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Abstract

The Vehicle Routing Problem with Multiple Trips is an extension of the classical
Vehicle Routing Problem in which each vehicle may perform several routes in the
same planning period. In this paper, an adaptive memory algorithm to solve this
problem is proposed. The algorithm was run over a set of benchmark problem
instances, consistently finding high-quality solutions.
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1 Introduction

The problem of distributing goods from depots to final consumers plays an
important role in the management of many distribution systems, and its ade-
quate programming may produce significant savings. The Vehicle Routing Pro-
blem (VRP) and its many variations have been subject of research during the
last four decades. Some well studied characteristics include the existence of
demands, time windows and heterogeneous vehicles [1].

However, some aspects that arise in real applications have not received much
attention in the Operations Research literature. In most of the studied mo-
dels, for instance, each vehicle is allowed to perform at most one route and
the number of vehicles is supposed to be unlimited. In many contexts, this
assumptions are unrealistic. For example, when the vehicle fleet is small or
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when the planning day is large with respect to the route duration, some vehi-
cles may perform several routes in the same day. The Vehicle Routing Problem
with Multiple Trips (VRPMT) overcomes the mentioned limitations, besides
considering the classic VRP constraints. In this paper we describe a heuris-
tic to solve the VRPMT, which is based on the Adaptive Memory Procedure
(AMP) proposed by Rochat and Taillard [2].

A definition of the VRPMT is given in Section 2, as well as a literature review.
The proposed algorithm is described in Section 3. Computational behavior of
the algorithm is reported and analyzed in Section 4, while conclusions and
future work are considered in Section 5.

2 The VRP with Multiple Trips

Let G = (V, E) be a graph where V = {0, 1, . . . , n} is the set of nodes and
E ⊆ V × V is the set of arcs. If (i, j) ∈ E, then it is possible to travel from
i to j, incurring in a cost cij and a travel time tij. Node 0 represents a depot
where a fleet K = {1, . . . , m} of identical vehicles is based. Each vehicle has
a limited capacity Q. The nodes in V \ {0} represent customers, each one
having a demand qi. Finally, there exists a time horizon, denoted by T , which
establishes the duration of a working day. It is assumed that Q, qi and T are
nonnegative integers.

The VRPMT calls for the determination of a set of routes and an assignment of
each route to one vehicle, which minimizes the total routing costs and satisfies
the following conditions:

(1) each route starts and ends at the depot,
(2) each customer is visited by exactly one route,
(3) the demand of the customers in the same route does not exceed Q,
(4) the duration of routes assigned to the same vehicle does not exceed T .

The VRPMT is a generalization of the VRP: any VRP instance can be trans-
formed to an equivalent VRPMT instance, setting m = n and T =

∑
(i,j)∈E tij.

As the VRP is an NP-Hard problem [3], the VRPMT is also NP-Hard. The
computational complexity of the VRPMT justifies the use of heuristics to solve
instances of realistic size in moderate computation times.

2.1 Literature review

Fleischmann [4] was first one to address the problem. He proposed a modifi-
cation to the savings algorithm [5] and used a Bin Packing Problem (BPP) [6]
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heuristic to assign the routes to the vehicles.

Taillard et al. [7] proposed a three phase algorithm to solve the problem. In
the first phase, a set of routes satisfying capacity constraints is constructed.
Next, those routes are combined into complete VRP solutions. Finally, the
routes of each solution are assigned to the vehicles solving a BPP.

Brandão and Mercer [8] designed a tabu search algorithm to solve a real life
application which included, among others, the VRPMT features. Later, they
simplified the algorithm [9] to handle the VRPMT. Key features are shared by
both proposals. Moves are defined by swapping two customers and by removing
one customer from its route and inserting it into another one. Insertions are
made using the GENI algorithm [10]. Infeasible solutions are visited during
the search and penalized using a modified objective function.

Petch and Salhi [11] proposed a multi-phase heuristic which first constructs
many feasible VRP solutions and, for each one, assigns routes to vehicles using
a BPP heuristic. Feasible VRP solutions are built with repeated executions of
Yellow’s savings algorithm [12] and, independently, using a route population
approach.

2.2 Notation

A route will be denoted as a sequence of nodes r = (v0, . . . , vnr+1), where
v0 = vnr+1 = 0 and (vi, vi+1) ∈ E ∀ i ∈ [0, nr]. For each route r, nr is the
number of customers it visits, qr =

∑nr
i=1 qvi

is the demand covered by the
route, cr =

∑nr
i=0 cvi,vi+1

is the cost and tr =
∑nr

i=0 tvi,vi+1
is the duration. A

route is feasible if qr ≤ Q.

A solution is a sequence of route sets s = (R1, . . . , Rm), where Rk contains
the routes assigned to vehicle k. The set of all the routes in a solution is
R(s) =

⋃
k∈K Rk. The cost of a solution is

f(s) =
∑

r∈R(s)

cr. (1)

The total duration of routes assigned to each vehicle cannot be greater than
the time horizon (these will be called overtime constraints). A measure of such
constraint violation, called overtime, is defined for each vehicle:

Ok(s) =


 ∑

r∈Rk

tr − T




+

(2)
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where a+ = max(a, 0). Finally, the total overtime of a solution is given by

O(s) =
∑

k∈K

Ok(s). (3)

2.3 Integer Programming Formulation

Let R be a set containing all feasible routes. For each r ∈ R define a parameter
air indicating whether route r visits customer i (air = 1) or not (air = 0). The
VRPMT can be formulated as an 0-1 Linear Program, as follows:

min
∑

k∈K

∑

r∈R

crx
k
r (4)

s.t.
∑

k∈K

∑

r∈R

airx
k
r = 1 ∀ i ∈ V \ {0} (5)

∑

r∈R

trx
k
r ≤ T ∀ k ∈ K (6)

xk
r ∈ {0, 1} ∀ k ∈ K, ∀ r ∈ R

This formulation resembles the Set Partitioning based VRP formulation due
to Balinsky and Quandt [13]. If xk

r = 1, then r is part of the solution and
it is assigned to vehicle k (i.e. r ∈ Rk). If xk

r = 0 ∀ k ∈ K, r is not part of
the solution. The objective function (4) establishes that the total routing cost
should be minimized. The fact that each customer must belong to exactly one
route is imposed in (5) and overtime constraints are established in (6).

Despite having an exponential number of variables, this formulation empha-
sizes the structure of VRPMT constraints. The bounded capacity of vehicles
and the fact that routes must start and end at the depot are local to each
route, and thus, can be encapsulated in the definition of R. Visiting each
customer once and having no overtime are global , as they affect the whole
solution. Violations to local constraints can be detected examining each route
separately, but to ensure global constraints’ satisfaction, the whole solution
needs to be analyzed.

The presence of a fixed number of vehicles makes the overtime constraints
hard to satisfy in the general case. On one hand, as there are only m vehicles
available, the number of routes per vehicle tends to increase when m decreases.
On the other hand, T imposes an upper bound on the total duration of routes
assigned to each vehicle. For tight problems, feasible solutions can be hard to
find and may not exist.
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(a) Best known VRP solution (b) Feasible VRPMT solution

Fig. 1. Solutions for VRP and VRPMT formulations over CMT-1 problem.

2.4 Assigning routes to vehicles

The problem of assigning routes to the vehicles arises repeatedly when solving
the VRPMT [4,7,11]. Given a set of routes {r1, . . . , rp}, a feasible assignment
of those routes to the vehicles can be obtained solving a BPP [6] with p items
of weights tr1 , . . . , trp and m bins of capacity T .

However, a two phase approach that solves a VRP and assigns the obtained
routes via a BPP may lead to infeasible solutions, as it is shown in the following
example. Consider the VRP benchmark problem of 50 customers CMT-1,
proposed by Christofides et al. [14]. The best known solution to that instance
is shown in Figure 1(a), has a total cost of 524.61 and it is composed of
5 routes of durations t1 = 98.45, t2 = 99.25, t3 = 99.33, t4 = 109.06 and
t5 = 118.52. Consider a VRPMT instance over the same nodes, with the same
vehicle capacity, m = 4 and T = 144. No feasible solution to this new instance
can be constructed keeping the routes of the given VRP solution, because
no packing of items of weights t1, . . . , t5 in four bins of capacity 144 exists.
However, a feasible solution to this instance exists, and an example is given
in Figure 1(b). Its total cost is 546.29 and it has 5 routes of durations 57.82,
82.12, 122.80, 141.76 and 141.79, the first two being assigned to the same
vehicle and the other three assigned each to a different one.

3 Adaptive Memory Algorithm

The Adaptive Memory Procedure (AMP) was first proposed by Rochat and
Taillard [2] as an enhancement of Tabu Search (TS) to solve the VRP. It
was motivated by the work of Glover regarding surrogate constraints [15]. An
important principle behind AMP is that good solutions may be constructed
by combining different components of other good solutions. A memory con-
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taining components of visited solutions is kept. Periodically, a new solution is
constructed using the data in the memory and improved by a local search pro-
cedure. The improved solution is then used to update the memory. A sketch
of the AMP is given below:

(1) Initialize the memory M .
(2) While a stopping criteria is not met, do:

(a) Construct a new solution s combining components of M .
(b) Apply a local search procedure to s (let s∗ be the improved solution).
(c) Update M using components of s∗.

In the first iterations, the memory is expected to contain components of many
different solutions. Thus, solutions constructed in Step 2a will differ substan-
tially among iterations and diverse regions of the search space will be explored
by the local search. As the whole procedure evolves, modifications made by
the local search will be minor, making the components in the memory belong
to a small set of good solutions. Thus, the search is intensified over promising
regions.

AMP has been used to solve the VRP [2,16] and some of its variations, such
as the Heterogeneous Fleet VRP [17] and the Multiple Depot VRP with Inter-
Depot routes [18]. Other problems beyond vehicle routing have also been
solved using AMP [19,20].

3.1 The algorithm

The algorithm is similar to the one proposed by Rochat and Taillard [2].
The memory M is a multi-set of routes. At every iteration, a new solution is
constructed non-deterministically by selecting some of the routes in M . The
solution is improved using a tabu search procedure, and the routes are added
to M .

Infeasible solutions may be visited during the execution. In the TS, solutions
may violate capacity and overtime constraints. In the rest of the AMP only
overtime constraints may be violated.

The main cycle of the AMP is ran for AMP iter iterations. In the rest of this
section, each of the AMP components is explained: memory initialization,
memory update, solution construction and tabu search procedure.
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3.1.1 Memory initialization

To initialize the memory, I solutions are generated and inserted into M . Each
solution is built running one iteration of the Sweep algorithm [21] starting from
a randomly selected customer. The TS algorithm explained in Section 3.1.4 is
used to improve each solution before inserting it in the memory.

3.1.2 Memory update

The memory is arranged in such a way that routes belonging to better solutions
appear first. Solutions with positive overtime may be inserted. When a solution
s = (R1, . . . , Rm) is added to the memory, the following procedure is applied:

(1) Label each route r ∈ R(s) with (O(s), f(s)).
(2) Add the routes to the memory: M ← M ∪R(s).
(3) Sort M using a lexicographic ordering of route labels.
(4) If |M | > M size remove the last |M | −M size routes from M .

The first label of each route measures the infeasibility of the solution to which
it belongs, while the second one is the cost of the solution. As a lexicographic
criteria is used to sort, routes that belong to feasible solutions occupy the first
positions (and within them, the ones that form part of least cost solutions go
first).

If |M | is too high, the probability of selecting good routes (see Section 3.1.3)
may be diminished by the routes in the last positions. The parameter M size

specifies the maximum size of M . This bounding also contributes to space and
time optimization of the AMP.

3.1.3 Solution construction

New solutions are built by probabilistically selecting routes from the memory.
Higher probability is assigned to the routes in the first positions, because they
belong to the best solutions found so far. The procedure is specified next:

(1) Set M ′ ← M .
(2) Probabilistically select r ∈ M ′.
(3) Remove from M ′ all the routes having customers in common with r.
(4) If all customers have been routed, stop. If M ′ 6= ∅, go to Step 2, else go

to Step 5.
(5) Solve a VRP with the unrouted customers and the depot using the Sweep

algorithm (starting from a random customer) and add the routes to the
solution.

7



The probability of selecting the i-th route of M ′ is 2 |M ′|+1−i
|M ′|(|M ′|+1)

.

3.1.4 Tabu Search procedure

A TS procedure is used to improve the constructed solution. Violations to ca-
pacity and overtime constraints are allowed, but penalized using the following
objective function:

fP (s) = f(s) + α
∑

r∈R(s)

(qr −Q)+ + βO(s). (7)

The parameter α penalizes the total capacity constraints violation and β pe-
nalizes the total overtime. The values of α and β are updated at every itera-
tion, as it is done in the Taburoute algorithm for the VRP [22], producing an
oscillation between feasible and infeasible solutions.

Given a solution s, its neighborhood N(s) is defined as the set of solutions
that can be obtained applying one of the following operations to any pair of
different routes ri = (. . . , vi−1, vi, vi+1, . . .) and rj = (. . . , wj−1, wj, wj+1, . . .)
of R(s):

Swap: set ri ← (. . . , vi−1, wj, vi+1, . . .) and rj ← (. . . , wj−1, vi, wj+1, . . .).
Insert: set ri ← (. . . , vi−1, vi+1, . . .) and rj ← (. . . , wj−1, vi, wj, wj+1, . . .).

In order to reduce the size of N(s), and the running time of the search, a move
is examined only if vi is one of the p closest nodes to vj and vice-versa. This
reduced neighborhood will be called Np(s).

During the search, some moves are declared to be tabu and cannot be applied
until its tabu status is revoked. After removing v from r, inserting it again in
the same route is declared tabu for a random number of iterations. As usual,
the tabu status of a move can be overridden if its application improves the
best solution found so far (this is called aspiration criteria).

Let N∗
p (s) be Np(s) restricted to moves that are not tabu or pass the aspiration

criteria. Being s the incumbent solution, the whole N∗
p (s) must be examined,

and one solution minimizing fP is set as the new incumbent solution.

After applying a move, a new assignment of routes to vehicles is computed
by the heuristic given in Section 3.2. This is a major departure from previous
approaches to the VRPMT, which make the assignment at the beginning [9]
or at the final stage [7,11], but not at every iteration.

Whenever a new best solution is obtained, each of the routes that were modi-
fied by the last move is rearranged by means of the Unstringing and Stringing
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(US) post-optimization procedure [10]. The parameter p of the US procedure
was set to 5, which gives a good compromise between running time and solu-
tion quality [10]. The TS starts from a feasible VRP solution s and proceeds
as follows:

(1) Assign the routes of s applying the heuristic given in Section 3.2.
(2) Initialize the tabu list. Set α ← αmin, β ← βmin and sbest ← s.
(3) Repeat TSiter times

(a) Find s′ ∈ N∗
p (s) minimizing fP .

(b) If v was removed from r, inserting v in r is declared tabu for the next
θ iterations, where θ is drawn uniformly in [θmin, θmax].

(c) Assign the routes of s′ applying the heuristic given in Section 3.2.
(d) If s′ is better than sbest, apply the US procedure to the every route

in s′ and set sbest ← s′.
(e) Update α and β.
(f) Set s ← s′.

(4) Return sbest.

In Step 3d, s′ is better than sbest if the routes of s′ satisfy the capacity cons-
traints and one of the following conditions hold:

• s′ is “less infeasible” than sbest: O(s′) < O(sbest)
• both are feasible, but s′ has a smaller cost: O(s′) = O(sbest) = 0 and

f(s′) < f(sbest)

The parameter update of Step 3e is done as follows. If s′ satisfies the capacity
constraints, then α is divided by 2, if not, it is multiplied by 2. The same
is done with β, but with respect to overtime constraints. Lower and upper
bounds αmin, βmin, αmax and βmax are imposed to α and β.

3.2 Assignment heuristic

During the TS, a VRPMT solution s = (R1, . . . , Rm) must be constructed
from a set of routes R′. As it has been explained in Section 2.4, this can be
achieved solving a BPP. The Best Fit Decreasing (BFD) is a simple heuristic
to solve the BPP [6]. The following modified BFD is used in this proposal:

(1) Initialize the assignment: Rk ← ∅ ∀ k ∈ K.
(2) Select the longest route that has not been assigned: r∗ ← arg maxr∈R′ tr.
(3) Select the emptiest vehicle: k∗ ← arg mink∈K

∑
r∈Rk

tr.
(4) Assign r∗ to k∗: Rk ← Rk ∪ {r∗}.
(5) Disregard r∗: R′ ← R′ \ {r∗}.
(6) If R′ = ∅, stop, else, go to Step 2.
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The obtained solution is not guaranteed to satisfy the overtime constraints.
When the resulting assignment is infeasible the following procedure is run,
trying to obtain a feasible solution:

(1) Select the vehicle k∗ which finishes later: k∗ = arg maxk∈K
∑

r∈Rk
tr.

(2) Select r∗ ∈ Rk∗ that has not been selected yet. If all routes in Rk∗ have
been considered, stop.

(3) If there exists k′ ∈ K and r′ ∈ Rk′ such that:
Ok′ = 0, tr′ < tr∗ and

∑
r∈Rk′ tr − tr′ + tr∗ ≤ T

go to Step 4. If not, go to Step 2.
(4) Set Rk∗ ← Rk∗ ∪ {r′} \ {r∗} and Rk′ ← Rk′ ∪ {r∗} \ {r′}. If the solution

is feasible, stop. If not, go to Step 1.

This algorithm tries to reduce the duration associated to the vehicle that
arrives later, by exchanging a route with another vehicle. After routes are
swapped in Step 4, vehicle k∗ finishes earlier than before and k′ finishes later
(but within the time horizon). Again, feasibility is not guaranteed at this stage.

4 Computational experiments

4.1 Benchmark problems

The algorithm was tested over the 104 benchmark problems proposed by
Taillard et al. [7]. These were constructed using the same graphs, demands and
vehicle capacities than the problems 1-5 and 11-12 proposed by Christofides
et al. [14] and problems 11 and 12 proposed by Fisher [23] for the VRP. For
each VRP instance, several values of m are used. For each m, two time hori-
zons T1 = [1.05 z∗/m] and T2 = [1.10 z∗/m] are proposed, where z∗ is the best
known solution value for the VRP instance and [a] denotes a rounded to the
nearest integer. All the problems are Euclidean and satisfy tij = cij.

The quality of feasible solutions can be assessed comparing its value with the
corresponding VRP best known solution value z∗, using the GAP measure:

GAP (s) = 100

(
f(s)

z∗
− 1

)
. (8)

Overtime constraints ensure that feasible solutions satisfy f(s) ≤ mT , which
for problems with time horizon T1, implies that GAP will be upper-bounded
by a value near 5%. Analogously, for problems with T2, the GAP upper bound
will be close to 10%.

Three articles provide computational experience regarding these benchmark
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problems [7,8,11]. In all cases, feasible solutions to some problem instances
could not be found. The GAP is not an adequate quality measure for these
cases, and special measures must be defined. The total overtime (3) measures
the time spent beyond the planning horizon. The longest tour ratio

LTR(s) =
maxk∈R(s)

∑
r∈Rk

tr
T

(9)

considers the duration of the vehicle which arrives latest in terms of the pla-
nning horizon. The penalized cost measures the routing cost that results from
increasing cij by a factor of δ after the time horizon has elapsed:

PC(s) = f(s) + (δ − 1)O(s). (10)

The algorithm was coded in C++. All tests were done on a 1.8 GHz AMD
Athlon XP 2200+ processor with 480 MBytes of RAM under Windows XP.

4.2 Parameter tuning

As in most meta-heuristics, there are a number of parameters which may
modify the algorithm’s behavior, namely:

- The number of AMP iterations: AMP iter.
- The maximum number of routes in the memory: M size.
- The number of initial solutions: I.
- The number of TS iterations: TSiter.
- The neighborhood size: p.
- The interval in which tabu tenures are drawn: [θmin, θmax].
- The bounds of α and β: αmin, βmin, αmax and βmax.

In order to reduce the tuning effort, some parameters that are believed to be
less influencing on the whole algorithm’s performance were arbitrarily fixed.
Those values are αmin = βmin = 1 and αmax = βmax = 100000 for the bounds,
θmin = 5 and θmax = 10 for the tabu tenure interval and I = 20 for the number
of initial solutions.

For each of the remaining parameters a set of candidate values was proposed,
from which the final value was to be selected: AMP iter ∈ {100, 200, 300},
M size ∈ {150, 250}, TSiter ∈ {250, 500, 750} and p ∈ {15, 30}. To select the
final values, the AMP procedure was ran over a subset of six benchmark
problems, with every possible candidate value combination. The test problems
selected for tuning were CMT-1, CMT-4, CMT-5, CMT-5, CMT-12 and F-11,
using time horizon T1 and m = 2, 8, 9, 7, 5 and 2 respectively.
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Table 1
Running times for configurations that found feasible solutions for all tuning instan-
ces.
AMP iter TSiter M size p Min. Max.

300 500 250 15 34 354

300 750 250 15 48 533

300 750 150 30 109 880

300 750 250 30 108 888

For each run we recorded the running time and whether a feasible solution
was found or not. Only the parameter configurations which led to a feasible
solution for the six instances were further analyzed. For each, the minimum
and maximum running times (in seconds) over the tuning problems are given
in Table 1.

The selected parameter values were those which reported lowest computation
times and obtained a feasible solution for every tuning instance: AMP iter =
300, TS iter = 500, M size = 250 and p = 15. During the parameter tuning, it has
been observed that for all problems, except CMT-5 (with m = 9), a feasible
solution was found within the first 200 iterations. So, every 100 iterations the
best solution found so far will be checked for feasibility, and the algorithm will
keep running only if the solution is not feasible.

4.3 Results

All the reported results correspond to a unique run of the algorithm with
the selected parameter configuration over the whole benchmark set. Detailed
results are specified in Appendix A. Summarized results are given in Table 2.
Each row refers to the instances obtained from the same base VRP problem.
For each time horizon, the following results are reported:

- Feas./Total: the number of feasible solutions found and the number of pro-
blem instances.

- GAP : the average GAP (8) considering only the problems in which a feasible
solution was found.

- Time: The average running time in seconds.
- The last row shows the total of Feas./Total column and the average GAP .

Feasible solutions to 95 out of 104 problem instances, including 3 which were
unsolved by the previous proposals [7,9,11], have been found. A feasible solu-
tion was found for each of the 52 instances with T2, as it is the case with the
procedure proposed by Brandão and Mercer [9]. Taillard et al. [7] and Petch
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Table 2
Results for one run over the benchmark problem set.

Problem
T1 T2

Feas./Total GAP Time Feas./Total GAP Time

CMT-1 2/4 0.80 24 4/4 2.66 13

CMT-2 5/7 0.96 39 7/7 1.77 27

CMT-3 6/6 1.28 31 6/6 0.67 30

CMT-4 7/8 1.37 89 8/8 1.75 65

CMT-5 9/10 3.15 164 10/10 2.60 126

CMT-11 4/5 1.82 32 5/5 0.77 27

CMT-12 5/6 0.66 28 6/6 0.22 27

F-11 2/3 2.10 20 3/3 2.75 12

F-12 3/3 0.68 37 3/3 0.71 37

43/52 1.60 − 52/52 1.59 −

and Salhi [11] report 48 and 46 feasible solutions, respectively. Instances with
T1 are more difficult, as they have a shorter time horizon. The proposed AMP
found 43 feasible solutions, Brandão and Mercer [9] found 37, Taillard et al. [7]
38 and Petch and Salhi [11] 30.

The algorithm finds high quality solutions. Feasible solutions found are, on
average, within 1.60% of the VRP best known solution, being 1.55% the GAP
standard deviation. As the hardest to achieve for the benchmark problem set
is feasibility and as every feasible solution is close to the VRP best known
solution (see Section 4.1), other authors do not report the cost of the feasible
solutions found. Thus, no comparison of this aspect can be made.

There are nine instances, all of which use T1 as time horizon, that could not
be solved by the AMP, and nor by the previous approaches [7,9,11].

In Table 3 infeasible solutions are compared in terms of LTR values. Each
row corresponds to an instance for which the AMP procedure could not find
a feasible solution. The average value for each algorithm and the difference
between AMP values and each other, are given in the last two rows. The
algorithm obtains the best results in all but two instances. The average LTR
value over the nine infeasible instances is significantly smaller than the one
obtained by other authors. These results suggest that the proposed algorithm
is highly accurate in finding routes which fit the time horizon.

Table 4 compares the cost of the infeasible solutions with those obtained by
Brandão and Mercer [9] and Taillard et al. [7] (Petch and Salhi [11] do not
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Table 3
Longest route ratio (LRR) comparison for infeasible solutions.

Problem m AMP
Brandão and

Mercer [9]

Taillard

et al. [7]

Petch and

Salhi [11]

1 CMT-1 3 1.030 1.041 1.115 1.026

2 CMT-1 4 1.027 1.027 1.027 1.085

3 CMT-2 6 1.003 1.031 1.032 1.019

4 CMT-2 7 1.009 1.088 1.073 1.064

5 CMT-4 7 1.003 1.071 1.033 1.072

6 CMT-5 10 1.007 1.051 1.024 1.064

7 CMT-11 4 1.001 1.011 1.020 1.052

8 CMT-12 6 1.024 1.072 1.064 1.029

9 F-11 3 1.020 1.011 1.075 1.020

Average 1.014 1.045 1.051 1.048

Average difference (%) − −2.91 −3.52 −3.20

report costs for the infeasible solutions). For each instance, the cost (1), the
total overtime (3) and the penalized cost (10) using δ = 2 are given. The last
row shows, for each measure, the average difference between the AMP and
each other algorithm.

The values must be analyzed carefully. As it was pointed in Section 2.4, fitting
the time horizon and minimizing the routing costs may be opposed objectives.
In the general case, it is unlikely that both can be simultaneously attained.
On one hand, if high overtime values are admitted, solutions with smaller
cost (but highly infeasible) may be found. On the other hand, if the admitted
overtime is small, some customers may have to be relocated in order to shorten
some of the longest routes, but increasing the total cost.

The routing costs given by Taillard et al. [7] are, in all cases, the smallest.
However, the total overtime values obtained by our algorithm are lower. This
is not surprising, since Taillard et al. [7] assign routes to vehicles in the last
phase of their algorithm, while our AMP modifies the assignment at every
iteration. While Taillard et al. [7] obtain low cost routes that are hard to
pack in working days, our AMP produces solutions with slightly higher costs
(3.51%) but which are dramatically better in terms of feasibility (73.21%).
Overall, in terms of PC values, solutions obtained by the AMP algorithm are
slightly outperformed by Taillard et al. [7] and Brandão and Mercer [9] when
δ = 2. However, the good compromise between infeasibility and cost obtained
by the AMP is captured when using higher values of δ.
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5 Conclusion

An algorithm based on the Adaptive Memory Programming principle has been
proposed to solve the Vehicle Routing Problem with Multiple Trips, an im-
portant extension of the classic Vehicle Routing Problem.

The algorithm was ran over a set of benchmark problems and the solutions
obtained were compared with those reported for three previously proposed
algorithms [7,9,11]. Our algorithm obtains more feasible solutions than the
previous approaches. Further analysis shows that a good compromise between
routing cost and overtime violation is achieved for highly constrained instan-
ces.

The proposed algorithm may be extended to handle a heterogeneous fleet of
vehicles, modifying the way that routes are assigned to vehicles. New bench-
mark problems can be constructed in the same way as the ones used in the
article. Lower bounds should be derived and experimental analysis should be
carried out. Handling time windows is a harder problem since the assignment
of routes to vehicles cannot be solved via a Bin Packing Problem.

A Detailed computational results

Tables A.1, A.2 and A.3 present detailed results for each one of the 104 bench-
mark problem instances. The meaning of each column is:

- Problem: the base VRP problem.
- m and T : the number of vehicles and time horizon. For each base problem,

instances with T1 are listed first. Bold entries indicate that a new feasible
solution was found by the AMP.

- Feas.: indicates whether a feasible solution was found (X) or not (×).
- Cost: the routing cost of the solution.
- GAP : the measure defined in (8). It is reported for feasible solutions only.
- Iter.: the AMP iteration in which the reported solution was found.
- Time: the running time in seconds.
- PS, BM, TLG: indicates whether a feasible solution was found or not by

Petch and Salhi [11], Brandão and Mercer [9] and Taillard et al. [7], respec-
tively.
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B New feasible solutions

Feasible solutions to problems for which all previous approaches were infeasible
are presented next.

New feasible solution to CMT-3 with m = 6 and T1 = 145.
Veh. Duration Node sequence

1 139.7459 (0, 70, 30, 20, 66, 65, 71, 35, 34, 78, 33, 81, 9, 51, 1, 69, 0)
2 139.2430 (0, 89, 60, 83, 45, 8, 46, 36, 49, 64, 63, 90, 32, 10, 31, 27, 0)
3 139.0635 (0, 50, 3, 79, 29, 24, 54, 55, 25, 39, 67, 23, 56, 4, 0)
4 137.0156 (0, 2, 57, 15, 43, 42, 14, 44, 38, 86, 16, 61, 17, 84, 5, 0)
5 93.2598 (0, 18, 82, 48, 47, 19, 11, 62, 88, 7, 52, 0)
5 51.4576 (0, 28, 76, 77, 68, 80, 12, 26, 0)
6 81.8540 (0, 53, 58, 40, 21, 73, 72, 74, 75, 22, 41, 87, 97, 13, 0)
6 58.2624 (0, 6, 96, 99, 59, 93, 85, 91, 100, 37, 98, 92, 95, 94, 0)

New feasible solution to CMT-4 with m = 8 and T1 = 135.
Veh. Duration Sequence

1 134.5364 (0, 110, 4, 56, 75, 23, 67, 39, 139, 25, 55, 24, 29, 121, 80, 109, 0)
2 134.3165 (0, 1, 122, 51, 120, 9, 103, 66, 71, 65, 136, 35, 135, 34, 78, 0)
3 130.0318 (0, 60, 84, 17, 113, 86, 140, 38, 44, 119, 14, 142, 42, 43, 15, . . .

. . . , 57, 144, 0)
4 128.6711 (0, 146, 7, 19, 107, 11, 64, 49, 143, 36, 47, 124, 46, 8, 114, 18, 0)
5 89.9579 (0, 132, 69, 101, 70, 30, 20, 128, 131, 32, 90, 63, 126, . . .)

. . . , 108, 10, 31, 0)
5 44.9832 (0, 112, 94, 95, 117, 97, 87, 137, 13, 0)
6 62.9857 (0, 28, 76, 116, 77, 3, 79, 129, 81, 33, 102, 50, 111, 0)
6 70.5012 (0, 6, 59, 93, 85, 61, 16, 141, 91, 100, 37, 98, 92, 0)
7 64.2336 (0, 105, 26, 149, 130, 54, 134, 150, 68, 12, 138, 0)
7 70.2185 (0, 27, 127, 88, 148, 62, 123, 48, 82, 106, 52, 0)
8 66.4566 (0, 58, 2, 115, 145, 41, 22, 133, 74, 72, 73, 21, 40, 53, 0)
8 68.5059 (0, 89, 118, 83, 45, 125, 5, 104, 99, 96, 147, 0)

New feasible solution to F-11 with m = 2 and T1 = 127.
Veh. Duration Sequence

1 97.0179 (0, 9, 7, 4, 8, 3, 5, 10, 6, 71, 12, 16, 17, 13, 1, 15, 2, 19, 62, . . .
. . . , 64, 65, 63, 59, 57, 41, 55, 54, 0)

1 28.3711 (0, 35, 18, 11, 14, 31, 0)
2 68.4026 (0, 20, 29, 23, 26, 24, 25, 49, 51, 70, 50, 47, 48, 52, 45, 53, . . .

. . . , 46, 44, 43, 42, 27, 28, 22, 21, 30, 0)
2 58.3373 (0, 36, 33, 60, 61, 58, 66, 67, 69, 37, 38, 40, 68, 39, 56, 34, 32, 0)
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Table A.1
Detailed computational results for problems CMT-1, CMT-2 and CMT-3.
Problem m T Feas. Cost GAP Iter. Time PS BM TLG
CMT-1
n = 50
z∗ = 524.61

1 551 X 524.61 0.0 0 12 X X X
2 275 X 533.00 1.6 56 13 × X X
3 184 × 559.20 − 6 36 × × ×
4 138 × 547.10 − 78 34 × × ×
1 577 X 524.61 0.0 4 12 X X X
2 289 X 529.85 1.0 0 13 X X X
3 192 X 552.68 5.1 0 14 X X ×
4 144 X 547.10 4.1 112 13 × X X

CMT-2
n = 75
z∗ = 835.26

1 877 X 835.67 < 0.1 98 25 X X X
2 439 X 843.13 0.9 94 26 X X X
3 292 X 846.37 1.3 76 26 X X X
4 219 X 838.71 0.4 89 27 X X X
5 175 X 852.66 2.0 93 26 X X X
6 146 × 872.45 − 261 71 × × ×
7 125 × 873.40 − 264 74 × × ×
1 919 X 844.26 1.1 55 26 X X X
2 459 X 841.23 0.7 71 26 X X X
3 306 X 836.77 0.2 78 27 X X X
4 230 X 836.18 0.1 100 27 X X X
5 184 X 844.28 1.1 100 28 X X X
6 153 X 875.03 4.5 41 28 X X X
7 131 X 872.64 4.3 99 28 × X ×

CMT-3
n = 100
z∗ = 826.14

1 867 X 830.77 0.6 40 29 X X X
2 434 X 834.15 1.0 81 30 X X X
3 289 X 831.16 0.6 77 31 X X X
4 217 X 832.74 0.8 81 30 X X X
5 173 X 851.47 3.0 87 32 × X ×
6 145 X 839.90 1.6 100 31 × × ×
1 909 X 829.69 0.4 34 28 X X X
2 454 X 829.54 0.4 75 30 X X X
3 303 X 829.45 0.4 87 30 X X X
4 227 X 826.14 0.0 95 30 X X X
5 182 X 833.15 0.8 88 30 X X X
6 151 X 842.21 1.9 100 33 X X X
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Table A.2
Detailed computational results for problems CMT-4, CMT-5 and CMT-11.
Problem m T Feas. Cost GAP Iter. Time PS BM TLG
CMT-4
n = 150
z∗ = 1028.42

1 1080 X 1033.21 0.5 98 60 X X X
2 540 X 1036.70 0.8 93 61 X X X
3 360 X 1035.48 0.7 63 63 X X X
4 270 X 1036.35 0.8 72 63 × X X
5 216 X 1033.02 0.4 91 63 X X X
6 180 X 1058.04 2.8 48 65 × X X
7 154 × 1073.79 − 289 170 × × ×
8 135 X 1064.97 3.4 214 164 × × ×
1 1131 X 1041.77 1.3 87 61 X X X
2 566 X 1047.02 1.8 63 63 X X X
3 377 X 1038.98 1.0 83 62 X X X
4 283 X 1038.88 1.0 100 62 X X X
5 226 X 1044.09 1.5 97 66 X X X
6 189 X 1033.02 0.4 61 65 X X X
7 162 X 1062.89 3.2 64 68 × X X
8 141 X 1064.56 3.4 35 69 X X ×

CMT-5
n = 199
z∗ = 1291.44

1 1356 X 1323.13 2.4 97 120 X X X
2 678 X 1341.41 3.7 90 122 X X X
3 452 X 1317.58 2.0 74 121 X X X
4 339 X 1330.63 2.9 95 123 X X X
5 271 X 1329.17 2.8 87 126 × X X
6 226 X 1337.05 3.4 92 123 X X X
7 194 X 1340.91 3.7 73 127 × X X
8 170 X 1327.09 2.7 74 124 × X X
9 151 X 1342.50 3.8 273 330 × × X
10 136 × 1356.59 − 269 327 × × ×
1 1421 X 1318.46 2.0 100 120 X X X
2 710 X 1314.09 1.7 100 123 X X X
3 474 X 1311.89 1.6 86 124 X X X
4 355 X 1338.52 3.5 100 126 X X X
5 284 X 1322.64 2.4 98 126 X X X
6 237 X 1311.10 1.5 100 127 X X X
7 203 X 1337.81 3.5 71 128 X X X
8 178 X 1316.89 1.9 83 125 X X X
9 158 X 1331.17 3.0 99 128 X X X
10 142 X 1347.99 4.2 79 130 × X X

CMT-11
n = 120
z∗ = 1042.11

1 1094 X 1073.34 2.9 57 26 X X X
2 547 X 1073.07 2.9 90 28 × X X
3 365 X 1047.97 0.6 95 28 × X X
4 274 × 1082.61 − 300 48 × × ×
5 219 X 1049.81 0.7 83 29 × X X
1 1146 X 1044.35 0.2 94 26 X X X
2 573 X 1072.21 2.8 90 26 X X X
3 382 X 1043.17 0.1 90 27 X X X
4 287 X 1045.07 0.3 99 28 × X X
5 229 X 1045.85 0.4 93 30 X X X
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Table A.3
Detailed computational results for problems CMT-12, F-11 and F-12.
Problem m T Feas. Cost GAP Iter. Time PS BM TLG
CMT-12
n = 100
z∗ = 819.56

1 861 X 820.96 0.2 31 26 X X X
2 430 X 819.56 0.0 27 27 X X X
3 287 X 819.60 < 0.1 22 27 X X X
4 215 X 819.56 0.0 91 28 X × X
5 172 X 845.37 3.1 91 27 X × ×
6 143 × 855.14 − 95 30 × × ×
1 902 X 819.56 0.0 37 26 X X X
2 451 X 819.56 0.0 44 26 X X X
3 301 X 819.56 0.0 21 27 X X X
4 225 X 819.56 0.0 20 28 X X X
5 180 X 824.78 0.6 86 28 X X X
6 150 X 825.36 0.7 28 29 X X X

F-11
n = 71
z∗ = 241.97

1 254 X 241.97 0.0 44 10 X X X
2 127 X 252.13 4.0 184 21 × × ×
3 85 × 256.85 − 212 28 × × ×
1 266 X 243.25 0.5 34 10 X X X
2 133 X 241.97 0.0 58 12 X X X
3 89 X 260.63 7.2 72 13 X X ×

F-12
n = 134
z∗ = 1162.96

1 1221 X 1171.16 0.7 41 35 X X X
2 611 X 1175.30 1.1 55 36 X X X
3 407 X 1166.18 0.3 85 39 X X X
1 1279 X 1173.07 0.9 75 37 X X X
2 640 X 1173.18 0.9 77 35 X X X
3 426 X 1167.43 0.4 97 38 X X X
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