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Abstract

Quickselect with median-of-3 is largely used in practice and its behavior is
fairly well understood. However, the following natural adaptive variavhich
we call proportion-from-3 had not been previously analyzed: “choose as pivot
the smallest of the sample if the relative rank of the sought element is Hé&w
the largest if the relative rank is above 2/3, and the median if the relatieisa
between 1/3 and 2/3". We first analyze the average number of coropanisade
when using proportion-from-2 and then for proportion-from-3. \lé® analyze-
find, a generalization of proportion-from-3 with interval breakpointsatd 1—v.
We show that there exists an optimal valuevaind we also provide the range of
values ofv wherev-find outperforms median-of-3. Then, we consider the average
total cost of these strategies, which takes into account the cost of bofyecisons
and exchanges. Our results strongly suggest that a suitable implemeotatio
find could be the method of choice in a practical setting. We also study tlawioeh
of proportion-fromswith s > 3 and in particular we show that proportion-fram-
like strategies are optimal when— co.

1 Introduction

Hoare’s quickselect [9] finds theth smallest element (equivalently, the element of
rank min ascending order, theth order statistic) out of an array of elements by
picking an element from the array —the pivot— and rearrangfiggarray so that el-
ements smaller than the pivot are to its left and elementgtahan the pivot are to
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its right. If the pivot has been brought to positipe= mthen it is the sought element;
otherwise, ifm < j then the procedure is recursively applied to the subarr#éyetdeft

of the pivot, and ifm > j the process continues in the right subarray (see Algofithm 1
A similar principle is used in the celebrated quicksort ailtpon [10], also by Hoare;
once the pivot is brought into place by partitioning the yrtae subarrays to its left
and right are recursively sorted.

Algorithm 1 The quickselect algorithm.
{I <m<u, All..u] contains thenth smallest ofA[1..n] }

function qui cksel ect (var A:array [1..n] of El emm,l,u:i nt eger)
varr,j:integer;
begin
if | =uthen return AJl];
r:=pi ck_pi vot (Al,u,m);
swap(A[l],Alr]);

{All] = p}
partition(Alu,j);
{Mi:l<i<j:Al]<pAlj]=p andvi:j<i<u:Al]>p}

if m= j then return A[j];
else ifm< j then return qui cksel ect (Am,1,j—1);
else returnqui cksel ect (A;m,j+1,u)
end

For the remaining of this paper we use= m/n to denote theelative rank of the
sought element. Quickselect performs well in practiceavtsrage cost being linear. In
particular, ifCr(,% denotes the average number of comparisons made by quicksele
select themth element out ofi, and#H (x) = —xInx— (1 —x) In(1—x) is the entropy
function, we have (see [8, 13, 14, 15])

0
mo(a) = lim Cﬁ”‘:z-(1+ﬂ(a))7 0<a<1

n—oo
m/n—a

Another quantity of interest is the average o@é‘P to locate an element of random
rank, i.e., wherm is given by a uniformly distributed random variable i, ..., n}.

Sincec? = 1/n. zlgmgncé%, we have[[15]

o
Mo = lim = - =3
Using the median of a small sample ¢f21 elements as the pivot of each recursive
stage yields a substantial improvement over the standaiahtareducing the average
number of comparisons and making worst-case behavior iley. | Little is known
fort > 1, other than the average and variance of the number of cdsoparto select
an element of random rank out 0{18]. For samples of three elements|[1, 7, 12] it is



known that

(1)
m(a)= lm =% =2+3ua(l-a), O0<a<l,

m/n—a n

where, for any, C,(fzn denotes the average number of comparisons made by quicksele
with median-of{2t 4+ 1) sampling to select theith out ofn elements. Also,

I e S
M=l =2

However, median-of2t + 1) sampling is not a natural pivot selection strategy for
quickselect. For instance, if we were looking for the 100ddmeent in a collection of
1000 elements it would seem more natural to pick the smadleshent of a sample
of three rather than the median. In general, it seems beitenwre logical to pick
an element whose rank is closedos out of a sample of sizs, if we have to select
the element of rankn= a - n. We call this sampling strategyroportion-from-s A
similar idea lies behind Floyd and Rivest's S cT algorithm [5]; this algorithm sorts a
variable-size sample at each recursive stage to obtainitietsp Because of the costly
selection of pivots, the algorithm is not very efficient iraptice, although it is within
a lower order term of the theoretical optimal (see also [#}.expected cost satisfies
iMoo m/n—at Chm/n =1+ min(a,1—a). But despite the optimal performance of
SELECT and some other similar algorithms, in practice finely tuneglementations
of Hoare’s quickselect with median-of-3 sampling are prefé and used in system
and general-purpose libraries such as the Standard Teniplatry of C++ (see for
instance/[19]).

There are no previous results about the performance of sglie&t with proportion-
from-s sampling, nor even had this variant been formally proposedhe best of
the authors’ knowledge. We tackle in this paper its analységinning in Sectioh 2
with the recurrence for the average cost of proportion-flssampling and the integral
equation satisfied by theharacteristic function o) = limg_.e m/n—q Cnm/n of the
proportion-froms algorithm. In Sections|3 and 4 we explicitly solve the equragifor
the proportion-from-2 and proportion-from-3 strategiesl &nvestigate some of their
properties. We also discuss briefly the general form of thetism for generals. In
Section 5 we consider a variant of proportion-from-3 wheeealioose the smallest
in the sample ifo <v, the median ifv < o < 1—v and the largest it > 1—v, and
explore various parametersasaries. Afterwards, in Section 6 we consider the aver-
age number of exchanges and the average total cesfinfl. Since our analysis does
only consider the main order term in the cost of quickselethé asymptotic regime,
we have conducted a few experiments to assess the validibhedheoretical predic-
tions in practical terms; these experiments and their tesué described in Sectioh 7.
In Section 8 we prove that proportion-frosdike sampling strategies achieve optimal
performance whes — o. We conclude in Sectian| 9 with future research directions
and open problems.

A preliminary version of this paper has appeared in [17].



2 General results

We begin this section with the derivation of the integralatipn satisfied byf (¥ (a) =
liM .00 m/n—a Cnm/N When we use proportion-fromsamplingl. Actually, we gen-
eralize these results to a broader class of algorithms teatall adaptive sampling
strategies

We consider that, at each stage, the rard the selected pivot is a function of
o = m/n, the ratio of the current rank to the current size. Recall that we also use
to denote the initial relative rank, should no confusioseri

Let rq&_&'jr) be the probability that theth element of a sample sfelements is thégth
element of a random permutation of sizeClearly,

j=1y (n—j
Téf-jf) _ (r—l()n()s—r) 7 1<r<s<n
S
The denominator is the number of ways to pick a sample of st of n elements;
the numerator is the number of ways to chobsel elements smaller than the pivot
times the number of ways to choase r elements larger than the pivot.

Now we are ready to set up a recurrence for the average nurhisenmparisons
made to select thesth element out ofi. First,n—1 comparisons are needed to partition
the array around the pivot, ar@(s) = ©(1) additional comparisons are necessary to
select the pivot. If the pivot is th¢gth smallest element anth < j, we continue in
the left subarray, still looking for theith smallest element, but now the array contains
j—1 elements. Iin > j then we continue in the right subarray which contains j
elements, but we look now for tHen— j)th smallest element there. Finally, we stop if
the pivot is the sought element, i.e., whea m. Hence we have

, 1<j<n (1)

i Sr) m-1 Sr)
Com=n+0(1)+ Y 1) 'ijl,m+ZTﬁ(q,j Cojm-j- )
j=m+1 =1

We assume that=r(a) is an integer staircase function defined by a finite collec-
tion of ¢ steps. We say that a sampling strategy defined by such aduristidaptive
The functions that do not satisfy the assumption would behather strangely and are
most likely useless. Hencegcan be described by the image of each interval in a finite
set of disjointintervals, say, I»,...,ly withendpointsag =0<ay < ap < --- < ay=1;
we denote byy the value of for a € Ix. For convenience, we assuiine= [0,ay], I, =
[ar-1,1], Ik = (ak-1,a] if K> 1 anday < 1/2, Iy = [ak_1,8) If K< £ andax_1 > 1/2,
andly = (ak_1,ax) If ak_1 < 1/2 < a and 1< k < ¢. However, the forthcoming anal-
ysis is easily generalized for intervals defined in someedifiit way, as long as the set
of intervals totally cover$0, 1].

For instance, median-g2t + 1) is defined by a single interval & 1) andr; =
t+1: no matter what the value of is, we always choose the median of the sample.

On the other hand, we can now formally defppreportion-from-s samplingit is
the sampling strategy defined byntervals, withay = k/s andry = k. For instance, if

1if no confusion arises, for the rest of the paper we will driop $uperscript denoting the sample size in
£ (a).



Algorithm 2 Picking a pivot with proportion-from-3 sampling.

function pi ck_pi vot (Al,u,m)
var pl,pmpu:i nt eger;n,rank:i nt eger
begin
n:=u—I1+1,
if n<3thenreturn [;
{Any three distinct values ifi..u] can be used to initializgl, pm pu}
pl :=1; pm:= (I +u)div 2;pu:=u;
if Alpl] > A[pm then swap(pl, pm);
if Alpm > A[pu] then begin
swap(pm pu);
if Alpl] > A[pm then swap(pl, pm);
end

rank:=m—1+1;
if 3xrank < nthen return pl;
if 3xrank < 2xnthen return pm
return pu;
end

s=3thenr(a)=1fora €[0,1/3],r(a) =2 fora € (1/3,2/3) andr(a) =3 ifa €
[2/3,1]. An example of an execution is presented in Figure 1, shoadnge interesting
features of the algorithm. The most important observat®othe fact that adaptive
sampling strategies choose the pivot as a function of theegtirelative rank of the
sought element at each recursive call. In this examplegifiitst recursive call we have
to choose the first element of the sample as the pivot because- 4/15< 1/3, in the
second recursive call the median of the saniple selected since/B< o =1/2<2/3
and, finally, in the last recursive call we choose the largksnent], as we have now
a =4/5>2/3. Inthe figure, the pivot of each partition stage appearsik drey once
the partition is finished; discarded elements are shadddhihdrey. The elements of
the sample at each stage appear within a circle, which id gdhie sample element is
the selected pivot.

The “reactiveness” of proportion-from-3 to the currentat®le rank of the sought
element is the reason for its improved performance if coegbarith other variants of
quickselect; but this simple modification of the pivot séileet scheme makes the anal-
ysis of the average performance considerably difficult. E\esv, the implementation
of proportion-from-3 is as simple as for other variants dtselect (see Algorithm 2).
We observe that the selection of the pivot does not rearrdreggelements of the sam-
ple in the array, but rather works with pointers (the indipgsomand pu) to them, for
otherwise we would not preserve the randomness of the suysaaiter partitioning.

We state now the main result of this section.

Theorem 1. Let G, m be the average cost to select the mth out of n elements using an

adaptive sampling strategy with/m— a for 0 < a < 1 as n— . Then we have that
the characteristic function of the algorithm
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Figure 1: An example of execution of the proportion-fromigosithm withn= 15 and

m=4.
with f(a) = fy(a) if a € Iy, 1 <k < ¢is well defined, and

sl 1
fya) =1+ ————— / fie(o /X) Xk (L —x)5 "kdx
k(@) = Di(s—To)] [ o/a. k(a/x)x*(1—x)
=t fa—x
+/ el g () x1(1 — x)SH-Tkdx
0 1-X

¢
+ Z /fd(u/x)x’k(l—x)wkdx
d=kr1/lg

+ck;1/ fq (H> X1 — x)StTedx|
Sy \1=x

with I} = (a/aq,0/ag-1) and | = ((iiij ) tsﬂi)'

Sketch of the proofThe proof is a generalization of the proofs in [7, 8] for start
quickselect and its median-@2t + 1) variants. First, we have to show that for any
given partition{lx} of [0,1] into ¢ disjoint intervals with endpoints & ap < a3 <

.-+ < ay =1 and any family{p} 1<k<¢ of probability distributions in0, 1] which are
not concentrated ifiap, a1, . ..,a¢ } there is a unique family of probability distributions



{Fq : 0 < a < 1} satisfying the following distributional equat@n

Fo = 1+ La /a1 (&) - &k Gayg + 1[0_ ac1] (&) - (1= &) - Gra—g /(150
T

4

k—1
+ > L&) -&d-Gayey + dZ Ly(&a) - (1—&a) - Gra—tg)/(1-&q)»
d=k+1 =1

where{Gq : 0 < a < 1} is a family of independent random variables with the same

distribution as{Fy : 0 < o < 1} (i.e., Gy = Fy, for all a), {&}1<k</ is a finite col-
lection of independent random variables with the sameibigton as theu’s, 1} =

(o/ag,0/ag-1), 14 = (ijjg ; ‘;j:;’j), and 1 denotes the indicator function for the in-
tervall. Thus we extend the notion pfsplit given in [7] top= ({lI«}, {i}) since such
a pair uniquely determines the family of probability distrions{Fy : 0 < a <1}. The
resultin [7] can be seen as the particular instance wheré and thud; = [0, 1].

The second part of the proof amounts to showing that for angagaptive sampling

strategy, if lim—. m/n=a then

with respect to a suitable metric (in particular, with redp® the Wasserstein met-
ric), where Ghm is the number of comparisons made by quickselect when saject
the mth smallest element out af using the given adaptive sampling strategy, and
{Fq : 0 < a < 1} is thep-split constructed withy = Betarg,s+ 1 —ry) and the in-
tervals corresponding to the given adaptive samplingegyat

The statement of the theorem then easily follows. Also, ag-prbduct of the
detailed proof, we can show that eafgfia ) is bounded ifly, and furthermore establish
that, for anys, the operatoily defined by

sl
(rk — D! (s—ry)!
081

+/1_akfl gk (a _X> erfl(l_x)erl*fk dx
0 1—x

‘
+ Z /gd(cx/x)xrk(l—x)sfrkdx
d=kr17 1

+k1/ o (E) eril(l—X)S—HLirkdX
cgl g \1-=x 7

is a contraction for all &K k < ¢. Hereg is the restriction ofg: [0,1] — R in the
intervally, andlj andl] are defined as above. a

1
Tk(g)((]) =1+ [/a/ak gk(a/x)xrk(l—x)sfrkdx

2We useX £ Y to denote that the random variablenas the same distribution as the random variahle

similarly, Xn £ X denotes convergence in law of the sequence of random vesigXi } o to the random
variableX.



The technical details of the full proof of Theorem 1—which veé partially given
here— are involved. But the intuition behind the statemdrthe theorem is rather
simple: divide both sides of (2) by, take j = x-n in the summations, and since we
anticipate thaCnm ~ f(a) - n, we substituteCj_ m by f(a/x)-x-nandCy_jm-j by
f((a—x)/(1—x))-(1—x)-n. Also, whenn — o« anda € Iy we can replace-rﬁrk)
by the asymptotic estimate '

SR sl
) (rk=D)!I(s—rk)!

Passing to the limit when — o, the summations become integrals thus yielding the
equations stated in the theorem. Sinde an integer function, the range ofmust be
broken into? intervals, giving the piecewise definition fa).

Bearing in mind that discontinuities in the definitionrdgfx) carry on to disconti-
nuities inf (a) we can also use the following simpler integral equatiorsfietl by the
characteristic functiori (a):

n. X*1(1—x)5 "« = Beta(ry, s+ 1—ry).

1
1) =1+ Ty l/ F(a/0x @ (1) " dx

a —
+ /0 f<i_:) xr(“)‘l(lx)S*l‘“"‘)dx]. 3)

We say that an adaptive sampling strateggyimmetridf lim, - r(1—2z) = s+
1—1lim,_4-r(z) for all a. This definition properly captures the symmetric nature of
the algorithm. Indeed, if we use as a pivot ttte smallest element in the sample of size
swhen searching for the element with ramkit is reasonable to choose thia largest
(equivalently, the(s+1—r)th smallest) element while searching for the element of
rank 1— a. The actual definition using limits from the left is necegser make it
valid also for samples of even size. Notice that for any syimmeampling strategy
we haveay = 1—a,_ if k < ¢/2; furthermore if the number of intervadds even then

We immediately obtain the next lemma.

Lemma 1. For any symmetric adaptive sampling strategy, its chanastie function
is symmetric, i.e., () = f(1—a). More precisely, f(a) = fri1k(1—a), if o € Ix.

Proof. Sincer(a) is symmetric it is not difficult to prove that for anyand anym,
Chm = Chn+1-m. The statement of the lemma immediately follows. O

Furthermore, we can prove the following lemma.

Lemma 2. For any adaptive sampling strategy

. s+1
lim f(a) = ————
a—0 (@) s+1—rg’

where p = limg_or(a) and all limits ofa — 0 are taken from the right.



Proof. Taking the limit wherx — 0 from the right in[8) and sincef (a) is bounded in
[0,1], we have

lim f(a) =1+ S S /01 (Iim f(a/x)) X0(1—x)>"odx

a—0 (ro—l)!(S— ro)! o—

SR /01 <Iim f(a)> X0(1— )50 dx

(ro—21)!(s—ro)! a—0
gl . 1 ro Ss—rog
= e (@) )Xo
B sl . ro!(s—ro)!
= e (@)
Hence,
lim f(a) = 1 = stl
a0 VT ITr0/(5+1)  s+l-to

O

From Lemma 2 we can easily rederive the known fact that foriamedf-(2t + 1),
limg—om(a) =((2+1)+1)/(2t+1)+1—(t+1)) =2, for anyt. On the other
hand, if we use proportion-frorasampling or a similarly inspired strategy such that
ro=1, thenlimy_o f (o) = 1+ 1/s, which proves that significant gains can be expected
for s> 2. In particular, proportion-frons-and similar strategies perform better than
median-of{2t + 1) variants, at least for low and high valuesaf One of the main
goals of this work is to establish how and when this happens.

To prepare for that journey we need a couple of additiondirteal results that
are proved in Appendix A. In order to provide an explicit ¢@n of the integral
equations in Theoreml 1, we transform, after lengthy andfelhoemputations, the
original problem to one of ordinary differential equations

Lemma 3. For any adaptive sampling strategy,

dst+2 B (—1)st1-Tk g et f

das+2 k(o) = as+t1-Tk .(rk—l)! s k(a)
1 sl ds+2-Tk f

" (1_G)rk . (S—I’k)! . dost2-rk k(a),

where f(a) is its characteristic function, and € Iy, 1 <k < /.

Since proportion-fronsis a symmetric strategy, we only have to consider the equa-
tions for 1< k < [s/2] and the order of the ordinary differential equation satisbg
eachfy can be reduced. Lei(x) = d“"1f,/dxX<1. Then, for all 1< k < [s/2], since
rne=Kk,

dS—‘rlfk(n( B gl 1 dS+172k(g< B gl (_l)SJrlfk(ﬂ((X) 0
DK T (5o k) (1)K A2 (k—1)] 1K '

(4)

9



An important special case of the ordinary differential d@gura(ODE) above is for
the central interval =t + 1) whens= 2t + 1. Then the ODE is identical to the
corresponding ODE for median-¢2t + 1).

The problem with the differential equations above, besttesintrinsic difficulty
of solving high order linear differential equations, isttivdtial conditions are hard to
establish, other than the limiting vald€0). Recall thatf (a) is in general discontinu-
ous and hence in order to obtain it, we should krigeay_1), fi(a-1), ..., %(ak_l)
for everyk, 1 <k < /. In order to overcome this problem, we use a different tech-
nique, namely, substitute thig’s in the integral equations by the general form of the
solution for the corresponding differential equation axdliie values of the unknown
constants by equalizing both sides. When the adaptive gjr&eymmetric the prob-
lem is somewhat simpler because there are fg'ssto cope with and the argument
of symmetry can be of help when determining the constantsveder, the essential
obstacles remain.

Last but not least the following result allows us to inveat&gthe behavior of, =
% zlgmgnCnﬁm asn — oo,

Lemma 4. Let G, be the average cost to select an element of random rank out of n
elements using a symmetric adaptive sampling strategyn Weehave

f= |m = / f(a
n—o N
where f(a) is the characteristic function of the algorithm, and it isgisen by Theo-
rem 1.

3 Proportion-from-2

Let us begin with the simplest “proportion-from” strategy= 2. Solving [(4) is not
very difficult and even can be said to be routine in this casereHwe have just to
consider one piece, namefy, since by symmetry we know thdg(x) = f1(1—Xx).
Equation|(4) is then

we 1oxdx A0 ©)

with x = 0 andx = 1 its regular singular points. We remark th@i(x) = d?f; /dx°.
The corresponding indicial equationigh — 1) — 2 = 0, whose solutions ae= —1
and\ = 2. This entails a solution of the forpy(x) = @1.1(x) + @12(x) (see [20] and
pages 14 to 15 in Section 4) where

Qr1(x Zoanxn Ly A-@a(X) - Inx,

zob Xn+2

for some coefficient§a, }n>0 and{b, }n>0 and some constait The second term in
¢1.1(X) is necessary since the roots of the indicial equation diffeain integer constant.

10



Substituting the proposed form fax (x) into the differential equation we obtain
recurrence relations for the coefficierstg and by, and from there a simple form for
¢1 which depends on two constants, since we can prove&ha0, anda, = ag and
bn = bg for all n > 0. Indeed,

Integratingg, twice we get

f1(x) =a((x—1)In(L—x) + éx3+ %xz—x) —b(1+4 H(x)) +cx+d,

for some constants, b, c andd yet to be determined.

The difficult part here is to obtain the values of these caristarhe known value
f1(0) = 3/2 givesd —b = 3/2, but the successive derivativesfgfata = 0 are infinite
and this information cannot be used to fix the value of the taots. The painful
process is to substitute the general expressiorfif@nd f, into the integral equation
(Theorem 1) and equalize the coefficients of powersiafboth sides.

Finally, one gets

1 4In2-3

“T@n2—2’ °77% " g@ma—g 47 V2

The maximum off (a) is ata = 1/2. Indeed, since

#(a) = (48In2—36)(In(1—a) —Ina) — 4Ina — 2a? — 4o + 3
- 8(3In2—2) ’

we have thatf’(0) = «, f/(1/2) > 0 and sincef’(a) is strictly decreasing, we con-
clude that it is always positive. la = 1/2, the cost isf1(1/2) = f2(1/2) = 1/96-
(576Irf2—253)/(3In2— 2) =3.112.... Compare withmg(1/2) = 3.386... for stan-
dard quickselect anahy (1/2) = 11/4 = 2.75 for median-of-3 quickselétt

We also have
- 1 12 3(320In2— 213
1‘_(/0 f(x)dx_z-/o R0 dx =" ey

which tells us that proportion-from-2 makes roughlyr2 comparisons on average.
Compare with the 8 comparisons of standard quickeslect and tf# 2omparisons
made by median-of-3.

It is interesting to notice that, as we expectédy) < mp(a) forall 0 < a < 1.
Compared to median-of-3, proportion-from-2 is better whes 0.140... and, sym-
metrically, whena > 0.859...; and it is worse otherwise. The fact that we can outper-
form median-of-three with only two elements per sample emnaging (see Figure 2).
In that percentile, both algorithms make in average appraiély 2362...n compar-
isons. However, it is a bit unfair to compare median-of-3 praportion-from-2 since
these strategies use a different number of elements in thplea (and standard quick-
select uses samples of size- 1).

a=

=2598...,

SWe only give four figures in the numerical values in this sectind the following. Nevertheless it is
relatively easy to obtain a high degree of accuracy—indeedhave computed all the numerical values
given in the paper with up to twenty digits of accuracy.
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Figure 2: Plot ofmy(a), my(a) and the characteristic functioh(a) of proportion-
from-2.

4 Batfind: Proportion-from-3

The steps needed to analyzatfind (a.k.a. proportion-from-3) are similar to those of
the previous section. In this case we have the followingetivactions: f1(x) when

x € [0,1/3], f2(x) whenx € (1/3,2/3) and f3(x) whenx € [2/3,1]. By symmetry we
havef3(x) = f1(1—x) and f2(x) = f2(1—x). This implies that we need to solve only
two differential equations, namely,

B¢ 3 d’qp 6
dxd  1-xdw +g(p1(x) =0 ()

d?q 1 1
o 0 (+ @) 0 =0

with @1(x) = d?f1/dx2, @z(x) = d®f/dx%, andx = 0 andx = 1 their regular singular
points. The two indicial equations ak¢\ — 1)(A —2) 46 = 0, with roots—1, 2+iv/2
and 2—iv/2, andA(A — 1) — 6 = 0 with rootsh = —2 andA = 3, respectively.

To solve the differential equation fag (x) we use the identity V2 = @v2inx —

12



cos(v/2Inx) +isin(v/2Inx), and s0 we assung (x) = ¢r.1(X) + @.2(X) +@1.3(X) where
PLa(x) = n;anxn‘l,
@1.2(X) = x2cogv/2Inx) n;anx“,
@1.3(X) = X2sin(v/2Inx) n;cnx”,

for some unknown coefficient§an}n>0, {bn}n>0 and {cn}n>0. Also, similarly to
proportion-from-2, we proposg(x) = @ 1(X) + @ 2(x), with

G1(}) = Y &x" P A @2(X)-InX Gaa(X) = Y bax"S,

for some other coefficient&, }n=0 and{bn}n=0 and some constart

Substituting the proposed form fax (x) into the differential equation we obtain
recurrence relations for the unknown coefficiefég}n>o0, {bn}n>0 and{cy}n>0 and
we finally get

1

Qr1(x) = aox(l— X’

P12(X) = bo% cogv/2Inx),

2
P 3(x) = Co—lx_ Xsin(\/ilnx),

sincea, = ag, by = bg andc, = ¢y for all n > 0, for some arbitrary constards, by and
Co. Integratingp, twice yields

f1(X) = —Co(1+ #H (X)) +C1 + Cox+C3- Ky (X) +Ca - K2(X)
where

Ki(x) = cos(ﬁlnx) : Z}AnX”MvLsin (ﬁlnx) : ZOan”+4,
ns &

K2(x) = sin(\f2|nx) : Z)Anxn“‘—cos(ﬁlnx) : ZOan”+4,
n> &

(N+2)(n+5) B V2(2n+7)

Ao = N1 (480118 " Pien+ i1 ent 18’

We can also determine in a similar way the val§és} and{bn} up to arbitrary
constants by substituting the proposed formdginto the corresponding differential
equation yielding

/1 1 « x3(5x — 20¢% + 28— 14
®1(X) =& (XZ + (1—)()2) ) $2,2(X) =bo ( 14(1—+X)2 )

13



Then, integratingy, three times and taking into account the symmetr§.ofve get
f2(X) = —Cs(1+ H (X)) + Cex(1—x) +Cy7.

The value of the constan® in f1(x) and fa(x) can be obtained by the same rou-
tine but cumbersome procedure of substitution into theginaleequations that we have
already used to analyze proportion-from-2. Thus we gettti@tonstant€; are the
solutions to a system of equations which can be found in Agpéd. The coefficients
given there are for the generalizations studied in Secbmsd 6; the coefficients that
we need here can be obtained by setting 1/3, &1 = 1 and&, = 0 in the formulee of
AppendixX C. We get then

Co= —24/11,C; = —28/33,C,=0.193...,C3= — 100190. ..,
Cs= —27556...,Cs= — 1.463...,Cs=0.439...,C;=0.135.. .

The solution just obtained for batfind’s characteristicction is quite representa-
tive of the general situation. For genesathe indicial equation of (4) is

)\S+l—k _ (71)5—}—1—kﬁ1—k _ 07 (7)

wherext = x- (x—1)--- (x—k+ 1) denotes théth falling power ofx, for anyk > 0 [6].

If we denote its rootd,...,As 1k in ascending order of their real part, we have
A1 = —kand then we have(s—Kk) /2| pairs of complex conjugate roots.d4f- 1 —k s
odd then there are no more roots, bug#f 1 — k is even ther\s, 1k = Sis also a root.
All the roots have their real parts betweelk ands and, except for the cagg = —k
andAs;1-k = swhens+ 1 —Kkis even, no pair of roots has an integer difference. The
proofs of these facts are more or less involved and are ginmilapirit to those of
Mahmoud and Pittel [16] in their analysis of the spacenedry search trees.

Then, for(g((s> = dk+1f|£S)/d>é‘+l, which satisfies the linear differential equation (4),
we have a solution of the form

900 = AL+ + Bhyg 9,
with )
o0 = 3 alhe, ®)
n=

for some coeﬁicientiaﬁj)}nzo. However, ifs+ 1 —k is even thenh; = —k and

Asi1-k = S, the difference of this pair of roots is an integer, and henskghtly differ-
ent form for(g((_si(x) must be assumed, namely,

A (x) = Z)a#’x”*MA- A1 (%) Inx. ©)
n=
It is important to point out that the roods depend ors andk and the coefficients

{aﬁ”} depend ors andk as well; but we have refrained to use additional sub- or
superscripts to make explicit that dependence.

14



Substituting the general form((s)(x) back into the differential equatioh (4) and

equalizing on powers ofyields the recurrences satisfied by the coefficiah'?s How-
ever, we were able to find explicit solutions of these reqaes only for some special
cases. Another outcome of our partial analysis is that tharlthmic extra term in

(g(fi(x) whens+1—kis even (see Equation 9) actually vanishes, since it candyegdr
thatA = 0.
Altogether, by integrating + 1 times, this leads to the general solution of the form

£9(%) = 1 (1+ H (X)) + Cx¥ + G XL+ Gy
= Aj+k+1 aﬁmj)
+ Ciyj X1 X",
,Zz ) n;(n+k+1+>\j)7k+l

for some arbitrary constan®, ...,Cs.1 and coefficients{aﬁj_)}. For eactk we have a

different set o5+ 2 arbitrary constants, and the coeffie{mé’)} depend on botk and
s. Furthermore, as we hayés— k) /2| pairs of complex conjugate rooks = p;j + Tji,
we may write fors+1—k odd

fIES) (X) = —Cip1(1+H(x)) + CX+C X1 4G

(s=k)/2 ) .
+ Cajx 2 KK (%) 4 Cpj s 2 TR (), (10)
=1
with
Kij)(x) = cog1,; logx) Z)Aﬁj)x” + sin(Tj logx) Z)B,(Px”
n> n>
K (x) = sin(tz; logx) Z)A,@x” — cogT2 l0gx) ZOBEDX’E
n> n=
and

) D@ (n+kt 14090
0 ((n+k+1+u2j —i)2+r§j)’
0@ (k14 hgy)kEY)
1 ((n+k+1+u2j —i)2+T§j)'

Bl

The same holds fas+ 1 — k even, but we have to add to (10) the additional term
. a£15+17k)
XS+ +1 oy
CS+1 n;)(n—kk—kl—f—S)m y

corresponding to the rodt, 1 x = S.

Coming back to batfind, we observe that, contrary to what éagpvithm (x),
f2(x) is the sum of a second degree polynomial and an entropic temall that the

15
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Figure 3: Plot of batfind’s characteristic functidé) andmy (o).

linear differential equation is the same in both cases, lmeiteintropic term vanishes
for median-of-3). Another important aspect is that, evesuth the difference is not
large, f(a) < m(a) for 1/3 < a < 2/3, and the same is true for the intervais<
0.201... anda > 0.798.. .; see Figurk 3. In particulaf(1/2) = f,(1/2) =2.722... <
my(1/2) = 2.75. However, it came as a surprise the fact that 1/2 is not the most
difficult relative rank for batfind: for instancé(1/3) = f1(1/3)=2.883... > f(1/2).

Finally, the integration off (a) in [0, 1] yields f =2.421... which favorably com-
pares to the valuey = 2.5 that corresponds to median-of-3.

We conclude this section by briefly discussing the intuitb@hind the fact that
batfind is doing worse than median-of-3 for valuesoofiear %3 (and 23). It also
makes more comparisons in these regions tharofer 1/2. In particular, ifa €
[0.276...,1/3] or a € [2/3,0.723...] then batfind makes more comparisons, on the
average, to select the element of ranin than to select the median.

An informal explanation for these facts is the following. stine for the sake of
concreteness that= 1000 andm = 332. While there is some chance (in particular
~ 29.6% of the times) that the rank of the pivot selected by batfinclase but larger
than 10003 = 3333 and then we discard almost two thirds of the input, it is more
likely for the rank of the pivot to be less thamand then we discard a bit less than a
third of the input (this happens around.Z% of the times). In the latter case, at the
next recursive call, the rank of the sought element wouldeltetively small; however
there are still enough chances that we have “bad luck” agaiim the first round. On
the other hand, iln= 334 then the strategy would pick the median of the sample and
thus exhibit more “stable” performance, since it would moely partition the array
into subarrays of similar size and hence avoid the boundéegtgust described. Such
boundary effects occurring at early stages of the recurisawe a big impact on the
performance and amount for the difficulty of finding elememt®se rank is slightly
less than or equal to/3. In other words, this means that to find an element of &nk
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smaller than but close to 1/3 we should have chosen the madidhmot the smallest
element as pivot.

5 v-find: A variant of batfind

The natural question raised in the previous section is: fuckvvalues ofx should we
pick the smallest, the median or the largest element of tipke? From the lessons of
Section 4, it seems clear that the median of the sample musstdakfor a larger interval
of a. However, if we make the central interval too large we mag lal the benefits
of proportion-from-3 sampling. Altogether, this suggettat there should exist an
optimal choice for the endpoints of the intervals. The maial@f this section is to
prove this assertion (Theorem 2).

One important point is that no matter how we choose the entipdhe correspond-
ing characteristic functiorf (a) satisfies the differential equations (6) of Secfidn 4.
Hence, the general form of thig’s is exactly the same as before and the only differ-
ence is in the value of the involved constants, because dfiffeeent initial conditions.

More formally, the goal of this section is to investigate pmeperties of the charac-
teristic function whera; = v anda; = 1—v for 0 < v < 1/2; we make the dependence
in v explicit and denotef, the characteristic function corresponding to this strgteg
which we callv-find. Whenv — 0, v-find behaves as quickselect with median-of-
three. Wherv = 1/3, we have batfind. Finally, when — 1/2, the median of the
sample is always discarded, gdind behaves slightly different than proportion-from-
2. This “pseudo-proportion-from-2” variant is not intetiag at all; it does even worse
than proportion-from-2 in a large interval af

In general,f, (o) consists of three piece$; , for a € [0,v], f2, fora € (v,1—v)
and f3, for a € [L—v,1]. Of course, since-find is symmetric we havés,(a) =
fiv(1—a).

As we have already pointed out, the only difference betwesmoalysis of batfind
and that ofv-find is that we have to investigate the dependence ofithe values of
the constant§;’s in the general form ofy, and fo, (see Sectioh 4). Notice that the
argument of symmetry of,, applies also here, no matter what the value .

It turns out thatCy = —24/11 andC; = —28/33 are independent of Moreover,
Cs(v) = 7/4-Cs(v) + 3. AppendiX C provides the values of the remainihi as
functions ofv. Actually, we give there the values for ti&'s corresponding to the
average total cost (see Sectidn 6); the values oflsecorresponding to the average
number of comparisons can easily be obtained by seéting 1,&, = 0 in the given
formulee.

For a large range of values of f, has three local maxima locatedat= v, a =
1—vanda =1/2. The local maxima at and 1— v constitute the so characteristic two
little “ears” of v-find (and batfind in particular). It is also important to podut that
for fixed v, limg_.o fu(a) =limg_o f1y(a) = 4/3. However, limy_o f1v(v) = 3/2 and
Iim\Ho f27V(V) =2.

As v decreases, the value &f,(v) also decreases amd= 1/2 becomes the ab-
solute maximum off,. We denotej the largest value of such thato = 1/2 is the
absolute maximum ofy; for v > ¥ the absolute maxima df, are located att = v and
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Figure 4: Plot ofe,.

a =1-v. Sov is the solution off,y(v) = f2,(1/2). Numerical computations yield
U =0.268.... This phenomenon leads naturally to the concexpiensiveanks. We
say thatr # 1/2 is expensive iffy (a) > fy(1/2). If v < VU then there are no expensive
ranks. Butifv >V =0.268... then[e,,v] and[1—v,1— ] are the intervals containing
the expensive ranks. To compudewe just need to solvé; (e,) — f,(1/2) =0 (see

Figure 4).

5.1 The optimal value ofv

If we continue decreasing the valuewthen f, loses its characteristic “ears” because
then we havef1y(v) < f2u(v) (see Figures|5 and 6). We dendtéhe transition point,
wherefyy(v) = foy(v), i.e., wheref is continuous. We have that=0.182.....

This transition point enjoys another fundamental prop#réy we state in the main
theorem of this section.

Theorem 2. There exists an optimal value of namelyv* = 0.182..., such that
frve (V") = oy« (v¥) and forallv,0<v < 1/2, and foralla,0 < a < 1,

fy«(a) < fy(a).

Despite the technical difficulties of the proof (given in Agplix/ B), the intuitive
explanation for Theorem 2 is easyvif< v* thenfi,(v) < foy(v), which means that
for some values oft > v close enough to we would be doing better by choosing the
smallest element in the sample rather than the median; ocottiteary, ifv > v* then
fiv(v) > foy(v), and that means that for some< v the algorithm should have chosen
(as in batfind) the median as the pivot, not the smallest. AAtv* we are just choosing
the right pivot for each relative rark

Sincev* optimizesf, it minimizes the maxima,; in particular; minimizesf, (1/2).
Also, sincev* <V, it follows thata = 1/2 is the most difficult relative rank far*-find,
where we havd,-(1/2) =2.659... (see Figure[7).
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Figure 5: Plot off, (a) forv € {1/3,1/4,1/5,v*,1/7}.

Figure 6: 3-dimensional plot for-find.
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Figure 7: Plot offyy(v), f2y(v) and fy(1/2).

It is also obvious thab* must minimize the average valdg. In particular, we
havef,. =2.342... (see Figuré 8). And*-find must outperform median-of-three as
my(a) = limy_o fu(a).

Itis reasonable to think that when using samples ofsiaesuitable choicej, &, . ..
of the interval endpoints that maké&) (a) continuous is the optimal choice for each
possibles, like we have just proved fa = 3.

Conjecture 1. Fix some value & 3 and let
As={(0,a1,az,...,8s-1,1)|0<ay <ap <---<as1 < land
l-as w=aforallk,1<k<|[s/2]}.

Let fy(a) denote the function corresponding to proportion-from-sipéing with end-
points ata= (0,a3,a2,...,8s-1,1) € 4s. Then, there exists a unigaé € As such that

fa(lf)(or) is continuous foa € [0,1] and
2 (o) < 127 (@),
foranyae 4sand any0<a < 1.

This conjecture is the analogous of Theorem 2 for gersefalen though we have
been unable to complete all the technical details needeate phis conjecture, all the
evidence indicates that such an optimal choice of the enttpof the intervals must
exist. As noticed in Section 4 for proportion-from-3, progan-from-s algorithms
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Figure 8: Plot off,,; My = 2.5 is also depicted for convenience.

also have discontinuities near the endpoints of the intervdis problem is originated
by a “bad choice” of the pivot for ranks close to the intervatlpoints. Following
the arguments of this section, we can expect the existenea aiptimal choice of
the valuesa; ---as_1 such that the functiorff)(a) is continuous and minimum for
all a. Also, since median-of2t + 1) is the special case of proportion-fr¢an+ 1)
whena; — 0,a — 0,...,a — 0,a.,1 — 1,...,ax — 1, then, if Conjecture 1 holds, it

follows that féf”l) must outperform median-df2t + 1) for anyt.

5.2 A comparative study ofv-find

In order to compare-find with other algorithms, we use the fact that, exceptata,
the function fy(a) is continuous inv for fixed a. Furthermore, the function has a
local minimum atv = v* and its second derivative (exceptat a) is strictly positive.
Therefore, if we want to compare an algoriti@whose characteristic function ggx)
with v-find, it is enough to comparg(x) to max f1x(x), f2x(x)}. Whenevemg(x) is
above max f1x(x), f2x(X)}, the corresponding-find beatsG for all ranksa; if g(x) is
below max f1x(x), f2x(x)} that means tha® beatsv-find in some ranks.

When comparing-find with standard quickselect, the result is clear oufind
beats this algorithm for any rartkand any value o (see Figure 9).

Things get more intriguing when we compardind with proportion-from-2 and
with median-of-three. There are rangesvofherev-find is not uniformly better than
proportion-from-2. In particular it < v(lz) =0.116... orv > véz) =0.347... then
fu(a) > f@(a) in some ranges afi (see Figuré 9). For instance, we already knew
that proportional-of-2 does better than median-of-3 (Wwhcthe limit ofv-find when
v — 0) whena is sufficiently close to 0 or to 1. The valueéz) and v§2> are the
solutions tofy (v) — (@ (v) = 0 andfy, (v) — f@(v) = 0, respectively.

A set of interesting values ofalso arises when we compardind and median-of-
three. In particular:
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Figure 9: Plot ofv-find (maxX fiv(v), f2y(v)}) compared to standard quickselect

(mo(v)) and proportion-from-2{? (v)).

1. Forv < V' =0.404.. ., v-find does better than median-of-3 on the average; that
is, f, <M =5/2= 2.5 (see Figure 8).

2. Forv <v},=0.364..., v-find does better than median-of-3 to locate the median,
or in other words, (1/2) < my(1/2) = 11/4 = 2.75 (see Figure 10).

3. Forv <Vv'=0.219.. ., v-find does always better than median-of-3, thafjéq ) <
my (a) for all o. Because of the properties &f andmy, V' is characterized as
the solution ofm (v) — f1y(v) = 0. Notice thav* <V’ <V, hence whew-find
beats median-of-3y = 1/2 is already the most difficult relative rank foffind,;
but on the other handy (V') > f,,/ (V') (see Figure 10).

4. If v > V' then, by definitiony-find does worse than median-of-three for some
intervals ofa. In particular, ifv’ < v < v, thenv-find beats median-of-3 in
[0,0y], (v,1—Vv) and[1—ay,1]; if v, <v <V”"=0.381... thenv-find beats
median-of-3in0,ay], [1— ay, 1] and two subintervals i, 1—v) not including
o =1/2; finally, if v > v” thenv-find beats median-of-three only in the intervals
[0,ay] and[1—ay,1]. The valuev” is the solution of the equatiofpy (V) —
my(v) = 0. For instance, sinc€ < 1/3 < vp,,, batfind beats median-of-3 in the
ranges(0,a 3], (1/3,2/3) and[1 — a3, 1], with a;/3=0.201.... In general,
ay is the solution ofm (ay) — f1y(ay) = 0 (see Figure 11).

The value off, at relevant points and related quantities, for severalestfv, are
listed in Table 1.
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Figure 10: Plot ob-find compared to median-of-three.
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Figure 11: Plot ofxy,.
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LV [ /(12 [ f®) [ o™ | o | & | T |

v—1/2 2.871...] 3.326...| 2.871...| 0.160... | 0.294... | 2.622...
V' =0.404... | 2.790...| 3.091...| 2.747...| 0.182...| 0.287... 25
v,=0.364... 2.75 2.976...| 2.679...| 0.193...| 0.280... | 2.453...
1/3 2.722...] 2.883...| 2.627...| 0.201...| 0.276... | 2.421...
v=0.268... 2.680...| 2.680...| 2.522...| 0.214... Y 2.370...
1/4 2.672...| 2.617...| 2.491...| 0.217... - 2.359...
Vv =0.219... | 2.663...| 2.514... | 2.441... v/ - 2.348...
1/5 2.660...| 2.444...| 2.409... - - 2.343...
v =Vv*

=0.182... | 2.659...| 2.379...| 2.379... - - 2.342...
1/6 2.660...| 2.321...| 2.352... - - 2.343...
1/7 2.664...| 2.228... | 2.311... - - 2.348...
1/8 2.668...| 2.154... | 2.278... - - 2.356...
1/9 2.673...| 2.095... | 2.252... - - 2.363...
1/10 2.678...| 2.046...| 2.231... - - 2.371...
v—0 2.75 3/2 2 - - 2.5

Table 1: Some relevant parametervdind.

In this section we have generalized the proportion-frome®rithm by allowing
a; = v to be any value in0,1/2), instead of the arbitrary value/2. In doing so,
we have done a fine-tuning of the algorithm, finding the bestaghfora; and taking
care of the problems presented by batfind. Moreover, we welieeta completely
characterize the evolution of the algorithm\asaries, and to prove the existence of
the optimal value* of a;. Moreoverv*-find outperforms median-of-3 in every range.
Given the simplicity of its implementatiow;"-find is a strong candidate for being the
selection algorithm of choice in general-purpose libmridevertheless, if we want to
consider the practical impact vffind we should also study the number of exchanges
made. This issue is studied in the next section.

6 Exchanges and total cost

An important part of the cost of the selection algorithm cenfrem the exchanges
performed during the partition stages. Itis thus intenestd consider thaverage total
costof the algorithm, where we define the total cost as a weighted af exchanges
and comparisons. Other costs, such as the cost of the camopsnneeded to select
pivots or the cost of the bookkeeping associated to eaddtiber can be neglected for
our analysis since they acgn).

Taking into account exchanges introduces yet another twigtir framework. It
is relatively easy to set up the integral equations to amatyz average total cost.
However, a new difficulty arises here because the toll fanctiepends now both on
nandm. In particular, the average number of exchanges in a sirayfitipning step
of an array of sizen when we select according to the adaptive strategy giver(dy
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n+o(n).

o
en s (D) re(s+1-r(@)
15z Z (njl) (s+1)(s+2)

Hence, if§; denotes the unit cost of a comparis@p,denotes the unit cost of an
exchange ani,n denotes the average number of exchanges made to seleuttthe
element out ofh elements, and we l¢ta) = lim_c m/mn—a(&1-Com+ &2+ Xam)/n,
then we have(a) =tx(a) if a € Iy, 1<k </, and

B re(s+1—ry) s
t(a) = (£1+E2(s+ 1)(s+ 2)) - (rk—=1)!(s—ri)! [

1
/ ti(0/X) Xk (1 —x)> "k dx
Ja/a

ol

14
+ 3 /td(cx/x)xrk(l—x)s”kdx
d=k+17 14

k-1 _
+ / tq (ax) X1 —x)st 1 "kdx|,
S iy \1-x

with 1 = (o /ag, 0 /ag—1) andl = (g::f; , i:gg:i). In particular, forv-find, following

the same steps of Section 2 we arrive at the same differefistions to be satisfied
by thety's. Hence the general form of thg's is the same as for th&’s but the
involved constants are different. Once the correspon@irgghave been determined
(as functions ofv, & and&,) we can investigate the behavior of the average total
cost and compare it to the other alternatives. Moreover, realogue of Lemma 2
holds for the total cost of any adaptive sampling stratedylimy_or(a) = 1 then
limg_ot(a) =& - (1+1/s)+&2/(s+2). In particular, forv-find the average number
of exchanges whem — 0 is limg_oty (a) = 1/5 for anyv.

We can establish the existence of an optimal choicker the average total cost of
v-find, now depending o&; and§,, which satisfies,-(a) < t,(a) for any value ofv
and anyo. Furthermore, we have also thetmakes, continuous att = v*. Figure 12
and Table 2 show the variation of as a function of = &,/&;, which is actually the
relevant parameter.

A particular interesting value of* is for &1 = 0,&2 = 1, when we want to optimize
the average number of exchanges. Thénr= v*(o)=0.429.... For that optimum,
the factor that multiplies in the average number of exchanges to find the median is
ty(1/2) =0.479... and for the average number of exchanges to find an element of
random rank we havig+ =0.391.. ..

Like in the previous section, we can define expensive rankd,adso determine
those values of where the total cost of-find outperforms that of median-of-three on
random ranks, to locate the median and to locate any rankilg8lynto the case of

a1
—a_ a—X
I 1 ty (:L_X) er_l(lfx)s""l_rk dx
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Vi(o)=0420. b — — — — —

v*(0)=0.182. .. , ; ,
0 100 200 300 400

Figure 12: Plot ob* = v*(g).

(& [V [V [& [v [V

0 | 0219.. ] 0.182... || 30 1/2 | 0.3809...

0.270... | 0.213... || 40 1/2 | 0.398...

0.313... | 0.239... || 50 1/2 | 0.403...

0.349... | 0.259... || 60 1/2 | 0.407...

0.380... | 0.276... || 70 1/2 | 0.410...

0.405... | 0.290... || 80 1/2 | 0.413...

0.427... | 0.302... || 90 1/2 | 0.414...

0.445... | 0.312... || 100 | 1/2 | 0.416...

0.461... | 0.321... || 110 | 1/2 | 0.417...

OO N OO W N

0.474... | 0.328... || 120 | 1/2 | 0.418...

10 | 0.486... | 0.335... || 130 | 1/2 | 0.419...

11| 0.497... | 0.341... || 140 | 1/2 | 0.4109...

12]1/2 0.346... || 150 | 1/2 | 0.420...
13 1/2 0.351... || 200 | 1/2 | 0.422...
14 1/2 0.355... || 300 | 1/2 | 0.424. .
15| 1/2 0.358... || 400 | 1/2 | 0.426...
16 | 1/2 0.362... || 500 | 1/2 | 0.426...
20 | 1/2 0373... || > | 1/2 | 0.429...

Table 2: Values of* andv’ as functions of = &,/¢;.
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0 5 10

Figure 13: Plot of/’ =V'(g).

the optimalv*, all these special values ofor a depend or§ = &,/&1. For example,
Figurel 13 depicts the valug where the average total costwffind is better than the
average total cost of median-of-three on any relative cgrds a function o = &2/¢&;.
The values of/’ are also given in Tablel 2. Of course, singefind is optimal, it must
outperform median-of-3 on all ranks, so we hat&) > v*(&) for all €.

If £ >11288... thenv' = 1/2. In general’ is given by the solution o o(v) —
tiv(v) = 0, wheretyg(a) is the characteristic function for the average total cost of
median-of-three. Whe#g > 11.288... the equation has no solution {i®,1/2); in
other words, for any value of, v-find beats median-of-3 on all ranks, so we assume
by conventionv' = 1/2. However, large values & should not occur in practice; if
the exchange of two elements were too expensive then we vaunldle an array of
pointers to the elements instead.

It is not difficult to show that,o(a) = (§1+&2/5) - mu(a) = (§1+&2/5) - (2+
30(1—a)), i.e., the characteristic function (o) for the average number of compar-
isons times the constaf®; + &2/5) that multipliesn in the toll function for the total
cost recurrence. In general, the same is true for any adagpdimpling strategy which
only defines one interval (standard quickselect, mediaf2of 1)) or for proportion-
from-2 because of the symmetry; the functido) for the average total cost is given
by the characteristic functioh(a) corresponding to comparisons times the factor that
multiplies n in the toll function. This easily follows from the fact thdtQ,  is the
solution to recurrence (2) with toll functiam+ o(n) then - Cp , is the solution to the
recurrence with toll functiofs - n+ o(n).

Last but not least, from a practical standpoint, if we tdke- 4 and¢, = 11 as rep-
resentative values for the cost of comparisons and excegagsuggested in [14]) then
v* = 0.25. Choosing = 0.25 guarantees that the total cost will be smaller than that of
median-of-3 and allows for a very efficient implementatidriree selection of pivots,
since for that choice we can avoid floating point arithmetid anteger multiplications:
integer comparisons and bit shifts suffice.
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Figure 14: Plot of the experimental estimationfgfx) (comparisons) for several se-
lection algorithms.

7 Experiments

We have conducted a series of experiments to compare theieatigimeasured per-
formance with the analytical developments of previousisest In these experiments,
we have used arrays of= 10000 elements. Five algorithms (standard quickselect,
median-of-3, batfind and-find with v = v*(0) =0.182... andv = v*(«) =0.429...)
have been run fom = 0,100 200,...; for each value oim, our program generates
P = 10000 random arrays, applies all five algorithms to eachefthays and collects
the number of comparisons and exchanges made. We haveerstartard quickselect
and median-of-three in our experiments as a further checthébexperimental setup
and statistical significance of the collected data.

It is important to emphasize that in our theoretical analysithe previous sec-
tions we have considered only the asymptotic behavior asckgiarded lower order
terms; furthermore, the standard deviation of the investid quantities (comparisons,
exchanges, total cost) is most likely linear, like for thenstard algorithm. Therefore,
we can expect small but noticeable differences betweerhtmdtical prediction and
the experimental data, even for the large value afhd the large numbét of tests that
for each rank we have used (see Figures 14 and 15).

If we compare in each case the “theoretical predictiéfd) with the measured
mean number of comparisons divided mythe relative error is usually smaller than
0.6%. There are a few ranks where the relative error (for somiefalgorithms)
was slightly greater than8%. We also detected a maximum relative error 68%%
in batfind at rankj/n = 0.33. Similar figures are obtained when analyzing the data
corresponding to exchanges.

In summary, the agreement between our theoretical predetnd the experimen-
tal data is excellent, even though our analysis is asynupaoti lower order terms have
not been considered.
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batfind
v*(0)-find

median-of-3
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Figure 15: Plot of the experimental estimatiort @f) (exchanges) for several selection
algorithms.

8 Optimal proportion-from- s sampling

In this section we establish the theoretical optimality @fny proportion-fronms-like
strategies whes— . It is well known [4, 5] that at least

n+ min(m,n—m) +o(n)

comparisons are necessary on the average to locatetthemallest element out of
elements. Using the terminology of this paper, we may regghtlae main result of this
section by saying that, under some additional mild circamsts, the characteristic
function of proportion-froms-like strategies if (a) = 1+ min(a,1—a) whens — oo,
hence optimal.

Definition 1. An adaptive symmetric sampling strategy using sampleg®tsghiased
if and only if
r(a)>oa-s+1—a, for0O<a<1/2

Notice that in a biased strategy tkhh endpoint is shifted to the left &f/s when
k < 's/2 and it is shifted to the right df/swhenk > s/2.

Theorem 3. For any family ofbiasedsampling strategies such thahs ... r(a)/s=a,

f)(a) = lim  lim Cnm

S—on—eom/n—a N

=1+min(a,1—a).

Proof. The proof of theorem above amounts to showing f&t(a) = 1+ min(a,1—
a) is the unique fix point of the operat®t*), where for anyg: [0,1] — R,

I : ! ria S—r(a
TG @) = 1 im o x{/a 9(%) @1 dx

N /U g <C( X) Xr(q)—l(l_X)S—Flfr(C() dX} )
0 1-x
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The fact that 1 min(a,1— a) is such a fix point is not too hard to establish once
the following technical properties have been proved, fonso = r(a) satisfying the
hypotheses of the theorem:

: sl b, or _Jy(a), ifa<l/2anda<b, (a)

Qﬁagin@meLX (1=x) yumx_{a ifa>1/20ra—=b, (b)
(11)

. sl o or _Jy(a), ifa>1/2anda<a, (a)

gmo(rfl)!(sfr)!/a X=X y0gdx= {0, ifa<1/2ora=a, (b)
(12)

gmfm%%$inéaﬁugxﬂwmdx:o,ifan¢Mby (13)

(S+ 1)’ . I S—r _ H —
HGr!(s_r)!/l/zx(l_x) dx=1/2, ifa=1/2, (14)

wherey(x) is an arbitrary function irtt(?[0,1]. The proofs of these equations can be

found in Appendix D.

LetA= [1x(1—x)3Tdx B= [ min(a,x—a)x 1(1—x)5"dx C= [§x 11—
x)$1-" andD = [§' min(a —x,1—a)x~1(1—x)S". Then, applying ) to f(*)(a) =
1+ min(a,1—a) we get

(A+B+C+D).

o . s!
TE () (@) =1+ lim (r(o) ~ Di(s—r(@)! |

Now, if a < 1/2 we have
o a
C+D:/ xrfl(l—x)SH*’dx—s—/ (0 —x)X 11 —x)5"dx
0 0

o
:/ (1+a—2)x"1(1-x%"dx~0
Jo

ass— o because of (12bA~ a - W because of (11a) with(x) = x, and

1 2a
B a~%‘%1—xf4dx+/1(xfaypﬂl—qudx
2a a

f{Lmu_aykﬂl_m*%uwo
applying both[(13) and (11a) wity(x) = (x— o) in the second step. Altogether,
TE(F)) (o) ~1+a.
Also, because of symmetry ofa), it follows that fora > 1/2 we have

TE () (@) ~ 1+ (1—a).
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This can also be directly proved, in the same way as we have itdéor o < 1/2.
For the special case = 1/2, we use the symmetry ofa). We also perform the
variable changg := (1 —x) and thus

1 1
A+B+C+D=4 xr(l—x)s‘rdx—/ X 11—x)5"dx
1/2 1/2

From there, a few straightforward manipulations, togethién (14) for the first
integral and the symmetry of the integrand arowne 1/2 for the second yield
r 1

1
<°°) (oo) ~ _— —_~ —_ = = —
T () (a) 1+25+1 5 1+2 l1+a=1+(1—aq).

Hence, for alla we have just proven that(*®)(f(*)) = 1+ min(a,1—a) = (),
Finally, sinceT(®) is a contraction (see Theorém 1), it follows tHa¥) must be its
unique fix point. O

The previous theorem suggests that optimal performancebeaachieved using
variable-size samples, withgrowing asn grows, as long as = o(n). If s=0(n)
then the toll function would b@n-+ o(n) for somep > 1, which precludes achieving
the optimal minimurm+ min{m,n— m+ 1} 4+ o(n). We must remark that Theorem 3
concerns fixed-size sampling and considers what happens ib. Hence, it does not
apply to variable-size sampling. But it is rather likely tkize result holds for variable-
size sampling, by analogy with quicksort [18]. As longss s(n) grows withn,
the main order term would be asymptotically optimal, butpheticular choice of the
functionswould also affect lower order terms. In order to minimizenththere must be
a trade-off between the quality of the pivot provided by éasgmples and the overhead
of choosing the pivot from the sample. Based upon known teéol quickselect and
quicksort[[18], we conjecture that the optimal size wouldsbe: ©(,/n).

These results and conjectures have undoubtedly greaketiwdiinterest, but it is
clear that quickselect with variable-sized sampling hasesdrawbacks for its practical
application, much like Floyd and Rivest’s algorithm, besawf the big impact that
using large samples has in the lower order terms of the padoce.

9 Future work

To assess the practicality of proportion-franand similar variants it would be inter-
esting to carry out a precise analysis of the lower orderdeémthe performance. Also
a detailed analysis of the variance would be useful; we ctmje that it should be of
the formv(a) - n?, for some functiorv, like in the case of standard quickselect and
median-of-thre€ [11]. A careful study to establish the &xise of optimal endpoints
(Conjecturé 1) and its behavior as a functiors@fould be also very interesting.

Our results of Sectioh 8 fog — o suggest that variable-sized proportion-frem-
sampling achieves optimal performance, but this has setilie proved. It also seems
plausible that using variable-sized sampling the varida@®max{n®/s,n-s}). Itis
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then natural to ask ourselves about the optimal sizef the samples for proportion-
from-s whens= s(n) — «. As we have already discussed after Thedrem 3, we con-
jecture that the optimal size & = ©(,/n); this choice would minimize the average
number of comparisons, as well as the order of magnitudesofdhiance. It could also

be interesting to consider strategies where the size ofahgkes depends on both
anda.

On the other hand, we are considering randomized sampliatggies, where given
the relative ranla of the sought element, for eachl < r <'s, there is a probability
pr(a) that therth smallest element of the sample of sgé chosen as the pivot.
These strategies generalize the deterministic strategigbed in this paper and in-
clude, among other, the so-calleihtherrule orpseudomedian-of-{2].
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A Proofs of Lemmas 3 and 4

Lemma (Lemma 3). For any adaptive sampling strategy,

ds+2 B (—1)st1-Tk gl et f

du5+2 k(a) - C(S+17rk . (rk_l)l . darkJr]_ k(a)
1 sl dst2—r« .

Ak (s—ng! dosi k(@)

wherea € I, 1 < k< /.
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Proof. To prove the lemma we first use the variable changesa/x andx:= (a —
X)/(1—x) in the integral equations defining tHgs in Theorem 1 to translate them to
the form

o) =1+ S [Z: (S‘irk)<—1>“kias+“{ [ 0 o

o 3 e

+rkzol<rk_ > 1)1 st |{/a:l(1_f';()22idx
eril/m(l—f(i(()?*“dx}]’ 1<k</t. (15)

Let

Ih(s41—j)s2=d

T(hi,9) :dsil (szZ) (d A 1)( —s-2)t

wherext = x- (x—1)--- (x—k+ 1) denotes théth falling power ofx, for anyk > 0 [6].

Differentiating s+ 2 times both sides of Equation (15) with respectitousing
Leibniz’s rule for theNth derivative of a product and for the derivative of integral
yields

ds+2 f g st1 gh f
dosrz (@) = (rk—1)!(s—ry)! ’hZ don K@)

S () i) a

(1, G)S+27h £
It turns out thafT (h,i,s) has a simple closed form:
T(hi,s) = (-1)** " ie==, (17)

and its binomial transform also has a nice closed form, ngmel

i <M><—1>M“ T(hi,s) = {é_l)M MR st (18)

i otherwise.

To prove [(17) and (18) we need the following combinatoriaintities that can be
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found, for example, ing]:

()=

NN\ )
(a+b)" Z) | > ap"!, Newton’s theorem,
|

M\ (K integersam,k  (trinomial revision)
k) \m—k/)’ gersm ’

(k>:( 1) (k rk 1), integerk (upper negation),

r rir-1 . . .
(k) = (k— 1) , integerk # 0  (absorption/extraction).

Moreover, we also need Vandermonde’s convolution, fornfgla4) and the upper
negation of formula (5.33) in [6], namely,

Z (mik) (nik) = (;}:i), integersm, n, (29)

Z(l)k(mlJr k> (t ; k) = (—pl+m <tn_rln>7 integerd > 0,m;n, (20)
()
J;(—1)1 (x%,-) _ F"n (1)

In the case of (17), we first apply the absorption formula ® shcond binomial
coefficient(dgl), then the trinomial revision to the product of the two binahdoeffi-
cients and finally rewrite the falling factorials as binohdaefficients to get

S22 h41/i—-s—2)(s+1-i
T(hi,s) = (s+2sn 5 N2 .
(1.9 =(s+2777 3 (dlh) (s+2d>

Then, we use the upper negation formula in the first binonoaffecient and change
the formal variable inside the sum to obtain

T(h,i,s) = (5+2)$=n
siLh hta ym m+1+s—i s+1-i
mZO m+h+1 m s+1-m—h/’

Now, replacgh+ 1)/(m+ h+ 1) using formulal(21) withk = h+ 1 andn = mso that

T(h,i,s) = (s+2)31="x

ey &)

]

35



We may rewrite the double sum using only factorials, mutghd divide by(s+ 1 —
h)! and (s+1—h— j)!, express the result as another product of binomial coefitsi
and change the formal variabieby k to get

T(h,i,s) = (s+2)s 1=«

07 +1-h—j\ [s+1—i+k
(i ()
e P [P
At this point we use formula (20) fdr=s+1—i,n=s+1—h,l =s+1—-h—jand
m= —j to obtain

hi,s) = (—1)* 1 Nsposths it i 20 i )
T(hi,s) = (-1)>""(s+2) ,Zo( 1) (1)

]

= (-1 N(s+1-h)! go(*l)j <hii j) <S+1J'_ - j)’

where the last identity holds after rearranging the faateriFinally, if we apply upper
negation to the last binomial coefficient and then use Vandade’s convolution we
get

J (sﬂ—h) <s+1_7i+j>

T(hi,s) = (~1)>*"(s+1-h)! J;) (hi—;i j) (i _7_ 2>

Scarrenmg (7))

= (-1 N(s+1—h)! <h+i is_ 1)

— (_1)s+1—his+1—h'
To prove [(18) we first use (17) to obtain

i (I\I/l> (—1)Mfi -T(h,i,s) = i (l\l/l) (_1)M7i ) (_1)S+1,h stloh

If we complete the binomial coefficients from the falling faidals and then we get

i <M> (~YM T (—psrherh

= (-1 "(s+1-h)!

oumnY
%)
_|_
R Z
|
>
__
Mz

(=™ (':A: hh—_ . 11>

(1 (sy h)!<s+'\1/|—h>iM (_1)Mi(M+I\::is—1)
— (~1)*1 N (s 11— h)! <S+'\1"_ h> il\: (~1) (M *hi’S* 1).



It is easy to see using Newton’s theorem that the last sumualéq zero unlesm =
s+1—h.

Plugging identitied (17) and (18) into (16), a few additiomanipulations yield the
differential equation given in the statement of the lemma. O

Lemma (Lemmal4). Let G, be the average cost to select an element of random rank
out of n elements using a symmetric adaptive sampling glyaehen we have

1
F— lim %:/ f(a)da,
n—oo N 0

where f(a) is the characteristic function of the algorithm, and it isgigen by Theo-
rem 1.

Proof. Recall that, by definition,

S Com

= %KESnCWm == 1smsn(f(m/n) -n+o(n))
= 3 Hmn+ 5 o= 5 f((me1)/n)+oln).

If f(a) had no discontinuities then we could use Euler-Mclaurimigla to show

that
M (x+1 2 B dk1f
cn_./0 f(—n )dx+k:1ﬁ—d%l((x+1)/n)

n

+o(n), (22)
0
whereBy denotes th&th Bernoulli number. Using then the symmetryfaf), the odd
index terms cancel out each other and since the Bernoullbewsnof even index are
zero, it follows that

n 1+1/n
cn:/ f((x+1)/n)dx+o(n):n-/ (y)dy-+o(n).
0 1

/n

Finally, dividing byn and passing to the limit yields the statement of the lemma.

Since in generaf (a) has a finite number of discontinuities, but still enjoys the
necessary smoothness properties piecewise, it is notutiff@ adapt Euler-Mclaurin
formula so that (22) can be “broken” intoparts and avoid the discontinuities. Hence
we get

[nag|/n [naz]/n
Ch=n- / f(y)dy+/ F(y)dy+...
1/n [nag]/n+1/n

1+1/n
+/ f(y)dy | +o(n).
[nag_}/n+1/n

The lemma follows dividing by and passing to the limit. O
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B Proof of Theorem 2

Theorem (Theorem 2). There exists an optimal valuewfnamelw* =0.182.. ., such
that fyy«(v*) = fay+(v*) and forallv,0 <v < 1/2, and foralla,0 < a <1,

fu«(a) < fy(a).

Proof. Consider a functiorf : [p, 1] — R and some adaptive sampling strategy as given
by ag,ay,...,a, andr(a). LetT be the functional operator

-1

T sl I S—rk
Tk(f)(a):ml/(}/akfk(a/x)x (1—x)> " dx

g

+ / T-a fk (a — X) erfl(l_X)S—Flfl’k dx

Jo 1-x

¢

+ fa(o/x) Xk (1—x)5 "kdx
d=Fr1/14

+:Zl / fd (E() er—l(l_X)SrFlfrk dX],
=Tl 1-x

with I, = (a/ag,0/ag-1) andl)] = (i:gg , ?::jj), and f, the restriction off to the
kth interval.

It turns out that this operator is a contraction; this can toved in a similar way
as we proved in Theorem 1 that= 1+ T is a contraction. Furthermor&, is linear,
which proves the following

f = Ti(f) forall 1 < k < ¢ implies f = 0. (23)

Let g1(v) = f1y(v) andgz(v) = fou(v). The respective limits when — O are
01(0) = 3/2 andg,(0) = 2. On the other hand, when— 1/2 we haveg;(1/2) > 3 and
02(1/2) < 3. Since both functions are strictly increasing @1,/2)—their derivatives
w.r.t. v are strictly positive—, it follows thad;; (v) = g2(v) has a unique solution, say
v*, in the interval(0,1/2).

Takefiy =1+ 'IA'l(fL\,, fov) andfyy =1+ 'IA'Z(fl,V, f,y). Differentiating both equa-
tions with respect to and settingy = v* many terms cancel out becausg(v*) =
fov+(V*), so we finally arrive at

of1y - (afl,v )
OV |y ov vevi /)

0fay
Toov

Il
=

v=v*

ofay o < Of1y ofay >
) — T2 ) , ) .
oV |,_y OV [,y OV |y
Hence, byl(23), it follows thata;% (a) = a:;f;” (a) =0 for anya in the
v=v* v=v*

corresponding intervals.
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Also, if we compute the second derivativesfef, (o) and foy (o) w.r.t. v and set
v = V*, both are strictly positive in the appropriate intervataslded,

: =T ) ; —|—A1((X),
V2 |, ov2 |, 0vZ | .

’ =Tz ; 'y 303 +02(a),
V2 |, v2 |, 0v? |, .

whereA;(a) is strictly positive in the interval0,v*] andAz(a) is strictly positive in
the interval(v*,1/2), and this property translates to the second derivativefg ofor)
andfay(a). Hencey = v* is a local minimum.

The limit valuesv — 0 (median-of-3) and — 1/2 are not minimum, hence to
complete the proof we need to show that there are no additioeel extrema off, (a)
for fixed a. This can be shown by contradiction. If we assume that thestsesome

V¥ £ v* such that‘% (o) = 0 then this implies thaty v« (V**) = fay« (V*); but
V=y** i )
we already know that there is only a unique valu® @fhere this happens. O

Also, it is worth mentioning that Conjecture 1 in Section flcbbe proven using
the same strategy as above. We should establish the exdstéaainiquea* such that

fgf) (a) is continuous. If we compu&fés) (a)/0g for L<i <s, itis fairly easy to show

that all these derivatives vanishat= a* for any value ofa, because‘;f) = 'T'(fa(lf)).
Conversely, ifaf;?(a)/aai = 0 for somea* and alla and all 1<i <sthenitis
not difficult to prove thatf;f)(a) is continuous for € [0,1]. The proof could then

be completed by proving that the particular quadratic foorresponding toféf) is
positive definite.

C Coefficients ofv-find

The reader will notice that the expressions @, Cs and C; given below are in
terms ofA := 70v° — 210v* 4 294° — 2242 +- 90v — 15 and the integralé;(v) =
Jo y(u)/u'duandB;(v) = [y Ky(u)/(1—u) du, wherex, (u) = C3(V) - Ky (u) +Ca(V)-
K2(u). Hence, the constan®, Cs andC; are given in terms of the (unknown) values
Cs(v) andCy(v). The last two equations in the list below, with the integialthe left
hand side, allow us to recover the valueGafandCy4, and from there the remaining
Ci’s. Actually, it is not very difficult to find closed forms foheC;’s, but the resulting
expressions are much lengthier and cumbersome to handle.

We give theC;’s that correspond to the average total cost (see SecltioSedjing
&1 =1,&, =0, we can obtain the constants for the average number of a@sops, and
with &1 =0,&, = 1, we obtain those for the average number of exchanges. gdting
v =1/3, we can get the values corresponding to pure proportiom-8 (Section 4).

o Co=—21(81+38,/20), Cr=-28(81+362/20), Cg= 4Cs5+3:(81+&2/5),
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e AN-Cr=

& (181(55\;5 —180v* +309% — 3342 + 204v — 45)In(1— V)

1

3 3(350;8 — 336007 4 12180° — 21680)° 4 23655 — 18480,°

4121282 — 5436/ + 990))

+&2- <%(15v4 — 7803 +158/2 — 1380 4 45)In(1—V)

- m(1758 — 16807 4+ 6090,° — 1106Q° + 1224@* — 9636)3

+61742% —2916) + 660))

+ (36(2\) —3)vHIn(1—v) — 3(35v% — 84v3 + 842 + 20v — 36)v4) A4(v)
- (36(2\)2 ~3v+9)(v—13In(1-v)

+3(35v8 — 266v° + 651v* — 832)° + 70602 — 49 + 168) (v — 1)2) -Ba(V)
- (432(\; —1*In(1-v)

—12(350° — 105v* + 1263 — 1122 + 114 — 51) (v — 1)3> -Bs(V),

e A-Cr=

& (131(55\;5 —180,% 1 30003 — 3342 4 204y — 45)In 1"7\)

1 2370,° — 70200* + 7796,° — 2568/° — 375 + 220)

33 v

6 4 3 2 v
Ez-(55(15\) 780+ 1582 — 138+ 45)In

1 525,°—1860," + 1896/° — 228, — 600V + 220)
110 Y

36(2v —3)v*In 1"—\) +3(81v2 — 60V + 10)v2) A4(V)

+ (36(2v2 —3v+9)(v—1)73In 1L

12903 — 1742 — 25 + 40) (v — 1)2
_3( - )( ) ).34(\;)

- (432(\; ~1)%In 1XV _eo= v *VW —2Alv- 1)3) -Bs(v),
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o N-Cg=

- 131&1(155;4 — 45003+ 5732 - 338) + 66)v

- 5%&2(210;4 —615,% + 8042 - 514 +132)v

—36(2v — 3)V*A4(v) +36(2v% — 3v + 9) (v — 1)3B4(v) +432v — 1)*Bs(v),
e A-(A3(v)+B3(v)) =

1
g (11(140;5 — 630v* + 1680,° — 26600 -+ 2046) — 495) In 1"—\)

266008 — 146307 4 35882/° — 43624)° + 200424 + 57293 — 794%2 + 2070, — 110
66vZ(v —1)

3 5 4 3 2 v
—&o- <110(7O\) — 315" +840v° — 133 +10561—330)|n17v

13308 — 7315)7 + 179418 — 21812)° + 1051&% + 26943 — 47822 + 1530 — 110
+
22002(v—1)

5_ 4 3_ 2 —
632y 3t U (70— 511v%+833,° 5187+ 150 20)V>-A4(v)

[

+

\

2_ 13y
63(2v-—3v+9)(v—1) Inlfv

2 v2

3 (70v6 — 535+ 10294 — 3150% — 453,21 2480 — 20)(v — 1) > Ba(v)
D4

- (756(\)_1)4'“ lv e 1)(105;4—21w3+49;2+5m—5)(\;—1)2) B(v),

—v V2

° A~A5(V) =

5 210v8 — 10927 4 2562% — 3546)° + 3195/* — 1880/° + 682 — 138 + 11
El " TAo 1
198 \V
1 105,8 —546v7 +128W°% — 1806/° + 1680v* — 1050° + 42602 — 10 + 11
+22 ' T AA 7
132 v
110505 — 2944 + 39903 — 300v2 + 120y — 20
= v Ag(v)

2
L1 (105,° — 231v* + 2733 — 183)2 + 66v — 10)(v — 1)3
2
(

Y ’B4(V)

70v° — 14004 + 1543 — 98v2 4 34v — 5) (v — 1)4
NG

+ ~B5(V).
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D Proof of Equations (11)-(14)

In this appendix we give the proof of the equatidns (11) tg @iven in Sectioh 8:

: sl b g y(a), ifa<1l/2anda<b, (a)
I / r—1 1—x)5" dx = ’ ’
smo(r—l)!(s—r)! a X A=Y dx {O, if a >1/2ora=b, (b)
a1
. sl o . y(a), ifa>1/2anda<a, (a)
I / r—1 1—x)5" dx=
I i o X (X7 yegdx {o, if a <1/20ra=a, (b)
12
. (m+n+1)!/b M4 n B L. m
lim S [ "y dx=0, i T fa bl (13)
LI S if o —
Smor!(sfr)!'A/zx(l x)°Tdx=1/2, ifa=1/2, (14)
wherey(x) is an arbitrary function i€(? [0, 1].
Our starting point is the Eulerian integral of the first kiﬂﬂ:
1 utv!
U \\V _
/0 x'(1—x)"dx ORI (24)

Intuitively, the argument to prove Equations (11)[to (13)his following. Whens is
large, the integrand, say—1(1—x)S"y(x), is highly concentrated around= (r —
1)/(s—1), and hence if the interval of integration does not contain1)/(s— 1) then
the integral is O (as stated by (11b), (12b) and (13)). On therdhand, if we integrate
an interval that properly contairis— 1) /(s— 1) then we can safely extend the interval
of integration to[0, 1] and apply[(24), giving cases (11a) ahd|(12a)a K 1/2 then
r/s~1/2 (because is symmetric) and half of the weight of the integrand goesthe
side ofx = 1/2, hence/ (14).

The rigorous proof of all the integrals is based on Laplac&shod. We prove here
only one of the equations, namely, Equation/ (11), the othewfs are quite similar.

Let

b
(@) = [ o001y dx

wheregis in C¥[a,b] and nonnegative, angde C?[a,b]. If the absolute maximum
of @(x) on[a,b] occurs ak = cwith a < ¢ < b, @(c) = 0 and¢’(c) < 0, then (see for
instance/[3, Ch. 5])

wi1/2
o= o ey (2o (am)) )

“We usez! instead off (z+1).
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whereas if the absolute maximum occurs at atheﬁ

1/2
o= e g (0 () .

Consider/(11a). The absolute maximunmpat) = x"~1/S(1—x)($1/sin [0,1] is at
x=(r—1)/(s—1). Sincer is biased (see Definition 1 in Section 8) and — a < 1/2,
we havea < (r —1)/(s—1) < bfor all sufficiently larges. Hence, we apply (25) with
w=sandc=(r—1)/(s—1)toget

9= [ XMy
)T )

Then we multiply bys! /(r —1)!(s—r)! and take the limit whers — c. Applying
Stirling’s asymptotic estimate f@ we obtain the stated result:

On the other hand for (11b), sinceis biased by hypothesis we have that-
1)/(s—r) is outside[a,b] and then the absolute maximum @fx) = x("~1/5(1 —
x)(8-1/s is located atk = a. Since we assume now that> 1/2, the hypotheses of
Theorem B imply thad = a - s—r(a) is positive andd = o(s); if d — o then the result
is easier to prove, so we assume furtber ©(1). Then we have

; . ms(s—1)
[(8) ~ y(e)or' (1 -a)*™* \/2((r1)(sr)s(r1)62(sr)62+562)'

Again, multiplying bys!/(r — 1)!(s—r)! and taking the limit whers — o, we obtain:

sl

D= ®
1 1 £(s—1)
~Y@) (= 149)(s—r=98) 7o 1)2\/(r “HE-N(r—1)(s-1s1 &)’

and usings— 1 ~ swe finally get

- Lg) o V).

(r—21)!(s—r)! (s) 2s’

hence its limit is 0 whegs — oo,

5The same formula applies if the absolute maximum occuxs=ab, replacing alla’s by b’s.
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