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Adaptive Sampling Strategies for Quickselect∗

Conrado Mart́ınez† Daniel Panario‡ Alfredo Viola§

July 17, 2004

Abstract

Quickselect with median-of-3 is largely used in practice and its behavior is
fairly well understood. However, the following natural adaptive variant, which
we call proportion-from-3, had not been previously analyzed: “choose as pivot
the smallest of the sample if the relative rank of the sought element is below1/3,
the largest if the relative rank is above 2/3, and the median if the relative rank is
between 1/3 and 2/3”. We first analyze the average number of comparisons made
when using proportion-from-2 and then for proportion-from-3. We also analyzeν-
find, a generalization of proportion-from-3 with interval breakpoints atν and 1−ν.
We show that there exists an optimal value ofν and we also provide the range of
values ofν whereν-find outperforms median-of-3. Then, we consider the average
total cost of these strategies, which takes into account the cost of both comparisons
and exchanges. Our results strongly suggest that a suitable implementation of ν-
find could be the method of choice in a practical setting. We also study the behavior
of proportion-from-swith s> 3 and in particular we show that proportion-from-s-
like strategies are optimal whens→ ∞.

1 Introduction

Hoare’s quickselect [9] finds themth smallest element (equivalently, the element of
rank m in ascending order, themth order statistic) out of an array ofn elements by
picking an element from the array —the pivot— and rearrangingthe array so that el-
ements smaller than the pivot are to its left and elements larger than the pivot are to
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its right. If the pivot has been brought to positionj = m then it is the sought element;
otherwise, ifm< j then the procedure is recursively applied to the subarray tothe left
of the pivot, and ifm> j the process continues in the right subarray (see Algorithm 1).
A similar principle is used in the celebrated quicksort algorithm [10], also by Hoare;
once the pivot is brought into place by partitioning the array, the subarrays to its left
and right are recursively sorted.

Algorithm 1 The quickselect algorithm.
{l ≤ m≤ u, A[l ..u] contains themth smallest ofA[1..n] }

function quickselect(var A : array [1..n] of Elem;m, l ,u : integer)
var r, j : integer;
begin

if l = u then return A[l ];
r := pick_pivot(A, l ,u,m);
swap(A[l ],A[r]);

{A[l ] = p}
partition(A, l ,u, j);
{∀i : l ≤ i < j : A[i] ≤ p, A[ j] = p, and∀i : j < i ≤ u : A[i] > p}

if m= j then return A[ j];
else ifm< j then return quickselect(A,m, l , j −1);

else returnquickselect(A,m, j +1,u)
end

For the remaining of this paper we useα = m/n to denote therelative rank of the
sought element. Quickselect performs well in practice, itsaverage cost being linear. In

particular, ifC(0)
n,m denotes the average number of comparisons made by quickselect to

select themth element out ofn, andH (x) = −xlnx− (1− x) ln(1− x) is the entropy
function, we have (see [8, 13, 14, 15])

m0(α) = lim
n→∞

m/n→α

C(0)
n,m

n
= 2· (1+H (α)), 0≤ α ≤ 1.

Another quantity of interest is the average costC(0)
n to locate an element of random

rank, i.e., whenm is given by a uniformly distributed random variable in{1, . . . ,n}.

SinceC(0)
n = 1/n·∑1≤m≤nC(0)

n,m, we have [15]

m0 = lim
n→∞

C(0)
n

n
= 3.

Using the median of a small sample of 2t +1 elements as the pivot of each recursive
stage yields a substantial improvement over the standard variant, reducing the average
number of comparisons and making worst-case behavior less likely. Little is known
for t > 1, other than the average and variance of the number of comparisons to select
an element of random rank out ofn [18]. For samples of three elements [1, 7, 12] it is
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known that

m1(α) = lim
n→∞

m/n→α

C(1)
n,m

n
= 2+3α(1−α), 0≤ α ≤ 1,

where, for anyt, C(t)
n,m denotes the average number of comparisons made by quickselect

with median-of-(2t +1) sampling to select themth out ofn elements. Also,

m1 = lim
n→∞

C(1)
n

n
=

5
2
.

However, median-of-(2t +1) sampling is not a natural pivot selection strategy for
quickselect. For instance, if we were looking for the 100th element in a collection of
1000 elements it would seem more natural to pick the smallestelement of a sample
of three rather than the median. In general, it seems better and more logical to pick
an element whose rank is close toα · s out of a sample of sizes, if we have to select
the element of rankm = α · n. We call this sampling strategyproportion-from-s. A
similar idea lies behind Floyd and Rivest’s SELECT algorithm [5]; this algorithm sorts a
variable-size sample at each recursive stage to obtain two pivots. Because of the costly
selection of pivots, the algorithm is not very efficient in practice, although it is within
a lower order term of the theoretical optimal (see also [4]).Its expected cost satisfies
limn→∞,m/n→αCn,m/n = 1+ min(α,1−α). But despite the optimal performance of
SELECT and some other similar algorithms, in practice finely tuned implementations
of Hoare’s quickselect with median-of-3 sampling are preferred and used in system
and general-purpose libraries such as the Standard Template Library of C++ (see for
instance [19]).

There are no previous results about the performance of quickselect with proportion-
from-s sampling, nor even had this variant been formally proposed,to the best of
the authors’ knowledge. We tackle in this paper its analysis, beginning in Section 2
with the recurrence for the average cost of proportion-from-ssampling and the integral
equation satisfied by thecharacteristic function f(α) = limn→∞,m/n→αCn,m/n of the
proportion-from-s algorithm. In Sections 3 and 4 we explicitly solve the equations for
the proportion-from-2 and proportion-from-3 strategies and investigate some of their
properties. We also discuss briefly the general form of the solution for generals. In
Section 5 we consider a variant of proportion-from-3 where we choose the smallest
in the sample ifα ≤ ν, the median ifν < α < 1−ν and the largest ifα ≥ 1−ν, and
explore various parameters asν varies. Afterwards, in Section 6 we consider the aver-
age number of exchanges and the average total cost ofν-find. Since our analysis does
only consider the main order term in the cost of quickselect in the asymptotic regime,
we have conducted a few experiments to assess the validity ofthe theoretical predic-
tions in practical terms; these experiments and their results are described in Section 7.
In Section 8 we prove that proportion-from-s-like sampling strategies achieve optimal
performance whens→ ∞. We conclude in Section 9 with future research directions
and open problems.

A preliminary version of this paper has appeared in [17].
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2 General results

We begin this section with the derivation of the integral equation satisfied byf (s)(α) =
limn→∞,m/n→αCn,m/n when we use proportion-from-s sampling1. Actually, we gen-
eralize these results to a broader class of algorithms that we call adaptive sampling
strategies.

We consider that, at each stage, the rankr of the selected pivot is a function of
α = m/n, the ratio of the current rankm to the current sizen. Recall that we also useα
to denote the initial relative rank, should no confusion arise.

Let π(s,r)
n, j be the probability that therth element of a sample ofselements is thejth

element of a random permutation of sizen. Clearly,

π(s,r)
n, j =

( j−1
r−1

)(n− j
s−r

)

(n
s

) , 1≤ r ≤ s≤ n, 1≤ j ≤ n. (1)

The denominator is the number of ways to pick a sample of sizes out of n elements;
the numerator is the number of ways to chooser −1 elements smaller than the pivot
times the number of ways to chooses− r elements larger than the pivot.

Now we are ready to set up a recurrence for the average number of comparisons
made to select themth element out ofn. First,n−1 comparisons are needed to partition
the array around the pivot, andΘ(s) = Θ(1) additional comparisons are necessary to
select the pivot. If the pivot is thejth smallest element andm < j, we continue in
the left subarray, still looking for themth smallest element, but now the array contains
j −1 elements. Ifm> j then we continue in the right subarray which containsn− j
elements, but we look now for the(m− j)th smallest element there. Finally, we stop if
the pivot is the sought element, i.e., whenj = m. Hence we have

Cn,m = n+Θ(1)+
n

∑
j=m+1

π(s,r)
n, j ·Cj−1,m+

m−1

∑
j=1

π(s,r)
n, j ·Cn− j,m− j . (2)

We assume thatr = r(α) is an integer staircase function defined by a finite collec-
tion of ℓ steps. We say that a sampling strategy defined by such a function isadaptive.
The functions that do not satisfy the assumption would behave rather strangely and are
most likely useless. Hence,r can be described by the image of each interval in a finite
set of disjoint intervals, sayI1, I2, . . . , Iℓ with endpointsa0 = 0< a1 < a2 < · · ·< aℓ = 1;
we denote byrk the value ofr for α ∈ Ik. For convenience, we assumeI1 = [0,a1], Iℓ =
[aℓ−1,1], Ik = (ak−1,ak] if k > 1 andak ≤ 1/2, Ik = [ak−1,ak) if k < ℓ andak−1 > 1/2,
andIk = (ak−1,ak) if ak−1 ≤ 1/2 < ak and 1< k < ℓ. However, the forthcoming anal-
ysis is easily generalized for intervals defined in some different way, as long as the set
of intervals totally covers[0,1].

For instance, median-of-(2t + 1) is defined by a single interval (ℓ = 1) andr1 =
t +1: no matter what the value ofα is, we always choose the median of the sample.

On the other hand, we can now formally defineproportion-from-s sampling: it is
the sampling strategy defined bys intervals, withak = k/s andrk = k. For instance, if

1If no confusion arises, for the rest of the paper we will drop the superscript denoting the sample size in
f (s)(α).
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Algorithm 2 Picking a pivot with proportion-from-3 sampling.
function pick_pivot(A, l ,u,m)

var pl, pm, pu : integer;n, rank : integer
begin

n := u− l +1;
if n < 3 then return l ;
{Any three distinct values in[l ..u] can be used to initializepl, pm, pu}
pl := l ; pm:= (l +u)div 2;pu := u;
if A[pl] > A[pm] then swap(pl, pm);
if A[pm] > A[pu] then begin

swap(pm, pu);
if A[pl] > A[pm] then swap(pl, pm);

end
rank := m− l +1;
if 3∗ rank≤ n then return pl;
if 3∗ rank< 2∗n then return pm;
return pu;

end

s= 3 thenr(α) = 1 for α ∈ [0,1/3], r(α) = 2 for α ∈ (1/3,2/3) andr(α) = 3 if α ∈
[2/3,1]. An example of an execution is presented in Figure 1, showingsome interesting
features of the algorithm. The most important observation is the fact that adaptive
sampling strategies choose the pivot as a function of the current relative rank of the
sought element at each recursive call. In this example, in the first recursive call we have
to choose the first element⑨ of the sample as the pivot becauseα = 4/15< 1/3, in the
second recursive call the median of the sample⑥ is selected since 1/3< α = 1/2< 2/3
and, finally, in the last recursive call we choose the largestelement④, as we have now
α = 4/5> 2/3. In the figure, the pivot of each partition stage appears in dark grey once
the partition is finished; discarded elements are shaded in light grey. The elements of
the sample at each stage appear within a circle, which is solid if the sample element is
the selected pivot.

The “reactiveness” of proportion-from-3 to the current relative rank of the sought
element is the reason for its improved performance if compared with other variants of
quickselect; but this simple modification of the pivot selection scheme makes the anal-
ysis of the average performance considerably difficult. However, the implementation
of proportion-from-3 is as simple as for other variants of quickselect (see Algorithm 2).
We observe that the selection of the pivot does not rearrangethe elements of the sam-
ple in the array, but rather works with pointers (the indicespl, pmandpu) to them, for
otherwise we would not preserve the randomness of the subarrays after partitioning.

We state now the main result of this section.

Theorem 1. Let Cn,m be the average cost to select the mth out of n elements using an
adaptive sampling strategy with m/n→ α for 0≤ α ≤ 1 as n→ ∞. Then we have that
the characteristic function of the algorithm

f (α) = lim
n→∞

Cn,m

n
,
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9 5 10 12 3 1 11 15 7 2 8 13 6 4 14 0

↓

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14 1

↓

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14 2

↓

2 3 1 4 5 6 8 7 9 15 11 13 12 10 14 3

Figure 1: An example of execution of the proportion-from-3 algorithm withn= 15 and
m= 4.

with f(α) = fk(α) if α ∈ Ik, 1≤ k≤ ℓ is well defined, and

fk(α) = 1+
s!

(rk−1)!(s− rk)!

[

∫ 1

α/ak

fk(α/x)xrk(1−x)s−rk dx

+
∫

α−ak−1
1−ak−1

0
fk

(

α−x
1−x

)

xrk−1(1−x)s+1−rk dx

+
ℓ

∑
d=k+1

∫

I ′d
fd(α/x)xrk(1−x)s−rk dx

+
k−1

∑
d=1

∫

I ′′d
fd

(

α−x
1−x

)

xrk−1(1−x)s+1−rk dx

]

,

with I′d = (α/ad,α/ad−1) and I′′d =
(

α−ad
1−ad

,
α−ad−1
1−ad−1

)

.

Sketch of the proof.The proof is a generalization of the proofs in [7, 8] for standard
quickselect and its median-of-(2t + 1) variants. First, we have to show that for any
given partition{Ik} of [0,1] into ℓ disjoint intervals with endpoints 0= a0 < a1 <
· · · < aℓ = 1 and any family{µk}1≤k≤ℓ of probability distributions in[0,1] which are
not concentrated in{a0,a1, . . . ,aℓ} there is a unique family of probability distributions
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{Fα : 0≤ α ≤ 1} satisfying the following distributional equation2

Fα
L
= 1+1(α/ak,1](ξk) ·ξk ·Gα/ξk

+1[
0,

α−ak−1
1−ak−1

](ξk) · (1−ξk) ·G(α−ξk)/(1−ξk)

+
ℓ

∑
d=k+1

1I ′d
(ξd) ·ξd ·Gα/ξd

+
k−1

∑
d=1

1I ′′d
(ξd) · (1−ξd) ·G(α−ξd)/(1−ξd),

where{Gα : 0 ≤ α ≤ 1} is a family of independent random variables with the same

distribution as{Fα : 0 ≤ α ≤ 1} (i.e., Gα
L
= Fα, for all α), {ξk}1≤k≤ℓ is a finite col-

lection of independent random variables with the same distribution as theµk’s, I ′d =

(α/ad,α/ad−1), I ′′d =
(

α−ad
1−ad

,
α−ad−1
1−ad−1

)

, and 1I denotes the indicator function for the in-

tervalI . Thus we extend the notion ofµ-split given in [7] toµ= 〈{Ik},{µk}〉 since such
a pair uniquely determines the family of probability distributions{Fα : 0≤α≤ 1}. The
result in [7] can be seen as the particular instance whereℓ = 1 and thusI1 = [0,1].

The second part of the proof amounts to showing that for a given adaptive sampling
strategy, if limn→∞ m/n = α then

Cn,m

n
L→ Fα

with respect to a suitable metric (in particular, with respect to the Wasserstein met-
ric), whereCn,m is the number of comparisons made by quickselect when selecting
the mth smallest element out ofn using the given adaptive sampling strategy, and
{Fα : 0 ≤ α ≤ 1} is theµ-split constructed withµk = Beta(rk,s+ 1− rk) and the in-
tervals corresponding to the given adaptive sampling strategy.

The statement of the theorem then easily follows. Also, as a by-product of the
detailed proof, we can show that eachfk(α) is bounded inIk, and furthermore establish
that, for anys, the operatorTk defined by

Tk(g)(α) := 1+
s!

(rk−1)!(s− rk)!

[

∫ 1

α/ak

gk(α/x)xrk(1−x)s−rk dx

+
∫

α−ak−1
1−ak−1

0
gk

(

α−x
1−x

)

xrk−1(1−x)s+1−rk dx

+
ℓ

∑
d=k+1

∫

I ′d
gd(α/x)xrk(1−x)s−rk dx

+
k−1

∑
d=1

∫

I ′′d
gd

(

α−x
1−x

)

xrk−1(1−x)s+1−rk dx

]

,

is a contraction for all 1≤ k ≤ ℓ. Heregk is the restriction ofg : [0,1] → R in the
intervalIk, andI ′d andI ′′d are defined as above.

2We useX
L
= Y to denote that the random variableX has the same distribution as the random variableY;

similarly, Xn
L→ X denotes convergence in law of the sequence of random variables{Xn}n≥0 to the random

variableX.
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The technical details of the full proof of Theorem 1—which we have partially given
here— are involved. But the intuition behind the statement of the theorem is rather
simple: divide both sides of (2) byn, take j = x ·n in the summations, and since we
anticipate thatCn,m ∼ f (α) ·n, we substituteCj−1,m by f (α/x) · x ·n andCn− j,m− j by

f ((α−x)/(1−x)) · (1−x) ·n. Also, whenn→ ∞ andα ∈ Ik we can replacen ·π(s,rk)
n, j

by the asymptotic estimate

n·π(s,rk)
n, j → s!

(rk−1)!(s− rk)!
xrk−1(1−x)s−rk = Beta(rk,s+1− rk).

Passing to the limit whenn → ∞, the summations become integrals thus yielding the
equations stated in the theorem. Sincer is an integer function, the range ofα must be
broken intoℓ intervals, giving the piecewise definition off (α).

Bearing in mind that discontinuities in the definition ofr(α) carry on to disconti-
nuities in f (α) we can also use the following simpler integral equation satisfied by the
characteristic functionf (α):

f (α) = 1+
s!

(r(α)−1)!(s− r(α))!

[

∫ 1

α
f (α/x)xr(α)(1−x)s−r(α) dx

+
∫ α

0
f

(

α−x
1−x

)

xr(α)−1(1−x)s+1−r(α) dx

]

. (3)

We say that an adaptive sampling strategy issymmetricif lim z→α− r(1− z) = s+
1− limz→α− r(z) for all α. This definition properly captures the symmetric nature of
the algorithm. Indeed, if we use as a pivot therth smallest element in the sample of size
s when searching for the element with rankα, it is reasonable to choose therth largest
(equivalently, the(s+1− r)th smallest) element while searching for the element of
rank 1−α. The actual definition using limits from the left is necessary to make it
valid also for samples of even size. Notice that for any symmetric sampling strategy
we haveak = 1−aℓ−k if k < ℓ/2; furthermore if the number of intervalsℓ is even then
aℓ/2 = 1/2.

We immediately obtain the next lemma.

Lemma 1. For any symmetric adaptive sampling strategy, its characteristic function
is symmetric, i.e., f(α) = f (1−α). More precisely, fk(α) = fℓ+1−k(1−α), if α ∈ Ik.

Proof. Sincer(α) is symmetric it is not difficult to prove that for anyn and anym,
Cn,m = Cn,n+1−m. The statement of the lemma immediately follows.

Furthermore, we can prove the following lemma.

Lemma 2. For any adaptive sampling strategy

lim
α→0

f (α) =
s+1

s+1− r0
,

where r0 = limα→0 r(α) and all limits ofα → 0 are taken from the right.
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Proof. Taking the limit whenα → 0 from the right in (3) and sincef (α) is bounded in
[0,1], we have

lim
α→0

f (α) = 1+
s!

(r0−1)!(s− r0)!

∫ 1

0

(

lim
α→0

f (α/x)

)

xr0(1−x)s−r0 dx

= 1+
s!

(r0−1)!(s− r0)!

∫ 1

0

(

lim
α→0

f (α)

)

xr0(1−x)s−r0 dx

= 1+
s!

(r0−1)!(s− r0)!
·
(

lim
α→0

f (α)

)

·
∫ 1

0
xr0(1−x)s−r0 dx

= 1+
s!

(r0−1)!(s− r0)!
·
(

lim
α→0

f (α)

)

· r0!(s− r0)!
(s+1)!

.

Hence,

lim
α→0

f (α) =
1

1− r0/(s+1)
=

s+1
s+1− r0

.

From Lemma 2 we can easily rederive the known fact that for median-of-(2t +1),
limα→0mt(α) = ((2t + 1) + 1)/((2t + 1) + 1− (t + 1)) = 2, for anyt. On the other
hand, if we use proportion-from-s sampling or a similarly inspired strategy such that
r0 = 1, then limα→0 f (α) = 1+1/s, which proves that significant gains can be expected
for s≥ 2. In particular, proportion-from-s and similar strategies perform better than
median-of-(2t + 1) variants, at least for low and high values ofα. One of the main
goals of this work is to establish how and when this happens.

To prepare for that journey we need a couple of additional technical results that
are proved in Appendix A. In order to provide an explicit solution of the integral
equations in Theorem 1, we transform, after lengthy and careful computations, the
original problem to one of ordinary differential equations.

Lemma 3. For any adaptive sampling strategy,

ds+2

dαs+2 fk(α) =
(−1)s+1−rk

αs+1−rk
· s!
(rk−1)!

· drk+1

dαrk+1 fk(α)

+
1

(1−α)rk
· s!
(s− rk)!

· ds+2−rk

dαs+2−rk
fk(α),

where f(α) is its characteristic function, andα ∈ Ik, 1≤ k≤ ℓ.

Since proportion-from-s is a symmetric strategy, we only have to consider the equa-
tions for 1≤ k ≤ ⌈s/2⌉ and the order of the ordinary differential equation satisfied by
eachfk can be reduced. Letφk(x) = dk+1 fk/dxk+1. Then, for all 1≤ k≤ ⌈s/2⌉, since
rk = k,

ds+1−kφk

dxs+1−k − s!
(s−k)!

1
(1−x)k

ds+1−2kφk

dxs+1−2k − s!
(k−1)!

(−1)s+1−k

xs+1−k φk(x) = 0. (4)
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An important special case of the ordinary differential equation (ODE) above is for
the central interval (k = t + 1) whens = 2t + 1. Then the ODE is identical to the
corresponding ODE for median-of-(2t +1).

The problem with the differential equations above, besidesthe intrinsic difficulty
of solving high order linear differential equations, is that initial conditions are hard to
establish, other than the limiting valuef (0). Recall thatf (α) is in general discontinu-
ous and hence in order to obtain it, we should knowfk(ak−1), f ′k(ak−1), . . . , ds fk

dαs (ak−1)
for everyk, 1≤ k ≤ ℓ. In order to overcome this problem, we use a different tech-
nique, namely, substitute thefk’s in the integral equations by the general form of the
solution for the corresponding differential equation and fix the values of the unknown
constants by equalizing both sides. When the adaptive strategy is symmetric the prob-
lem is somewhat simpler because there are lessfk’s to cope with and the argument
of symmetry can be of help when determining the constants. However, the essential
obstacles remain.

Last but not least the following result allows us to investigate the behavior ofCn =
1
n ∑1≤m≤nCn,m asn→ ∞.

Lemma 4. Let Cn be the average cost to select an element of random rank out of n
elements using a symmetric adaptive sampling strategy. Then we have

f = lim
n→∞

Cn

n
=
∫ 1

0
f (α)dα,

where f(α) is the characteristic function of the algorithm, and it is asgiven by Theo-
rem 1.

3 Proportion-from-2

Let us begin with the simplest “proportion-from” strategy:s = 2. Solving (4) is not
very difficult and even can be said to be routine in this case. Here, we have just to
consider one piece, namelyφ1, since by symmetry we know thatf2(x) = f1(1− x).
Equation (4) is then

d2φ1

dx2 − 2
1−x

dφ1

dx
− 2

x2 φ1(x) = 0, (5)

with x = 0 andx = 1 its regular singular points. We remark thatφ1(x) = d2 f1/dx2.
The corresponding indicial equation isλ(λ−1)−2 = 0, whose solutions areλ = −1
andλ = 2. This entails a solution of the formφ1(x) = φ1,1(x)+ φ1,2(x) (see [20] and
pages 14 to 15 in Section 4) where

φ1,1(x) = ∑
n≥0

anxn−1 +A·φ1,2(x) · lnx,

φ1,2(x) = ∑
n≥0

bnxn+2,

for some coefficients{an}n≥0 and{bn}n≥0 and some constantA. The second term in
φ1,1(x) is necessary since the roots of the indicial equation differby an integer constant.

10



Substituting the proposed form forφ1(x) into the differential equation we obtain
recurrence relations for the coefficientsan andbn, and from there a simple form for
φ1 which depends on two constants, since we can prove thatA = 0, andan = a0 and
bn = b0 for all n≥ 0. Indeed,

φ1(x) =
a0

x(1−x)
+

b0x2

1−x
.

Integratingφ1 twice we get

f1(x) = a((x−1) ln(1−x)+
1
6

x3 +
1
2

x2−x)−b(1+H (x))+cx+d,

for some constantsa, b, c andd yet to be determined.
The difficult part here is to obtain the values of these constants. The known value

f1(0) = 3/2 givesd−b= 3/2, but the successive derivatives off1 atα = 0 are infinite
and this information cannot be used to fix the value of the constants. The painful
process is to substitute the general expression forf1 and f2 into the integral equation
(Theorem 1) and equalize the coefficients of powers ofx in both sides.

Finally, one gets

a = − 1
12(3ln2−2)

, b = −2, c = − 4ln2−3
8(3ln2−2)

, d = −1/2.

The maximum off (α) is atα = 1/2. Indeed, since

f ′(α) =
(48ln2−36)(ln(1−α)− lnα)−4lnα−2α2−4α+3

8(3ln2−2)
,

we have thatf ′(0) = ∞, f ′(1/2) > 0 and sincef ′(α) is strictly decreasing, we con-
clude that it is always positive. Inα = 1/2, the cost isf1(1/2) = f2(1/2) = 1/96·
(576ln22−253)/(3ln2−2)

.
=3.112. . .. Compare withm0(1/2)

.
=3.386. . . for stan-

dard quickselect andm1(1/2) = 11/4 = 2.75 for median-of-3 quickselect3.
We also have

f =
∫ 1

0
f (x)dx= 2·

∫ 1/2

0
f1(x)dx=

3(320ln2−213)
128(3ln2−2)

.
=2.598. . . ,

which tells us that proportion-from-2 makes roughly 2.6n comparisons on average.
Compare with the 3n comparisons of standard quickeslect and the 2.5n comparisons
made by median-of-3.

It is interesting to notice that, as we expected,f (α) ≤ m0(α) for all 0 ≤ α ≤ 1.
Compared to median-of-3, proportion-from-2 is better whenα ≤ 0.140. . . and, sym-
metrically, whenα ≥ 0.859. . .; and it is worse otherwise. The fact that we can outper-
form median-of-three with only two elements per sample is encouraging (see Figure 2).
In that percentile, both algorithms make in average approximately 2.362. . .n compar-
isons. However, it is a bit unfair to compare median-of-3 andproportion-from-2 since
these strategies use a different number of elements in the samples (and standard quick-
select uses samples of sizes= 1).

3We only give four figures in the numerical values in this section and the following. Nevertheless it is
relatively easy to obtain a high degree of accuracy—indeed,we have computed all the numerical values
given in the paper with up to twenty digits of accuracy.
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Figure 2: Plot ofm0(α), m1(α) and the characteristic functionf (α) of proportion-
from-2.

4 Batfind: Proportion-from-3

The steps needed to analyzebatfind(a.k.a. proportion-from-3) are similar to those of
the previous section. In this case we have the following three functions: f1(x) when
x∈ [0,1/3], f2(x) whenx∈ (1/3,2/3) and f3(x) whenx∈ [2/3,1]. By symmetry we
have f3(x) = f1(1−x) and f2(x) = f2(1−x). This implies that we need to solve only
two differential equations, namely,

d3φ1

dx3 − 3
1−x

d2φ1

dx2 +
6
x3 φ1(x) = 0, (6)

d2φ2

dx2 −6

(

1
x2 +

1
(1−x)2

)

φ2(x) = 0,

with φ1(x) = d2 f1/dx2, φ2(x) = d3 f2/dx3, andx = 0 andx = 1 their regular singular
points. The two indicial equations areλ(λ−1)(λ−2)+6 = 0, with roots−1, 2+ i

√
2

and 2− i
√

2, andλ(λ−1)−6 = 0 with rootsλ = −2 andλ = 3, respectively.

To solve the differential equation forφ1(x) we use the identityxi
√

2 = ei
√

2 lnx =

12



cos(
√

2lnx)+ i sin(
√

2lnx), and so we assumeφ1(x)= φ1,1(x)+φ1,2(x)+φ1,3(x) where

φ1,1(x) = ∑
n≥0

anxn−1,

φ1,2(x) = x2cos(
√

2lnx) ∑
n≥0

bnxn,

φ1,3(x) = x2sin(
√

2lnx) ∑
n≥0

cnxn,

for some unknown coefficients{an}n≥0, {bn}n≥0 and {cn}n≥0. Also, similarly to
proportion-from-2, we proposeφ2(x) = φ2,1(x)+φ2,2(x), with

φ2,1(x) = ∑
n≥0

ânxn−2 +A·φ2,2(x) · lnx, φ2,2(x) = ∑
n≥0

b̂nxn+3,

for some other coefficients{ân}n≥0 and{b̂n}n≥0 and some constantA.
Substituting the proposed form forφ1(x) into the differential equation we obtain

recurrence relations for the unknown coefficients{an}n≥0, {bn}n≥0 and{cn}n≥0 and
we finally get

φ1,1(x) = a0
1

x(1−x)
,

φ1,2(x) = b0
x2

1−x
cos(

√
2lnx),

φ1,3(x) = c0
x2

1−x
sin(

√
2lnx),

sincean = a0, bn = b0 andcn = c0 for all n≥ 0, for some arbitrary constantsa0, b0 and
c0. Integratingφ1 twice yields

f1(x) = −C0(1+H (x))+C1 +C2x+C3 ·K1(x)+C4 ·K2(x)

where

K1(x) = cos
(√

2lnx
)

· ∑
n≥0

Anxn+4 +sin
(√

2lnx
)

· ∑
n≥0

Bnxn+4,

K2(x) = sin
(√

2lnx
)

· ∑
n≥0

Anxn+4−cos
(√

2lnx
)

· ∑
n≥0

Bnxn+4,

An =
(n+2)(n+5)

(n2 +6n+11)(n2 +8n+18)
, Bn =

√
2(2n+7)

(n2 +6n+11)(n2 +8n+18)
.

We can also determine in a similar way the values{ân} and{b̂n} up to arbitrary
constants by substituting the proposed form forφ2 into the corresponding differential
equation yielding

φ2,1(x) = â0

(

1
x2 +

1
(1−x)2

)

, φ2,2(x) = b̂0
x3(5x3−20x2 +28x−14)

14(1−x)2 .
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Then, integratingφ2 three times and taking into account the symmetry off2, we get

f2(x) = −C5(1+H (x))+C6x(1−x)+C7.

The value of the constantsCi in f1(x) and f2(x) can be obtained by the same rou-
tine but cumbersome procedure of substitution into the integral equations that we have
already used to analyze proportion-from-2. Thus we get thatthe constantsCi are the
solutions to a system of equations which can be found in Appendix C. The coefficients
given there are for the generalizations studied in Sections5 and 6; the coefficients that
we need here can be obtained by settingν = 1/3, ξ1 = 1 andξ2 = 0 in the formulæ of
Appendix C. We get then

C0 = −24/11,C1 = −28/33,C2
.
=0.193. . . ,C3

.
= −100.190. . . ,

C4
.
= −27.556. . . ,C5

.
= −1.463. . . ,C6

.
=0.439. . . ,C7

.
=0.135. . . .

The solution just obtained for batfind’s characteristic function is quite representa-
tive of the general situation. For generals, the indicial equation of (4) is

λs+1−k− (−1)s+1−kss+1−k = 0, (7)

wherexk = x·(x−1) · · ·(x−k+1) denotes thekth falling power ofx, for anyk≥ 0 [6].
If we denote its rootsλ1, . . . ,λs+1−k in ascending order of their real part, we have

λ1 = −k and then we have⌊(s−k)/2⌋ pairs of complex conjugate roots. Ifs+1−k is
odd then there are no more roots, but ifs+1−k is even thenλs+1−k = s is also a root.
All the roots have their real parts between−k ands and, except for the caseλ1 = −k
andλs+1−k = s whens+1−k is even, no pair of roots has an integer difference. The
proofs of these facts are more or less involved and are similar in spirit to those of
Mahmoud and Pittel [16] in their analysis of the space ofm-ary search trees.

Then, forφ(s)
k = dk+1 f (s)

k /dxk+1, which satisfies the linear differential equation (4),
we have a solution of the form

φ(s)
k (x) = φ(s)

k,1(x)+ · · ·+φ(s)
k,s+1−k(x),

with
φ(s)

k, j(x) = ∑
n≥0

a( j)
n xn+λ j , (8)

for some coefficients{a( j)
n }n≥0. However, if s+ 1− k is even thenλ1 = −k and

λs+1−k = s, the difference of this pair of roots is an integer, and hencea slightly differ-

ent form forφ(s)
k,1(x) must be assumed, namely,

φ(s)
k,1(x) = ∑

n≥0
a(1)

n xn−k +A·φ(s)
k,s+1−k(x) · lnx. (9)

It is important to point out that the rootsλ j depend ons andk and the coefficients

{a( j)
n } depend ons and k as well; but we have refrained to use additional sub- or

superscripts to make explicit that dependence.
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Substituting the general formφ(s)
k (x) back into the differential equation (4) and

equalizing on powers ofx yields the recurrences satisfied by the coefficientsa( j)
n . How-

ever, we were able to find explicit solutions of these recurrences only for some special
cases. Another outcome of our partial analysis is that the logarithmic extra term in

φ(s)
k,1(x) whens+1−k is even (see Equation 9) actually vanishes, since it can be proved

thatA = 0.
Altogether, by integratingk+1 times, this leads to the general solution of the form

f (s)
k (x) = −Ck+1(1+H (x))+Ckx

k +Ck−1xk−1 + · · ·+C0

+
s+1−k

∑
j=2

Ck+ jx
λ j+k+1 ∑

n≥0

a( j)
n

(n+k+1+λ j)k+1 xn,

for some arbitrary constantsC0, . . . ,Cs+1 and coefficients{a( j)
n }. For eachk we have a

different set ofs+2 arbitrary constants, and the coeffients{a( j)
n } depend on bothk and

s. Furthermore, as we have⌊(s−k)/2⌋ pairs of complex conjugate rootsλ j = µj ±τ j i,
we may write fors+1−k odd

f (s)
k (x) = −Ck+1(1+H (x))+Ckx

k +Ck−1xk−1 + · · ·+C0

+
(s−k)/2

∑
j=1

C2 j+kx
µ2 j+k+1K( j)

1 (x)+C2 j+k+1xµ2 j+k+1K( j)
2 (x), (10)

with

K( j)
1 (x) = cos(τ2 j logx) ∑

n≥0
A( j)

n xn +sin(τ2 j logx) ∑
n≥0

B( j)
n xn

K( j)
2 (x) = sin(τ2 j logx) ∑

n≥0
A( j)

n xn−cos(τ2 j logx) ∑
n≥0

B( j)
n xn,

and

A( j)
n =

ℜ(a(2 j)
n (n+k+1+λ2 j)

k+1)

∏k
i=0

(

(n+k+1+µ2 j − i)2 + τ2
2 j

) ,

B( j)
n =

ℑ(a(2 j)
n (n+k+1+λ2 j)

k+1)

∏k
i=0

(

(n+k+1+µ2 j − i)2 + τ2
2 j

) .

The same holds fors+1−k even, but we have to add to (10) the additional term

Cs+1xs+k+1 ∑
n≥0

a(s+1−k)
n

(n+k+1+s)k+1 xn,

corresponding to the rootλs+1−k = s.

Coming back to batfind, we observe that, contrary to what happens withm1(x),
f2(x) is the sum of a second degree polynomial and an entropic term (recall that the
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Figure 3: Plot of batfind’s characteristic functionf (α) andm1(α).

linear differential equation is the same in both cases, but the entropic term vanishes
for median-of-3). Another important aspect is that, even though the difference is not
large, f (α) ≤ m1(α) for 1/3 < α < 2/3, and the same is true for the intervalsα ≤
0.201. . . andα ≥ 0.798. . .; see Figure 3. In particular,f (1/2) = f2(1/2)

.
=2.722. . . <

m1(1/2) = 2.75. However, it came as a surprise the fact thatα = 1/2 is not the most
difficult relative rank for batfind: for instance,f (1/3) = f1(1/3)

.
=2.883. . . > f (1/2).

Finally, the integration off (α) in [0,1] yields f
.
=2.421. . . which favorably com-

pares to the valuem1 = 2.5 that corresponds to median-of-3.
We conclude this section by briefly discussing the intuitionbehind the fact that

batfind is doing worse than median-of-3 for values ofα near 1/3 (and 2/3). It also
makes more comparisons in these regions than forα = 1/2. In particular, ifα ∈
[0.276. . . ,1/3] or α ∈ [2/3,0.723. . .] then batfind makes more comparisons, on the
average, to select the element of rankα ·n than to select the median.

An informal explanation for these facts is the following. Assume for the sake of
concreteness thatn = 1000 andm = 332. While there is some chance (in particular
∼ 29.6% of the times) that the rank of the pivot selected by batfind is close but larger
than 1000/3 = 333.3 and then we discard almost two thirds of the input, it is more
likely for the rank of the pivot to be less thanm and then we discard a bit less than a
third of the input (this happens around 70.4% of the times). In the latter case, at the
next recursive call, the rank of the sought element would be relatively small; however
there are still enough chances that we have “bad luck” again,as in the first round. On
the other hand, ifm= 334 then the strategy would pick the median of the sample and
thus exhibit more “stable” performance, since it would mostlikely partition the array
into subarrays of similar size and hence avoid the boundary effect just described. Such
boundary effects occurring at early stages of the recursionhave a big impact on the
performance and amount for the difficulty of finding elementswhose rank is slightly
less than or equal ton/3. In other words, this means that to find an element of rankα
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smaller than but close to 1/3 we should have chosen the medianand not the smallest
element as pivot.

5 ν-find: A variant of batfind

The natural question raised in the previous section is: for which values ofα should we
pick the smallest, the median or the largest element of the sample? From the lessons of
Section 4, it seems clear that the median of the sample must beused for a larger interval
of α. However, if we make the central interval too large we may lose all the benefits
of proportion-from-3 sampling. Altogether, this suggeststhat there should exist an
optimal choice for the endpoints of the intervals. The main goal of this section is to
prove this assertion (Theorem 2).

One important point is that no matter how we choose the endpoints, the correspond-
ing characteristic functionf (α) satisfies the differential equations (6) of Section 4.
Hence, the general form of thefk’s is exactly the same as before and the only differ-
ence is in the value of the involved constants, because of thedifferent initial conditions.

More formally, the goal of this section is to investigate theproperties of the charac-
teristic function whena1 = ν anda2 = 1−ν for 0< ν < 1/2; we make the dependence
in ν explicit and denotefν the characteristic function corresponding to this strategy,
which we callν-find. Whenν → 0, ν-find behaves as quickselect with median-of-
three. Whenν = 1/3, we have batfind. Finally, whenν → 1/2, the median of the
sample is always discarded, soν-find behaves slightly different than proportion-from-
2. This “pseudo-proportion-from-2” variant is not interesting at all; it does even worse
than proportion-from-2 in a large interval ofα.

In general,fν(α) consists of three pieces:f1,ν for α ∈ [0,ν], f2,ν for α ∈ (ν,1−ν)
and f3,ν for α ∈ [1− ν,1]. Of course, sinceν-find is symmetric we havef3,ν(α) =
f1,ν(1−α).

As we have already pointed out, the only difference between our analysis of batfind
and that ofν-find is that we have to investigate the dependence onν of the values of
the constantsCi ’s in the general form off1,ν and f2,ν (see Section 4). Notice that the
argument of symmetry off2,ν applies also here, no matter what the value ofν is.

It turns out thatC0 = −24/11 andC1 = −28/33 are independent ofν. Moreover,
C6(ν) = 7/4 ·C5(ν) + 3. Appendix C provides the values of the remainingCi ’s as
functions ofν. Actually, we give there the values for theCi ’s corresponding to the
average total cost (see Section 6); the values of theCi ’s corresponding to the average
number of comparisons can easily be obtained by settingξ1 = 1,ξ2 = 0 in the given
formulæ.

For a large range of values ofν, fν has three local maxima located atα = ν, α =
1−ν andα = 1/2. The local maxima atν and 1−ν constitute the so characteristic two
little “ears” of ν-find (and batfind in particular). It is also important to point out that
for fixedν, limα→0 fν(α) = limα→0 f1,ν(α) = 4/3. However, limν→0 f1,ν(ν) = 3/2 and
limν→0 f2,ν(ν) = 2.

As ν decreases, the value off1,ν(ν) also decreases andα = 1/2 becomes the ab-
solute maximum offν. We denotẽν the largest value ofν such thatα = 1/2 is the
absolute maximum offν; for ν > ν̃ the absolute maxima offν are located atα = ν and
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Figure 4: Plot ofeν.

α = 1−ν. So ν̃ is the solution off1,ν(ν) = f2,ν(1/2). Numerical computations yield
ν̃ .

=0.268. . .. This phenomenon leads naturally to the concept ofexpensiveranks. We
say thatα 6= 1/2 is expensive iffν(α) ≥ fν(1/2). If ν < ν̃ then there are no expensive
ranks. But ifν ≥ ν̃ .

=0.268. . . then[eν,ν] and[1−ν,1−eν] are the intervals containing
the expensive ranks. To computeeν we just need to solvef1,ν(eν)− fν(1/2) = 0 (see
Figure 4).

5.1 The optimal value ofν

If we continue decreasing the value ofν then fν loses its characteristic “ears” because
then we havef1,ν(ν) < f2,ν(ν) (see Figures 5 and 6). We denoteν̂ the transition point,
where f1,ν(ν) = f2,ν(ν), i.e., wherefν is continuous. We have thatν̂ .

=0.182. . ..
This transition point enjoys another fundamental propertythat we state in the main

theorem of this section.

Theorem 2. There exists an optimal value ofν, namelyν∗ .
= 0.182. . ., such that

f1,ν∗(ν∗) = f2,ν∗(ν∗) and for all ν, 0 < ν < 1/2, and for allα, 0≤ α ≤ 1,

fν∗(α) ≤ fν(α).

Despite the technical difficulties of the proof (given in Appendix B), the intuitive
explanation for Theorem 2 is easy: ifν < ν∗ then f1,ν(ν) < f2,ν(ν), which means that
for some values ofα > ν close enough toν we would be doing better by choosing the
smallest element in the sample rather than the median; on thecontrary, ifν > ν∗ then
f1,ν(ν) > f2,ν(ν), and that means that for someα ≤ ν the algorithm should have chosen
(as in batfind) the median as the pivot, not the smallest. Atν = ν∗ we are just choosing
the right pivot for each relative rankα.

Sinceν∗ optimizesfν it minimizes the maxima; in particular,ν∗ minimizesfν(1/2).
Also, sinceν∗ < ν̃, it follows thatα = 1/2 is the most difficult relative rank forν∗-find,
where we havefν∗(1/2)

.
=2.659. . . (see Figure 7).
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Figure 7: Plot off1,ν(ν), f2,ν(ν) and fν(1/2).

It is also obvious thatν∗ must minimize the average valuef ν. In particular, we
have f ν∗

.
= 2.342. . . (see Figure 8). Andν∗-find must outperform median-of-three as

m1(α) = limν→0 fν(α).

It is reasonable to think that when using samples of sizes, a suitable choicea∗1,a
∗
2, . . .

of the interval endpoints that makesf (s)(α) continuous is the optimal choice for each
possibles, like we have just proved fors= 3.

Conjecture 1. Fix some value s≥ 3 and let

As = {(0,a1,a2, . . . ,as−1,1) |0 < a1 < a2 < · · · < as−1 < 1 and

1−as−k = ak for all k,1≤ k≤ ⌊s/2⌋}.

Let fa(α) denote the function corresponding to proportion-from-s sampling with end-
points ata = (0,a1,a2, . . . ,as−1,1) ∈ As. Then, there exists a uniquea∗ ∈ As such that

f (s)
a∗ (α) is continuous forα ∈ [0,1] and

f (s)
a∗ (α) ≤ f (s)

a (α),

for anya∈ As and any0≤ α ≤ 1.

This conjecture is the analogous of Theorem 2 for generals. Even though we have
been unable to complete all the technical details needed to prove this conjecture, all the
evidence indicates that such an optimal choice of the endpoints of the intervals must
exist. As noticed in Section 4 for proportion-from-3, proportion-from-s algorithms
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Figure 8: Plot off ν; m1 = 2.5 is also depicted for convenience.

also have discontinuities near the endpoints of the intervals. This problem is originated
by a “bad choice” of the pivot for ranks close to the interval endpoints. Following
the arguments of this section, we can expect the existence ofan optimal choice of

the valuesa1 · · ·as−1 such that the functionf (s)
a (α) is continuous and minimum for

all α. Also, since median-of-(2t + 1) is the special case of proportion-from(2t + 1)
whena1 → 0,a2 → 0, . . . ,at → 0,at+1 → 1, . . . ,a2t → 1, then, if Conjecture 1 holds, it

follows that f (2t+1)
a∗ must outperform median-of-(2t +1) for anyt.

5.2 A comparative study ofν-find

In order to compareν-find with other algorithms, we use the fact that, except atν = α,
the function fν(α) is continuous inν for fixed α. Furthermore, the function has a
local minimum atν = ν∗ and its second derivative (except atν = α) is strictly positive.
Therefore, if we want to compare an algorithmG whose characteristic function isg(x)
with ν-find, it is enough to compareg(x) to max{ f1,x(x), f2,x(x)}. Wheneverg(x) is
above max{ f1,x(x), f2,x(x)}, the correspondingν-find beatsG for all ranksα; if g(x) is
below max{ f1,x(x), f2,x(x)} that means thatG beatsν-find in some ranks.

When comparingν-find with standard quickselect, the result is clear cut:ν-find
beats this algorithm for any rankα and any value ofν (see Figure 9).

Things get more intriguing when we compareν-find with proportion-from-2 and
with median-of-three. There are ranges ofν whereν-find is not uniformly better than

proportion-from-2. In particular ifν ≤ ν(2)
1

.
= 0.116. . . or ν ≥ ν(2)

2
.
= 0.347. . . then

fν(α) ≥ f (2)(α) in some ranges ofα (see Figure 9). For instance, we already knew
that proportional-of-2 does better than median-of-3 (which is the limit ofν-find when

ν → 0) whenα is sufficiently close to 0 or to 1. The valuesν(2)
1 and ν(2)

2 are the
solutions tof2,ν(ν)− f (2)(ν) = 0 and f1,ν(ν)− f (2)(ν) = 0, respectively.

A set of interesting values ofν also arises when we compareν-find and median-of-
three. In particular:
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Figure 9: Plot ofν-find (max{ f1,ν(ν), f2,ν(ν)}) compared to standard quickselect
(m0(ν)) and proportion-from-2 (f (2)(ν)).

1. Forν ≤ ν′ .
= 0.404. . ., ν-find does better than median-of-3 on the average; that

is, f ν ≤ m1 = 5/2 = 2.5 (see Figure 8).

2. Forν ≤ ν′m
.
=0.364. . ., ν-find does better than median-of-3 to locate the median,

or in other words,fν(1/2) ≤ m1(1/2) = 11/4 = 2.75 (see Figure 10).

3. Forν≤ ν′ .
=0.219. . ., ν-find does always better than median-of-3, that is,fν(α)≤

m1(α) for all α. Because of the properties offν andm1, ν′ is characterized as
the solution ofm1(ν)− f1,ν(ν) = 0. Notice thatν∗ ≤ ν′ ≤ ν̃, hence whenν-find
beats median-of-3,α = 1/2 is already the most difficult relative rank forν-find;
but on the other hand,f1,ν′(ν′) > f2,ν′(ν′) (see Figure 10).

4. If ν > ν′ then, by definition,ν-find does worse than median-of-three for some
intervals ofα. In particular, if ν′ < ν ≤ ν′m then ν-find beats median-of-3 in
[0,αν], (ν,1− ν) and [1−αν,1]; if ν′m < ν ≤ ν′′ .

= 0.381. . . thenν-find beats
median-of-3 in[0,αν], [1−αν,1] and two subintervals of(ν,1−ν) not including
α = 1/2; finally, if ν > ν′′ thenν-find beats median-of-three only in the intervals
[0,αν] and [1−αν,1]. The valueν′′ is the solution of the equationf2,ν(ν)−
m1(ν) = 0. For instance, sinceν′ < 1/3 < ν′m, batfind beats median-of-3 in the
ranges[0,α1/3], (1/3,2/3) and [1−α1/3,1], with α1/3

.
= 0.201. . .. In general,

αν is the solution ofm1(αν)− f1,ν(αν) = 0 (see Figure 11).

The value offν at relevant points and related quantities, for several values ofν, are
listed in Table 1.
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Figure 10: Plot ofν-find compared to median-of-three.
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ν fν(1/2) f1,ν(ν) f2,ν(ν) αν eν f ν

ν → 1/2 2.871. . . 3.326. . . 2.871. . . 0.160. . . 0.294. . . 2.622. . .
ν′ .

=0.404. . . 2.790. . . 3.091. . . 2.747. . . 0.182. . . 0.287. . . 2.5
ν′m

.
=0.364. . . 2.75 2.976. . . 2.679. . . 0.193. . . 0.280. . . 2.453. . .

1/3 2.722. . . 2.883. . . 2.627. . . 0.201. . . 0.276. . . 2.421. . .
ν̃ .
=0.268. . . 2.680. . . 2.680. . . 2.522. . . 0.214. . . ν̃ 2.370. . .

1/4 2.672. . . 2.617. . . 2.491. . . 0.217. . . - 2.359. . .
ν′ .

=0.219. . . 2.663. . . 2.514. . . 2.441. . . ν′ - 2.348. . .
1/5 2.660. . . 2.444. . . 2.409. . . - - 2.343. . .
ν̂ = ν∗

.
=0.182. . . 2.659. . . 2.379. . . 2.379. . . - - 2.342. . .

1/6 2.660. . . 2.321. . . 2.352. . . - - 2.343. . .
1/7 2.664. . . 2.228. . . 2.311. . . - - 2.348. . .
1/8 2.668. . . 2.154. . . 2.278. . . - - 2.356. . .
1/9 2.673. . . 2.095. . . 2.252. . . - - 2.363. . .
1/10 2.678. . . 2.046. . . 2.231. . . - - 2.371. . .
ν → 0 2.75 3/2 2 - - 2.5

Table 1: Some relevant parameters ofν-find.

In this section we have generalized the proportion-from-3 algorithm by allowing
a1 = ν to be any value in(0,1/2), instead of the arbitrary value 1/3. In doing so,
we have done a fine-tuning of the algorithm, finding the best choice fora1 and taking
care of the problems presented by batfind. Moreover, we were able to completely
characterize the evolution of the algorithm asν varies, and to prove the existence of
the optimal valueν∗ of a1. Moreoverν∗-find outperforms median-of-3 in every range.
Given the simplicity of its implementation,ν∗-find is a strong candidate for being the
selection algorithm of choice in general-purpose libraries. Nevertheless, if we want to
consider the practical impact ofν-find we should also study the number of exchanges
made. This issue is studied in the next section.

6 Exchanges and total cost

An important part of the cost of the selection algorithm comes from the exchanges
performed during the partition stages. It is thus interesting to consider theaverage total
costof the algorithm, where we define the total cost as a weighted sum of exchanges
and comparisons. Other costs, such as the cost of the comparisons needed to select
pivots or the cost of the bookkeeping associated to each iteration, can be neglected for
our analysis since they areo(n).

Taking into account exchanges introduces yet another twistin our framework. It
is relatively easy to set up the integral equations to analyze the average total cost.
However, a new difficulty arises here because the toll function depends now both on
n andm. In particular, the average number of exchanges in a single partitioning step
of an array of sizen when we select according to the adaptive strategy given byr(α)
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is [18, 21]

∑
1≤ j≤n

π(s,r)
n, j ∑

t
t

( j−1
t

)(n− j
t

)

(n−1
j

) =
r(α)(s+1− r(α))

(s+1)(s+2)
n+o(n).

Hence, ifξ1 denotes the unit cost of a comparison,ξ2 denotes the unit cost of an
exchange andXn,m denotes the average number of exchanges made to select themth
element out ofn elements, and we lett(α) = limn→∞,m/n→α(ξ1 ·Cn,m + ξ2 ·Xn,m)/n,
then we havet(α) = tk(α) if α ∈ Ik, 1≤ k≤ ℓ, and

tk(α) =

(

ξ1 +ξ2
rk(s+1− rk)

(s+1)(s+2)

)

+
s!

(rk−1)!(s− rk)!

[

∫ 1

α/ak

tk(α/x)xrk(1−x)s−rk dx

+
∫

α−ak−1
1−ak−1

0
tk

(

α−x
1−x

)

xrk−1(1−x)s+1−rk dx

+
ℓ

∑
d=k+1

∫

I ′d
td(α/x)xrk(1−x)s−rk dx

+
k−1

∑
d=1

∫

I ′′d
td

(

α−x
1−x

)

xrk−1(1−x)s+1−rk dx

]

,

with I ′d = (α/ad,α/ad−1) andI ′′d =
(

α−ad
1−ad

,
α−ad−1
1−ad−1

)

. In particular, forν-find, following

the same steps of Section 2 we arrive at the same differentialequations to be satisfied
by the tk’s. Hence the general form of thetk’s is the same as for thefk’s but the
involved constants are different. Once the correspondingCi ’s have been determined
(as functions ofν, ξ1 and ξ2) we can investigate the behavior of the average total
cost and compare it to the other alternatives. Moreover, an analogue of Lemma 2
holds for the total cost of any adaptive sampling strategy: if limα→0 r(α) = 1 then
limα→0 t(α) = ξ1 · (1+1/s)+ξ2/(s+2). In particular, forν-find the average number
of exchanges whenα → 0 is limα→0 tν(α) = 1/5 for anyν.

We can establish the existence of an optimal choiceν∗ for the average total cost of
ν-find, now depending onξ1 andξ2, which satisfiestν∗(α) ≤ tν(α) for any value ofν
and anyα. Furthermore, we have also thatν∗ makestν continuous atα = ν∗. Figure 12
and Table 2 show the variation ofν∗ as a function ofξ = ξ2/ξ1, which is actually the
relevant parameter.

A particular interesting value ofν∗ is for ξ1 = 0,ξ2 = 1, when we want to optimize
the average number of exchanges. Thenν∗ = ν∗(∞)

.
= 0.429. . .. For that optimum,

the factor that multipliesn in the average number of exchanges to find the median is
tν∗(1/2)

.
= 0.479. . . and for the average number of exchanges to find an element of

random rank we havetν∗
.
=0.391. . ..

Like in the previous section, we can define expensive ranks, and also determine
those values ofν where the total cost ofν-find outperforms that of median-of-three on
random ranks, to locate the median and to locate any rank. Similarly to the case of
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Figure 12: Plot ofν∗ = ν∗(ξ).

ξ ν′ ν∗ ξ ν′ ν∗

0 0.219. . . 0.182. . . 30 1/2 0.389. . .
1 0.270. . . 0.213. . . 40 1/2 0.398. . .
2 0.313. . . 0.239. . . 50 1/2 0.403. . .
3 0.349. . . 0.259. . . 60 1/2 0.407. . .
4 0.380. . . 0.276. . . 70 1/2 0.410. . .
5 0.405. . . 0.290. . . 80 1/2 0.413. . .
6 0.427. . . 0.302. . . 90 1/2 0.414. . .
7 0.445. . . 0.312. . . 100 1/2 0.416. . .
8 0.461. . . 0.321. . . 110 1/2 0.417. . .
9 0.474. . . 0.328. . . 120 1/2 0.418. . .
10 0.486. . . 0.335. . . 130 1/2 0.419. . .
11 0.497. . . 0.341. . . 140 1/2 0.419. . .
12 1/2 0.346. . . 150 1/2 0.420. . .
13 1/2 0.351. . . 200 1/2 0.422. . .
14 1/2 0.355. . . 300 1/2 0.424. . .
15 1/2 0.358. . . 400 1/2 0.426. . .
16 1/2 0.362. . . 500 1/2 0.426. . .
20 1/2 0.373. . . → ∞ 1/2 0.429. . .

Table 2: Values ofν∗ andν′ as functions ofξ = ξ2/ξ1.
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Figure 13: Plot ofν′ = ν′(ξ).

the optimalν∗, all these special values ofν or α depend onξ = ξ2/ξ1. For example,
Figure 13 depicts the valueν′ where the average total cost ofν-find is better than the
average total cost of median-of-three on any relative rankα, as a function ofξ = ξ2/ξ1.
The values ofν′ are also given in Table 2. Of course, sinceν∗-find is optimal, it must
outperform median-of-3 on all ranks, so we haveν′(ξ) ≥ ν∗(ξ) for all ξ.

If ξ ≥ 11.288. . . thenν′ = 1/2. In generalν′ is given by the solution oft2,0(ν)−
t1,ν(ν) = 0, wheret2,0(α) is the characteristic function for the average total cost of
median-of-three. Whenξ ≥ 11.288. . . the equation has no solution in(0,1/2); in
other words, for any value ofν, ν-find beats median-of-3 on all ranks, so we assume
by conventionν′ = 1/2. However, large values ofξ should not occur in practice; if
the exchange of two elements were too expensive then we wouldhandle an array of
pointers to the elements instead.

It is not difficult to show thatt2,0(α) = (ξ1 + ξ2/5) ·m1(α) = (ξ1 + ξ2/5) · (2+
3α(1−α)), i.e., the characteristic functionm1(α) for the average number of compar-
isons times the constant(ξ1 + ξ2/5) that multipliesn in the toll function for the total
cost recurrence. In general, the same is true for any adaptive sampling strategy which
only defines one interval (standard quickselect, median-of-(2t +1)) or for proportion-
from-2 because of the symmetry; the functiont(α) for the average total cost is given
by the characteristic functionf (α) corresponding to comparisons times the factor that
multiplies n in the toll function. This easily follows from the fact that if Cn,m is the
solution to recurrence (2) with toll functionn+o(n) thenβ ·Cn,m is the solution to the
recurrence with toll functionβ ·n+o(n).

Last but not least, from a practical standpoint, if we takeξ1 = 4 andξ2 = 11 as rep-
resentative values for the cost of comparisons and exchanges (as suggested in [14]) then
ν∗ ≈ 0.25. Choosingν = 0.25 guarantees that the total cost will be smaller than that of
median-of-3 and allows for a very efficient implementation of the selection of pivots,
since for that choice we can avoid floating point arithmetic and integer multiplications:
integer comparisons and bit shifts suffice.
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Figure 14: Plot of the experimental estimation off (α) (comparisons) for several se-
lection algorithms.

7 Experiments

We have conducted a series of experiments to compare the empirically measured per-
formance with the analytical developments of previous sections. In these experiments,
we have used arrays ofn = 10000 elements. Five algorithms (standard quickselect,
median-of-3, batfind andν-find with ν = ν∗(0)

.
=0.182. . . andν = ν∗(∞)

.
=0.429. . .)

have been run form = 0,100,200, . . .; for each value ofm, our program generates
P = 10000 random arrays, applies all five algorithms to each of the arrays and collects
the number of comparisons and exchanges made. We have include standard quickselect
and median-of-three in our experiments as a further check for the experimental setup
and statistical significance of the collected data.

It is important to emphasize that in our theoretical analysis of the previous sec-
tions we have considered only the asymptotic behavior and disregarded lower order
terms; furthermore, the standard deviation of the investigated quantities (comparisons,
exchanges, total cost) is most likely linear, like for the standard algorithm. Therefore,
we can expect small but noticeable differences between the theoretical prediction and
the experimental data, even for the large value ofn and the large numberP of tests that
for each rank we have used (see Figures 14 and 15).

If we compare in each case the “theoretical prediction”f (α) with the measured
mean number of comparisons divided byn, the relative error is usually smaller than
0.6%. There are a few ranks where the relative error (for some ofthe algorithms)
was slightly greater than 0.6%. We also detected a maximum relative error of 9.085%
in batfind at rankj/n = 0.33. Similar figures are obtained when analyzing the data
corresponding to exchanges.

In summary, the agreement between our theoretical predictions and the experimen-
tal data is excellent, even though our analysis is asymptotic and lower order terms have
not been considered.
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Figure 15: Plot of the experimental estimation oft(α) (exchanges) for several selection
algorithms.

8 Optimal proportion-from- s sampling

In this section we establish the theoretical optimality of many proportion-from-s-like
strategies whens→ ∞. It is well known [4, 5] that at least

n+min(m,n−m)+o(n)

comparisons are necessary on the average to locate themth smallest element out ofn
elements. Using the terminology of this paper, we may rephrase the main result of this
section by saying that, under some additional mild circumstances, the characteristic
function of proportion-from-s-like strategies isf (α) = 1+min(α,1−α) whens→ ∞,
hence optimal.

Definition 1. An adaptive symmetric sampling strategy using samples of size s isbiased
if and only if

r(α) > α ·s+1−α, for 0 < α < 1/2.

Notice that in a biased strategy thekth endpoint is shifted to the left ofk/s when
k < s/2 and it is shifted to the right ofk/s whenk > s/2.

Theorem 3. For any family ofbiasedsampling strategies such thatlims→∞ r(α)/s= α,

f (∞)(α) = lim
s→∞

lim
n→∞,m/n→α

Cn,m

n
= 1+min(α,1−α).

Proof. The proof of theorem above amounts to showing thatf (∞)(α) = 1+min(α,1−
α) is the unique fix point of the operatorT(∞), where for anyg : [0,1] → R,

T(∞)(g)(α) = 1+ lim
s→∞

s!
(r(α)−1)!(s− r(α))!

×
{

∫ 1

α
g
(α

x

)

xr(α)(1−x)s−r(α) dx

+

∫ α

0
g

(

α−x
1−x

)

xr(α)−1(1−x)s+1−r(α) dx

}

.
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The fact that 1+ min(α,1−α) is such a fix point is not too hard to establish once
the following technical properties have been proved, for some r ≡ r(α) satisfying the
hypotheses of the theorem:

lim
s→∞

s!
(r −1)!(s− r)!

∫ b

α
xr−1(1−x)s−r y(x)dx=

{

y(α) , if α < 1/2 andα < b, (a)

0, if α > 1/2 or α = b, (b)

(11)

lim
s→∞

s!
(r −1)!(s− r)!

∫ α

a
xr−1(1−x)s−r y(x)dx=

{

y(α) , if α > 1/2 anda < α, (a)

0, if α < 1/2 ora = α, (b)

(12)

lim
s→∞

(m+n+1)!
m!n!

∫ b

a
xm(1−x)ny(x)dx= 0, if

m
m+n

6∈ [a,b]. (13)

lim
s→∞

(s+1)!
r!(s− r)!

∫ 1

1/2
xr(1−x)s−r dx= 1/2, if α = 1/2, (14)

wherey(x) is an arbitrary function inC(2)[0,1]. The proofs of these equations can be
found in Appendix D.

Let A=
∫ 1

α xr(1−x)s−r dx, B=
∫ 1

α min(α,x−α)xr−1(1−x)s−r dx, C =
∫ α

0 xr−1(1−
x)s+1−r andD =

∫ α
0 min(α−x,1−α)xr−1(1−x)s−r . Then, applyingT(∞) to f (∞)(α) =

1+min(α,1−α) we get

T(∞)( f (∞))(α) = 1+ lim
s→∞

s!
(r(α)−1)!(s− r(α))!

× (A+B+C+D).

Now, if α < 1/2 we have

C+D =
∫ α

0
xr−1(1−x)s+1−r dx+

∫ α

0
(α−x)xr−1(1−x)s−r dx

=
∫ α

0
(1+α−2x)xr−1(1−x)s−r dx∼ 0

ass→ ∞ because of (12b),A∼ α · (r−1)!(s−r)!
s! because of (11a) withy(x) = x, and

B =
∫ 1

2α
α ·xr−1(1−x)s−r dx+

∫ 2α

α
(x−α)xr−1(1−x)s−r dx

∼
∫ 2α

α
(x−α)xr−1(1−x)s−r dx∼ 0,

applying both (13) and (11a) withy(x) = (x−α) in the second step. Altogether,

T(∞)( f (∞))(α) ∼ 1+α.

Also, because of symmetry ofr(α), it follows that forα > 1/2 we have

T(∞)( f (∞))(α) ∼ 1+(1−α).
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This can also be directly proved, in the same way as we have done it for α < 1/2.
For the special caseα = 1/2, we use the symmetry ofr(α). We also perform the

variable changey := (1−x) and thus

A+B+C+D = 4
∫ 1

1/2
xr(1−x)s−r dx−

∫ 1

1/2
xr−1(1−x)s−r dx.

From there, a few straightforward manipulations, togetherwith (14) for the first
integral and the symmetry of the integrand aroundx = 1/2 for the second yield

T(∞)( f (∞))(α) ∼ 1+2
r

s+1
− 1

2
∼ 1+

1
2

= 1+α = 1+(1−α).

Hence, for allα we have just proven thatT(∞)( f (∞)) = 1+ min(α,1−α) = f (∞).
Finally, sinceT(∞) is a contraction (see Theorem 1), it follows thatf (∞) must be its
unique fix point.

The previous theorem suggests that optimal performance canbe achieved using
variable-size samples, withs growing asn grows, as long ass = o(n). If s = Θ(n)
then the toll function would beβn+ o(n) for someβ > 1, which precludes achieving
the optimal minimumn+min{m,n−m+1}+o(n). We must remark that Theorem 3
concerns fixed-size sampling and considers what happens ifs→ ∞. Hence, it does not
apply to variable-size sampling. But it is rather likely that the result holds for variable-
size sampling, by analogy with quicksort [18]. As long ass = s(n) grows with n,
the main order term would be asymptotically optimal, but theparticular choice of the
functionswould also affect lower order terms. In order to minimize them there must be
a trade-off between the quality of the pivot provided by large samples and the overhead
of choosing the pivot from the sample. Based upon known results for quickselect and
quicksort [18], we conjecture that the optimal size would bes∗ = Θ(

√
n).

These results and conjectures have undoubtedly great theoretical interest, but it is
clear that quickselect with variable-sized sampling has some drawbacks for its practical
application, much like Floyd and Rivest’s algorithm, because of the big impact that
using large samples has in the lower order terms of the performance.

9 Future work

To assess the practicality of proportion-from-s and similar variants it would be inter-
esting to carry out a precise analysis of the lower order terms in the performance. Also
a detailed analysis of the variance would be useful; we conjecture that it should be of
the formv(α) · n2, for some functionv, like in the case of standard quickselect and
median-of-three [11]. A careful study to establish the existence of optimal endpoints
(Conjecture 1) and its behavior as a function ofswould be also very interesting.

Our results of Section 8 fors→ ∞ suggest that variable-sized proportion-from-s
sampling achieves optimal performance, but this has still to be proved. It also seems
plausible that using variable-sized sampling the varianceis Θ(max{n2/s,n · s}). It is
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then natural to ask ourselves about the optimal sizes∗ of the samples for proportion-
from-s whens= s(n) → ∞. As we have already discussed after Theorem 3, we con-
jecture that the optimal size iss∗ = Θ(

√
n); this choice would minimize the average

number of comparisons, as well as the order of magnitude of the variance. It could also
be interesting to consider strategies where the size of the samples depends on bothn
andα.

On the other hand, we are considering randomized sampling strategies, where given
the relative rankα of the sought element, for eachr, 1≤ r ≤ s, there is a probability
pr(α) that therth smallest element of the sample of sizes is chosen as the pivot.
These strategies generalize the deterministic strategiesstudied in this paper and in-
clude, among other, the so-calledninther rule orpseudomedian-of-9[2].
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A Proofs of Lemmas 3 and 4

Lemma (Lemma 3). For any adaptive sampling strategy,

ds+2

dαs+2 fk(α) =
(−1)s+1−rk

αs+1−rk
· s!
(rk−1)!

· drk+1

dαrk+1 fk(α)

+
1

(1−α)rk
· s!
(s− rk)!

· ds+2−rk

dαs+2−rk
fk(α),

whereα ∈ Ik, 1≤ k≤ ℓ.
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Proof. To prove the lemma we first use the variable changesx := α/x andx := (α−
x)/(1−x) in the integral equations defining thefk’s in Theorem 1 to translate them to
the form

fk(α) = 1+
s!

(rk−1)!(s− rk)!

[

s−rk

∑
i=0

(

s− rk

i

)

(−1)s−rk−iαs+1−i

{

∫ ak

α

fk(x)
xs+2−i dx

+
ℓ

∑
d=k+1

∫

Id

fd(x)
xs+2−i dx

}

+
rk−1

∑
i=0

(

rk−1
i

)

(−1)rk−1−i(1−α)s+1−i

{

∫ α

ak−1

fk(x)
(1−x)s+2−i dx

+
k−1

∑
d=1

∫

Id

fd(x)
(1−x)s+2−i dx

}]

, 1≤ k≤ ℓ. (15)

Let

T(h, i,s) =
s+2

∑
d=h+1

(

s+2
d

)(

d−1
h

)

(i −s−2)d−1−h(s+1− i)s+2−d,

wherexk = x·(x−1) · · ·(x−k+1) denotes thekth falling power ofx, for anyk≥ 0 [6].
Differentiating s+ 2 times both sides of Equation (15) with respect toα, using

Leibniz’s rule for theNth derivative of a product and for the derivative of integrals,
yields

ds+2

dαs+2 fk(α) =
s!

(rk−1)!(s− rk)!
·

s+1

∑
h=0

dh

dαh fk(α)

·
(

− 1
αs+2−h ·

s−rk

∑
i=0

(

s− rk

i

)

(−1)s−rk−i ·T(h, i,s)

+
(−1)s+1−h

(1−α)s+2−h ·
rk−1

∑
i=0

(

rk−1
i

)

(−1)rk−1−i ·T(h, i,s)

)

. (16)

It turns out thatT(h, i,s) has a simple closed form:

T(h, i,s) = (−1)s+1−h · is+1−h, (17)

and its binomial transform also has a nice closed form, namely,

M

∑
i=0

(

M
i

)

(−1)M−i ·T(h, i,s) =

{

(−1)M ·M! if h = s+1−M,

0 otherwise.
(18)

To prove (17) and (18) we need the following combinatorial identities that can be
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found, for example, in [6]:

(

r
k

)

=
rk

k!

(a+b)n =
n

∑
i=0

(

n
i

)

aibn−i , Newton’s theorem,

(

r
m

)(

m
k

)

=

(

r
k

)(

r −k
m−k

)

, integersm,k (trinomial revision),
(

r
k

)

= (−1)k
(

k− r −1
k

)

, integerk (upper negation),
(

r
k

)

=
r
k

(

r −1
k−1

)

, integerk 6= 0 (absorption/extraction).

Moreover, we also need Vandermonde’s convolution, formula(5.24) and the upper
negation of formula (5.33) in [6], namely,

∑
k

(

r
m+k

)(

s
n−k

)

=

(

r +s
m+n

)

, integersm,n, (19)

∑
k

(−1)k
(

l
m+k

)(

t +k
n

)

= (−1)l+m
(

t −m
n− l

)

, integersl ≥ 0,m,n, (20)

∑
j≥0

(−1) j

(n
j

)

(x+ j
j

) =
x

x+n
. (21)

In the case of (17), we first apply the absorption formula to the second binomial
coefficient

(d−1
h

)

, then the trinomial revision to the product of the two binomial coeffi-
cients and finally rewrite the falling factorials as binomial coefficients to get

T(h, i,s) = (s+2)s+1−h
s+2

∑
d=h+1

h+1
d

(

i −s−2
d−1−h

)(

s+1− i
s+2−d

)

.

Then, we use the upper negation formula in the first binomial coefficient and change
the formal variable inside the sum to obtain

T(h, i,s) = (s+2)s+1−h×
s+1−h

∑
m=0

h+1
m+h+1

(−1)m
(

m+1+s− i
m

)(

s+1− i
s+1−m−h

)

.

Now, replace(h+1)/(m+h+1) using formula (21) withx = h+1 andn = m so that

T(h, i,s) = (s+2)s+1−h×

∑
j≥0

(−1) j

(h+1+ j
j

) · ∑
m≥0

(−1)m
(

m+1+s− i
m

)(

m
j

)(

s+1− i
s+1−m−h

)

.

35



We may rewrite the double sum using only factorials, multiply and divide by(s+1−
h)! and(s+1−h− j)!, express the result as another product of binomial coefficients
and change the formal variablem by k to get

T(h, i,s) = (s+2)s+1−h×

∑
j≥0

(−1) j

(s+1−h
j

)

(h+1+ j
j

) ∑
k≥0

(−1)k
(

s+1−h− j
k− j

)(

s+1− i +k
s+1−h

)

.

At this point we use formula (20) fort = s+1− i, n = s+1−h, l = s+1−h− j and
m= − j to obtain

T(h, i,s) = (−1)s+1−h(s+2)s+1−h ∑
j≥0

(−1) j

(s+1−h
j

)(s+1−i+ j
j

)

(h+1+ j
j

)

= (−1)s+1−h(s+1−h)! ∑
j≥0

(−1) j
(

s+2
h+1+ j

)(

s+1− i + j
j

)

,

where the last identity holds after rearranging the factorials. Finally, if we apply upper
negation to the last binomial coefficient and then use Vandermonde’s convolution we
get

T(h, i,s) = (−1)s+1−h(s+1−h)! ∑
j≥0

(

s+2
h+1+ j

)(

i −s−2
j

)

= (−1)s+1−h(s+1−h)! ∑
j≥0

(

s+2
h+1+ j

)(

i −s−2
i −s−2− j

)

= (−1)s+1−h(s+1−h)!

(

i
h+ i −s−1

)

= (−1)s+1−his+1−h.

To prove (18) we first use (17) to obtain

M

∑
i=0

(

M
i

)

(−1)M−i ·T(h, i,s) =
M

∑
i=0

(

M
i

)

(−1)M−i · (−1)s+1−h · is+1−h.

If we complete the binomial coefficients from the falling factorials and then we get

M

∑
i=0

(

M
i

)

(−1)M−i · (−1)s+1−h · is+1−h

= (−1)s+1−h(s+1−h)!

(

M
s+1−h

) M

∑
i=0

(−1)M−i
(

M +h−s−1
i +h−s−1

)

= (−1)s+1−h(s+1−h)!

(

M
s+1−h

) M

∑
i=0

(−1)M−i
(

M +h−s−1
M− i

)

= (−1)s+1−h(s+1−h)!

(

M
s+1−h

) M

∑
i=0

(−1)i
(

M +h−s−1
i

)

.
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It is easy to see using Newton’s theorem that the last sum is equal to zero unlessM =
s+1−h.

Plugging identities (17) and (18) into (16), a few additional manipulations yield the
differential equation given in the statement of the lemma.

Lemma (Lemma 4). Let Cn be the average cost to select an element of random rank
out of n elements using a symmetric adaptive sampling strategy. Then we have

f = lim
n→∞

Cn

n
=
∫ 1

0
f (α)dα,

where f(α) is the characteristic function of the algorithm, and it is asgiven by Theo-
rem 1.

Proof. Recall that, by definition,

Cn =
1
n ∑

1≤m≤n

Cn,m.

Now replaceCn,m by its asymptotic estimate as given by Theorem 1:

Cn =
1
n ∑

1≤m≤n

Cn,m =
1
n ∑

1≤m≤n

( f (m/n) ·n+o(n))

= ∑
1≤m≤n

f (m/n)+ ∑
1≤m≤n

o(1) = ∑
0≤m<n

f ((m+1)/n)+o(n).

If f (α) had no discontinuities then we could use Euler-Mclaurin formula to show
that

Cn =
∫ n

0
f

(

x+1
n

)

dx+
∞

∑
k=1

Bk

k!
dk−1 f
dxk−1 ((x+1)/n)

∣

∣

∣

∣

∣

n

0

+o(n), (22)

whereBk denotes thekth Bernoulli number. Using then the symmetry off (α), the odd
index terms cancel out each other and since the Bernoulli numbers of even index are
zero, it follows that

Cn =
∫ n

0
f ((x+1)/n)dx+o(n) = n·

∫ 1+1/n

1/n
f (y)dy+o(n).

Finally, dividing byn and passing to the limit yields the statement of the lemma.
Since in generalf (α) has a finite number of discontinuities, but still enjoys the

necessary smoothness properties piecewise, it is not difficult to adapt Euler-Mclaurin
formula so that (22) can be “broken” intoℓ parts and avoid the discontinuities. Hence
we get

Cn = n·
(

∫ ⌊na1⌋/n

1/n
f (y)dy+

∫ ⌊na2⌋/n

⌊na1⌋/n+1/n
f (y)dy+ . . .

+
∫ 1+1/n

⌊naℓ−1⌋/n+1/n
f (y)dy

)

+o(n).

The lemma follows dividing byn and passing to the limit.
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B Proof of Theorem 2

Theorem (Theorem 2).There exists an optimal value ofν, namelyν∗ .
=0.182. . ., such

that f1,ν∗(ν∗) = f2,ν∗(ν∗) and for all ν, 0 < ν < 1/2, and for allα, 0≤ α ≤ 1,

fν∗(α) ≤ fν(α).

Proof. Consider a functionf : [0,1]→R and some adaptive sampling strategy as given
by a0,a1, . . . ,aℓ andr(α). Let T̂ be the functional operator

T̂k( f )(α) =
s!

(rk−1)!(s− rk)!

[

∫ 1

α/ak

fk(α/x)xrk(1−x)s−rk dx

+
∫

α−ak−1
1−ak−1

0
fk

(

α−x
1−x

)

xrk−1(1−x)s+1−rk dx

+
ℓ

∑
d=k+1

∫

I ′d
fd(α/x)xrk(1−x)s−rk dx

+
k−1

∑
d=1

∫

I ′′d
fd

(

α−x
1−x

)

xrk−1(1−x)s+1−rk dx

]

,

with I ′d = (α/ad,α/ad−1) andI ′′d =
(

α−ad
1−ad

,
α−ad−1
1−ad−1

)

, and fk the restriction off to the

kth interval.
It turns out that this operator is a contraction; this can be proved in a similar way

as we proved in Theorem 1 thatT = 1+ T̂ is a contraction. Furthermore,T̂ is linear,
which proves the following

fk = T̂k( f ) for all 1≤ k≤ ℓ implies f = 0. (23)

Let g1(ν) = f1,ν(ν) andg2(ν) = f2,ν(ν). The respective limits whenν → 0 are
g1(0) = 3/2 andg2(0) = 2. On the other hand, whenν→ 1/2 we haveg1(1/2) > 3 and
g2(1/2) < 3. Since both functions are strictly increasing in(0,1/2)—their derivatives
w.r.t. ν are strictly positive—, it follows thatg1(ν) = g2(ν) has a unique solution, say
ν∗, in the interval(0,1/2).

Take f1,ν = 1+ T̂1( f1,ν, f2,ν) and f2,ν = 1+ T̂2( f1,ν, f2,ν). Differentiating both equa-
tions with respect toν and settingν = ν∗ many terms cancel out becausef1,ν∗(ν∗) =
f2,ν∗(ν∗), so we finally arrive at

∂ f1,ν

∂ν

∣

∣

∣

∣

ν=ν∗
= T̂1

(

∂ f1,ν

∂ν

∣

∣

∣

∣

ν=ν∗
,

∂ f2,ν

∂ν

∣

∣

∣

∣

ν=ν∗

)

,

∂ f2,ν

∂ν

∣

∣

∣

∣

ν=ν∗
= T̂2

(

∂ f1,ν

∂ν

∣

∣

∣

∣

ν=ν∗
,

∂ f2,ν

∂ν

∣

∣

∣

∣

ν=ν∗

)

.

Hence, by (23), it follows that
∂ f1,ν

∂ν

∣

∣

∣

ν=ν∗
(α) =

∂ f2,ν
∂ν

∣

∣

∣

ν=ν∗
(α) = 0 for any α in the

corresponding intervals.
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Also, if we compute the second derivatives off1,ν(α) and f2,ν(α) w.r.t. ν and set
ν = ν∗, both are strictly positive in the appropriate intervals. Indeed,

∂2 f1,ν

∂ν2

∣

∣

∣

∣

ν=ν∗
= T̂1

(

∂2 f1,ν

∂ν2

∣

∣

∣

∣

ν=ν∗

∂2 f2,ν

∂ν2

∣

∣

∣

∣

ν=ν∗

)

+∆1(α),

∂2 f2,ν

∂ν2

∣

∣

∣

∣

ν=ν∗
= T̂2

(

∂2 f1,ν

∂ν2

∣

∣

∣

∣

ν=ν∗
,

∂2 f2,ν

∂ν2

∣

∣

∣

∣

ν=ν∗

)

+∆2(α),

where∆1(α) is strictly positive in the interval(0,ν∗] and∆2(α) is strictly positive in
the interval(ν∗,1/2), and this property translates to the second derivatives off1,ν(α)
and f2,ν(α). Hence,ν = ν∗ is a local minimum.

The limit valuesν → 0 (median-of-3) andν → 1/2 are not minimum, hence to
complete the proof we need to show that there are no additional local extrema offν(α)
for fixed α. This can be shown by contradiction. If we assume that there exists some

ν∗∗ 6= ν∗ such that∂ fν
∂ν

∣

∣

∣

ν=ν∗∗
(α) = 0 then this implies thatf1,ν∗∗(ν∗∗) = f2,ν∗∗(ν∗∗); but

we already know that there is only a unique value ofν where this happens.

Also, it is worth mentioning that Conjecture 1 in Section 5 could be proven using
the same strategy as above. We should establish the existence of a uniquea∗ such that

f (s)
a∗ (α) is continuous. If we compute∂ f (s)

a (α)/∂ai for 1≤ i ≤ s, it is fairly easy to show

that all these derivatives vanish ata = a∗ for any value ofα, becausef (s)
a∗ = T̂( f (s)

a∗ ).

Conversely, if∂ f (s)
a∗ (α)/∂ai = 0 for somea∗ and all α and all 1≤ i ≤ s then it is

not difficult to prove thatf (s)
a∗ (α) is continuous forα ∈ [0,1]. The proof could then

be completed by proving that the particular quadratic form corresponding tof (s)
a∗ is

positive definite.

C Coefficients ofν-find

The reader will notice that the expressions forC2, C5 and C7 given below are in
terms of∆ := 70ν5 − 210ν4 + 294ν3 − 224ν2 + 90ν− 15 and the integralsA i(ν) =
∫ ν

0 κν(u)/ui duandBi(ν) =
∫ ν

0 κν(u)/(1−u)i du, whereκν(u) =C3(ν) ·K1(u)+C4(ν) ·
K2(u). Hence, the constantsC2, C5 andC7 are given in terms of the (unknown) values
C3(ν) andC4(ν). The last two equations in the list below, with the integralsin the left
hand side, allow us to recover the values ofC3 andC4, and from there the remaining
Ci ’s. Actually, it is not very difficult to find closed forms for theCi ’s, but the resulting
expressions are much lengthier and cumbersome to handle.

We give theCi ’s that correspond to the average total cost (see Section 6).Setting
ξ1 = 1,ξ2 = 0, we can obtain the constants for the average number of comparisons, and
with ξ1 = 0,ξ2 = 1, we obtain those for the average number of exchanges. Also,setting
ν = 1/3, we can get the values corresponding to pure proportion-from-3 (Section 4).

• C0 = − 24
11(ξ1 +3ξ2/20), C1 = − 28

33(ξ1 +3ξ2/20), C6 = 7
4C5 +3· (ξ1 +ξ2/5),
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• ∆ ·C7 =

ξ1 ·
(

− 8
11

(55ν5−180ν4 +309ν3−334ν2 +204ν−45) ln(1−ν)

− 1
33

(350ν8−3360ν7 +12180ν6−21680ν5 +23655ν4−18480ν3

+12128ν2−5436ν+990)

)

+ξ2 ·
(

6
55

(15ν4−78ν3 +158ν2−138ν+45) ln(1−ν)

− 1
110

(1758−1680ν7 +6090ν6−11060ν5 +12240ν4−9636ν3

+6174ν2−2916ν+660)

)

+
(

36(2ν−3)ν4 ln(1−ν)−3(35ν4−84ν3 +84ν2 +20ν−36)ν4
)

·A4(ν)

−
(

36(2ν2−3ν+9)(ν−1)3 ln(1−ν)

+3(35ν6−266ν5 +651ν4−832ν3 +706ν2−492ν+168)(ν−1)2
)

·B4(ν)

−
(

432(ν−1)4 ln(1−ν)

−12(35ν5−105ν4 +126ν3−112ν2 +117ν−51)(ν−1)3
)

·B5(ν),

• ∆ ·C2 =

ξ1 ·
(

8
11

(55ν5−180ν4 +309ν3−334ν2 +204ν−45) ln
ν

1−ν

− 1
33

2370ν5−7020ν4 +7796ν3−2568ν2−375ν+220
ν

)

−ξ2 ·
(

6
55

(15ν4−78ν3 +158ν2−138ν+45) ln
ν

1−ν

+
1

110
525ν5−1860ν4 +1896ν3−228ν2−600ν+220

ν

)

−
(

36(2ν−3)ν4 ln
ν

1−ν
+3(81ν2−60ν+10)ν2

)

·A4(ν)

+

(

36(2ν2−3ν+9)(ν−1)3 ln
ν

1−ν

−3
(129ν3−174ν2−25ν+40)(ν−1)2

ν

)

·B4(ν)

+

(

432(ν−1)4 ln
ν

1−ν
−60

(2ν−1)(7ν2−7ν−2)(ν−1)3

ν

)

·B5(ν),
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• ∆ ·C5 =

− 8
11

ξ1(155ν4−450ν3 +573ν2−338ν+66)ν

− 6
55

ξ2(210ν4−615ν3 +804ν2−514ν+132)ν

−36(2ν−3)ν4A4(ν)+36(2ν2−3ν+9)(ν−1)3B4(ν)+432(ν−1)4B5(ν),

• ∆ · (A3(ν)+B3(ν)) =

ξ1 ·
(

− 1
11

(140ν5−630ν4 +1680ν3−2660ν2 +2046ν−495) ln
ν

1−ν

− 2660ν8−14630ν7 +35882ν6−43624ν5 +20042ν4 +5729ν3−7947ν2 +2070ν−110
66ν2(ν−1)

)

−ξ2 ·
(

3
110

(70ν5−315ν4 +840ν3−1330ν2 +1056ν−330) ln
ν

1−ν

+
1330ν8−7315ν7 +17941ν6−21812ν5 +10516ν4 +2694ν3−4782ν2 +1530ν−110

220ν2(ν−1)

)

+

(

63(2ν−3)ν4 ln
ν

1−ν
− 3

2
(70ν5−511ν4 +833ν3−518ν2 +150ν−20)ν

ν−1

)

·A4(ν)

−
(

63(2ν2−3ν+9)(ν−1)3 ln
ν

1−ν

+
3
2

(70ν6−539ν5 +1029ν4−315ν3−453ν2 +248ν−20)(ν−1)

ν2

)

·B4(ν)

−
(

756(ν−1)4 ln
ν

1−ν
−6

(2ν−1)(105ν4−210ν3 +49ν2 +56ν−5)(ν−1)2

ν2

)

·B5(ν),

• ∆ ·A5(ν) =

ξ1 ·
5

198
210ν8−1092ν7 +2562ν6−3546ν5 +3195ν4−1880ν3 +687ν2−138ν+11

ν4

+ξ2 ·
1

132
105ν8−546ν7 +1281ν6−1806ν5 +1680ν4−1050ν3 +426ν2−102ν+11

ν4

+
1
2

105ν5−294ν4 +399ν3−300ν2 +120ν−20
ν

·A4(ν)

+
1
2

(105ν5−231ν4 +273ν3−183ν2 +66ν−10)(ν−1)3

ν4 ·B4(ν)

+
(70ν5−140ν4 +154ν3−98ν2 +34ν−5)(ν−1)4

ν4 ·B5(ν).
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D Proof of Equations (11)-(14)

In this appendix we give the proof of the equations (11) to (14) given in Section 8:

lim
s→∞

s!
(r −1)!(s− r)!

∫ b

α
xr−1(1−x)s−r y(x)dx=

{

y(α) , if α < 1/2 andα < b, (a)

0, if α > 1/2 or α = b, (b)

(11)

lim
s→∞

s!
(r −1)!(s− r)!

∫ α

a
xr−1(1−x)s−r y(x)dx=

{

y(α) , if α > 1/2 anda < α, (a)

0, if α < 1/2 ora = α, (b)

(12)

lim
s→∞

(m+n+1)!
m!n!

∫ b

a
xm(1−x)ny(x)dx= 0, if

m
m+n

6∈ [a,b]. (13)

lim
s→∞

(s+1)!
r!(s− r)!

∫ 1

1/2
xr(1−x)s−r dx= 1/2, if α = 1/2, (14)

wherey(x) is an arbitrary function inC(2)[0,1].

Our starting point is the Eulerian integral of the first kind [22]4:

∫ 1

0
xu(1−x)vdx=

u!v!
(u+v+1)!

. (24)

Intuitively, the argument to prove Equations (11) to (13) isthe following. Whens is
large, the integrand, sayxr−1(1− x)s−r y(x), is highly concentrated aroundx = (r −
1)/(s−1), and hence if the interval of integration does not contain(r −1)/(s−1) then
the integral is 0 (as stated by (11b), (12b) and (13)). On the other hand, if we integrate
an interval that properly contains(r −1)/(s−1) then we can safely extend the interval
of integration to[0,1] and apply (24), giving cases (11a) and (12a). Ifα = 1/2 then
r/s∼ 1/2 (becauser is symmetric) and half of the weight of the integrand goes to each
side ofx = 1/2, hence (14).

The rigorous proof of all the integrals is based on Laplace’smethod. We prove here
only one of the equations, namely, Equation (11), the other proofs are quite similar.

Let

I(ω) =
∫ b

a
[φ(x)]ωy(x)dx,

whereφ is in C(4)[a,b] and nonnegative, andy ∈ C(2)[a,b]. If the absolute maximum
of φ(x) on [a,b] occurs atx = c with a < c < b, φ′(c) = 0 andφ′′(c) < 0, then (see for
instance [3, Ch. 5])

I(ω) =
(φ(c))ω+1/2

ω1/2
y(c)

√

2π
|φ′′(c)|

(

1+O

(

1

ω1/2

))

, (25)

4We usez! instead ofΓ(z+1).
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whereas if the absolute maximum occurs atx = a then5

I(ω) =
(φ(a))ω+1/2

ω1/2
y(a)

√

π
2|φ′′(a)|

(

1+O

(

1

ω1/2

))

. (26)

Consider (11a). The absolute maximum ofφ(x) = x(r−1)/s(1−x)(s−r)/s in [0,1] is at
x= (r−1)/(s−1). Sincer is biased (see Definition 1 in Section 8) andr/s→α < 1/2,
we haveα < (r −1)/(s−1) < b for all sufficiently larges. Hence, we apply (25) with
ω = sandc = (r −1)/(s−1) to get

I(s) =
∫ b

α
xr−1(1−x)s−ry(x)

∼ y

(

r −1
s−1

)√
2π

√

(r −1)(s− r)
(s−1)3

(

r −1
s−1

)r−1( s− r
s−1

)s−r

.

Then we multiply bys!/(r −1)!(s− r)! and take the limit whens→ ∞. Applying
Stirling’s asymptotic estimate forz! we obtain the stated result:

lim
s→∞

s!
(r −1)!(s− r)!

I(s) = lim
s→∞

y

(

r −1
s−1

)(

s
s−1

)s−1

e−1

√

(

s
s−1

)3

= y(α).

On the other hand for (11b), sincer is biased by hypothesis we have that(r −
1)/(s− r) is outside[α,b] and then the absolute maximum ofφ(x) = x(r−1)/s(1−
x)(s−r)/s is located atx = α. Since we assume now thatα > 1/2, the hypotheses of
Theorem 3 imply thatδ = α ·s− r(α) is positive andδ = o(s); if δ → ∞ then the result
is easier to prove, so we assume furtherδ = Θ(1). Then we have

I(s) ∼ y(α)αr(1−α)s+1−r

√

πs(s−1)

2((r −1)(s− r)s− (r −1)δ2− (s− r)δ2 +sδ2)
.

Again, multiplying bys!/(r −1)!(s− r)! and taking the limit whens→ ∞, we obtain:

s!
(r −1)!(s− r)!

I(s)

∼ y(α)
1
2
(r −1+δ)(s− r −δ)

1
(s−1)2

√

s2(s−1)

(r −1)(s− r)((r −1)(s− r)s+δ2)
,

and usings−1∼ swe finally get

s!
(r −1)!(s− r)!

I(s) ∼ y(α)

2s
;

hence its limit is 0 whens→ ∞.

5The same formula applies if the absolute maximum occurs atx = b, replacing alla’s by b’s.
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