
2004 Edition
THE
C5

PROGRAMMING LANGUAGE

Juan José Cabezas

2

.

3

Preface

This is the third edition of the C5 manual. C5 is a programming language
developed at the Instituto de Computación (InCo).

C5 is a superset of the C programming language. The main difference
between C and C5 is that the type system of C5 supports the definition of
types of dependent pairs. The goal of the C5 language is to experiment with
generic programs based on functions with dependent arguments.

At the present the C5 framework includes the C5 compiler and a set
of generic libraries that are the result of C5 related projects like the OPM
machine, Typed Windows, Generic Fonts and the generic version of scanf.

Like the previous editions, the current edition is a recompilation of the
reports of C5 projects extended with appendixes.

The main differences between the current edition with previous are:

1. a new rewriting of the introduction chapter.

2. the functions C5 seq and C5 copy are moved to a new chapter.

3. a new chapter is included with the generic version of scanf.

4. a new version of the Appendix C.

5. several errors of the previous edition detected by the students are cor-
rected.

This manual is mainly used in C5 projects and the course Introducción
a la Programación para Diseño Gráfico of the study programs Ingenieŕıa en
Computación and Maestŕıa en Informática of PEDECIBA.

The support and suggestions of many colleagues and students have added
greatly to the developing of C5 and the pleasant writing of this paper. In
particular: Pablo Queirolo, Gustavo Betarte, Alberto Pardo, Hector Cancela,
Bengt Nordstriöm and Alfredo Viola.

Special thanks to the computer engineering students of InCo who tested
(and suffered) the successive versions of the C5 prototype.

Montevideo, May 20th, 2004.

4

.

Contents

1 Introduction 7
1.1 The type of printf . 8
1.2 The C5 extensions . 10

1.2.1 Dependent pairs in C5 11
1.2.2 The Type Initialization Expression (TIE) 13

1.3 A generic version of printf 14

2 The equality and copy functions. 17
2.1 Structural equality in C5 . 17
2.2 The copy function in C5 . 19

3 A generic version of scanf 23
3.1 The lexical analyzer . 23
3.2 The syntax analyzer . 25

3.2.1 Structures and arrays 25
3.2.2 Pointers and type definitions 25
3.2.3 Discriminated unions 26
3.2.4 Recursive declarations 26

3.3 BNF notation . 27
3.4 The parsing algorithm . 27

3.4.1 The if-else conflict . 28
3.4.2 Arithmetic expressions 29

3.5 Semantic Actions . 29
3.6 Examples . 30

3.6.1 Matrix . 30
3.6.2 XML checker. 31

4 The C5 Standard Output Library 33
4.1 The oriented port machine . 33

4.1.1 An opm example . 35
4.2 The C5 Standard Output Library 37

5

6 CONTENTS

4.2.1 A C5 version of the opm example 40
4.3 Programming images in C5 . 40

5 The C5 Tutorial 43
5.1 Getting Started . 43
5.2 Integer numbers . 44
5.3 Floating point numbers . 45
5.4 Structures . 46
5.5 Arrays . 48

5.5.1 The Set mode . 49
5.5.2 Matrices. 50

5.6 Unions . 51
5.6.1 Discriminated unions 51

5.7 Pointers and recursion . 52
5.7.1 Color expressions . 54

5.8 Type definitions and enumerations 55

6 The C5 compiler 57
6.1 The C5 type checker . 57

7 Related work and conclusions 59
7.1 Related work . 59
7.2 Conclusions and future work 60

A Colors 65

B Fonts 75
B.1 A list of font TIES . 75

C The Standard Output Library 81

Chapter 1

Introduction

Polymorphic functions are a well known tool for developing generic programs.
For example, the function pop of the Stack ADT

pop : ∀ T. Stack of T → Stack of T

has a single algorithm that will perform the same task for any stack regardless
of the type of its elements. In this case, we say that the pop algorithm is
similar for different instantiations of T .

A more complex and powerful way to express generic programs are the
functions with dependent type arguments (i.e., the type of an argument may
depend on the value of another) that perform different tasks depending on
the argument type. These functions may inspect the type of the arguments
at run time to select the specific task to be performed.

The C printf and scanf functions are two widely used examples of this
kind of generic programs that are defined for a finite number of argument
types. As we will see later, the type of these useful functions cannot be
determined at compile time by a standard C compiler.

Even more powerful generic programs are achieved when we extend the
finite number of argument types to the entire type system. This class of
generic functions can perform an infinite number of different tasks depending
on the argument type and is powerful enough to include generic programs
like parser generators (a top paradigm in generic programming).

C5 is a superset of the C programming language. The extensions intro-
duced in C5 are the notion of Dependent Pair Type (DPT) and that of a
Type Initialization Expression (TIE).

C5 is a minimal C extension that express a wide class of generic programs
where the generic versions of printf and scanf and the functions C5 seq,
C5 copy and opm image cons presented in this paper are representative ex-
amples.

7

8 CHAPTER 1. INTRODUCTION

1.1 The type of printf

The C creators [17] warn about the consequences of the absence of type
checking in the printf arguments:

” ... printf, the most common C function with a variable
number of arguments, uses information from the first argument
to determine how many other arguments are present and what
their types are. It fails badly if the caller does not supply enough
arguments or if the types are not what the first argument says.”

Let us see through the simple example in Figure 1.1 how printf works.
The first argument of printf, called the format string, determines the type

main(){

double n=42.56;

char st[10]="coef";

printf("%4s %6.2f",st,n);

}

Figure 1.1: A simple C printf example.

of the other two: the expressions 4s and 6.2f indicate that the type of
the second argument is an array of characters while the third argument is a
floating point notation number.

In the case of printf and scanf, the types declared in the format string
are restricted to atomic, array of character and character pointer types.
There is also some numeric information together with the type declaration (4
and 6.2 in our example) that defines the printing format of the second and
third arguments. These numeric expressions will be called Type Initialization
Expressions (TIEs) in C5.

A standard C compiler cannot type check statically the second and third
arguments of the example presented in figure 1.1 because their types depend
on the value of the first one (the format string).

In functions like printf and scanf, expressiveness is achieved at a high
cost: type errors are not detected and, as a consequence unsafe code is
produced.

However, some C compilers (e.g. the -Wformat option in gcc [11]) can
check the consistence of the format string with the type of the arguments of
printf and scanf. In this case, the format argument is a constant string
(readable at compile time) and the C syntax is extended with the format
string syntax.

1.1. THE TYPE OF PRINTF 9

This is not an acceptable solution of the problem because the syntax of
the format string is specific for the functions printf and scanf and not
necessarily valid for other functions with dependent type arguments. Fur-
thermore, the C language must be extended with the format string syntax
in order to develop a C compiler that typechecks the printf and scanf

functions. This is a too restricted and rigid solution.
A better solution can be found in Cyclone [20], a safe dialect of C. In

this case, the type of the arguments of printf and scanf is a tagged union
containing all of the possible types of arguments for printf or scanf. These
tagged unions are constructed by the compiler (automatic tag injection) and
the functions printf and scanf include the needed code to check at run time
the type of the arguments against the format string.

Similar results can be obtained with other polymorphic disciplines in
statically typed programming languages such as finite disjoint unions (e,g,
Algol 68) or function overloading (e.g. C++).

This kind of solution of the printf typing problem has the following
restrictions:

• The consistency of the format string and the type of the arguments is
checked at run time and

• the set of possible types of the arguments of printf and scanf is finite
and included in the declaration (program) of the functions.

The concept of object with dynamic types or dynamics for short, intro-
duced by Cardelli [7] [1] provides an elegant and more generic solution for
the printf typing problem.

A dynamics is a pair of an object and its type. Cardelli also proposed
the introduction in a statically typed language of a new datatype (Dynamic)
whose values are such pairs and language constructs for creating a dynamic
pair (dynamic) and inspecting its type tag (typecase) at run time.

Figure 1.2 shows a functional program using the typecase statement
where dv is a variable of type Dynamics constructed with dynamic, Nat
(natural numbers) and X * Y (the set of pairs of type X and Y) are types to
be matched against the type tag of dv, ++ is a concatenation operator, and
fst amd snd return the first and second member of a pair.

Tagged unions or finite disjoint unions can be thought of as finite versions
of Dynamics: they allow values of different types to be manipulated uniformly
as elements of a tagged variant type, with the restriction that the set of
variants must be fixed in advance.

C5 offers a way to embed dynamics within the C language following the
concepts proposed by Cardelli.

10 CHAPTER 1. INTRODUCTION

typetostring(dv:Dynamics): Dynamics -> String

typecase dv of

(v: Nat) " Nat "

(v: X * Y) typetostring(dynamic fst(v):X)

++ " * "

++ typetostring(dynamic snd(v):Y)

else "??"

end

Figure 1.2: The statement typecase

The goal of the C5 language is to experiment with generic programs based
on functions with dependent arguments under the following conditions:

• the type dependency of the arguments is checked at compile time and

• the functions accept (and are defined for) arguments of any type.

1.2 The C5 extensions

Dynamics has been implemented in C5 as an abstract data type called De-
pendent Pair Type (DPT). Instead of the statement typecase there are a
set of functions that construct DPTs, inspect the type tag and read or assign
values when the type tag is an atomic type.

Since the use of DPTs is limited to a special class of generic functions,
there is a C5 statement called DT typedef that allows valid type definitions
for the DPT library.

The major difference of the DPT library with Cardelli’s Dynamics is
concerned with the communication between the static and the dynamic uni-
verses:

• In the case of dynamics, there is a pair constructor (dynamic) for pass-
ing a static object to the dynamic universe. The inverse operation –the
typecase statement– is a selector that retrieves the dynamic object to
the static universe if it matches with a given static type.

• In the case of the DPT library, the constructor DT pair is the dynamic
counterpart, but nothing equivalent to typecase can be found in C5.
The only way to inspect a DPT object is by using a generic object
selector (C5 gos) that encodes the static C selectors into the dynamic
universe. In other words, it is easy to transfer a static object to the

1.2. THE C5 EXTENSIONS 11

dynamic universe but the inverse is limited to atomic types. In compen-
sation, it is possible to do some object processing within the dynamic
universe.

This difference allows C5 to construct new dynamic objects at run-time with-
out the Dynamics type checking requirements.

1.2.1 Dependent pairs in C5

For the sake of readability, we will simplify the C type system to int, double,
char , struct , union, array, pointer and defined types.

The following is an informal and brief introduction to the most important
functions of the DPT library:

• DPT DT pair(C Type t, t object)

The function returns a dependent pair where the type tag is the dy-
namic representation of the first argument t and the object member is
a reference to the second argument object. The C5 compiler assures
that DPTs are well formed by checking that the second argument is a
variable whose type is the value of the first which is a DT typedef type
definition.

• DPT C5 gos(DPT dp, int i, DPT errordp)

The function is a universal selector for DPT pairs. If the type tag of
dp is a struct or a union, then C5 gos yields a DPT pair with the type
and value of the ith field. If dp is an array, then C5 gos returns a
DPT pair with the type of the array elements and the ith element of
the array. If dp is a pointer or DT typedef DPT, then C5 gos(dp,1)

yields a DPT pair constructed from the type of the referenced object
and the object itself respectively. If i is out of range or dp is an atomic
type, the third argument errordp is returned.

• Type enum C5 gtype(DPT)

The function yields an element of the enumeration {CHAR, INT, DOUBLE,
STRUCT, UNION, ARRAY, POINTER, TYPEDEF}, according to the type tag
of the argument.

• int C5 gsize(DPT)

If the type tag of the argument is an struct or union the function
returns the field quantity and in case of arrays it returns their size. If
the tagged type is an atomic type C5 size returns 0i, and in case of
pointers or defined types the function returns 1.

12 CHAPTER 1. INTRODUCTION

• char * C5 gname(DPT)

The function yields a string equal to the current type name or label of
the type tag of the argument.

• int C5 gint(DPT, int)

double C5 gdouble(DPT, double)

char C5 gchar(DPT, char)

char *C5 gstr(DPT, char *)

These functions return the value of the pair if the type tag is respec-
tively int, double, char and char pointer or array of char, In case of
type mismatch the second argument is returned.

• int C5 int ass(DPT dp, int v)

int C5 double ass(DPT dp, double v)

int C5 char ass(DPT dp, char v)

If the type tag of dp matches, these functions assign the value of the
second argument to the second member of the first argument pair and
the returned value is 1.

In case of type mismatch no assigning is performed and the functions
return 0.

The equivalence of the DPT library with Dynamics is showed in the fol-
lowing program which is a C5 version of the example presented in Figure 1.2:

void typetostring(DPT dv){

switch(C5_gtype(dv)){

case INT: printf(" Int ");

break;"

case STRUCT: if(C5_gsize(dv)==2){

typetostring(C5_gos(dv,1,ErrorDp));

printf(" * ");

typetostring(C5_gos(dv,2,ErrorDp));

}

else printf(" ?? ");

break;

default: printf(" ?? ");

}

}

We will use DPTs to express the C5 version of printf with the form:

void C5 printf(DPT)

1.2. THE C5 EXTENSIONS 13

where the format string of the C printf function is expressed by the dynamic
type of the pair argument. Notice that in this version the type dependency
of the argument is checked at compile time while the possible types of the
argument are not fixed.

We may now write in C5 a first approach to the C printf example
presented in figure 1.1:

DT_typedef char String[5];

DT_typedef float Fnr;

main(){

String st="coef";

Fnr n=42.56;

C5_printf(DT_pair(String,st));

C5_printf(DT_pair(Fnr,n));

}

Note that the declared types String and Fnr are the arguments of the func-
tion DT pair.

This is not a complete version of printf because the numeric information
of the format argument is absent.

1.2.2 The Type Initialization Expression (TIE)

The syntax of a TIE is a comma-separated sequence of C constant expressions
enclosed by brackets. A C constant expression is an arithmetic expression
constructed from integers, floating point numbers and characters.

String notation in TIEs is accepted as a compressed notation for charac-
ters. For example, the TIE { äbc,̈1̈2}̈ is equivalent to the TIE { ’a’,’b,’c,’1’,’2’

}
There is a simple syntactical rule for inserting TIEs in a type declaration:

a TIE is placed on the right of the related type.
The next example shows two type definitions with TIEs:

DT_typedef int{1} Numbers[10]{2} [20]{3};

DT_typedef struct{

Numbers{4} nrs;

char{5} *{6} String_ptr;

}{7} Rcrd;

In the first type definition, the TIE {1} is attached to an int type and the
TIEs {2} and {3} are attached to a double array. In the second definition,
the TIEs {4}, {5}, {6} and {7} are attached to the types Numbers, char,
pointer of char and struct respectively.

14 CHAPTER 1. INTRODUCTION

TIEs can be inspected at run time using the following functions of the
DPT library:

• int C5 gTIE length(DPT)

the function returns the size of the TIE of the type tag of the dependent
pair argument. If the TIE does not exist, the function returns 0.

• int C5 gTIE type(DPT)

the function returns an element of the enumeration { CHAR, INT,

DOUBLE, NO TIE } that represents the type of the TIE of the type
member of the dependent pair argument. If the TIE does not exist,
the function returns NO TIE.

• int C5 gTIE int(DPT, int, int)

double C5 gTIE double(DPT, int, double)

char C5 gTIE char(DPT, int, char)

The functions yield the value of the TIE element indexed by the second
argument. If the TIE element to be read does not exist, the function re-
turns the third argument. In case of type mismatch a warning message
is printed.

After the introduction of TIEs, the C printf example presented in fig-
ure 1.1 can be completely expressed in C5 as follows:

DT_typedef char String[5] {4};

DT_typedef float {6,2} Fnr;

main(){

String st="coef";

Fnr n=42.56;

C5_printf(DT_pair(String,st));

C5_printf(DT_pair(Fnr,n));

}

The TIEs {4} and {6,2} are respectively attached to the array and float

types. Notice that TIE declarations are optional: in this program, for exam-
ple, the char type of the first type definition has no TIE.

1.3 A generic version of printf

Since C5 printf accepts type expressions (DPTs) as arguments, it is straight-
forward to extend the restricted argument types of C printf (strings and
atomic types) to the entire C type system.

1.3. A GENERIC VERSION OF PRINTF 15

DT_typedef struct{

char ref[12];

double {2,3} *coef;

struct{

char name[40];

int {5} box_nrs[3];

} client;

} Client_Record;

Figure 1.3: A type definition with TIEs.

For example, the type definition with TIEs presented in Figure 1.3 is an
acceptable argument for the C5 printf function.

The next program shows a simplified version of the C5 printf function
defined for the int, double, char, struct, DT typedef, pointer and array
types. For the sake of readability, printf is used to print values of atomic
types.

void C5_printf(DPT dp){
int i;
char format[100];
switch(C5_gtype(dp)){

case INT:
sprintf(format,"%%%dd",C5_gTIE_int(dp,0,6));
printf(format,C5_gint(dp,0)); break;

case DOUBLE:
sprintf(format,"%%%d.%df",C5_gTIE_int(dp,0,6),

C5_gTIE_int(dp,1,6));
printf(format,C5_gdouble(dp,0.0)); break;

case CHAR: printf("%c",C5_gchar(dp,’!’)); break;
case STRUCT:

printf("\n struct %s={ ",C5_gname(dp));
for(i=1;i<=C5_gsize(dp);i++){

printf(" ");
C5_printf(C5_gos(dp,i,ErrorDp));
}

printf("}\n"); break;
case ARRAY:

printf("\n array %s=[",C5_gname(dp));
for(i=0;i<C5_gsize(dp);i++){

if(C5_gtype(C5_gos(dp,i,ErrorDp))==CHAR)
if(C5_gchar(C5_gos(dp,i,ErrorDp),’!’)==’\0’)

16 CHAPTER 1. INTRODUCTION

break;
else if(i>0) printf(" ,");
C5_printf(C5_gos(dp,i,ErrorDp));
}

printf("]\n"); break;
case POINTER: case TYPEDEF:

C5_printf(C5_gos(dp,1,ErrorDp)); break;
}

}

The following C5 printf example prints an object of the type Client Record

presented in Figure 1.3:

main(){

Client_Record cr;

double r=2.8672;

strcpy(cr.ref,"0037731443");

cr.coef=&r;

cr.client.box_nrs[0]= 1204;

cr.client.box_nrs[1]= 82761;

cr.client.box_nrs[2]= 464;

strcpy(cr.client.name,"Carlos Gardel");

C5_printf(DT_pair(Client_Record,cr));

}

with the following result:

struct Client_Record={

array ref=[0037731443]

2.867

struct client={

array name=[Carlos Gardel]

array box_nrs=[1204 ,82761 , 464]

}

}

Chapter 2

The equality and copy
functions.

In this chapter we introduce the generic functions C5 seq and C5 copy. Both
functions are defined using the DPT library.

2.1 Structural equality in C5

A regular C compiler is equipped with equality operators for constant ex-
pressions, variables of atomic types and pointers. In case of structured types
like struct or arrays, the programmer must define an equality function for
each declared type.

The definition of a generic structural equality, programmed using the
dependent types provided in C5, is presented in figure 2.1.

The function C5 type eq checks if the values of the first pair members are
identical. Therefore, the function C5 seq will check the structural equality
of the second DPT members only if they have the same type.

However, it is not possible to check the structural equality for pointers
because any cyclic graph implementation with pointers does not terminate
with the kind of traversal algorithm required. Therefore, the pointer equality
is defined by checking if both pointers are referencing the same object. This
is what C5 ptr eq does.

Since C unions are not discriminated, i.e., the compiler does not know
what field of the union is currently stored, a structural equality for unions is
not decidable. Therefore, an union equality is not defined in C5 seq.

17

18 CHAPTER 2. THE EQUALITY AND COPY FUNCTIONS.

int C5_seq(DPT dpa, DPT dpb){
int i;
if(!C5_type_eq(dpa,dpb)) return(0);
switch(C5_gtype(dpa)){

case INT: return(C5_gint(dpa)==C5_gint(dpb));
case DOUBLE: return(C5_gdouble(dpa)==C5_gdouble(dpb));
case CHAR: return(C5_gchar(dpa)==C5_gchar(dpb));
case STRUCT:

for(i=1;i<=C5_gcant(dpa);i++)
if(C5_seq(C5_gos(dpa,i),C5_gos(dpb,i))==0)

return(0);
return(1);

case ARRAY:
for(i=0;i<C5_gcant(dpa);i++){

if(C5_gtype(C5_gos(dpa,i))==VCHAR &&
C5_gchar(C5_gos(dpa,i))==NULL &&
C5_gchar(C5_gos(dpb,i))==NULL) break;

if(C5_seq(C5_gos(dpa,i),C5_gos(dpb,i))==0)
return(0);

}
return(1);

case DT_TYPEDEF:
return(C5_seq(C5_gos(dpa,1),C5_gos(dpb,1)));

case POINTER: return(C5_ptr_eq(dpa,dpb));
default: return(0);
}

}

Figure 2.1: The C5 seq function

2.2. THE COPY FUNCTION IN C5 19

2.2 The copy function in C5

A case-type algorithm with dependent types is also used to define a generic
copy function.

Figure 2.2 shows the function C5 copy which has similar restrictions than
the equality: unions cannot be considered for this kind of generic copy and
pointer copy is equivalent to the C pointer assignment, i.e., the target pointer
will reference the same object than the source one does.

int C5_copy(DPT cpy,DPT src){
int i;
if(C5_gtype(src)==INT || C5_gtype(src)==DOUBLE ||

C5_gtype(src)==CHAR || C5_gtype(src)==POINTER)
return(C5_aass(cpy,src,0));

switch(C5_gtype(cpy)){
case CHAR: case DOUBLE: case INT: case POINTER:

return(C5_aass(cpy,src,0));
case STRUCT:

if(!C5_type_eq(cpy,src)) return(0);
for(i=1;i<=C5_gcant(cpy);i++)

if(C5_copy(C5_gos(cpy,i),C5_gos(src,i))==0)
return(0);

return(1);
case ARRAY:

for(i=0;i<C5_gcant(cpy);i++){
if(i>=C5_gcant(src)) return(1);
if(C5_copy(C5_gos(cpy,i),C5_gos(src,i))==0)

return(0);
}

return(1);
case DT_TYPEDEF:

return(C5_copy(C5_gos(cpy,1),C5_gos(src,1)));
default: return(0);
}

}

Figure 2.2: The C5 copy function

The function

int C5 aass(DPT, DPT, int)

assigns dependent pairs of atomic and pointer types to depent pairs of any
type in the following way:

20 CHAPTER 2. THE EQUALITY AND COPY FUNCTIONS.

DT_typedef struct{
int {1} index;
double {2,2} coef;
} Rcd;

DT_typedef Rcd Structs1[3];
DT_typedef Rcd Structs2[2];
Structs1 sts1={ {0,0.2},{1,0.4},{2,0.8} };
Structs2 sts2;
Structs1 sts3;
main(){

DPT dp_sts1, dp_sts2, dp_sts3;
dp_sts1=DT_pair(Structs1,sts1);
dp_sts2=DT_pair(Structs2,sts2);
dp_sts3=DT_pair(Structs1,sts3);
if(C5_copy(dp_sts2,dp_sts1)){

C5_printf(dp_sts2);
if(C5_seq(dp_sts2,dp_sts1))

printf(" sts1 and sts2 are equal.\n");
else printf(" sts1 and sts2 are not equal.\n");
}

else printf("Copy of sts1 failed\n");
if(C5_copy(dp_sts3,dp_sts1)){

C5_printf(dp_sts3);
if(C5_seq(dp_sts3,dp_sts1))

printf(" sts1 and sts3 are equal.\n");
else printf(" sts1 and sts3 are not equal.\n");
}

else printf("Copy of sts1 failed\n");
}

Figure 2.3: A C5 copy example

2.2. THE COPY FUNCTION IN C5 21

• If the first and second arguments are DPTs with equall atomic or
pointer types, then C5 aass assigns the value of the second member
of the second argument to the second member of the first argument.
In this case, the third argument is not significant.

• If the first argument is a dependent pair with a struct type and
the second argument is a DPT with an atomic or pointer type, then
C5 aass(struct dp,dp,i) assigns the value of the second member of
the second argument to the ith field of the struct only if their types
are the same.

• If the first argument is a dependent pair with an array type and the sec-
ond argument is a DPT with an atomic or pointer type, then C5 aass(

array dp, dp,i) assigns the value of the second member of the second
argument to the ith element of the array only if their types are the
same.

C5 copy is an useful and safe copy function. In C, a function that copies
arrays of characters cannot check if the source array size is less or equal than
the target one allowing the occurrence of dangerous errors at run-time.

C5 copy checks array sizes avoiding copies outside the bounds of the ar-
rays and this property is valid for arrays of any type. Figure 2.3 illustrates
how struct arrays of different sizes can be safely copied by the function
C5 copy.

array Structs2=[
struct Rcd={ 0 0.20}
,
struct Rcd={ 1 0.40}
]
sts1 and sts2 are not equal.

array Structs1=[
struct Rcd={ 0 0.20}
,
struct Rcd={ 1 0.40}
,
struct Rcd={ 2 0.80}
]
sts1 and sts3 are equal.

Figure 2.4: The result of the copy example.

22 CHAPTER 2. THE EQUALITY AND COPY FUNCTIONS.

The result of the program (figure 2.4) shows that although the size of the
arrays sts1 and sts2 are different (and their types too) the first and second
elements of sts1 are safely copied to sts2. The copy is successful because
both arrays have elements of the same type (Rcd).

In the case of sts3, the target and source arrays belong to the type
Structs1 (i.e., the arrays have equal size) and therefore sts1 is completely
copied to sts3 and consequently, the arrays become equal.

Chapter 3

A generic version of scanf

The scanf function of the C language scans input according to the format
string argument which specifies the type and conversion rules of the other
arguments. The types specified in the format argument are restricted to
atomic and string types. The results from such conversions are stored in the
arguments of the function.

Like printf, we introduce a generic version of scanf in C5:

DPT C5 scanf(DPT)

where the format string becomes in the dynamic type of the DPT argument.

C5 scanf interprets the dynamic type of the argument as the grammar
for parsing the input and, if the parsing is successful, the object member
of the argument pair is constructed accordingly to the input. If the input
cannot be parsed, C5 scanf returns a dependent pair with information about
the error.

The resulting program includes a parser generator that can be compared
with Yacc [16] and a scanner like Lex [18].

We introduce C5 scanf by first explaining the lexical meaning of the C
types that belong to the lexical analyzer and then the grammatical meaning
of the types related to the syntax analyzer.

3.1 The lexical analyzer

Atomic and string types are the lexical or token elements of C5 scanf. The
actual version of C5 scanf accepts the following lexical types: int, double,
char, character pointer and array of characters.

These types are interpreted in C5 scanf as follows:

23

24 CHAPTER 3. A GENERIC VERSION OF SCANF

• int is interpreted as the regular expression (RE) [0-9]+. If the type
is attached with { Signed} then the RE is [+-]?[0-9]+.

• double is interpreted as the RE [0-9]+.[0-9]+. If the type is attached
with { Signed} then the RE is [+-]?[0-9]+.[0-9]+.

• char {ch} will match a character equal to ch.

• char A[N] {Word} will match a string equal to Word if its length is less
than N and starts with a letter or punctuation char followed of printable
(excluded space) chars. An error is reported if no TIE is declared.

• char *{RE} will match the input according with the regular expression
RE. If the TIE is absent the default RE is [A-Za-z][A-Za-z0-9]*.

C5 scanf uses token type declarations to construct a regular expression
table with the following order:

1. REs from arrays of chars.

2. REs from characters.

3. REs from character pointers.

4. REs from double numbers.

5. REs from int numbers.

There are also special functions to extend the table with comments and
spacing characters. The default table has no comments and the spacing
characters are ′\r′,′\t′,′ ′ and ′\n′.

In case of ambiguous specifications, C5 scanf chooses the longest match.
If there are rules which matched the same number of characters, the rule
found first in the table is preferred.

The example below shows how a string can be scanned according to the
RE [AB]+:

DT_typedef char * {’[’,’A’,’B’,’]’,’+’} AB;

main(){

AB ab;

addComment("/*","*/");

C5_printf(C5_scanf(DT_pair(AB,ab)));

}

The function addComment enables comments with the declared start and
ending strings. The program accepts the following input

3.2. THE SYNTAX ANALYZER 25

AABBBAAAA /* A C5_scanf example */

and the output will be

"AABBBAAAA"

The next input string

AA12xy /* this string is not acceptable by the scanner */

cannot be parsed and therefore the output will be an error message:

struct ErrorMessage={ "Syntax error"

struct near_at_line={ "AA" 1 }

}

3.2 The syntax analyzer

The types with a syntactic meaning in C5 scanf are: structures, arrays (array
of char is excluded), type definitions , discriminated unions, pointers (char
pointer is excluded) and recursive declarations.

3.2.1 Structures and arrays

A struct or an array type is a sequence of syntactic or lexical types. The
set of strings accepted by this grammar (type) is the cartesian product

< S0, S1, ... , Sn >

where S0, S1, ..., Sn are the sets of strings of the fields or elements of a given
structure or array respectively.

3.2.2 Pointers and type definitions

The set of strings accepted by pointer and definition types are the same than
the referenced or defined type respectively.

The next program shows a type (grammar) including the structure, pointer
and defined types:

DT_typedef double Real;

DT_typedef struct{ int n; Real r; } *IntReal[2];

main(){

IntReal ir;

C5_printf(C5_scanf(DT_pair(IntReal,ir)));

}

The string "123 0.432 21 0.55" is, for example, an acceptable input for
this program.

26 CHAPTER 3. A GENERIC VERSION OF SCANF

3.2.3 Discriminated unions

C unions cannot be used to express alternative grammars because they are
not discriminated , i.e., the compiler does not know what field of the union
is currently stored.

By convention, we will represent alternative grammars in C5 scanf by
the following type:

DT typedef struct{
union{ d0, .., di, .., dn } < id >;
int < id >;
} < id >;

where d0, .., di, .., dn are the fields of the union and the integer field is called
the union discriminator and is supposed to keep the information about the
current field of the union. Thus, the discriminator field has no grammatical
meaning.

The discriminated union type represents in C5 scanf the union of the
sets of strings accepted by the fields (grammars) d0, .., di, .., dn.

The concept of empty rule is implemented in the fields of discriminated
unions through a special nullable token called emptyProd and defined as
follows:

DT_typedef char {’\0’} emptyProd;

This implementation is based on the proposal of Aycock and Horspool [5].

3.2.4 Recursive declarations

Recursive type declarations of discriminated unions allow the expression of
unbounded sets of strings.

For example, the program below accepts sequences of numbers and the
constructed object will be a linked list of integers:

DT_typedef struct IntL{

union{

int n;

struct{ struct IntL *next; int n; } RecProd;

} UU;

int discriminator;

} * Int_List;

main(){

3.3. BNF NOTATION 27

Int_List il;

C5_printf(C5_scanf(DT_pair(Int_List,il)));

}

3.3 BNF notation

In most parser generators, grammars are expressed in BNF (Backus-Naur
notation) or EBNF (Extended BNF).

The following example is a BNF grammar in Yacc style:

exp : NUMBER

| exp ’+’ exp

;

where exp is a nonterminal symbol and NUMBER and ’+’ are terminals (to-
kens). In C5 scanf, this BNF grammar can be expressed by the next type
declaration:

DT_typedef struct EXP{

union{

int number;

struct{ struct EXP *e1; char{’+’} pl;

struct EXP *e2;} RecP;

} UU;

int discriminator;

} *exp;

3.4 The parsing algorithm

The algorithm of the C5 scanf parser generator is an implementation of the
Earley algorithm [10] with a lookahead of k = 1. This algorithm is a chart-
based top-down parser that accepts any context free grammar (CFG) and
avoids the left-recursion problem.

Time response is n3 where n is the quantity of symbols to be parsed.
The algorithm has been modified to construct an object of the type rep-

resenting the grammar. This is done by programming the recognizer so that
it builds an object as it does the recognition process.

C5 scanf will produce parsers even in the presence of conflicts. There
are some disambiguating rules in the Yacc style solving, for example, the
if-else conflict and the parsing of arithmetic expressions.

28 CHAPTER 3. A GENERIC VERSION OF SCANF

3.4.1 The if-else conflict

The program below is an example of the if-else conflict in C5 scanf:

DT_typedef char Else[5] {’e’,’l’,’s’,’e’};

DT_typedef char If[3] {’i’,’f’};

DT_typedef struct IFE{

union{

char {’e’} exp;

struct{ If i; struct IFE *e; } If_stmt;

struct{ If i; struct IFE *e1;

Else s; struct IFE *e2;} If_Else_stmt;

} UU;

int discriminator;

} * Stat;

main(){

Stat il;

C5_printf(C5_scanf(DT_pair(Stat,il)));

}

The input if if e else e produces two possible outputs for the same input
if (if e else e) and if (if e) else e.

The ambiguity is detected by C5 scanf returning a diagnostic message:

C5_scanf: Disc. union "Stat" ambiguous in

field 3 "If_Else_stmt" and

field 2 "If_stmt".

Suggestion: attach an int TIE to the "Stat" discriminator

specifying the preferred alternative ({3} or {2}).

If we attach the TIE {2} to the discriminator field of Stat then the ambiguity
is solved and the output will be

struct If_stmt={

array If=[if]

d_union Stat={

struct If_Else_stmt={

array If=[if]

d_union Stat={ e}

array Else=[else]

d_union Stat={ e}

}

}

}

3.5. SEMANTIC ACTIONS 29

3.4.2 Arithmetic expressions

The next token declaration in Yacc:

%left ’+’ ’-’

%left ’*’ ’/’

describes the precedence and associativity of the four arithmetic operators.
The four tokens are left associative, and plus and minus have lower precedence
than star and slash.

The next type declaration is the C5 scanf version of the above Yacc token
declaration:

DT_typedef char {’+’} PLUS;

DT_typedef char {’-’} MINUS;

DT_typedef char {’*’} TIMES;

DT_typedef char {’/’} DIV;

DT_typedef PLUS {LeftAss, 1} Plus;

DT_typedef MINUS {LeftAss, 1} Minus;

DT_typedef DIV {LeftAss, 2} Div;

DT_typedef TIMES {LeftAss, 2} Times;

These disambiguating rules are declared in TIEs attached to type definitions
related to token (or lexical) types. The first and second members of the TIE
are the associative and precedence rules respectively.

3.5 Semantic Actions

The TIE of a syntactic type may be used to code a semantic action to be
performed after an object of this type is constructed or, in other words, the
represented grammar rule is parsed.

These actions return a DTP, and may obtain the DPTs returned by pre-
vious actions.

A semantic action in C5 scanf is an integer TIE attached to a syntactic
type with the form:

{ ACTION ID, Mv0, Mv1, ... , Mvn }

where ACTION ID is the action identificator and Mv0, Mv1, ... , Mvn

(n ≥ 0) are references to the elements of the syntactic type.
The code of an action TIE is interpreted by a user-defined function called

30 CHAPTER 3. A GENERIC VERSION OF SCANF

DPT C5 scanfActions(DPT)

which may access DPTs of previous actions through the function

DPT C5 scanfArg(int TIE idx, DPT dp)

where TIE idx is an element of Mv0, Mv1, ... , Mvn .
The nexr program shows the use of an action TIE in a simple grammar:

DT_typedef struct{ char {’<’} l; char *id; char {’>’} g; }

{ SELECT , 2 } IdExp[2] { SELECT , 0 };

DPT C5_scanfActions(DPT dp){

if(C5_gTIE_int(dp,0,0) == SELECT)

return(C5_scanfArg(1,dp));

else return(dp);

}

main(){

IdExp ie;

C5_printf(C5_scanf(DT_pair(IdExp,ie)));

}

The TIE { SELECT, 0 } selects the first element of the array and { SELECT

, 2 } selects the second field of the structure.
This program accepts, for example, the string " < one > < two > " and

the output is "one".

3.6 Examples

3.6.1 Matrix

The example below prints an element of a 2 × 3 matrix constructed by
C5 scanf:

DT_typedef int Matrix[2][3];

main(){

Matrix mtx;

if(C5_scanfError(C5_scanf(DT_pair(Matrix, mtx)))

printf("Cannot read the matrix.\n");

else printf("mtx[1][2]=%d\n",mtx[1][2]);

}

3.6. EXAMPLES 31

Notice how the variable mtx is used to communicate the dynamic and the
static universe. This is an useful programming methodology in C5: the user
constructs an object in the dynamic universe which is processed in the static
universe.

3.6.2 XML checker.

The example below shows a partial and simplified version of a well-formed
XML document checker.

DT_typedef char *{’[’,’^’,’<’,’&’,’>’,’]’,’+’} charD;
DT_typedef struct{ char {’<’} l; char *id; char {’>’} r; } STag;
DT_typedef struct{ char l[3] {’<’,’/’}; char *id; char {’>’} r;} ETag;
DT_typedef struct{ char {’<’}l; char *id; char r[3]{’/’,’>’};} EmptyElemTag;

DT_typedef struct{
union{ charD chd; char * id; } UU;
int discriminator;
} CharData;

DT_typedef struct CharDL{
union{

emptyProd nil;
struct{struct CharDL *c;CharData cd;} CDls;
} DU;

int discriminator;
} *CharDataList;

DT_typedef struct{
CharDataList cdl;
struct XML_EL_LS *els;
} XMLcontent;

DT_typedef struct XML_EL{
union{

EmptyElemTag eet;
struct{ STag s; XMLcontent c; ETag e; }

{CHECK_NAMES,1,3} elem;
} DU;

int discriminator;
} *XMLelement;

DT_typedef struct XML_EL_LS{

32 CHAPTER 3. A GENERIC VERSION OF SCANF

union{
emptyProd nil;
struct{ struct XML_EL_LS *next;

struct XML_EL *el;} els;
} DU;

int discriminator;
} *XMLelementL;

DPT C5_scanfActions(DPT dp){
if(C5_gTIE_int(dp,0,0)==CHECK_NAMES)

if(strcmp(
C5_gstr(C5_dpSearch(C5_scanfArg(1,dp),"Error1")),
C5_gstr(C5_dpSearch(C5_scanfArg(2,dp),"Error2")))){

fprintf(stderr,"Tag unmatched.\n");
exit(1);
}

else return(dp);
else return(dp);
}

main(){
XMLelement doc;
C5_printf(C5_scanf(DT_pair(XMLelement,doc)));
}

This program accepts the following XML document

<message>

<to>juanma@adinet.com</to>

<from>marcos@adinet.com</from>

<subject>XML test </subject>

<text>

--Can you check this with C5_scanf? ...

</text>

</message>

but rejects this input text with nested tags:

<message>

<subject>XML test </message>

</subject>

Chapter 4

The C5 Standard Output
Library

When a C library is presented, we usually expect the syntactical and seman-
tical description of a set of functions.

In C5, we can introduce a library by describing the meaning of types
related to a certain task. The most remarkable property of this kind of C5
libraries is that we can use the library by doing type declarations instead of
function callings. This is an important change of the programming method-
ology: type declarations can now be a very expressive member of a program.
Furthermore, as we will see later, a type declaration can be the main code of
a program.

In this chapter, we start presenting a small C graphics library and then
we show how this library is used in C5 to achieve a powerful page-description
language.

4.1 The oriented port machine

An oriented port is either a null port or a port representing a rectangular
region of the page. The attributes of an oriented port are the coordinates,
the color list and the orientation of the rectangular region. There are four
different orientations: Right,Down, Left and Up. The current color of a
non-null port is the first element of the color list. If the color list is null then
the current color is White.

The oriented port machine is a C library based on the Port List abstract
data type:

• Port List opm null()

The function returns a null port list.

33

34 CHAPTER 4. THE C5 STANDARD OUTPUT LIBRARY

• Port List opm page(Color List cl)

The function yields a one port list which is Right oriented, has the
page size and the color list cl.

• Port List opm inters(Port List pl1, Port List pl2)

The function yields a port list constructed from the intersections (of
the rectangular regions) of the cross product of the lists pl1 and pl2.

The color and orientation of the resulting ports are taken from the
corresponding lp1 ports. If the intersection is a line, a point or empty,
then a null port is constructed.

• Port List opm rot(int rot nr,Port List pl)

The function applies the rotation function to every port of the list pl.

The ports are rotated r times according to the rotation rules for port
orientation: rotate(Right) = Down, rotate(Down) = Left, rotate(Left) =
Up and rotate(Up) = Right.

Figure 4.1: sel split example for n = 5 and i = 2.

• Port List opm selsplit(int n,int i,Port List pl)

The function applies the function sel split to every port of the list
pl.

If n> 0 and i belongs to the range {1,n} then the function

Port sel split(int n,int i,Port p)

splits the port p into n sub-rectangles and returns a port with the coor-
dinates of the ith sub-rectangle. The orientation and color information
are taken from p. Figure 4.1 shows the four different results of sel split

4.1. THE ORIENTED PORT MACHINE 35

depending on the four possible orientations of p. If i is outside the
range (i< 0 or n<i) then the function returns a null port.

Finally, in case of n≤ 0, the function returns a port equal to p for all
value of i.

• Port List opm partition(float f,Port List pl)

The function applies the function partition to every port of the list
pl.

If 0 <f< 1 then the function Port partition(float f, Port p) di-
vides the port p into two rectangles proportionally to the floating num-
ber f and returns a port representing the first sub-rectangle.

Figure 4.2: A partition example for f = 0.75

The orientation and color information are taken from port p. Fig-
ure 4.2 shows the four different results depending on the four possible
orientations of p (f= 0.75).

The function returns a null port if f≤ 0 and a port equal to p if f≥ 1.

• Port List opm set color(int n, Port List pl)

The function applies the function drop color to every port of the list
pl.

The function Port drop color(int n, Port p) yields a port with the
p color list discarding the first n elements if n> 0. The other attributes
of the returned port are equal to those of p.

4.1.1 An opm example

Figure 4.3 shows a C program using the opm library. The function opm cat

concatenates two port lists and opm print prints the graphic representation

36 CHAPTER 4. THE C5 STANDARD OUTPUT LIBRARY

typedef struct{
int y, x;
} Ccoords;

typedef Ccoords Point_set[15];
Point_set points={

{ 6, 1 }, { 6, 2 }, { 5, 0 }, { 5, 3 },
{ 4, 3 }, { 3, 1 }, { 3, 2 }, { 3, 3 },
{ 2, 0 }, { 2, 3 }, { 1, 0 }, { 1, 3 },
{ 0, 1 }, { 0, 2 }, { 0, 4 }
};

Port_List scale(double right, double down,
double left, double up, Port_List lp){

return(
opm_inters(opm_partition(right,opm_rot(0,lp)),
opm_inters(opm_partition(down ,opm_rot(1,lp)),
opm_inters(opm_partition(left ,opm_rot(2,lp)),

opm_partition(up ,opm_rot(3,lp)))))
);

}
main(){

int i;
Port_List pl=opm_page(Gray85, Black, NULL), pl_2a;
opm_print(pl);
lp_2a=opm_cat(scale(0.8,0.8,0.4,0.4,opm_set_color(1,pl)),

scale(0.4,0.4,0.8,0.8,opm_set_color(1,pl))
);

for(i=0;i<15;i++)
opm_print(opm_inters(

opm_selsplit(6+1,points[i].y+1,opm_rot(-1,pl_2a)),
opm_selsplit(4+1,points[i].x+1,pl_2a))
);

}

Figure 4.3: A simple opm example

4.2. THE C5 STANDARD OUTPUT LIBRARY 37

of the port list argument. The function scale is defined for scaling the letter
a in the upper left and lower right corners.

The result of this example is an image (see figure 4.4) with two black a

letters in a gray background.

Figure 4.4: The letter a example.

4.2 The C5 Standard Output Library

Since a detailed description of the C5 Standard Output Library (see apendix
C) is out of the scope of this chapter, we will concentrate our attention in
the most important function of the library:

Port List opm image cons(DPT dt, Port List pl)

This function is an image constructor with a dependent pair argument.
The semantics of the function opm image cons is informally explained by
describing the graphic meaning of types with TIEs:

• Integer numbers: DT typedef int {m,n} Int Def;

An int TIE is a two integers sequence {m,n} defining the visible range
where m and n are the first and last visible integers respectively. If the
dependent pair argument of opm image cons is DT pair(Int Def,i),
then the function returns the port list constructed by
opm selsplit(n-m+1,i-m+1,pl).

• Floating point numbers: DT typedef float {s,t} Float Def;

A float TIE is a two floating point numbers sequence {s,t} defining
the visible range of the elements of this type. If the dependent pair
argument of opm image cons is DT pair(Float Def,f) and s<t, then
the function returns the port list constructed by
opm partition((f-s)/(t-s),pl)

In case of s≥t , the function returns a port list equal to pl.

38 CHAPTER 4. THE C5 STANDARD OUTPUT LIBRARY

• Characters: DT typedef char {c1,c2,...,c8} Char Def;

If dt is a pair with a char type definition including a TIE of eight
floating point numbers, then the function opm image cons yields a port
list representing the character font defined by the TIE values.

• Structures: DT typedef struct{f0, f1, ..., fn}{r} Struct Def;

A struct TIE is an integer {r} that defines the field rotation. The func-
tion opm image cons returns the port list generated by the intersection
of the graphic representation of the struct fields previously rotated r×i
times (0 ≤ i ≤ n), where i is the index of the ith field of a structure of
n + 1 fields.

The intersections and rotations are implemented with opm inters and
opm rot respectively.

The next C5 program is a short example using a structure of an integer
and a floating point number:

DT_typedef int {0,2} Int_nr;
DT_typedef double {0.0,1.0} Double_nr;
DT_typedef struct{

Int_nr n;
Double_nr x;
} {1} Struct_nx;

main(){
Int_nr n=1;
Double_nr x=0.6;
Struct_nx nxs;
nxs.n=n;
nxs.x=x;
opm_print(opm_image_cons(DT_pair(Int_nr,n),

opm_page(Gray85,NULL)));
opm_print(opm_image_cons(DT_pair(Double_nr,x),

opm_rot(1,opm_page(Gray85,NULL)));
opm_print(opm_image_cons(DT_pair(Struct_nx,nxs),

opm_page(Black,NULL)));
}

Notice that Int nr and Double nr are printed in gray while the struct
Struct nx is represented in black. This makes easier to see that the
struct is the intersection of the representation of n and a Π/2 rotated
x (see figure 4.5).

• Arrays: DT typedef Elems type Array Def[Max] {r,m,n};
An array TIE is a three integer sequence {r,m,n} where r defines the

4.2. THE C5 STANDARD OUTPUT LIBRARY 39

Figure 4.5: A simple struct declaration.

rotation of the elements of the array and m and n define the first and
last visible array elements respectively.

If m and n belong to the range {0,Max-1} then the elements of the array
are represented according to the following rule: the ith element of the
array is graphically represented on the port list constructed by

opm rot(r,opm selsplit(n-m+1,i-m+1,pl))

• Unions: DT typedef union{f0, f1, ..., fn}{c} Union Def;

A union TIE is an integer {c} that defines the color of the fields. The
function opm image cons returns the port list generated by the graphic
representation of the valid union field with a current color defined by

opm set color(r×i,pl) (0 ≤ i ≤ n)

where i is the index of the ith field of an union of n + 1 fields.

Since C unions are not discriminated , the function opm image cons

accepts a struct declaration with two fields, where the first is an union
and the second an integer, like a discriminated union. In this case, the
integer field is supposed to keep the information about the current field
of the union. The discriminated union with TIE is the way to express
in C5 the color structure of images.

• Pointers: DT typedef Ref Obj * {r} Ptr def;

A pointer TIE is an integer {r} that defines the rotation of the refer-
enced object. The function opm image cons returns the graphic repre-
sentation of the referenced object on a r times rotated pl.

• Type definitions: DT typedef Prev Def {r,c} Def Def;

Type definitions may include type declarations previously defined. In
this case, the type definition TIE is a two integer sequence {r,c} where
r and c set the rotation and current color of the defined type respec-
tively.

40 CHAPTER 4. THE C5 STANDARD OUTPUT LIBRARY

4.2.1 A C5 version of the opm example

DT_typedef struct{

int {0,6} y;

int {0,4} x;

} Ccoords;

DT_typedef Ccoords {3,1} Point_set[15] {0,1,0};

Point_set pts={

{ 6, 1 }, { 6, 2 }, { 5, 0 }, { 5, 3 },

{ 4, 3 }, { 3, 1 }, { 3, 2 }, { 3, 3 },

{ 2, 0 }, { 2, 3 }, { 1, 0 }, { 1, 3 },

{ 0, 1 }, { 0, 2 }, { 0, 4 }

};

DT_typedef struct{

double {0.0,1.0} right, down, left, up;

} Scale_2[2] {0,1,0};

Scale_2 scs={{0.8,0.8,0.4,0.4},{0.4,0.4,0.8,0.8}};

main(){

Port_List lp=opm_page(Gray85, Black, NULL);

opm_print(lp);

opm_print(opm_image_cons(DT_pair(Point_set,pts),

opm_image_cons(DT_pair(Scale_2,scs),lp)));

}

Figure 4.6: A C5 version of the opm example.

Figure 4.6 shows a C5 version of the opm example presented in figure 4.3.
The most relevant difference between both programs is that what the

C5 program really do is mainly specified (programmed) in three DT typedef

declarations, while the rest of the program itself deals with the variables
pts and scs construction and the image printing. Furthermore, the type
definition Scale 2 is enough expressive to substitute for the function scale

of the C program.

4.3 Programming images in C5

The Standard Output Library transforms C5 in a high level page-description
language, i.e., a language capable of describing the appearance of text, graphic
shapes and images on a page. The use of DPTs and TIEs increase the ab-

4.3. PROGRAMMING IMAGES IN C5 41

straction level of the language producing a readable and compact code for
graphics programs.

The image presented in figure 4.7 is generated by a 5 Kb C5 source
program.

Some statistics will help us to show why this library produce such a
compact code:

The program uses twelve graphics functions of the Standard Output Li-
brary in 103305 callings where 92 of them are invoked explicitly in the pro-
gram and the others 103213 are called implicitly through 15 invocations of
opm image cons which is the only Standard Output Library function with
a DPT argument. Seven of these callings answer for the font construction
involving 60% of the total quantity of callings.

Eight DT typedef declarations were required by the 15 opm image cons

invocations, remarking that types with TIEs are the heart of the design of
programs that use this kind of libraries.

Finally, C5 translates this program into a 22 Kb C code which produces,
when compiled and executed, a 3.1 Mb PostScript [2] file.

42 CHAPTER 4. THE C5 STANDARD OUTPUT LIBRARY

Figure 4.7: An image programmed in C5

Chapter 5

The C5 Tutorial

Let us begin with a quick introduction to the C5 Standard Output Library.
Our aim is to show the use of DPTs and TIEs in real programs, but without
getting bogged down in details, formal rules or theoretical concepts.

5.1 Getting Started

The first program to write is the same for all languages:

Print the words HELLO WORLD

In C5, the program to print HELLO WORLD is

#define Max_Char 40
#define Str_TIE {0,0,Max_Char-1}
DT_typedef char Arial String[Max_Char] Str_TIE;
main(){

String str="HELLO WORLD";
opm_print(opm_image_cons(DT_pair(String,str),

opm_page(Black,NULL)));
}

and the resulting image is showed in figure 5.1. The type definition has two
TIEs: Arial and Str TIE. The first is attached to the char type specifying
the font to be used when a character is printed and the second to the array
type. The array TIE is a three integer expression with the following form:

{rotation,first visible element,last visible element}

where rotation is an integer specifying a clockwise rotation of the array ele-
ments with an angle of rotation×Π/2, and the first visible element and last

43

44 CHAPTER 5. THE C5 TUTORIAL

Figure 5.1: Hello World

visible element are integers defining the sequence of array elements that will
be printed. In our program the TIE values {0,0,Max Char-1} mean that the
characters will be rotated 0 degree and all the array characters are visible for
printing.

In the body of the main function, the function opm page is a page con-
structor whose arguments are the colors (see apendix A) required by the
image to be printed on that page. When the page is created , the current
color is specified by the first argument (Black in our program). The type
of the range of this function is Port List. This is the type of the second
argument of opm image cons –the case-type function of the library– and the
argument of opm print too. Notice that pages and images are represented
by the same data structure.

5.2 Integer numbers

The C printf translates integer numbers to a digit character sequence start-
ing with the minus character if the number is a negative integer.

Instead of this character oriented translation, the image constructor
opm image cons represents integer numbers by simple geometric images based
on color rectangles.

Let us see a short C5 program that prints the number 2 for a quick
understanding of the way C5 produce the graphic representation of an integer:

DT_typedef int {0,3} intnr;
main(){

intnr n=2;
opm_print(opm_page(Gray85,NULL)); /* A gray background */
opm_print(opm_image_cons(DT_pair(intnr,n),

opm_page(Black,NULL)));
}

5.3. FLOATING POINT NUMBERS 45

The int TIE is a two integer sequence with the following form:

{ first visible integer , last visible integer }

where the first visible integer and last visible integer are integers defining the
printable range of numbers. The default TIE for the int type is {0,1}.

In our program the TIE values {0,3} mean that the integers 0, 1, 2 and
3 are visible for printing.

In this case, the page is virtually divided in four vertical rectangles. Start-
ing from the left side of the page , the first rectangle represents the number
0, the second the number 1, the third the number 2 and the last rectangle the
number 3. Accordingly, when printing the number 2, opm print will print
the third rectangle painted in black.

Figure 5.2 shows the resulting page.

Figure 5.2: An integer number representation.

What would this program do if we try to print a number outside the
range {0,3}? Suppose we have the number 11 for printing. Just the gray
background will be printed because 11 is not a visible number in this range.

There is a way to express the range { −∞, +∞ } by declaring a int TIE
of the form {m, n} where m > n. For example, the TIE {1, 0} specifies that
all the integer numbers are visible. The graphic representation of an integer
with infinite visibility is the complete page painted with the current color.

5.3 Floating point numbers

A visible floating point number is graphically represented by the first (left)
rectangle of a proportional partition of the page.

A program that prints the number 2.5 shows how C5 produce the graphic
representation of floating point numbers:

DT_typedef double {0.0,4.0} float_nr;
main(){

float_nr f=2.5;

46 CHAPTER 5. THE C5 TUTORIAL

opm_print(opm_page(Gray85,NULL)); /* A gray background */
opm_print(opm_image_cons(DT_pair(float_nr,f),

opm_page(Black,NULL)));
}

The double or float type TIE is a two floating point number sequence with
the following form:

{ first visible float , last visible float }

where the first visible float and last visible float are floating point numbers
delimiting the printable range of numbers. The default TIE for double or
float types is {0.0,1.0}.

In our program the TIE values {0.0,4.0} mean that a floating point
number f is visible if f≥ 0.0 and f≤ 4.0. In this case, the page is partitioned
in two rectangles with a f dependent size. The graphic representation of f
is the left rectangle painted with the current color. If f > 4.0 the graphic
representation will be the complete page painted with the current color and
if f < 0.0 no action is produced and the resulting image is the page painted
with the background color.

Figure 5.3 shows the resulting page.

Figure 5.3: A floating point number representation.

5.4 Structures

The type struct is represented by the intersection of its fields rotated with
an angle determined by the field index and the struct TIE.

Let be the following struct declaration of n + 1 fields:

DT typedef struct{ d0, .., di, .., dn } {r} sd;

where d0, .., di, .., dn are C5 type declarations. The graphic representation for
the struct type is the intersection of the rotated graphic representation of
d0, .., di, .., dn. The rotation angle for the ith field of the struct sd is

5.4. STRUCTURES 47

r × i× Π/2

where r is the rotation declared in the struct TIE. The default struct TIE
is 1. The struct representation will be painted with the current color of the
first field.

The next program shows how the graphic representation of the type
struct is generated by opm image cons:

DT_typedef int {0,2} int_nr;
DT_typedef double {0.0,1.0} double_nr;
DT_typedef struct{

int_nr n;
double_nr x;
} {1} nx_Struct;

main(){
int_nr n=1;
double_nr x=0.6;
nx_Struct nxs;
nxs.n=n;
nxs.x=x;
opm_print(opm_image_cons(DT_pair(int_nr,n),

opm_page(Gray85,NULL)));
opm_print(opm_image_cons(DT_pair(double_nr,x),

opm_rot(1,opm_page(Gray85,NULL)));
opm_print(opm_image_cons(DT_pair(Struct_nx,nxs),

opm_page(Black,NULL)));
}

Notice that int nr and double nr are printed in gray while the struct
Struct nx is represented in black. This makes easier to see that the struct
is the intersection of the representation of n and a Π/2 rotated x (see figure
5.4).

Figure 5.4: A simple struct declaration.

The struct type with TIEs is an expressive programming resource of the
C5 Standard Output Library. The code of opm scale illustrates how a mem-
ber of this library has been programmed:

48 CHAPTER 5. THE C5 TUTORIAL

DT_typedef struct{
double {0.0,1.0} x2,y1,x1,y2;
} {1} dp2;

Port_List opm_scale(double left, double right,
double up, double down,
Port_List pl){

dp2 margs;
margs.x1= left ;
margs.x2= right;
margs.y2= up;
margs.y1= down;
if(pl==NULL) return(NULL);
else return(opm_cat(

opm_image_cons(DT_pair(dp2,margs),
opm_cons(opm_hd(pl),NULL)),

opm_scale(left,right,up,down,opm_tl(pl))));
}

The function opm cat is the concatenation operator for port lists and the
functions opm hd and opm tl return the head and the tail of a port list
respectively.

Let us look closer at the struct declaration because there are two interest-
ing things to note here. First, since the rectangles representing the variables
x2, y1, x1 and y2 are rotated 0, 1, 2 and 3 times Π/2 respectively, the in-
tersection produced by the struct dp2 will be a scaled rectangle defined by
the values of the x2,y1,x1 and y2 variables. Second, what the function
opm scale really do is mainly specified (programmed) in the struct decla-
ration while the body of the function itself deals with the margs variable
assigning and the port list pl recursive handling.

5.5 Arrays

In the next program the function sin is visualized using an array of floating
point numbers. This example is interesting because it shows the graphic
power of this type for function visualization:

#define Max 100
DT_typedef double {-1.0,1.0} func_visual[Max] {3,0,Max-1};
main(){

func_visual fn;
double rn=0.0;
int i;

5.5. ARRAYS 49

for(i=0;i<Max;i++){
fn[i]= sin(rn);
rn= rn + 2.0*M_PI/Max; /* M_PI=3.1416... */
}

opm_print(opm_page(Gray85,NULL)); /* A gray background */
opm_print(opm_image_cons(DT_pair(func_visual,fn),

opm_page(Black,NULL)));
}

The array TIE specifies that all the array elements are visible and will be
rotated 3×Π/2 before printing. The array fn is assigned with sin values in
the range {0, 2Π} and then visualized.

Figure 5.5 shows the sin function visualization.

Figure 5.5: The sin function visualization.

5.5.1 The Set mode

As we did for the integer TIE, it is possible to define an infinite range TIE
for arrays.

We call the Set Mode representation to an array declaration with TIEs of
the form

{ rot, m ,n }

where rot specifies the rotation of the array elements and m and n are integers
so that m > n.

In this case , the elements of the array are represented directly on the
page following the order indexed by the array starting from 0.

The next program shows the Set Mode representation in an array decla-
ration of integer structures:

DT_typedef struct{
int {0,6} y;
int {0,4} x;
} ccoords;

50 CHAPTER 5. THE C5 TUTORIAL

DT_typedef ccoords point_set[15] {0,1,0};

point_set pts={
{ 6, 1}, { 6, 2}, { 5, 0}, { 5, 3}, { 4, 3},
{ 3, 1}, { 3, 2}, { 3, 3}, { 2, 0}, { 2, 3},
{ 1, 0}, { 1, 3}, { 0, 1}, { 0, 2}, { 0, 4} };

main(){
opm_print(opm_page(Gray85,NULL));
opm_print(opm_image_cons(DT_pair(point_set,pts),

opm_rot(3,opm_page(Black,NULL)));
}

This is an important array declaration because it simulates a two dimensional
Cartesian Coordinate System. In the program, the points are pairs of integers
where the first element is the Y axis coordinate and the second, the X axis.
Notice again that the kernel of the program is the type declaration.

The resulting image is a 15 points Cartesian representation of the letter
a.

Figure 5.6: The Set Mode Representation.

5.5.2 Matrices.

Matrix representation is obtained in C5 by the double array declaration with
finite range TIEs. The following program produce the same output than the
previous but now the letter a is represented by a 7× 5 matrix:

DT_typedef int {1,1} matrix[5] {0,0,4} [7] {3,0,6};
matrix mtx={ 0,1,1,0,0,

1,0,0,1,0,
0,0,0,1,0,
0,1,1,1,0,
1,0,0,1,0,
1,0,0,1,0,
0,1,1,0,1 };

5.6. UNIONS 51

main(){
opm_print(opm_page(Gray85,NULL));
opm_print(opm_image_cons(DT_pair(matrix,mtx),

opm_rot(1,opm_page(Black,NULL))));
}

There are some interesting details here. First, since the integer TIE range is
{1, 1} , only one number –the number one– is visible for printing. Second, the
way the double array mtx is initialized makes easy the graphic design of the
matrix. Third, the port list opm page(Black,NULL) is rotated by opm rot

so that the printed matrix (in this case , the letter a) is coincident with the
mtx initialization.

5.6 Unions

C Unions are not interesting for C5 programs because there is no way to
know the current field of an union.

Instead of this kind of union , C5 recognizes discriminated unions as a
special case of the struct type.

5.6.1 Discriminated unions

A struct declaration with two fields where the first is an union and the second
is an integer is recognized as a discriminated union. In this case, the integer
field is supposed to keep the information about the current field of the union.
The discriminated union with TIEs is the way we express the color structure
of the images printed by opm printf.

The graphic representation of the discriminated union follows the struct
rules and the representation of the union field is the representation of the
current field painted with a color determined by the union TIE and the place
of the field.

The form of a discriminated union is:

DT typedef struct{
union{ d0, .., di, .., dn } {c} < id >;
int {m,n} < id >;
} { r } < id >;

where d0, .., di, .., dn are the fields of the union, and c is an integer number
defining the color factor of the union.

52 CHAPTER 5. THE C5 TUTORIAL

The current color of the ith field of the union is the (c× i + 1)th element
of the color list of the page.

The next program shows a discriminated union example:

DT_typedef struct{
union{

int {0,9} foreground;
double {0.0,1.0} background;
} {2} cu; /* the color factor is 2 */

int {1,0} idx;
} disc_union ;

main(){
Port_List pl=opm_page(Black,Red,Gray85,NULL);
disc_union du1,du2;
du1.idx=1;
du1.cu.background=0.75; /* Gray85 */
du2.idx=0;
du2.cu.foreground=4; /* Black */
opm_print(opm_image_cons(DT_pair(disc_union,du1),pl));
opm_print(opm_image_cons(DT_pair(disc_union,du2),pl));
}

The variable foreground –the first field of the union cu– is printed with the
color Black because the equation fieldplace × colorfactor + 1 is 0 × 2 + 1
and this implies that the current color is the first color of the page. In the
case of the variable background, the resulting equation is 1× 2 + 1, that is,
the third color of the page (Gray85).

Figure 5.7: A discriminated union representation.

The output of opm print is presented in Figure 5.7.

5.7 Pointers and recursion

The rule for the graphic representation of a pointer type declaration is the
representation of the pointed object with a rotation specified by the pointer

5.7. POINTERS AND RECURSION 53

TIE. The default TIE for pointers is {0}. If the referenced object is a char,
C5 will try to represent a NULL terminated string as an array of characters.

The form of a pointer TIE is { rotation } where rotation is an integer.
In the C language, recursive type declarations are expressed by a struct

declaration including a field with a pointer to itself. This kind of recursive
declarations is required when implementing lists, trees or any other dynamic
data structure.

When C5 recognizes a recursive struct declaration, it will represent the
objects of this type in Set Mode, i.e., the fields of the struct are printed in
an ordered sequence, discarding the intersection operator that is applied in
non recursive struct declarations.

The program below shows a recursive type declaration for implementing
a list of points:

DT_typedef struct{
double {-500.0,10000.0} y;
int {-100,100} x;
} point;

DT_typedef struct NODE{
point pt;
struct NODE *next;
} {0} *node_list;

DT_typedef struct NODE * {3} Node_List;

node_list ucons(double y, int x, node_list l){
node_list p;
p= (node_list) malloc(sizeof(struct NODE));
p->pt.y=y;
p->pt.x=x;
p->next=l;
return(p);
}

main(){
Node_List nl=NULL;
int x;
for(x=-100;x<=100;x++) nl=ucons((double) x*x,x,nl);
opm_print(opm_page(Gray55,NULL));
opm_print(opm_image_cons(DT_pair(Node_List,nl),

opm_page(Black,NULL)));
}

The point struct produce the intersection of y and x while the struct NODE

54 CHAPTER 5. THE C5 TUTORIAL

is recursive and therefore it generates the image of the fields without inter-
sections.

In order to keep the y and x coordinates vertical and horizontal respec-
tively, the pointer Node List is declared including a TIE that specifies a
rotation 3× Π/2.

The visualization of the function f(x) = x2 is predented in Figure 5.8.

Figure 5.8: A recursive type representation.

5.7.1 Color expressions

Dynamic data structures like lists or binary trees with nodes including unions
are natural implementations for color expressions in C5. As a good example,
let us write the type declaration of Color Series which is the output type of
the function opm colors, the color expression constructor of the C5 Standard
Output Library.

DT_typedef struct OPMTON{
dp2 scale;
struct{ /* discr union */

union{
int bg;
struct OPMTON *next;
} un;

int{1,0} idx; /* infinite range */
} du;

}{0} *Color_Series;

The next program shows how color tones are structured with text using
opm colors:

DT_typedef struct{
Color_Series * {3} c;
char Antique_Draft_S string[20] {0,0,19};
} {0} Color_String;

main(){

5.8. TYPE DEFINITIONS AND ENUMERATIONS 55

Port_List lp1,lp2;
Color_String cst;
Color_Series obj=opm_colors(4,2*TONES_NR,1.0,0.0);
cst.c=&obj;
strcpy(cst.string,"AB");
lp1=opm_page(opm_col2col(White, Gray50, TONES_NR),

opm_col2col(Gray50, White, TONES_NR),
NULL);

lp2=opm_page(opm_col2col(Black, White, TONES_NR),
opm_col2col(White, Black, TONES_NR),
NULL);

opm_print(opm_image_cons(DT_pair(Color_Series,obj),
opm_scale(0.75,0.75,0.90,0.90,opm_rot(1,lp1))));

opm_printf(opm_image_cons(DT_pair(Color_String,cst),lp2));
}

The function opm col2col is a compressed notation for color series. For
example, the color serie denoted by

opm col2col(White,Black, 4)

is, when expanded, equivalent to the color series

(White,Gray67,Gray33,Black)

.

Figure 5.9: Color tones and text.

Figure 5.9 shows the output of opm print .

5.8 Type definitions and enumerations

Type definitions may include type declarations previously defined. In this
case, the TIE is of the form:

56 CHAPTER 5. THE C5 TUTORIAL

{rotation, color}

where rotation and color are integers that work similar to the struct and
union TIE respectively. The default TIE for type definitions is {0, 0}.

The rule for representing enumerations is quite simple. Let be the type
declaration

DTtypedefenum{id0, id1, ..., idn}enum id;

where idi are n + 1 non equal identifiers. The objects of this type will be
represented in a similar way to the type declaration

DT_typedef int {0,n} enum_index;

Chapter 6

The C5 compiler

The current version of the C5 compiler is written in Yacc, Lex and C and
translates C5 to C code. The C5 parser is a reused C parser with few gra-
matical modifications.

The compiler consists on about 3500 lines where 500 of them are the
actual type checker. The compiler parses C5, does type checking of DTP
construction and translates the resulting code into C.

Since the language keeps types during run-time, the compiler generates
two C files: one of them is the translation of the C5 source program while
the other is a type database required by the DTP library. Both C files are
then compiled and link-edited with the DTP library.

The C5 Standard Output Library and the C5 Font Library are written
in C5 and have a size of about 2500 and 1200 lines respectively.

The current implementation of C5 can be found on the Web at

http://www.fing.edu.uy/ jcabezas/c5.

6.1 The C5 type checker

The current C5 type checker is trivial: for every DT pair invocation, C5
checks if the first argument is a DT typedef type definition and if the second
is a variable of the same type than the first argument value.

Notice that there is here an important restriction for DT pair arguments:
they must be just identifiers. Any other C expression is not valid. This
restriction makes DTP type checking very simple.

57

58 CHAPTER 6. THE C5 COMPILER

Chapter 7

Related work and conclusions

7.1 Related work

We can find logical frameworks and functional programming languages (or
extensions to existing ones) with dependent types.

Logical frameworks are proof checking systems mainly designed for formal
program verification. Some examples, among many, are Coq [9], Alf [3] and
Elf [12].

There are few functional programming languages with dependent types.
Cayenne [4], Dependent ML [21] and Cardelli’s Quest [8] are three of them.
Cayenne, a Haskell-like [14] language developed in 1998 by Augustsson is
powerful enough to encode predicate logic at the type level. DML –a SML
[19] extension with a restricted form of dependent types– has been primarily
designed for better program error detection.

Xanadu [22] is an imperative programming language with dependent
types following the same design concepts than DML. In Xanadu, types de-
pend on constant expressions of natural numbers, allowing the programmer
to express invariants more accurately and thus detect more program errors
at compile-time. The language includes a weak form of dependent record
type that do not support field dependency in the DTP style.

An important contribution of Xanadu is to give some feel in to what de-
pendent types can do in practice. However, Xanadu is actually a rudimentary
prototype of a new programming language.

Another interesting approach is being developed by the Generic Program-
ming community [6][13]. With generic programming one achieves an expres-
sive power similar to that of dependent types by parameterizing function
definitions with respect to data type signatures. PolyP [15] is an example of
a generic programming Haskell extension.

59

60 CHAPTER 7. RELATED WORK AND CONCLUSIONS

7.2 Conclusions and future work

We have presented C5, a minimal C extension with a restricted form of
dependent types. Although C5 has very few syntactical differences with C,
the resulting language increases C expressiveness in a dramatic form. C5
is enough powerful to express a generic form of the printf, the equality
and the copy functions. And this power does not come at the cost of lower
code quality: unlike C, C5 printf is type checked and C5 copy copies ,for
example, arrays in a safe way.

Programming with DTPs and TIEs modifies also C programming method-
ologies in a radical way. A type declaration with TIEs can now concentrate
a big amount of information in few lines of readable and safe code. This al-
lows, for example, to introduce a function library by explaining the meaning
ot types related to a certain task and, the most important, to use implicitly
the library through types declarations with TIEs.

In the future, we will continue to gain more experience in programming
with dependent types. We will also explore the properties and power of TIEs
which seem to be an interesting research area.

Another line of future work is to experiment with this kind of extensions
in other existing programming languages.

Bibliography

[1] Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin.
Dynamic Typing in a Statically Typed Language. In 16th POPL, pages
213–227, 1989.

[2] Adobe. Postcript Language Reference Manual. Adisson Wesley, second
edition, 1990.

[3] L. Augustsson, T. Coquand, and B. Nordström. A short description
of another logical framework. In Proceedings of the First Workshop on
Logical Frameworks, pages 39–42, Antibes, 1990.

[4] Lennart Augustsson. Cayenne - a Language with Dependent Types. In
Proceedings of the third ACM SIGPLAN International Conference on
Functional Programming (ICFP ’98), pages 239–250, USA, 1998. ISBN
0-58113-024-4.

[5] John Aycock and R. Nigel Horspool. Practical Earley Parsing. The
Computer Journal, 45(6):620–630, 2002.

[6] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic Pro-
gramming - An Introduction -. In Advanced Functional Programming,
LNCS 1608. Springer-Verlag, 1999.

[7] Luca Cardelli. ”amber”. In Guy Cousineau, Pierre-Louis Curien, and
Bernard Robinet, editors, ”Combinators and functional programming
languages : Thirteenth Spring School of the LITP, Val d’Ajol, France,
May 6-10, 1985”, volume 242. Springer-Verlag, 1986.

[8] Luca Cardelli. The Quest Language and System. Technical report, DEC
SRC, 1994.

[9] Thierry Coquand and Gérard Huet. The Calculus of Constructions.
Technical Report 530, INRIA, Centre de Rocquencourt, 1986.

61

62 BIBLIOGRAPHY

[10] Jay Earley. An Efficient Context-Free Parsing Algorithm. Communica-
tions of the ACM, 13(2):94–102, February 1970.

[11] GNU. Using and Porting the GNU Compiler Collection (GCC).
Free Software Foundation, http://gcc.gnu.org/onlinedocs/gcc-
2.95.3/gcc.html.

[12] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. JACM, pages 40(1):143–184, 1993.

[13] R. Hinze. Polytypic Programming with Ease. In 4th Fuji Interna-
tional Symposium on Functional and Logic Programming (FLOPS’99),
Tsukuba, Japan., Lecture Notes in Computer Science Vol. 1722, pages
21–36. Springer-Verlag, 1999.

[14] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon
Fairnbairn, Joseph H. Fasel, Maria M. Guzman, Kevin Hammond, John
Hughes, Thomas Johnsson, Richard B. Kieburtz, Rishiyur S. Nikhil,
Will Partain, and John Peterson. Report on the Programming Language
Haskell, A Non-strict, Purely Functional Language . SIGPLAN Notices,
27(5):R1–R164, 1992.

[15] P. Jansson and J. Jeuring. PolyP - A Polytypic Programming Language
Extension. In POPL 97: The 24th ACM SIGPLAN-SIGACT Sympo-
sium of Principles of Programming Languages , pages 470–482. ACM
Press, 1997.

[16] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX
Programmer’s Manual, volume 2, pages 353–387. Holt, Rinehart, and
Winston, New York, NY, USA, 1979.

[17] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage, page pg. 71. Prentice Hall, 1977. ISBN 0-13-1101-63-3.

[18] Michael E. Lesk and Eric Schmidt. ”lex: A lexical analyzer generator”.
In UNIX Programmer’s Manual, volume 2, pages 388–400. Holt, Rine-
hart, and Winston, New York, NY, USA, 1979. AT&T Bell Laboratories
Technical Report in 1975.

[19] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, 1990.

[20] Jim Trevor, Greg Morriset, Dan Grossman, Michael Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe Dialect of C. In The USENIX
Annual Technical Conference , Monterrey , CA, 2002.

BIBLIOGRAPHY 63

[21] H. Xi and F. Plenning. Dependent Types in Practical Programming. In
Proceedings of ACM SIGPLAN, Symposium on Principles of Program-
ming Languages, pages 214–227, San Antonio, 1999.

[22] Hongwei Xi. Imperative Programming with Dependent Types. In
Proceedings of 15th IEEE Symposium on Logic in Computer Science
(LICS’00), pages 375–387, Santa Barbara, 2000.

64 BIBLIOGRAPHY

Appendix A

Colors

AliceBlue

AntiqueWhite

AntiqueWhite1

AntiqueWhite2

AntiqueWhite3

AntiqueWhite4

Aquamarine

Aquamarine1

Aquamarine2

Aquamarine3

Aquamarine4

Azure

Azure1

Azure2

Azure3

Azure4

Beige

Bisque

Bisque1

Bisque2

Bisque3

Bisque4

Black

BlanchedAlmond

Blue

Blue1

Blue2

Blue3

Blue4

BlueViolet

Brown

Brown1

Brown2

Brown3

Brown4

Burlywood

Burlywood1

Burlywood2

Burlywood3

Burlywood4

CadetBlue

CadetBlue1

CadetBlue2

CadetBlue3

CadetBlue4

Chartreuse

Chartreuse1

Chartreuse2

Chartreuse3

Chartreuse4

Chocolate

Chocolate1

Chocolate2

Chocolate3

Chocolate4

Coral

Coral1

Coral2

Coral3

65

66 APPENDIX A. COLORS

Coral4

CornflowerBlue

Cornsilk

Cornsilk1

Cornsilk2

Cornsilk3

Cornsilk4

Cyan

Cyan1

Cyan2

Cyan3

Cyan4

DarkGoldenrod

DarkGoldenrod1

DarkGoldenrod2

DarkGoldenrod3

DarkGoldenrod4

DarkGreen

DarkKhaki

DarkOliveGreen

DarkOliveGreen1

DarkOliveGreen2

DarkOliveGreen3

DarkOliveGreen4

DarkOrange

DarkOrange1

DarkOrange2

DarkOrange3

DarkOrange4

DarkOrchid

DarkOrchid1

DarkOrchid2

DarkOrchid3

DarkOrchid4

DarkSalmon

DarkSeaGreen

DarkSeaGreen1

DarkSeaGreen2

DarkSeaGreen3

DarkSeaGreen4

DarkSlateBlue

DarkSlateGray

DarkSlateGray1

DarkSlateGray2

DarkSlateGray3

DarkSlateGray4

DarkSlateGrey

DarkTurquoise

DarkViolet

DeepPink

DeepPink1

DeepPink2

DeepPink3

DeepPink4

DeepSkyBlue

DeepSkyBlue1

DeepSkyBlue2

DeepSkyBlue3

DeepSkyBlue4

DimGray

DimGrey

DodgerBlue

DodgerBlue1

DodgerBlue2

DodgerBlue3

DodgerBlue4

Firebrick

Firebrick1

Firebrick2

Firebrick3

Firebrick4

FloralWhite

ForestGreen

Gainsboro

GhostWhite

Gold

Gold1

Gold2

Gold3

Gold4

Goldenrod

Goldenrod1

67

Goldenrod2

Goldenrod3

Goldenrod4

Gray

Gray0

Gray1

Gray10

Gray100

Gray11

Gray12

Gray13

Gray14

Gray15

Gray16

Gray17

Gray18

Gray19

Gray2

Gray20

Gray21

Gray22

Gray23

Gray24

Gray25

Gray26

Gray27

Gray28

Gray29

Gray3

Gray30

Gray31

Gray32

Gray33

Gray34

Gray35

Gray36

Gray37

Gray38

Gray39

Gray4

Gray40

Gray41

Gray42

Gray43

Gray44

Gray45

Gray46

Gray47

Gray48

Gray49

Gray5

Gray50

Gray51

Gray52

Gray53

Gray54

Gray55

Gray56

Gray57

Gray58

Gray59

Gray6

Gray60

Gray61

Gray62

Gray63

Gray64

Gray65

Gray66

Gray67

Gray68

Gray69

Gray7

Gray70

Gray71

Gray72

Gray73

Gray74

Gray75

Gray76

Gray77

Gray78

68 APPENDIX A. COLORS

Gray79

Gray8

Gray80

Gray81

Gray82

Gray83

Gray84

Gray85

Gray86

Gray87

Gray88

Gray89

Gray9

Gray90

Gray91

Gray92

Gray93

Gray94

Gray95

Gray96

Gray97

Gray98

Gray99

Green

Green1

Green2

Green3

Green4

GreenYellow

Grey

Grey0

Grey1

Grey10

Grey100

Grey11

Grey12

Grey13

Grey14

Grey15

Grey16

Grey17

Grey18

Grey19

Grey2

Grey20

Grey21

Grey22

Grey23

Grey24

Grey25

Grey26

Grey27

Grey28

Grey29

Grey3

Grey30

Grey31

Grey32

Grey33

Grey34

Grey35

Grey36

Grey37

Grey38

Grey39

Grey4

Grey40

Grey41

Grey42

Grey43

Grey44

Grey45

Grey46

Grey47

Grey48

Grey49

Grey5

Grey50

Grey51

Grey52

Grey53

Grey54

69

Grey55

Grey56

Grey57

Grey58

Grey59

Grey6

Grey60

Grey61

Grey62

Grey63

Grey64

Grey65

Grey66

Grey67

Grey68

Grey69

Grey7

Grey70

Grey71

Grey72

Grey73

Grey74

Grey75

Grey76

Grey77

Grey78

Grey79

Grey8

Grey80

Grey81

Grey82

Grey83

Grey84

Grey85

Grey86

Grey87

Grey88

Grey89

Grey9

Grey90

Grey91

Grey92

Grey93

Grey94

Grey95

Grey96

Grey97

Grey98

Grey99

Honeydew

Honeydew1

Honeydew2

Honeydew3

Honeydew4

HotPink

HotPink1

HotPink2

HotPink3

HotPink4

IndianRed

IndianRed1

IndianRed2

IndianRed3

IndianRed4

Indianred

Ivory

Ivory1

Ivory2

Ivory3

Ivory4

Khaki

Khaki1

Khaki2

Khaki3

Khaki4

Lavender

LavenderBlush

LavenderBlush1

LavenderBlush2

LavenderBlush3

LavenderBlush4

LawnGreen

70 APPENDIX A. COLORS

LemonChiffon

LemonChiffon1

LemonChiffon2

LemonChiffon3

LemonChiffon4

LightBlue

LightBlue1

LightBlue2

LightBlue3

LightBlue4

LightCoral

LightCyan

LightCyan1

LightCyan2

LightCyan3

LightCyan4

LightGold

LightGoldenrod

LightGoldenrod1

LightGoldenrod2

LightGoldenrod3

LightGoldenrod4

LightGoldenrodYellow

LightGray

LightGrey

LightPink

LightPink1

LightPink2

LightPink3

LightPink4

LightSalmon

LightSalmon1

LightSalmon2

LightSalmon3

LightSalmon4

LightSeaGreen

LightSkyBlue

LightSkyBlue1

LightSkyBlue2

LightSkyBlue3

LightSkyBlue4

LightSlateBlue

LightSlateGray

LightSlateGrey

LightSteelBlue

LightSteelBlue1

LightSteelBlue2

LightSteelBlue3

LightSteelBlue4

LightYellow

LightYellow1

LightYellow2

LightYellow3

LightYellow4

LimeGreen

Linen

Magenta

Magenta1

Magenta2

Magenta3

Magenta4

Maroon

Maroon1

Maroon2

Maroon3

Maroon4

MediumAquamarine

MediumBlue

MediumOrchid

MediumOrchid1

MediumOrchid2

MediumOrchid3

MediumOrchid4

MediumPurple

MediumPurple1

MediumPurple2

MediumPurple3

MediumPurple4

MediumSeaGreen

MediumSlateBlue

MediumSpringGreen

MediumTurquoise

71

MediumVioletRed

MidnightBlue

MintCream

MistyRose

MistyRose1

MistyRose2

MistyRose3

MistyRose4

Moccasin

NavajoWhite

NavajoWhite1

NavajoWhite2

NavajoWhite3

NavajoWhite4

Navy

NavyBlue

OldLace

OliveDrab

OliveDrab1

OliveDrab2

OliveDrab3

OliveDrab4

Orange

Orange1

Orange2

Orange3

Orange4

OrangeRed

OrangeRed1

OrangeRed2

OrangeRed3

OrangeRed4

Orangered

Orchid

Orchid1

Orchid2

Orchid3

Orchid4

PaleGoldenrod

PaleGreen

PaleGreen1

PaleGreen2

PaleGreen3

PaleGreen4

PaleTurquoise

PaleTurquoise1

PaleTurquoise2

PaleTurquoise3

PaleTurquoise4

PaleVioletRed

PaleVioletRed1

PaleVioletRed2

PaleVioletRed3

PaleVioletRed4

PapayaWhip

PeachPuff

PeachPuff1

PeachPuff2

PeachPuff3

PeachPuff4

Peru

Pink

Pink1

Pink2

Pink3

Pink4

Plum

Plum1

Plum2

Plum3

Plum4

PowderBlue

Purple

Purple1

Purple2

Purple3

Purple4

Red

Red1

Red2

Red3

Red4

72 APPENDIX A. COLORS

RosyBrown

RosyBrown1

RosyBrown2

RosyBrown3

RosyBrown4

RoyalBlue

RoyalBlue1

RoyalBlue2

RoyalBlue3

RoyalBlue4

SaddleBrown

Saddlebrown

Salmon

Salmon1

Salmon2

Salmon3

Salmon4

SandyBrown

SeaGreen

SeaGreen1

SeaGreen2

SeaGreen3

SeaGreen4

Seashell

Seashell1

Seashell2

Seashell3

Seashell4

Sienna

Sienna1

Sienna2

Sienna3

Sienna4

SkyBlue

SkyBlue1

SkyBlue2

SkyBlue3

SkyBlue4

SlateBlue

SlateBlue1

SlateBlue2

SlateBlue3

SlateBlue4

SlateGray

SlateGray1

SlateGray2

SlateGray3

SlateGray4

SlateGrey

Snow

Snow1

Snow2

Snow3

Snow4

SpringGreen

SpringGreen1

SpringGreen2

SpringGreen3

SpringGreen4

SteelBlue

SteelBlue1

SteelBlue2

SteelBlue3

SteelBlue4

Tan

Tan1

Tan2

Tan3

Tan4

Thistle

Thistle1

Thistle2

Thistle3

Thistle4

Tomato

Tomato1

Tomato2

Tomato3

Tomato4

Turquoise

Turquoise1

Turquoise2

73

Turquoise3

Turquoise4

Violet

VioletRed

VioletRed1

VioletRed2

VioletRed3

VioletRed4

Wheat

Wheat1

Wheat2

Wheat3

Wheat4

White

WhiteSmoke

Yellow

Yellow1

Yellow2

Yellow3

Yellow4

YellowGreen

74 APPENDIX A. COLORS

Appendix B

Fonts

In C5, fonts are represented by port lists. Fonts are the images associated to
the char type. The char type TIE selects the desired font in a C5 program.
There is a small set of predefined fonts (TIEs).

The rules for font names are

<Draft|Letter|Ultra><UC|C|S|D|UD>

where Font is the font name (for example Roman), Draft, Letter and
Ultra is the font resolution (quality) and the separation between fonts is
represented by UC ultracompact, C compact, S standard, D disperse and UD

ultra disperse.
The following is the form of a char type TIE:

{recnr,ftype,vert1,vert2,hor,serif,incl,disp}

B.1 A list of font TIES

#define Roman {-1.0,1.0,0.1,0.4,0.15,0.2,0.0,0.7 }
#define Roman_Draft_C {-1.0,1.0,0.1,0.4,0.15,0.2,0.0,0.7 }
#define Roman_Letter_C {-2.0,1.0,0.1,0.4,0.15,0.2,0.0,0.7 }
#define Roman_Ultra_C {-3.0,1.0,0.1,0.4,0.15,0.2,0.0,0.7 }

#define Roman_Draft_UC {-1.0,1.0,0.1,0.4,0.15,0.2,0.0,0.8 }
#define Roman_Letter_UC {-2.0,1.0,0.1,0.4,0.15,0.2,0.0,0.8 }
#define Roman_Ultra_UC {-3.0,1.0,0.1,0.4,0.15,0.2,0.0,0.8 }

#define Roman_Draft_S {-1.0,1.0,0.15,0.4 ,0.15,0.25,0.0,0.6 }

75

76 APPENDIX B. FONTS

Figure B.1: C5 fonts

B.1. A LIST OF FONT TIES 77

#define Roman_Letter_S {-2.0,1.0,0.15,0.4 ,0.15,0.25,0.0,0.6 }
#define Roman_Ultra_S {-3.0,1.0,0.15,0.4 ,0.15,0.25,0.0,0.6 }

#define Roman_Draft_D {-1.0,1.0,0.2,0.4,0.2,0.3,0.0,0.4 }
#define Roman_Letter_D {-2.0,1.0,0.2,0.4,0.2,0.3,0.0,0.4 }
#define Roman_Ultra_D {-3.0,1.0,0.2,0.4,0.2,0.3,0.0,0.4 }

#define Roman_Draft_UD {-1.0,1.0,0.25,0.4,0.25,0.35,0.0,0.1 }
#define Roman_Letter_UD {-2.0,1.0,0.25,0.4,0.25,0.35,0.0,0.1 }
#define Roman_Ultra_UD {-3.0,1.0,0.25,0.4,0.25,0.35,0.0,0.1 }

#define Romans_Draft_UC {-1.0,1.0,0.1 ,0.25,0.1 ,0.15,0.0,0.8}
#define Romans_Letter_UC {-2.0,1.0,0.1 ,0.25,0.1 ,0.15,0.0,0.8}
#define Romans_Ultra_UC {-3.0,1.0,0.1 ,0.25,0.1 ,0.15,0.0,0.8}

#define Romans_Draft_C {-1.0,1.0,0.1 ,0.3,0.1 ,0.2,0.0,0.7 }
#define Romans_Letter_C {-2.0,1.0,0.1 ,0.3,0.1 ,0.2,0.0,0.7 }
#define Romans_Ultra_C {-3.0,1.0,0.1 ,0.3,0.1 ,0.2,0.0,0.7 }

#define Romans {-1.0,1.0,0.1 ,0.3,0.15,0.25,0.0,0.6 }
#define Romans_Draft_S {-1.0,1.0,0.1 ,0.3,0.15,0.25,0.0,0.6 }
#define Romans_Letter_S {-2.0,1.0,0.1 ,0.3,0.15,0.25,0.0,0.6 }
#define Romans_Ultra_S {-3.0,1.0,0.1 ,0.3,0.15,0.25,0.0,0.6 }

#define Romans_Draft_D {-1.0,1.0,0.2,0.3,0.2,0.3,0.0,0.4 }
#define Romans_Letter_D {-2.0,1.0,0.2,0.3,0.2,0.3,0.0,0.4 }
#define Romans_Ultra_D {-3.0,1.0,0.2,0.3,0.2,0.3,0.0,0.4 }

#define Romans_Draft_UD {-1.0,1.0,0.2,0.3,0.2,0.3,0.0,0.2 }
#define Romans_Letter_UD {-2.0,1.0,0.2,0.3,0.2,0.3,0.0,0.2 }
#define Romans_Ultra_UD {-3.0,1.0,0.2,0.3,0.2,0.3,0.0,0.2 }

#define Antique_Draft_C {-1.0,1.0,0.13,0.3,0.13,-0.28,0.0,0.76}
#define Antique_Letter_C {-2.0,1.0,0.13,0.3,0.13,-0.28,0.0,0.76}
#define Antique_Ultra_C {-3.0,1.0,0.13,0.3,0.13,-0.28,0.0,0.76}

#define Antique {-1.0,1.0,0.13,0.3,0.13,-0.31 ,0.0,0.6}
#define Antique_Draft_S {-1.0,1.0,0.13,0.3,0.13,-0.31 ,0.0,0.6}
#define Antique_Letter_S {-2.0,1.0,0.13,0.3,0.13,-0.31 ,0.0,0.6}
#define Antique_Ultra_S {-3.0,1.0,0.13,0.3,0.13,-0.31 ,0.0,0.6}

#define Antique_Draft_D {-1.0,1.0,0.13,0.3 ,0.13,-0.32,0.0,0.4}
#define Antique_Letter_D {-2.0,1.0,0.13,0.3 ,0.13,-0.32,0.0,0.4}

78 APPENDIX B. FONTS

#define Antique_Ultra_D {-3.0,1.0,0.13,0.3 ,0.13,-0.32,0.0,0.4}

#define Antique_Draft_UD {-1.0,1.0,0.13,0.3,0.13,-0.33,0.0,0.1}
#define Antique_Letter_UD {-2.0,1.0,0.13,0.3,0.13,-0.33,0.0,0.1}
#define Antique_Ultra_UD {-3.0,1.0,0.13,0.3,0.13,-0.33,0.0,0.1}

/* Arial gorda bold */
#define Arialb_Draft_UC {-1.0,0.0,0.4,0.4,0.4,0.0,0.0,0.85}
#define Arialb_Letter_UC {-2.0,0.0,0.4,0.4,0.4,0.0,0.0,0.85}
#define Arialb_Ultra_UC {-3.0,0.0,0.4,0.4,0.4,0.0,0.0,0.85}

#define Arialb_Draft_C {-1.0,0.0,0.4,0.4,0.4,0.0,0.0,0.70}
#define Arialb_Letter_C {-2.0,0.0,0.4,0.4,0.4,0.0,0.0,0.70}
#define Arialb_Ultra_C {-3.0,0.0,0.4,0.4,0.4,0.0,0.0,0.70}

#define Arialb {-1.0,1.0,0.4,0.4,0.4,0.0,0.0,0.50}
#define Arialb_Draft_S {-1.0,1.0,0.4,0.4,0.4,0.0,0.0,0.50}
#define Arialb_Letter_S {-2.0,1.0,0.4,0.4,0.4,0.0,0.0,0.50}
#define Arialb_Ultra_S {-3.0,1.0,0.4,0.4,0.4,0.0,0.0,0.50}

#define Arialb_Draft_D {-1.0,1.0,0.42,0.42,0.42,0.00,0.0,0.3 }
#define Arialb_Letter_D {-2.0,1.0,0.42,0.42,0.42,0.00,0.0,0.3 }
#define Arialb_Ultra_D {-3.0,1.0,0.42,0.42,0.42,0.00,0.0,0.3 }

#define Arialb_Draft_UD {-1.0,1.0,0.42,0.42,0.42,0.00,0.0,0.0 }
#define Arialb_Letter_UD {-2.0,1.0,0.42,0.42,0.42,0.00,0.0,0.0 }
#define Arialb_Ultra_UD {-3.0,1.0,0.42,0.42,0.42,0.00,0.0,0.0 }

/* Arial standard */
#define Arial_Draft_UC {-1.0,0.0,0.2,0.2,0.2,0.0,0.0,0.90}
#define Arial_Letter_UC {-2.0,0.0,0.2,0.2,0.2,0.0,0.0,0.90}
#define Arial_Ultra_UC {-3.0,0.0,0.22,0.22,0.20,0.0,0.0,0.90}

#define Arial_Draft_C {-1.0,0.0,0.2,0.2,0.2,0.0,0.0,0.7 }
#define Arial_Letter_C {-2.0,0.0,0.2,0.2,0.2,0.0,0.0,0.7 }
#define Arial_Ultra_C {-3.0,0.0,0.22,0.22,0.20,0.0,0.0,0.7 }

#define Arial_Draft_S {-1.0,1.0,0.2,0.2,0.2,0.0,0.0,0.60}
#define Arial_Letter_S {-2.0,1.0,0.2,0.2,0.2,0.0,0.0,0.60}
#define Arial_Ultra_S {-3.0,1.0,0.2,0.2,0.2,0.0,0.0,0.60}

/* This is the default font */
#define Arial {-1.0,1.0,0.22,0.22,0.22,0.00,0.0,0.3 }

B.1. A LIST OF FONT TIES 79

#define Arial_Draft_D {-1.0,1.0,0.22,0.22,0.22,0.00,0.0,0.3 }
#define Arial_Letter_D {-2.0,1.0,0.22,0.22,0.22,0.00,0.0,0.3 }
#define Arial_Ultra_D {-3.0,1.0,0.21,0.21,0.21,0.00,0.0,0.3 }

#define Arial_Draft_UD {-1.0,0.0,0.30,0.30,0.30,0.00,0.0,0.1}
#define Arial_Letter_UD {-2.0,0.0,0.30,0.30,0.30,0.00,0.0,0.1}
#define Arial_Ultra_UD {-3.0,0.0,0.30,0.30,0.30,0.00,0.0,0.1}

/* Arial delgada */
#define Arialn_Draft_C {-1.0,0.0,0.09,0.09,0.08,0.0,0.0,0.75}
#define Arialn_Letter_C {-2.0,0.0,0.09,0.09,0.08,0.0,0.0,0.75}
#define Arialn_Ultra_C {-3.0,0.0,0.07,0.07,0.06,0.0,0.0,0.75}

#define Arialn {-1.0,0.0,0.09,0.09,0.08,0.0,0.0,0.55}
#define Arialn_Draft_S {-1.0,0.0,0.09,0.09,0.08,0.0,0.0,0.55}
#define Arialn_Letter_S {-2.0,0.0,0.09,0.09,0.08,0.0,0.0,0.55}
#define Arialn_Ultra_S {-3.0,0.0,0.07,0.07,0.06,0.0,0.0,0.55}

#define Arialn_Draft_D {-1.0,0.0,0.09,0.09,0.08,0.0,0.0,0.25}
#define Arialn_Letter_D {-2.0,0.0,0.09,0.09,0.08,0.0,0.0,0.25}
#define Arialn_Ultra_D {-3.0,0.0,0.07,0.07,0.06,0.0,0.0,0.25}

/* Courier */
#define Courier_Draft_C {-1.0,3.0,0.2 ,0.2 ,0.2 ,-0.4,0.0,0.5}
#define Courier_Letter_C {-2.0,3.0,0.2 ,0.2 ,0.2 ,-0.4,0.0,0.5}
#define Courier_Ultra_C {-3.0,3.0,0.22,0.22,0.20,-0.4,0.0,0.5}

#define Courier_Draft_S {-1.0,3.0,0.2,0.2,0.2,-0.47,0.0,0.4 }
#define Courier_Letter_S {-2.0,3.0,0.2,0.2,0.2,-0.47,0.0,0.4 }
#define Courier_Ultra_S {-3.0,3.0,0.2,0.2,0.2,-0.47,0.0,0.4 }

#define Courier {-1.0,3.0,0.24,0.24,0.24,-0.5,0.0,0.2}
#define Courier_Draft_D {-1.0,3.0,0.24,0.24,0.24,-0.5,0.0,0.2}
#define Courier_Letter_D {-2.0,3.0,0.24,0.24,0.24,-0.5,0.0,0.2}
#define Courier_Ultra_D {-3.0,3.0,0.24,0.24,0.24,-0.5,0.0,0.2}

#define Courier_Draft_UD {-1.0,3.0,0.30,0.30,0.30,-0.5,0.0,0.1}
#define Courier_Letter_UD {-2.0,3.0,0.30,0.30,0.30,-0.5,0.0,0.1}
#define Courier_Ultra_UD {-3.0,3.0,0.30,0.30,0.30,-0.5,0.0,0.1}

80 APPENDIX B. FONTS

Appendix C

The Standard Output Library

1. opm page

Port_List opm_page(Color, Color, Color, ..., NULL)

opm page returns a port list with a Right oriented port. The size of
the port is the entire page and the color list is constructed with the
Color arguments that are not equal to NULL.

2. opm print

void opm_print(Port_List)

opm print translates the port list argument into a PostScript format
file using the standard output.

3. opm scale

Port_List opm_scale(double left, double right,

double up, double down,Port_List)

0.0 <= left <=1.0

0.0 <= right <=1.0

0.0 <= up <=1.0

0.0 <= down <=1.0

opm scale scales the ports of the argument according to the values of
the arguments left, right, up and down.

4. opm rot

Port_List opm_rot(int rotnr,Port_List)

81

82 APPENDIX C. THE STANDARD OUTPUT LIBRARY

opm rot rotates rotnr ×Π/2 the ports of the list argument.

5. opm image cons

Port_List opm_image_cons(DTP,Port_List)

opm image cons returns an image (a port list) which is the graphic
representation of the object member of the DPT argument printed on
a page (the port list argument).

6. opm set color

Port_List opm_set_color(int color_idx,Port_List)

opm set color sets the current color of the ports of the list argument
according to the color idx value. if color idx is greater than the
color list length of the port then the current color is White.

7. opm colors

DT_typedef struct{double x2,y1,x1,y2;} dp2;
DT_typedef struct OPMTON {

dp2 scale;
struct{ /* discr union */

union{
int{0,10} bg;
struct OPMTON *next;
} un;

int{1,0} idx;
} du;

}{0} *Color_Serie;

Color_Serie opm_colors(int mode,int tones_nr,
double coef1,double coef2)

opm colors constructs a list of color scaled rectangles. The mode ar-
gument sets the scaling mode:

• mode=0 sets the four sides of the rectangle for decreasing concentric
scaling.

• mode=1 sets the right side of the rectangle for decreasing concentric
scaling.

83

• mode=2 sets the right and down sides of the rectangle for decreas-
ing concentric scaling.

• mode=3 sets the right, down and up sides of the rectangle for
decreasing concentric scaling.

• mode=4 sets the left and right sides of the rectangle for left to right
sequencing scaling.

• mode=5 sets the up and down sides of the rectangle for up to down
sequencing scaling.

• mode=10 sets the right and left sides of the rectangle for decreasing
concentric scaling.

• mode=20 sets the up and down sides of the rectangle for decreasing
concentric scaling.

The tones nr argument defines the length of the color list and the
coef1 and coef2 arguments are the scaling factor of the active and
inactive sides respectively. The standard values of these arguments are
1.0 and 0.0.

8. opm col2col

Color opm_col2col(Color from, Color to, int tones_nr)

opm col2col is a compressed notation for the colors of a port. The
function represents a color serie starting from from to to of tones nr

tones.

9. opm bcurv5

Port_List opm_bcurv5(int rec_nr,
double y1_U,double y2_U,double y3_U,double y4_U,double y5_U,
double y1_D,double y2_D,double y3_D,double y4_D,double y5_D,
Port_List pl)

The function opm bcurv paints the shape limited by the Bezier curves
of five points defined by (0.0,y1 U) (0.25,y2 U) (0.5,y3 U) (0.75,y4 U)
(1.0,y5 U) and (0.0,y1 D) (0.25,y2 D) (0.50,y3 D) (0.75,y4 D) (1.0,y5 D).
The visible range of the y ... arguments is (0.0,1.0). rec nr is the
resolution level where 10 is the top manual resolution and -1, -2 and -3
are the automatic resolution with the draft, standard and letter level
respectively.

Figure C.1 shows the image produced by the four opm bcurb examples
of the next program:

84 APPENDIX C. THE STANDARD OUTPUT LIBRARY

main(){
Port_List lp=opm_page(Black,Gray55,Beige, NULL);
opm_print(opm_set_color(2,lp));
opm_print(opm_set_color(1,

opm_scale(1.0,1.0,0.9,0.9,lp)));
opm_print(
opm_bcurv5(-3,0.9,0.2,0.6,1.0,0.1,

0.9,0.0,0.4,0.8,0.1,
opm_scale(1.0,0.45,0.9,0.45,lp)));
opm_print(
opm_bcurv5(5,0.1,0.4,0.6,0.8, 0.0,

0.0,0.2,0.5,0.2,-0.3,
opm_scale(0.45,1.0,0.9,0.45,lp)));
opm_print(
opm_bcurv5(6,0.2,0.2,0.9,0.9,0.9,

0.0,0.0,0.0,0.7,0.7,
opm_rot(1,opm_scale(1.0,0.45,0.45,0.9,lp))));
opm_print(
opm_bcurv5(8,0.51,0.52,0.35,1.7,0.49,

0.5 ,0.5 ,0.5 ,0.5,0.5 ,
opm_scale(0.45,1.0,0.45,0.9,lp)));
}

Figure C.1: 4 opm bcurv examples

10. opm ellipsis

Port_List opm_ellipsis(int rec_nr,double ring,double elipse,
double incl1,double incl2,Port_List pl)

-3 <= rec_nr <= 12

85

0.0 <= ring <= 1.0
0.0 <= elipse <= 1.0

-1.0 <= incl1 <= 1.0
-1.0 <= incl2 <= 1.0

opm ellipsis paints the surface delimited by the maximal ellipsis of
the port and the ellipsis defined by ring. The elipse argument is an
elliptical factor. incl1 and incl2 sets the inclination of the major and
minor ellipsis respectively. rec nr is the resolution level where 10 is the
top manual resolution and -1, -2 and -3 are the automatic resolution
with the draft, standard and letter level respectively.

Figure C.2 shows the image produced by the four opm ellipsis exam-
ples of the next program:

main(){
Port_List lp=opm_page(Black,Gray55,Beige, NULL);
opm_print(opm_set_color(2,lp));
opm_print(opm_set_color(1,opm_scale(1.0,1.0,0.9,0.9,lp)));
opm_print(opm_ellipsis(3, 0.0, 0.0, 0.0, 0.0,

opm_scale(1.0,0.5,0.9,0.5,lp)));
opm_print(opm_ellipsis(5, 0.90,0.40, 0.90, 0.20,

opm_scale(0.5,1.0,0.9,0.5,lp)));
opm_print(opm_ellipsis(6, 0.55,0.20, 0.30,-0.70,

opm_scale(1.0,0.5,0.5,0.9,lp)));
opm_print(opm_ellipsis(-1,0.60,0.20,-0.80, 1.00,

opm_scale(0.5,1.0,0.5,0.9,lp)));
}

Figure C.2: 4 opm ellipsis examples

86 APPENDIX C. THE STANDARD OUTPUT LIBRARY

11. opm sector

Port_List opm_sector(int recnr,
double angle1, double x1,
double angle2, double x2,
Port_List lp);

0.0 <= x1 <= 1.0
0.0 <= x2 <= 1.0

opm sector paints the intersection of the right plane sector defined
by the line line1 and the left plane sector defined by the line line2.
line1 and line2 are defined by the X coordenates x1 and x2 with
the angles in radians angle1 and angle2 respectively. rec nr is the
resolution level where 10 is the top manual resolution and -1, -2 and -3
are the automatic resolution with the draft, standard and letter level
respectively.

Figure C.3 shows the image produced by the four opm sector examples
of the next program:

main(){
Port_List lp;
lp=opm_page(Black,Gray85,Beige, NULL);

opm_print(opm_set_color(1,lp));
opm_print(opm_sector(6, M_PI_2-0.07,0.00,

M_PI_4 ,0.00,
opm_scale(1.0,0.5,1.0,0.5,lp)));

opm_print(opm_sector(-1,M_PI_2+0.3, 0.50,
M_PI_2-0.3, 0.50,
opm_scale(0.5,1.0,1.0,0.5,lp)));

opm_print(opm_sector(6, M_PI_2+M_PI_4, 1.00,
M_PI_2+0.1 , 1.00,
opm_scale(1.0,0.5,0.5,1.0,lp)));

opm_print(opm_sector(-1,0.95, 0.00,
0.95, 0.05,
opm_scale(0.5,1.0,0.5,1.0,lp)));

}

87

Figure C.3: 4 opm plane sector examples

-

88 APPENDIX C. THE STANDARD OUTPUT LIBRARY

-

