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Abstract 

This paper proposes new applications of statistical and data mining techniques for the 

assignment problem in the Multi-Depot Vehicle Routing Problem with Time Windows 

(MDVRPTW). Given the intrinsic difficulty of this problem class, approximation methods 

of the type "cluster first, route second" (two step approaches) seem to be the most 

promising for practical size problems. After describing five assignment algorithms 

designed specially for assignment of customers to depots (the cluster phase), the adapted 

clustering algorithms for the assignment problem are introduced and a preliminary 

computational study of their performance is presented. Concluding as expected, that the 

they can be adapted to solve this type problem and many times give very good results (in 

terms of the routing results), but are still far from some of the other algorithms when it 

comes to execution times. 

Key words: multi-depot vehicle routing problem, clustering, assignment, time windows.
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A key element of many distribution systems is the routing and scheduling of vehicles 

through a set of customers requiring service. The Vehicle Routing Problem (VRP) involves 

the design of a set of minimum-cost vehicle routes, originating and terminating at a central 

depot, for a fleet of vehicles that services a set of customers with known demands. Each 

customer is serviced exactly once and, furthermore, all customers must be assigned to 

vehicles without exceeding vehicle capacities. In the Vehicle Routing Problem with Time 

Windows constraints (VRPTW), the issues must be addressed under the added complexity 

of allowable delivery times, or time windows, stemming from the fact that some customers 

impose delivery deadlines and earliest-delivery-time constraints.  

Whereas the VRP and VRPTW have been studied widely, the Multi-Depot Vehicle Routing 

Problem with Time Windows (MDVRPTW) has attracted less attention. 

In the MDVRPTW, customers must be serviced out from one of several depots. As with the 

VRP, each vehicle must leave and return to the same depot and the fleet size at each depot 

must range between a specified minimum and maximum. The MDVRPTW is NP-hard, see 

Bodin, Golden, Assad and Ball (1983) and Lenstra and Rinnooy Kan (1981), therefore, the 

development of heuristic algorithms for this problem class is of primary interest.  

The MDVRPTW can be viewed as a clustering problem in the sense that the output is a set 

of vehicle schedules clustered by depot. This interpretation suggests a class of approach 

that clusters customers and then schedules the vehicles over each cluster.  

This paper focuses on the assignment ("cluster" part) of customers to depots using known 

statistical and data mining techniques. First a brief description and analysis of five 

algorithms is offered, later a more in depth comparison of assignment algorithms designed 
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specifically for the MDVRPTW and adapted clustering algorithms for the assignment is 

shown. 

To compare the assignment heuristics it is necessary to produce a final set of routes, in 

order to do this the same VRPTW heuristic is used for each depot, Clark and Wright 

(1964), finally it is possible to compare the routing results for each one of the assignments.  

Due to the operational nature of most of the MDVRPTW the computing time is an 

important aspect. Often in real life applications, the assignment of customers to depots and 

the construction of the routes for each cluster must be done, in the best case, from one day 

to another.  

The study of the adapted clustering algorithms shows interesting results and possible paths 

to follow, but these algorithms are still not very competitive with some of the classical ones 

in terms of the trade off between execution time and final results measured in total distance.  

A comprehensive survey on VRP can bee found in Bodin, Golden, Assad and Ball (1983), 

for specific heuristics for VRP see Clark and Wright (1964) and Mole and Jameson (1976). 

For a discussion on complexity of vehicle routing and scheduling problems see Lenstra and 

Rinnooy Kan (1981). For further reading on formulations of VRPTW see Bodin, Golden, 

Assad and Ball (1983), Bramel and Simchi-Levi (1997), and on algorithms for VRPTW see 

Potvin and Rousseau (1993), Solomon (1987), Salhi and  Nagy (1999) and Ioannou, 

Kritikos and Prastacos (2001). Formulations and algorithms for solving MDVRP and 

MDVRPTW can be found in Bodin, Golden, Assad and Ball (1983) and Salhi and  Nagy 

(1999). The idea for one of the algorithms presented in this paper comes from assigning 

customers to days of the week, which can be found in Russell and Igo (1979). A problem 

from the dairy industry motivated this paper: the daily transportation of milk from farms to 

processing plants, for background on the project that motivated this paper see Giosa, 
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Tansini and Viera (1999). Tools, real life problems, applications related to this paper and 

interfaces using GIS, see ESRI and Geographic Information Systems, are in Urquhart, 

Viera, Gonzalez and Cancela (1997) and “A Vehicle Routing System Supporting Milk 

Collection” Urquhart and Viera (2002). For more information on the test cases and the 

software tool used to obtain the results shown in this paper see Giosa, Tansini and Viera 

(2002). 

Tis paper is organised as follows: in the following section a short problem definition is 

given. The assignment algorithms are succinctly presented in the second section. The third 

section contains a description of the proposed adapted clustering algorithms. The fourth 

section contains the routing algorithm which is used to calculate costs of the different 

assignments. Computational results are presented and analysed in the fifth section. Finally 

in the last section conclusions and some ideas for future research are discussed. 

1 Problem definition 

The MDVRPTW consists of determining a set of vehicle routes in such a way that, Bodin, 

Golden, Assad and Ball (1983): 

a) each route starts and ends at the same depot; 

b) all customer requirements are met exactly once by a vehicle; 

c) the time windows for both customers and the depots are respected; 

d) the sum of all requirements satisfied by any vehicle does not exceed its capacity; 

e) the total cost is minimised. 

The MDVRPTW can be viewed as being solved in two stages: first, customers must be 

allocated (assigned) to depots; then routes must be built that link customers assigned to the 

same depot. Ideally, better results are obtained dealing with the two steps simultaneously, 
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see Ioannou, Kritikos and Prastacos (2001) and Salhi and  Nagy (1999). When faced with 

larger problems, say 1000 customers or more, however, this approach is no longer tractable 

computationally. A reasonable approach would be to divide the problem into as many sub 

problems as there are depots, and to solve each sub problem separately. 

The algorithms described in the next section attempt to implement this strategy. 

1 Assignment algorithms 

First it is worth noting that the assignment problem and the routing problem in the 

"cluster first, route second" approach are not independent. A bad assignment solution will 

result in routes of higher total cost (distance) than one with a better assignment, as Figure 1 

shows.  

Initially in our case, Giosa, Tansini and Viera (2002), the time windows constraints 

were used to check for compatibility between customers and depots (to answer the question 

if it is possible to get from one customer to the depot in time) in the assignment step and for 

route feasibility in the routing step, later they were included in the proximity measures 

between costumers and/or depots. All the assignment algorithms described below assign 

404
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Figure 1 Comparing two routing costs: 6.4  Kms. for the assignment on the left and  9.1  Kms for a “worse” assignment 
on the right.   
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customers to depots so that the capacity of the depots is not exceeded.  

Finally, the methods we are about to describe have been presented previously in 

Giosa, Tansini and Viera (2002) and, due to the lack of documentation about solutions for 

the assignment problem related to the MDVRPTW, some of them are in some sense 

adaptations of more or less well known heuristic solutions for the VRP and/or VRPTW, see 

Bodin, Golden, Assad and Ball (1983). 

A general pseudocode for all the algorithms is as follows: 

Until all customers have been assigned to the depots 

determine the next best customer to be assigned and  to which depot, 

taking into account  the demand of the customers, the capacity of the  depots and the time windows 

for both customers and depots. 

 

The algorithms presented in the this section use different criteria for the assignment 

of a customer to a depot: assignment through urgencies and assignment by clusters. 

1.1 Assignment through urgencies 

The urgency is a way to define a precedence relationship between customers; the 

urgency to be assigned could also be viewed as a priority. This precedence relationship 

determines the order in which customers are assigned to depots. The customers with the 

highest urgency are assigned first. The algorithms in this class vary only in the way the 

urgencies are calculated, see Giosa, Tansini and Viera (2002). The Parallel and Simplified 

Parallel algorithms are adaptations of the algorithm for VRPTW presented by Potvin and 

Rousseau (1993). The Sweep Assignment is the third heuristic in this class and the urgency 

is measured as the difference between assigning a customer to its closest depot and to depot 

dep* with the highest unsatisfied demand. Only the Simplified parallel assignment will be 
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described with more detail because proved to give better results and it will be used for 

further comparisons in this paper.  

1.1.1 Simplified parallel assignment 

In this case, two depots are involved in the evaluation of the urgency: 

´)dep,c(d)''dep,c(dc −=μ         

Where d(c, d’’(c)) is the distance between customer c and its second closest depot 

and d(c, d’(c)) is the distance between customer c and its closest depot. 

Figure 2 gives an example of the urgency for one customer, represented by the solid 

black line, because in this algorithm the urgency is calculated as the difference between the 

distances to a customer’s closest and second closest depot. The dotted circle shows the 

distance to the a customer’s closest depot. 

Once again, the customer with the greatest value of μ is assigned to its closest depot.  

 
     Depot. 

 
 
 

     Customer. 
 

Difference in distance with       
the closest depot. 

Figure 2 How the urgency is calculated for one client in the Simplified parallel assignment algorithm.
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This heuristic compares the cost of assigning a customer to its closest depot with the 

cost of assigning it to its second closest depot. The most urgent customer is the one for 

which μ is maximum. This is a variant of the most common assignment algorithms found in 

the literature, Bodin, Golden, Assad and Ball (1983). 

In order to incorporate time windows  the following definition of urgency is used, 

Tansini (2001): 

Cc))c(''dc,c(Closeness-))c('dcc,(Closenessc ∈=μ     

Closeness is defined to take into account Affinity and distance: 

CiDj)j,i(Affinity/)j,i(d)j,i(Closeness ∈∈=     

Where d(i,j) is the distance between i and j. 

The Affinity measures the degree of similarity in terms of the time windows of a 

customer with the group of customers already assigned to a depot: 

{ } Cj,iDd
C

e
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Where D is the set of depots and C the set of customers and C(d) is the set of already 

assigned customers to depot d. TVij is the traveling time between i and j. 

DTW measures the distance in the time windows of a customer with another 

customer or with a depot: 

⎪
⎩

⎪
⎨

⎧
<−
<−

=
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elsile
elsile

)j,i(DTW ijji

jiij

       

Where, l y e represent the beginning and end of the time window. 
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If considering only time windows, ideally a customer should be assigned to the 

depot whose already assigned customers are nearest in terms of time windows, that is the 

depot that maximizes the Affinity. On the other hand, considering distances, a customer 

should be assigned to the closest depot.  

The complexity for the whole algorithm is (in the worst case) O(3CD+CD2+C2D), 

where C is the number of customers, and D is the number of depots. 

1.2 Assignment by clusters 

A cluster is defined as the set of points consisting of a depot and the customers 

assigned to it. The algorithms in this class try to build compact clusters of customers for 

each depot, see Giosa, Tansini and Viera (2002). When a customer is assigned to a cluster it 

means that this customer is assigned to that cluster’s depot. Two heuristics in this class 

were studied: Coefficient propagation and Three criteria clustering. Three criteria clustering 

proved to give better results and is therefore used in this paper for further comparisons and 

will be described in this section. In the Coefficient propagation algorithm, attraction 

coefficients are associated to depots and already assigned customers, these coefficients 

scale the distances with the unassigned customers.  

1.2.1 Three criteria clustering 

The criteria used by this algorithm to include a customer in a cluster are: average 

distance to the clusters, variance of the average distance to the customers in the clusters and 

distance to the closest customer in each cluster (the algorithm is an adaptation of another 

algorithm see Russell and Igo (1979)). 

If there is a customer with an average distance to its closest cluster sufficiently 

smaller than the average distance to its second closest cluster (10% improvement or more), 

then it can be assigned; the one that maximizes de difference in average distances is 
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assigned to its closest cluster. Otherwise the variance of the average distance is taken into 

account and if there is a customer with a small enough variance of the average distance to 

its closest cluster (40%) then it can be assigned, again the one that maximizes the difference 

is assigned. Finally if the first two measures fail, the decision is made based on the distance 

to the closest customer in its closest cluster, now the customer that minimizes this distance 

is assigned. 

Figure 3 shows two clusters with a depot and a set of customers each. The average 

distance from the unassigned customer to the clusters is calculated as the average of the 

distances to all customers and the depot in the clusters, and can be viewed as a fictitious 

customer with the average coordinates of all customers and depot in the cluster, shown in 

Figure 3 as a cross.  

Figure 4 shows two clusters with different variance of the average distance to the 

 
Depot. 

 
 
Customers in a cluster. 
 
 Unassigned customer. 

Figure 3 Determining the average distance to the clusters. 

Figure 4 Clusters with different variance. 
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customers and depot in the clusters, the cluster on the right hand has a lower variance, since 

the customers are closer to each other than in the left cluster. 

Figure 5 shows the closest customer in each cluster to a non-assigned customer. 

Figure 5 Closest customer in each cluster 

 

The measure Angle, see Tansini (2001), is used to incorporate time windows, it 

derives from the comparison of vectors found when exploring clustering algorithms Linoff 

(1995). Originally the Angle measure is used to cluster data with categorical attributes, that 

are those belonging to non-ordered domains and for which no distance function can be 

defined naturally, for example colors.  

The Angle is defined as following: 

⎟
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Cos)j,i(Angle  

Were x and y are the coordinates and l y e represent the beginning and end of the time 

window, i and j are customers or depots. 

The complexity of the whole algorithm is (in the worst case) O(3C2D+3C2D2+CD2). 

An earlier study, see Giosa, Tansini and Viera (2002), shows that of the Assignment 

through Urgencies, the Simplified parallel assignment (SPA) is the algorithm with the best 

behaviour comparing results and execution times. Similarly the Three criteria assignment is 
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the one that gives the best result among the Assignment by clusters algorithms. Therefore 

the adapted clustering algorithms will be compared against these two algorithms. 

2 Adapted clustering algorithms 

The time windows constraints in the MDVRPTW are enemies of the "cluster first, route 

second" approach. In this way it is possible to obtain geographically compact clusters of 

customers for each depot, but due to the time windows constraints, these clusters may 

contain customers with very different service times. For example if two nearby customers 

may have service times one in the morning and one in the afternoon, this will require two 

different routes one for the morning customer and one for the afternoon customer. 

If the aim is to obtain routes with short waiting time between customers, the customers 

should not only be close to each other but also have similar time windows. When 

considering time windows, customers in one geographic cluster may have similar time 

window with customers in another cluster, implying longer waiting times in the routes or 

the need for extra routes to service them in the original cluster. This can be seen in Figure 6 

404

1081

      

M

M
M
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M
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Figure 6 An assignment that doesn’t take into account location and time window similarities when assigning customers 
to depots. 
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where two routes are necessary to visit the morning (M) and afternoon customers (A) for 

one of the depots, giving a total cost of 9.5 Km. In Figure 7 the morning customer is 

assigned with the rest of the morning customers giving a lower routing cost of 8.3 Km.  

Figure 7 When considering time windows a better assignment takes into account location and time window similarities 
when assigning customers to depots. 
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In this paper clustering algorithms are adapted to the assignment of customers to depots. 

Clustering techniques belong to Statistics and are used to group similar data. They are used 

mainly in multivariate statistics, and though originated several years ago they have recently 

known greater development related to their application in the Data Mining field. 

In this case the data are the customers and depots and the similarities looked for are in 

terms of geographical location and time windows. The fact that similarities have to be fund 

for several variables, in this case location and time windows, is what suggests considering 

the employment of  clustering algorithms. 

In order to adapt some classical clustering algorithms to the assignment of customers for 

the MDVRPTW it is necessary to add some restrictions, for example: each cluster must 
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have one depot and the productions of the customers must not exceed the capacity of the 

depot in each cluster.  

Two large classes of clustering algorithms, Linoff (1995), were chosen to be adapted to the 

assignment of customers for the MDVRPTW:  Partitioning and Hierarchical. The selected 

Partitioning algorithms are: KNN, K-Means and PAM. The Hierarchical are: 

Agglomeration and Rock. These algorithms were chosen due to characteristics that made 

them more adaptable to the assignment problem. 

In order to compare the results produced by the clustering algorithms it is necessary to 

compare the routing results, as in the previous cases. 

2.1 Partitioning algorithms 

2.1.1 KNN 

The name KNN comes K-Nearest Neighbors because the K nearest neighbors to a new 

element help determine which cluster it will belong to. The new element will belong to the 

cluster with the highest number of already classified elements amongst the K nearest 

neighbors. It is important to consider that the order in which the elements are classified 

determines the final result. This influence could be removed by running the algorithm 

 
 
Depot 
 
 
Customer 
 
 
Closest customers 

Figure 8 Finding the closest neighbours in the KNN algorithm, when K = 3. In this case the
white customer has to be assigned to the dark or light coloured depots. Because it
has two dark closest neighbours, it must be assigned to de dark depot 
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several times classifying the elements in different order and keeping the best result, which 

would of course increase the complexity of the algorithm, so that option is not considered 

in this paper. 

The complexity of this algorithm is O(DC), were C y D are the number of customers and 

depots. The complexity in this case as well as the following are calculated based on the 

implementation. 

 

2.1.2 K-Means 

This algorithm is named K-Means because the means of the clusters are used to classify the 

element. Each element must belong to the cluster with closest mean. The distance to the 

mean takes into account both geographical coordinates and time window centres, this is 

Initially K clusters are selected and

explained further on in the section. 

 their means are calculated. After that, each element is 

Figure 9 Finding the means for two clusters in the K-Means algorithm. The considered dark
customer should be reassigned to the lighter depot, since its mean is closest. Then
the means must be recalculated. 

 
 
Depot 
 
 
Customer 
 
 
Mean 
 
Distance to the means 

  

reassign to the cluster with closest mean. With the new clusters, the means are recalculated 

and the elements are reassigned with the same criterion until there are no reassignments.  
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The complexity of this algorithm is  O(DC2), were C y D are the number of customers and 

depots. 

2.1.3 PAM 

PAM refers to Partitioning Around Medoids, because instead of using the means of the 

clusters as in K-Means, here Medioids are used. These are real elements closest to the 

means.  Each element must belong to the cluster with closest Medioid. 

Initially K elements are chosen as Medioids. Then in each step one of the Medioids is 

replaced in order to look for a better clustering. A clustering is considered better if it has a 

lower average distance of the elements to it’s Medioid. This is done, until there are no more 

changes. 

Figure 10 Medioids for two clusters in the PAM algorithm, they are shown as bigger
customers. 

 
 
Depot 
 
 
Customer 
 
 
Medioid 

Figure 10 shows an initial selection of Medioids and the clusters obtained. In Figure 11 a 

change of Medioid produces different clustering that could potentially turn out to be better, 

because customers are now closer to their clusters Medioids. 
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The depots can be chosen to be the first Medioids, then either depots or customers can be  

Medioids, as long as all restriction are taken into account. 

Figure 11 Change of Medioids for the lighter cluster. Due to this change a dark
customer is reassigned to the light cluster. 

 
 
Depot 
 
 
Customer 
 
 
Medioid 
 
 

  

The complexity of this algorithm is  O(DC3), were C y D are the number of customers and 

depots. 

2.1.4 Distance Used in the Partitioning Algorithms 

Time windows are incorporated to the usual distance. For two elements ei=(xi, yi, ti) y 

ej=(xj, yj, tj) the following distance was used: 

jit
2/12

ji
2

jixy ttw))yy()xx((w)j,i(WSum −+−+−=   

Were x and y are the coordinates and t is the time window centre calculated as t=(e+l)/2 

were e and l are the beginning and end of the time window. wxy and wt are coefficients such 

that wxy>0, wt>0 and wxy+wt=1. 
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2.2 Hierarchical algorithms 

2.2.1 Agglomeration 

This algorithm starts with a cluster for each element and in each step the closest clusters are 

joined, until the number of cluster does not exceed the number of depots and all restrictions 

are met. Variations of this algorithms are obtained with different definitions of inter-cluster 

distance, see Linoff (1995).  

Some inter-cluster distances are: 

• Single Linkage (SL): the distance between clusters is the minimum distance 

between pairs of elements belonging to different clusters. With this distance the 

elements are closer to elements in it’s own cluster than to those belonging to 

other clusters. Figure 12 shows the SL distance for two clusters.  

 
 
Depot 
 
 
Customer 
 
 
SL Distance 
 
 

  

Figure 12 Single Linkage distance (SL) for the Agglomeration algorithm is the
distance between the two closest customers. 
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• Complete Linkage (CL): the distance between clusters is the maximum distance 

between pairs of elements belonging to different clusters. Figure 13 shows the 

CL distance for two clusters.  

Figure 13 Complete Linkage distance (CL) is the distance between the farthest 
customers. 

 
 
Depot 
 
 
Customer 
 
 
CL Distance 
 
 

  

• Average Linkage (UPGMC, Unweighted Pair-Groups Method Centroid): this 

methods compute the centroid or mean of the items that join to from clusters. 

Figure 14 shows this distance. 

Figure 14 UPGMC distance is the distance between the means of the clusters. 

 
 
Depot 
 
 
Customer 
 
 
Mean 
 
 
UPGMC Distance 
 
 

 Some other inter-cluster distances that will not be used in this study are: 

• Weighted Average Linkage (WPGMC, Weighted Pair-Groups Method 

Centroid): the WPGMC differs from UPGMC by weighting the member most 
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recently admitted to a cluster equal with all previous members in order to 

eliminate the influence of the different cluster sizes. 

• Centroid (UPGMA, Unweighted Pair-Groups Method Average): the two 

clusters with the lowest average distance are joined together to form the new 

cluster. 

• Median (WPGMA, Weighted Pair-Groups Method Average): the WPGMA 

differs from UPGMA by weighting the member most recently admitted to a 

cluster equal with all previous. 

• Within Groups (WG): similar to UPGMA except clusters are fused so that 

within cluster variance is minimised. This tends to produce tighter clusters than 

the UPGMA method. 

• Ward method (Ward): similar to WG but cluster membership is assessed by 

calculating the total sum of squared deviations from the mean of a cluster. The 

criterion for fusion is that it should produce the smallest possible increase in the 

error sum of squares. 

SL and CL are very sensitive to “outliers”, these are elements that differ greatly from the 

majority. 

UPGMC has difficulties in finding compact clusters when they are of different sizes or 

shapes, WPGMC has a better performance in this sense. 

WPGMA gives better results than UPGMA when clusters are of different sizes. 

The complexity of these algorithms is O((D+C)2+(D+C)2log(D+C)) where D is the 

number of depots and C is the number of customers. 
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2.2.2 Rock 

This clustering algorithm is based on the “link” between elements concept in order to 

determine which clusters to combine in each step, Linoff (1995). The link between a pair of 

elements is defined as the number of neighbours in common. The clusters with largest 

number of neighbours in common are combined. 

In order to determine if a pair of elements are neighbours a similarity function (Sim) and a 

threshold (T) are used, two elements are considered neighbours if: 

jandielementsforT)j,i(Sim ≤  

In this case the function Sim is: 

jandielementsfor)j(cetandis)i(cetandis)j,i(Sim −=  

The following proximity measure between clusters is defined for the application of the rock 

algorithm: 

ji)(f21
j

)(f21
i

)(f21
ji

ji
ji CandCclustersfor

)nn()nn(

)C,C(Link
)C,C(oxPr

θθθ +++ +−+
=  

The Link function is the number of links between clusters Ci and Cj: 

jiCp,Cp rqji CandCclustersfor)p,p(link)C,C(Link
jriq

∑= ∈∈   

Were Link(pq,pr) is the number of neighbours in common of pq and pr, and the function f(θ) 

is such that the expected number of neighbours of pi is ni
 f(θ),   with ni = |Ci| and pi ∈ Ci. 

Finding the value of f(θ) is usually not an easy task, therefore many times an approximate 
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value is used instead. An option to estimate this approximate value is to run a traditional 

agglomeration algorithm and calculate the average number of neighbours.  

The complexity of the Rock algorithm is O((D+C)2+(D+C) ((D+C)-1)an+(D+C)2log 

(D+C)) were an average number of neighbours, D is the number of depots and C is the 

number of customers. 

2.2.3 Distance Used in the Hierarchical  Algorithms 

The incorporation of time windows is done in the definition of the distances between 

elements. For two elements ei=(xi, yi, ti) y ej=(xj, yj, tj) the following distance was used: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++++

⋅+⋅+⋅
= −

2/12
j

2
j

2
j

2/12
i

2
i

2
i

jijiji1

)tyx()tyx(

ttyyxx
Cos)j,i(Angle  

Were x and y are the coordinates and t is the time window centre calculated as t=(e+l)/2 

were e and l are the beginning and end of the time window. 

3 Routing algorithm 

To compare the heuristics in terms of routing results, it is necessary to solve the 

MDVRPTW, this means to run the same routing heuristic for all assignments produced by 

the different assignment algorithms. Then, the best assignment algorithm is the one with the 

best routing results, or lowest cost (see Figure 1, page 5).  

Since it is necessary to produce a final set of routes in order to compare the assignment 

heuristics, the same VRPTW heuristic (a version of the Clark and Wright heuristic, see 

Clark and Wright (1964)) is used for all assignment algorithms.  The fleet of vehicles is 

considered unlimited. 
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A route is considered complete when it is not possible to include another customer due to 

vehicle load, time window constraints or maximum waiting time allowed in a route.  

The concept of Saving (SAV) is used throughout the algorithm. The Saving obtained by 

including customer c in a route between i and j instead of a route of its own is defined as 

follows:  

))j,i(d)c,i(d)j,c(d()c,dep(d*2)j,i(SAVc −+−=  

Where dep is the depot, i and j can be either customers or the depot.  

A pseudocode for this the algorithms is as follows: 

While there are incomplete routes there is a customer c such that ∃ SAVc (i, j) ≥ 0  

Determine  the next customer c* on a route of its own which minimizes SAVc* (i, j), taking 

into account  the demand of the customers, the capacity of the vehicles, the time 

windows for customers and depots, and the maximum waiting time allowed 

Include c* in a route between  i and, j 

4 Computational results 

4.1 Comparisons 

As mentioned earlier, in order to compare the assignment heuristics, it is necessary to solve 

the MDVRPTW. The best assignment algorithm is considered to be the one with the best 

routing result (or the lowest cost overall solution, considering the assignment and routing).  

A measure named Gain was defined and used in order to compare the assignments obtained 

with algorithm i  and j the:  

( )
100*

D
DD

)j,i(Gain
Total

TotalTotal
D (j)

(i)-(j)
=  

If GainD (i,j) is positive then algorithm i has a better performance than j, otherwise it has a 

worse performance. 
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With several test cases the average gain is defined algorithm as: 

casestestofnumber
)j,i(Gain

)j,i(nAverageGai D
D

∑=  

The average gain turns out to be a global measure of the behaviour of a pair of algorithms 

compared to each other. 

Likewise the total time of the routes obtained with two different algorithms can be 

compared: 

( )
100*

T
TT

)j,i(Gain
Total

TotalTotal
T (j)

(i)-(j)
=  

casestestofnumber
)j,i(Gain

)j,i(nAverageGai T
T

∑=  

 

4.2 Results 

To provide test cases for the experimentation we chose the city map of Atlanta, Georgia, 

USA, provided by the Arcview 3.0 Geographical Information System, see ESRI. Fifty (50) 

test cases of different sizes, were generated and taken from the digitalized city map of a 

portion of Atlanta, which has 1502 street intersections, this gave an upper bound to the 

problem size (because customers and depots were located on the street intersections). 50 % 

of the test cases were generated randomly, the remaining 50 % were chosen to test different 

aspects of the algorithms. The test cases are divided in two groups: random and created test 

cases. The created cases have depots with short time windows or small capacities, others 

include depots with equal capacities or very different capacities. These were cases thought 

to have greater problems with the correct assignment of customers considering time 
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windows and therefore a larger improvement in the results could be obtained, which was 

proven to be accurate. 

The results in this paper were obtained over the test cases using Euclidean distances instead 

of the real distances calculated on the Atlanta map.  

Initially a comparison of  the partitioning algorithms was made in order to determine which 

one adapts better to solving the assignment of customers to depots in the MDVRPTW, 

Table 1 shows these results for 25 random test cases and 25 particular test cases. 

PAM is used as the base algorithm, this means that the rest of the algorithms are compared 

against it. The different columns show Average GainD (KNN with K=1, PAM), Average 

GainD (KNN with K=4, PAM), Average GainD (KNN with K=6, PAM) and Average GainD 

(K-Means, PAM),  this is how much better in terms of total distance these algorithms are 

compared to PAM.  

Type of taste 
cases 

Average GainD (KNN 
with K=1, PAM) 

Average GainD (KNN 
with K=4, PAM) 

Average GainD (KNN 
with K=6, PAM) 

Average GainD (K-
Means, PAM) 

Created test 

cases 
-26.12 -29.43 -33.27 -4.11 

Random test 

cases 
-24.70 -28.75 -30.84 -5.89 

Table 1 Average GainD of KNN and K-Means against PAM. 
 

As seen in Table 1 the Average GainD is always negative, showing that PAM gives the best 

results. 

Similarly the hierarchical algorithms were compared in order to determine which one 

adapts better to solving the assignment of customers to depots, Table 2 shows these results 

also for 25 random test cases and 25 particular test cases. 
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UPGMC is the base algorithm against which the other algorithms are compared. The 

different columns show Average GainD (SL, UPGMC), Average GainD (CL, UPGMC) y 

Average GainD (Rock, UPGMC). 

Type of taste 
cases 

Average GainD (SL, UPGMC) Average GainD (CL, UPGMC) Average GainD (Rock, 
UPGMC) 

Created test 

cases 
-6.73 -4.32 -27.67 

Random test 

cases 
-7.13 -5.94 -22.54 

Table 2 Average GainD of SL, CL and Rock against UPGMC. 
 

The negative Average GainD indicates that the best results are provided by UPGMC. 

Now a comparison between more classical assignment algorithms designed specifically for 

the MDVRPTW and the assignment algorithms derive from clustering is possible. PAM 

and UPGMC are compared to SPA with Affinity and Three Criteria with Angle Table 3 

shows these results. SPA is the base algorithm. 

Type of taste cases Average GainD (Three 
Criteria, SPA) 

Average GainD (UPGMC , 
SPA ) Average GainD (PAM, SPA)

Created test cases 6.38 9.54 -9.47 

Random test cases 5.71 8.77 -12.44 

Table 3 Average GainD  of Three Criteria, UPGMC and PAM against SPA. 
 

This table indicates that the results provided by UPGMC are in general better than both 

SPA and Three Criteria because the Average GainD with SPA is positive and higher than 

for Three Criteria. Pam gives worse results but not so far behind the other algorithms. In 

order to compare the algorithms more thoroughly it is necessary to also take into account 

the execution times.   

 25 



Table 4 shows execution times for different sizes of the problem, on a Pentium 2 of 266 

MHz with 64 Mb RAM memory and operating system Windows 98.  

Algorithm 1000 Customers 
20 Depots 

450 Customers 
15 Depots 

100 Customers 
5 Depots 

PAM 312 sec 59 sec < 1 sec 

UPMG 453 sec 78 sec 4 sec 

Three Criteria 297 sec 43 sec < 1 sec 

SPA usando Cercanía 16 sec 2 sec < 1 sec 

Table 4  Execution times on a Pentium 2 of 266 MHz with 64 Mb RAM memory and operating system Windows 98. 
 

Routing times are similar for all assignment algorithms, depending only on the size of the 

problem, Table 5 shows routing times for other test cases than the ones used in the previous 

table. 

1000 costumers 
30 depots 

400 costumers 
30 depots 

100 costumers 
6 depots 

950 sec 60 sec 2 sec 

Table 5 Routing times for different problem sizes.   

5 Conclusions and Further research 

5.1 Conclusions 

As seen before it is possible to adapt clustering algorithms to the assignment problem in the 

MDVRPTW.  This is relevant because as far as we know there have been no other attempts 

to do these adaptations. 

As proven by the computational results,  the solutions given by some of the clustering 

algorithms are many times better than by the assignment algorithms. The problem with the 

clustering algorithms is that they have higher the execution times. If the size of the problem 

to be solved is small or medium this should not be an obstacle. 
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On the other hand, when solving larger scale problems SPA appears as the most attractive 

algorithm due to the beneficial trade off between execution time and Average Gain, giving 

good results in relatively short execution times. 

  

5.2 Further research 

One important direction of future research is to investigate classical clustering measures 

(inter-cluster and intra-cluster distances) used to determine if a clustering solution is 

acceptable or not in this context. Possibly these measures could substitute the final routing 

in order to decide whether an assignment is “good” or not and if necessary allow to choose 

between different solutions without the cost of routing. 

Another interesting research direction is to propose pre-processing methods to group clients 

in super-clients, in order to reduce the problem size, that will then be assigned and routed. 

In this paper only greedy assignment algorithms are considered, it would be interesting to 

explore the use of other heuristic approaches, for example GRASP, Genetic Algorithms and 

Simulated Annealing. In order to pursue this line of research, it would be of great use to 

have available inter-cluster and intra-cluster distances adequate to this particular 

assignment problem. 

Finally it would also be interesting to propose post-optimization algorithms to “improve” a 

solution, that is, to reassign customers that may have been misplaced. 
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