastop val = const $ syndefM slastop pVal (return Nothing)

slastop call = const $ syndefM slastop pCall (return Nothing)

slastop op = λ(p :: Proxy v)→
syndefM slastop pOp (Just <$> opProperties @ @ v

<$> ter (chOpop @ (Val2Op v)))

6.6.3 T2 - Name Binding.

Name binding will make more sense once the expression language is a subset of

a language with binders. However, there are things we can take into account at

this point. We can collect the free variables to use the aspect later. We could

control if names are legal since MateFun variables and functions are capitalized

alphanumeric strings, but we consider this a parsing problem.

Let us define the synthesized attributes sfv and sffv , to collect the free

variables, and free function names, respectively.

sfv :: Label (‘Att "fv" [String ])

sfv = Label

sffv :: Label (‘Att "ffv" [String ])

sffv = Label

Controlling that variables and function names occurring in an expression

are in scope are similar tasks. However, while variables can be bound just

in equation definitions, functions can be defined anywhere in the program.

This implies that variables require less effort, so we take different approaches
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var env att =
SemExpr (const emptyRule)

(const emptyRule)
(const $ inhdefM att pOp chOpr (at lhs att)

� inhdefM att pOp chOpr (at lhs att))
(const $ inhdefM att pCall chCallarg (at lhs att))

Figure 6.9: Copy rules in expressions.

accordingly. On the one hand, for variables, we just collect all of them. Later,

when using expressions in a richer language with binders, in the production

where the binder occurs, we will erase bound variables from the value of sfv .

On the other hand, for functions, we consider we have available an environment

with the defined function names in scope, and when a function name occurs,

deciding whether it is free depends on the contents of that environment.

The attribute ifnames contains function names in scope:

ifnames :: Label (‘Att "fnames" [String ])

ifnames = Label

The semantics are trivial, just copy rules. We will use this pattern many times

so it is nice to have a macro. The following would be the definition using

extensible records:

var env att = inhdefM att pOp chOpr (at lhs att)

/ inhdefM att pOp chOpl (at lhs att)

/ inhdefM att pCall chCallarg (at lhs att)

/ emptyAspect

but remember we are using non-extensible records to store semantics. In Figure

6.9 the macro we actually use is given. Applying the function var env to the

attribute ifnames we get an aspect with the semantics for it.

Finally, Figure 6.10 shows the definition of all rules.

For instance, the following function traverses an expression and collects all

occurring variables.

getVars e = let iatts = semExpr asp FreeVars (proxyFrom e) e

(ifnames =. [ ] ∗. emptyAtt)

in (iatts #. sffv , iatts #. sfv)
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sfv var = syndefM sfv pVar ((:[ ]) <$> ter chV arvar)
sfv val = syndefM sfv pVal $ return [ ]
sfv op = syndefM sfv pOp ((++) <$> at chOpr sfv ~ at chOpl sfv)
sfv call = syndefM sfv pCall (at chCallarg sfv)

sffv var = syndefM sffv pVar $ return [ ]
sffv val = syndefM sffv pVal $ return [ ]
sffv op = syndefM sffv pOp ((++) <$> at chOpr sffv ~ at chOpl sffv)
sffv call = syndefM sffv pCall ((do

fnames ← at lhs ifnames
fname ← ter chCallfun
return $ if elem fname fnames then [ ] else [fname ]
))

Figure 6.10: Semantics for free names.

Since the initial inherited attribute ifnames is defined empty, all function

names are collected in the first member of the resulting pair. All variable

names are collected in the second. We can, for instance, process this informa-

tion further to check if variables satisfy syntactic rules.

6.6.4 T3 - Code generation.

Translation of expressions to the Core language is perhaps surprisingly easy

since the Core language is actually more complex than the expression language

itself.

We define the polymorphic attribute scomp that will contain the resulting

compiled term:

scomp :: ∀ v op.Values op v ⇒ Label (‘Att "compile" (CTerm op v))

scomp = Label

In Figure 6.11 we show the rules, the code is relatively simple, we build the

corresponding Core terms from expression terms. We do not control any prop-

erty about expressions, this is the job of other aspects. Ill-formed expressions

will produce ill-formed Core.
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scomp var = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) pVar (CVar <$> ter chV arvar)

scomp val = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) pVal (CVal <$> ter (chV alval @ v))

scomp op = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) pOp (COp <$> at chOpr (scomp @ v)

~ ter (chOpop @ (Val2Op v)))
~ at chOpl (scomp @ v))

scomp call = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) pCall (do f ← ter chCallfun

carg ← at chCallarg (scomp @ v)
return $ CApp (CVar f ) carg

)

Figure 6.11: Rules for compilation of the expression language (T1-L3).

6.6.5 T4 - Type Checking.

Given an expression, if we know the types of their ocurring variables and func-

tions, we can compute the least-general base type of the resulting expression.

We define the inherited attributes itypes and ftypes to model the environ-

ments with the types of variables and functions in scope. With the synthesized

attribute stype we compute the result. The attributes are defined as follows:

itypes :: ∀ v op t .Types op v t ⇒ Label (‘Att "types" (M .Map String t))

itypes = Label

iftypes :: ∀ v op t .Types op v t ⇒ Label (‘Att "ftypes" (M .Map String (t , t)))

iftypes = Label

stype :: ∀ v op t .Types op v t ⇒ Label (‘Att "type" (Either String t))

stype = Label

The type of the attribute stype can contain a string, denoting a type error. In

that case, the string contains the error message to print.

153



We introduced a new idiom in these definitions. While the three attributes

are polymorphic in the type t , we use an explicit quantifier to put v as the first

argument, and use the constraint Types op v to relate all type variables. By

doing this, we can always apply the variable v in the polymorphic attributes.

Semantics for itypes and iftypes are simple, we use the macro defined in

Figure 6.9. Rules for stype are defined in Figure 6.12.

We use extensively the interface given by the type class Types . In the case of

variables we lookup the environment. When there is a literal we apply typeOf .

To infer the type of an expression defined from an operator application, we use

the function tyCombM , which is defined from tyComb but handling arguments

that could fail, as follows:

tyCombM :: Types op v t ⇒
Either String t → op → Either String t → Either String t

tyCombM lt (op :: op) (rt :: Either String t)

= do l ← lt

r ← rt

tyComb l op r

Finally, in the case of function application, we control that the type of

the argument is a subset of the declared domain. If everything goes well the

resulting type is the codomain of the function. Note that we defined a sloppy

message "type error" as an example, but there is a lot of information in

scope to build a richer message.

6.7 L2 - Programs.

In this section, we extend the expression language to define MateFun programs.

A MateFun program is a list of function definitions. MateFun programs are

compiled to mappings from function names to Core terms, used as environ-

ments to evaluate Core expressions.

6.7.1 Syntax definition.

The following EBNF notation defines the grammar to represent MateFun pro-

grams:
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stype var = λ(Proxy :: Proxy v)→
syndefM (stype @ v) pVar (do

x ← ter chV arvar
gamma ← at lhs (itypes @ v)
return $ Right $ (fromJust $ M .lookup x gamma)

stype val = λ(Proxy :: Proxy v)→
syndefM (stype @ v) pVal (typeOf <$> ter (chV alval @ v)

stype op = λ(Proxy :: Proxy v)→
syndefM (stype @ v) pOp (do

lt ← at chOpr (stype @ v)
rt ← at chOpl (stype @ v)
op ← ter (chOpop @ (Val2Op v))
return $ tyCombM lt op rt

)

stype call = λ(Proxy :: Proxy v)→
syndefM (stype @ v) pCall (do

argty ← at chCallarg (stype @ v)
f ← ter chCallfun
gamma ← at lhs (iftypes @ v)
case argty of

Left error → return argty
→

case M .lookup f gamma of
Just (dom, cod)→

return $ if isSubtype ′ argty dom
then Right (cod :: Val2Type v)
else Left "type error"

Nothing → error "impossible!"

) where
isSubtype ′ argty dom = case argty of

Right ty → isSubtype ty dom
→ False

Figure 6.12: Rules for typing expressions.
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Program→[FDef ]

FDef →fEcu

Ecu→(x1, . . . , xn) = ExprG

ExprG→Expr

ExprG→Expr if Cond or ExprG

Cond→Expr4Expr

Cond→>

Cond→Cond ∧ Cond

Cond→¬Cond

where xi ∈ S, and 4 ∈ {<,>,=}.
Programs are lists of function definitions. Functions have a name and

an equation. Equations are a list of variables and a guarded expression1617.

Guarded expressions are used to represent piecewise definitions. They are just

an expression or a conditional. Conditionals rewrite to further guarded expres-

sions in the ‘else’ case so we can nest conditions. Conditions are built from

a comparison of expressions or by combining them using boolean operators.

We defined an arbitrary set of boolean operators to be complete. Further op-

erators such as disjunction could be desugared to what we have here, (or we

could extend this language with new productions, of course!).

The reader should be convinced that the following program can be repre-

sented easily with this syntax18:

abs (x) = x if x >= 0

or -x

In Figure 6.14 we give the definitions in AspectAG. It is a direct trans-

lation of the formal definition that was given before. Lists of functions are

implemented with two productions pProgramNil and pProgramSnoc. We use lists

16 This name is taken from the reference implementation.
17 We used some notational abuse here to represent a variable-length list of variables (the
correct way using EBNF would be to define another non-terminal, but it is more clear if

written this way 18 The expression “−x” must be represented as “0− x”, though.
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that are extended at the tail just because we tend to think in programs built

top-down in the source code, but the decision is not important at all. Equa-

tions have a terminal of type Vars that contains the variables bound by the

pattern-matching. Of course, we also define semantic functions for all new

productions, notably semExpr. We also define a datatype to store semantic

functions, as follows:

data SemFunc eif eor top neg and comp ecu fdef pnil psnoc var val op call =

SemFunc {geif :: eif ,

geor :: eor ,

gtop :: top,

gneg :: neg ,

gand :: and ,

gcomp :: comp,

gfdef :: fdef ,

gecu :: ecu,

gpnil :: pnil ,

gpsnoc :: psnoc,

gexpr :: (SemExpr var val op call)

}

Note that semantics for expressions are a field of this record, so by defining an

instance of SemFunc we are extending an instance of SemExpr .

In Figure 6.13 we show the reification of L2 as an ordinary Haskell datatype.

6.7.2 T1 - Pretty-printing.

To implement pretty-printing we just need to implement semantics for the

already defined attributes spp and slastop at the new productions. Note that

conditions in guarded expressions are themselves a language similar to the

expression language of L1 in the sense that we have a set of operators (the

boolean operators), so we should minimize brackets. Since conjunctions are

associative and with lighter precedence than negation, adding brackets in all

negations generates good results.

However, the language could be extended later, so we will do the job with

the same technique as before, implementing semantics to compute the attribute

slastop. The following rules do the job:
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data FDef v = FDef String (Ecu v)

data Ecu v = Ecu Vars (ExprG v)

data ExprG v = Or (Expr v)
| If (Expr v) (Cond v) (ExprG v)

data Cond v = Top
| Comp (Expr v) Ordering (Expr v)
| And (Cond v) (Cond v)
| Neg (Cond v)

Figure 6.13: Data types for programs of L2.

slastop top = syndefM slastop p Top (return Nothing)

slastop neg = syndefM slastop p Neg (return Nothing)

slastop and = syndefM slastop p And (return $ Just (RightAssoc, 3))

slastop comp = syndefM slastop p Comp (return $ Just (NonAssoc, 4))

We use the same associativity values of Haskell, which is consistent with respect

to the reference implementation of MateFun.

To print function definitions we must take indentation into account. We

take a simple approach: We define function bodies one line after the assignation

symbol, so we can indent always the same number of whitespaces. The most

relevant rules are the following:

spp eor = const $ syndefM spp p EOr (at ch EOr or spp)

spp eif = const $ syndefM spp p EIf (do

ife ← at ch EIf if spp

ce ← at ch EIf cond spp

ee ← at ch EIf else spp

return $ ife ++ " if " ++ ce ++ "\n or " ++ ee

)
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$ (addNont "ExprG")
$ (addProd "EOr" ′′Nt ExprG [("or", NonTer ′′Nt Expr)])
$ (addProd "EIf" ′′Nt ExprG [("if", NonTer ′′Nt Expr),

("cond",NonTer ′′Nt Cond)
("else",NonTer ′′Nt ExprG)])

$ (addNont "Cond")
$ (addProd "Top" ′′Nt Cond [ ])
$ (addProd "Neg" ′′Nt Cond [("e", NonTer ′′Nt Cond)])
$ (addProd "And" ′′Nt Cond [("l", NonTer ′′Nt Cond),

("r", NonTer ′′Nt Cond)])
$ (addProd "Comp" ′′Nt Cond [("l", NonTer ′′Nt Expr),

("op",Ter ′′Ordering),
("r", NonTer ′′Nt Expr)])

$ (addNont "Ecu")
type Vars = [String ]
$ (addProd "Ecu" ′′Nt Ecu [("vars", Ter ′′Vars),

("body",NonTer ′′Nt ExprG)])

$ (addNont "FDef")
$ (addProd "FDef" ′′Nt FDef [("name",Ter ′′String),

("ecu",NonTer ′′Nt Ecu)])

$ (addNont "Program")
$ (addProd "ProgramNil" ′′Nt Program [ ])
$ (addProd "ProgramSnoc" ′′Nt Program

[("init",NonTer ′′Nt FDef ),
("last",NonTer ′′Nt Program)])

Figure 6.14: Syntax definition for MateFun programs.

159



spp ecu = const $ syndefM spp pEcu (do

vars ← ter ch Ecu vars

body ← at ch Ecu body spp

return $ wrapBrackets (intercalate ", " vars)

++ " =\n " ++ body

)

spp fdef = const $ syndefM spp pFDef ((++) <$> ter ch FDef name

~ at ch FDef ecu spp)

More complex handling for indentation could be considered, for instance

we could set a custom width of indentation levels by computing the length of

indentation and passing it down using an inherited attribute.

With these implementation, the function abs would be printed as:

abs (x) =

x if x >= 0

or 0 - x

Note that the expression −x is printed as "0 - x" since it was represented

this way in the AST. Pretty-printers are not neccesary an inverse of parsers,

but the important thing to note is that semantics were preserved. An improved

pretty-printer can handle such cases with no great effort. However, in this case

we think the issue is more a responsability of how the AST is implemented.

Wether if users wrote "0-x" of "-x", both expressions are parsed as the same

AST. Thus, a good solution is to extend the expression language to handle

negations instead of desugaring negations as an instance of the binary operator.

We do not do it here since it does not offer new insights.

6.7.3 T2 - Name binding.

Name binding is extended easily. We keep collecting variable occurences with

the attributes sffv and sfv , and passing down the environment ifnames . The

main task to perform is to handle the binder introduced in function definitions.

This is performed in the production pEcu . There, we must erase the bound

variables from the list of free variables of the guarded expression.
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sfv ecu = syndefM sfv pEcu (do

vars ← ter ch Ecu vars

bvars ← at ch Ecu body sfv

return $ foldl (λr a → erase a r) bvars vars

)

erase x [ ] = [ ]

erase x (y : ys)

| x == y = erase x ys

| otherwise = y : erase x ys

In well-formed programs there should not be free variables in the synthesized

attribute sfv in each pEcu production. If there are, we want to generate error

messages that provide at least the information of in which functions they occur.

To do that, in functions and lists of functions we use a more expressive attribute

instead of sfv , defined as follows:

sfunfv :: Label (‘Att "funfv" ([(String , [String ])]))

sfunfv = Label

The attribute sfunfv collects a list of function names and free variable oc-

curences. Rules can be defined as follows:

sfunfv fdef = syndefM sfunfv pFDef (do

fname ← ter ch FDef name

fvars ← at ch FDef ecu sfv

return [(fname, fvars)]

)

sfunfv programnil = syndefM sfunfv pProgramNil (return [ ])

sfunfv programsnoc = syndefM sfunfv pProgramSnoc (do

funcs ← at chProgramSnocinit sfunfv

func ← at chProgramSnoclast sfunfv

return $ funcs ++ func

)

With the value of sfunfv at the root of the AST we can control if there are

free variables in functions, if all functions have different names, and so on.

Although we do not do this in this prototype implementation, a sanity

check that we can perform in this task is controlling that the list of variables

in a pattern matching does not repeat names.
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sfcomp :: ∀ v op.Values op v
⇒ Label (‘Att "fcompile" (String ,CTerm op v))

sfcomp = Label

sfcomp fdef = λ(Proxy :: Proxy v)→
syndefM (sfcomp @ v) pFDef

$ (, ) <$> ter ch FDef name ~ at ch FDef ecu (scomp @ v)

spcomp :: ∀ v op.Values op v
⇒ Label (‘Att "pcompile" (M .Map String (CTerm op v)))

spcomp = Label

spcomp nil = λ(Proxy :: Proxy v)→
syndefM (spcomp @ v) pProgramNil (return M .empty)

spcomp snoc = λ(Proxy :: Proxy v)→
syndefM (spcomp @ v) pProgramSnoc (do

fenv ← at chProgramSnocinit (spcomp @ v)
(f , ecu)← at chProgramSnoclast (sfcomp @ v)
return $ M .insert f ecu fenv

)

Figure 6.15: Semantics for function compilation.

6.7.4 T3 - Code generation.

Functions are compiled to what we will use as environments to evaluate com-

piled expressions. In Section 6.5.1.2 we defined the attribute fenv , containing

values of type (Map String (CTerm op v)). It stores all the compiled functions

in scope when reducing Core terms.

The synthesized attribute spcomp is used to compute such an environment

from a program. In Figure 6.15 we show how it is defined and the corre-

sponding rules. We use spcomp in the productions of nt Program and sfcom

in the production of ntFDef (though we could use spcom in both by returning

a singleton map).

Note that in the definition of sfcomp fdef we return a pair, composed by
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tt = CLam "T" $ CLam "F" $ CVar "T"

ff = CLam "T" $ CLam "F" $ CVar "F"

ite = CLam "C" $ CLam "T" $ CLam "E" $
CApp (CApp (CVar "C") (CVar "T")) (CVar "E")

neg = CLam "E" $ CLam "T" $ CLam "F"

$ ap2 (CVar "E") (CVar "F") (CVar "T")

conj = CLam "L" $ CLam "R" $
ap3 ite (CVar "L") (CVar "R") ff

ap3 f a b c = CApp (CApp (CApp f a) b) c
ap2 f a b = CApp (CApp f a) b

pair l r = CLam "P" (CApp (CApp (CVar "P") l) r)

Figure 6.16: Encodings in the Core language.

the name of the function and the value of the already defined (see Section

6.6.4) attribute scomp.

What we have left to do is to define the semantics for spcomp at the pro-

ductions pEcu , pExprG and pCond .

Since Core terms only have lambda abstractions with one variable, we curry

the compiled functions. Semantics for pEcu are defined by the following rule:

scomp ecu = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) pEcu (do

vars ← ter ch Ecu vars

body ← at ch Ecu body (scomp @ v)

return $ foldr CLam body vars

)

For instance, a term like (Ecu ["x", "y" ] e) is compiled into

(CLam "x" (CLam "y" e ′)) where e ′ is the result of compiling e.

Note that there is no way to define guarded expressions and conditions
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primitively in Core. We can encode them using Church encodings (or any

other encoding) [Jansen, 2013,Barendregt, 1985]. In Figure 6.16 we give some

encodings we use. The terms tt and ff are the Church booleans. The term ite

is the conditional. neg and conj are negation and conjunction. The reader can

check that under the semantics for Core reduction defined in Section 6.5.1.2

that applications reduce as intended.

Using those constructs we can define the following rules:

scomp eif = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) p EIf (ap3 <$> pure ite

~ at ch EIf cond (scomp @ v)

~ at ch EIf if (scomp @ v)

~ at ch EIf else (scomp @ v)

)

scomp eor = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) p EOr (at ch EOr or (scomp @ v))

scomp top = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) p Top (return tt)

scomp neg = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) p Neg (CApp neg <$> at ch Neg e (scomp @ v))

scomp and = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) p And (ap2 <$> pure conj

~ at ch And l (scomp @ v)

~ at ch And r (scomp @ v))

scomp comp = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) p Comp (CComp <$> at ch Comp l (scomp @ v)

~ ter ch Comp op

~ at ch Comp r (scomp @ v))
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6.7.5 T4 - Type checking.

L2-T4 is a weird combination. Function definitions do not have declared types,

so we cannot guess the type of the binders in equations to extend the environ-

ments used to perform type cheching in expressions.

Still, here it makes sense to extend the semantics defined for expressions

to guarded expressions. Environments are just passed down to the recursive

children. For the attribute stype (that computed the least-general type of an

expression) we have work to do.

In the production p Or we just get the type of the child expression:

stype eor = λ(Proxy :: Proxy v)→
syndefM (stype @ v) p EOr (at ch EOr or (stype @ v))

In conditionals, all the possible returning expressions should have a compatible

type, in the sense that we must be able to compute the union. The least-general

type of the guarded expression is the union among all types. Another thing to

take into account is that expressions in conditionals should not be ill-typed.

This can be implemented as follows:

stype eif = λ(Proxy :: Proxy v)→
syndefM (stype @ v) p EIf (do

ty1 ← at ch EIf if (stype @ v)

ty2 ← at ch EIf else (stype @ v)

cwt ← at ch EIf cond scwt

return $ case (ty1 , ty2 , cwt) of

(Right t1 ,Right t2 ,Right ())→ join t1 t2

→ combineErr ty1 ty2 cwt

)

where the attribute scwt is defined as follows:

scwt :: Label (‘Att "cwt" (Either String ()))

scwt = Label
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scwt top = syndefM scwt p Top (return $ Right ())

scwt neg = syndefM scwt p Neg (at ch Neg e scwt)

scwt and = syndefM scwt p And (do

l ← at ch And l scwt

r ← at ch And r scwt

return $ comb l r)

scwt comp = λ(Proxy :: Proxy v)→
syndefM scwt p Comp (do

l ← at ch Comp l (stype @ v)

r ← at ch Comp r (stype @ v)

return $ joinM l r)

Its semantics are simple, it collects type errors in conditions, whenever they

occur.

6.8 L3 - Lists and enumerations.

We started with a language that manipulated integers and real numbers as its

values. Now we aim to extend that set of terminals. We decided to add lists

(sequences, in MateFun’s jargon) and enumerations in this language level.

The implementation of this language level shows the power of the ab-

straction over terminals. We do not need to define either any new syntax

in AspectAG, nor any new semantics. We just must define the new terminal

types and implement the required interfaces.

6.8.1 Syntax definition.

The following data types are a possible implementation of the extended ter-

minals:

data Op = Add | Times | Div | Minus | Cons

data Val = I Integer | R Double | List [Val ] | Nil | Variant String

We implement MateFun’s cons and nil as an operator and a value. Construc-

tors of enumerations have a name. We internally use the term “variant” since

that is what they are, in programming language theory terms.

We used the same names as before for the data types. We can since they

are defined in a different module. Using qualified names we can eliminate any
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ambiguity. To build polymorphic ASTs with those new values we implement

a class they satisfy, extending the Values class, as follows:

class (Values op v)⇒ ListEnum op v | op → v , v → op where

nil :: v

cons :: v → v → v

variant :: String → v

6.8.2 T1 - Pretty-printing.

The pretty-printer already implemented works, but it depends in the imple-

mentations of Show for Op and Val , and (PPValues Op Val). They can be

defined easily.

6.8.3 T2 - Name binding, and T3 - Code generation.

Name binding and compilation to Core do not require any implementation.

6.8.4 T4 - Type checking.

We must provide a data type for types. The following implementation is given:

data Ty =

TyR | TyZ | Sec Ty | Enum (Maybe String) [String ] | Any

deriving Eq

Enumerations have a name (the name of the set, if known) and a set of names,

the names of all its members. We also introduced the constructor Any . It

represents a polymorphic type. MateFun is monomorphic, but during type

checking we face the issue that we do not know what type assigning to the

empty list. We type the empty list with the type Any until more information

is known.

Again, no new AspectAG definitions are required. The only thing to do

is to implement instances of (Types Op Val Ty) and (Show Type) (for the

pretty-printer).

6.9 L4 - Tuples.

Now, we want to add tuples to our language. Tuples are different with respect

to the terminals introduced in L3 because we really need new syntax. Tuples

167



of ground values can be implemented by the type of terminals, but tuples

containing a pair of arbitrary expressions cannot. For instance, consider the

following MateFun program:

f (x, y) = (g(x,y), 0)

In the language levels, we have implemented there is no way to represent

neither the tuple returned nor the arguments of the function g. However,

we already can represent the binder of f, which is also a tuple. Actually, in

the languages defined until L3 the ability to write that pattern matching was

completely useless since there was no way to call functions like f. We designed

pEcu this way having possible extensions in mind. If we had not done it, we

could just redefine the production pFDef at this point.

We could represent tuples in the AST using just operators and values, such

as we did with lists. We define an empty tuple as a value, and an operator

that extends tuples. The type checking task could ensure that they behave as

intended, having the size statically fixed. However, this solution is unnatural

and hard to implement. Adding syntax makes much more sense to us.

To represent tuples of arbitrary length we can introduce a recursive pro-

duction as we did with programs. Just for the sake of simplicity, we are going

to introduce just pairs.

6.9.1 Syntax definition.

We extend the EBNF definition of the non-terminal Expr with the following

production.

Expr →(Expr, Expr)

We implement the new production of the expression language, representing

pairs, as follows:

$ (addProd "Pair" ′′Nt Expr [("l",NonTer ′′Nt Expr),

("r",NonTer ′′Nt Expr)])

The reified AST can be written as follows:
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data Expr v = Val v

| Var String

| Op (Expr v) (Val2Op v) (Expr v)

| Call String (Expr v)

| Pair (Expr v) (Expr v)

We must redefine the semantic functions for Expr , and for all the ASTs that

depend on it directly or indirectly. This means that we must redefine all

ASTs, though they are syntactically identical (except because Expr has a

new constructor) to their previous counterparts. While this is one annoying

drawback of AspectAG, this is easily done with a couple of lines of Template

Haskell as discussed in Chapter 3.

$ (closeNT NtProgram)

Since we are using optimized records, we need to define one to store rules for

expressions.

The following is given:

data SemExprPair var val op call pair

= SemExprPair {gvar :: var ,

gval :: val ,

gop :: op,

gcall :: call ,

gpair :: pair }

Given an already defined aspect using SemExpr and a rule for pairs an ex-

tended record can be built in a simple way, for instance, as follows:

semExpr2semExprPair pair (SemExpr op var val call)

= SemExprPair op var val call pair

We must also implement terminal values supporting tuples. The following

is an implementation, including the features in L3:

data Op = Add | Times | Div | Minus | Cons | Proj

deriving (Eq ,Read ,Ord)

data Val = I Integer | R Double | List [Val ] | Nil

| Variant String | Tuple [Val ]

deriving (Eq ,Ord ,Read)

To destruct tuples we use an operator Proj (for projection). Its second argu-

ment must be an integer literal.
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6.9.2 T1 - Pretty-printing.

We must just give the semantics for the already defined attributes spp and

slastop (just for the new syntax, of course!). We implement both at once:

pp pair = const $

(syndefM spp pPair (do

lp ← at chPairl spp

rp ← at chPairr spp

return $ "(" ++ lp ++ ", " ++ rp ++ ")"

) � (syndefM slastop pPair (return Nothing))

6.9.3 T2 - Name binding.

Again, semantics are simple. Recall we had function names and variable names

computed with the synthesized attributes sfv and sffv , and an environment

ifnames with function names in scope. We combine all the rules on the fly:

nb pair =

const $ syndefM sfv pPair ((++) <$> at chPairl sfv ~ at chPairr sfv)

� syndefM sffv pPair ((++) <$> at chPairl sffv ~ at chPairr sffv)

� copyAtChi ifnames chPairl

� copyAtChi ifnames chPairr

6.9.4 T3 - Code generation.

To compile the new language to the Core we must encode pairs. Again we

use Church encodings. In Figure 6.16 we showed the function pair . It takes

two Core terms to build a Core term encoding the pair. Arguments can be

recovered by applying the resulting term to tt or ff (the first and second

component, respectively).

The rule to compute the attribute scomp (the resulting, compiled term)

can be therefore given as follows:

scomp pair = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) pPair (do

l ← at chPairl (scomp @ v)

r ← at chPairr (scomp @ v)

return $ pair l r

)
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We must handle the operator case. In the case of destructing tuples we

do not want to reduce to an operator application in the Core, but to use the

encodings:

scomp op = λ(Proxy :: Proxy Val)→
synmodM (scomp @ Val) pOp (do

op ← ter chOpop

l ← at chOpr (scomp @ Val)

r ← at chOpl (scomp @ Val)

case (op, r) of

(Proj ,CVal (I 1))→ return $ CApp l tt

(Proj ,CVal (I 2))→ return $ CApp l ff

→ return $ COp l op r

)

Note that this time we defined a monomorphic rule, fixing the variable v

with Val . This allows us to pattern match on the constructors Proj 19 and

I . However, in exchange we lost the ability to reuse the rule. If we want a

polymorphic definition while performing the case analysis on projections, we

must extend the interface for values, as we have done before. We leave it like

that since no further terminal values will be defined in this document.

Note that scomp op is defined using synmodM (i.e. modifying the pre-

vious definition of the attribute computation), this expression (of qual-

ified name MF .Tuple.Trans .scomp op) is intended to be combined with

MF .Expr .Trans .scomp op, but since we have defined semantics rule-wise, it

would be valid to use syndefM and just replacing the old rule.

Finally, there is a last piece of semantics we must modify. Remember that

those functions that take a pair as their argument are compiled curried. For

that reason, when functions are applied to pairs we must subsequently apply

the pair members, instead of applying just the encoded pair. How do we know

if a function takes a pair? In the typed languages that we will implement

later, it is easy: we just decide depending on its type. Here we do not have

types available yet, but we can decide depending on the binders of the function

equation. The issue is that we do not have them available in the production

pCall, so we must collect them. What we will do is to collect the information

19 The constructor Proj has type Op. Note that due to the functional dependencies we

used, once we fix Val , we also fix Op.
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of the contents of the children ch Ecu vars in every equation of a function

definition. Then, we distribute that information top-down.

To achieve this, we define two attributes:

sfpats :: Label (‘Att "sfpats" (M .Map String [String ]))

sfpats = Label

ifpats :: Label (‘Att "ifpats" (M .Map String [String ]))

ifpats = Label

To pass the information from the production pEcu to pFDef we also define

another attribute:

spat :: Label (‘Att "pat" [String ])

spat = Label

In Figure 6.17 we define the semantics. For the inherited attribute ifpats we use

copy rules. We define two different aspects because we will need environments

both when generating code from programs and from expressions.

Finally, we can define the rule scomp call , as follows:

scomp call = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) pCall (do

f ← ter chCallfun
carg ← at chCallarg (scomp @ v)

fpat ← at lhs ifpats

let pat = fromJust (M .lookup f fpat)

return $ if length pat == 1

then CApp (CVar f ) carg

else CApp (CApp (CVar f ) (CApp carg tt)) (CApp carg ff )

)

Whenever there is just one variable in the function equation we build an ap-

plication. When there are two20, we destruct the pair twice to generate a core

term with two arguments.

Before going forward, let us show how we can use the semantic functions

to build a proper traversal, since something somewhat technical emerges when

using the semantics that we defined.

20 Let us assume a well-formed tree. As we discussed before, this can be controlled by the

parser. Otherwise, we could generate a core term that gets stuck.
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spat ecu = const $ syndefM spat pEcu (ter ch Ecu vars)

sfpats fdef = const $
syndefM sfpats pFDef ( (λa b → M .singleton a b)

<$> ter ch FDef name
~ at ch FDef ecu spat)

sfpats programnil = const $
syndefM sfpats pProgramNil (return M .empty)

sfpats programsnoc = const $
syndefM sfpats pProgramSnoc ( M .union @ String @ [String ]

<$> at chProgramSnocinit sfpats
~ at chProgramSnoclast sfpats)

att ifpats prog = program env ifpats
att ifpats expr = expr env ifpats

Figure 6.17: Semantics to collect patterns in function equations.

Note that we built a synthesized attribute sfpats to latter pass down its

contents as the inherited attribute ifpats . An AST for a program is built by

many rewritings of the production pProgramSnoc. In an inner node ifpats is copied

top-down, but in the root it should take the value of sfpats . The semantics to

compute ifpats at an inner pProgramSnoc production and at the root are different.

There is no mechanism to decide whenever a node is in the root. We could

solve this issue using more attributes to put global information about the AST

in scope of the rule computation. However, we can do better, without defining

more aspects. Remember that in the formal definition of a formal grammar

given in Section 2.1, we defined grammars using a start symbol. While we lifted

that requirement to define grammars in AspectAG, a start symbol could come

handy to distinguish the root from inner nodes. This is a possible solution.

What we will do is conceptually the same, without defining an extra non-

terminal and production. When defining a traversal over ASTs by applying

a semantic function, we must define the initial inherited attributes, and we

have the synthesized attributes of the root available. Nothing prevents us of
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defining them circularly.21

Given asp comp, an aspect combining all the defined rules to compute

scomp, ifpats , sfpats , and fpats , we can define the following function:

compileProgram p

= let synatts = sem Program asp comp Proxy p inhatts

inhatts = ifpats .=. (synatts #. sfpats) .∗. emptyAtt

in synatts #. (spcomp @ Val)

Note that we use the synthesized attributes at the root, synatts , to extract

sfpats and pass its value as the value of the inherited attribute ifpats .

6.9.5 T4 - Type checking.

We define a data type to represent types in this language:

data Ty =

TyR | TyZ | Sec Ty | Enum (Maybe String) [String ] | Cart [Ty ] | Any

deriving Eq

The new constructor is Cart , that represents cartesian products. We must

provide an instance of (Types Op Val Ty).

Once done, semantics in the new production are straightforward, we define

stype pair building a cartesian product returning type:

stype pair = λ(Proxy :: Proxy v)→
syndefM (stype @ v) pPair (do

lt ← at chPairl (stype @ v)

rt ← at chPairr (stype @ v)

case (lt , rt) of

(Right t ,Right t ′)→ return $ Right $ Cart [t , t ′ ]

→ combineErr lt rt

)

We also must pass down the environments itypes and iftypes at both children.

6.10 L5 - Simple types.

Finally, we add types to the syntax. In this language level we add the ability

(and obligation) to write function types in function declarations.

21 Thanks to lazy evaluation.
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6.10.1 Syntax definition.

We extend function definitions by adding types in the corresponding produc-

tion. In the definition of the context-free grammar using the EBNF notation,

we change the production FDef as defined before, by the following:

FDef →f : τ → τ ′

f Ecu

with τ, τ ′ ∈ T, where T denotes the terminal set of types (and f ∈ S as

before).

In the definition of the non-terminal FDef we use the same terminal f in

the right hand side twice. Note that this definition is not context-free. The

definition of context-free grammars (see Section 2.1.2) does not allow us to

constraint the symbols in the right-hand side depening on each other. This

is a typical case of context-dependence. Since MateFun syntax requires the

same name in the function signature and then in the equation definition, it is

a context-dependent language. There are two ways to handle this issue. One

way is to define the language context-free and control that the two terminals are

equal as part of the static semantics of the language (for instance in L2). The

other way is to implement a context-dependent parser. This is very simple to

do in this type of scenario by using monadic parsing. That is how the reference

implementation solves the task.

So what we do here, is to simply assume the parser handles this and put the

name once in the definition of our AST. We must just extend function defini-

tions by adding two types in the production pFDef , a domain and a codomain22:

chFDefdom = Label :: ∀ ty .Label (‘Chi "FDef_dom" PFDef (Terminal ty))

chFDefcod = Label :: ∀ ty .Label (‘Chi "FDef_cod" PFDef (Terminal ty))

The reified data type can be writen as follows:

data FDef v = FDef String ((Val2Type v), (Val2Type v)) (Ecu v)

Semantic functions for pFDef and pProgram must be redefined, but note that

all the rules and aspects defined still work, even those defined for the old

production pFDef , because any referred child is still a child in the new definition.

22 Of course we can use splices again in this context. We prefer in this case to add a new

pair of labels and reusing the old ones in scope.
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6.10.2 T1 - Pretty-printing.

The only thing we must do is to redefine semantics for the attribute spp for

the production pFDef :

spp fdef = λ(Proxy :: Proxy v)→
synmodM spp pFDef (do

fname ← ter ch FDef name

dom ← ter (chFDefdom @ (Val2Type v))

cod ← ter (chFDefcod @ (Val2Type v))

ecu ← at ch FDef ecu spp

return $ fname ++ " :: " ++ show dom ++ " -> " ++ show cod ++ "\n"

++ fname ++ ecu

)

6.10.3 T2 - Name binding, T3 - Code Generation

No big changes are needed. In the name binding step it can make sense to

control if the arities of functions (when their domain is a cartesian product)

match with the pattern performed in equations. It also makes sense to perform

this check as a part of type checking, though. We consider the latter solution

better to avoid making name binding dependent of the environment of function

types, implemented as part of type checking.

Code generation is independent from type checking. Ideally, generated code

from well-typed programs satisfies a set of properties. This is our intention,

but defining and proving such properties is out of our scope.

6.10.4 T4 - Type checking.

We already implemented some type inference in previous iterations of T4. In

this language level we must build the environments used to compute expression

types, and control that the types inferred are consistent with the declared

types.

Let us do a brief summary of what we have. Given an expres-

sion, or a guarded expression, the attribute (stype :: Types op v t ⇒
Label (‘Att "type" (Either String t))) denotes its type. To com-

pute stype, we used two environments: the type of all funcions in

scope is passed down using an attribute (iftypes :: Types op v t ⇒
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asp sdecltypes = SemFuncST e e e e e e
(λ(Proxy :: Proxy v)→

syndefM (idecltypes @ v) pFDef (do
fnam ← ter ch FDef name
fdom ← ter (chFDefdom @ (Val2Type v))
fcod ← ter (chFDefcod @ (Val2Type v))
return $ M .singleton fnam (fdom, fcod)

)
e

(λ(Proxy :: Proxy v)→
syndefM (idecltypes @ v) pProgramNil (return M .empty))

(λ(Proxy :: Proxy v)→
syndefM (idecltypes @ v) pProgramSnoc (do

initTypes ← at chProgramSnocinit (idecltypes @ v)
lastType ← at chProgramSnoclast (idecltypes @ v)
return $ M .union initTypes lastType))

(SemExprPair e e e e e)
where e = const emptyRule

Figure 6.18: Aspect to collect function environments.

Label (‘Att "ftypes" (M .Map String (t , t)))); the types of all vari-

ables is passed down using the attribute (itypes :: Types op v t ⇒
Label (‘Att "types" (M .Map String t))).

In this task we must build the two environments. The function environment

sftype will be computed as we did with sfpats in Section 6.9.4, first collecting

the information of all the defined functions to pass it down in the root of the

AST. To collect the information in all functions we define the following aspect:

sdecltypes :: ∀ v op t .Types op v t ⇒
Label (‘Att "decltypes" (M .Map String (t , t)))

sdecltypes = Label

Figure 6.18 shows its declaration, we only need rules at pFDef , pProgramNil

and pProgramSnoc. We defined all of them on the fly building a value of type

SemFuncST , the optimized data structure for aspects in this language level.

The environment stype is easier to compute. At each equation in func-

tion declarations, knowing the declared type of the function and the pattern

matching we perform, we build the environment with those variables.
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From stype in guarded expressions we control if that computed type is a

subset of the declared type of the function, wich is the neccesary and sufficient

condition to consider it well-typed.

Then, we define an attribute to collect the information produced by the

type checker in each function:

swt = Label @ (‘Att "wt" (Either [String ] [String ]))

In case of a type error the computed value of this attribute will be a Left

constructor with a list of messages to print, we still keep a list of messages in

well-typed cases, where values under the Right constructor are computed, to

track information such as warnings.

The hard work is performed in the production pEcu . Figure 6.19 shows its

implementation. It is the result of combining two rules, to compute itypes and

swt .

To compute itypes we use inhmodM , so we can build an aspect to copy

itypes at every production with a macro, an then combine the aspect with an

aspect containing swt ecu, to change the behaviour just at that production.

What we do is pretty simple, we collect the current environments itypes (should

be empty now, but perhaps we can add constants in the future, or local function

definitions) and iftypes , the tuple of names in the pattern matching vars ,

and the function name in ifnam. The last attribute is defined, having type

(‘Att "ifnam" String) with simple semantics: passing it down at the production

pFDef . This is neccesary because the name of the function is not available at

the production swt ecu. With all that information we take the domain of

the function (it should always be in scope, otherwise name binding should

report an error) and extend the type of the variables in the pattern matching

(many variables are allowed in the pattern matching only when the domain is a

cartesian product). The calls to the functions error should never be performed:

the function being checked should be in scope, and a mismatch in arities will

imply a type error when defining swt without needing to use itypes (thanks to

lazy evaluation).

To compute swt we also collect the values of all attributes we need. The

new one we use is the type of the body, bound as bodty . If there is an error

there, we just pass it up in swt . Otherwise, we control the computed type

is a subset of the declared type. The function handleType does the job of

computing swt from all the information available in scope.
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swt ecu = (λ(Proxy :: Proxy v)→
inhmodM (itypes @ v) pEcu ch Ecu body (do

types ← at lhs (itypes @ v)
gamma ← at lhs (iftypes @ v)
vars ← ter ch Ecu vars
f ← at lhs ifnam

Just (dom :: Val2Type v , )→
if length vars == 1
then return (M .insert (head vars) dom types)
else case dom of

Cart tys →
if length vars == length tys
then return (M .union types (M .fromList $ zip vars tys))
else error "impossible: bug in swt"

→ error "impossible: bug in itypes/sdecltypes"

)
‘extP ‘

(λ(Proxy :: Proxy v)→
syndefM swt pEcu (do

gamma ← at lhs (iftypes @ v)
bodty ← at ch Ecu body (stype @ v)
vars ← ter ch Ecu vars
f ← at lhs ifnam
let fty = M .lookup f gamma
case bodty of

Left err → return $ Left [err ]
Right → return $ handleType f vars gamma bodty

)

Figure 6.19: Type checking semantics for function declarations.
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It can be defined as follows:

handleType f vars gamma bodty =

case M .lookup f gamma of

Just (dom, cod)→
case bodty of

Left e → Left [e ]

Right ty → case vars of

[x ]→ handleType ′ ty cod

xs → case ty of

Cart tys → if length xs == length tys

then handleType ′ ty cod

else Left ["arity mismatch" ]

→ Left ["arity mismatch" ]

where handleType ′ ty cod = if isSubtype ty cod

then Right ["well typed" ]

else Left ["function " ++ f ++ " is ill typed" ]

→ error "impossible: bug in itypes/sdecltypes"

We also report an error in case of an arity mismatch. Note that the return-

ing error messages can be much richer than just reporting that the function in

discourse is ill-typed, using all the information in scope.

6.11 L6 - Type definitions and refinements.

Finally, in this language level we add the ability to declare new types using

refinements over base types, and enumerations.

For instance, the following are valid MateFun declarations that should be

represented within the new syntax:

set N = { x in Z | x >= 0 }

set Rno0 = { x in R | x /= 0 }

set Day = { Mon, Tue, Wed, Thu, Fri, Sat, Sun }

set Rno01 = { x in R | (x /= 0, x/= 1) }

6.11.1 Syntax definition.

Now, programs are defined as a list of function and set definitions. For that

reason, we drop the non-terminal ntFDef and introduce a more general one,
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Program→[Decl]

Decl→FDef
Decl→SDef
FDef →f : τ → τ ′

f Ecu (where f ∈ S, τ, τ ′ ∈ T)

SDef → set s = {x ∈ τ | Cond} (where xi ∈ S, τ ∈ T)

Ecu→(x1, . . . , xn) = ExprG, xi ∈ S

ExprG→Expr
ExprG→Expr if Cond or ExprG

Cond→Expr4Expr (where4 ∈ {<,>,=})
Cond→>
Cond→Cond ∧ Cond
Cond→¬Cond
Expr →v (where v ∈ V)

Expr →x (where x ∈ S)

Expr →Expr � Expr
Expr →f(Expr) (where f ∈ S)

Expr →(Expr, Expr)

Figure 6.20: Full syntax definition of L6.

ntDecl , for declarations. Declarations can be function declarations (the pro-

duction ntFDef ), or set declarations (the production ntSDef ). Note that ntFDef

must be actually redefined since now it has a different type, because we changed

the non-terminal to which it belongs. Note that we could push modularity one

step forward reusing the old definition by making it polymorphic if we want

to. Figure 6.20 shows the full syntax of the language.

The new substantial production is SDef . A set has a name, a base type,

and a condition that refines it. For the condition we use a binder (the x). In

the concrete syntax we need a way to define sets as an enumeration, but as we

will see soon this is enough for an AST.

We already used binders in equations. From our perspective as program-

mers, we felt comfortable by using a similar pattern. So we defined the syntax

for SDef separating the refinement, as follows:
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$ (addProd "SDef" ′′Nt Decl [("name",Ter ′′String),

("base",Poly),

("ecuS",NonTer ′′Nt EcuS )])

$ (addNont "EcuS")

$ (addProd "EcuS" ′′Nt EcuS [("vars",Ter ′′Vars),

("cond",NonTer ′′Nt Cond)])

We use two productions pSDef end pEcuS . In pSDef there is a name, a

base type and an equation. Equations have a list of binders and a condition.

MateFun allows only one variable binder in sets refinemtnes, for instance the

following definition is illegal:

set NotEq = { (x,y) in Z X Z | x /= y }

though the same set could be implemented as follows:

set NotEq = { p in Z X Z | p ! 1 /= p ! 2 }

We implement the reference behaviour, yet we consider a list of variables

in the AST keeping future extensions in mind. In the evaluator we will assume

that the length of this list is 1.

The new definitions can be reified to the following data types:

data Decl v = FDef String ((Val2Type v), (Val2Type v)) (Ecu v)

| SDef String (Val2Type v) (EcuS v)

data EcuS v = EcuS Vars (Cond v)

For instance, the set Rno01 can be represented with the following AST

(using the already defined data types Val and Ty):

rno01 =

SDef "RNo01" TyR (EcuS ["x" ] (Not (Comp (Var "x") EQ (Val (I 0)))

‘And ‘

Not (Comp (Var "x") EQ (Val (I 0)))))

Sets defined by extension can be also defined using this syntax. Remember

that the type Ty had a constructor for enumerations. The following is its

representation in the AST for the set Day:
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day = SDef "Day" (Enum (Just "Day")

["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" ])

(EcuS ["" ] Top)

Note that there is no refinement for this type. We used the trivial Top

condition. We use the empty string as a fake binder, though we never use

it at all (we could just put the empty list there). Where we can be worried

for this representation is in the pretty-printer (we must discern enumerations

from refinements to print them correctly), but this is easy: definitions with an

enumeration as its base type and a Top condition are enumeration definitions.

When writing types in the signature of functions, to refer to refined types

we use their names. To know wether a type of a function is a refinement or

not, we implement an interface for refinement types as follows:

class Ref t where

isRef :: t → Bool

tName :: t → String

The predicate isRef returns if the type is a refinement, and tName returns its

name.

We use the same definitions of Val , Op and Type that we had in the im-

plementation of this language level. The type class Ref is implemented as

follows:

instance Ref Ty where

isRef (DeclTy ) = True

isRef = False

tName (DeclTy n) = n

tName = ""

6.11.2 T1 - Pretty-printing and T2 - Name binding.

For the pretty-printer we just implement semantics for the attribute spp. The

only thing to decide is wether we print an enumeration set with the extension

syntax, or as a comprehension. This is trivially performed looking up at the

condition. As we discussed before.

Name binding requires also to extend the already defined attributes (be-

cause, for instance, set definitions have a condition that could have occurrences

of free variables).
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Note that we can also define refinement types referring already defined

refinements. We must contol that the referred sets are in scope.

6.11.3 T3 - Code generation and T4 - Type Checking.

Since this language level mixes dynamic typing and static typing, part of the

type checking is performed in runtime, so the complexity is handled in the

code generation.

In the static type checking we do not need to add any behaviour, except

for propagating the result of the type checker (the synthesized attribute swt)

upwards in the set definitions, since static errors can occur in the refinement

conditions. So what we implemented for T4 extends trivially to this new

language level.

The code generation phase does not change in most scenarions, but the

dynamic type checking must be implemented. When a function is called its

domain is a refinement type, we check if the argument fulfills the refinement

condition. If the codomain is a refinement type we check that the returned

value fulfills its type condition. In Figure 6.21 we show the rule that imple-

ments this behaviour. Remember that the generation of code for functions was

already performed at the production pEcu in previous language levels.

We do the same as in previous language levels at this production, but in

the generated Core term (a lambda abstraction) we preprocess the argument

(the computed result is domchecked) and then postprocess the result (the

computed result is codchecked). When the types are not refinements those

processings are just an identity. When the types are refinements, we check the

corresponding refinement predicates. Remember that conditions reduced to a

Church boolean, so the result of the evaluated condition is is applied to two

arguments, the first is the “good” term, and the second an error.

For instance, the function mkDomError is defined as follows:

mkDomError fnam cod

= CError $ "domain error: arg of function ‘"

++ fnam

++ "’ does not satisfy condition of its domain set "

Of course, the produced error message can be improved a lot, for instance by

printing the condition (by using the spp attribute!).
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scomp ecu = λ(Proxy :: Proxy v)→
syndefM (scomp @ v) pEcu (do

vars ← ter ch Ecu vars
refty ← at lhs (ityenv @ v)
fnam ← at lhs ifnam
(dom :: Val2Type v ,

cod :: Val2Type v)← at lhs (icurrtype @ v)
body ← at ch Ecu body (scomp @ v)
let domchecked = domcheck fnam (head vars) dom refty body
let codchecked = (codcheck fnam cod refty domchecked)
return (foldr CLam codchecked vars)

)
where domcheck fnam var dom refty body

= if isRef dom
then ap3 ite

(CApp (snd $ fromJust (M .lookup (tName dom) refty))
(CVar var)) body (mkDomError fnam dom)

else body
codcheck fnam cod refty body

= if isRef cod
then (ap3 ite

(CApp (snd $ fromJust (M .lookup (tName cod) refty)) body)
body (mkCodError fnam cod))

else body

Figure 6.21: Semantics for dynamic type checking.
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Example 7. Consider the following MateFun program:

set Rno0 = {x in R | x /= 0}

set Rno1 = {x in R | x /= 1}

f :: Rno0 -> Rno1

f (x) = 1 / x + 1

then f compiles into the following Core term:

λx .ite (x 6≡ 0) (ite ((1 / x + 1) 6≡ 1) (1 / x + 1) coderr) (domerr)

where (ite) is the conditional defined in Figure 6.16 and (domerr), and (coderr)

are error terms.

6.12 Conclusions

In this chapter, we have shown how to use the AspectAG library to implement

a middle-sized compiler. We built the compiler front end and implemented an

interpreter for the Core language, an intermediate representation we compile

MateFun into.

We have shown how modular the system is. We started with a small sub-

set of the final language and extended it both with new syntax and semantics

without recompiling code. Parametrization over terminals proved to be par-

ticularly useful. Note that while we did not get to the reference implementa-

tion because, for instance, figures are missing, they can be trivially added by

defining a new set of terminals. The issue we find with the parametrization

approach is that each time we add a feature to a terminal set, we must define

a new type class if we want to use keep the rules polymorphic. When defining

a rule, if we pattern match over a terminal data type, the rule is no longer

reusable. Moreover, each new terminal implementation must implement all

previous interfaces, which can get tedious.

In an early iteration, we used the non-optimized approach, defining aspects

with extensible records. We identified the performance issues there. In the

presented implementation we switched to the optimization defined in Section

5.3.9 for all the languages except for the fixed Core that is still manageable.
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While in this document we presented grammar labels and semantic func-

tions defined by splices, in the codebase we initially defined labels by hand (and

then switched to splices, testing the correctness of the code generation). The

experience suggests that there are many opportunities to make mistakes when

building the semantic functions by hand, especially thinking in the case of a

beginner user. Building the boilerplate with metaprogramming ensures its con-

sistency (at least if the code in the module Language.Grammars .AspectAG .TH

is correct).

During the development we made some of the mistakes defined in Chapter

4, and we got good messages that helped us to debug the AG definitions we

were working on. However, we also got long error messages with implementa-

tion leaks in some other scenarios. The most common was when using a free

variable instead of an aspect or AG label because GHC prints the expected

type.

Overall, we think the results are good. Both the library and its pragmatics

are usable and allow us to extend our languages syntactically and semantically

without recompiling the already defined code.
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Chapter 7

Conclusions and future work.

In this thesis we introduced a reworked version of AspectAG, using modern

techniques of type-level programming. We emphasized in having a strongly-

typed system both at the level of terms, and at the level of types, and in

DSL-oriented error reporting. Along the way we developed data structures

and idioms that could be applied in more general contexts than just AspectAG,

and we condensed them in the libraries requirements and poly-rec.

Then, we developed a case study: a modular implementation of the Mate-

Fun programming language. We have shown how a language can be extended

in a modular way by using AspectAG, tackling the expression problem.

In addition to these tangible results, we have shown a non-trivial example

of type-level programming in Haskell, and how by using these techniques we

can push the boundaries of what can be expressed within the host language

itself.

We are satisfied with the obtained results. However, there are further

interesting problems to solve, and rough edges in what we implemented, some

of them related to our approach, and some of them related to the techniques

themselves.

In chapters 3 and 6 we showed evidence of how AspectAG tackles the ex-

pression problem in practice by implementing modular languages. However, we

always use semantic functions that traverse a reification of the defined gram-

mar in form of a data type. While by using Template Haskell we relieve the

users of rewriting that boilerplate code, behind the scenes both the semantic

functions and the data types representing ASTs are rewriten and compiled.

This is not the most ambitious solution to the problem, abeit we are still
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achieving that the code already written is untouched.

We would like to actually reuse the reified data types, avoiding rewriting

them. There are approaches to encode extensible data types, such as Data

types à la carte [Swierstra, 2008], or Trees that grow [Najd and Jones, 2017].

We were reluctant in integrating them in the solution since they require even

more noisy types. Finding a way to do it harmoniously is an interesting future

work.

Reusing data types is just half of the task, we would like to reuse the

definition of the semantic functions. At a first glance it seems intuitive to

abstract the semantic functions using an ad-hoc polymorphic function in a type

class. The issue that arises is that in Haskell we need to write explicitly the

class constraints in each instance definition. The type of the semantic functions

have many constraints defining the shape that the rules must have to be valid.

Figure 7.1 shows the type of the semantic function for the expression language

defined in Section 3.1. By defining semantic functions by pattern matching as

we have done in this document (whether by hand or using Template Haskell

splices) GHC infers the constraints implicitly, freeing users from writing them.

As we discussed in Section 3.6, we can use a shallow embedding, represent-

ing ASTs directly with semantic function applications, but at the same time,

this approach complicates the possibility of representing ASTs independently

from a concrete definition of semantics. Again, the natural solution, encoding

the syntax with type classes and concrete semantics by their instances (re-

sembling the final-tagless encoding referred in the literature [Carette et al.,

2007]) forces users to write constraints explicitly. However, those constraints

should be easy to compute using type families, so we could find mechanisms

to compute them.

Perhaps a more clever solution is to attack the problem from its root.

Semantic functions have a constrained type because of our approach, where

semantic functions are fixing the grammars. In AspectAG children depend on

productions, and productions depend on non-terminals, but no dependencies

are written the other way around. While this makes it easy to add new la-

bels to the structure it delegates the work of defining the grammar structures

to the semantic functions (by the knit function). A different approach would

be to encode the full structure of a grammar by using data kinds. We could

even compute the reified ASTs and the semantic functions from that struc-

ture. Making that explicit would require handling it, though, moving away
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sem Expr
:: (Require (OpLookup PrdReco P Add r)

[Text "knit:(Add of Non-Terminal Expr)"],
Require (OpLookup PrdReco P Val r)

[Text "knit:(Val of Non-Terminal Expr)"],
Require (OpLookup PrdReco P Var r)

[Text "knit:(Var of Non-Terminal Expr)"],
ReqR (OpLookup PrdReco P Add r)
∼CRule

[ ]
prd3
[(Chi "Add_l" P Add (Left (NT "Expr")), sp),

(Chi "Add_r" P Add (Left (NT "Expr")), sp)]
ip
[(Chi "Add_l" P Add (Left (NT "Expr")), [ ]),

(Chi "Add_r" P Add (Left (NT "Expr")), [ ])]
[ ]
[(Chi "Add_l" P Add (Left (NT "Expr")), ip),

(Chi "Add_r" P Add (Left (NT "Expr")), ip)]
sp,

ReqR (OpLookup PrdReco P Var r)
∼CRule

[ ]
prd2
[(Chi "Var_var" P Var (Right (T [Char ])),

[(Att "term" String ,String)])]
ip
[(Chi "Var_var" P Var (Right (T [Char ])), [ ])]
[ ]
[(Chi "Var_var" P Var (Right (T [Char ])), [ ])]
sp,

ReqR (OpLookup PrdReco P Val r)
∼CRule

[ ]
prd4
[(Chi "Val_val" P Val (Right (T Integer)),

[(Att "term" Integer , Integer)])]
ip
[(Chi "Val_val" P Val (Right (T Integer)), [ ])]
[ ]
[(Chi "Val_val" P Val (Right (T Integer)), [ ])]
sp)⇒

CAspect [ ] r → Expr → Attribution ip → Attribution sp

Figure 7.1: Type of a semantic function.
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from the design of AspectAG. Another reason to explore this approach is to

have a tangible definition of a grammar to manipulate. While in AspectAG

we achieved first-class attribute grammars in the sense that each ingredient

of a grammar is a first-class citizen in the host language, we lack a way of

manipulating grammars in a monolithic way. For example, an honest question

we can ask ourselves is: what is the type of a grammar in AspectAG?

A future work already outlined in the original implementation of AspectAG

[Viera et al., 2009] is to implement a similar system in a dependently-typed

language. Again this would require explicit type annotations which can com-

plicate the job.

Note that in all the previously discussed points appears in one way or

another the fact that GHC infers types that are difficult to write for program-

mers. While by using type-level programming techniques we are pushing the

boundaries of the Hindley-Milner type system to the land of dependent types,

we keep the constraint solver working for us. This was already observed in

previous works such as [Lindley and McBride, 2013]. For this reason we claim

that we are not just mimmicking dependent types, but exploring a typing

discipline which is worth on itself.

As we have shown in Chapter 4, we have achieved nice error messages

to a set of domain-related type errors. This worked well in practice when

those structural errors were made. However, as mentioned in Section 2.4 there

are two main issues with DSL type errors: precise error reporting in domain-

specific logic and implementation leaking. The latter one is still an issue. A

common error we have seen during our developments is to use a free variable

as an aspect (for instance, because we mispelled its name or we forgot to

include a module). While this seems innocent, and the reported error will

state clearly that there is a variable not in scope, the expected type of the

variable is displayed. A look at Figure 7.1 should be enough to understand

why this is an issue. With languages with dozens of productions it is much

worse.

The proper type of the function sem Expr of Figure 7.1 is problematic.

Interactive development using the REPL and querying types is a common

workflow in Haskell. Users could want to query the types in scope when de-

veloping programs. The type of sem Expr leaks details and even the context

information in the Require constraints.

A feature we desire to tackle this issue is to have a way of implementing
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opaque types. This can be given with compiler support, or perhaps encoding

them.

As we discussed before, generating code with splices is a partial solution

to avoid code duplication in the definition of data types and semantic func-

tions. Apart from solving that issue in a better way interest us, there are more

reasons to avoid metaprogramming. In general, template metaprogramming

using Template Haskell has been considered “controversial” by some users1.

For what concerns us, avoiding metaprogramming means we are actually test-

ing the power of the type system. It is interesting theoretically to know to what

extent it is possible to encode a full AG system as we did. Metaprogramming

allows us to write a full AG system by using splices. The best way to set

the limit between the EDSL encoded using an expressive type system and a

theoretical uninteresting metaprogramming artifact is avoiding all splices at

all. Unfortunately, a big issue arises: without metaprogramming, the consis-

tency between the AG labels, the reified datatypes and the semantic functions

depends on the correctness of users definitions.

Finally, in Section 5.3.9 we showed an optimization to solve the perfor-

mance issues arised by the use of big aspects. We would want to write the

data structures to avoid falling into the compile-time leak without defining

dedicated data structures for aspects in each grammar version. The solution

we implemented worked well for us as “advanced” users of AspectAG, but in

general we should work in a solution with less responsibilities for final users.

Overloading the interfaces to make aspects and using metaprogramming to

generate the non-extensible records is a tempting solution, but it goes against

the other proposed lines of future work we have outlined.

1 See, for instance the following discussion:

https://stackoverflow.com/questions/10857030/whats-so-bad-about-template-haskell.
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