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Abstract

This paper is a first step in the direction of charging telecommunication
network access based on the reliability of end-to-end paths. Indeed, in the
literature congestion pricing is usually considered as the solution to address
the needs of quality-of-service-demanding new applications such as multimedia.
Nevertheless, with the widespread diffusion and high capacities of optical fiber,
some authors have argued that this pricing scheme will not have to be applied,
as capacity will still be ahead of demand. In this paper, we introduce a new
direction, noting that even when there is spare capacity, availability can still
be a concern. We argue that a charging scheme depending on reliability could
be interesting and illustrate how it could be implemented. We also provide a
genetic algorithm aiming at extending the network so that the provider’s revenue
is maximized. We observe the behavior of our method over a specific network
topology, and study the robustness of the solution with respect to the problem
data.
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Fijación de tarifas de servicios de comunicaciones en
redes basados en la confiabilidad de terminal a terminal

Abstract

Este trabajo es una primer etapa con vistas a la fijación de tarifas de ac-
ceso a las redes de comunicaciones en base a la confiabilidad de los caminos
de punta a punta de la red (de terminal a terminal). En efecto, la fijación de
tarifas basada en la congestión se considera habitualmente en la literatura como
la solución para resolver las necesidades de aplicaciones exigentes en calidad de
servicio, tales como en el caso de transmisiones multimedia. Sin embargo, con
la capacidad importante introducida por la fibra óptica, varios autores estiman
que este esquema no llegará a ser aplicado dado que la capacidad instalada
excederá la demanda. En este informe, introducimos un nuevo método de fi-
jación de tarifas teniendo en cuenta que, aunque la capacidad sea suficiente,
la disponibilidad de las conexiones sigue siendo una preocupación válida. Pen-
samos que un método de fijación de precios basado en la confiabilidad puede
ser interesante, e ilustramos como implementarlo. Damos también un algoritmo
genético para extender una red existente de manera de maximizar el beneficio
económico. Observamos el comportamiento del método propuesto en un caso
particular, estudiante en particular la robustez de la solución respecto a los
datos del problema.
Palabras clave: fijación de tarifas, confiabilidad, simulación, algoritmos genéticos.
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1 Introduction

Devising a new charging scheme for telecommunication networks has become a
hot topic in the scientific community. The main motivations discussed in the
literature are that:

• the exponential growth of the traffic creates congestion. The current flat-
rate charge used in the Internet is an incentive for overusing the resources
and a usage or congestion-based scheme would be fairer.

• Also, the network has to deal with applications having different quality of
service (QoS) requirements. For instance, voice and video over IP require
small delays and jitter, but can support some losses, whereas e-mail or file
transfers do not support losses but are not delay sensitive. Due to the con-
gestion problem, a service differentiation has to be devised, like in IntServ
[3] or Diffserv [2] architectures. A pricing scheme has to be attached to
it, otherwise each customer will choose the best available service class.

Shortly, among other possibilities, a pricing scheme can be based on separat-
ing the network in totally separated sub-networks with different access charges
[31], charging for service priority at each node of the network [5, 19, 30], or
bidding for bandwidth [28, 36]. Note also that transfer rates can be adjusted
according to the willingness to pay of the user and according to the network con-
gestion [24, 25, 29], this area is the subject of a huge literature. We encourage
to read the exhaustive surveys [7, 15, 21, 39] for more information.

In this paper, we devise a radically different pricing scheme, based on the
growing idea that with the introduction of optic fiber, the backbones will be
over-dimensioned, so that congestion will not occur. For this reason, it seems
interesting to look at charging the network access, based on connection reliability
(see for instance [12]).

We consider a network topology, where each link is assumed to have an
infinite capacity (corresponding to over-dimensioning) but may fail with a given
probability. Each pair of nodes has then a probability to be connected. Even if
computing this probability is an NP -hard problem in its general form [32, 40],
it is assumed here that its estimation is known, using efficient Monte Carlo
simulation for instance [4, 16, 34]. Even if it is not the purpose of this paper,
we briefly describe it in section 3.3. The price for each connection between a
source s and a destination t depends on the reliability of the connection between
s and t. Of course demand varies also with this price, so that the goal of the
network is to set up a price that maximizes its revenue. In a second stage, the
problem is to extend an already existing network in order to increase the service
provider’s revenue (a greedy approach would be to try to sequentially add links
in order to improve the reliability of its network, and then, maybe, its revenue;
this method can result in suboptimal solutions). As solving analytically this
problem is intractable in general, we attempt to approach the solution with a
genetic algorithm. Genetic Algorithms, proposed by Holland in 1975 [22], are
an Evolutionary Computation technique. Their utility in problems of reliable
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network design has already been shown [8, 9, 10, 11]. We calibrate our method
and evaluate the robustness of the problem with respect to the uncertainty
of some parameters on some problems, with special attention to the so-called
VTHD (Very High Broadband IP/WDM test platform) network topology.

The remainder of the paper is organized as follows. In Section 2, we present
the model, give all the definitions, and discuss some simple forms of the de-
mand function. In Section 3, we examine the problem of extending the network
(in terms of links) in order to increase the network revenue. Section 4 is de-
voted to numerical illustrations of the approach, and finally Section 5 gives our
perspectives of future work and conclusions.

2 Model

We consider the network of an Internet Service Provider (ISP), represented by
an undirected communication network G = (N , E) (but a directed graph could
also be considered) consisting of a set of nodes N and a set of connecting links
E . Let m be the number of links and n the number of nodes of G. Due to the
widespread use of optic fiber, we assume that each link will be over-provisioned,
so that we can say that each link has an infinite capacity. This strong assumption
is far from the current trend, wwhich assumes that congestion occurs often in the
network and that it will be more and more present. Following our assumption,
we believe that customers will be more interested in “guaranteed” connections,
so that pricing based on reliability will become relevant.

We consider that for each edge l ∈ E of the network, we can choose between
different technology types, which have different cost and probability of failure.
It is assumed that there is a family T of technology types, where for each link
l ∈ E , T (l) ⊆ T is the set of all the possible technology types applicable to link
l. So, for each link l ∈ E and each technology type of this link t ∈ T (l), we
assign an (independent from others) probability of failure ql(t) and a cost cl(t)
(which can depend on the link length, the geography, technology amortization,
operation and management associated costs, etc.). For simplicity, we assume
that nodes do not have cost and that they do not fail.

Only a subset of nodes K ⊆ N have connection demands; we call these nodes
terminals (these nodes form the access network, and the other nodes form the
backbone). To each pair of terminals (s, t) with s, t ∈ K, we associate a total
connection demand rate λ̃s,t, a duration (assumed to be exponential with rate
µs,t), and a reliability rs,t, which correspond to the probability that nodes s and
t are connected (computed from algorithms in [4, 16, 34] for instance). Inter-
arrivals and connection durations are assumed to be independent. To each pair
(s, t) of nodes is associated a utility function, modeled by a random variable
Us,t(r), expressed in financial terms, of getting a connection with reliability r.
The overall level of satisfaction is then Us,t(r)−p where p is the connection price.
A customer will enter the network if and only if Us,t(r) ≥ p. The random variable
Us,t(r) is characterized by is distribution: we denote by Frs,t its cumulative
distribution function and we define F̄rs,t = 1− Frs,t .
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Our goal is then to find out the optimal prices, for each pair (s, t), in terms
of the reliability rs,t, maximizing the network revenue

G(G) =
∑

(s,t)∈K

ns,tps,t. (1)

over the set of prices ps,t ≥ 0 ∀s, t, with ns,t mean number of online (s, t)-
connections.

The actual arrival rate of connections between s and t, λs,t(ps,t), is given by

λs,t(ps,t) = λ̃s,tP (Us,t(rs,t) ≥ ps,t) = λ̃s,tF̄rs,t(ps,t).

Also, according to classical queueing theory for the M/M/∞ queue (see for
instance [38]), we have

ns,t =
λs,t
µs,t

,

so that

G(G) =
∑

(s,t)∈K

λ̃s,t
µs,t

ps,tF̄rs,t(ps,t).

If we use first order conditions while maximizing this revenue (as the price
ps,t is necessarily positive otherwise the revenue between s and t would be
zero, meaning that the Langrange multiplier is zero), i.e., ∂G/∂ps,t = 0 ∀s, t,
(assuming that it gives the solution) we get

∂

∂ps,t
(ps,tF̄rs,t(ps,t)) = 0, i.e.,

F̄rs,t(ps,t) + ps,t
∂F̄rs,t(ps,t)

∂ps,t
= 0. (2)

2.1 Demand Function

2.1.1 Two general examples

In a general way, solving Equation (2) can easily be carried out numerically,
using Newton’s method for instance. In the following, we give some analytical
results for some particular cases of demand function.

Example 1 : assume that, ∀s, t,

Frs,t(ps,t) = 1− e−α(rs,t)ps,t

with α given positive function. Following Equation (2), we have

e−α(rs,t)ps,t(1− ps,tα(rs,t)) = 0,

which gives

ps,t =
1

α(rs,t)
.

It is straightforward to check that it provides a maximum.
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Example 2 : assume now that, ∀s, t,

Frs,t(ps,t) =
(
ps,t
Ms,t

)α(rs,t)+1

with 0 ≤ ps,t ≤Ms,t. Equation (2) becomes

1−
(
ps,t
Ms,t

)α(rs,t)+1

− pα(rs,t)+1
s,t

α(rs,t) + 1

M
α(rs,t)+1
s,t

= 0,

giving
ps,t = Ms,t(α(rs,t) + 2)−1/(α(rs,t)+1).

Here too, it can be easily verified that it provides a maximum.

2.1.2 Utility linear in the reliability

In many economic applications, the utility is linear in its argument (here the
reliability) so that

Us,t(r) = Us,t + γs,tr

with γs,t translating the reliability in financial terms, as the monetary value of
a reliability unit (so that the utility increases with r) and Us,t random variable
not depending on r. Let F ∗s,t be the distribution function of random variable
Us,t (but not depending on r this time). Equation (2) becomes

F̄ ∗s,t(ps,t − γs,tr) + ps,t
∂F̄ ∗s,t(ps,t − γs,tr)

∂ps,t
= 0.

Of course, ps,t ≥ γs,trs,t since the utility is supposed to be positive (if ps,t <
γs,trs,t, increasing it to γs,trs,t would not reduce the demand).

Example 1 bis: let, ∀s, t, F ∗rs,t(p) = 1− e−αs,tp.
If we assume that ps,t − γs,tr > 0, the F.O.C. gives

e−αs,tps,t(1− ps,tαs,t) = 0,

which gives

ps,t =
1
αs,t

.

Due the form of the derivative, it provides the maximum.

Example 2 bis: following the Example 2, ∀s, t,

F ∗s,t(p) =
(

p

Ms,t

)αs,t+1

, (3)

with 0 ≤ p ≤Ms,t. the F.O.C. gives

1−
(
ps,t − γs,trs,t

Ms,t

)αs,t+1

− (ps,t − γs,trs,t)αs,t+1 αs,t + 1

M
αs,t+1
s,t

= 0,
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giving
ps,t = γs,trs,t +Ms,t(αs,t + 2)−1/(αs,t+1). (4)

which provides the maximum for the same reason than in the previous example.

In the rest of this paper, we work with demand function (3).

3 Extending the Network, based on Requests

The next step is to wonder whether and how the network can plan its topology.
The idea is the following : consider a family F of graphs such that ∀G =
(N , E ′) ∈ F , the set N of nodes is the same, but the set of links E ′ is a subset
of possible links E (E ′ ⊆ E).

Remember that for each link l ∈ E , we can choose between different tech-
nology types t ∈ T (l) (where T (l) ⊆ T ), which have different operating cost
cl(t) and probability of failure ql(t). In order to completely define a network
G = (N , E ′) in our model, we have to choose a technology type for each link
l ∈ E ′, we express this with the assignment function a : E ′ → T (where a(l)
means the technology type chosen for the l link, a(l) ∈ T (l)).

From the network point of view, the goal is to determine the topology G =
(N , E ′) (and the assignment function a) maximizing the benefits

G(G)−
∑
l∈E′

cl(a(l)).

3.1 Problem Definition

Now, we can summarize the formal problem and the notations used throughout
the rest of the paper.

Inserting in revenue equation (1) the price (4) and distribution function (3)
(F̄rs,t(ps,t) = 1− F ∗s,t(ps,t − γs,trs,t)) we have

G(G) =
∑

(s,t)∈K

λ̃s,t
µs,t

[γs,trs,t +Ms,t(αs,t + 2)−1/(αs,t+1)]
(αs,t + 1)
(αs,t + 2)

.

We then have the problem definition

Maximize
∑

(s,t)∈K

λ̃s,t
µs,t

[γs,trs,t+Ms,t(αs,t+2)−1/(αs,t+1)]
(αs,t + 1)
(αs,t + 2)

−
∑
l∈E′

cl(a(l))

(5)
where ∀s, t ∈ K and ∀l ∈ E ,

- λ̃s,t total connection demand rate

- µs,t duration rate

- rs,t reliability in G = (N , E ′)
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- γs,t utility of reliability term
- cl(t) cost of technology type t of link l, where t ∈ T (l)
- αs,t,Ms,t constants of the demand function
- a : E ′ → T assignment function, with a(l) is the technology type chosen for link l.

Solving this problem is intractable in general. Indeed, finding the optimal
topology requires the computation of the reliability of each end-to-end con-
nection, this problem being itself NP -hard. As an attempt to approach the
solution, simulated annealing could be used (see for instance [13, 23, 6]). In this
work we use an evolutionary computation method to estimate the solution.

3.2 Evolutionary Computation

The Evolutionary Computation methods are inspired by nature’s capability to
evolve, where each individual wants to be adapted in the best way to its environ-
ment. The Evolutionary Computation algorithms work with a set -population-
of solutions -individuals-. In each iteration of the algorithm the individuals are
selected and mutated, trying to improve their fitness to improve their fitness;
in a biological context, this process has been interpreted as being guided by the
goals of survival and preservation of the species.

There is a variety of different Evolutionary Computation algorithms, we can
classify them into three categories: Evolutionary Programming (proposed by
Fogel et al. in 1966 [17, 27]), Evolutionary Strategies (proposed by Renchenberg
in 1973 [33]) and Genetic Algorithms (developed by Holland in 1975 [22]).

To approach the solution of the problem of extending the network we use a
genetic algoritm. Several references [8, 9, 10, 11], to the application of genetic
algorithms in problems of reliable network design justify our selection.

3.2.1 Genetic algorithm

In every iteration of the genetic algorithm, a number of operators is applied to
the individuals of the current population to generate the individuals of the next
generation. The basic operations are crossover (where two or more individuals
are recombined) and mutation (where an individual is slightly modified). A
selection of the best individuals, based on their fitness, takes place between
two consecutive generations. An individual with higher fitness has a higher
probability to be chosen as a member of the next generation. In order to improve
the fitness of the population at each generation, it is important to preserve the
diversity of individuals, so the selection can not be very elitist.

Below is the skeleton of a simple genetic algorithm described by Goldberg
and applied in this paper (see [18] and [41] for details).

initialize parameters
pop = generate initial population
loop
selectedPop = select(pop)
crossPop = crossover(selectedPop)
pop = mutate(crossPop)
repeat until a good solution is found or a max number of generations was reached
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(a) Encoding example ‖T ‖ =

(2, 2, 2, 1, 3, 1, 3).

(b) Encoding instance X =

(1, 1, 0, 1, 0, 0, 3).

Figure 1: Encoding example.

In order to define our genetic algorithm, the following points have to be
specified: encoding, fitness function, initial population, stopping criterion, and
operators (selection, crossover and mutation).

3.2.2 Encoding and Fitness Function

Generally, in genetic algorithms, an individual (i.e. a solution) is expressed
by a fixed size string of an alphabet, called genotype or chromosome; and the
genotypes are formed of alleles (characters of the alphabet). Therefore, we need
a function in order to encode all the possible solutions in strings (and the inverse
function in order to decode). In our problem, a feasible solution is a graph where
some links, and their technology type, are selected from all possible links. Our
genotype (solution encoded) is an array of size given by the amount of edges,
where we have an allele for each possible link that can be in the network. The
alphabet of each allele is an integer between zero and the maximum number of
technology types of this link, where zero means that this link does not appear
in the solution, and other value that we use the technology type with this value
to this link.

Figure 1 shows an encoding example, where the family F of possible graphs
is represented in Figure 1(a) (where ‖T ‖ is the maximum number of technology
types for each link, i.e. a vector of |T (l)| ∀l ∈ E ) and an instance X in Figure
1(b); it is possible to see, for example, that the technology type 1 is chosen for
link 1, link 3 does not appear in the solution and the technology type 3 is chosen
for link 7.

In each generation, the genetic algorithm tries to maximize the fitness func-
tion of the population (due to the selection operation), while our problem is to
maximize the objective function (the benefits of the network, given by Equa-
tion 5); therefore, it seems natural to take the objective function as the fitness
function, but we have to look at some restrictions and considerations when
choosing it.
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The first consideration is that the fitness function can not be negative (due to
the selection operation), but the objective function can be negative if we choose
a very expensive network. Then, in order to have a positive fitness function,
we add to the objective function the maximum cost of the network (the sum of
most expensive link costs).

∑
(s,t)∈K

λ̃s,t
µs,t

[γs,trs,t+Ms,t(αs,t+2)−1/(αs,t+1)]
(αs,t + 1)
(αs,t + 2)

+
∑
l∈E

max
t∈T (l)

cl(t)−
∑
l∈E′

cl(a(l)).

(6)
Another consideration must be made: when the problem has constraints, they
are usually put inside the fitness function, like a penalization. Our problem
specification does not include constraints, so this technique is not applied here.

Finally, Goldberg [18] has introduced two problems related to utilization
of fitness function during the selection: the “indifference to the diversity” and
the “premature convergence”, the solution adopted in this work to solve both
problems, is a linear scaling of the fitness function (see [18] for details).

3.2.3 Initial Population and Stopping Criterion

The first generation, called “Initial Population” plays an important role in the
performance of the genetic algorithm. It is better to start with good solutions in
order to test the possible best individuals and to have an algorithm converging
quickly, but the Initial Population should better have enough diversity to explore
all the search space. In the simple genetic algorithm, described by Goldberg,
the Initial Population is chosen uniformly at random. In our work a genotype
of the Initial Population is chosen as follows: if a link has a zero cost technology
type, we choose uniformly between possible technology types; if it has not a zero
cost technology type, first we decide wether to add or not this link by sampling
a parametric Bernoulli random variable (the parameter is called initial rate, and
fixed at 0.8), second if the link is added, we chose uniformly between possible
technology types. In the problem of network extension there are pre-installed
links (then with zero cost) and we want to evaluate the benefit of choosing
another technology type for these links. In addition, if we have a link with
zero cost, it is always better to include it than to omit it. These reasons have
motivated this initial population method. In Section 4.2, we test other variants
for the initial population method, and evaluate their performance.

The simplest Stopping Criterion which can be used in a genetic algorithm
is to fix the number of generations; this strategy is used by most applications.
Another possibility is to continue iterating on new generations while there is
an improvement in the solution. In this work, we have implemented the two
versions and chosen one in a calibration stage (discussed in Section 4.1.1).

3.2.4 Selection, Crossover and Mutation

As previously said, selection is a process in which individuals are copied (or
die) in the next generation, according to their fitness function values f . The

10



(a) Parent encoding instance

X = (1, 1, 0, 1, 0, 0, 3).

(b) Parent encoding instance

Y = (0, 1, 1, 0, 1, 2, 0).

(c) Child encoding instance

W = (1, 1, 0, 0, 1, 2, 0).

(d) Child encoding instance

Z = (0, 1, 1, 1, 0, 0, 3).

Figure 2: Crossover example.

Selection operator may be implemented in numerous ways; in this work we use
the “roulette wheel” selection, where, for each individual, the probability of it
being in the next generation is proportional to the population total fitness fi∑

f
.

In addition, the Selection includes a simple elitism, where the best genotype of
the present population is selected directly.
Crossover and Mutation are also implemented in a simple way. In the single
point Crossover operation, two strings -the parents- of the current population
are chosen at random, and an integer position i along the strings is selected
uniformly at random between 1 and the string length less one. Two new strings
-the children- are created, in the new generation, by swapping all alleles of the
parents between positions i + 1 and length of string. Crossover is applied to
two randomly selected strings with a probability pc (if this does not happen,
the parents are copied exactly to the next generation).

For example, if we cross X = (1, 1, 0, 1, 0, 0, 3) and Y = (0, 1, 1, 0, 1, 2, 0)
(shown in Figures 2(a) and 2(b)) in position 3, we have the two children W =
(1, 1, 0, 0, 1, 2, 0) and Z = (0, 1, 1, 1, 0, 0, 3) (shown in Figures 2(c) and 2(d)).
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(a) Parent encoding instance

X = (1, 1, 0, 1, 0, 0, 3).

(b) Child encoding instance

X′ = (1, 1, 2, 1, 0, 0, 0).

Figure 3: Mutation example.

X = (1, 1, 0 1, 0, 0, 3)
Y = (0, 1, 1 0, 1, 2, 0)
W = (1, 1, 0 0, 1, 2, 0)
Z = (0, 1, 1 1, 0, 0, 3)

The Mutation operator explores new solutions, introducing changes in the pop-
ulation to diversify the search. A genotype mutation is a random alteration
of all its alleles with mutually independent probabilities pm. All alleles of all
genotypes of the population can be mutated. In the simple mutation opera-
tor, described by Goldberg, the alleles are mutated uniformly at random, that
means that there is not difference in treatment between zero (the link is not
present in the string) and other values (the link is present in the string). Taking
into account our encoding schema, this introduces a bias towards the presence
of links in the solution; an alternative is to consider other mutation operators
where the zero values are treated in a different way than the rest. In Section
4.1.2, we test one such variant of mutation operation, and we show that it has
worse performance than the standard simple mutation.

Continuing with the example, suppose that we mutate X = (1, 1, 0, 1, 0, 0, 3)
in the positions 3 and 7, a possible new solution is X ′ = (1, 1, 2, 1, 0, 0, 0) (shown
in Figure 3). In this new solution, there is not link to node d, perhaps the
demand in-out of this node does not justify the costs of its connection.

An important remark has to be pointed out: the problem has very simple
constraints, and our operations preserve the feasibility of the solutions. This is a
nice feature of the problem, as feasibility is especially hard to maintain for graph
problems because the operations tend to disrupt the GA solution encoding.

3.3 Computation of Network Reliability

The main assumption of this work is that the pricing scheme is based on connec-
tion reliability; our genetic algorithm needs to compute the network reliability
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many times, therefore, we need to compute it efficienctly. The problem of calcu-
lating the reliability of each end-to-end connection is NP-hard, and it is in itself
one active area of research. There are three main approaches: exact calcula-
tion, upper and lower bound expressions and efficient simulation. In our work,
the network reliability is estimated with crude Monte Carlo simulation (see for
instance [35, 20]) and with the Generalized Antithetic Variable method pro-
posed in [14]. The Generalized Antithetic Variable algorithm performs better
in computational time and in precision than the crude Monte Carlo technique,
particularly in the case of highly reliable systems, therefore our final method
uses this estimation.

3.3.1 Basics

In our model, we consider the network as a graph, G = (N , E ′). In this section
we suppose that the technology type for each link has been chosen previously
(this is the case, as before evaluating each topology we decide the links and
their type), and (without loss of generality), we will not explicitly denote it in
our notation. In this case, we can define a binary random variable xl for each
link l, called the state of the link: xl = 0 means that the link l is down (failed)
and xl = 1 means that the link works perfectly. The probability of failure is
ql = Pr(xl = 0). The state of the network is completely characterized by the
vector X whose components are the xl’s. The 2-terminal reliability measure of
the network is needed in our model, from a general point of view, we can fix
two nodes s and t and formalize this measure as a binary function Φ, called the
structure function. Φ(X) = 1 if and only if s and t are connected in the graph
defined by X. Finally, we will denote by rs,t the 2-terminal reliability measure
between s and t, and that is rs,t = Pr(Φ(X) = 1) = E(Φ(X)).

The Simple Monte Carlo technique consists of generating N independent
state samples X1, ..., XN and evaluate the reliability rs,t by the unbiased esti-
mator

r̂s,t =
1
N

N∑
n=1

Φ(Xn).

In order to estimate the variance of this estimator we use the unbiased estimator

v̂ =
r̂s,t(1− r̂s,t)

N − 1
.

3.3.2 Generalized Antithetic Variable method

Instead of generating N independent samples (like standard Monte Carlo), the
Generalized Antithetic Variable method generates B independent blocks of L
samples each one (notation: X(b,1), ..., X(b,L) samples of block b). The L samples
of a block are chosen in a dependent way that decreases the global variance
(respect to the standard Monte Carlo). In order to estimate the reliability rs,t
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we use the unbiased estimator

r̂s,t
′ =

1
B

B∑
b=1

(
1
L

L∑
l=1

Φ(X(b,l))

)
.

To estimate the variance V AR(rs,t) we use the unbiased estimator

v̂′ =
1

B(B − 1)

B∑
b=1

(
1
L

L∑
l=1

Φ(X(b,l))

)2

− 1
B − 1

r̂s,t
′2
.

In order to apply our genetic algorithm, we need the 2-terminal reliability be-
tween any pair of terminals s, t ∈ K. We use the same samples to estimate
all needed reliabilities rs,t : ∀s, t ∈ K at the same time. This introduces a co-
variance between reliability estimators. Suppose that the structural function
of the 2-terminal reliability between s′ and t′ is Φ′, therefore, we estimate the
covariance COV (rs,t, rs′,t′) with the unbiased estimator

ĉ′ =
1

B(B − 1)

B∑
b=1

(
1
L2

L∑
l=1

Φ(X(b,l))
L∑
l=1

Φ′(X(b,l))

)
− 1
B
r̂s,t
′
r̂s′,t′

′
.

This method has been introduced as a generalization of the dagger sampling
algorithm [26]. In dagger sampling, the simulations were always made with the
maximum possible value of L, called Ld. If we suppose that ∀l ∈ E , ql ≥ 0.5
then Ld is the least common multiple of the b 1

ql
c’s. For example, if we work

with failure probabilities: 0.1, 0.01 and 0.0001 (like our following validation
example), the maximum L value is Ld = 10.000.

4 Numerical Illustrations

In this section, we evaluate the performance of the proposed algorithm by means
of various examples. The performance is taken in the sense of effectiveness and
efficiency, where effectiveness means to be close to the optimal solution, and
efficiency means computational effort.

4.1 Experimental Design

In our simulations design, the outcomes of an experiment are called the response
variables, the factors that affect the response variables are called parameters
and the possible values of that parameters are the levels. The experimentation
consists in two main steps: calibration and validation. The goal of calibration
is to find “best levels” for the parameters, and the goal of validation is to study
the performance of the method with more detail. The calibration is made using
random graph topology problems, and the validation with the experimental
VTHD network [1].
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The calibration runs were executed on a SunFire 280R, with two 1.2 GHz
UltraSPARC III Cu processors, 2 GB of main memory, and SolarisTM 8 operat-
ing system. The validation experiments were computed on a Sun SPARCcenter-
2000, with sixteen processors, 4 GB of main memory, and SolarisTM 8 operating
system.

4.1.1 Random graph topologies

In the calibration stage we work with 10 randomly chosen problems (shown in
Appendix 6). For each problem, we evaluate the following parameters: muta-
tion rate pm, crossover rate pc, population size P , generation number G (and
“stopping criterion”), Monte-Carlo block size B and value L. The possible levels
for these parameters are shown in Table 1.

Parameter Levels
B 50 100 200
L 3 50 100
P 50 100 150
pc 0.75 0.85 0.95
pm 0.001 0.005 0.01
G ≤ 200

Table 1: Parameter levels in the calibration stage.

In each simulation only one parameter varies, the default initial level for
each parameter are shown in Table 2.

Parameter Default Level
B 100
L 50
P 100
pc 0.85
pm 0.003
G 50

Table 2: Default parameter levels in the calibration stage.

There are other parameters that could be considered, for example, initial rate
(fixed at 0.8) and scaled fitness factor (fixed at 2), but, intending to decrease
the number of simulations, we did not consider them.

For the parameters pm, pc, P , and G, the response variables are: optimal
value, computational time and convergence rate. The Monte-Carlo parameters
(B and L) are calibrated in a different way: we only consider a trade-off between
computational time and the estimation uncertainty.

The first simulations are used to calibrate Monte-Carlo parameters. Increas-
ing the parameters B and L results in a better reliability estimation (at the cost
of a higher computational time). Also, when the reliability is either very high
or very low (like can happen in bigger problems), it is necessary to use large
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values for parameters B and L. On the other way, the optimum L parameter
value depend directly of all failure probabilities ql(t). In [14] it is shown that in
highly reliable systems, the use of high values of L does not give us an important
variance reduction (and it takes more computational time). We have evaluated
the variance reduction on problems with different sizes and different reliability
performances. Our conclusion is that if we work with problems involving ap-
proximately 30 nodes and 40 links, and probability of failure greater than 0.01,
an acceptable trade-off is B=100 and L=50. This is extensively discussed in
Subsection 4.3 (Table 8 displays the average time of reliability computation).

With the others parameters we evaluate each level for each calibration prob-
lem, and select the one with the best average behavior (in the sense of optimal
results) and which does not need a “too large” computational time. We work
as follows: we run the 10 calibration problems, varying only one level of each
parameter respect to the default initial level shown in Table 2. For each level,
we summarize in Table 3 the 10 solutions in an average relative error, an average
execution time and an average best iteration (iteration where the best solution
is found). The error is the relative difference between the solution and the best
known solution shown in Table 9.

Average Average Average
Parameter Level Relative Time Best

Error (%) (min.) Iteration
50 2.67 28.30 42

P 100 0.79 46.58 38
150 0.75 71.96 40

0.75 1.28 80.92 39
pc 0.85 0.79 74.94 38

0.95 0.57 83.68 44
0.001 1.69 28.74 40

pm 0.005 0.94 33.30 36
0.010 0.51 34.54 36

50 0.79 46.58 38
G 200 0.49 87.39 125

Quality 1.64 21.27 28

Table 3: Average solutions for each level. Result of run the 10 calibration problems, varying
only one level of each parameter, respect to the default initial level. For each level, the 10
solutions are summarize in an average relative error, an average time and an average best
iteration. Time is in minutes, and the Error is relative difference between the solution and
the best known solution.

It is possible to see that time increases proportionally with the population
size P , but that the gain in relative error when P goes from 100 to 150 does not
justify the increased time. Therefore, we choose P = 100. As we expect, there
is a little difference in execution time between the different levels of pc and pm.
For these parameters we choose that that has less relative error, i.e. pc = 0.95
and pm = 0.01. In general is not advisable to use a very high mutation rate,
because, in this situation, noise is added to the solutions and the algorithm can
not converge to good solutions. We think that pm = 0.01 is a relatively high
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value, which has nonetheless shown good performance for our test cases (see the
convergence in Figure 6).

In the simple genetic algorithm, the number of generations is fixed, this is
the simple “Stopping Criterion” used in most applications, which we will call
the ”Quantity Stopping Criterion”. Another possibility is iterating on new gen-
erations while there is an improvement in the solution, this we call the ”Quality
Stopping Criterion”. Using more generations means the algorithm has more
time to find good solutions. But the computational time grows linearly with
the number of generations, so that this is an important limitation. The prob-
lem with the ”Quality Stopping Criterion” we used is that, for some instance
problems, it finishes prematurely. To avoid this problem, we use the ”Quantity
Stopping Criterion”, and we choose a generation value G = 100.

Final calibrated level for each parameter are summarized in Table 4.

Parameter Calibrated level
B 100
L 50
P 100
pc 0.95
pm 0.01
G 100

Table 4: Final parameter levels in calibration stage.

4.1.2 VTHD: Very High Broadband IP/WDM test platform

The VTHD (Very High Broadband IP/WDM test platform) network is a French
project, whose main goal is to investigate the applications of a new generation
of Internet and Intranet networks [1]. In our context it is a pictorial simple ap-
plication of our method. The VTHD network uses two main technologies types
for its links: the backbone part of the network uses a IP/WDM architecture,
with STM1/4 and STM16 links (in this work we suppose a probability of failure
of 0.01 for this links); the access part of the VTHD network uses Giga-Ethernet
links (with a probability of failure of 0.1).

To the actual network (shown in Figure 4(a)), we add some possible links to
the backbone (dotted lines in Figure 4(b)), and simulate the genetic algorithm
in different situations. Especially, we use our method in three different scenes.
The three problems have the same specification (the same parameters of the
demand, utility, etc.), but they differ in the possibilities of network extension.
In the first problem (called VTHD1), we evaluate the benefits of extending the
backbone of the network with five strategic links (dotted lines in Figure 4(b)),
the best solution of this problem is easily known because the network extension
has only 32 possibilities. The second and third problems (called VTHD2 and
VTHD3 respectively) add in addition the possibility of upgrading the access
network with IP/WDM links. The difference between these two problems is
the cost of the new possible access links (in VTHD2 problem we use reasonable
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costs, and in VTHD3 problem we consider very high costs for these upgrades).
It is very hard to evaluate the optimal solution for these two problems because
they have too many possibilities (exactly 225 possibilities). The full specification
of the three problems is given in Appendix 7.

The performance metrics (response variables) in this stage are: computa-
tional time, convergence rate and obviously optimal approach.

The difference in execution time between the three problems is not signifi-
cant. Each mutation takes in average only 2.72 milliseconds, and each crossover
takes 0.10 milliseconds. The mutation and the crossover are often executed in
the execution of a genetic algorithm (exactly 10000 times the mutation and
5000 times the crossover, because we have a population of size 100, and 100
generations of evolution). The selection operator needs the fitness of the popu-
lation to be computed, therefore, before each selection, we have to calculate the
fitness of the new individuals, that implies a reliability estimation. A reliability
estimation takes in average 12,86 seconds, the consequence is that the algorithm
execution time is approximately 36 hours 1. The execution time can be dras-
tically reduced if we change the reliability evaluation method (this is discussed
in Section 5).

For the VTHD1 problem, the best genotype is found in the 25th generation,
and its benefit is 1483.75. This genotype corresponds to the exact solution of
the problem, which was known in advance.

For the VTHD2 and VTHD3 problems, we have a bound of the best benefit,
because the exact solution of VTHD1 is applicable to these problems. In the
VTHD2 problem, the solution found is similar to the VTHD1 bound, with
the same backbone and where some links of the access network upgraded with
IP/WDM technology type; exactly 13 of these links are upgraded. The benefit is
1533.86, with an overall cost of 130. We know a better solution for the VTHD2
problem (which was obtained in one of a set of exhaustive tests), this best known
solution has a benefit of 1543.45, with a cost of 100.00.

The genetic algorithm has a good performance in the VTHD3 problem, ob-
taining a solution with a benefit of 1483.75. This solution is the the best known
solution for this problem, and corresponds to the VTHD1 optimum (remember
that we used very high link costs in this problem, this means that we expect
there will be no upgrade in the access network). Table 5 summarizes the prin-
cipal results, and Figure 5 shows the solution found for the VTHD1, VTHD2
and VTHD3 problems.

The convergence of the population fitness throughout the execution of a
genetic algorithm is very important, because it can not be very slow (to avoid
the need of a long execution and the indifference to the diversity) and it cannot
be very fast (to avoid a premature convergence and to preserve a diversity
of individuals). In Figure 6 we show the evolution of the average fitness and
best fitness of the population, and we consider that the selected parameters in
calibration give us a good balance in the convergence.

1Remember that the validation is made in a Sun SPARCcenter-2000, if we execute these
problems in a SunFire 280R the execution time would be approximately 4 hours.
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(a) VTHD Network, translation between node ids and places.

(b) VTHD Network, model with possible extended links(dotted lines). Red

(dark) nodes are terminals

Figure 4: Validation Problem: Very High Broadband IP/WDM test platform [VTHD].
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(a) VTHD1 Solution.

(b) VTHD2 Solution.

(c) VTHD3 Solution.

Figure 5: Validation Problem Solutions. Dotted lines represent the access links that upgrade
the technology type in the solution. 20



(a) Average Benefit Convergence in Evolution.

(b) Best Benefit Convergence in Evolution.

Figure 6: Benefit Convergence in Evolution. In each generation, we display the average
benefit of the generation (a), and the best benefit of the generation (b).
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Problem Best Known Best Maximum Cost Benefit
Revenue Fitness Cost

VTHD1 1483.75 1643.75 160.00 0.00 1483.75
VTHD2 1543.45 1903.86 370.00 130.00 1533.86
VTHD3 1483.75 3743.75 2260.00 0.00 1483.75

Table 5: VTHD Problem Solutions. The maximum cost of the network is the sum, for all
link, of most expensive technology type costs. The Benefit is our objetive function (5).

4.2 Other alternatives for generating the Initial Popula-
tion

The Initial Population plays an important role in the performance of the genetic
algorithm, and particularly in its convergence. It is better to start with good
solutions in order to test the possible best individuals and to have a quickly
convergent algorithm, but the Initial Population needs also sufficient diversity
to explore all the search space. A simple trade-off is to start with good solutions
and add a random noise to each one.

As described in Section 3.2.3, we devise an Initial Population construction
method (named P2) which consists in building individuals by considering in turn
each link. If this link has a technology type of zero cost, we choose uniformly
between possible technology types; if it has not a zero cost technology type, first
we decide to add or not this link by sampling a parametric Bernoulli random
variable (the parameter is called initial rate, and fixed at 0.8), second if the link
is added, we choose uniformly between possible technology types. The resulting
individuals in the population will always include the links which can be used at
zero cost (but maybe with a different technology type).

We have tested other Initial Population methods. The simple random method
(denoted P0) consists in choosing uniformly at random for each link its allele
value, independently from any other information; then, individuals might not
include links which have zero cost. The last method (denoted P1) is based in
the assumption that it is always better to use the installed (zero cost) links,
because they will give better reliability and therefore better revenue. Therefore,
to generate the individuals in the Initial Population we first include all zero-cost
links, and we choose uniformly at random the allele values for the rest of the
links.

Table 6 shows the tested Initial Population methods, the average population
fitness, its standard deviation, and two diversity metrics. Both metrics compute
the diversity as the average “difference” between individuals in the population.
In the case of the first metric, called “link diversity”, we define the difference
between the individuals as the number of links which are present in one of the
individuals annot in the other (normalized by the total number of feasible links).
In the case of the second metric, called “technology diversity”, we define the
difference between the individuals as the number of links which are present in
one of the individuals and not in the other, or which being present in both
individuals, have different technology types (always normalized by the total
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number of feasible links).

Initial
Population Average Standard Link Technology

Method Fitness Deviation -diversity -diversity
VTHD1

P0 1017.09 220.95 0.33 0.33
P1 1526.86 30.94 0.04 0.04
P2 1525.08 30.95 0.04 0.04

VTHD2
P0 1241.72 212.4 0.31 0.47
P1 1735.09 33 0.04 0.04
P2 1745.84 33.96 0.04 0.29

VTHD3
P0 2333.42 239.48 0.31 0.47
P1 3625.09 33 0.04 0.04
P2 2705.24 194.84 0.04 0.29

Table 6: Initial Population methods, the average population fitness, its standard deviation,
and two types of diversity metrics.

As can be observed, method P0 always results in much lower values for the
average fitness of the initial population, with high values of diversity. Methods
P1 and P2 obtain very similar values for the average fitness, except for the
last test case (VTHD3). As the methods are similar, they obtain the same link
diversity values; but method P2 has better technology diversity in the generated
populations. The evolution operators (selection, crossover, mutation) define the
evolution and the convergence of the method (defining the solution quality).
There is an equilibrium between the evolution operators and the quality of
initial population. For example, if we use a very good initial population and
highly disruptive evolution operators, it is possible that the population will
evolve to worsen its fitness.

Figure 7 shows a case where this phenomenon can be observed, with the new
Initial Population method P1, without elitism, and a very disruptive mutation.
As the Initial Population method gives good quality individuals, the first gen-
erations have a good benefit, but after a few generations the population fitness
stabilizes or degrades, particularly in the problem with costly links (VTHD3).

The results of additional tests showed that methods P1 and P2 were better
than method P0; and that in some cases, method P1 resulted in the behavior
previously mentioned, while method P2 was more robust (we think due to its
improved diversity).

4.3 Knowledge Uncertainty Effect

The simulations of calibration and validation are based on the assumption that
we have the exact specification of the problem. In general, it is very difficult to
know with certainty all the input data of a problem, specially if we work with
inputs like the potential demand of a service. In this section we study the effect
of imperfect knowledge about input data, that we call “knowledge uncertainty”.
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Figure 7: Best Benefit Divergence in Evolution. Bad selection of Initial Population method
and evolution operators.

Especially, we want to see the effect of the following factors: demand function
(parameters Ms,t and αs,t, ∀s, t ∈ K), reliability (parameters γs,t, ∀s, t ∈ K)
and cost (parameters cl(t), ∀l ∈ E ,∀t ∈ T (l)), over the solution of the problem.
In addition, in order to get a better idea of the robustness of our method, we
show the effect of the random seed over the decision problem.

Generally, the uncertainty of the input data consists of several components,
most of them being unknown and difficult to model. In this work, we consider
a simple approach, we add a uniform noise to the input data, and we observe
the effect of this noise in the solution.

We have run a set of simulations to see the effect of each factor (demand
function, reliability, cost, and random seed). In the demand function simula-
tions, for each pair of terminals s, t ∈ K, we perturb the parameters Ms,t and
αs,t of the demand function (3) with a uniform distribution between the half and
the double of the true value (being true the parameter of the original problem).

We work in the same way with the cost computation simulations, where for
each technology type t of each link (with cost greater than zero) l ∈ E , we
perturb the cost cl(t) with a uniform distribution between the half and the
double of the true value.

To evaluate the effect of uncertainty in the reliability, we use the fact that
in the fitness function (6) the reliability rs,t between two terminals s, t ∈ K is
multiplied by factor γs,t. Therefore, we perturb γs,t with a uniform distribution
between the half and the double of the true value, which also can be interpreted
like if we perturb the “importance” of reliability to the provisioning of the
service.

Finally, in order to see the effect of the random seed, we simulate the same
problem with several seeds.

The results of each set of simulations are summarized in Table 7. It can
be observed that the impact of uncertainty is low (considering that we perturb
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Effect
Evaluated Factor Average Standard Average

Best Fitness Deviation (%) Difference in Links
demand function 1657.5842 0.61 2.67
cost computation 1649.0169 2.32 2.83

reliability 1951.1011 5.88 4.50
random seed 1620.1055 1.04 3.33

Table 7: Knowledge Uncertainty Effect: four sets of simulations (each one with 5 simula-
tions). In each set we perturb a parameter with a uniform distribution and evaluate the effect
on the solution. We display the standard deviation of solution fitness value, and the average
difference in links, that is the average number of different links between any solution pair of
the set (the different links of a solution pair are those links that appear in only one of the two
solutions).

so much the inputs), except when we modify the γs,t parameters (reliability
importance). The reliability estimation uncertainty changes a lot the fitness of
the solution (in average 1951.1011 with a standard deviation of 5.88%), therefore
our decision of network extension can be wrong (in average, each solution has
4.5 absolute different links than other solution). This makes sense, because our
assumption is that the provisioning of the service is only based on connection
reliability.

In addition to the uncertainty on the γs,t parameters, this problem has a
further difficulty: we have an error in the reliability computations. We then run
another test to quantify what happens with the error in reliability estimation.
The fitness function considers the reliabilities as parameters, therefore the law
of propagation of uncertainty (see for instance [37]) can be applied to the fitness
function to have an estimation of his uncertainty (uncertainty based on errors
of the reliability computations). From the generic antithetic algorithm (used to
estimate the reliability) we have an unbiased estimator of the variance VAR(rs,t)
and covariance COV(rs,t, rs′,t′) (for details see [14]). In this statistical approach,
the fitness variance is the power of two of the uncertainty, in this case: the
variance propagation is given by

VAR (f(r)) =
∑
s,t∈K

(
∂f

∂rs,t

)2

VAR(rs,t)+
∑

s,t,s′,t′∈K

(
∂f

∂rs,t

)(
∂f

∂rs′,t′

)
COV(rs,t, rs′,t′).

(7)
Table 8 and Figure 8 show the fitness uncertainty resulting from the reli-

ability calculations for different values of the general antithetic algorithm pa-
rameters. It shows that the average of uncertainty of fitness function in all
the execution of our instance problem. It can be seen that for our chosen pa-
rameters (B = 100, L = 50) there is an average uncertainty of 3.08% (44.96
in absolute value), that for example is equivalent to the cost of four links of
VTHD3 problem. As we expect, increasing the parameter values B and L re-
sults in a better reliability estimation (at the cost of a higher computational
time). The decision of working with parameter values B = 100 and L = 50
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is based principally in the computational time cost: we calibrate our genetic
algorithm with 100 generation of a population of 100 individuals, it means that
the reliability estimation run 10.000 times in a problem execution (in our test
machine, the total execution time of VTHD1 problem is 4.95 hours 2, see Table
8). Using larger parameter values diminishes the fitness estimation uncertainty,
but at the cost of prohibitive time execution. An important remark must be
pointed out: the computed fitness uncertainty is only an upper bound of the
uncertainty of the method, because our formulae do not consider that, with a
very high probability, the fitness of an individual is calculated more than one
time during the execution (that indirectly implies a variance reduction). The
set of simulations with different random seeds is another way to see the global
impact of uncertainty, and as we expect it is smaller than the previous statis-
tical approach. A refinement of the trade-off between uncertainty in genetic
algorithm and reliability estimation is out of the scope of the present work.

Average Fitness Average Fitness Average Fitness Total
Parameters Uncertainty Porcentage Computation Execution

(
√

VAR) Uncertainty (%) Time (ms) Time (hs.)
B=100,L=50 44.96 3.08% 1782 4.95
B=500,L=50 9.52 0.66% 8991 24.98

B=1000,L=50 4.80 0.32% 17940 49.83

Table 8: Fitness Function Uncertainty resulting from reliability estimation in all the execu-
tion of VTHD1 problem.

5 Conclusions and Future Work

In this paper, we study a new pricing scheme based on connection reliability.
Defining a new charging scheme for telecommunication networks has become a
hot topic in the scientific community. The main reasons to do that are: the
exponential growth of the traffic creates congestion, and that new applications
has different quality of service (QoS) requirements.

Due to the congestion problem, a service differentiation has to be devised,
like in IntServ or Diffserv architectures. A pricing scheme has to be attached
to it, otherwise each customer will choose the best available service class. In
a radically opposed way, based on the growing idea that with the introduction
of optic fiber, the backbones will be over-dimensioned, so that congestion will
not occur. We propose here to study the charge of the network access based on
connection reliability.

In our new charging scheme, the price for each connection between a source s
and a destination t depends on the reliability of the connection between s and t.
Of course demand is also varying with this price, so that the goal of the network

2The uncertainty effect is made in a SunFire 280R (like in the calibration step), with two
1.2 GHz UltraSPARC III Cu processors, 2 GB of main memory, and SolarisTM 8 operating
system.
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(a) B=100,L=50.

(b) B=500,L=50.

(c) B=1000,L=50.

Figure 8: Uncertainty distribution (%) over Fitness Function in all the execution of VTHD1
problem. 27



is to set up a price that maximizes its revenue. In a second stage, the problem is
to extend an already existing network in order to increase the service provider’s
revenue. Solving this problem is intractable in general. Indeed, finding the
optimal topology requires the computation of the reliability of each end-to-end
connection, this problem being itself NP -hard. In this work we attempt to
approach the solution with a genetic algorithm.

In general, the Genetic Algorithm method is a flexible iterative technique,
where it is possible to finish the algorithm at a wished time and still have a good
solution. The flexibility is given by some few calibrated simple parameters, for
example, if we increase the population size or the generation number we can
improve the effectiveness, with a cost of efficiency. These points make the GA
an attractive metaheuristic to solve hard problems, like the network design based
on price charging.

We calibrated and we validated the performance of the proposed algorithm
by means of various examples. The performance is taken in the sense of effec-
tiveness (i.e. near of the optimal one) and efficiency (i.e. computational effort).
In the calibration stage we worked with 10 randomly chosen problems, and we
defined the parameters of the genetic algorithm. The final level for each parame-
ter are chosen with relative simplicity, because all the calibrated parameters had
an clear impact on the performance of the solutions. To validate our method,
we run three problems inspired by the VTHD (Very High Broadband IP/WDM
test platform) network. One of the problems tries to extend the network with
the election of some possible backbone links. The optimal solution to this prob-
lem can be easy found. The other two problems, with a bigger solution search
space, also can upgrade the access network technology of some access link. The
genetic algorithm found the optimal solution to the first problem, and a very
good solution for the other ones.

The fitness evaluation is very hard because it needs a reliability estimation,
in our work, it is estimated with the General Antithetic Variable method. Our
GA evaluate the fitness a lot of times, therefore an important improvement
can be made if we diminished the evaluation execution time or the numbers of
evaluations. These can be made in different ways:

- We can use another method to the reliability estimation, for example an
efficient upper bound expression. This approach is interesting because
it can introduce the Service Level Agreement, based in reliability, in a
natural way.

- During the execution of the GA it is highly probable that some reliability
estimation was done more than one time. To avoid this situation, and
increase the algorithm performance we can use the previous computed
reliability estimations. Going beyond, it is possible to imagine a heuristic
method or a problem reduction method to quickly estimate the reliability
from previous computations.

- We can reduce the problem of reliability estimation if we eliminate the
final links of our topology (typically the access network) and we calculate
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the reliability of the access node to other nodes, only multiplying the
probability of failure of the final link by the reliability found in the reduced
problem.

- Another interesting approach is to have an decremental error in the re-
liability estimation. For example, we can increase the sample size of the
General Antithetic Variable method in later generations.

In all cases, it is important to evaluate the impact of the reliability estimation
error. We evaluate the standard deviation of the fitness function resulting from
reliability estimation in all the execution of our validation problem, and we ob-
serve that it is high for some of our instance problems. The computed fitness
standard deviation is an upper bound of the uncertainty of the GA method,
because, with a very high probability, the fitness of a individual is calculated
more than one time in the all execution (that indirectly implies an important
variance reduction). A refinement trade-off between uncertainty in genetic al-
gorithm and reliability estimation exceeds the present work, but it is important
in order to have a robust method.

In general, it is very difficult to know with certainty all the input data of
a problem, especially if we work with inputs like the potential demand of a
service. In order to quantify the effect of imperfect knowledge about input data
we made some additional simulations. Especially, we observed that the impact
of uncertainty in the demand function parameters and cost parameters is low,
but it is high respect to the reliability parameters (γ parameters). This makes
sense, because our assumption is that the provisioning of the service is only
based on connection reliability. Therefore, to apply our pricing schema, it is
important to know as precisely as possible the clients reliability valuation and
to have a very good reliability estimation.

As far as we know, this is the first experimental study that employs a pricing
schema based in reliability. There are some future work and research directions:

- To use other GA variants. Particularly: double point crossover, dynamic
mutation (to avoid stable evolution) and advanced elitism.

- Define the GA parameters according to the instance problem. For ex-
ample, increase the number of generations and population size with the
number of edges in the network.
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6 Appendix: Calibration Problems

In the calibration stage we work with 10 randomly chosen problems. The num-
ber of nodes |V |, terminals |K| and edges |E| are shown in Table 9. Also, in
this Table we display the best known solution for each problem (that is used to
calculate the relative error of a solution).

The Figures 9 and 10 show the topology of the 10 problems.

Problem Best known
No. |V | |K| |E| solution
1 10 7 11 9.2011
2 14 3 13 11.3057
3 18 6 17 28.5912
4 20 6 16 26.4200
5 13 6 12 36.1494
6 16 7 14 15.7550
7 18 5 18 18.5863
8 10 5 13 12.3404
9 18 5 11 18.3268
10 14 7 10 37.4170

Table 9: Best known solutions.

7 Appendix: VTHD Problem

As we show in Section 4.3, the problem is sensitive to parameter values, specially
to the reliability cost γs,t. To understand the solutions given by our method in
Section 4.1.2, is important to have a completely specification of the problems.
In this Section, we specified the valitadion problems: VTHD1, VTHD2 and
VTHD3.

The Table 11 show the parametes: γs,t, αs,t, Ms,t, λs,t and µs,t ∀s, t ∈ K.
The network topology is in Figure 4, and the cost and probability of failure of
each technology type of each link is in Table 10.
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(a) Random Case 1. (b) Random Case 2.

(c) Random Case 3.

(d) Random Case 4.

(e) Random Case 5.

Figure 9: Calibration Random Problems.

34



(a) Random Case 6.

(b) Random Case 7. (c) Random Case 8.

(d) Random Case 9. (e) Random Case 10.

Figure 10: Calibration Random Problems (Cont).
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Problem
Edge VTHD1 VTHD2 VTHD3

Technology Types Technology Types Technology Types
s t cost - reliability cost - reliability cost - reliability cost - reliability cost - reliability cost - reliability
0 1 0.00 0.9999 - - 0.00 0.9999 - - 0.00 0.9999 - -
0 2 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
0 3 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
0 4 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
1 2 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
1 5 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
1 18 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
1 19 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
1 20 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
1 21 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
1 22 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
1 23 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
1 24 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
2 3 20.00 0.9900 - - 20.00 0.9900 - - 20.00 0.9900 - -
2 7 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
2 25 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
2 26 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
3 7 30.00 0.9900 - - 30.00 0.9900 - - 30.00 0.9900 - -
3 9 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
4 5 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
4 10 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
4 11 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
5 6 50.00 0.9900 - - 50.00 0.9900 - - 50.00 0.9900 - -
5 7 40.00 0.9900 - - 40.00 0.9900 - - 40.00 0.9900 - -
5 12 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
5 14 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
5 15 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
5 16 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
5 17 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
6 7 20.00 0.9900 - - 20.00 0.9900 - - 20.00 0.9900 - -
6 8 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
6 27 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
6 28 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
6 29 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
7 8 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
7 34 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
7 35 0.00 0.9900 - - 0.00 0.9900 - - 0.00 0.9900 - -
8 30 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
8 31 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
8 32 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
8 33 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900
12 13 0.00 0.9000 - - 0.00 0.9000 10.00 0.9900 0.00 0.9000 100.00 0.9900

Table 10: VTHD Problem Specifications. Edges and Technology types.
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Terminals Utility of Demand Connection and
reliability parameters duration rates

s t γs,t αs,t Ms,t λs,t µs,t
9 10 5.57300 79.86713 0.34911 0.66716 0.02633
9 12 0.42260 86.72620 0.51328 0.70939 0.61642
9 18 7.65040 99.73000 0.12610 0.99542 0.97359
9 19 4.27530 60.51875 0.32188 0.80431 0.32188
9 20 2.86620 82.64264 0.32080 0.39863 0.24169
9 22 9.12560 48.05131 0.87071 0.94101 0.93250
9 25 0.00000 1.10343 0.90418 0.84078 0.34842
9 29 1.61930 99.73000 0.16544 0.95078 0.92381
9 30 2.94250 34.84239 0.92921 0.47670 0.19688
9 35 3.57270 34.51328 0.52000 0.96918 0.86726
10 12 0.00140 76.77875 0.34513 0.80824 0.71376
10 13 5.94450 83.19955 0.52899 0.96962 0.87071
10 14 2.24660 49.71011 0.14489 0.96418 0.81394
10 15 3.92130 40.10529 0.26009 0.90409 0.80929
10 18 3.21880 97.07513 0.04707 0.91167 0.41288
10 21 9.75860 51.99998 0.18848 0.92981 0.62229
10 22 0.00140 18.84777 0.84969 0.73442 0.34513
10 23 4.12880 80.74945 0.41040 0.86426 0.84403
10 24 3.77480 92.18798 0.43695 0.83705 0.43695
10 25 4.81170 14.48915 0.16193 0.71789 0.40105
10 26 9.31840 4.75389 0.52190 0.20095 0.17677
10 30 2.41690 4.77025 0.48051 0.95741 0.93806
10 31 7.02550 1.28316 0.78549 0.35412 0.04754
10 33 4.36950 56.36716 0.50230 0.92079 0.87398
10 34 3.49110 22.46565 0.76779 0.86787 0.33971
11 12 5.02300 79.86713 0.43695 0.73587 0.08306
11 16 2.86480 28.64770 0.04700 0.92892 0.91483
11 18 4.36950 33.97149 0.45396 0.47584 0.19469
11 19 1.44890 23.89434 0.60452 0.63592 0.39213
11 20 9.66790 91.48283 0.41922 0.92721 0.78549
11 22 9.97300 37.50990 0.07659 0.06577 0.09900
11 23 2.86480 34.85503 0.52000 0.97999 0.24226
11 24 8.03320 84.40318 0.29602 0.22600 0.18737
11 26 0.48230 45.39644 0.08580 0.50473 0.40044
11 27 3.30070 93.25021 0.89656 0.82819 0.81394
11 30 4.12880 34.84566 0.66066 0.21546 0.17677
11 34 4.97100 41.38052 0.52190 0.97561 0.07659
11 35 1.69670 68.82781 0.05925 0.38793 0.35727
12 14 1.76770 55.72996 0.65816 0.17106 0.04754
12 17 2.06960 80.92918 0.00001 0.38239 0.23894
12 18 6.58160 19.25662 0.33007 0.92889 0.89656
12 24 0.19880 41.04035 0.51328 0.74346 0.62229
12 26 5.13280 76.77875 0.13604 0.92565 0.92188
12 28 8.26430 87.39822 0.48117 0.35145 0.11306
12 33 9.29210 37.74779 0.71964 0.93833 0.09522

Table 11: VTHD Problem Specifications.
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13 14 8.15690 19.46903 0.23230 0.86173 0.52000
13 16 6.04520 71.14193 0.70255 0.77283 0.28662
13 18 4.27530 2.93715 0.09522 0.71475 0.51328
13 25 9.31840 14.37777 0.07659 0.53378 0.35617
13 26 6.05190 71.06016 0.16193 0.38078 0.14489
13 32 3.53990 5.92468 0.96679 0.95639 0.29602
13 33 2.42260 62.22918 0.31237 0.50327 0.15263
13 34 9.21880 41.28762 0.09179 0.99893 0.99730
14 22 2.05750 79.86713 0.63717 0.81457 0.68417
14 23 1.26100 23.02256 0.91496 0.34051 0.20575
14 26 7.55640 5.65149 0.14489 0.52185 0.32080
14 29 3.48550 65.81584 0.09179 0.83577 0.77320
14 31 6.28320 60.51875 0.41394 0.51431 0.04226
14 32 4.19220 65.81584 0.79989 0.64283 0.52899
14 34 1.04210 37.50990 0.41288 0.38440 0.35399
15 16 9.73590 3.88299 0.84403 0.73784 0.68155
15 17 0.47000 43.69522 0.17677 0.87991 0.87398
15 18 6.58160 89.65575 0.31256 0.94429 0.71060
15 20 8.26430 60.45221 0.29602 0.26130 0.02937
15 22 1.94690 10.42073 0.23230 0.57723 0.29486
15 26 2.24660 94.08759 0.81569 0.88419 0.84956
15 29 1.43780 4.77025 0.02633 0.77413 0.63717
15 31 1.29690 16.54415 0.70255 0.91263 0.41922
15 34 9.32500 23.89434 0.42753 0.81254 0.78549
16 20 9.32500 41.38052 0.37510 0.86116 0.86116
16 26 1.36040 0.00000 0.84403 0.93346 0.84969
16 29 0.42260 15.26272 0.00001 0.94774 0.80332
16 33 0.56510 34.51328 0.79989 0.87511 0.56367
16 34 2.60090 76.50440 0.09522 0.49696 0.28662
17 22 8.14160 29.42465 0.12969 0.97748 0.32191
17 25 4.12880 41.39418 0.48051 0.98314 0.93806
17 26 3.45130 38.05310 0.12610 0.83122 0.81416
17 29 1.43780 26.87853 0.76504 0.67999 0.45396
17 30 1.52630 5.65149 0.16967 0.56406 0.52000
17 34 3.12370 89.11052 0.34855 0.94369 0.59445
18 20 4.27530 14.48915 0.10080 0.96866 0.92921
18 21 0.56510 4.22604 0.86116 0.33976 0.02633
19 21 3.20800 4.82299 0.38053 0.78190 0.35727
19 22 3.75100 42.75310 0.35727 0.82889 0.41381
19 26 7.27870 7.65930 0.70810 0.99612 0.86726
19 28 3.56170 90.41808 0.09522 0.73977 0.71060
19 30 2.32300 41.04035 0.09179 0.42340 0.23894
20 22 3.12370 20.57509 0.80332 0.20235 0.04823
20 26 1.73940 34.84566 0.92381 0.99252 0.99093
20 28 2.30230 20.69574 0.07659 0.98622 0.52899
20 35 9.14960 91.48283 0.70255 0.94541 0.80929
21 26 9.32490 81.39368 0.82643 0.74680 0.04707
21 33 9.29210 94.08759 0.56367 0.19869 0.12610
22 28 1.87370 51.65982 0.17394 0.63743 0.52899
22 33 8.15690 19.68750 0.97359 0.29425 0.29425

Table 12: VTHD Problem Specifications (cont.).
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23 25 2.51770 12.96903 0.33971 0.94754 0.49288
23 26 8.49560 84.96946 0.49288 0.59862 0.16967
23 27 0.85800 40.10529 0.32191 0.79139 0.56367
23 31 4.10400 13.60419 0.32191 0.70616 0.39213
23 34 5.57300 24.22619 0.17500 0.09491 0.00343
25 29 8.44030 32.07952 0.66066 0.86026 0.78549
25 32 6.28320 80.33224 0.60452 0.94424 0.17394
25 33 4.53960 77.32027 0.32188 0.38250 0.16544
26 30 1.29690 86.11593 0.99730 0.92642 0.81394
26 32 7.55640 26.87853 0.97075 0.99794 0.99093
27 30 7.11950 55.72996 0.79867 0.85850 0.81569
27 32 3.56170 93.18405 0.37510 0.78028 0.72787
27 33 5.20000 55.75222 0.77320 0.98454 0.77320
27 34 0.11030 29.42465 0.71142 0.93257 0.63717
28 29 2.42260 24.16903 0.33007 0.56941 0.14378
28 31 0.00010 20.69574 0.32191 0.75523 0.14489
28 32 6.60660 13.60419 0.23894 0.66995 0.16544
28 34 2.68790 12.61049 0.04754 0.89213 0.18737
29 30 6.58160 61.64160 0.02937 0.76431 0.70810
29 31 3.53990 84.96946 0.34513 0.13929 0.12969
30 32 5.16600 3.88299 0.52899 0.83016 0.71195
30 34 8.49690 38.05310 0.00343 0.30737 0.08580
31 33 2.77630 80.33224 0.96679 0.42296 0.37510
31 34 2.94250 68.41682 0.73429 0.96992 0.92381
32 33 4.10400 27.76349 0.26009 0.72995 0.05655
33 34 8.44030 31.23715 0.01103 0.75690 0.49710

Table 13: VTHD Problem Specifications (cont.).
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