

Comunidades microbianas como indicadoras de calidad ambiental, con énfasis en contaminantes emergentes

÷

-0

Por Luciana Griffero

Rocha, Uruguay 2022

Tesis entregada como parte de los requerimientos para aspirar al título de

-0

÷

DOCTORADO EN CIENCIAS BIOLÓGICAS

MSc Luciana Griffero

Directora de Tesis: Dra Cecilia Alonso

Codirector de Tesis: Andrés Pérez Parada

AGRADECIMIENTOS

Este trabajo no hubiera sido posible sin la colaboración de muchas personas que han permitido este proceso llegara hasta esta etapa en el largo recorrido que implica. En primer lugar, quiero agradecer a mi familia y amigas, especialmente a mi madre quien además de su apoyo incondicional y confianza, ha permitido pudiese realizar muchas de las actividades que involucraron esta Tesis.

Agradezco a mi directora y co-director de Tesis Cecilia Alonso y Andrés Pérez por motivarme a realizar este trabajo, por brindarme los medios necesarios y confiar en mí para llevarlo a cabo, desde lo académico y lo humano. Por enseñarme y guiarme en este camino de la Investigación, desde mi formación académica hasta la ejecución de las actividades. Por involucrarse a fondo con mi trabajo y aportar su visión crítica en todo momento. Quiero agradecer al Dr. Juan Francisco García-Reyes quien permitió fuese posible una parte fundamental de este trabajo, brindándome su tiempo y disposición a la vez de permitirme usar las instalaciones del laboratorio, en un grupo de trabajo de primer nivel. A Jaime Alcántara, por enseñarme y guiarme en la parte del laboratorio durante mi estadía en España.

Al grupo de Ecología Funcional de Sistemas Acuáticos, en particular quiero agradecer al Dr. Emiliano Pereira quien me ayudo con los análisis de bioinformática y estadísticos, y aporto siempre una mirada crítica y valiosa al mismo. A la química Belén González que me ayudo con el trabajo de laboratorio y me apoyo con este trabajo desde el comienzo.

A mi Comisión de Admisión de Seguimiento (CAS) integrada por los Doctores Lorena Rodríguez, Claudia Piccini, Ángel Segura, Mabel Berois y Lucía Pareja que evaluó el trabajo desde el inicio del mismo con valiosos aportes y un seguimiento del mismo.

Esta Tesis tiene un componente importante interdisciplinario por lo tanto no hubiese sido posible sin la participación de un montón de Instituciones. En primer lugar, quiero destacar la participación desde CURE de la Dr. Lorena Rodríguez, que me ayudo con los análisis de usos del suelo y me aporto desde su conocimiento en la gestión ambiental. A las Lic. Carolina Lescano y Soledad Costa que realizaron los análisis de nutrientes. A las Instituciones que participan en el muestreo de cuencas de Lagunas Costeras desde DINAMA y OSE. A la MSc. Elena Rodó por ayudarme con la parte de la normativa nacional de estándares de calidad de agua.

A las químicas Silvia Ripoll del Laboratorio de Ion y Beatriz Viera del laboratorio Libra

por cederme muestras de principios activos de antibióticos para usar de referencia en los análisis. Finalmente, a aquellos organismos que me ayudaron a financiar en diferentes momentos la realización de este trabajo: ANII, PEDECIBA, CAP, CSIC y el CURE.

-0

÷

ÍNDICE DE CONTENIDOS

AGRADECIMIENTOS	3
ÍNDICE DE CONTENIDOS	5
ACRÓNIMOS Y TÉRMINOS	8
RESUMEN	. 10
INTRODUCCIÓN	. 13
I.1 Biomonitoreo de ecosistemas acuáticos: Marco Normativo Internacional	. 13
I.2 Microorganismos como indicadores de calidad de agua	. 14
I.2.1 Características de las comunidades microbianas	. 14
I.2.2 Desarrollo de técnicas moleculares para la búsqueda de indicadores microbianos	. 15
I.2.3 Aproximaciones para la búsqueda de indicadores microbianos	. 18
I.3. Contaminantes emergentes	. 20
I.3.1 Clasificación, fuentes y efectos	. 20
I.3.2 Técnicas analíticas para el estudio de CEs.	.21
I.3.3 Análisis de riesgo de CEs: esquema de priorización	. 25
I.3.4 Técnicas de espectrometría de masas de alta resolución para la evaluación del riesgo ambiental	. 27
I.3.5 Regulación y manejo de contaminación emergente en cuerpos de agua, situación internacio y nacional	nal . 29
I.4 Comunidades microbianas y contaminación emergente	. 30
I.4.1 Indicadores de contaminantes basados en estructura taxonómica	. 30
I.4.2 Indicadores de contaminantes basados en estructura funcional. Ejemplo: seguimiento de la resistencia a los antibióticos a través de la metagenómica	. 32
OBJETIVOS	. 35
Objetivo general	. 35
Objetivos específicos	. 35
CAPITULO I: Determinación y análisis de riesgo de contaminantes emergentes en las cuencas de las Lagunas de Rocha y Castillos	.36
1.1 Antecedentes	. 37
1.2 Objetivos	. 39
1.3 Hipótesis y predicciones asociadas	. 39
1.4 Metodología	.40

¢-

-0

1.4.1 Área de estudio y toma de muestras	40
1.4.2 Preparación de muestra, compuestos analizados y soluciones de trabajo	45
1.4.3 Cromatografía líquida de nanoflujo - espectrometría de masas de alta resolución	47
1.4.4 Criterios de identificación	49
1.4.5 Control de calidad, curvas en matriz y límites de cuantificación	50
1.4.6 Análisis de usos del suelo, distribución espacial de CEs y análisis estadístico	57
1.4.7 Evaluación de riesgo ambiental	58
1.4.8 Evaluación de exposición para plaguicidas	59
1.4.9 Caracterización del riesgo y categorización de CEs	60
1.4.10 Enfoque de priorización y nivel de riesgo ambiental	62
1.5 Resultados y discusión	64
1.5.1 Performance analítica	64
1.5.2. Identificación y cuantificación de contaminantes	66
1.5.3 Tendencias espaciales y temporales	70
1.5.4 Evaluación de riesgo ambiental	81
1.5.5 Categorización de contaminantes emergentes	
1.5.6 Enfoque de priorización y nivel de riesgo ambiental	89
1.6 Conclusiones generales	90
CAPITULO II: Indicadores de calidad de agua basados en la estructura taxonómica de las comunidamicrobianas	ades 92
2.1 Antecedentes	93
2.2 Objetivos	95
2.3 Hipótesis y predicciones asociadas	95
2.4 Metodología	97
2.4.1 Muestreo y variables ambientales	97
2.4.2 Categorización de sitios según índice de calidad de agua canadiense (WQI)	97
2.4.3 Categorización de sitios según índice de calidad acuática (AQI)	101
2.4.4 Estructura taxonómica de las comunidades microbianas	104
2.4.5 Estructuración de las comunidades microbianas	114
2.4.6 Búsqueda de ASVs indicadoras	115
2.4.7 Asignación de muestras a los diferentes grupos utilizando los indicadores taxonómicos bacterianos	117
2.3 Resultados y discusión	118
2.3.1 Calidad de agua de las cuencas de las Lagunas de Rocha y Castillos	118

¢-

•

2.3.2 Categorización de sitios según WQI y AQI para las cuencas de las Lagunas de Rocha y Castillos
2.2.2 Estructura do las comunidados bastorianas
2.3.4 Indicadores taxonómicos bacterianos de sitios según índices de calidad de agua138
2.6 Conclusiones generales152
CAPITULO III: Indicadores de contaminación emergente basados en el seguimiento de la resistencia a antibióticos a través de herramientas metagenómicas153
3.1 Antecedentes
3.2 Objetivos
3.3 Hipótesis y predicciones asociadas159
3.4 Materiales y métodos160
3.4.1 Secuenciación metagenómica shotgun y análisis bioinformático
3.4.2 Búsqueda de indicadores funcionales y asignación de muestras
3.4.3 Análisis estadísticos
3.3 Resultados y discusión
3.3.1 Procesamiento bionformático de las secuencias obtenidas
3.3.2 Estructura de la composición funcional de las comunidades microbianas
3.3.3 Distribución espacial de los genes de resistencia a antibióticos
3.3.4 Asociación de ARG con variables ambientales17
3.3.5 Indicadores funcionales bacterianos de arroyos174
3.4 Conclusiones generales179
DISCUSIÓN GENERAL, CONCLUSIONES Y PERSPECTIVAS180
REFERENCIAS
ÍNDICE DE FIGURAS235
ÍNDICE DE TABLAS238
PRESENTACIONES EN CONGRESOS Y EVENTOS RELACIONADAS A LA TESIS

- (F

ACRÓNIMOS Y TÉRMINOS

AF	Factor de evaluación	
AQI	Índice de calidad acuática	
ARG	Genes de resistencia a antibióticos	
ATPs	Perfiles de Toxicidad Acuática	
В	Potencial de bioacumulación	
CEs	Contaminantes emergentes	
CECL	Monitoreo de contaminantes específicos de las cuencas de LR y LC	
DINAMA	Dirección Nacional de Medio Ambiente	
DT50	Tiempo de disipación	
EC50	Concentración efectiva media	
ECOSAR	Relaciones de Actividad de Estructura Ecológica	
EDC	Alteración endocrina	
EM	Efecto matriz	
EQS	Estándares de calidad ambiental	
ERA	Evaluación de riesgo ambiental	
ESI	Ionización electrospray	
EU	Unión Europea	
LC	Laguna de Castillos	
LC50	Concentración letal 50	
LC/HRMS	Cromatografía de líquidos - espectrometría de masas de alta resolución	
LCL	Nivel de calibración más bajo	
LOD	Límite de detección	
LOI	Límite de identificación	
LOQ	Límite de cuantificación	
LR	Laguna de Rocha	
LULC	Uso y cobertura del suelo	
MBL	Metalobetalactamasas	
MDR	Resistencia a múltiples antibióticos	
MEC	Concentración ambiental medida	
MECmax	Concentración ambiental máxima medida	
MeOH	Metanol	
NOEC	Concentración sin efecto observado	
NTS	Non-target screening	
Pw	Persistencia en agua dulce	
PEC	Concentración ambiental pronosticada	
PNEC	Concentraciones predichas sin efecto	
PTAR	Planta de tratamiento de aguas residuales	
QSAR	Relación estructura-actividad cuantitativa	

¢-

-0

RQ	Cociente de riesgo
SPE	Extracción en Fase Sólida
SSD	Distribuciones de sensibilidad de especies
TPP	Trifenilfosfato
Т	Toxicidad
t ½	Tiempo de vida media
tR	Tiempo de retención
WQI	Índice de calidad de agua canadiense
XIC	Cromatogramas de iones extraídos

RESUMEN

Los ecosistemas acuáticos están siendo sometidos de manera intensiva a cambios en sus componentes físicos, químicos y biológicos, en un escenario de cambio global que, entre otros aspectos, implica la entrada de contaminantes emergentes CEs a los cuerpos de agua. La capacidad de monitorear estos sistemas es crucial para la implementación de medidas adecuadas de gestión que permitan preservar su calidad ambiental, de la que derivan sus servicios ecosistémicos. Las comunidades microbianas poseen un conjunto de atributos particularmente deseables a la hora de buscar indicadores: son altamente diversas, responden rápida y proporcionalmente a cambios ambientales y el conocimiento de su eco-fisiología permite identificar la causa del estrés específico al que responden, yendo un paso más allá que solamente denotar un estrés. La inclusión de indicadores microbianos en el desarrollo y la aplicación de nuevos índices de calidad ambiental es una herramienta clave para la comprensión y monitoreo de los efectos de las perturbaciones ambientales en los ecosistemas.

El objetivo general de esta Tesis fue evaluar la estructura taxonómica y funcional de las comunidades microbianas acuáticas y explorar su uso como indicador informativo de la calidad ambiental en ecosistemas acuáticos, con énfasis en CEs. La tesis fue organizada en tres capítulos. En el primer capítulo se abordó el monitoreo y análisis de riesgo de CEs en las cuencas de las lagunas de Rocha y Castillos. Para ello, se implementó un método multi-residuo de preparación de muestra para la identificación y cuantificación de CEs en aguas por nano-LC/HRMS. Se analizó la distribución espacial y temporal de CES a lo largo de ambas cuencas y se realizó la evaluación de riesgo de los compuestos identificados y un esquema de priorización para el monitoreo ambiental.

El segundo capítulo trata sobre el uso de indicadores de calidad de agua basados en la estructura taxonómica de las comunidades microbianas. En el mismo se analizó la variabilidad espacial de la estructura taxonómica de estas comunidades estudiando que variables eran responsables de dicha estructuración. Además, se exploró el uso de estos indicadores para predecir categorías de sitios con diferente grado de impacto antropogénico, determinadas según índices de calidad ambiental propuestos tanto para parámetros clásicos de evaluación de calidad de agua como para CEs.

En el tercer capítulo se estudiaron indicadores de contaminación basados en estructura funcional de las comunidades microbianas en particular a través del seguimiento de genes de resistencia a antibióticos (ARG) por medio de la metagenómica. Para ello se estudió la presencia de ARG en ambas cuencas y se analizó su variabilidad espacial. Además, se estudió el potencial uso de estos genes como indicadores para predecir categorías de sitios con diferente grado de impacto antropogénico, de acuerdo a la categorización dada por los índices de calidad mencionados anteriormente.

La tesis realiza aportes valiosos a diferentes áreas del conocimiento incluida la ecología microbiana, la química analítica ambiental y al uso de nuevas herramientas para el monitoreo ambiental. Este trabajo representa el primer reporte de monitoreo de CEs a escala de cuenca en Uruguay. Allí se encontró un patrón de distribución espacial asociado a los principales usos del suelo, a la vez que se identificaron sitios particularmente vulnerables, como los cercanos a las plantas de tratamiento de aguas residuales. Se encontraron buenos indicadores basados en la composición taxonómica de las comunidades microbianas, posicionando a los microorganismos como candidatos prometedores para el desarrollo de herramientas de monitoreo.

Finalmente, se encontró una elevada diversidad de ARGs en arroyos y lagunas de ambas cuencas. La mayoría corresponden a combinaciones de bombas de eflujo múltiples, que pueden causar resistencia a múltiples antibióticos (MDR). Estos genes resultaron también ser buenos candidatos a indicadores de la calidad ambiental, permitiendo diferenciar categorías dadas por los índices de calidad empleados. En síntesis, los resultados obtenidos son un exponente de las amenazas que presentan los sistemas acuáticos de Uruguay frente a la presencia de "nuevos" contaminantes, a la vez que evidencian la utilidad de las herramientas de caracterización molecular para emplear a las comunidades microbianas como indicadoras de diferentes grados de impacto por dichos contaminantes.

¢:

•

INTRODUCCIÓN

I.1 Biomonitoreo de ecosistemas acuáticos: Marco Normativo Internacional

Los ecosistemas acuáticos, proveen de una variedad de recursos ecosistémicos para las poblaciones humanas, típicamente concentradas en torno a los cuerpos de agua (Vitousek et al. 1997). En las últimas décadas, la intensificación de actividades productivas e industriales a gran escala, han ejercido una inmensa presión sobre el uso de estos recursos hídricos generando una presión sobre los ecosistemas que incluyen la transformación física y química, destrucción del hábitat y cambios en la biodiversidad (Halpern et al. 2008).

De esta forma, estos ecosistemas están siendo sometidos de manera intensiva a cambios en sus componentes físicos, químicos y biológicos, en un escenario de cambio global que, entre otros aspectos, implica la entrada de numerosos contaminantes emergentes a los cuerpos de agua. La descarga de tales sustancias, incluso en concentraciones traza, contribuye a su difusión en los compartimentos acuáticos, con efectos potencialmente perjudiciales tanto para los ecosistemas acuáticos como para la salud humana (Peng et al. 2017; Čelić et al. 2019; Xie et al. 2019).

La capacidad de monitorear los ecosistemas acuáticos es crucial para la implementación de medidas adecuadas de gestión que permitan preservar su calidad ambiental, de la que derivan sus servicios ecosistémicos (Halpern et al. 2008). La calidad ambiental de estos sistemas se evalúa exhaustivamente a través del análisis de indicadores físico químicos (ej. nutrientes, contaminantes y contenido de materia orgánica) y biológicos (ej. fitoplancton, zooplancton y macroinvertebrados) (Borja et al. 2008). En particular, los indicadores biológicos constituyen organismos o rasgos de la comunidad (ej. diversidad taxonómica y funcional, grupos taxonómicos) que se utilizan para evaluar y monitorear el estado del hábitat en el que ocurren, incluidos los cambios a lo largo del tiempo y/o siguiendo perturbaciones ambientales (McGeoch & Chown 1998; Dale & Beyeler 2001; De Cáceres et al. 2010).

Uno de los ejemplos del desarrollo en el biomonitoreo de los ecosistemas acuáticos fue impulsado por la Directiva Marco del Agua (WFD) de la UE (EC 2000), que establece métodos de evaluación requeridos para diferentes tipos de ecosistemas ("categorías de agua": ríos, lagos, estuarios, aguas costeras) y diferentes grupos de organismos ("elementos de calidad biológica" =

BQEs: fitoplancton, flora acuática, invertebrados bentónicos, peces). La WFD ha cambiado los objetivos de gestión del control de la contaminación a fin de asegurar la integridad del ecosistema (Borja et al. 2008). El deterioro y mejora del "estado ecológico" es definido por la respuesta de la biota, más que por cambios en parámetros ambientales. Esta respuesta debe investigarse en el nivel del "cuerpo de agua" (ej. un tramo de río, un lago o una zona costera), que representa la unidad de clasificación y gestión de la WFD. A su vez, los cuerpos de agua de la misma categoría son agrupados en "tipos de cuerpos de agua", para cada uno de los cuales se definen estados de referencia. En la evaluación biológica, la condición observada se compara con el estado de referencia, de forma que un buen estado ecológico representa el valor objetivo que todos los cuerpos de agua superficiales deben alcanzar en el futuro cercano. Además, se puede considerar el comportamiento temporal analizando si existe alguna variación o tendencia diferente entre el sitio de referencia y los sitios impactados, donde se aplica el enfoque de análisis tipo BACI (Antes/Después y Control/Impacto) (Underwood 1992).

Tradicionalmente, los impactos en los ecosistemas acuáticos se evalúan a través del uso de diferentes grupos taxonómicos como fitoplancton, zooplancton, macroinvertebrados y peces que implican la clasificación y la identificación morfotaxonómica de miles de especímenes para un solo sitio (Borja et al. 2009; Tavakoly et al. 2014). Los taxones identificados se atribuyen a pesos ecológicos que se utilizan para calcular índices bióticos, como AMBI (Borja et al. 2000), ISI (Rygg 2002), NSI, NQI1 (Rygg 2006) o BCI (Lau et al. 2015). Sin embargo, tal enfoque exige experiencia taxonómica y los resultados suelen tardar meses en estar disponibles. Por lo que el uso de alternativas estandarizadas más rápidas es de crucial importancia para su uso en manejo de medioambiente. En este sentido, las aproximaciones basadas en el uso de ADN ambiental (eDNA) resultan muy promisorias (Cordier et al. 2018).

I.2 Microorganismos como indicadores de calidad de aguaI.2.1 Características de las comunidades microbianas

Los microorganismos desempeñan un papel clave en el funcionamiento de los ecosistemas siendo crucialmente importantes para la estabilidad y sostenibilidad de la biósfera global (Falkowski et al. 2008; Raina et al. 2009). Tienen una importancia crítica en la salud ambiental y

el bienestar humano, jugando roles claves en la provisión de servicios ecosistémicos de Soporte, Provisión, Regulación y Culturales (Ducklow 2008). Además, son los grandes agentes de los principales ciclos biogeoquímicos, flujos y procesos donde los elementos centrales para la vida alternan entre diferentes estados de oxidación, lo cual los torna biodisponibles para otras formas de vida o alternativamente los devuelve a sus reservorios abióticos (Falkowski et al. 2008). Además, son claves para la regulación de la calidad de agua, a través de la producción y degradación de toxinas, y la degradación de la materia orgánica y diferentes contaminantes orgánicos e inorgánicos (Madsen 2016).

Las comunidades microbianas poseen un conjunto de atributos particularmente deseables a la hora de buscar indicadores: son altamente diversas, responden rápida y proporcionalmente a cambios ambientales y el conocimiento de su ecofisiología permite identificar la causa del estrés específico al que responden, yendo un paso más allá que solamente denotar un estrés (Doiron et al. 2012; Sun et al. 2013; Di Cesare 2016). Al diferir ampliamente en sus requisitos de hábitat, ocupar diferentes nichos y responder de manera diferente a diversas perturbaciones, la incorporación de datos microbianos podría aumentar la sensibilidad de los datos adquiridos, para detectar un rango más amplio de posibles tensiones ambientales. Además, los diferentes tiempos de respuesta de los taxones cuando se exponen a perturbaciones externas pueden ser utilizados para identificar los efectos del estrés a corto y largo plazo (Anción et al. 2010).

Por lo tanto, la inclusión de indicadores microbianos en el desarrollo y la aplicación de nuevos índices de calidad ambiental es esencial para comprender mejor los efectos de las perturbaciones ambientales en los sistemas naturales. Como resultado, varios estudios han resaltado la necesidad de incluir variables microbianas en modelos predictivos de cambio de ecosistemas tanto naturales como en escenarios productivos y biotecnológicos (Allison et al. 2010; Sarmento 2010; Treseder et al. 2012; Wieder 2013; Urakawa & Bernhard 2017).

I.2.2 Desarrollo de técnicas moleculares para la búsqueda de indicadores microbianos

Durante décadas, la calidad del agua destinada al consumo y actividades recreativas se ha evaluado en gran medida en base a la detección y conteo de cultivos de bacterias indicadoras fecales (FIB), como, coliformes totales, *Escherichia coli* o enterococos (Figueras & Borrego 2010). Sin embargo, estas aproximaciones no son exactas, ya que pueden derivar de fuentes no humanas y/o pueden estar sujetas a interacciones ecológicas o ambientales que comprometen su poder predictivo como proxis de patógenos (Willey et al. 2017). Además, los métodos de cultivo para la detección de patógenos específicos a menudo requieren mucho tiempo y pueden no detectar algunos organismos debido al crecimiento o requerimiento dificultoso. En este sentido, se han utilizado otras aproximaciones para identificar fuentes de contaminación en diferentes ambientes, con alta precisión, consistencia y sensibilidad en la clasificación de muestras ambientales fecales (Ahmed et al. 2015; Brown et al. 2017; Roguet et al. 2018).

A raíz de las dificultades descriptas anteriormente, se han desarrollaron métodos moleculares independientes del cultivo para la detección y cuantificación de bacterias específicas (Ramamurthy et al. 2014). Dichos métodos se dirigen al ADN extraído de muestras ambientales y clínicas que posteriormente se somete a análisis para determinar la presencia o abundancia de genes de especies indicadoras o patógenos de interés. El gen de la subunidad pequeña de ARN ribosomal (SSU rRNA), que consta del gen ARNr 16S para bacterias y el ARNr 18S para eucariotas, se ha convertido en uno de los genes diana más utilizados para el análisis molecular de biodiversidad. Esto se debe a su ubicuidad en todos los organismos y la estructura de la secuencia que incluye regiones altamente conservadas y variables / hipervariables promoviendo la alineación de la secuencia de ADN en diversos organismos, lo que permite una identificación taxonómica a escala más fina (Guo et al. 2013).

Luego siguió el desarrollo del uso de la reacción en cadena de la polimerasa (PCR) y la PCR cuantitativa (qPCR) que se dirigen a las regiones del ARNr de la SSU y los genes funcionales, para el seguimiento de la fuente microbiana y la detección directa y cuantificación de las cepas indicadoras diana (Harwood et al. 2014). Esta técnica es altamente útil para dichas aproximaciones, pero es necesario conocer a priori el gen diana específico que se está buscando, lo cual se torna una desventaja a la hora de evaluar impactos a una mayor escala, ya que no permite acceder a toda la información de la comunidad.

El surgimiento de las técnicas de secuenciación de próxima generación (NGS), que permite un análisis masivo paralelo de la información de secuencias de ADN ya sea a partir de amplicones de PCR o ácidos nucleicos ambientales, marcó el comienzo de una nueva era de desarrollo de aproximaciones para la evaluación de la calidad del agua. Los estudios por NGS de las comunidades microbianas presentes en el agua, se han basado en la secuenciación dirigida de las regiones hipervariables del gen SSU rRNA (ej. regiones V1, V3, V4, V6) y del gen de ARNr de subunidad grande (LSU) (Guo et al. 2013).

En los primeros estudios de la relación entre las comunidades microbianas y calidad del agua, la pirosecuenciación 454 surgió como la plataforma de elección (McLellan et al. 2010; Vandewalle et al. 2012) debido a las relativamente largas longitudes de lectura y de secuencias, inicialmente de 110 pares de bases (bp), actualmente ~1000 bp (van Dijk et al. 2014) y, en general, mejores condiciones de secuenciación y flujos de trabajo de bioinformática (Sergeant et al. 2012). Luego, la plataforma Illumina se introdujo en el mercado con longitudes de lectura de 35 pb en un principio con un enfoque en la secuenciación del genoma (van Dijk et al. 2014). A medida que la tecnología Illumina mejoró logrando grandes longitudes de lectura mediante la fusión de lecturas de extremo pareadas, ha sido la más usada como plataforma de análisis de muestras ambientales (Loman et al. 2012; Tan et al. 2015). Las secuencias de amplicones de genes de ARNr generadas por secuenciación masiva, generalmente se agrupan en unidades taxonómicas operativas (OTU) basadas en umbrales de identidad de nucleótidos (ej. 95-99 %). En algunos casos, sin embargo, la agrupación de OTUs puede no segregar variantes de secuencia muy similares en grupos relevantes desde el punto de vista ecológico o medioambiental (Eren et al. 2013).

Nuevos métodos se han desarrollado a partir de amplicones generados por la plataforma Illumina, que controlan los errores lo suficiente como para que las variantes de la secuencia de amplicones (ASV) se puedan resolver exactamente, hasta el nivel de diferencias de un solo nucleótido sobre la región del gen secuenciado (Eren et al. 2015; Callahan et al. 2016a; Edgar 2016). La esencia de este método se basa en que, durante el procesamiento bioinformático, se infieren las secuencias biológicas en la muestra antes de la introducción de errores de secuenciación y amplificación, lo que permite distinguir las variantes de secuencias que difieren tan solo en un nucleótido. Los argumentos a favor de los métodos ASV se han centrado en su mayor resolución. También se remarca entre sus principales ventajas que, a diferencia de la definición de OTUs, que depende de las muestras particulares en las que se definen, son métodos reutilizables en todos los estudios, reproducibles en conjuntos de datos futuros y no están limitados por bases de datos de referencia incompletas (Callahan et al. 2017).

La composición de la comunidad determinada mediante NGS puede servir como línea de base o referencia para el monitoreo ambiental, para determinar perturbaciones o biodegradación. Además, permite el uso de análisis bioestadísticos (ej. análisis de componentes principales, escalado multidimensional no métrico o análisis de correspondencia) para analizar la relación entre la composición de las comunidades y diversos factores ambientales, permitiendo así la identificación de grupos que pueden servir como bioindicadores de la calidad ambiental (Yergeau et al. 2012).

I.2.3 Aproximaciones para la búsqueda de indicadores microbianos

El advenimiento de métodos moleculares basados en NGS han proporcionado nuevas perspectivas en el estudio del impacto de los contaminantes sobre la estructura de las comunidades acuáticas (Wang et al. 2012; Sun et al. 2013; Tan et al. 2015a; Tan et al. 2015b; Ziegler et al. 2016). La rápida respuesta de las bacterias a los cambios ambientales y el fácil acceso a tecnologías NGS permiten la integración de la composición taxonómica de los ensamblajes bacterianos como indicadores de la calidad ambiental (Caruso et al. 2015), proporcionando una señal de alerta temprana para evaluar los impactos en los sistemas acuáticos (Aylagas et al. 2017). Se ha demostrado que el uso de esto indicadores es muy eficaz a la hora de evaluar el estado del medio ambiente, siendo comparables (Lau et al. 2015) o incluso superando (Cordier et al. 2018, 2019), a las aproximaciones taxonómicas tradicionales para evaluar estatus ambiental de ecosistemas acuáticos. Sin embargo, la identificación y el uso de taxones indicadores microbianos siguen siendo relativamente limitados, aunque diversos trabajos ya han registrado varios de ellos (Fortunato et al. 2013; Lau et al. 2015; Hermans et al. 2017).

Existen distintas aproximaciones para identificar especies indicadoras a partir de datos de composición de la comunidad microbiana. Por ejemplo, el análisis discriminante lineal (LEfSe) se ha utilizado para identificar taxa que caracterizan las diferencias entre dos o más condiciones biológicas (Segata et al. 2011). Dicha aproximación pondera preferentemente las diferencias en la abundancia de taxa más comunes. Otro enfoque, es el análisis del valor del indicador (IndVal). Esta aproximación se caracteriza por la identificación de especies indicadoras basándose en su especificidad y fidelidad (De Cáceres et al. 2009) y se ha utilizado con éxito para la selección de

especies indicadoras microbianas de cambios espaciales y estacionales a lo largo de gradientes naturales (Fortunato et al. 2013; Bier et al. 2014; Gies et al. 2014; Spietz et al. 2015; Techtmann et al. 2015). A su vez, existen trabajos que combinan IndVal y LEfSe para identificar un mayor número de especies indicadoras (Hubbard et al. 2018; Qian et al. 2018).

Asimismo, la estructura de las comunidades microbianas también puede ser utilizada para desarrollar índices de calidad ambiental. Por ejemplo, Lau et al (2015), utilizaron el método de regresión de mínimos cuadrados parciales (PSLR), para asociar el perfil de la comunidad bacteriana con la comunidad de macroinvertebrados, y desarrollar un índice basado en la comunidad bacteriana presente en arroyos (BCI) para calificar su salud ecosistémica. A su vez, como ejemplo de aplicación de otras técnicas en otros grupos, los *splines* de regresión de cuantiles (QRS) se han aplicado con éxito a perfiles de comunidades microbentónicas para la evaluación de impacto de la acuicultura. Los resultados de este trabajo arrojan que la construcción de índices bióticos partir de datos de *metabarcoding* constituyen un método prometedor para complementar o incluso reemplazar las técnicas actuales de biomonitoreo de peces, por ejemplo (Keeley et al. 2018).

Otras herramientas basadas en algoritmos de aprendizaje automático (*machine learning*) han demostrado ser también útiles para identificar grupos de organismos que varían según perturbaciones o condiciones ambientales específicas. Los modelos de *Random Forest* constituyen una herramienta altamente adaptativa, con la particular ventaja de poder tratar con muchas variables predictivas, lo que es especialmente importante para el análisis de comunidades microbianas (Breiman 2001; Boulesteix et al. 2012). Por ejemplo, Smith et al (2015) usando "Random Forest" demostraron que las comunidades microbianas en aguas subterráneas pueden clasificar sitios de acuerdo a su contaminación con uranio o nitrato. También se han usado aproximaciones similares, utilizando un conjunto de valores de indicadores obtenidos por IndVal en combinación con "Random Forest", para predecir la temperatura y el estado de eutrofización del sistema de arrecifes de coral (Glasl et al. 2019); o clasificar muestras correspondientes a estuarios con diferentes características físico-químicas en base a la composición de la comunidad microbiana marina, utilizando IndVal con diferentes estrategias de *machine learning* (Alonso et al. 2022).

I.3. Contaminantes emergentes

I.3.1 Clasificación, fuentes y efectos

Diversas fuentes de producción, uso y eliminación de numerosos productos químicos han llevado a la ocurrencia generalizada de sustancias químicas en el medio ambiente. Por ejemplo, bajo la disposición del Reglamento de registro, evaluación, autorización y restricción de las sustancias y mezclas químicas REACH (Comisión Europea, 2006) más de 100.000 sustancias químicas han sido registradas actualmente por la Agencia de Sustancias Químicas de la Unión Europea (UE) (ECHA, 2019). En particular, los contaminantes emergentes (CEs) comprenden sustancias no reguladas que tienen un efecto directo o indirecto en los organismos. Éstos incluyen plaguicidas, productos farmacéuticos y de cuidado personal, hormonas, drogas veterinarias, drogas de abuso y detergentes, entre otros (Sauvé & Desrosiers 2014; Mendoza et al. 2015; Sousa et al. 2018).

La descarga de tales sustancias en el medio ambiente, incluso en concentraciones traza (ng L^{-1} y µg L^{-1}), contribuye a la acumulación de algunas de ellas en los compartimentos acuáticos, con efectos potencialmente perjudiciales tanto para los ecosistemas acuáticos como para la salud humana (Peng et al. 2017; Rivera-Jaimes et al. 2018; Čelić et al. 2019;). Además, estos contaminantes pueden presentar efectos tóxicos aditivos, sinérgicos o antagonistas para los organismos acuáticos (Qin et al. 2018; Baek et al. 2019).

Diversos estudios muestran que los CEs se eliminan sólo parcialmente durante el tratamiento de aguas residuales, alcanzando ambientes superficiales y costeros (Rivera-Jaimes et al. 2018; Čelić et al. 2019; Serra-Compte et al. 2021). De esta forma, las plantas de tratamiento de aguas residuales (PTAR) son una de las principales fuentes de CEs, en los ecosistemas acuáticos (Barbosa et al. 2016). Algunos de estos CEs se consideran marcadores de impactos ambientales antropogénicos (ej. productos farmacéuticos, productos de uso doméstico como cafeína o nicotina) (Čelić et al. 2019; Xie et al. 2019). Estos compuestos llegan a las PTAR a través de la red de saneamiento (He et al. 2015) después de su metabolismo y excreción ya sea como compuestos inalterados o como metabolitos, en orina y / o heces. En el caso de los fármacos, la liberación directa puede ocurrir por el vertido inadecuado de medicamentos no utilizados o vencidos

directamente en los lavabos del inodoro o como desechos sólidos (Aydin & Talinli, 2013). Los productos farmacéuticos veterinarios se utilizan para animales domésticos, ganado y acuicultura, y al igual que en el ser humano, se excretan bajo su forma original o como metabolitos (Gorito et al. 2017).

Grandes cantidades de productos industriales, fertilizantes y plaguicidas se utilizan principalmente para mantener los sistemas de producción intensiva de alimentos y el suministro de materias primas (Atwood & Jones 2017). Su uso generalizado ha provocado la contaminación de los recursos hídricos, incluidas las aguas superficiales y subterráneas, principalmente en áreas agrícolas (Zhao & Pei 2012; Jurado et al. 2019; Köck-Schulmeyer et al. 2019). Estudios mediante análisis de usos de suelo, muestran que existen correlaciones entre las áreas agrícolas y la detección de plaguicidas (Pascual Aguilar et al. 2017). La presencia generalizada de plaguicidas en el medio ambiente puede estar relacionada tanto a su aplicación en la agricultura y la liberación difusa del suelo y los sedimentos (Barbieri et al. 2019); como a fuentes de contaminación puntuales como los vertidos de las PTAR asociados a los usos urbanos e industriales (Münze et al. 2017; Köck-Schulmeyer et al. 2019; Sutton et al. 2019; Postigo et al. 2021).

Además, los compuestos industriales, muchos de ellos no regulados en algunas regiones del mundo, a menudo se liberan directamente en las aguas superficiales (Barbosa et al. 2016). Incluso cuando los efluentes industriales se descargan en las PTAR, la mayoría de estos contaminantes no son correctamente eliminados por los procesos de tratamiento en estas plantas (Deblonde et al. 2011).

I.3.2 Técnicas analíticas para el estudio de CEs.

Diversas técnicas analíticas se han desarrollado para la detección de CEs en el medio acuático. Estas involucran típicamente el uso de cromatografía líquida (LC) acoplada a espectrometría de masas (MS). Como la mayoría de estos compuestos se encuentran a concentraciones trazas (ej. ngL⁻¹) es crucial contar con un método de pre concentración efectivo para que las muestras puedan ser susceptibles a los límites de detección de LC-MS. La extracción en fase sólida (SPE) es uno de los métodos más utilizados en el análisis multiresiduo para un alto

número de compuestos, como es el caso de los CEs (Phipps et al. 2008). La automatización del procedimiento SPE reduce los pasos de preparación de muestra y permite el desarrollo de métodos más rápidos, aumentando consecuentemente el rendimiento de la extracción (Erustes et al. 2001). A su vez, el uso de cartuchos Oasis HLB posibilita la extracción simultánea de un gran amplio rango de compuestos químicos (polares y semi-polares) al permitir interacciones hidrofóbicas e hidrofílicas y ha sido aplicada para una gran cantidad de CEs en varias matrices ambientales (Robles-Molina et al. 2014b; González-Mariño et al. 2010; Gross et al. 2016; Domínguez-Romero et al. 2014; Petrie et al. 2016). Finalmente, el transporte de cartuchos SPE es más conveniente que el transporte de recipientes voluminosos y se ha demostrado que los analitos absorbidos en el cartucho pueden ser conservados hasta tres meses sin ningún cambio en su concentración o identidad (Baker et al. 2011; González-Mariño et al. 2010).

En los últimos años, la investigación se ha centrado en el desarrollo de métodos y técnicas para obtener información precisa y confiable sobre la aparición de CEs y sus productos de transformación, con especial énfasis en los compartimentos acuáticos. El desarrollo de la ionización por electrospray (ESI), permitió el análisis de moléculas orgánicas más polares, solubles en agua y de mayor tamaño, como son muchos de los CEs o sus metabolitos o productos de degradación, en comparación con las sustancias volátiles pequeñas analizadas por cromatografía gaseosa (GC) (Fenn et al. 1989). Los iones que se forman en la ESI pueden ser de carga positiva o negativa, generalmente se presentan como: (a) en modo positivo, iones de moléculas protonadas ([M+H]⁺) y (b) en modo negativo, iones moleculares desprotonados ([M-H]⁻), así como diferentes aductos en ambos modos de ionización (ej sodio, amonio) (Andrey 2003).

De esta forma, la LC-MS ha surgido como la técnica de elección para analizar CEs (Hernando et al. 2007; Pérez & Barceló 2007). En el espectrómetro de masas se encuentra el analizador de masas, donde se utiliza un campo eléctrico o magnético de forma de afectar la trayectoria o la velocidad de los iones y dirigirlos en función de su relación masa/carga (m/z). Los espectrómetros de masas de alta resolución (HRMS) se caracterizan por determinar la m/z de los iones con alta exactitud, es decir que la desviación de la masa exacta medida y teórica (o error de masas) sea <5 ppm (SANTE 2021). Estos instrumentos proveen alta exactitud de masa (±0,001 Da) en un amplio rango de masas de análisis (tradicionalmente superando los 2000 Da). Ejemplos de instrumentos HRMS son los basados en Orbitrap y TOF (Martínez Bueno et al. 2007; Díaz et

al. 2012; Mol & Zomer 2012; Robles-Molina et al. 2014a; Bade et al. 2015; Solliec et al. 2015; Alcántara-Durán et al. 2019; Wang et al. 2019; Diamanti et al. 2020; Mhuka et al. 2020; Nika et al. 2020; Sodré 2020; Huangn et al. 2021; Liu et al. 2021; Perkons et al. 2021; Van Vooren et al. 2021).

En el analizador Orbitrap los iones acelerados forman órbitas alrededor de un electrodo central, la frecuencia de oscilación de los iones a lo largo del analizador depende de la relación m/z. Estas órbitas de iones inducen una corriente que es detectada por los electrodos externos. Mediante una transformada de Fourier, la corriente es convertida en espectro de masas (Makarov 2000) (Figura 1).

En el análisis de *screening target* se debe contar con la información del tiempo de retención (tR) previamente. En el *suspect screening*, no se tiene la información del tR, se sugieren los compuestos sospechosos conociendo su m/z y patrón isotópico a priori, se puede predecir el tR y los iones de fragmentos identificados hacer coincidir con los espectros predichos. Por último, en el *non-target screening* (NTS) no se cuenta con ningún tipo de información a priori y las estructuras químicas deben sugerirse a partir de la masa exacta medida, el patrón isotópico y los iones fragmento (Leendert et al. 2015).

Figura 1. Analizador Orbitrap (Thermo Scientific).

Los analizadores del tipo Orbitrap, también son en general instrumentos híbridos y se puede trabajar con el modo MS². De esta forma, además de un analizador HRMS, pueden estar equipados con un filtro de masas de Q o al menos una celda de colisión, o incluso realizar la fragmentación en la fuente de ionización (Lehotay et al. 2015). Al igual que en otros analizadores, se puede trabajar con diferentes flujos de trabajo activando o desactivando los filtros de masa y las celdas de colisión según el objetivo propuesto. El escaneo MS² puede activarse por la detección del ion precursor o llevarse a cabo alternativamente mediante el modo barrido *full scan* MS, independientemente de la presencia o ausencia del precursor. En el caso de métodos *non-target*, el filtro de masas del cuadrupolo permanece total o parcialmente abierto. Cuando el filtro del cuadrupolo está completamente abierto, los iones de un rango de masas completo se fragmentan y posteriormente son analizados por el analizador HRMS. (Gómez et al. 2006; Lehotay et al. 2015; Zomer et al. 2015).

En este trabajo se utilizó un flujo de trabajo donde se alternó entre experimentos en modo full scan y el modo *all ion fragmentation* (AIF). De esta forma, aunque la mayoría del trabajo se basó en la búsqueda target de compuestos de interés, también se agregó la búsqueda *non-target* de algunos compuestos sospechosos no incluidos inicialmente en la lista de búsqueda.

I.3.3 Análisis de riesgo de CEs: esquema de priorización

Los CEs pueden suponer un riesgo para la salud humana y la vida silvestre y se han propuesto varios enfoques para la evaluación de sus respectivos riesgos. Para el caso de compuestos regulados, como muchos plaguicidas, el método de evaluación tradicional consiste en comparar directamente las concentraciones reales medidas con los límites permisibles. Como, por ejemplo, el límite de 0,1 μ gL⁻¹ para cada plaguicida y 0,5 μ gL⁻¹ para la suma de ellos en una muestra, establecido para el agua potable en Europa (EU 1998) o los estándares de calidad ambiental propuesta por la directiva europea respectivamente (EU Directive 2013/39). En el caso de los CEs, los compuestos no están incluidos en la lista de contaminantes prioritarios establecida por la EU y no se dispone de concentraciones admisibles en aguas superficiales para evaluar su impacto ambiental. Las directrices actuales proponen evaluar el riesgo ambiental de los CEs utilizando el concepto de relación toxicidad-exposición o cociente de riesgo (RQ) que se expresa como la relación entre las concentraciones medidas y las concentraciones predichas sin efecto (PNEC) (Van Leeuwen 2003; EMA 2006; ECHA 2008). Las concentraciones predichas sin efecto generalmente se calculan sobre la base de concentraciones críticas, como la concentración efectiva media (EC50), concentración letal 50 (LC50) o concentración sin efecto observado (NOEC) (Verro et al. 2009; Palma et al. 2014). Esto implica la realización de pruebas de toxicidad de laboratorio en organismos modelo en al menos tres niveles tróficos (ej. algas, crustáceos y peces) seleccionando el nivel más sensible y aplicando un factor de evaluación (AF) apropiado, para tener en cuenta la variabilidad intra e inter laboratorio, la variación biológica a corto y largo plazo y la extrapolación de laboratorio a campo.

Algunos trabajos discuten que, aunque el enfoque de AF es fácil de usar y práctico si los datos de toxicidad son limitados, las estimaciones del PNEC proporcionadas por este método exhiben una gran incertidumbre ya que depende únicamente del valor mínimo de toxicidad y un cierto AF (Peng et al. 2017). En cambio, afirman que la extrapolación estadística basada en las distribuciones de sensibilidad de especies (SSD) proporciona un método más confiable y robusto considerando que las estimaciones del PNEC son basados en una distribución establecida de un conjunto completo de datos de toxicidad (Lei et al. 2012).

Bajo la evaluación de riesgo ambiental (ERA) reglamentaria actual (US EPA. 1998), se evalúa la exposición y el efecto de compuestos químicos individuales (Perrodin 2011). Sin embargo, los organismos acuáticos y los seres humanos están expuestos a una amplia mezcla de sustancias que son altamente variables a lo largo del espacio y tiempo. Por lo tanto, la ERA actual solo proporciona una evaluación parcial del impacto potencial de estas mezclas, ya que una descripción completa de la misma requeriría la caracterización de una gama más amplia de productos químicos (Wild 2012) y una evaluación de mezclas ambientales. Esto es particularmente importante para las clases de productos químicos qué a menudo se liberan simultáneamente en el medio ambiente (Kretschmann 2015; Rösch 2017).

Los métodos de priorización convencionales se han orientado hacia información sobre el efecto químico (o toxicidad) y han sido aplicados para diferentes tipos de CEs (Sanderson et al. 2004; Roos et al. 2012; Caldwell et al. 2014; Minguez et al. 2014; Papadakis et al. 2015; Serra-Roig et al. 2016; Singer et al. 2016; Peng et al. 2017; Dafouz et al. 2018; Rivera-Jaimes et al. 2018; Riva et al. 2019; Xie et al. 2019; Nika et al. 2020). Trabajos recientes, incluyen estrategias que permiten abordar la priorización de manera integral, basadas en la concentración de los compuestos y frecuencia o intensidad de su ocurrencia, distribución espacial, eficiencia de remoción en las plantas de tratamiento de aguas residuales, potencial de bioacumulación, persistencia y toxicidad para organismos acuáticos (Tsaboula et al. 2016; Gros et al. 2017; Čelić et al. 2019).

Una herramienta similar aplicada a emergentes fue desarrollada por los Perfiles de Toxicidad Acuática (ATPs) de la Agencia de control de la contaminación de Minnesota (Streets & Dobbins 2017). La misma constituye un método de evaluación rápido que incorporan información química específica, incluida la toxicidad aguda, actividad endocrina, propiedades fisicoquímicas y datos de frecuencia de ocurrencia, en la evaluación del potencial impacto ambiental de CEs. Dado el carácter conservador de los umbrales empleados en esta herramienta, estima el potencial de que un químico sea peligroso protegiendo contra la posibilidad de cometer errores de tipo II (es decir, concluir falsamente que no hay potencial efectos adversos). La misma ha sido utilizada de manera exitosa para evaluar el riesgo de 117 CEs detectados en el noreste de Minnesota y priorizar esfuerzos de investigación y gestión en la región (Deere et al. 2021).

I.3.4 Técnicas de espectrometría de masas de alta resolución para la evaluación del riesgo ambiental

La información sobre la presencia y concentración de CEs proporciona indicios importantes para evaluar el riesgo y la integridad de los ecosistemas acuáticos. Sin embargo, no es técnicamente fácil analizar con precisión el gran número de CEs a nivel traza que existen en el ambiente. Las técnicas de HRMS han sido sugeridas como enfoques novedosos para priorizar contaminantes ambientales utilizando información sobre la frecuencia de ocurrencia al igual que índices relevantes para la concentración (ej. área del pico) proporcionados por análisis cualitativos (Singer et al. 2016; Hollender et al. 2017).

La priorización basada únicamente en efectos, sin tener en cuenta la frecuencia de ocurrencia de los compuestos, podría excluir contaminantes potencialmente tóxicos de un plan de seguimiento y, en consecuencia, de la evaluación del riesgo. Esto resulta en una subestimación del riesgo del ambiental determinado. Para superar las limitaciones de este método, la información de exposición (ej. ocurrencia y concentración) debe incluirse en una priorización. La información sobre la exposición a sustancias químicas se puede ampliar considerablemente utilizando técnicas de *non-target screening* (Gago-Ferrero et al. 2015; Aalizadeh et al. 2016; Avagyan et al. 2016; Bade et al. 2016; Hollender et al. 2017).

Park et al (2018) sugieren una técnica de priorización que consta de cuatro pasos, incluido el *non-target screening*, que está diseñada para detectar la presencia de la mayor cantidad de sustancias posibles. De esta forma, se extrae la primera lista priorizada de contaminantes utilizando una lista de sospechosos a través de dd- MS², que son ordenados según la frecuencia de aparición y las áreas de los picos cromatográficos. Los contaminantes tentativos seleccionados luego se confirman paralelamente usando estándares de referencia y se clasifican después de un análisis *target* semi cuantitativo. Finalmente, se ordenan por frecuencia de ocurrencia y concentración, identificando una lista de compuestos cuya inclusión es sugerida en un plan de seguimiento. Los autores señalan que, a pesar de los resultados exitosos obtenidos, la plausible estimación de la concentración utilizando el tamaño de pico sigue siendo un tema de estudio futuro para mejorar el algoritmo de clasificación de priorización basado en NTS.

Otro enfoque, es el aplicado por Creusot et al (2020) donde utilizaron la revisión retrospectiva de datos HRMS/MS para investigar la presencia ambiental de azoles antifúngicos en numerosos sitios con diferentes usos del suelo y su distribución en los distintos compartimentos ambientales. El flujo de trabajo aquí consistió en cuatro pasos: (i) investigación de literatura (según uso y ocurrencia), (ii) análisis retrospectivo de HRMS/MS almacenado de manera digital (ej. archivo de muestra), (iii) reinyección de muestras disponibles para su confirmación utilizando análisis target y (iv) comparación con el modelo de partición. Los autores afirman que el análisis retrospectivo de los datos HRMS/MS puede mejorar el conocimiento actual sobre la exposición y los riesgos relacionados con los productos químicos de preocupación emergente y pueden emplearse de manera efectiva en el futuro para tales propósitos.

Gros et al (2017), implementaron una estrategia muy similar en aguas residuales. Utilizando UHPLC-Orbitrap generaron una lista de candidatos por NTS que luego fueron confirmados y validados por *target screening*, La estrategia de priorización se basó en las concentraciones de compuestos, la eficiencia de eliminación, la frecuencia de ocurrencia en las plantas de tratamiento y en datos *in silico* de toxicidad, persistencia y potencial de bioacumulación.

Finalmente, otro método de priorización, es a través de la herramienta in silico personalizable (SusTool) que permite generar listas de compuestos sospechosos por HRMS. La misma es una herramienta de libre acceso que permite crear listas de detección, diseñadas específicamente para la detección de compuestos orgánicos peligrosos en varios compartimentos ambientales. De esta forma, se construyó una base de datos que consta de ~32 000 compuestos orgánicos relevantes para el medio ambiental y potencial de alteración endocrina, junto con índices de emisiones y cantidad (Dürig et al. 2019). Sin embargo, los autores de esta herramienta remarcan que las listas de sospechosos pueden incluir productos químicos que son un reto de analizar debido a limitaciones analíticas, como la posibilidad de ionización del compuesto en MS. Los mismos señalan que esto podría solucionarse mediante la integración de un modelo de predicción para compuestos ionizables usando GC-HRMS (ionización por impacto electrónico) y LC-HRMS (ESI).

I.3.5 Regulación y manejo de contaminación emergente en cuerpos de agua, situación internacional y nacional.

A nivel de la Unión Europea, se han abocado esfuerzos para poder establecer una red de monitoreo eficiente que contemple el enfoque integrado para la protección, mejora y uso sostenible del agua establecido por la Directiva Marco del Agua (EC 2000). Por ejemplo, la red DNAqua tiene objetivo nuclear investigadores de diferentes áreas con la tarea de identificar herramientas genómicas, y nuevos índices y métricas eco-genómicas, para la evaluación de la biodiversidad y el monitoreo de cuerpos de agua (https://dnaqua.net/about/).

En cuanto a la regulación de CEs a nivel internacional, si bien estos compuestos se definen como contaminantes que actualmente no están incluidos en los programas de control de rutina y que pueden ser candidatos para una regulación futura, existen algunos ámbitos de regulación, como la red de laboratorios de referencia, centros de investigación y organizaciones relacionadas al monitoreo de sustancias ambientales emergentes (NORMAN) (https://www.norman-network.net/). El fin de esta red es mejorar el intercambio de información sobre estos compuestos y fomentar la validación y armonización de métodos de medición y herramientas de seguimiento comunes para que se puedan cumplir mejor los requisitos de los evaluadores y gestores de riesgos. En concreto, busca tanto promover como beneficiarse de las sinergias entre equipos de investigación de diferentes países en el campo de las sustancias emergentes.

Además, la comisión europea estableció una lista de sustancias llamando a un monitoreo conjunto en el marco de la política de aguas seleccionadas en base a que, la información disponible, indica que pueden poseer un riesgo significativo hacia o a través del ambiente acuático, pero para las cuales la información de monitoreo es insuficiente para llegar a una conclusión (EU, 2018/840). De esta forma, las sustancias altamente tóxicas que se utilizan en muchos países miembros de esta comisión y se descargan en el medio acuático, pero no se controlan o rara vez se controlan, deben considerarse para su inclusión en la lista de vigilancia. En la misma, se establece para cada compuesto un límite de detección que debe ser, al menos tan bajo como su valor de PNEC específico de la sustancia en la matriz pertinente.

A nivel nacional, la Dirección Nacional de Calidad y Evaluación Ambiental (DINACEA), cuenta con una plataforma donde se centraliza la información proveniente de distintos programas

de monitoreo de calidad de agua de diferentes cuencas del país. Además, cuenta con una serie de indicadores para evaluar el estado del ambiente como concentración de Fósforo Total, concentración de clorofila a, Índice del Estado Trófico, Demanda Bioquímica de Oxígeno, entre otros. Sin embargo, aún falta profundizar en indicadores que puedan contemplar la calidad de agua con un enfoque integral, incluyendo, por ejemplo, la presencia nuevos contaminantes químicos, y efectos biológicos comunitarios expresados a través de índices bióticos.

Como se mencionó anteriormente, los microorganismos son altamente sensibles a cambios en el ambiente incluyendo la presencia de contaminantes. Es por ello, que se ha propuesto su uso como parte de técnicas complementarias a los métodos químicos convencionales usados actualmente para monitorear niveles de contaminantes (Caruso et al. 2015; Sanja et al. 2015).

I.4 Comunidades microbianas y contaminación emergenteI.4.1 Indicadores de contaminantes basados en estructura taxonómica

En un comienzo, la mayoría de los estudios de los impactos de los contaminantes en la estructura taxonómica de las comunidades bacterianas utilizaban comunidades de suelo (Zhang et al. 2009b). Estos estudios mostraban el cambio comunitario en presencia de tipos de contaminantes específicos, como los metales pesados (Gillan et al. 2005), carga orgánica (Bissett et al. 2007) o hidrocarburos policíclicos aromáticos (PAHs) (Zhou et al. 2009). En estos estudios se demuestra que, tanto los contaminantes químicos como los metales alteran la composición de las comunidades microbianas ya que seleccionan microorganismos que son capaces de degradar o transformar químicamente estos compuestos (Nogales et al. 2011).

Los efectos de la contaminación por estos compuestos sobre la estructura taxonómica de las comunidades microbianas son variados. Se han observado disminuciones en la diversidad de la comunidad bacteriana en condiciones de laboratorio tras la exposición tanto a metales como a PAHs (Zhou et al. 2009; Wang & Tam 2011). Sin embargo, los patrones en la diversidad no siempre son sencillos ni generalizables. Por ejemplo, a concentraciones intermedias, se ha demostrado que el Cadmio causa un aumento en la diversidad de la comunidad bacteriana (Zhang et al. 2009b), ya que los metales pueden actuar como micronutrientes esenciales en estas concentraciones (Magalhães et al. 2011). Por otro lado, altas concentraciones de Cadmio en el mismo estudio causaron una disminución en la diversidad lo que indica la existencia de un umbral de tolerancia al metal. Algunos trabajos muestran que las respuestas negativas de las comunidades bacterianas a los contaminantes antropogénicos han sido más claras durante la exposición temprana de un sistema no contaminado. Sin embargo, la diversidad tiene el potencial de volver a la de un estado imperturbable una vez se elimina el factor estresante, aunque algunos miembros de la comunidad pueden cambiar (Ager et al. 2010). En sistemas contaminados de forma crónica, se ha demostrado que la diversidad es un indicador pobre del estrés del ecosistema, ya que puede recuperarse debido a la divergencia y la proliferación de especies tolerantes (Gillan et al. 2005). En tales casos, la equitatividad puede proporcionar una mejor medida de reducción de redundancia funcional y resiliencia de las comunidades, ya que, las comunidades con alta equitatividad son más propensas a ser funcionalmente estables después de una perturbación (Wittebolle et al. 2009). En este sentido, el avance en las técnicas de NGS han permitido caracterizar de forma detallada los taxones raros y dominantes dentro de las comunidades (Sun et al. 2013; Korlevic et al. 2015). Esto ha ampliado significativamente la comprensión limitada de la respuesta de las comunidades bacterianas a la contaminación por PAHs, PCBs y metales (Gillan et al. 2005; Zhou et al. 2009; Ager et al. 2010; Quero et al. 2015; Zhang et al. 2020).

Los estudios de impacto de contaminantes sobre comunidades microbianas en sistemas acuáticos incluyen ecosistemas marinos (Nogales et al. 2011), costeros (Quero et al. 2015), estuarios (Jeffries et al. 2016) y más recientemente ríos urbanos (Zhenchao et al. 2017) y aguas residuales (Subirats et al. 2019). En todos ellos se denotan cambios en la estructura natural de las comunidades microbianas frente a la exposición a diferentes contaminantes. En los últimos años se ha avanzado hacia el estudio de impacto sobre las comunidades frente a otros contaminantes más allá de los clásicos, incluidos los CEs. Por ejemplo, Subirats et al (2019) encontraron que las comunidades bacterianas expuestas a aguas residuales destinadas a la reutilización agrícola, mostraron una abundancia significativamente mayor de genes que codifican resistencia a los betalactámicos y carbapenémicos. También, Zhenchao et al (2017) estudiaron la distribución de genes de resistencia a antibióticos (ARG) en ríos urbanos encontrando que los cambios en la comunidad microbiana causados por alteraciones en la calidad del agua podían ser responsables de la distribución de ARG.

1.4.2 Indicadores de contaminantes basados en estructura funcional. Ejemplo: seguimiento de la resistencia a los antibióticos a través de la metagenómica

Uno de los problemas de contaminación de las aguas superficiales actuales, es la propagación de bacterias resistentes a antibióticos (ARB) y genes de resistencia a los antibióticos (ARG) que se han vuelto un desafío serio y creciente para la salud pública, siendo un tipo de contaminante emergente crítico (Pruden et al. 2006; Coutinho et al. 2014; Xu et al. 2016). Se estima que alrededor de 100.000 toneladas de antibióticos son producidas anualmente (Boeckel et al. 2015). Paralelamente a la producción de antibióticos, la resistencia a los mismos es un mecanismo protector antiguo en bacterias como defensa contra sus propios antibióticos o un subproducto de su evolución en proximidad de bacterias cercanas productoras de estos compuestos, siendo parte del ecosistema natural microbiano (D'Costa et al. 2011; Perry & Wright 2013). La función principal de los antibióticos naturales es inhibir el crecimiento de otros miembros de la comunidad favoreciendo así a sus productores en la competencia por los recursos. Se espera que las concentraciones de antibióticos producidos naturalmente sean bajas (en el orden de ngL⁻¹), por lo que su contribución a la contaminación ambiental es considerada como no significativa (D'Costa et al. 2007; Kümmerer 2009). Sin embargo, el uso de antibióticos en la salud humana y animal representa un exceso de carga para los ecosistemas (Pruden et al. 2006; Rizzo et al. 2013; Xu et al. 2014; Rodriguez-Mozaz et al. 2015; Zhang et al. 2016).

Los estudios de ARG como contaminantes ambientales, comenzaron a realizarse muy recientemente (Rysz & Álvarez 2004). Pey et al. (2006) y Pruden et al. (2006) exploraron por primera vez los ARG como contaminantes emergentes en varios compartimentos ambientales en el norte de Colorado (Estados Unidos), encontrando que las concentraciones de los genes de resistencia de varias tetraciclinas y sulfonamidas fueron significativamente mayores en ambientes directamente impactados por las actividades urbanas/agrícolas, que en ambientes prístinos y menos impactados. Es decir, el número de ARG aumentaba en las proximidades a los ecosistemas asociados a fuentes puntuales (ej. Plantas de tratamiento de aguas residuales y fábricas farmacéuticas) o difusas (ej. Granjas ganaderas) de contaminación, siendo este un patrón constante (Chee-Sanford et al. 2001, 2009; Lapara et al. 2011; Czekalski et al. 2014; Jia et al. 2014; Rodriguez-Mozaz et al. 2015; Zhang et al. 2016).

A su vez, diferentes estudios demostraron un impacto directo de los efluentes de las PTAR en la prevalencia de ARG en agua de río, sedimentos y biofilms de lecho de río (Pruden et al. 2006; Rizzo et al. 2013; Xu et al. 2014; Czekalski et al. 2015; Di Cesare et al. 2015; Subirats et al. 2017). Trabajos recientes demostraron que las aguas residuales tratadas contribuyen significativamente a aumentar tanto el conjunto de ARG como la probabilidad de transferencia de genes entre la población de bacterias en ambientes acuáticos (Hembach et al. 2017; Pallares-Vega et al. 2019; Subirats et al. 2019).

La acción bactericida de los antibióticos puede causar cambios en la composición de las comunidades microbianas naturales mediante la inhibición selectiva de bacterias susceptibles. Además, la exposición de las comunidades naturales a los antibióticos podría conducir a la selección de bacterias resistentes, que pueden luego transferir sus genes de resistencia a bacterias oportunistas patógenas en el medio ambiente. La transferencia horizontal de genes (HGT) se considera la principal causa de aparición y rápida propagación de genes de resistencia a antibióticos (ARGs) entre las células bacterianas (Jian et al. 2021). Diversos estudios han demostrado que las variaciones en la estructura de la comunidad microbiana y los elementos genéticos móviles (MGE) se correlacionan significativamente con perfiles ARG en suelo, lodo y agua potable (Forsberg et al. 2014; Jia et al. 2015; Su et al. 2015). Para entender los factores que contribuían al perfil y diseminación de ARG, Zhout et al (2017) analizaron 258 ARG usando qPCR de alto rendimiento. Realizaron un análisis de partición de variación que mostró que la variación de las comunidades microbianas fue el principal factor que afectó la distribución de ARG. Estos resultados implican que los cambios en la comunidad microbiana debido a los cambios en la calidad del agua pueden conducir a la propagación de ARG y que la contaminación puntual en aguas superficiales puede ser un factor importante que afecta la abundancia generalizada de ARG (Zhou et al., 2017).

La metagenómica se define como el análisis de microorganismos basado en datos genómicos (es decir, un conjunto de genomas microbianos de una comunidad) obtenidos directamente del medio ambiente (Handelsman et al. 1998). Como tal, una muestra metagenómica consiste en millones de lecturas cortas, para las cuales se desconocen su origen taxonómico y sus coordenadas genómicas. Esta metodología proporciona acceso al contenido genómico de las comunidades de microorganismos en el ambiente. Además, permite la caracterización del

potencial de expresión génica de muestras ambientales y secuencias no representadas en bases de datos (Gilbert & Dupont 2011). Por lo general, para caracterizar un metagenoma, sus secuencias se anotan en función de su similitud con genes de función conocida (ej. utilizando la base de datos Pfam (Finn et al. 2014)). Estos datos se resumen como recuentos de lecturas asignadas a diferentes genes funcionales (Quince et al. 2017).

El análisis metagenómico basado en secuenciación de alto rendimiento es un método rápido, universal y preciso para la detección y cuantificación de un amplio espectro de ARG, pudiendo superar los inconvenientes de los métodos anteriores si la profundidad de secuenciación y las herramientas de análisis son adecuadas (Li et al. 2015). Dicho perfil genético informático brinda oportunidades para la realización de un análisis estadístico sólido para cuantificar la contribución de la fuente al nivel de contaminación ARG en un ambiente (Li et al. 2020). De hecho, uno de los notables hallazgos a partir de esta herramienta, incluyen la presencia generalizada de ARG en bacterias intestinales comensales (Donia et al. 2011) y el seguimiento de patógenos de brotes humanos (Loman et al. 2013). Lekunberri et al (2018) utilizaron un enfoque metagenómico para explorar y comparar la presencia de ARG y MGE en muestras de agua recolectadas tanto aguas arriba como aguas abajo del punto de descarga de una PTAR. Los autores encontraron que los metagenomas aguas abajo mostraron un aumento drástico en la abundancia de ARG, así como marcadores de MGE, particularmente integrones y elementos de secuencia de inserción de región común (ISCR). Finalmente, Zhang et al (2020) también en las PTAR, utilizando análisis metagenómicos y de redes, encontraron que los taxones bacterianos podrían desempeñar un papel decisivo en la configuración de las composiciones de ARG en estos sistemas. En este trabajo encontraron, por un lado, una correlación significativa entre el perfil de ARG y de la comunidad microbiana, y además al estudiar los patrones de co-ocurrencia a través del análisis de redes, se detectaron diferentes géneros bacterianos como potenciales huéspedes de diferentes subtipos de ARG.

OBJETIVOS

Objetivo general

Evaluar la estructura taxonómica y funcional de las comunidades microbianas acuáticas y explorar su uso como indicador informativo de la calidad ambiental en ecosistemas acuáticos, con énfasis en contaminantes emergentes

Objetivos específicos

- ✓ Implementar un método multiresiduo de preparación de muestra para la identificación y cuantificación de contaminantes emergentes en aguas por nano-LC/HRMS.
- ✓ Evaluar la distribución espacial y temporal de diversos contaminantes emergentes en las cuencas de las Lagunas de Rocha y Castillos, identificando distintos niveles de impacto.
- ✓ Evaluar la composición taxonómica de las comunidades bacterianas en dichas cuencas, y explorar su uso como indicadores de los distintos niveles de impacto identificados.
- ✓ Determinar la presencia de genes de resistencia a antibióticos en las cuencas de las Lagunas de Rocha y Castillos a partir de secuencias de metagenómica y estudiar su potencial como indicadores de los distintos niveles de impacto identificados.

CAPITULO I: Determinación y análisis de riesgo de contaminantes emergentes en las cuencas de las Lagunas de Rocha y Castillos

ŧ-

.
1.1 Antecedentes

El uso de LC/HRMS con instrumentación Orbitrap o de tiempo de vuelo (TOF) se ha vuelto central para la identificación y cuantificación simultánea de contaminantes *target* y *non target* en el medio ambiente acuático, con la posibilidad de implementar distintos flujos de trabajo que aumentan considerablemente el alcance analítico de los compuestos a analizar (Robles-Molina et al. 2014a; Bade et al. 2015; Wang et al. 2019; Diamanti et al. 2020; Nika et al. 2020). Esto también implica la implementación de distintos criterios de identificación para la confiabilidad de los datos obtenidos (Schymanski et al. 2015).

De acuerdo a los criterios de la guía del Documento N° SANTE/11312/2021cuando se trabaja en HRMS, un ion representativo del compuesto de interés es suficiente para su detección. Sin embargo, para la identificación se necesita al menos un ion adicional que usualmente son los iones fragmentos obtenidos mediante MS². De acuerdo con las directrices actuales, en el caso de métodos sin selección de precursores (con un cuadrupolo ampliamente abierto, modo *full scan*), es necesario al menos un fragmento con una precisión de masa de 5 ppm. El pico de este ion fragmento tiene que superponerse con el pico cromatográfico del ion precursor, sin embargo, no existe un valor guía para la relación iónica de estos dos iones. Por otro lado, al existir diferentes niveles de confianza en la identificación en los métodos HRMS, se hace muy difícil de comunicar para poder replicar los resultados de manera concisa y precisa. Es por ello, que algunos trabajos proponen un sistema de clasificación basados en diferentes niveles de detección que cubre las distintas posibilidades de análisis basado en HRMS (Schymanski et al. 2015).

Existen varios antecedentes del estudio de CEs en distintos ambientes incluyendo aguas residuales (Petrovic et al. 2006; Mendoza et al. 2015; Rivera-Jaimes et al. 2018; Picó et al. 2021), ríos y arroyos (Robles-Molina et al. 2014; Pascual Aguilar et al. 2017; Casado et al. 2019; Villa et al. 2020; Köck-Schulmeyer et al. 2021), aguas subterráneas (Jurado et al. 2019) y áreas costeras (Čelić et al. 2019; Köck-Schulmeyer et al. 2019; Xie et al. 2019; Soares et al. 2021). La mayoría de estos trabajos involucran sitios ubicados en el hemisferio norte a pesar que existe un estudio comparativo que muestra una mayor incidencia de estos compuestos en Sudáfrica, Sur de Asia y Sudamérica, donde las concentraciones y frecuencias de detección son mayores en países de ingresos bajos o medianos (Wilkinson et al. 2022). Además, muy pocos abarcan humedales y áreas

protegidas (Chaves et al. 2020; Azcune et al. 2022) o mar abierto (Brumovský et al. 2017; Vanryckeghem et al. 2019). Asimismo, existe poca información de estudios de distribución de CEs a nivel de cuenca (Pascual Aguilar et al. 2017; Köck-Schulmeyer et al. 2021).

La evaluación del riesgo ambiental de los CEs en el medio acuático por lo general se basa en la evaluación del efecto y la exposición utilizando el enfoque de cociente de riesgo (RQ) (Minguez et al. 2014; Papadakis et al. 2015; Singer et al., 2016; Peng et al. 2017; Rivera-Jaimes et al. 2018; Xie et al. 2019). En este contexto, Tsaboula et al (2016) desarrollaron e implementaron un enfoque de priorización de plaguicidas en la cuenca del río Pinios de Grecia, que toma en consideración el nivel de riesgo ambiental teniendo en cuenta la frecuencia de ocurrencia de plaguicidas por encima de ciertos umbrales ambientales, la magnitud de esta desviación y la distribución espacial, así como información sobre el destino y el comportamiento de los plaguicidas en el medio ambiente y el potencial impacto en la salud de los seres humanos. Los resultados obtenidos en ese trabajo de 3 años de monitoreo, proporcionan antecedentes para la toma de decisiones importantes con respecto a la selección de plaguicidas que deben incluirse en la lista de analitos objetivo de los nuevos programas de control y detección de calidad del agua superficial en la cuenca del río Pinios de Grecia.

Las Lagunas de Rocha y de Castillos son dos lagunas costeras ubicadas en la costa atlántica de Uruguay. Ambas cuencas pertenecen a la reserva de biosfera de la UNESCO denominada "Reserva de Biosfera Bañados del Este" desde 1976, y a la Convención de Ramsar para la protección de los humedales. Además, ambas lagunas son Paisajes Protegidos por el Sistema Nacional de Áreas Protegidas. No obstante, en ambas cuencas, se ha observado un aumento de la superficie agrícola y una disminución en la distancia entre campos agrícolas y arroyos y lagunas costeras (Rodríguez-Gallego et al. 2017); y no se ha estudiado la influencia de las principales ciudades de la zona (ciudades de Rocha y Castillos con ~25.500 y 7.500 habitantes respectivamente) en términos de CEs.

1.2 Objetivos

- Caracterizar la ocurrencia de contaminantes emergentes (CEs) a lo largo de las cuencas de las Lagunas de Rocha y Castillos.
- Analizar la distribución espacial de los CEs a lo largo de tres sistemas (arroyos, lagunas y mar costero) abarcando un gradiente de impacto antropogénico.
- ✓ Verificar si existe alguna variación temporal en la ocurrencia y/o concentración de CEs.
- ✓ Caracterizar el riesgo ambiental de los compuestos identificados sobre los ecosistemas acuáticos.
- ✓ Identificar y clasificar potenciales contaminantes específicos a nivel de cuenca para su monitoreo.

1.3 Hipótesis y predicciones asociadas

- H1. La ocurrencia y concentración de CEs dependen directamente del impacto antrópico.
 P1. Se espera que los sitios asociados a los usos del suelo urbano o agrícola presenten mayor número y/o concentraciones más altas de estos compuestos y mayor riesgo ambiental.
- H2. El gradiente ambiental natural dado por la inclusión de diferentes sistemas (arroyos, lagunas, mar costero) está fuertemente relacionado con los usos de suelo y con un concomitante aumento de la dilución dada por el volumen de agua de cada sistema.
 P2. Se espera que los arroyos presenten mayor número y/o concentraciones de CEs más altas que las lagunas y que el mar costero sea el sistema con menor número y/o concentraciones más bajas de CEs.
- H3. Muchos de los CEs se utilizan primordialmente en ciertos períodos del año, mientras que otros se utilizan de forma constante a lo largo del año.
 P3. Se espera que los plaguicidas que se aplican de forma intermitente (ej atrazina, cadusafos, axozistrobina), así como ciertos productos de cuidado personal (ej DEET, principal componente del repelente) exhiban patrones temporales en su concentración, en tanto que los fármacos que se utilizan de forma crónica (ej ibuprofeno, diclofenac) presenten una concentración relativamente estable en los muestreos estacionales.

1.4 Metodología

1.4.1 Área de estudio y toma de muestras

Se recolectaron muestras de agua en 23 puntos de las cuencas de la Laguna de Rocha (LR) y Laguna de Castillos (LC) y mar adyacente. Ambas lagunas se caracterizan por conectarse periódicamente al océano (Figura 2). La conexión con el océano se produce directamente a través de una brecha que se abre en la barra de arena de LR, mientras que en LC la conexión se da a través del Arroyo Valizas. Los muestreos se realizaron a nivel de cuenca incluyendo tres sistemas: arroyos (ST), lagunas (LA) y zonas marinas costeras (CS) (Figura 2). La conectividad con el mar se produce cerca de los puntos de muestro R_CS_08 y C_CS_12 para LR y LC, respectivamente (Figura 3). Durante el muestreo los puntos fueron seleccionados teniendo en cuenta los diferentes niveles de actividad urbana, que incluye un gradiente desde las ciudades de Rocha y Castillos (Figura 4). En la Tabla 1 se incluye una descripción de las características de los puntos de muestreo. Los muestreos fueron realizados en el marco del convenio "Plan de monitoreo de las lagunas costeras de Uruguay" (Convenio DINAMA-CURE 2016), donde, a través de un abordaje interinstitucional se analizaron diferentes aspectos de la calidad de agua, con un enfoque a nivel de cuenca.

Se realizaron cuatro campañas de muestreo estacionales durante el año 2017 para estudiar la variación temporal de los contaminantes. En total, se recogieron 91 muestras de agua. Cada muestra se recolectó de la capa subsuperficial en cada punto de muestreo (que luego se fraccionó en el laboratorio para los diferentes análisis). Antes de la toma de muestra, todas las botellas se enjuagaron con ácido clorhídrico (HCl) al 10%, agua ultrapura (calidad Milli-Q) y con agua del lugar de la muestra. Todas las muestras fueron transportadas en condiciones de refrigeración con hielo hasta su llegada al laboratorio, se mantuvieron a 4 °C y se procesaron inmediatamente.

÷

-0

Figura 2. Área de estudio y localización de los puntos de muestreo. Tomado de Griffero et al (2019).

Figura 3. Cañada de los Olivera. Aguas abajo de la PTAR de la ciudad de Castillos. Sitio C_ST_05.

Figura 4. Arroyo Valizas cercano a su desembocadura en el Océano Atlántico (sitio C_CS_11).

Tabla 1.	Localización	geográfica y	v descripciór	n de los sitios o	de muestreo y	cobertura de uso	de suelo.
		0.					

				Área (en hectáreas, ha)								
	Localización							Bosque			Bañad	Área Total de la
Sitio	Geográfica	Cuenca	Descripción del sitio	Forestación	Agricultura	Laguna	Ganadería	Natural	Olivos	Urbano	os	cuenca
R_ST01	34°27 '38,6''S 54°20'49,1''O	Rocha	Arroyo Rocha, toma de agua para potabilización	7147,58	612,72		8112,94	4565,81		19,25	19,73	20478,03
R_ST02	34°31'8,24''S 54°20'53,71''O	Rocha	Arroyo Rocha, aguas abajo (4.5 Km)) EDAR	11254,69	2108,21	13,80	20809,59	11863,40	3,88	1839,08	45,72	47938,36
R_ST03	34°30'54,04''S 54°15'01,16''O	Rocha	Arroyo Las Conchas	1116,13	2733,58	25,35	8748,42	1033,07		45,38		13718,00
R_ST04	34°35'10,47''S 54°10'44,16''O	Rocha	Arroyo La Palma	504,49	2837,33	91,02	5995,77	166,78		41,16	41,14	9679,00
R ST10	31°34'34,5''S 54°17'07,9''O	Rocha	Embalse de Arroyo La Palma	504,49	2837,33	91,02	5995,77	166,78		41,16	41,14	9679,00
C_ST01	31°34'34,5''S 54°17'07,9''O	Castillos	Arroyo Don Carlos	2002,24	2649,32		8962,88	3461,21		0,69	401,63	17458,00
C_ST02	34°38'41''S 54°17'44,0''O	Castillos	Arroyo Chafalote	3151,56	1355,18		8710,00	3362,50	33,62		12,49	16607,00
C_ST03	34°39'50,8''S 54°15'16,6''O	Castillos	Naciente de Arroyo Chafalote				186,91	118,62				305,53
C_ST04	34°41'05.2''S 54°16'00.9''O	Castillos	Arroyo aguas abajo (6.8 Km) EDAR de ciudad Castillos	2033,30	1781,75		13199,79	1794,85		522,06	694,26	20001,00
C_ST05	34°39'52.0''S 54°12'03.1''O	Castillos	Cañada los Olivera, aguas abajo (2.9Km)) EDAR ciudad de Castillos	2033,30	1781,75		13199,79	1794,85		522,06	694,26	20001,00
R_LA05	34°34'34,5''S 54°17'07,9''O	Rocha	Laguna de Rocha Norte	15508,25	13708,77	7901,55	62041,05	14690,94	3,88	2024,49	5547,58	121433,00
R_LA06	34°21'14.42"S 54°3'38.63"O	Rocha	Laguna de Rocha Centro	15508,25	13708,77	7901,55	62041,05	14690,94	3,88	2024,49	5547,58	121433,00
R_LA07	34°15'1,2''S 54°12'49,7''O	Rocha	Laguna de Rocha Sur	15508,25	13708,77	7901,55	62041,05	14690,94	3,88	2024,49	5547,58	121433,00
C_LA06	34°13'05.08''S 53°53'39.05''O	Castillos	Laguna de Castillos Norte	12954,09	15136,59	8604,68	70179,59	13054,40	386,45	729,62	16513,64	136665,00
C_LA07	34°12'47.28"S 53°53'4.59"O	Castillos	Laguna de Castillos Centro	12954,09	15136,59	8604,68	70179,59	13054,40	386,45	729,62	16513,64	136665,00
C_LA08	34°18'05,9''S 53°56'43,2''O	Castillos	Desembocadura del Arroyo Chafalote	12954,09	15136,59	8604,68	70179,59	13054,40	386,45	729,62	16513,64	136665,00
C_LA09	34°20'03,5''S 53°54'55,2''O	Castillos	Laguna de Castillos Sur	12954,09	15136,59	8604,68	70179,59	13054,40	386,45	729,62	16513,64	136665,00
C_LA10	34°21'58,9''S 53°56'48,6''O	Castillos	Arroyo Valizas (Puente).	11968,61	15122,54	8347,61	68202,41	12846,75	386,45	654,26	16175,95	133921,00
R_CS08	34°21'05,2''S 53°52'35,6''O	Rocha	Desembocadura de Laguna de Rocha en el Océano Atlántico	15508,25	13708,77	7901,55	62041,05	14690,94	3,88	2024,49	5547,58	121433,00
R_CS09	34°21'28.35"S 53°50'36.90"O	Rocha	Mar Costero cercano a la localidad de La Paloma	15508,25	13708,77	7901,55	62041,05	14690,94	3,88	2024,49	5547,58	121433,00
C_CS11	34°20'41.99''S 53°47'18.81''O	Castillos	Arroyo Valizas cercano a su desembocadura	12954,09	15136,59	8604,68	70179,59	13054,40	386,45	729,62	16513,64	136665,00

C_CS12	34°20'22.34''S 53°46'57.44''O	Castillos	Desembocadura de Arroyo Valizas en el Océano	12954,09	15136,59	8604,68	70179,59	13054,40	386,45	729,62	16513,64	136665,00
C_CS13	34°20'32.84''S 53°46'34.14''O	Castillos	Atlàntico Mar costero cercano a la Isla Seca, entre Valizas y Cabo Polonio	12954,09	15136,59	8604,68	70179,59	13054,40	386,45	729,62	16513,64	136665,00

1.4.2 Preparación de muestra, compuestos analizados y soluciones de trabajo

Para el análisis de contaminantes las muestras fueron fraccionadas en frascos de polietileno de alta densidad, luego se filtraron 200 mL de muestra utilizando filtros de fibra de vidrio de 0,7 μ m y se ajustaron a pH 7. Posteriormente, las muestras de agua filtrada fueron fortificadas con 20 μ L de solución de trabajo de Trifenilfosfato (TPP) 10 mgL⁻¹ que se utilizó como compuesto surrogado, como control de la eficiencia de la extracción.

Para la extracción de los compuestos, se llevó a cabo el procedimiento de extracción en fase sólida (SPE) utilizando el mismo esquema descrito por Robles-Molina et al. (2014b). Se utilizaron cartuchos de extracción en fase sólida (SPE) Oasis HLB[™] (200 mg, 6 mL) (Figura 5).

Figura 5. Manifold con cartuchos de SPE Oasis® HLB utilizado durante el tratamiento de agua para el análisis de CEs.

El procedimiento de SPE se realizó en las siguientes etapas: el cartucho se acondicionó con 4 mL de metanol y 8 mL de agua Mili-Q, se cargaron 200 mL de muestra a un flujo aproximado de 5-10 mL min⁻¹, se dejó secar de 3-5 min y finalmente se realizó la elución con dos alícuotas de 4 mL de metanol (MeOH). El extracto recolectado se evaporó bajo una corriente suave de nitrógeno hasta casi sequedad usando un Turbo Vap LV de Zymark (Hopkinton, MA), con un baño María a 37 °C y presión de N₁ de 15 psi. Finalmente, un residuo de aproximadamente 100 μ L se reconstituyó con 2 mL de acetonitrilo (ACN). Con el fin de hacerlo compatible con las condiciones cromatográficas iniciales, el extracto se diluyó 25 veces con una mezcla H₂O/ACN (95:5), obteniendo un factor de concentración final de 4 de la muestra de agua tomada del ambiente (Figura 6).

Figura 6. Esquema de tratamiento de muestra utilizado.

Se seleccionó una lista de 362 CEs como alcance de compuestos *target*. Los compuestos orgánicos analizados se pueden dividir en los siguientes tipos según su uso: fármacos, productos de uso doméstico, drogas de abuso y sus metabolitos, hormonas y plaguicidas. En anexo se muestra una lista detallada de los analitos incluyendo su composición elemental y los datos experimentales utilizados durante la identificación instrumental (Tabla 1 del Anexo).

Las soluciones stock de estándar individuales se prepararon a un nivel de concentración 500 mg L⁻¹ en diferentes solventes dependiendo de la solubilidad y estabilidad de los compuestos (MeOH, isopropanol, ACN y/o agua en medio básico o ácido). Estas soluciones se almacenaron a -20 °C. Luego se prepararon soluciones de trabajo a 1 mgL⁻¹ en ACN, que contenían entre 30 y 50 compuestos mediante métodos de dilución apropiados a partir de las soluciones madre.

1.4.3 Cromatografía líquida de nanoflujo - espectrometría de masas de alta resolución

Se empleó un sistema EASY-nLC 1000 nano-LC (Thermo Scientific, San José, EE-UU.), con la columna Thermo EASY-Spray C18 PepMap®. La detección se realizó con un espectrómetro de masas Q/Orbitrap modelo Q-Exactive (Thermo Scientific, San José, EE-UU.). El sistema incluye un emisor de *nanospray* integrado, conectado al espectrómetro de masas por medio de una carcasa de la fuente Easy-Spray (Thermo Scientific, San José, EE-UU), que tiene una posición única pre-optimizada para la columna nano-LC y proporciona calentamiento de columna y conexión de cámara de dispositivo de carga acoplada (CCD). (Figura 7). Los parámetros del *nanospray* en modo de ionización positiva fueron los siguientes: voltaje del spray: 2.2KV; temperatura capilar: 250 °C; Nivel de RF de lente-S: 60.

La temperatura de la columna se mantuvo a 35 °C. Sus dimensiones fueron de 75 μ m × 150 mm (tamaño de partícula de 3 μ m, poro de 100 Å de diámetro). El volumen de inyección fue de 1 μ L y el caudal fue 200 nLmin⁻¹. Las Fases móviles fueron A y B agua Milli-Q y ACN, respectivamente ambos con ácido fórmico al 0,1% (ν/ν). El programa de elución en gradiente comenzó con 5% B, aumentó a 30% B en 17 min; luego de 30-95% B de 17-32 min. La columna se lavó con 100% B de 32-37 min antes de volver a las condiciones iniciales de 5% B en 1 min y se equilibró durante 4 minutos adicionales. El tiempo total entre inyecciones fue de 42 minutos.

Figura 7. Izquierda: Nano-LC/Q-Exactive Orbitrap. Derecha: Emisor de nanospray.

El instrumento operó en el modo de ionización positiva ya que la mayoría de los compuestos se podían determinar en este modo de ionización y por tiempos operacionales de utilización del equipo. El método de adquisición del Q/ Orbitrap consistió en dos experimentos paralelos con un ciclo de trabajo de aprox. 0,5 s por punto de adquisición: (1) escaneo completo (modo full-scan) a una resolución de 70.000 (en m/z 195) y; (2) disociación inducida por colisión

(a una energía de colisión normalizada de 20 (unidades arbitrarias) sin aislamiento del ion precursor (modo AIF). Se utilizaron las siguientes configuraciones espectrométricas de masas adicionales: (a) Experimento full-scan: control automático de ganancia (AGC) target: 1E06; tiempo máximo de inyección (IT): 200 ms, rango de exploración: 100–750 m/z; (b) Experimento AIF: AGC target: 2E05; IT máxima: 50 ms, resolución: 17.500.

Para la adquisición y el manejo de datos se utilizaron los Software XCalibur 3.0 y TraceFinder versión 3.2 (Thermo Scientific). La información detallada sobre los valores teóricos y experimentales de m/z exactas y tR utilizados para la identificación se presentan en la Tabla 1 del Anexo. Para la identificación y cuantificación, los cromatogramas de iones extraídos (XIC) se reconstruyeron sobre la base de ventanas de extracción de valores de masa exactos de ±5 ppm.

1.4.4 Criterios de identificación

La identificación de los CE se logró mediante la aproximación de *screening target*. Para ello, las mezclas que contenían entre 30 y 100 compuestos se inyectaron en el sistema nanoLC/HRMS para recopilar los datos de tR y masas exactas de los iones objetivo en modo fullscan. El software TraceFinder se utilizó con fines de detección teniendo en cuenta un límite de tolerancia definido para desviaciones de masa y tR, según lo establecido por el Documento N° SANTE/11312/2021. Un compuesto era considerado detectado si la diferencia en el tR era inferior a 0,2 min (con respecto al tR del estándar) y el error de masa inferior a 5 ppm (en comparación con la masa teórica); en base a estudios previos de validación de estos compuestos (Robles-Molina et al. 2014b). Con fines de identificación en muestras ambientales, los archivos de datos sin procesar del modo AIF se buscaron manualmente usando el software Xcalibur para identificar iones de fragmentos característicos. Los compuestos identificados se cuantificaron usando el software TraceFinder basado en las masas exactas del ion precursor.

Teniendo en cuenta la complejidad del enfoque de *screening* en muestras ambientales, se establecieron criterios de identificación de contaminantes basado en la categorización *target* y tentativa de los compuestos detectados en las muestras. Dicha categorización incluye coincidencia de tR, error de masas del ion precursor $[M + H]^+$ y de los fragmentos proporcionados en modo AIF. Con base en estos criterios, los compuestos detectados se agruparon en tres categorías diferentes:

-Categoría I: Identificado Tipo 1: coincidencia en tR + detectado [M + H]⁺

(HRMS full-scan) + 2 iones producto en modo AIF

-Categoría II: Identificado Tipo 2: coincidencia tR + detectado [M + H]⁺

(HRMS full-scan) + 1 ion AIF (HRMS)

-Categoría III: Candidatos tentativos: coincidencia tR + detectado [M+H]+ (HRMS full-scan)/ Sin iones AIF

El límite de identificación (LOI) (Tabla 2) se definió como la concentración mínima de analito inyectado en la curva de calibración en matriz que cumple con una de estas categorías. Solo los compuestos que presentaron al menos un ion AIF en los estándares fueron monitoreados en las muestras ambientales. Los compuestos encontrados en muestras ambientales dentro de las categorías I y II se informaron como hallazgos positivos, mientras que aquellos hallados en la categoría III fueron reportados como candidatos tentativos y deberían ser analizados en estudios futuros. No se consideraron los hallazgos de categoría III con fines de cuantificación ni en la evaluación del riesgo ambiental. Los compuestos de las categorías I y II presentaron al menos 2 iones con error de masa \leq 5 ppm (Petrovic et al. 2006; Bade et al. 2015; SANTE 2021; Ali Asghar et al. 2018). En la Figura 1 del Anexo se muestran ejemplos seleccionados para la detección de contaminantes basada en estas 3 categorías. Además, se incluye una figura también en el Anexo de ejemplos obtenidos utilizando el flujo *non-target* a modo de análisis exploratorio, que es una de las posibilidades que también brinda el equipo utilizado (Figura 2 Anexo).

1.4.5 Control de calidad, curvas en matriz y límites de cuantificación

Una de las principales ventajas otorgadas por el uso de nano-LC es que permite reducir considerablemente el efecto matriz (Meher & Chen 2017). Esto se debe a que las gotas de nanospray son más pequeñas, por lo que el número de moléculas de analito en la gota primaria, que entra al MS, se incrementa aumentando así la eficiencia en la ionización (Figura 8). El uso de nano LC-MS se implementó para el análisis de CEs, plaguicidas, micotoxinas y drogas veterinarias mostrando mejoras en sensibilidad y reducción del efecto matriz a través del uso de mayores factores de dilución (Moreno-González et al. 2017a,2017b; Alcántara-Durán et al. 2018, 2019).

Figura 8. Comparación de eficiencia de ionización en ESI y Nano-ESI. Tomado de: http://Principle of Nanoelectrospray Ionization and High Sensitivity Analysis (uab.edu).

Para el control de calidad, se inyectaron viales blancos (fase móvil) cada 5 inyecciones de muestra para verificar la ausencia de efectos de arrastre. Además, se inyectaron tres controles de calidad diariamente de estándares en matriz (0,1, 1 y 10 µgL⁻¹) para verificar los cambios del instrumento a lo largo de las secuencias. Las muestras se inyectaron intercaladas con inyección de blancos para evitar efectos de transferencia entre diferentes muestras, tres controles de calidad (QC) fueron inyectados diariamente para verificar la respuesta del analito a lo largo del estudio. No se observó una desviación significativa de la señal a lo largo de la adquisición de datos sobre las muestras y los QC estudiados. Los datos cuantitativos se obtuvieron a través de la interpolación en curva de calibración en matriz.

Se consideró el nivel de calibración más bajo (LCL) como la concentración mínima de analito cuyo $[M + H]^+$ del XIC (con una ventana de extracción de masa estrecha de ± 5 ppm sin filtros suaves) mostró una relación señal-ruido (S/N) de 10 en términos de área de pico. Se calculó el límite de cuantificación (LOQ) considerando el LCL y como mínimo el valor LOI. El método de preparación de muestra utilizado en este estudio, se ha aplicado ampliamente por más de diez años en el grupo de investigación donde se realizó el trabajo en el Departamento de Química, Física y Analítica de la Universidad de Jaén, España (Martínez Bueno et al. 2007; Moreno-González et al. 2017a, 2017b; Robles-Molina et al. 2014a,b) usando diferentes tipos de muestras de agua con un alcance analítico similar. Compuestos con recuperaciones fuera del rango normalmente aceptado de 70-120% (Robles-Molina et al. 2014b) fueron excluidos de la evaluación de riesgo ambiental. Para los compuestos identificados como positivos, se realizó la corrección por tasa de recuperación (SANTE 2021).

Se fortificaron todas las muestras con TPP a un nivel final de 1 μ gL⁻¹ antes del procedimiento de SPE con el objetivo de verificar la eficiencia global del proceso. No se aplicó corrección por tasa de recuperación del compuesto surrogado, sino que se consideró la repetitividad del TPP como criterio de control de calidad para la detección de valores atípicos. Tanto las curvas de calibración de estándar externas (en solventes) como las de matriz se realizaron utilizando los mismos niveles de concentración final: 0,0001, 0,001, 0,01, 0,1, 1 y 10 μ gL⁻¹ en vial.

El efecto matriz (EM) se evaluó comparando las pendientes de las curvas de calibración en matriz de mezclas de muestras representativas y las curvas de calibración de estándar externo en solvente empleando la siguiente fórmula:

EM (%) = [(pendiente de la curva de calibración en matriz/ pendiente de la curva de calibración en solvente) – 1] × 100

De esta forma, un valor de 0% significa que la señal del analito no se ve afectada por los componentes de la matriz. Los valores positivos representan un aumento de la señal inducida por la matriz y los valores negativos son una evidencia de la supresión de la señal del analito.

			Criterio de id	entificación						Resumen	de resultados		
Compuesto	CAS #	Tipo de	Categoría	LOI	LCL	LOQ	Rec**	Efecto	DF	Media	Min	Max	
		Contaminante		$(\mu g L^{-1})$	$(\mu g \ L^{-1})$	(µg L ⁻¹)	(%)	Matriz (%)	(%)	$(\mu g L^{-1})$	(µg L ⁻¹)	$(\mu g \ L^{\cdot 1})$	
(-)-N- Metilefedrina *	42151-56-4	Drog Abus	Ι	1	0,0001	1	57	15	13,19	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
17-β-estradiol	2529-54-6	Hormona	Ι	0,1	0,1	0,1	84	10	18,68	2,35	0,09	7,90	
Amitraz	33089-61-1	Plaguicida	Ι	0,1	0,01	0,1	100	9	5,49	0,07	0,03	0,12	
Atrazina	1912-24-9	Plaguicida	Ι	1	0,0001	1	79	2	57,14	0,49	0,21	1,10	
Atropina*	803615-91-0	Fármaco	Ι	0,01	0,001	0,01	64	12	13,19	0,04	0,03	0,05	
Azoxistrobina	131860-33-8	Plaguicida	Ι	0,0001	0,01	0,001	101	14	2,20	0,30	0,30	0,31	
Cafeina	58-08-2	Uso Doméstico	Ι	0,1	0,1	0,1	80	6	61,54	0,22	0,05	1,17	
Carbamazepina*	298-46-4	Fármaco	Ι	0,1	1	0,1	65	7	5,49	0,52	0,34	0,71	
Carbendazin	10605-21-7	Plaguicida	Ι	10	0,0001	10	117	15	1,10	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Carbofurano*	1563-66-2	Plaguicida	Ι	0,1	0,1	0,1	41	13	13,19	0,10	0,09	0,12	
Clorpirifos etilo*	2921-88-2	Plaguicida	Ι	1	10	1	50	5	9,89	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Diazinona*	333-41-5	Plaguicida	Ι	0,001	0,1	0,001	64	3	12,09	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Etion*	563-12-2	Plaguicida	Ι	1	0,1	1	27	18	6,59	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Fenazaquín	120928-09-8	Plaguicida	Ι	0,01	0,0001	0,01	74	15	84,62	0,08	0,05	0,63	
Fluazifop-p-butilo *	79241-46-6	Plaguicida	Ι	1	0,001	1	16	27	75,82	0,51	0,51	0,51	
Hexitiazox *	78587-05-0	Plaguicida	Ι	1	0,1	1	18	5	15,38	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Ibuprofeno	62741-78-0	Fármaco	Ι	0,1	1,0	0,1	99	0	5,49	0,30	0,30	0,30	
Ketoprofeno*	22071-15-4	Fármaco	Ι	0,0001	0,0001	0,0001	63	14	5,49	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
Metolaclor	51218-45-2	Plaguicida	Ι	0,1	0,01	1	85	2	17,58	1,60	0,23	14,64	
Morfina	143-70-4	Fármaco	Ι	1	0,1	1	87	3	10,99	<loq< td=""><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	

÷ •

Tabla 2. Parámetros analíticos y resumen de resultados de los compuestos detectados.

Neburon*	555-37-3	Plaguicida	Ι	0,1	0,1	0,1	67	4	13,19	0,05	0,04	0,13
Nicotina*	1127-83-9	Uso Doméstico	Ι	0,001	0,001	0,1	43	3	13,19	0,36	0,15	0,74
Paracetamol	103-90-2	Fármaco	Ι	0,0001	0,1	10	70	2	4,40	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Paraxantina*	188297-90-7	Uso Doméstico	Ι	0,1	0,001	0,1	35	4	13,19	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Pencicuron *	66063-05-6	Plaguicida	Ι	1	0,01	1	59	7	52,75	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Pendimetalina	40487-42-1	Plaguicida	Ι	10	50	10	96	4	51,65	3,08	3,08	3,08
Propamocarbo*	24579-73-5	Plaguicida	Ι	1	0,1	10	37	1	10,99	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Prosulfocarbo*	52888-80-9	Plaguicida	Ι	0,001	0,1	0,001	35	4	96,70	0,03	0,02	0,08
Piraclostrobina*	175013-18-0	Plaguicida	Ι	0,1	0,01	0,1	56	2	40,66	0,04	0,04	0,13
Piridabén*	96489-71-3	Plaguicida	Ι	0,1	0,0001	0,1	29	2	28,57	0,02	0,01	0,04
Tamoxifeno	10540-29-1	Fármaco	Ι	0,1	0,1	0,1	96	10	64,84	0,27	0,06	2,40
Trimetoprima *	738-70-5	Fármaco	Ι	0,1	0,1	0,1	64	3	5,49	0,05	0,04	0,06
17-α-Etinilestradiol	57-63-6	Hormona	II	0,1	0,1	0,1	87	4	4,40	11,57	0,13	45,51
Atenolol	29122-68-7	Fármaco	II	10	0,001	10	86	18	2,20	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Benzoilecognina	519-09-5	Drog Abus	II	0,1	0,0001	0,1	82	4	29,67	0,83	0,32	1,33
Bitertanol*	55179-31-2	Plaguicida	II	10	0,1	10	66	1	7,69	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Cadusafos	95465-99-9	Plaguicida	Π	1	1,0	1	81	3	10,99	0,67	0,34	1,32
Clofentezina	74115-24-5	Plaguicida	Π	10	0,01	10	59	19	6,59	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Clomifeno	911-45-5	Hormona	Π	1	0,001	1	100	17	13,19	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Cocaina	47195-07-3	Drog Abus	Π	0,1	0,1	0,1	100	3	12,09	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Codeina*	76-57-3	Drog Abus	Π	10	0,1	10	88	5	9,89	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Ciprodinilo*	121552-61-2	Plaguicida	II	0,001	0,1	1	60	9	5,49	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
DEET	26906-15-0	Uso Doméstico	II	0,1	0,1	0,1	53	4	67,03	0,18	0,02	<loq< td=""></loq<>
Diclofenac	1186132-01-3	Fármaco	Π	10	1	10	74	3	3,30	<loq< td=""><td><loq< td=""><td>2,24</td></loq<></td></loq<>	<loq< td=""><td>2,24</td></loq<>	2,24
Diflufenican*	1448777-04-5	Plaguicida	Π	50	1	50	91	2	5,49	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Enrofloxacina*	93106-60-6	Fármaco	Π	10	0,001	10	52	10	12,09	2,88	2,88	<loq< td=""></loq<>

Etoxiquina*	91-53-2	Plaguicida	п	10	0,1	10	10	3	2,20	0,01	0,00	2,88
Lomefloxacina*	98079-51-7	Fármaco	II	10	1	10	2	9	5,49	<loq< td=""><td><loq< td=""><td>0,02</td></loq<></td></loq<>	<loq< td=""><td>0,02</td></loq<>	0,02
Oxadiazon*	19666-30-9	Plaguicida	II	1	1	1	78	2	6,59	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Picolinafeno*	137641-05-5	Plaguicida	II	1	0,1	1	32	1	90,11	0,13	0,04	<loq< td=""></loq<>
Proquinazida*	189278-12-4	Plaguicida	II	0,1	0,01	0,1	35	9	39,56	0,01	0,01	0,37
Pimetrozina*	123312-89-0	Plaguicida	II	0,1	0,01	0,1	14	1	4,40	0,06	0,06	0,02
Pirazofos	13457-18-6	Plaguicida	II	0,1	1	0,1	12	2	8,79	0,08	0,08	0,06
Terbutalina	23031-25-6	Fármaco	II	0,1	0,1	0,1	78	14	14,29	0,28	0,16	0,09
Tiabendazol	148-79-8	Plaguicida	II	1	1	1	76	8	4,40	<loq< td=""><td><loq< td=""><td>0,45</td></loq<></td></loq<>	<loq< td=""><td>0,45</td></loq<>	0,45
Δ -9-THC*	1972-08-3	Drog Abus	II	10	0,1	10	88	4	24,18	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Ciprofloxacina*	438571-52-9	Fármaco	III	10	0,1	10	6	16	2,20	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Aclonifeno*	74070-46-5	Plaguicida	III	10	1	10	45	13	2,20	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Azinfos-etilo *	2642-71-9	Plaguicida	III	10	0,1	10	35	4	1,10	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Azinfos-metilo *	86-50-0	Plaguicida	III	1	0,1	1	38	2	1,10	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Bifenox	42576-02-3	Plaguicida	III	50	1	50	75	17	1,10	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Buprofezina *	69327-76-0	Plaguicida	III	1	1	1	47	1	10,99	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Cloroxurón	1982-47-4	Plaguicida	III	0,1	0,1	0,1	87	13	4,40	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Clorpirifos metilo	5598-13-0	Plaguicida	III	10	0,1	10	87	12	1,10	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Cumafós*	56-72-4	Plaguicida	III	10	0,1	10	40	7	7,69	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Diclofentión *	97-17-6	Plaguicida	III	50	1	50	18	13	1,10	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Difenoconazol*	119446-68-3	Plaguicida	III	1	1	1	62	7	5,49	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Dimetametrina *	22936-75-0	Plaguicida	III	10	0,001	10	69	8	2,20	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Diniconazol	83657-18-5	Plaguicida	III	10	0,01	10	60	20	1,10	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Enoxacina*	74011-58-8	Fármaco	III	10	0,1	10	60	4	8,79	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Fluazifop	69335-91-7	Plaguicida	III	0,1	0,001	0,1	85	4	5,49	0,07	0,06	0,11
Ácido flufenámico	530-78-9	Plaguicida	III	0,1	0,0001	0,1	97	3	4,40	1,16	0,09	5,05

- E - - - E -

Indoxacarb*	173584-44-6	Plaguicida	III	0,1	0,1	0,1	16	10	13,19	0,02	0,01	0,05
Mefenacet*	73250-68-7	Plaguicida	III	0,1	0,1	0,1	66	2	6,59	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Miconazol*	22916-47-8	Plaguicida	III	1	10	1	22	0	16,48	0,18	0,18	0,18
Norfloxacina*	70459-02-8	Fármaco	III	0,1	0,1	0,1	12	1	6,59	0,03	0,01	0,03
Ofloxacina	82419-36-1	Fármaco	III	0,1	0,1	0,1	41	17	2,20	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Penconazol	66246-88-6	Plaguicida	III	0,1	0,001	0,1	79	2	8,79	0,09	0,05	0,43
Propranolol*	56354-24-6	Fármaco	III	0,1	0,01	0,1	65	8	7,69	0,24	0,17	0,30
Tebuconazol	107534-96-3	Plaguicida	III	10	0,1	10	83	1	29,67	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Tebufenpirad *	119168-77-3	Plaguicida	III	10	1	10	42	0	52,75	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Trifloxistrobina*	141517-21-7	Plaguicida	III	0,1	0,0001	0,1	30	1	7,69	0,02	0,02	0,03

+ +

*Recuperaciones por debajo de 70%

**Recuperaciones realizadas a 0.5 µgL⁻¹

DF (%): Frecuencia de detección

1.4.6 Análisis de usos del suelo, distribución espacial de CEs y análisis estadístico

El uso y la cobertura del suelo (LULC) se obtuvo de la Dirección Nacional de Ordenamiento Territorial (DINOT), que se hizo siguiendo el Sistema de Clasificación de Cobertura Terrestre de la FAO. basado imágenes de 2015 en Landsat (http://www.mvotma.gub.uy/component/k2/item/ 10010723). Los LULC para las cuencas de las lagunas costeras se ajustaron con base a la clasificación realizada por Rodríguez-Gallego et al. (2017). El sistema de información geográfico fue construido usando QGIS 2.12 (http://www.ggis.org), que contiene el LULC principal para ambas cuencas y la ubicación de GPS de cada punto de muestreo, así como las concentraciones de contaminantes y los resultados de la evaluación de riesgo ambiental. Las capas LULC fueron las siguientes: zonas urbanas, forestación (plantación de árboles exóticos para la producción de madera y pulpa en pastizales sensu; Farley et al. 2005), agricultura, bosque natural, plantación de olivos, humedales y la matriz dominante de pastizales donde se desarrolla la ganadería extensiva.

Para comparar las frecuencias detectadas para cada grupo de contaminantes, es decir, los asociados al uso urbano (fármacos, drogas de abuso, compuestos de uso doméstico, hormonas) y plaguicidas, se realizó un histograma que muestra el número de contaminantes por sitio. La frecuencia de detección (DF, %) para cada compuesto se estimó como el número de veces que se detectó el compuesto sobre el número total de sitios analizados en cada cuenca (incluyendo arroyos, laguna y mar) a lo largo de las 4 estaciones.

Para visualizar (o no) la separación entre ambas cuencas estudiadas (Castillos y Rocha) en base a los CEs, ser realizó un análisis de componentes principales (PCA) sobre el número de compuestos identificados por categoría de CE.

Se estudió la distribución espacial y temporal de los contaminantes utilizando un modelo lineal generalizado (GLM) con una distribución de error de Poisson y la función de conexión log. El GLM se ajustó al número de contaminantes y los tres sistemas analizados (arroyos, lagunas y mar costero) por un lado, y las cuatro estaciones (verano, otoño, invierno y primavera) por otro lado, como variables explicativas. Todos estos análisis se realizaron utilizando el software libre R (versión 3.6.1).

1.4.7 Evaluación de riesgo ambiental

El potencial riesgo ambiental de los CEs detectados en aguas superficiales fue evaluado siguiendo el método del cociente de riesgo (RQ) (Peng et al. 2017; Jurado et al. 2019) como:

RQ=concentración ambiental máxima medida (MECmax)/concentración prevista sin efecto (PNEC).

En Kreuger (1998) y en muchos otros estudios de monitoreo (Vryzas et al. 2009, 2011) se ha informado que los plaguicidas tienen descargas máximas después de fuertes lluvias o eventos de irrigación. Por esto, se espera que las elevadas concentraciones observadas después de estos eventos tengan mayores efectos adversos en la biota local (Liess et al. 2008). Por lo tanto, en lugar de utilizar la media aritmética de todas las medidas, se utilizó el máximo detectado en las concentraciones como valores "MEC" para considerar los eventos pico.

Los índices RQ se transformaron a valores logarítmicos (Ln RQmax) para facilitar las comparaciones con otras variables como número de compuestos con valores de RQ >1. Para la estimación del PNEC se utilizó el método del factor de evaluación (AF) según el Documento de Orientación Técnica de la Comisión Europea (ECTGD) (Van Leeuwen 2003). En base a este enfoque, el PNEC fue calculado dividiendo los datos más bajos de toxicidad aguda (EC50) o crónica NOEC (concentración más baja sin efecto observado) utilizando los valores de las especies más sensibles según el ECTGD (Van Leeuwen 2003). Los valores de NOEC crónicos fueron utilizados cuando estaban disponibles frente a los datos de toxicidad aguda. Cuando los datos de NOEC a largo plazo de tres, dos o un nivel trófico estaban disponibles, el PNEC se calculó utilizando un AF de 10, 50 y 100, respectivamente. Cuando sólo se contaba con los datos de toxicidad aguda se puede expresar como la concentración letal media (LC50). Por ejemplo, en el caso de los peces, es la concentración en agua que mata el 50 % de un lote de prueba de peces dentro de un período continuo de exposición. Alternativamente, se puede expresar como la concentración efectiva media (EC50). En los casos de *Daphnia* o algas como la concentración

de la sustancia de prueba, que resulta en una reducción del 50 % en la movilización o el crecimiento, respectivamente.

Para aquellos compuestos para los que no se disponía de datos sobre el efecto toxicológico, se utilizaron los modelos de Relaciones de Actividad de Estructura Ecológica (ECOSAR), para estimar los efectos ambientales potenciales para cada compuesto (Van der Leeuwen 2013). Los mismos se basan en un sistema predictivo computarizado que estima la toxicidad aguda y crónica de un producto químico para los organismos acuáticos, mediante el uso de Relaciones Estructura-Actividad (SAR) computarizadas. La toxicidad EC50 más baja y los datos de NOEC se obtuvieron de varias referencias (Della Greca et al. 2007; Zha et al. 2008; Van Der et al. 2013; Yuan et al. 2014; Mendoza et al. 2015; Tsaboula et al. 2016; Ecotox de la USEPA) e IUPAC (IUPAC PPDB 2019). Como ya ha sido reportado ampliamente, la clasificación de riesgo se basó en un criterio binario en la que RQ < 1 significa "riesgo bajo o nulo"; RQ≥ 1: "posible riesgo" indicando que puede ser necesaria una investigación más profunda sobre ese compuesto (Emma 2006; Tsaboula et al. 2017).

1.4.8 Evaluación de exposición para plaguicidas

La evaluación de la exposición ambiental se llevó a cabo analizando los datos obtenidos durante el período de muestreo con el fin de proporcionar medidas sobre la intensidad, frecuencia y duración del contacto de la biota con un plaguicida potencialmente dañino. Esta evaluación fue hecha únicamente para plaguicidas ya que para estos compuestos existe una base de datos sólida de algunas de sus propiedades de destino ambiental. La determinación de la duración del contacto entre la biota y los plaguicidas se realizó de acuerdo a la Guía Documento sobre Ecotoxicología Acuática en el contexto de la Directiva 91/414/EEC (EC 2002) tomando en consideración el enfoque de exposición a largo y corto plazo. Solo los plaguicidas con valores de tiempo de disipación DT50 (es decir el tiempo que precisa el compuesto para llegar a la mitad de su concentración) ≥ 2 días (estudio agua-sedimento, pH= 6-9), se consideraron que podían causar una exposición "continua" a la biota, mientras que los plaguicidas con sus respectivos valores de DT50 < 2 días se consideraron que solo podían causar efectos a corto plazo (Tsalouba et al. 2016). En consecuencia, los plaguicidas detectados fueron separados en primer lugar con respecto a los

criterios anteriores. Los datos de los valores de DT50 se obtuvieron de la base de datos de la Universidad de Hertfordshire (PPDB 2013).

1.4.9 Caracterización del riesgo y categorización de CEs

Se implementó el esquema desarrollado por Tsalouba et al (2016) para plaguicidas, para evaluar el riesgo (exposición y peligro) y categorizar todos los CEs. Se seleccionó este esquema ya que contempla un abordaje integral que toma en consideración tanto el nivel de riesgo ambiental como la información sobre la frecuencia de ocurrencia de plaguicidas por encima de ciertos umbrales ambientales, la intensidad de esta ocurrencia y la distribución espacial, así como información sobre el destino y el comportamiento de los plaguicidas en el medio ambiente y el potencial impacto en la salud de los seres humanos. Además, genera un insumo importante para la toma de decisiones en cuanto a la selección de contaminantes a monitorear (Tsalouba et al. 2016). Aunque no fue posible calcular la exposición para algunos emergentes, si se consideraron en el esquema de categorización cuando era posible (ej. cuando presentaban valores de PNEC< LOQ), utilizando los valores de riesgo ambiental. El diagrama de flujo de los pasos seguidos se muestra en la Figura 28. Las 7 categorías de riesgo ambiental fueron las siguientes:

<u>Categoría 1</u>: Plaguicidas considerados con riesgo a largo plazo para los organismos del medio acuático (DT50 \ge 2 días; RQ >1). Candidatos potenciales para el monitoreo de contaminantes específicos de las cuencas de LR y LC (CECL).

<u>Categoría 2:</u> CEs con valores de PNEC inferiores al nivel del límite de cuantificación del método analítico (LOQ) indicando que el método debe ser mejorado. Candidatos potenciales para CECL porque los LOQ obtenidos no cumplen con los criterios de valoración toxicológicos.

<u>Categoría 3:</u> Plaguicidas con menor probabilidad de representar un riesgo significativo a largo plazo para el medio ambiente (DT50 \ge 2 días; RQ < 1).

Categoría 4: Compuestos de las categorías 3 y 6 que tienen el potencial de ejercer un impacto adverso en humanos, clasificado de acuerdo con el Reglamento (CE) Nº 1272/2008 (EC 2008a)

como carcinógenos sospechosos o carcinógenos (categoría 1A o 1B), mutágenos (categoría 1A o 1B), tóxicos para la reproducción (categoría 1A o 1B o 2) o disruptores endócrinos.

<u>Categoría 5:</u> Plaguicidas con efectos tóxicos a corto plazo (DT < 2 días) para los organismos acuáticos y valores de RQ > 1. Se consideraron potenciales candidatos para CECL

<u>Categoría 6:</u> Plaguicidas con efectos tóxicos a corto plazo (DT < 2 días) para los organismos acuáticos y valores de RQ > 1

<u>Categoría 7:</u> CEs detectados presentes, sin embargo, en concentraciones inferiores a sus respectivos valores de LOQ de los métodos analíticos y reportados como trazas. Entre los miembros de esta categoría, los plaguicidas que tienen valores PNEC inferiores a los valores de LOQ respectivo también se consideraron candidatos potenciales para CECL (<u>Categoría 2</u>) ya que los LOQ obtenidos no cumple con los criterios de valoración toxicológicos.

Figura 9. Diagrama de flujo de categorización de CEs. Tomado de Tsalouba et al. 2016.

1.4.10 Enfoque de priorización y nivel de riesgo ambiental

Para decidir qué CEs tenían mayor prioridad dentro de cada una de las 7 categorías, se seleccionaron 4 parámetros para evaluar el riesgo potencial de cada compuesto de acuerdo con los siguientes datos: (a) la **frecuencia de excedencia**, para abordar la exposición de la biota en concentraciones por encima del umbral de seguridad (PNEC), b) el **grado de superación** (valores MECmax superiores a los valores PNEC) para abordar la intensidad de los impactos, (c) la **distribución espacial** para abordar el aspecto espacial de la exposición y (d) el **criterio de persistencia, bioacumulación y toxicidad (PBT)** que tiene en cuenta estas tres características para los organismos acuáticos y/o posible impacto en la salud humana y potencial de disrupción endocrina. A continuación, se presentan las fórmulas utilizadas para los 4 parámetros:

a) Frecuencia de excedencia = $\Sigma n/N$

Donde **n** es el número de detecciones por encima del PNEC y **N** es el número total de detecciones por encima del nivel LOQ respectivo. Los valores resultantes están en el rango de 0-1. Si bien el parámetro anterior considera que algunos plaguicidas pueden ser frecuentemente detectados en concentraciones por encima del umbral de seguridad, el hecho de que algunos de estos productos químicos se encuentren solo en concentraciones bastante bajas, cerca de su umbral de seguridad, podrían pasarse por alto. Es por ello que en el segundo parámetro se expresa la intensidad de los impactos.

b) Extensión de excedencia = MECmax/PNEC

El cociente de riesgo resultante (MECmax/PNEC) luego se escaló de 0 a 1 para permitir la comparación directa de ambos parámetros:

1–10: 0,1 puntos

10-100: 0,2 puntos

100-1000: 0,5 puntos

<1000: 1 punto

El tercer parámetro se consideró teniendo en cuenta que algunos plaguicidas pueden estar ampliamente distribuidos en el área de captación de agua y por lo tanto se examinó la distribución espacial de los compuestos en las cuencas de LR y LC. Este parámetro se expresó como el número de sitios en el que una sustancia fue detectada sobre el número total de sitios de la cuenca (% de sitios en el que se encontró un compuesto en concentraciones por encima del respectivo valor de límite de detección (LOD):

c) Distribución espacial = $\Sigma s/TS *100$

Donde **s** es la suma del número de sitios donde un compuesto fue detectado (incluidos aquellos por debajo de su LOQ) y **TS** es el número total de sitios (n=91). Luego el resultado de este valor se escaló de 0 a 1, para permitir la comparación directa de los tres parámetros:

0-25 %: 0,1 puntos

```
25 %-50 %: 0,2 puntos
```

50 %–75 %: 0,5 puntos

75 %-100%: 1 punto

d) Criterio PBT = (Pw + B + T + EDC) *0.2

Siendo **Pw**: Persistencia en agua dulce (días), **B**: Potencial de bioacumulación, **T**: toxicidad (mg L⁻¹) y **EDC**: alteración endocrina.

El PBT se multiplicó con un factor de 0,2 para dar mayor énfasis a los valores de los otros tres parámetros (frecuencia de excedencia, grado de excedencia, distribución espacial) que representa la presencia de CEs en aguas superficiales bajo los diferentes usos incluyendo prácticas agrícolas locales y usos urbanos. El valor del factor de ponderación escogido fue arbitrario y validado por los creadores de este modelo (Tsaboula et al. 2016). El uso de factores de arbitrarios de ponderación es una herramienta comúnmente utilizada en estudios de priorización (Van der Werf 1996; Kuzmanović et al. 2015).

Los parámetros utilizados para estimar la persistencia, bioacumulación, toxicidad y EDC y las puntuaciones respectivas se muestran en la Tabla 2 del anexo. Las propiedades químicas relacionadas con el destino ambiental (DT50 agua) y los factores de bio-concentración se muestran en la Tabla 3 del anexo. El criterio PBT se basó en el esquema de priorización propuesto por Daginnus et al (2011). El mismo toma en cuenta el destino y el comportamiento de los plaguicidas en el medio ambiente acuático y los peligros potenciales para la salud humana.

La clasificación de los plaguicidas dentro de cada categoría fue realizada por el uso de la ecuación (d) sumando la frecuencia de excedencia (a), la extensión de excedencia (b), la distribución espacial y las puntuaciones del criterio PBT:

a) Nivel de riesgo ambiental= Freq. de Exc. + Ext. de Exc. + Dis. Esp. + critPBT

Como ya se mencionó, no fue posible calcular todos estos componentes para todos los CEs (ej. el criterio PBT o el DT50 ya que no se contaba con los datos disponibles) por lo que el nivel de riesgo ambiental fue estimado únicamente para plaguicidas. Sin embargo, se logró realizar la categorización de algunos otros CEs.

El nivel de riesgo ambiental contiene información sobre la ocurrencia de contaminantes por encima de los umbrales ambientales, la intensidad de esta ocurrencia y la distribución espacial, así como información sobre el destino y el comportamiento de los compuestos en el medio ambiente y el potencial impacto que pueden tener en los seres humanos. Este enfoque de priorización es una evaluación del potencial de los contaminantes para representar un riesgo toxicológico para organismos no diana basados en la evaluación de riesgo ambiental, datos de caracterización cuantitativos y el monitoreo del riesgo.

1.5 Resultados y discusión

1.5.1 Performance analítica

El LCL varió de 0,1 ngL⁻¹ a 10 µgL⁻¹, este límite da una idea de la sensibilidad proporcionada por nanoLC-HRMS en términos de relación señal/ruido del ion precursor. Si bien

los LOQ oscilaron entre 0,0001 μ gL⁻¹ y 50 μ gL⁻¹, teniendo en cuenta la presencia de al menos un ion AIF. La mayoría de los compuestos detectados (más del 70 %) exhibieron LOQ muy por debajo del límite máximo de residuos de 0,1 μ gL⁻¹ para plaguicidas individuales establecidos por la UE en agua destinada al consumo humano (EC 1998).

En particular, el uso de nanoLC-HRMS y factores altos de dilución o, en otras palabras, el bajo factor de enriquecimiento aplicado en el enfoque SPE, permitió que hasta el 81 % (n = 290) de los compuestos probados mostraran efectos de matriz insignificantes (de 0 a ± 10 % de cambio de señal de analito), mientras que solo el 18 % de los compuestos (n = 69) exhibieron efectos de matriz suave (entre ± 10 y ± 20 %). El 1% de los compuestos (n=4) presentaron efecto matriz medio (entre ± 20 y ± 50 %), y solo uno de ellos (fluazifop-p-butilo) fue encontrado en las muestras estudiadas (Figura 9). El hecho de poder realizar la calibración externa fue particularmente conveniente en este trabajo ya que distintos tipos de agua pertenecientes a diferentes sistemas fueron analizados. De esa forma, fue posible utilizar la misma curva de calibración para analizar todas las muestras a pesar de las diferencias evidentes en la calidad y características de las aguas y por lo tanto la variabilidad entre las matrices, teniendo en cuenta la presencia por ejemplo de iones en el agua de mar o materia orgánica en los arroyos que pudiese estar interfiriendo con la señal. Además, la aplicación del factor de dilución no generó ningún impacto sustancial en la sensibilidad general del método, logrando LOQ apropiados para los propósitos de monitoreo ambiental (Rivera-Jaimes et al. 2018; Čelić et al. 2019; Xie et al. 2019).

Figura 10. Distribución del EM de los compuestos estudiados (n = 362) en la matriz arroyos por nano-LC-HRMS.

1.5.2. Identificación y cuantificación de contaminantes

Se detectaron un total de 82 compuestos que mostraron coincidencia tanto en [M+H]+ como en tR. De estos, 32, 24 y 26 compuestos fueron clasificados según las categorías I, II y III, respectivamente. Por lo tanto, 56 CEs fueron completamente identificados mientras que 26 se definieron como candidatos tentativos (categoría III). De los 56 CEs identificados, 26 compuestos (Tabla 3) mostraron recuperaciones mayores a 70 % según estudios previos (Robles-Molina et al. 2014a,b).

En total se evaluaron 92 muestras, detectándose 30 compuestos asociados al consumo humano (18 fármacos, 3 hormonas, 5 drogas de abuso, 4 productos de uso doméstico) y 52 plaguicidas en todo el conjunto de muestras. En la Tabla 2 del Anexo se muestran las concentraciones individuales de todas las muestras. La mayoría de los sitios presentaron entre 0 y 5 compuestos de contaminantes asociados al consumo humano, y entre 5 y 15 plaguicidas (Figura 10).

·	Compuesto	Familia de Contaminante	DF (%) ₁	Media (µgL ⁻¹)	Rango (µgL ⁻¹)
1	Fenazaquina	Insecticida	85	0,08	(0,05-0,63)
2	DEET	UsoDoméstico	67	0,15	(0,02-2,24)
3	Tamoxifeno	Fármaco	65	0,28	(0,06-2,40)
4	Cafeína	UsoDoméstico	62	0,20	(0,05-1,17)
5	Atrazina	Herbicida	57	0,48	(0,21-1,10)
6	Pendimetalina	Herbicida	52	3,08	(<loq -="" 3,08)<="" td=""></loq>
7	17-B-estradiol	Hormona	19	2,35	(0,09-7,90)
8	Metolaclor	Herbicida	18	1,60	(0,23-14,6)
9	Terbutalina	Fármaco	14	0,28	(0,16-0,45)
10	Clomifeno	Hormona	13	<loq< td=""><td>-</td></loq<>	-
11	Cocaina	DrogaAbuso	12	<loq< td=""><td>-</td></loq<>	-
12	Morfina	Fármaco	11	<loq< td=""><td>-</td></loq<>	-
13	Cadusafos	Insecticida	11	0,67	(0,34-1,32)
14	Pirazofos	Fungicida	9	0,08	(0,08-0,09)
15	Clofentezina	Insecticida	7	<loq< td=""><td>-</td></loq<>	-
16	Amitraz	Insecticida	5	0,07	(0,03-0,12)
17	Ibuprofeno	Fármaco	5	0,30	(0,30-0,30)
18	Lomefloxacina	Fármaco	5	<loq< td=""><td>-</td></loq<>	-
19	17-α-Etinilestradiol	Hormona	4	11,6	(0,13-45)
20	Tiabendazol	Fungicida	4	<loq< td=""><td>-</td></loq<>	-
21	Diclofenac	Fármaco	3	<loq< td=""><td>-</td></loq<>	-
22	Azoxistrobina	Fungicida	2	0,30	(0,30-0,31)
23	Atenolol	Fármaco	2	<loq< td=""><td>-</td></loq<>	-
24	Benzoylecogninea DrogaAbuso		2	0,83	(0,32-1,33)
25	5 Ciprofloxacina Fármaco		2	<loq< td=""><td>-</td></loq<>	-
26	Carbendazin	Fungicida	1	<loq< td=""><td>-</td></loq<>	-

.

Tabla 3. Resumen de resultados de los compuestos identificados en las cuencas de las Lagunas de Rocha y Castillos con recuperaciones que cumplen con el Documento N° SANTE/11312/2021. Ordenados por frecuencia de detección.

1 Todas las muestras analizadas fueron consideradas para el cálculo de frecuencia de detección (DF (%))

2Metabolito de Cocaína

Figura 11. Frecuencia de detección (DF (%)) de (izquierda): productos de uso urbano farmacéuticos, hormonas, drogas de abuso, productos de uso doméstico y (derecha) plaguicidas por sitio para el set completo de datos (n=91). La DF se determinó para el total de sitios analizados incluyendo arroyo, laguna y mar a lo largo de las 4 estaciones de año.

Ambos grupos de contaminantes fueron detectados en el 100 % de las muestras, considerando los 4 eventos de muestreo. Los compuestos más frecuentes incluyeron un insecticida (fenazaquin), 2 compuestos de uso doméstico (DEET, principal ingrediente de repelentes de insectos y cafeína), dos productos farmacéuticos (tamoxifeno y terbutalina), 3 herbicidas (atrazina, metolaclor y pendimetalina) y dos hormonas (17- β -estradiol y clomifeno). Ejemplos de contaminantes con frecuencias de detección más bajas en las muestras analizadas incluyen el fungicida azoxistrobina, el medicamento atenolol, el metabolito de la cocaína benzoilecognina (detectado dos veces) y el fungicida carbendazim (detectado solo una vez).

La concentración de los contaminantes detectados osciló entre valores >0,1 μ gL⁻¹ (0,02 μ gL⁻¹ en el caso de DEET) a valores <10 μ gL⁻¹ (45 μ gL⁻¹ para 17- α -etinilestradiol, detectado en el sitio C_ST_05). Todos los plaguicidas identificados han sido reportados en sistemas similares como pequeños arroyos (Casado et al. 2019), ríos y lagos (Papadakis et al. 2015; Tsaboula et al. 2016) y aguas marinas (Köck-Schulmeyer et al. 2019; Xie et al. 2019).

El Tamoxifeno, que es un antiestrogénico utilizado para tratar el cáncer de mama dependiente de hormonas, se ha detectado previamente en aguas superficiales en concentraciones que alcanzaban los 0,21 μ gL⁻¹ (Zhang et al. 2013), similar a la concentración media encontrada en este trabajo (0,27 μ gL⁻¹).

Cinco de los 82 contaminantes identificados son productos no aprobados para su uso en la UE: atrazina, carbendazim, clorpirifos etilo, diazinón y etión (EU 2019). Dos de ellos (atrazina y clorpirifos) se encuentran en la lista de contaminantes orgánicos tóxicos prioritarios para el medio acuático en Uruguay (GESTA 2014). Dentro de las sustancias para los cuales se establecen concentraciones máximas permitidas para aguas superficiales según la lista de compuestos prioritarios de la EU (EU 2013) y Uruguay (GESTA 2014), los valores encontrados de atrazina en este estudio se encuentran por debajo de este límite (Tabla 4). En el caso de clorpirifos etilo, los valores hallados se encuentran por debajo del LOQ.

De estos 5 compuestos, 4 se encontraron a baja DF (%) (Tabla 2). Sin embargo, se detectó el herbicida atrazina en el 57% de las muestras analizadas. En Uruguay, la renovación de registro y uso de atrazina fue prohibida un año antes a los muestreos de este trabajo (MGAP 2016), indicando que su presencia se puede asociar con el transporte desde los suelos asociado a usos anteriores. Se ha reportado la presencia de este herbicida en el aire y agua de lluvia (Kurt-Karakus et al. 2011; Alonso et al. 2018), por lo que puede haber transporte atmosférico y deposición de largo alcance que ocurren junto con la liberación de atrazina aplicada en los suelos. En concordancia, su ocurrencia sigue siendo ubicua en los países de la EU a pesar de haber sido prohibido hace mucho tiempo (Tsaboula et al. 2016; Köck- Schulmeyer et al. 2019).

Por último, se detectaron drogas de abuso como la cocaína y su principal metabolito benzoilecognina en muestras aguas abajo de las PTAR urbanas (C_ST_04, C_ST_05 y R_ST_02). Se encontró benzoilecognina en concentraciones >LOQ. Estos hallazgos pueden respaldar el uso de estos compuestos como biomarcadores de drogas de abuso en aguas residuales (Hernández et al. 2018).

Tabla 4. Comparación de valores de concentración hallados en este estudio y valores máximo admisibles en la legislación europea (EU 2013) y uruguaya (GESTA 2014).

Compuesto	Concentración máxima admisible Europa (µgL ⁻¹)	Concentración máxima admisible Uruguay (µgL ⁻¹)	Máximo en este estudio (µgL ⁻¹)	Media en este estudio (µgL ⁻¹)
Atrazina	2	1,8	1,10	0,48
Clorprifos etil	0,1	0,035	<p< td=""><td><loq< td=""></loq<></td></p<>	<loq< td=""></loq<>

1.5.3 Tendencias espaciales y temporales

En general, la cuenca de LC presentó mayor concentración de contaminantes en comparación con la de LR, especialmente teniendo en cuenta los sitios aguas abajo de las ciudades. Las Figuras 12 y 13 muestran una tendencia de concentración media de CEs para cada cuenca. Se encontraron patrones espaciales claros de distribución de contaminantes para ambas cuencas. Los contaminantes presentaron valores mayores en los arroyos, seguidos por lagunas, disminuyendo en el mar costero. Los resultados del modelo GLM sustentan esta observación: el número promedio de contaminantes fue significativamente mayor en sitios ubicados en arroyos respecto al promedio de lagunas (GLM; Familia Poisson; función de conexión = $\log; p = 3,79E-09; coef = -0.35$) y mar costero (p = 5,30e-07; coef = -0,40) (Figura 11). Sin embargo, la distribución espacial difiere al comparar ambos grupos de contaminantes por separado. La diversidad y carga de productos farmacéuticos, hormonas, drogas de abuso y productos de uso doméstico siempre mayor aguas debajo de las ciudades, mientras que los plaguicidas mostraron una distribución espacial dispersa (Figura 12) probablemente debido a su uso generalizado y aporte difuso a arroyos y lagunas a través de la escorrentía (Tang et al. 2012). Esta tendencia fue confirmada por el modelo GLM, que denota grandes diferencias estadísticas en el número promedio de contaminantes en el caso de compuestos relacionados con el uso doméstico en arroyos con respecto a lagunas (GLM; Familia Poisson; función de conexión = log; p = 3,69e-12; coeficiente = -0,78); en comparación con los plaguicidas en estos mismos sistemas (p = 0.025; coef = -0.16) (Figura 13 y 14).

Figura 12. Concentración media de contaminantes para la cuenca de Laguna de Castillos para los tres sistemas a lo largo de las 4 estaciones del año.

Figura 13. Concentración media de contaminantes para la cuenca de Laguna de Rocha para los tres sistemas a lo largo de las 4 estaciones del año.

Figura 14. Número total de contaminantes emergentes a lo largo del mar costero, laguna y arroyos de ambas cuencas para todo el set de datos incluyendo las 4 estaciones del año. *** denotan diferencias significativas entre los arroyos y el resto de los sistemas (GLM, modelo de Poisson). Los valores extremos se representan con círculos blancos.

Figura 15. Número total de productos farmacéuticos, hormonas, drogas de abuso y productos de uso doméstico a lo largo del mar costero, laguna y arroyos de ambas cuencas para todo el set de datos incluyendo las 4 estaciones del año. *** denotan diferencias significativas entre los arroyos y el resto de los sistemas

Figura 16. Número total de plaguicidas a lo largo del mar costero, laguna y arroyos de ambas cuencas para todo el set de datos incluyendo las 4 estaciones del año. * denota diferencias significativas entre arroyos y lagunas y ** entre arroyos y mar costero (GLM, modelo de Poisson). Los valores extremos se representan con círculos blancos.

Figura 17. Uso del suelo, cobertura del suelo y distribución espacial de contaminantes emergentes identificados a lo largo de las cuencas de Laguna de Rocha y Castillos. El tamaño del círculo representa el número total de contaminantes emergentes. Tomado de Griffero et al. 2019

La parte superior de la cuenca de LC (sitio C_ST_03) exhibió la DF mínima de contaminantes, la misma es una zona con pocos habitantes y donde predominan los montes naturales y los pastizales sobre la agricultura. Estos resultados coinciden con estudios previos donde se resaltan las características del uso del suelo como principales impulsores de la distribución espacial de los contaminantes y la calidad del agua (Pascual Aguilar et al. 2017; Arenas-Sánchez et al. 2019). En la Figura 23 se muestra una comparación relativa de la ocurrencia de productos farmacéuticos, hormonas, drogas de abuso y productos de uso doméstico con plaguicidas. Estos compuestos están íntimamente asociados a las áreas urbanas, existiendo amplia

evidencia de que los efluentes urbanos y las PTAR son las principales vías para su introducción al medio acuático (Hug et al. 2014; Barbosa et al. 2016; Gros et al. 2017; Rivera-Jaimes et al. 2018). El sitio C_ST_05 presentó las concentraciones promedio más altas de productos farmacéuticos, hormonas, drogas de abuso y productos uso doméstico (7,1 µgL⁻¹), seguido de C_ST_04 (1,7 µgL⁻¹) y R_ST_02 (0,46 µgL⁻¹). Basado en el número de compuestos y concentración media para sitios aguas abajo de las ciudades, se puede observar que la ocurrencia de CEs en la cuenca de Castillos es mayor a pesar que la ciudad de Castillos es más pequeña que Rocha. Esto puede explicarse porque la PTAR de Castillos posee básicamente tratamiento primario mientras que la PTAR de Rocha incluye adicionalmente el tratamiento secundario. Además, el arroyo Rocha tiene un caudal mayor que los arroyos en la cuenca de Castillos, lo que puede afectar la dilución de contaminantes a través de la cuenca. Estudios futuros podrían abordar el efecto del caudal en las cargas de CEs y su destino ambiental a escala de cuenca, siendo un aspecto relevante a tener en cuenta al comparar ambas cuencas.

Figura 18. Número relativo de productos farmacéuticos (P), hormonas (H), drogas de abuso (A), productos de uso doméstico (U) y plaguicidas a lo largo de arroyos (negro), lagunas (azul) y mar costero (rojo) en cada sitio de muestreo. Tomado de Griffero et al (2019).

En la cuenca de Castillos, la concentración de ciertos plaguicidas y el número total de plaguicidas (Figuras 16 y 17) fue mayor en los arroyos pequeños con baja superficie de agricultura (C_ST_04 y C_ST_05) (8 % de superficie agrícola relativa al área total que drenan ambos sitios). Metolacloro y carbofurano fueron identificados solo en estos sitios (14,64 μ gL⁻¹ de metolacloro en C_ST_04 y 0.12 μ gL⁻¹ de carborufan en C_ST_05). Además, los niveles de pendimetalina, fluazifop-p-butil y cadusafos en C_ST_05 fueron de (3,08, 0,51 μ gL⁻¹ y 1,32 μ gL⁻¹, respectivamente) mientras que en C_ST_04 se encontraron 0,35 μ gL⁻¹ de cadusafos. Posiblemente, el efecto de baja dilución en estos sitios pueda explicar estos hallazgos. El mayor número de plaguicidas se encontró en C_ST_04. Esto podría explicarse porque a dicha cañada drena una subcuenca dominada por una mezcla de agricultura y pequeñas explotaciones hortícolas con producción agrícola más antigua. Análisis adicionales de cada tipo de plaguicida encontrado y su asociación con su cultivo principal serían de gran utilidad para confirmar estas hipótesis.

Ambas lagunas se comportan como potenciales sumideros de contaminantes, recibiendo compuestos provenientes de los diferentes usos del suelo en toda la cuenca, que dependerá de las características fisicoquímicas de cada compuesto (ej. potencial de bioacumulación o su propiedad hidrofílica o hidrofóbica). Este proceso parece ser más importante en la Laguna de Castillos que en la Laguna de Rocha, posiblemente por la mayor relación agricultura/superficie de cuenca y la menor influencia de la conexión del océano en la LC, ya que el mayor volumen de agua que ingresa del océano podría tener un efecto dilución en los contaminantes (Rodríguez-Gallego et al. 2017). También podría haber un efecto de la configuración espacial de los campos agrícolas, que son más pequeños y extendidos en la cuenca de la LR, mientras que en la LC la agricultura se concentra en fincas más grandes cerca de la laguna.

Al comparar los compuestos encontrados para ambas cuencas, no se observan diferencias importantes entre las mismas. El PCA realizado sobre el número de compuestos identificados por categoría de CE no muestra una separación clara entre cuencas, aunque si una agrupación de los sitios aguas debajo de las ciudades de Castillos y Rocha (C_ST_04, 05 y R_ST_02 respectivamente), y otro grupo conformado por los sitios ubicados en el arroyo Las Conchas en 3 estaciones del año (R_ST_03) y el sitio correspondiente a la toma del Arroyo Rocha en verano (R_ST_01). El eje 1 (PCo1; 18,03 % de la varianza total) separa los sitios correspondientes al primer grupo mencionado, y las categorías relacionadas al uso urbano (fármacos, drogas de abuso, hormonas) se encuentran cercanas a este grupo en el análisis de ordenación; mientras que el eje 2 (PCo2; 15,03 % de la varianza total) separa el segundo grupo de sitios, y la categoría de herbicidas es la que se encuentra más cercana a este eje en el análisis de ordenación (Figura 19). Por lo tanto, las categorías mencionadas son las que probablemente muestren mayores diferencias entre los grupos obtenidos en el PCA.

Figura 19. Análisis de componentes principales (PCA) sobre número de contaminantes emergentes por categoría: fármacos, drogas de abuso, compuestos de uso doméstico, antibióticos, fungicidas, insecticidas y herbicidas.

Se identificaron 20 compuestos en el mar costero, incluido compuestos de uso doméstico como cafeína (rango = 0,18–0,54 μ gL⁻¹ DF = 37.5 %) o DEET (rango = 0,050-0,092 μ gL⁻¹; DF= 93,8 %), plaguicidas como atrazina (rango = 0,22–0,69 μ gL⁻¹; DF= 87,5 %), fenazaquín (rango = 0,048-0,63 μ gL⁻¹; DF=81,3 %), pendimetalina (< LOQ; DF=18,8 %) y el fármaco tamoxifeno (rango = 0,09-2,40 μ gL⁻¹; DF = 87,5 %). En general, el tipo de contaminantes identificados concuerda con otros trabajos en estos sistemas. Por ejemplo, se detectó atrazina en el 65 % de las muestras a lo largo de la costa española con concentraciones medias de 0,001 μ gL⁻¹ (Köck-Schulmeyer et al. 2019) y en todos los sitios estudiados alrededor de la península de Liadong en China, con una media concentración de 0,023 μ gL⁻¹ (Xie et al. 2019). Si bien se esperaba encontrar

una menor concentración de contaminantes en el mar costero debido a los procesos de disipación, dilución y transformación ambiental; el número y la concentración de CEs se mantuvo en el mismo orden que los otros sistemas. Esto puede explicarse por la conectividad hidrológica, que es el mecanismo de transporte de materia y energía mediado por agua y organismos dentro o entre compartimentos del sistema hidrológico (Freeman et al. 2007) y el principal mecanismo involucrado en la escorrentía superficial (Payraudeau & Gregoire 2012).

En general, no se encontró un patrón en la distribución temporal de los contaminantes a lo largo de las estaciones para ninguna de las cuencas (Figuras 24 y 25) considerando los valores de concentración. Sin embargo, se observaron casos particulares en la cuenca de Castillos como el aumento de las concentraciones de 17- α -etinilestradiol y metolacloro en invierno para sitios cercanos a áreas urbanas (C_ST_04 y C_ST_05). Además, para algunos plaguicidas, la variación temporal podría ser más visible vinculado a su período de aplicación durante la cosecha (ej. atrazina), en comparación con compuestos provenientes de fuentes puntuales asociadas al uso doméstico (ej. 17- β -estradiol) (Figuras 26 y 27).

Figura 20. Distribución temporal de contaminantes emergentes a lo largo de la cuenca de la Laguna de Rocha. Tomado de Griffero et al (2019).

Figura 21. Distribución temporal de contaminantes a lo largo de la cuenca de la Laguna de Castillos. Tomado de Griffero et al (2019).

Figura 22. Distribución temporal de la concentración de $17-\beta$ -estradiol (μ gL⁻¹) a lo largo de un año de muestreo para ambas cuencas. Se representan la mediana, el primer y tercer cuartil y el IC (intervalo de confianza) al 95 %. Tomado de Griffero et al (2019).

Figura 23. Distribución temporal de la concentración de atrazina (μ gL⁻¹) a lo largo de un año de muestreo para ambas cuencas. Se representan la mediana, el primer y tercer cuartil y el IC (intervalo de confianza) al 95 %. Tomado de Griffero et al (2019).

Los resultados del GLM incluyendo el número total de contaminantes como variable de respuesta y la estación como variable explicativa, revelaron un mayor número promedio significativo de contaminantes en invierno en comparación a primavera (GLM; Familia Poisson; link = log; p = 0,036; coef = -0,16). Tal vez las tasas más bajas de biodegradación durante esta temporada puedan explicar estas diferencias, aunque un análisis específico debe confirmar esta hipótesis. Además, considerando la gran variabilidad estacional en el régimen de caudales que caracterizan a los arroyos del Uruguay y su implicancia en la dinámica de los contaminantes en el tiempo (Goyenola et al. 2015), estos resultados refuerzan la necesidad de estudiar la relación entre la estacionalidad de los contaminantes con variaciones hidrológicas a nivel de cuenca.

1.5.4 Evaluación de riesgo ambiental

En la Tabla 5 se muestran los resultados de RQ de los CEs individuales y los datos de ecotoxicidad acuática. La evaluación del riesgo eco-toxicológico revela que el MECmax del 50 % de los compuestos detectados excedieron los respectivos valores de PNEC de las especies más sensibles. Además, el MECmax del 17- α -etinilestradiol y 17- β -estradiol fueron 1000 veces más altos que sus respectivos valores PNEC de las especies más sensibles. Estos compuestos fueron

considerados de alta preocupación según un estudio previo (Tsaboula et al. 2016). El 17-αetinilestradiol exhibió el máximo valor de RQ debido a una concentración particularmente alta encontrada en C_ST05 y un PNEC muy bajo reportado para una especie de pez (*Gobiocypris rarus*) (Zha et al. 2008). El 17-β-estradiol es el principal estrógeno en los vertebrados, estando asociado con el sistema reproductivo femenino y el mantenimiento de las características sexuales (Welshons et al. 2003). El 17α-etinilestradiol es un estrógeno sintético que se usa en píldoras anticonceptivas y se libera al medio ambiente a través de orina y heces. Es uno de los principales y más potentes contaminantes estrogénicos en efluentes de PTAR (Petrovic et al. 2008). Ambas hormonas se describen como los disruptores endócrinos con mayor potencial disruptivo (Silva et al. 2012). Actualmente se incluyen tanto el 17α-etinilestradiol como el 17-β-estradiol en la Watch List de la UE que incorpora sustancias con un riesgo significativo para el medio acuático pero que los datos de monitoreo son insuficientes para concluir sobre el riesgo real de estos compuestos (EC 2022).

Tanto el insecticida fenazaquín como el fármaco tamoxifeno presentaron alta frecuencia de detección (85 y 65 %, respectivamente) y alto riesgo ecotoxicológico (RQ= 60,6 y 29,7, respectivamente). Para estos compuestos fue reportado previamente el riesgo ecotoxicológico en aguas superficiales, alcanzando valores de RQ máximos de 10,4 para fenazaquin (Tsaboula et al. 2016) y 2,6 para tamoxifeno (Orias et al. 2015), 6 y 10 veces inferiores a los valores encontrados en este trabajo. Estos resultados enfatizan su inclusión en futuros estudios de monitoreo.

El mapa de evaluación de riesgos basado en el enfoque RQ revela alta vulnerabilidad de los sitios ubicados en la cuenca de LC (sitios norte y centro de la laguna), asociados a la presencia de plaguicidas derivados de la agricultura; y aguas abajo de la ciudad de Castillos (sitios C_ST04 y C_ST05) debido a la liberación de hormonas y productos farmacéuticos asociados a vertidos de efluentes urbanos (Figura 24).

En el caso de la cuenca Castillos, los sitios aguas abajo de la ciudad presentaron alto número de compuestos con valores altos de RQ correspondientes a CEs de uso doméstico. Por otro lado, para los sitios ubicados en la LC el riesgo está particularmente asociado a pocos compuestos, especialmente plaguicidas, con altos valores de RQ. En el caso de la Cuenca de la LR, los puntos críticos identificados se ubican aguas debajo de la ciudad de Rocha (R_ST_02) y en el Norte y

Tabla 5. Datos de evaluación de riesgos de los compuestos identificados, % de recuperación >70 y concentraciones >LOQ.

-0

ŧ.

Compuesto	Familia de	MEC _{mediana}	MEC _{max}	PNEC	RQ	RQ (MEC _{mediana} /PNEC)	Grupo trófico	Criterio de	Valor (µgL ⁻¹)	AF	Deforencies
Compuesto	contaminante	aminante (µgL ⁻¹)	(µgL ⁻¹)	(µgL ⁻¹)	(MEC _{max} /PNEC)			valoración		АГ	Keterencias
17-a-Etinilestradiol	Hormona	0.3	45	0.0001	450000.0	3264 3	Gobiocopris rarus Pez	NOEC	0.0001	1	Zha et al 2008
17-a-Etimestracioi	Hormona	0,5	45	0,0001	450000,0	5204,5	Gobiocypris rurus 1 ez	Reproductivo	0,0001	1	Zha et al 2008
17-B-estradiol	Hormona	2.2	79	0.002	3950.6	1119.9	Danio rario Pez	NOEC	0.006	3	Yuan et al
17-D-Cstradior	Hormona	2,2	7,9	0,002	5750,0	111),)	Dunio reno 1 CE	Reproductivo	0,000	5	2014
Cadusafos	Insecticida	0,4	1,3	0,005	286,1	76,8	Daphnia magna Crustáceo	21 d NOEC	0,2	50	Tsaboula et al 2016
Azoxistrobina	Fungicida	0,3	0,3	0,003	117,8	115,9	Daphnia magna Crustáceo	21 d NOEC	0,03	10	Tsaboula et al 2016
Metolaclor	Herbicida	0,3	14,6	0,15	97,6	1,7	Pseudokirchneriella subcapitata Alga	5 d NOEC	1,5	10	Tsaboula et al 2016
Fenazaquín	Insecticida	0,1	0,6	0,01	60,6	5,1	Daphnia magna Crustáceo	21d NOEC	0,5	50	Tsaboula et al 2016
Pirazofos	Fungicida	0,08	0,09	0,002	48,0	46,3	Daphnia magna Crustáceo	21 d NOEC	0,2	100	PPDB
Ibuprofeno	Fármaco	0,3	0,3	0,01	30,1	30,1	Danio rerio Pez	NOEC	0,1	10	Mendoza et al 2015
Tamoxifeno	Fármaco	0,1	2,4	0,08	29,7	1,8	Daphnia magna Crustáceo	7 d EC ₅₀	0,8	10	Della Greca et al 2007
Pendimetalina	Herbicida	3,1	3,1	0,3	10,3	10,3	Pseudokirchneriella subcapitata Alga	5 d NOEC	3,0	10	Tsaboula et al 2016
Amitraz	Insecticida	0,1	0,1	0,02	5,8	3,4	Daphnia magna Crustáceo	21 d NOEC	2	100	PPDB
Atrazina	Herbicida	0,4	1,1	0,34	3,2	1,1	<i>Lemna gibba</i> Planta	NOEC	3,4	10	Tsaboula et al 2016

PNEC data disponible

DEET	Uso Doméstico	0,1	1,9	0,6	3,2	0,1	Danio rerio Pez	2d NOEC	0,6	1	USEPA Ecotox
Benzoilecognina	Droga Abuso	0,8	1,3	4,9	0,3	0,2	-	ECOSAR models	-		Van der Aa et al 2013
Cafeína	Uso Doméstico	0,1	1,2	5	0,2	0,025	Pseudokirchneriella subcapitata Alga	56d NOEC	5	1	USEPA Ecotox
Terbutalina	Fármaco	0,3	0,4	240	0,002	0,001	Daphnia magna Crustáceo	EC50	240000	1000	Mendoza et al 2015

- E - - - E -

Sur de la laguna (R_LA_05 y R_LA_06 respectivamente). Los sitios R_LA_05 y R_LA_06 están ubicados en el área protegida de la Laguna de Rocha por lo que se requiere especial atención para estos sitios en términos de gestión ambiental. Los altos valores de RQ en estos sitios se explican principalmente debido a la detección del fungicida azoxistrobina, aunque este compuesto se encontró con una baja DF (Tablas 3 y 5).

Figura 24. Mapa de evaluación de riesgo. Círculos grises: transformación logarítmica del RQmax (Ln RQmax). Círculos negros: número de compuestos con RQ>1. El tamaño del círculo es proporcional al nivel de riesgo asociado para cada sitio. Tomado de Griffero et al (2019).

1.5.5 Categorización de contaminantes emergentes

De los 56 compuestos identificados (categorías I y II), 25 presentaron valores por encima de su LOQ. De estos, 2 plaguicidas fueron considerados que podían poseer riesgo a corto plazo para los organismos acuáticos (DT50 < 2 días), y 5 efectos a largo plazo (DT50 \ge a 2 días). Estos últimos, fueron evaluados solo por los efectos tóxicos a largo plazo en los organismos acuáticos y todos presentaron RQ>1 por lo que quedaron bajo la Categoría I (no hubieron compuestos dentro de la categoría 3, es decir con riesgos a largo plazo y valores de RQ<1). Los compuestos de la categoría I, posibles candidatos a ser monitoreados como CELC (Figura 28), fueron: pendimetalina, cadusafos, azoxistrobina y metolaclor. La pendimetalina, un herbicida selectivo de pre siembra y pre emergencia de uso preventivo utilizado en cultivos de ajo, arroz, boniato, brócoli, cebolla y coliflor (Guía Sata 2022), se encontró con valores > LOQ en C_ST_05, en otoño e invierno. El cadusafos, un insecticida organofosforado utilizado para controlar varios nematodos e insectos del suelo, se usa en cultivos de bananos, cítricos, maíz y caña de azúcar (PPDB 2013), se encontró con valores > LOQ en R_ST_02, C_ST_04 y C_ST_05 en primavera. La azoxystrobina, un fungicida de estrobilurina de amplio espectro de post-emergencia, utilizado principalmente para cultivos de ajo, frutilla y contra enfermedades en tomate (Guía Sata 2022), se encontró en concentraciones > LOQ en R_LA_05 en verano y R_LA_06 en invierno. Por último, el metolaclor, un herbicida de pre-emergencia de amplio espectro, utilizado para controlar ciertas malezas en girasol, maíz, soja, sorgo semilla (Guía Sata 2022); se encontró con valores> LOQ en C_ST_04 y C_ST_05 en todas las estaciones y en R_ST_02 y R_ST_03 en primavera.

Dentro de los plaguicidas que se considera que tienen principalmente riesgo a corto plazo (categorías 5 y 6) se encuentran los que se hidrolizan rápidamente en sistemas agua-sedimento, los que son fuertemente adsorbidos en sólidos en suspensión y sedimentos, o aquellos que son degradados fotolíticamente en agua (Tsalouba et al. 2016). Dentro de la categoría 5, se encuentran los plaguicidas que pueden tener un riesgo a corto plazo con valores de RQ > 1 y por lo tanto son potenciales candidatos al CELC (Figura 27). Estos compuestos fueron el piridaben y el picolinafen. El primero, es un insecticida y acaricida efectivo contra ácaros, pulgones y chicharritas. Ejemplos de aplicaciones de este insecticida son cultivos extensivos, árboles frutales, plantas ornamentales, vegetales y cultivos de invernadero (PPDB 2013). Las concentraciones halladas fueron > LOQ en

todos los sitios donde se encontró este compuesto. El picolinafen es un herbicida de postemergencia, utilizado en cereales que se usa para controlar malezas de hoja ancha (PPDB 2013). Se encontró con valores > LOQ en C_ST_01, C_CS_13 en invierno y en R_ST_10, C_ST_01 en primavera. Por otro lado, en la categoría 6 (compuesto con menor probabilidad que represente un riesgo significativo a corto plazo para el medio ambiente) se encuentra el herbicida prosulfocarb, utilizado para el control de post-emergencia de pasto y malezas de hoja ancha en una amplia gama de cultivos incluyendo trigo, cebada y papas (PPDB 2013).

En la Categoría 2 se incluyeron CEs con valores de PNEC por debajo del LOQ y, por lo tanto, el desempeño (sensibilidad) del método analítico utilizado no asegura sus respectivos criterios de seguridad toxicológicos. Dentro de esta categoría se encuentran la droga de abuso codeína, los insecticidas clorpirifos, diazinon y hexitiazox; los fungicidas bitertanol y carbendazim; y el herbicida diflufenicaína. Estos compuestos también son posibles candidatos al monitoreo de CELC (Figura 28).

En la Categoría 4 se incluyeron CEs que si bien no se pudo determinar si poseían un riesgo a corto o largo plazo para los organismos acuáticos (por no contar con los valores de DT50); tienen el potencial de poseer efectos adversos sobre el impacto en la salud de los seres humanos. Estos compuestos corresponden a las hormonas $17-\alpha$ -etinilestradiol y $17-\beta$ -estradiol que además fueron identificadas como los compuestos con mayor riesgo ambiental por sus valores de RQ (Tabla 7). Finalmente, en la Categoría 7 se incluyeron CEs encontrados en concentraciones por debajo del LOQ del método. Estos corresponden a las drogas de abuso codeína, cocaína y (-)-N-Metilefedrina; los insecticidas diazinon y clofentezin; los fungicidas bitertanol, carbendazima, ciprodinil y pencicyron; el herbicida diflufenicaina y los fármacos clomifeno, morfina y paracetamol. Para todos estos casos el método analítico debería ser mejorado para asegurar que no representan un riesgo ecotoxicológico para los organismos acuáticos (Figura 28).

Al analizar la distribución de tipos de contaminantes por categoría. Se observa que, si bien muchos de los compuestos se encuentran en la categoría 7, hay una proporción de compuestos en las categorías 1 y 5 que presentan valores de cocientes de riesgo mayores a 1 y por lo tanto pueden presentar un nivel de riesgo considerable para el ambiente, difiriendo en los efectos a largo y corto plazo que presentan respectivamente (Figura 25). Los compuestos de las categorías 1, 2, 4 y 5 son

potenciales candidatos al monitoreo según la evaluación de riesgo ambiental (Tsaboula et al. 2016). Los compuestos de las categorías 1 y 5 están conformados únicamente por plaguicidas, mientras que en el resto de las categorías aparecen otros tipos de contaminantes (ej. drogas de abuso y fármacos). Esto se debe a limitaciones propias de cálculo de los niveles de exposición en el ambiente (DT50) ya que para CEs diferentes a plaguicidas no hay base de datos completas. Algunos trabajos han ampliado los esquemas de priorización a CEs, aplicando la herramienta de Perfiles de Toxicidad Acuática (Deere et al. 2021). Para ello, utilizaron las herramientas de interfaz de programas de estimación (EPI) (U.S. EPA 2020a), para estimar la persistencia y el potencial de bioacumulación utilizando el tiempo de vida media (t $\frac{1}{2}$) y los coeficientes de partición octanolagua y carbono orgánico-agua (Kow y Koc), respectivamente. En un futuro se podría utilizar esta herramienta para ampliar el esquema de priorización a CEs, ajustando los criterios de las diferentes categorías, según los parámetros que pueden ser estimados (ej. t $\frac{1}{2}$, Kow y Koc).

Figura 25. Número de compuestos según la categoría de riesgo ambiental.

1.5.6 Enfoque de priorización y nivel de riesgo ambiental

Para establecer cuáles plaguicidas representaban los compuestos con mayor prioridad para el monitoreo dentro de cada categoría, se utilizaron los 4 parámetros indicados en la sección 1.2.2.4, para evaluar el riesgo potencial de cada compuesto, con un abordaje acorde al nivel de cuenca. Luego, a cada uno de los indicadores se le asignó un rango de 0 a 1 y se calculó el nivel de riesgo ambiental como la suma de los 4 indicadores. Los resultados de los valores de los 4 indicadores, así como el valor de riesgo ambiental para los plaguicidas se muestran en la Tabla 6.

Tabla 6. Cálculo de índice de riesgo ambiental para los compuestos de las categorías 1 y 5 a partir de la Frecuencia de superación, distribución espacial, grado de superación, criterio de PBT (PW=persistencia + B=bioacumulación + T= toxicidad + EDC=potencial disruptor endócrino

		PO(MEC/DNEC)	Frec	Dist	Gdo	Riesgo	РВТ				
Compuesto	Categoría	KQ(MEC/INEC)	Sup	Esp	Sup	Amb	crit	Pw	B	Т	EDC
Pendimetalina	1	4866,36	1	0,13	1	2,73	0,6	0	2	1	0
Picolinafeno	5	2307,29	1	0,02	1	2,42	0,4	0	1	1	0
Piridabén	5	48,22	1	0,97	0,2	2,37	0,2	0	0	1	0
Cadusafos	1	286,12	1	0,03	0,5	1,93	0,4	0	1	1	0
Azoxistrobina	1	117,85	1	0,11	0,5	1,81	0,2	0	0	1	0
Metolaclor	1	0,94	0	0,10	1	1,50	0,4	0	0	1	1

1.6 Conclusiones generales

En este capítulo se reporta la ocurrencia de CEs a escala de cuenca incluyendo arroyos, lagunas y mar costero en dos lagunas costeras Atlánticas de Uruguay. Se empleó un enfoque sistemático de *screening target* para la detección de 362 contaminantes usando nanoLC/HRMS, a partir del cual se pudieron identificar y cuantificar un total de 56 compuestos de diferentes tipos de CEs. El máximo de productos farmacéuticos, hormonas, drogas de abuso y compuestos de uso urbano se encontró aguas abajo de las áreas urbanas. La presencia de plaguicidas fue mayor en lagunas y arroyos en ambas cuencas asociadas a la actividad agrícola circundante. Futuros estudios sobre la relación de los usos del suelo y la presencia de CEs en estas áreas pueden confirmar estadísticamente estas afirmaciones.

El enfoque analítico utilizado fue nanoLC/HRMS, siendo altamente sensible ya que permite el uso de factores de dilución altos para lograr efectos de matriz insignificantes. Además, permite la utilización de flujos de trabajo del tipo *non-target screening*, que hacen posible la detección de un mayor número de compuestos. Se muestra un alcance del método adecuado para el monitoreo de aguas, con límites de cuantificación que se encuentran por debajo de lo que establece la normativa nacional e internacional.

La evaluación de riesgo ambiental revela una preocupación especial sobre las hormonas 17- α -etinilestradiol y 17- β -estradiol derivadas de las aguas residuales que tienen una disposición inadecuada en el ambiente particularmente debido a un deficiente tratamiento de efluentes en la PTAR de la ciudad de Castillos en aquel momento, que consistía únicamente en tratamiento primario. En la PTAR de Rocha por otro lado, se cuenta con piletas de digestión anaerobias (tratamiento secundario), que ya se ha demostrado remueven parcialmente algunos CEs (Boix et al. 2016). De acuerdo al esquema de priorización y la categorización de CEs se identificaron 15 compuestos críticos (pendimetalina, cadusafos, azoxistrobina, metolaclor, piridaben, picolinafen, codeína, clorpirifos, diazinon, hexitiazox, bitertanol, carbendazim, diflufenicaína, 17- α -etinilestradiol y 17- β -estradiol), para los cuales un mayor monitoreo y evaluación es muy recomendable incluyendo plaguicidas, drogas de abuso y fármacos. Una mayor profundización de la aplicación de este esquema a CEs no clásicos sería necesaria para obtener resultados más robustos.

Finalmente, estos resultados sugieren la necesidad de la implementación de políticas de gestión a escala de cuenca incluyendo una mayor eficiencia en las PTAR y un reglamento especial para la realización de actividades agrícolas dentro y en sitios cercanos reconocidos internacionalmente para la conservación cómo son las áreas protegidas de las cuencas de lagunas costeras.

-0

÷

CAPITULO II: Indicadores de calidad de agua basados en la estructura taxonómica de las comunidades microbianas

2.1 Antecedentes

El uso de especies indicadoras ha sido ampliamente utilizado en ecología para monitorear los cambios ambientales y evaluar los impactos de perturbaciones en diversos ecosistemas (Carignan & Villard 2002). Debido a su distribución ubicua y a su gran plasticidad metabólica, los microorganismos son capaces de integrar información del ambiente, proporcionando una respuesta sencilla de medir frente a la complejidad ambiental. Esto a hace que el uso de estas especies como indicadoras, tenga una gran aplicación en conservación y manejo de los ecosistemas (McGeoch & Chown 1998; Hilty & Merenlender 2000; McGeoch et al. 2002).

Uno de los índices más empleados para evaluar el valor de una especie como boindicador de un tipo específico de hábitat es el índice de valor indicador (IndVal; Dufrene & Legendre 1997; De Cáceres & Legendre 2009). Si bien la aplicación de esta herramienta fue inicialmente para macroorganismos (ej. plantas, artrópodos, aves), su uso en comunidades microbianas ha sido probado exitosamente para la identificación de taxa asociados a diferentes hábitats terrestres (Frey et al. 2013; Van Horn et al. 2013; Rime et al. 2015). Su aplicación a comunidades microbianas acuáticass ha permitido demostrar cambios en la composición frente a condiciones estacionales fluctuantes a lo largo del margen costero del río Columbia (EE-UU), así como para diferenciar zonas en un continuo hidrológico (ej. río, estuario, pluma, epipelágica, mesopelágica) (Fortunato et al. 2013), compartimentos individuales de la columna de agua en un lago meromíctico (Gies et al. 2014), arroyos afectados por el drenaje alcalino de una mina (Bier et al. 2015), y diferentes masas de agua del Mediterráneo oriental (Techtmann et al. 2015).

Este enfoque también permitió identificar taxones indicadores de un umbral en la concentración de oxígeno que conduce a cambios significativos en la composición de la comunidad (Spietz et al. 2015). IndVal además ha servido para identificar indicadores en linajes de arqueas en una amplia gama de hábitats acuáticos, destacando su importancia ecológica y proporcionando pistas filogeográficas sobre su ecología y evolución (Auguet et al. 2010).

A pesar de su probada idoneidad en biología de la conservación, la aplicación de IndVal como herramienta para el monitoreo ambiental basado en comunidades microbianas es aún poco explorada. En particular, esta aplicación tiene el potencial de resultados más amplios, como explorar su papel como indicadores de diferentes condiciones de hábitat, utilizando la composición

de especies como variables predictoras en los modelos estadísticos (Xiong et al. 2014; Lanzén et al. 2020; Alonso et al. 2022). Para ello, es necesario un esfuerzo en términos de cuantificar el rendimiento (es decir, evaluar la capacidad del valor predictivo) de IndVal, analizando los desafíos prácticos para su cálculo al tratar con comunidades tan diversas, y evaluando la idoneidad de su combinación con técnicas de aprendizaje automático común (ML) para la clasificación de muestras en categorías ambientales, usando especies indicadoras como predictores (Alonso et al. 2022).

Otra de sus potenciales aplicaciones, es la identificación de puntos críticos de presencia y concentración de ciertos contaminantes. En casos particulares, las comunidades microbianas acuáticas se han utilizado con éxito para categorizar muestras de acuerdo a cómo se ven afectadas por diferentes contaminantes como uranio, nitrato, hidrocarburos, metales pesados o enriquecimiento orgánico (Smith et al. 2015; Lanzén et al. 2020). También se han utilizado indicadores obtenidos por IndVal en combinación con "Random Forest", para predecir la temperatura y el estado de eutrofización de un sistema de arrecifes de corales (Glasl et al. 2019).

2.2 Objetivos

- ✓ Analizar la estructuración de las comunidades bacterianas a lo largo de un gradiente ambiental en las cuencas de las Lagunas de Rocha y Castillos.
- ✓ A partir de la composición taxonómica de las comunidades bacterianas buscar indicadores de categorías de impacto estimadas según dos índices de calidad de agua: el índice de calidad de agua canadiense (WQI) basado en parámetros de calidad de agua clásicos y el índice de calidad acuático (AQI) originalmente desarrollado para plaguicidas y extendido en este trabajo para CEs.
- Explorar la capacidad de la herramienta IndVal para predecir la asignación de los sitios a las diferentes categorías según el tipo y grado de impacto antropogénico.

2.3 Hipótesis y predicciones asociadas

✓ H1. La salinidad y la temperatura son los grandes estructuradores de la composición taxonómica de las comunidades bacterianas acuáticas; no obstante, es posible evidenciar el peso de otras variables asociadas al grado de impacto antrópico sobre el sistema (ej N, P, CEs).

P1. Se encontrará una estructuración muy asociada al tipo de sistema (arroyo, laguna, mar costero), y una vez que se aísle su efecto será posible detectar la incidencia de los contaminantes en dicha estructuración.

 H2. El empleo de técnicas de secuenciación de alto rendimiento posibilita acceder de forma exhaustiva a la composición taxonómica de las comunidades bacterianas, permitiendo analizar el comportamiento de sus distintos componentes como indicadores de diferentes tipos y grados de impacto antrópico. P2. Será posible encontrar indicadores bacterianos de diferentes impactos en la calidad de agua de estos sistemas, tanto evaluada a través de variables fisicoquímicas clásicas, como en su afectación por contaminación emergente.

-0

÷

2.4 Metodología

2.4.1 Muestreo y variables ambientales

Se realizaron muestreos estacionales de agua superficial (n=91) en 23 puntos de la LR y LC incluyendo arroyos, lagunas y mar (ver sección 1.1.2.1).

En cada punto de muestreo se midieron las siguientes variables fisicoquímicas: conductividad (mScm⁻¹), temperatura (°C), oxígeno disuelto (OD; mgL⁻¹), salinidad (PSU), sólidos totales en suspensión (SST; mgL⁻¹), materia orgánica en suspensión (MOS; mgL⁻¹), pH y turbidez con un sensor multiparámetro Horiba. Además, se determinó fósforo total (PT; μ gL⁻¹), nitrógeno total (NT; μ gL⁻¹), fosfato (PO₄⁻; μ gL⁻¹), amonio (NH₄⁺; μ gL⁻¹), nitrato (NO₃⁻; μ gL⁻¹), nitrito (NO₂⁻ ; μ gL⁻¹) y clorofila a (cloA; μ gL⁻¹); utilizando los métodos de Murphy & Riley (1962) para PT, Valderrama (1981) y Mackereth et al (1978) para NT, Koroleff (1970) para NH₄⁺, Mackereth et al (1978) para NO₃⁻, Bendschneider & Robinson (1952) para NO₂⁻ y Jespersen & Christoffersen (1987), para cloA. Además, en el marco del convenio DINAMA-CURE (2016) se determinaron los coliformes fecales, utilizando el protocolo de la DINAMA (2009).

A fin de clasificar cada sitio de muestreo de acuerdo a su calidad de agua se aplicaron 2 índices: el índice de calidad de agua canadiense basado en parámetros de calidad de agua clásicos (WQI), basado en las variables ambientales arriba mencionadas, y el índice de calidad acuática (AQI) basado en las concentraciones de CEs individuales (Tabla 2 Anexo) y los valores de PNEC de los mismos (Tabla 7).

2.4.2 Categorización de sitios según índice de calidad de agua canadiense (WQI)

Desde su desarrollo en 2001, el WQI del Consejo Canadiense de Ministros de Medio Ambiente (CCME 2001) se ha establecido como una herramienta valiosa para la gestión de los recursos hídricos (Khan et al. 2005). El modelo CCME WQI consta de tres medidas de varianza de los objetivos de calidad del agua seleccionados (*Alcance*; *Frecuencia* y *Amplitud*). Estas tres medidas de varianza se combinan para producir un valor entre 0 y 100 que representa la calidad general del agua. Los tres componentes del WQI son: Alcance (F1): representa el grado de incumplimiento de las pautas de calidad del agua durante el período de interés.

 $F1 = \frac{\text{N}\text{úmero de variables fallidas}}{\text{N}\text{úmero total de variables}} \ x \ 100$

2) *Frecuencia* (F2): representa el porcentaje de pruebas individuales que no cumplen los objetivos ("pruebas fallidas").

 $F2 = \frac{\text{N}\text{úmero de pruebas fallidas}}{\text{N}\text{úmero total de pruebas}} \ x \ 100$

3) *Amplitud* (F3): representa la cantidad por la cual las pruebas fallidas no cumplen con sus objetivos. Esto se calcula en tres pasos:

<u>Paso 1- Cálculo de *Excursión*</u>. La excursión es el número de veces que una concentración individual es mayor (o menor, cuando el objetivo es un mínimo) que el objetivo.

Cuando el valor de la prueba no debe exceder el objetivo:

 $Excursión = \frac{Valor de prueba fallido i}{Objetivo j} - 1$

Cuando el valor de la prueba no debe caer por debajo del objetivo:

Excursión i = Objetivo j Valor de prueba fallido i - 1

<u>Paso 2- Cálculo de la suma normalizada de excursiones</u>. La suma normalizada de excursiones, (*nse*), es la cantidad total por la cual las pruebas individuales están fuera de cumplimiento. Esto se calcula sumando las desviaciones de las pruebas individuales de sus objetivos y dividiendo por el número total de pruebas (tanto las que cumplen los objetivos como las que no los cumplen).

 $nse = \frac{\sum_{i=1}^{n} excursión i}{\text{Número de tests}}$

<u>Paso 3- Cálculo de F3.</u> Se calcula mediante una función asintótica que escala la suma normalizada de las excursiones de los objetivos para producir un rango de 0 a 100.

$$F3 = \frac{nse}{(0.01nse + 0.01)}$$

El WQI se calcula como:

WQI = 100- $\left[\sqrt{F1^2 + F2^2 + F3^2}\right] / 1.732$

El factor de 1.732 surge porque cada uno de los tres factores que componen el índice pueden variar hasta 100. La división por 1.732 normaliza los valores y reduce la longitud del vector a 100 como máximo

Los valores CCME WQI luego se convierten en clasificaciones utilizando el esquema de categorización del índice presentado en la Tabla 7. Mediante este proceso, CCME WQI convierte los datos brutos de calidad de agua en información (cuántos parámetros excedieron las pautas, con qué frecuencia y con qué amplitud) y luego en información que puede transmitirse (el agua es excelente, buena, regular o deficiente según el uso que se esté considerando). De esta forma, se transformaron estas categorías en datos ordinales, agrupando las muestras según en qué categoría caían.

Categoría	Valor WQI	Descripción
Excelente	95-100	La calidad del agua está
		protegida con una virtual
		ausencia de amenaza o
		deterioro; condiciones muy
		cercanas a los niveles
		naturales o prístinos. Estos
		valores de índice solo se
		pueden obtener si todas las
		mediciones están dentro de
		los objetivos prácticamente
		todo el tiempo

Tabla 7. Esquema de categorización del WQI.

Bueno	80-94	La calidad del agua está
		protegida con solo un grado
		menor de amenaza o
		deterioro. Las condiciones
		rara vez se apartan de los
		niveles naturales o deseables
Regular	65-79	La calidad del agua suele
		estar protegida, pero en
		ocasiones se ve amenazada o
		deteriorada. Las condiciones
		a veces se apartan de los
		niveles naturales o deseables
Deficiente	45-64	La calidad del agua se ve
		frecuentemente amenazada o
		deteriorada. Las condiciones
		a menudo se apartan de los
		niveles naturales o deseables
Pobre	0-44	La calidad del agua casi
		siempre está amenazada o
		deteriorada. Las condiciones
		generalmente se apartan de
		los niveles naturales o
		deseables

.

Para reunir los valores guía u objetivos de los diferentes estándares de calidad de agua teniendo en cuenta la legislación nacional, se utilizaron distintas fuentes de información (Decreto 253/79, Digesto CARU Nº 28/19, Mesa técnica de agua 2017). Cabe destacar que no todas las variables fisicoquímicas medidas fueron utilizadas para el cálculo del WQI, sino que solo aquellas para los cuales era posible obtener estos valores guía. Estos valores se presentan en la Tabla 8.

Parámetro	Estándar/ valor	Normativa
Turbidez (NTU)	≤ 50	Decreto 253/79
pН	6,5 - 8,5	Decreto 253/79
OD (mgL ⁻¹)	≥5	Decreto 253/80
SST (μ gL ⁻¹)	30	Digesto CARU
PT (μgL ⁻¹)	30	Mesa técnica del agua
NT (µgL ⁻¹)	500	Mesa técnica del agua
$NH_4 (\mu g L^{-1})$	200	Mesa técnica del agua
Cloa (µgL ⁻¹)	10	Mesa técnica del agua
Coliformes (UFC mL ⁻¹)	≤ 2000	Decreto 253/79

Tabla 8. Valores objetivos de los estándares utilizados para WQI.

2.4.3 Categorización de sitios según índice de calidad acuática (AQI)

El cálculo del AQI se basó en el desarrollado por Tsaboula et al (2018) para plaguicidas y se aplicó para el resto de CEs. La determinación del AQI se basa en el CCME WQI, modificado apropiadamente para la evaluación de los riesgos ecotoxicológicos a corto y largo plazo de los plaguicidas en organismos acuáticos no diana. Así, estos autores desarrollaron el Índice Acuático de Toxicidad a Corto Plazo de Plaguicidas (AQI_{ST}) y el Índice Acuático de Toxicidad a Largo Plazo de Plaguicidas (AQI_{LT}). El procedimiento metodológico fue el mismo que el del CCME. La diferencia radica en que en los índices ecotoxicológicos, las variables son plaguicidas (así como otros CEs en este trabajo) y los objetivos fueron el término agudo (PNEC_{ST}) y crónico (PNEC_{LT}) de las concentraciones previstas sin efecto, respectivamente. Además, desarrollaron un nuevo esquema de clasificación. De esta forma, se calculan los 3 componentes: *Alcance, frecuencia y amplitud*. Para determinar el valor de *excursión* para el cálculo de F3, se utilizó la fórmula donde el valor de la prueba no debe exceder el objetivo. Finalmente se determina el valor del índice de la misma manera que para CCME WQI.

Para los cálculos se utilizaron los valores de $PNEC_{LT}$ y $PNEC_{ST}$ presentados en la Tabla 5. En el primer caso los criterios de valoración fueron para toxicidad crónica (NOEC/modelo ECOSAR) y en el segundo para toxicidad aguda (EC₅₀).

La definición del rango de la escala del índice y la posterior clasificación de la calidad ecotoxicológica acuática desarrollada por Tsaboula et al (2018), se basó en el enfoque de un sistema de clasificación para la evaluación del estado químico, considerando el grado de superación de un determinado umbral de riesgo de una mezcla de compuestos (Brak et al. 2017). El sistema de clasificación consta de seis clases descriptivas y la clasificación se basa en la intensidad de los impactos tóxicos de los plaguicidas en organismos acuáticos no diana. La clasificación propuesta y la respectiva descripción de los riesgos reflejados por los valores AQI asociados se presentan en la Tabla 9 y 10 para los efectos agudos y crónicos respectivamente. Al igual que para el WQI, se transformaron estas categorías en datos ordinales, agrupando las muestras según en qué categoría caían.

Tabla 9. Rango de la escala de clasificación del AQI_{ST} y descripción del respectivo riesgo ambiental.

¢.

•

Clase	Rango	Descripción
Clase I	100	Los CEs no representan un riesgo
		agudo significativo para los
		organismos en el medio ambiente
		acuático
Clase II	99,1-99,9	Los CEs raramente y/o la
		intensidad de la exposición es
		débil para representar un riesgo
		agudo para los organismos en el
		medio ambiente acuático
Clase III	95-99	Los CEs a veces y/o la intensidad
		de la exposición es
		moderada para potencialmente
		plantear un riesgo agudo para los
		organismos en el medio ambiente
		acuático
Clase IV	90-94,9	Los CEs a menudo y/o la
		intensidad de la exposición es alta
		para
		representar un riesgo agudo para el
		medio ambiente acuático
Clase V	80-89,9	Los CEs con mucha frecuencia y/o
		la intensidad de la exposición es
		muy alta para representar un riesgo
		agudo para el medio ambiente
		acuático
Clase VI	<80	Los CEs siempre y/o la intensidad
		de la exposición es severa para
		representar un riesgo agudo para el
		medio ambiente acuático.

Tabla 10. Rango de la escala de clasificación del AQI_{LT} y descripción del respectivo riesgo ambiental.

Clase	Rango	Descripción
Clase I	99-100	Los CEs no representan un riesgo
		significativo a largo plazo para los
		organismos en el medio ambiente
		acuático
Clase II	96-98,9	Los CEs raramente y/o la
		intensidad de la exposición es
		débil para representar un riesgo a
		largo plazo para los organismos en
		el medio ambiente acuático
Clase III	92-95,9	Los CEs a veces y/o la intensidad
		de la exposición es
		moderada para potencialmente
		plantear un riesgo a largo plazo
		para los organismos en el medio
		ambiente acuático
Clase IV	82,5-91,9	Los CEs a menudo y/o la
		intensidad de la exposición es alta
		para
		representar un riesgo a largo plazo
		para el medio ambiente acuático
Clase V	50,1-82,4	Los CEs con mucha frecuencia y/o
		la intensidad de la exposición es
		muy alta para representar un riesgo
		a largo plazo para el medio
		ambiente acuático
Clase VI	<50	Los CEs siempre y/o la intensidad
		de la exposición es severa para
		representar un riesgo a largo plazo
		para el medio ambiente acuático

2.4.4 Estructura taxonómica de las comunidades microbianas

Para el análisis de la estructura de la comunidad microbiana se siguió el proceso de NGS que se dividió en las siguientes etapas (Figura 26): preprocesamiento de muestras (que incluye la recolección y extracción de ADN), preparación de bibliotecas, secuenciación y análisis bioinformático. A partir de la preparación de la biblioteca se produce una población de fragmentos de ADN de longitudes definidas con secuencias de oligómeros en ambos extremos para que sean compatibles con la técnica de secuenciación aplicada. Luego, se realizó el experimento de secuenciación y finalmente, los datos de las secuencias resultantes fueron procesados por un *pipeline* de análisis bioinformático para obtener la información relevante (Hess et al 2020). A continuación, se detalla lo realizado en cada una de las etapas.

Figura 26. Flujo de trabajo aplicado para el análisis de la estructura taxonómica de las comunidades microbianas.

2.4.4.1 Recolección y extracción de ADN bacteriano

Las muestras de agua se prefiltraron (entre 150-1000 mL) a través de un filtro de 23 μ m y luego se filtraron utilizando filtros de ésteres de celulosa mixtos de 0,22 μ m (Millipore) (Figura 27). La extracción de ADN se llevó a cabo a partir de los filtros de celulosa, de acuerdo con el protocolo modificado de Zhou et al. (1996), previamente aplicado en muestras de agua representativas de gradientes ambientales (Alonso et al. 2010). Brevemente, consistió en incubar los filtros durante 30 minutos a 37 °C en un buffer de extracción con Proteinasa K. Luego la muestra fue incubada durante 2 horas a 65 °C con sodio dodecil sulfato (SDS) al 20 %. Se centrifugó a 6.000g durante 10 minutos y el sobrenadante resultante se lavó mediante centrifugación con cloroformo/alcohol isoamílico (24:1, v/v), 2 veces a 10.000g por 10 minutos. Luego la fase acuosa se precipitó con 0.6 volumen de isopropanol e incubó a temperatura ambiente durante 1 hora. El precipitado se lavó mediante centrifugación a 12.000g durante 30 minutos y el pellet resultante se lavó con 10 mL de Etanol frío al 70 % en una última centrifugación a 12.000g

por 15 minutos. Una vez descartado el sobrenadante, se dejó secar el pellet a temperatura ambiente y se resuspendió en 200 μ L de buffer TE 1X pH 7-8 durante toda la noche a 4 °C. A la mañana siguiente las muestras fueron incubadas a 37 °C por 30 min y guardadas a -20 °C hasta su posterior análisis.

La calidad de ADN fue chequeada mediante un protocolo de PCR estándar para el gen 16S rRNA (Tabla 11) utilizando los *primers* 515F-Y (5'-GTG YCA GCM GCC GCG GTA A- 3') y 916R (5'-CCG YCA ATT YM TTT RAG TTT-3') (Parada et al. 2016). Posteriormente en un gel de agarosa al 1 %. En aquellas muestras que era necesario, se purificó el ADN utilizando el kit de extracción de gel QIAquick (QIAGEN), o filtros de diálisis de 0,025µm VSWP (Millipore) para el caso de las muestras de mar.

	Volumen (µL)
ADN microbiano	1
primer Forward (10 µM)	0,12
primer Reverse (10 µM)	0,12
Buffer sin MgCl ₂	1,8
MgCl ₂	0,9
dNTPs	0,3
$BSA^{*} (50 \text{ mgL}^{-1})$	1,5
Taq Polimerasa	0,12
H ₂ O PCR	10,14
Total	15

Tabla 11. Reacción de PCR para el chequeo de calidad de ADN.

*Albúmina de suero bovino. Utilizada para mejorar la reacción de PCR evitando inhibidores interactúen con el ADN (Farell & Alexandre 2012).

El programa de PCR utilizado en el termociclador fue el siguiente:

.

.

- 95 °C por 5 minutos (Desnaturalización inicial)
- 30 ciclos de:
- 95 °C por 45 segundos (Desnaturalización ciclo)
- 50 °C por 45 segundos (Annealing)
- 72 °C por 1:30 minutos (Extensión ciclo)
- 72 °C por 10 minutos (Extensión final)
- Mantener at 4 °C

Figura 27. Sistema de filtración utilizado para recolectar el ADN bacteriano.

2.4.4.2 Preparación de librería y secuenciación de ADN

Para la preparación de la librería se utilizó el kit Nextera XT Index (2 X 301), para utilizar con la tecnología de secuenciación de Illumina MiSeq. A partir del ADN extraído se llevó a cabo la amplificación de las regiones hipervariables V4-V5 del gen codificante para ARNr 16S empleando los *primers* 515F-Y y 916R (Parada et al. 2016). Además, las secuencias de los adaptadores de Ilumina agregados sobre el final de la región 5' fueron 5'-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG y GTC TCG TGG- 3' 5'-GCT CGG AGA TGT GTA TAA GAG ACA G- 3' para 515F-Y y 916R respectivamente. Posteriormente, se procedió a la preparación de la librearía del 16S a partir de los amplicones resultantes (aproximadamente 411 pb) (Figura 28). A continuación, se detalla lo realizado en cada una de estas etapas.

.

Figura 28. Diagrama del flujo de trabajo utilizando el protocolo de preparación de bibliotecas 16S Kit Nextera XT Index. Tomado de Ilumina (2013).

Primera etapa de PCR

Esta etapa se utilizó para amplificar el *template* de la muestra de ADN usando la región de interés específica a partir de los *primers* con adaptadores de Ilumina. Las reacciones se hicieron por triplicados, y luego se unieron en un único volumen. Las cantidades de los reactivos utilizados en la reacción se muestran en la Tabla 12:

Tabla 12. Reacción de primera etapa de PCR utilizando ADN, primers y el Mix 2x KAPA HiFi HotStart (Conteniendo la enzima Polimerasa y los buffers utilizados en la reacción de PCR).

	Volumen (µL)
ADN microbiano (5 ngµL ⁻¹)	1
primer Forward de amplicón de PCR	0,5
primer Reverse de amplicón de PCR	0,5
Mix 2x KAPA HiFi HotStart	5
H ₂ O PCR	3
Total	10

El programa de PCR utilizado en el Termociclador fue el siguiente:

- 95 °C por 3 minutos (Desnaturalización inicial)
- 25 ciclos de:
- 95 °C por 45 segundos (Desnaturalización ciclo)
- 50 °C por 45 segundos (Annealing)
- 72 °C por 1 minuto (Extensión ciclo)
- 72 °C por 5 minutos (Extensión final)
- \bullet Mantener at 4 $^\circ C$

PCR Clean-up

Durante esta etapa se utilizaron las perlas o microesferas AMPure XP para purificar el amplicón eliminando *primers* y sus dímeros, que se puedan pegar al producto de amplificación. En primer lugar, se transfirió todo el producto de PCR a una placa de PCR de 0,2 mL de 96 utilizando una pipeta multicanal. Luego se agregaron 20 µL de perlas AMPure XP a cada pocillo de la placa de PCR junto con el amplicón mezclando 10 veces mediante pipeteo suave. Se incubó a temperatura ambiente durante 5 minutos. Posteriormente se colocó la placa en un soporte

magnético durante 2 minutos, con la placa de PCR en el soporte magnético, se retiró y desechó el sobrenadante (las perlas junto con el producto de amplificación "limpio" se atraen a la parte magnética del soporte de la placa). A continuación, aún con la placa de PCR en el soporte magnético, se lavaron las microesferas añadiendo 200 µL de EtOH al 80 % e incubando la placa en el soporte magnético durante 30 segundos, retirando y desechando el sobrenadante. Este lavado se realizó 2 veces. Luego de dejar secar las microesferas durante 10 minutos con la placa aún en el soporte magnético, se retiró del mismo. Posteriormente se añadieron 52.5 µL de Tris 10 mM pH 8.5 a cada pocillo de la placa de PCR homogeneizando la muestra. Se incubó a temperatura ambiente durante 2 minutos y se colocó la placa nuevamente en el soporte magnético durante 2 minutos para finalmente transferir 50 µL del sobrenadante a una nueva placa de PCR de 96 pocillos.

Segunda etapa de PCR (o PCR Index)

Durante esta etapa se combinan los *primers* index 1 y 2 del Kit Nextera XT Index con las secuencias de adaptadores específicos de Ilumina. Para ello, se transfirieron 5 μ L de cada pocillo de la placa de PCR a una nueva placa de 96 pocillos. Luego, los cebadores del *index* 1 y 2 fueron dispuestos de manera horizontal alineados con las columnas 1-12 y vertical alineados con filas de la A-H respectivamente en una gradilla accesoria a la placa (Figura 29).

Figura 29. Gradilla accesoria a la placa de PCR. A: Cebadores index 2. B: Cebadores index 1. C: Placa de 96 pocillos. Tomado de Ilumina (2013).

De esta forma, cada pocillo contenía una combinación de específica de cebadores *index* 1 y 2 que permitió luego identificar cada una de las muestras en los productos de secuenciación. La reacción de PCR utilizada en esta etapa se presenta en la Tabla 13.

Tabla 13. Reacción de segunda etapa de PCR o PCR index utilizando ADN, cebadores index 1 y 2, Mix 2x KAPA HiFi HotStart (Conteniendo la enzima Polimerasa y los buffers utilizados en la reacción de PCR) y agua para PCR.

	Volumen (µL)
ADN	2,5
Cebador Nextera XT Index 1 (N701-715)	2,5
Cebador Nextera XT Index 2 (S513-522)	2,5
Mix 2x KAPA HiFi HotStart	12,5
H ₂ O PCR	5
Total	25

El programa de PCR utilizado fue:

- 95 °C por 3 minutos (Desnaturalización inicial)
- 8 ciclos de:
- 95 °C por 30 segundos (Desnaturalización ciclo)
- 55 °C por 30 segundos (Annealing)
- 72 °C por 30 segundos (Extensión ciclo)
- 72 °C por 5 minutos (Extensión final)
- Mantener a 4 °C

Luego se realizó la segunda etapa de clean-up se realizó de la misma manera que la primera.

Cuantificación de la librería, normalización y carga de muestra

Para la generación de *clusters* necesarios en la etapa de secuenciación, las bibliotecas se agruparon en 2 *pools*, debido a que las concentraciones de ADN difirieron bastante entre las muestras. Las concentraciones fueron medidas en un qbit (*pool* 1= 8,01 ngµL⁻¹, *pool* 2 = 4,57 ng µL⁻¹). Ambos *pools* fueron mezclados para obtener una concentración final de 2 nM y así obtener el mismo largo de *reads*. Luego se realizó la desnaturalización con NaOH, diluido con *buffer* de hibridación HT1 y posteriormente con calor antes de la secuenciación de MiSeq. Además, se agregó 15% PhiX antes de la corrida de secuenciación como control interno, para aumentar la diversidad de las librerías, un procedimiento estándar en la secuenciación de amplicones de 16S. La secuenciación fue realizada a través de una contratación de servicio en la empresa COH (City of Hope, USA) utilizando la plataforma de secuenciación 25M MiSeq PE300.

2.4.4.3 Análisis bioinformáticos

Las secuencias de amplicones del gen codificante para el ARNr 16S generadas con la plataforma Illumina MiSeq y sus *scores* de calidad fueron almacenadas en archivos de texto FASTQ. Para preprocesar estos datos, se eliminaron los *primers* con la herramienta cutadapt (Martin 2011), se recortaron las secuencias de acuerdo a su calidad, se unieron las secuencias pareadas, y se removieron secuencias quimeras utilizando funciones del paquete de R DADA2 (Callahan et al. 2016). Para identificar las unidades taxonómicas operacionales, se utilizó la función *dada* del paquete DADA2, lo que permitió obtener variantes de secuencias de amplicones (ASVs). Por último, la anotación taxonómica de ASVs se realizó utilizando la herramienta Naive Bayes Classifier (Wang et al. 2007), donde se tomó como referencia taxonómica, la base de datos Silva NR 99 v138 (http://www.arb-silve.de). Todas las tareas para el preprocesado, y la identificación de ASVs y su anotación taxonómica fueron implementadas en un *pipeline* desarrollado en nuestro laboratorio, por el Dr. Emiliano Pereira, disponible en https://github.com/pereiramemo/amplicon_pipelines.

Cabe destacar que la metodología implementada basada en ASVs, es especialmente adecuada para los estudios llevados a cabo en el marco de este trabajo, ya que proporciona una alta resolución de la estructura de comunidades de microorganismos y facilita la reproducibilidad de los análisis (Callahan et al. 2017).

2.4.5 Estructuración de las comunidades microbianas

Para visualizar la separación (o no) entre los diferentes sistemas estudiados (arroyos, lagunas y mar) en base a sus comunidades bacterianas se realizó un análisis de coordenadas principales (PCoA) sobre la matriz taxonómica de disimilitud de Bray-Curtis (luego de aplicar la transformación de Hellinger (Logaritmo en base 2), que es una de las transformacines más empleadas para datos de abundancia, en particular aplicada a datos de composición taxonómica obtenidos por NGS (Ramette 2007). Se realizó un correlograma entreo los 2 ejes principales del PCoA y las variables ambientales, para determinar cuáles presentan mayor aporte a la estructuración observada. Además, se utilizó el análisis de redundancia (RDA) que permite estudiar la relación entre las dos matrices de variables X e Y, de forma tal que los componentes extraídos de X sean tales que maximicen la correlación con las variables de Y (Van den Wollenberg 1977). De esta forma, se estudió la relación entre la matriz de abundancia de ASVs transformados por Hellinger (Y) y las VA incluyendo los CEs definidos por categorías de contaminantes, a fin de comprender cuánto de la variación de las comunidades era explicada por las diferentes variables ambientales. Finalmente, ser realizó un RDA parcial dejando fijo el efecto de las VA clásicas para visualizar el efecto específico de los CEs en la estructuración de las comunidades. Previo a la realización del RDA y del RDA parcial, se estudió la colinealidad entre las variables explicativas calculando el factor de varianza inflada (VIF), reteniendo solo aquellas variables con VIF <5. Para todos los análisis se utilizó el software libre R versión 3.6.1. Un resumen de los análisis realizados se muestra en la Figura 30.

Figura 30. Esquema representando los análisis estadísticos realizados para estudiar la estructura taxonómica de las comunidades.

2.4.6 Búsqueda de ASVs indicadoras

Previo al análisis de indicadores, se realizó la rarefacción de la cantidad de secuencias por muestra. La misma se trata de una técnica de normalización del tamaño de la biblioteca mediante submuestreo aleatorio sin reemplazo, utilizada para equiparar el esfuerzo de muestreo al trabajar con secuencias de amplicones (Weiss et al. 2017). Para el caso de los arroyos, se tuvieron que excluir del análisis 7 muestras (R_ST_AUT_02, C_ST_AUT_05, C_ST_AUT_02, C_ST_WIN_01, R_ST_WIN_01, R_ST_SPR_04) que sumaban una abundancia total < 10.000 por sitio, para evitar la pérdida de información luego de la rarefacción en el set total. Para el caso de las lagunas, se excluyó una única muestra en el análisis por tener abundancia <10.000 (C_LA_WIN_09).

Se rarificó por el mínimo de la suma total de ASVs por muestra (12.358 para arroyos y 21.159 para lagunas) y se filtró por el 0,005 % de abundancia total obteniendo un total de 1.097 y 1.123 ASVs para arroyos y lagunas respectivamente.

El análisis IndVal se llevó a cabo para identificar y seleccionar indicadores para cada grupo de muestras definidas según las diferentes categorías de WQI y AQI, en función de la matriz de abundancia de ASVs (Dufrene & Legendre 1997), usando el paquete R 'indicspecies' (De Cáceres & Legendre 2009). El índice IndVal evalúa el potencial de una especie dada para actuar como un indicador de cada grupo objetivo. Su valor varía entre 0 y 1 y es el producto de 2 componentes: componente A (especificidad o valor predictivo positivo), que es máximo cuando la especie solo está presente en el grupo objetivo, y el componente B (sensibilidad o fidelidad), que es máximo cuando la especie está presente en todas las muestras del grupo objetivo (Dufrene & Legendre 1997). Se evaluó la significancia estadística del estadístico IndVal usando una prueba de permutación (es decir, aleatorización ya sea del vector de especies o el vector de pertenencia al grupo de sitios) (De Cáceres & Legendre 2009).

El uso del IndVal se ha ampliado para considerar combinaciones de especies, además de especies individuales, como indicadores potenciales (De Cáceres et al. 2012). El gran número de especies en las comunidades bacterianas ofrece la oportunidad de explorar el valor indicador de las combinaciones de especies. Se tomaron las ASVs más abundantes de cada conjunto de datos (definidas en base al umbral de abundancia de 0,005 %) y, para cada grupo a indicar, se seleccionaron aquellas ASVs con un valor umbral de frecuencia (Bt) de al menos 0,5 (es decir, presente en el 50 % de las muestras en el grupo objetivo) como candidatos a formar combinaciones de especies. Luego, se utilizó la función indicators para evaluar el valor predictivo de combinaciones de hasta 4 ASVs entre las ASVs seleccionadas como candidatas, así como su significancia estadística. El umbral para seleccionar las especies más abundantes, así como el orden máximo de combinaciones (hasta 4 ASVs) fue elegido para mantener un tiempo de cálculo efectivo, ya que había muchas especies candidatas por grupo.

Basado en este análisis, una lista de potenciales indicadores (ya sea ASVs individuales o combinaciones de las mismas) fue obtenida para cada grupo, de las cuales el mejor indicador fue seleccionado como el de mayor valor de IndVal, utilizando la función pruneindicators del

paquete de R indicspecies. La función pruneindicators selecciona indicadores para que el límite inferior del intervalo de confianza al 95 % de IndVal (o uno de sus componentes) sea igual o mayor que un valor de umbral definido por el usuario. Mantiene el conjunto de indicadores no anidados y selecciona el indicador con el valor de IndVal más alto (o uno de sus componentes) entre los que maximizan la cobertura del grupo objetivo (De Cáceres 2013). Con fines de optimizar el proceso de predicción, la función *pruning* se ejecutó para maximizar el valor predictivo (A) y a su vez maximizar el valor del estadístico IndVal (Alonso et al. 2022).

2.4.7 Asignación de muestras a los diferentes grupos utilizando los indicadores taxonómicos bacterianos

La capacidad de predecir la asignación de cada muestra a su grupo correspondiente se probó utilizando la función predict del paquete indicspecies. Esta función tiene en cuenta la presencia del indicador en cada muestra para asignarla a un determinado grupo. Cuando el indicador se encuentra en la muestra, la probabilidad de pertenecer al grupo objetivo es igual a su especificidad (es decir, A, el valor predictivo del indicador). Para muestras donde 2 o más indicadores están presentes, la probabilidad de pertenecer al grupo objetivo es igual al valor de especificidad más alto entre todos los indicadores encontrados (De Cáceres 2013). De esta forma, dada una muestra de un set de datos nuevo, la función predict estima de forma independiente la probabilidad de pertenencia a cada grupo. Por lo tanto, la suma de los valores de probabilidad de la muestra en todos los grupos no necesariamente tiene que ser 1.

Para el propósito de este trabajo, se utilizó la modificación de la función predict previamente implementada y aplicada para predecir muestras pertenecientes a distintos estuarios (Alonso et al. 2022) que permite incluir la técnica de validación cruzada, mediante la aproximación de "leave one out", es decir en la que la predicción de una muestra dada se realiza sin tener en cuenta su empleo para la identificación de los indicadores. Esta herramienta de validación cruzada es particularmente útil para conjuntos de datos relativamente pequeños (James et al. 2013). Dicha modificación se encuentra disponible en la versión actual del paquete indicspecies (1.2.12)

2.3 Resultados y discusión

2.3.1 Calidad de agua de las cuencas de las Lagunas de Rocha y Castillos

A partir de la determinación de diferentes parámetros ambientales se pudo llegar a una aproximación del estado de calidad de agua de las cuencas de ambas lagunas, destacando la sobrecarga de nutrientes (en particular PT) que existe en varios puntos de la cuenca, sobre todo en arroyos y lagunas. Los resultados de las VA para cada sitio se muestran en la Tabla 3 del Anexo y en la Tabla 14 se puede ver un resumen de dichos valores.

Tabla 14, Resumen de los resultados de las variables fisicoquímicas medidas para las cuencas de las Lagunas de Rocha y Castillos (n=91),

-0

÷

		Castillos									Rocha							
	Arroyos			Laguna				Mar		1	Arroyc	os Laguna			ı	Mar		
	Media	Min	Max	Media	Min	Max	Media	Min	Max	Media	Min	Max	Media	Min	Max	Media	Min	Max
Temp	17,8	13,5	23,4	18,0	13,2	22,8	17,6	13,7	23,3	18,0	14,4	23,8	17,6	13,3	23,9	17,0	14,2	22,6
Turbidez (NTU)	29,9	2,4	128,0	51,0	0,0	194,0	5,7	0,0	21,2	34,0	5,6	74,4	51,3	0,0	132,0	4,6	0,0	13,9
Salinidad	0,2	0,1	0,5	5,3	0,1	21,3	27,5	7,7	37,3	1,0	0,1	8,6	13,2	0,1	19,1	28,5	23,7	31,9
pН	7,3	6,4	7,7	8,0	7,2	9,0	7,9	6,9	8,3	7,2	6,8	7,6	7,7	6,6	8,3	7,8	7,4	8,2
OD (mgL ⁻¹)	6,6	1,4	9,8	7,9	6,6	9,6	7,4	6,2	8,7	7,0	3,6	10,3	7,9	6,8	9,6	7,4	6,0	9,2
Solidos susp	12,8	2,0	49,3	34,0	2,0	151,4	16,6	8,3	39,6	26,3	3,0	106,8	63,3	8,2	205,7	24,5	7,7	84,8
Mo susp	5,0	0,7	11,0	5,3	0,0	24,4	2,9	1,5	5,8	12,0	4,0	40,7	10,8	1,7	42,9	10,7	1,1	63,6
PT (μgL ⁻¹)	302,2	10,0	1.374	64,7	22,6	155,5	67,4	31,9	133,4	215,6	20,0	510,0	107,1	45,9	166,8	58,6	36,6	79,6
NT	2.131	281,7	1.1275	787,5	293,7	1.119,7	323,3	187,3	604,6	672,3	0,0	1701,7	734,7	177,7	1279,1	326,4	48,1	546,6
NO_3	328,6	30,9	2.915	32,0	1,1	244,8	27,0	5,0	116,8	235,3	67,8	565,0	27,9	5,0	129,8	65,9	5,0	146,2
NH_4	586,4	5,0	3.912	16,5	5,0	106,9	33,6	0,6	197,8	63,3	7,8	262,5	49,3	5,0	139,8	37,9	3,2	226,5
cloA	2,3	0,0	11,8	4,0	0,0	11,9	3,6	1,6	6,4	4,8	0,0	17,0	4,2	1,0	12,2	3,3	0,4	10,8
Coliformes																		
UFC/100mL	43.137	0,0	161.000	93,0	5,0	600	17,8	3,0	52,0	16.882	100	12.250	410,8	5,0	2.400	8,0	0,0	30

El pH presentó valores cercanos a la neutralidad en casi todos los sitios, a excepción de la cuenca de la LC en verano y otoño (aquí se presentó el valor máximo en el sitio muestreado al Norte de la laguna, C_LA_06), en donde se registraron valores alcalinos tanto en la laguna como en el mar costero, varios de ellos incluso superando el límite de la normativa (6,5-8,5). Además, se registró un valor alto de pH (8,25) en el Norte de la LR (R_LA_05) en primavera. Un único sitio (C_ST_03) durante el invierno, presentó valores ácidos de pH incluso por debajo de los que establece la normativa, que corresponde a la naciente del arroyo Chafalote en la cuenca de la LC. Este sitio no está asociado a ninguna fuente de contaminación puntual, por lo que este valor seguramente se deba a que es una zona con entrada de material húmico (Jorcin 1999) y los rangos de pH en estos tipos de cuerpos de agua suelen ser bajos (Pokrovsky et al. 2014).

Los valores de OD mostraron un amplio rango de variación, registrándose valores por debajo del límite que establece la norma ($\geq 5 \text{ mgL}^{-1}$) en 5 puntos. Dos de ellos en la cuenca de la LR, en el arroyo La Palma (R_ST_04) y el embalse del mismo (R_ST_10) en otoño; y el resto en la cuenca de LC: en el arroyo Don Carlos (C_ST_01) en otoño, la cañada de los Olivera (C_ST_05, aquí se registró el valor mínimo del todo el set de datos en otoño) y en la cañada aguas abajo de la ciudad de Castillos (C_ST_04) también en otoño y primavera. Las zonas urbanizadas suelen estar asociadas a bajas concentraciones de oxígeno disuelto (Duwig et al. 2014) y altos niveles de demanda biológica de oxígeno (Mallin et al. 2009), dadas por la respiración durante el proceso de degradación de las cargas relativamente altas de materia orgánica, típicas de estos sistemas.

Los valores de turbidez superaron en varias ocasiones el estándar admitido (máximo de 50 NTU) tanto en arroyo como en lagunas, presentando el máximo en el arroyo Valizas (C_LA_10). Debe tenerse en cuenta que las lagunas costeras son sistemas someros, en los que existe en forma habitual una resuspensión de los sólidos debido a la baja profundidad y gran extensión de su espejo de agua (Conde et al. 2002). Los valores de SST presentaron un patrón similar al de turbidez, presentando el máximo en el norte de la Laguna de Rocha.

Se encontró un marcado gradiente decreciente de salinidad desde el mar hacia las lagunas y arroyos como era de esperar, siendo muy marcada la diferencia entre el mar costero y el resto de los sistemas (Tabla 14). Además de la variabilidad inherente de los 3 sistemas, una alta

variabilidad en salinidad, nutrientes y CloA se observó dentro de las lagunas, que es una característica común en lagunas costeras (Chagas & Suzuki 2005; Christia et al. 2014).

Existe una tendencia a la disminución en la concentración de PT y NT de arroyos a mar, mientras que los valores de cloA fueron mayores en las lagunas (Figura 31). Los valores medios de PT y NT en arroyos y lagunas superaron el límite objetivo establecido (30 y 500 µgL⁻¹ respectivamente) a partir del informe de asesoría de la mesa técnica de agua (2017). La media en los valores de NH₄⁺ en arroyos supera el límite establecido (500 μ gL⁻¹) por la mesa técnica de agua (2017). Los valores máximos de PT, NT y NH4⁺ se encontraron en el sitio C_ST_04 en otoño (donde también se encontraron los valores mínimos de OD), lo cual es esperable teniendo en cuenta que recibe aportes puntuales de origen urbano. Teniendo en cuenta solo las lagunas, los valores medios de nutrientes nitrogenados por sitio, superaron levemente el rango de la media histórica (0,77 mg L⁻¹) (Rodríguez-Gallego et al. 2017). En cuanto al PT, por sitio se registraron valores algo superiores a la media histórica (81 µgL⁻¹). Estos resultados van en línea con estudios que sugieren que esta laguna presenta indicios de un aceleramiento del proceso de eutrofización antrópica (Aubriot et al. 2005; Rodríguez-Gallego et al. 2010), mostrando un aumento en los últimos años de la concentración de PT asociado al aumento en las actividades agrícolas en su cuenca (Rodríguez-Gallego et al. 2010). En este sentido, diferentes indicadores de estado trófico muestran que las lagunas de Rocha y de Castillos están en un rango trófico de meso a eutrófico, en concordancia con trabajos previos realizados en estos sistemas (Bonilla 1998, Conde et al. 1999).

Por otra parte, el valor medio de PT por sitio en el mar costero (66 µgL⁻¹) supera los estándares de referencia aplicados en otras partes del mundo como la UE. Al comparar con límites establecidos por la Directiva marco sobre estrategia marina en distintas regiones para áreas costeras y marinas (9,3-26 µgL⁻¹) (Dworak et al. 2016), se observa que los rangos establecidos se encuentran por debajo de los valores hallados en esta Tesis. Esto estaría indicando una señal de alerta del aporte de este nutriente al sistema marino desde la cuenca, lo que sería indicativo de una creciente eutrofización como ya ha sido reportado para la mayoría de los sistemas costeros cuyo estado trófico va desde mesotróficos a eutróficos, debido a aportes antropogénicos (Meyer-Reil & Köster).

Según la OCDE (1982), y considerando los valores promedio de clorofila a, tanto la LR como la LC se encontraron en estado mesotrófico durante ese período de estudio (4,25 y 3,97 μ gL⁻¹ respectivamente). El valor máximo de CloA ocurrió en R_ST_04 en verano, este sitio también presentó valores de hipoxia en otoño. El arroyo La Palma drena la zona agrícola más importante de la cuenca (21,5%) y junto con el arroyo Los Noques son los que presentan la mayor proporción de ocupación por agricultura (Rodríguez-Gallego 2010). Esto podría explicar la alta sobrecarga en nutrientes encontrada en este sitio (a excepción de primavera), así como los altos valores de CloA y bajos de OD que son indicios de procesos de eutrofización.

La presencia de coliformes totales superó el límite establecido por el Decreto 253/79 (≤2000 UFC en 100 mL) en dos puntos: la cañada de los Olivera en primavera (donde se presentó el máximo de este indicador) y el Norte de la LR en invierno (2400 UFC en 100 mL). Este valor podría verse explicado por las altas precipitaciones ocurridas en los días previos a los muestreos. En cuanto al valor encontrado en la cañada de los Olivera, es indicativo de contaminación de origen fecal, asociado a la descarga de aguas servidas de la PTAR de Castillos.

Figura 31. Distribución espacial de la concentración de nutrientes y cloA a lo largo de un año de muestreo. Se representan la mediana, el primer y tercer cuartil y el IC (intervalo de confianza) al 95 %.

2.3.2 Categorización de sitios según WQI y AQI para las cuencas de las Lagunas de Rocha y Castillos

El rango de variación del WQI fue 22.7 a 83.4, las categorías de sitios encontradas según este índice fueron 4: buena, regular, deficiente y pobre. No se encontró la categoría excelente, teniendo en cuenta los valores de las variables guía utilizadas durante los 4 períodos de muestreo.

Para la categorización de los sitios según el AQI, se ajustaron las escalas ordinales desarrolladas por Tsaboula et al (2016). En el caso del AQI_{LT}, el rango de valores fue desde 34 a 75, por lo que solo se encontraron 2 categorías de sitios (V y VI), que corresponden a las de mayor impacto (Tabla 9). Para el caso del AQI_{ST}, todos los sitos caían en la categoría de mayor impacto, es decir, los CEs siempre y/o la intensidad de la exposición es severa para representar un riesgo agudo para el medio ambiente acuático (clase VI) (Tabla 10). En este caso, como solo para 2 compuestos se determinó el valor de PNEC_{ST} (Tamoxifen y Terbutalina, ver Tabla 5), se utilizó la clasificación del AQI según el AQI_{LT}, para todos los sitios. Dado a que todos los sitios cayeron en las categorías de mayor impacto, se hizo un zoom en estas categorías dividiéndolas en 4 teniendo en cuenta la distribución de los primeros 4 cuantiles de los valores de AQI hallados (Figura 32), para visualizar mejor el gradiente de impacto.

Figura 32. Histograma de los valores de AQI y rangos de categorías definidos por la distribución de los primeros 4 cuantiles (25 %: 40,64; 50 %: 48,62; 75 %: 58,92; 100 %: 75,29).

La clasificación de los diferentes sitios en ambas cuencas según el WQI y el AQI se muestra en las Figuras 33 y 34. Por lo general, los sitios que denotan mayor impacto por WQI también lo muestran con el AQI, aunque no se encontró una correlación significativa entre ambos índices (Coeficiente de Spearman= 0,25; p valor=0,25). El AQI detecta con mayor sensibilidad el impacto (es decir presentar valores más altos en la escala ordinal y más bajo de índice). Mas allá de esto, lo interesante es que ambos índices son consistentes para los sitios mas impactados (C_ST_04 y 05).

Figura 33. Categorización de los sitos según índice de calidad de agua basado en variables ambientales (WQI) y en CEs (AQI) para los arroyos de las cuencas de las lagunas de Rocha y Castillos. Los rangos de las categorías son: 1-Bueno, 2-Regular, 3-Deficiente y 4-Pobre para WQI, 1er cuartil. 2do cuartil, 3er cuartil y 4to cuartil para AQI.

Figura 34. Categorización de los sitos según índice de calidad de agua basado en variables ambientales (WQI) y en CEs (AQI) para las lagunas y mar costero de las cuencas de las lagunas de Rocha y Castillos. Los rangos de las categorías son: 1-Bueno, 2-Regular, 3-Deficiente y 4-Pobre para WQI, 1er cuartil. 2do cuartil, 3er cuartil y 4to cuartil para AQI.

Para evaluar la asociación entre las variables sistema e índice de calidad de agua, se llevó a cabo una tabla de contingencia y para verificar la independencia, un test de Chi-cuadrado (Figuras 34 y 35). Se puede observar, por un lado, que no hay independencia entre ambas variables ya que no todas las categorías según la clasificación de los índices están representadas en los 3 sistemas, y la proporción de sitios en cada sistema para cada categoría también difiere. Por otro lado, se observa que en el caso del WQI esta asociación es más fuerte. Por ejemplo, en el caso del AQI las 4 categorías están representadas en sitios de los 3 sistemas (a excepción de la categoría 3 que no está representada por ningún sitio del mar). Sin embargo, para el WQI, no hay ningún sitio correspondiente a arroyos que caiga en la categoría 1, ni ningún sitio de mar o laguna que caiga en la categoría 3 (o ningún sitio de laguna que caiga en la categoría 4). Esta observación, se refuerza con los valores de los estadísticos de la prueba de χ -cuadrado siendo mayores (es decir mayor asociación) en WQI (χ -cuadrado = 45,875, *p* valor = 3,135e-08), comparado a AQI (χ -cuadrado = 15,855, *p* valor = 0,01456). Este resultado era esperable, teniendo en cuenta que el WQI se construye únicamente con las VA por lo que su dependencia entre este índice y el tipo de sistema (que está estrechamente vinculado a las VA) resulta natural.

Figura 35. Tabla de frecuencias absolutas de sitios pertenecientes a las 4 categorías según el WQI (Buena, Regular, Deficiente y Pobre) para los tres sistemas analizados: arroyos (verde), lagunas

(azul) y mar costero (celeste). El tamaño de los cuadrantes es proporcional al número de sitios de cada sistema asignados a cada una de las categorías de WQI.

Figura 36. Tabla de frecuencias absolutas de sitios pertenecientes a las 4 categorías según el AQI (1er cuartil. 2do cuartil, 3er cuartil y 4to cuartil) para los tres sistemas analizados: arroyos (verde), lagunas (azul) y mar costero (celeste). El tamaño de los cuadrantes es proporcional al número de sitios de cada sistema asignados a cada una de las categorías de WQI.

2.3.3 Estructura de las comunidades bacterianas 2.3.3.1 Procesamiento bionformático de las secuencias obtenidas

Luego de preprocesar los datos de amplicones se obtuvo un total de 10.711.454 secuencias por muestra, con un largo promedio 373 pares de bases. En la Tabla 15 se muestran los números obtenidos de secuencias por muestra, comparando el total de secuencias obtenidas, con las remanentes luego del chequeo de calidad (pre-procesamiento). Como puede apreciarse, la calidad de los resultados obtenidos fue muy alta, reteniéndose un alto porcentaje de las secuencias (85,7%). A pesar de esto, 2 de las muestras fueron removidas (R_ST_AUT_10 y C_ST_AUT_03) para los análisis posteriores ya que presentaron un número muy bajo de secuencias.

	Brutos	Preprocesados
N° de muestras	89 (+2)	89
Nº total de secuencias	12.501.349	10.711.454
Abundancia (media)	140.464	120.353
Abundancia (DS*)	68.744	59.111
Nº máximo de secuencias	422.348	365.403
Nº mínimo de secuencias	2.387	2.017
Largo promedio de secuencias	R1** = 301; R2 = 301	373,31
DS del largo de secuencias	0	4,98

Tabla 15. Estadísticos generales de calidad de secuenciación del 16S comparando datos brutos y pre-procesados.

.

ŧ.

*DS= Desviación estándar

** R1 y R2 = secuencias generadas por los primers *forward* y *reverse* respectivamente

2.3.3.2 Patrones de diversidad de las comunidades bacterianas

Se definieron 39.766 ASVs en total, con un 97 % de anotación a nivel de Filo, 73 % a nivel de familia y 46 % a nivel de género. Se obtuvieron un total de 59 filos, con el filo *Proteobacteria* dominando la comunidad en todos los sitios al igual que los *Bacteroidetes*. Se encontró un perfil diferencial entre los distintos sistemas con los *Plantomycetes* dominando en arroyos y lagunas al igual que *Nitrospira* y el filo *Crenarchaeota* dominando el mar.

Al analizar a nivel de familia, también se observa cierto patrón diferencial por sistema (Figura 36). La familia *Reyranellaceae*, que pertenece a la clase alfaproteobacteria encontrándose frecuentemente asociada a sistemas de agua dulce (también se las puede encontrar en el suelo) (Pagnier et al. 2011), fue la que dominó distribuyéndose a lo largo de los tres sistemas, lo que denota la gran influencia terrestre sobre los 3 sistemas. Algo parecido (pero con la influencia del mar sobre el resto de los sistemas) ocurre con SAR11, cuyos diferentes miembros se encontraron en arroyos, lagunas y mar costero. Particularmente en arroyos se encontró el clado III, para el cual ya se ha relacionado uno de sus con agua dulce (Giovannoni 2017). Las mismas, representan un grupo de pequeñas bacterias oxidantes de carbono que alcanzan un tamaño de población global estimado de 2.4×10^{28} células, representando aproximadamente el 25 % de todo el plancton. Se encuentran en todos los océanos, pero alcanzan su mayor número en ambientes oligotróficos estratificados, llegando a ocupar otros ambientes (Giovannoni 2017). Los miembros de este linaje ya han sido reportados como muy abundantes en la zona salobre de la LR, luego de una intrusión de agua marina (Piccini et al. 2006). Otro de los grupos encontrados en los 3 sistemas fue la familia fisiológicamente muy Nitrospiraceae, que es diversa, contiene bacterias aerobias quimiolitoautotróficas oxidantes de nitrito (Nitrospira), oxidantes quimiolitoautotróficos aerobios y acidófilos de hierro ferroso (Leptospirillum), y reductores de sulfato anaerobios, termofílicos, quimioorganoheterótrofos o hidrogenotróficos (Thermodesulfovibrio). Los miembros de la familia se encuentran en una amplia gama de ecosistemas naturales y artificiales. En particular, el género Nitrospira se distribuye de manera casi ubicua en hábitats oxigenados y representa los oxidantes de nitrito conocidos predominantes en la naturaleza, que catalizan el segundo paso de la nitrificación y, por lo tanto, son esenciales para el ciclo biogeoquímico del nitrógeno (Daims 2014). Otra familia con amplia distribución fue la de Nitrosomonadaceae, que es un grupo de betaproteobacterias, cuyos representantes cultivados son oxidantes de amoníaco litoautotróficos.

Los oxidantes de amoníaco generalmente ejercen control sobre la nitrificación al oxidar el amoníaco a nitrito, que posteriormente es oxidado por oxidantes de nitrito bacterianos a nitrato. Por lo tanto, juegan un papel importante en el control del ciclo del nitrógeno en ambientes terrestres, de agua dulce y marinos y en los procesos de tratamiento de aguas residuales. Otros géneros de este grupo participan en los ciclos biogeoquímicos del azufre, hierro y carbono (Prosser et al. 2014; Boden et al. 2017).

Por otro lado, se observa la gran influencia de grupos provenientes de ambientes impactados como por ejemplo la familia Schlesneriaceae, pertenecientes al orden de los Planctomycetes, que contiene miembros que han sido aislados de sitios provenientes de PTAR (Dueholm et al. 2021), también encontrados en los 3 sistemas. Otro ejemplo es el de la familia *Comamonadaceae*, encontrada mayoritariamente en arroyos y lagunas, aunque también presente en dos muestras de mar (R_ST_08 y 09), que es una betaproteobacteria conocida por tener capacidad de realizar desnitrificación heterótrofa utilizando compuestos orgánicos, identificadas en lodos activados (Khan et al. 2002). Si bien la mayoría son bacterias ambientales de hábitats de agua y suelo; algunas Comamonadaceae también son patógenos, como las del género Acidovorax (Wisplinghoff 2017). La familia Cyanobiaceae, domina varias muestras de ambas lagunas y también se encontró en algunas muestras de mar (C ST 12, R ST 08 y 09). Las mismas, son cianobacterias del género Synechococcus y se encuentran entre los principales contribuyentes a la productividad primaria mundial encontrándose en una amplia gama de ecosistemas acuáticos (Salazar et al. 2020). Este grupo ya ha sido reportado previamente tanto en la LR (Bonilla et al. 2015; Kruk et al. 2019) como en la Laguna de Castillos (Fabre et al. 2014; Bonilla et al. 2015; DINACEA, OSE, DINARA, IDR, CURE 2021).

Finalmente, la familia *Solimonadaceae*, se encontró en varios arroyos de ambas cuencas con un importante porcentaje de abundancia al igual que en la LC Sur en invierno (C_LA_WIN_09). Los miembros de esta familia se encuentran principalmente en el suelo y en agua dulce y, una particularidad de este grupo, es que muchas especies se describen por su capacidad para descomponer contaminantes químicos como la atrazina, los hidrocarburos clorados y el hexano (Zhou & Lai 2014).

÷

.

Figura 37. Composición de la comunidad bacteriana para las diferentes muestras de las cuencas de las Lagunas de Rocha y Castillos a nivel de Familia. Las proporciones detalladas se muestran para las 20 Familias más abundantes del todo el set de datos incluyendo las 4 estaciones de muestreo, y para facilitar la visualización se excluyeron las secuencias sin asignación taxonómica.

Los resultados del PCoA sobre la matriz taxonómica de disimilitud de Bray-Curtis, muestran una separación bastante clara de los arroyos del resto de los sistemas, dada principalmente por el eje 2 (Figura 37). Para determinar qué VA estaban aportando a cada uno de los ejes se realizó un correlograma entre las diferentes VA y los primeros ejes del PCoA (Figura 38). Los patrones determinantes del primer eje 1 (PCo1; 18.03 % de la varianza total) fueron el pH y la salinidad, con una correlación negativa. Mientras que los del eje 2 (PCo1; 12,87 % de la varianza total), que diferencia los arroyos de la laguna y mar costero, fueron los nutrientes con una correlación positiva (principalmente NT y PT). Algunas variables mostraron patrones de correlación entre sí cómo era de esperar, (ej. NT y PT o materia orgánica y sólidos en suspensión).

Figura 38. Análisis de coordenadas principales (PCoA) realizado sobre la matriz de disimilitud de Bray-Curtis de perfiles de abundancia relativa de las 39.766 ASVs definidas.

Figura 39. Correlograma entre los 2 primeros ejes del PCoA y las variables ambientales. Los valores de correlación positivos se representan con color azul y los negativos con rojo.

El análisis de RDA reveló que un 42 % de variabilidad en la estructuración de las comunidades es explicado por las variables ambientales y los CEs y que además dicha estructuración es estadísticamente significativa (Tabla 16). En el *biplot* se observa nuevamente que el pH y la salinidad son las variables que más aportan a dicha estructuración (Figura 39), con la salinidad aportando de manera negativa a ambos ejes y el pH negativo al eje 1 y positivo al eje 2 (Tabla 17).

Tabla 16. Partición de la varianza del RDA.

Varianza	Inercia	Proporción	R ²	p valor
Total	0,75	1	0,44	0,001
Restringida	0,32	0,42		
No-restringida	0,40	0,58		

Tabla 17. Pesos de las variables explicativas sobre los dos primeros ejes del RDA.

ŧ-

-0

	RDA1	RDA2
Temperatura	0,34	-0,31
Salinidad	-0,77	-0,50
pН	-0,81	0,16
OD	-0,17	0,38
Solidos,susp	-0,002	0,20
Mo, susp	0,20	0,11
PT	0,34	-0,26
NT	0,24	-0,14
cloA	-0,018	-0,07
DrogaAbuso	-0,06	0,22
Fármacos	0,13	-0,20
Fungicidas	-0,007	0,12
Herbicidas	0,06	-0,08
Insecticidas	-0,18	-0,35
UsoDoméstico	0,40	0,18
Plaguicidas	-0,18	0,27

Figura 40. Biplot RDA taxonómico. Las coordenadas de las puntas de los vectores representan las variables explicativas: Temperatura, Salinidad, pH, OD, Solidos.susp (sólidos totales en suspensión), Mo. susp (materia orgánica en suspensión), PT (fósforo), NT (nitrógeno total), cloA, AbusDrug (drogas de abuso), Pharm (fármacos), Fung (fungicidas), Herb (herbicidas), Insec (insecticidas), LifeStyle (compuestos de uso doméstico), Conc.Pest (concentración total de plaguicidas). Los puntos rojos representan las ASVs y los círculos blancos los sitios.

Luego, se realizó un RDA parcial para visualizar el efecto de los CEs dejando fijo el efecto de las VA clásicas. Estos resultados muestran que un 10 % de la variabilidad en la estructuración de las comunidades es explicada por los CEs, al dejar fijo el efecto de las variables ambientales clásicas, aunque dicha estructuración no es significativa (Tabla 18). Se observa, en el *biplot* y en los pesos de las variables explicativas a los ejes, que los herbicidas y los fungicidas son los que más aportan a la estructuración de las comunidades en el eje 2 en sentidos opuestos, y que tanto los compuestos de uso doméstico como los fungicidas son las variables con mayor aporte al eje 1 también en sentido opuesto (Figura 40 y Tabla 19).

Tabla 18. Partición de la varianza del RDA parcial.

Varianza	Inercia	Proporción	\mathbf{R}^2	P valor
Total	0,75	1	0,014	0,20
Condicionada	0,25	0,34		
Restringida	0,077	0,10		
No restringida	0,42	0,56		

ŧ.

.

Tabla 19. Pesos de las variables explicativas sobre los dos primeros ejes del RDA parcial.

	RDA1	RDA2
DrogaAbuso	0,19	-0,01
Fármacos	0,01	0,13
Fungicidas	-0,50	0,45
Herbicidas	-0,36	-0,72
Insecticidas	-0,16	-0,06
UsoDoméstico	0,53	0,09
Plaguicidas	-0,44	0,19

Figura 41. Biplot RDA parcial. Las coordenadas de las puntas de los vectores representan las variables explicativas: AbusDrug (drogas de abuso), Pharm (fármacos), Fung (fungicidas), Herb (herbicidas), Insec (insecticidas), LifeStyle (compuestos de uso doméstico), Conc.Pest (concentración total de plaguicidas). Los puntos rojos representan las ASVs y los triángulos blancos los sitios.

Tanto el PCoA como el RDA revelan que las VA clásicas, sobre todo la salinidad y el pH seguido por los nutrientes, son responsables de la estructuración de las comunidades de ambas cuencas (Figuras 37, 38 y 39). Estos resultados coinciden con lo reportado en literatura previa donde se han observado correlaciones significativas entre las comunidades microbianas acuáticas y los factores ambientales al analizar los gradientes naturales en variables fisicoquímicas clave como la salinidad (Lozupone & Knight 2007), temperatura (Fuhrman et al. 2008), pH (Fierer & Jackson 2006), nutrientes inorgánicos y disponibilidad de luz (Schiaffino et al. 2011), y concentración y calidad de la materia orgánica disuelta (Amaral et al. 2016).

Por otro lado, en el RDA parcial, al dejar fijo el efecto de las VA clásicas, una proporción de la variación de dicha estructuración pudo explicarse por el efecto de los contaminantes, aunque no de forma significativa (Tabla 18, Figura 40). Además, se encontró un grupo asociado a la degradación de algunos de estos compuestos en sistemas impactados (ej. *Solimonadaceae*). Esto reafirma la característica que tienen estas comunidades en ajustar rápidamente su composición y/o funciones en respuesta a entornos cambiantes, revelando características intrínsecas de estos sistemas como ser los gradientes naturales y los relacionados al impacto antrópico. Por ejemplo, se ha demostrado que las comunidades microbianas pueden responder significativamente a perturbaciones específicas como derrames de petróleo (Newton et al. 2013), contaminación por fuentes de metales y PAHs (Sun et al. 2012), e incluso contaminación por CEs (Subirats et al. 2018, 2019).

2.3.4 Indicadores taxonómicos bacterianos de sitios según índices de calidad de agua

Los sistemas analizados poseen un importante gradiente en variables fisicoquímicas, en particular la salinidad, que es el principal factor en la estructuración de las comunidades de ambas cuencas y que además ambos índices mostraron correlación con el tipo de sistema (test χ -cuadrado página 124). Teniendo en cuenta estas condicionantes, se analizó cada sistema por separado para la búsqueda de indicadores para disminuir el efecto de la variación ambiental natural sobre los resultados. Para la búsqueda de indicadores se hizo foco en las muestras de arroyos y lagunas, ya que son las que presentaron mayor impacto y con las que se contó con un importante número de muestras y una variación en los índices de calidad de agua, lo que favorece la posibilidad de encontrar gradientes de impacto.

2.3.4.1 Indicadores taxonómicos bacterianos de calidad de agua en arroyos

A partir de la matriz de abundancias de ASVs se corrió el análisis IndVal con el paquete indicspecies para buscar los indicadores de las diferentes categorías de WQI y AQI, definiendo los diferentes grupos en base a dichas categorías. Se seleccionaron las ASVs (o combinaciones de estas) indicadoras en base a los componentes A y B del valor de IndVal (ver sección 2.4.6).

Tanto para el caso de sitios categorizados según WQI o AQI, fue posible encontrar indicadores para todos los grupos y los mismos presentaron valores de IndVal relativamente altos.

Todos los indicadores fueron basados en la co-ocurrencia de 2 ó 3 ASVs. En cuanto a los grupos taxonómicos identificados, se ha encontrado una gran variedad de grupos con diferente ecofisiología. Se destaca la presencia de algunos grupos de hábitats terrestres y marinos (mostrando la influencia de estos sistemas sobre los arroyos). Además, entre los géneros más frecuentemente detectados como indicadores en todos los grupos se encuentran patógenos oportunistas y/o grupos asociados a ambientes impactados.

En la Tabla 20 se muestran los indicadores encontrados para la categorización de sitios según el WQI. Los grupos para el WQI fueron 3, ya que no había sitios de arroyos que pertenecieran a la categoría 1 (Buena) para este índice. Como componentes de algunos indicadores de los grupos 2 y 3 se encontraron *Pseudomonas*, un género con metabolismo muy versátil, que incluye, por ejemplo, la capacidad de degradar hidrocarburos, compuestos aromáticos y sus derivados, tanto naturales como provenientes de actividades industriales (Garrity et al. 2005), cuyo crecimiento ha sido reportado en un experimento de mesocosmos en PTAR (Subirats et al. 2019). También en estos dos grupos aparecen indicadores pertenecientes al género *Schlesneria* cuyo principal hábitat son los humedales (Dedysh et al. 2015) aunque también se las ha encontrado asociados a PTAR (Dueholm et al. 2021), y *Sphingomonas*, con algunos de sus grupos vinculados a enfermedades infecciosas (Lin et al. 2010). Un *bloom* de una especie de este género (*Sphingomonas echinoides*) fue reportado en la LR concomitantemente con un florecimiento de cianobacterias filamentosas (Piccini et al. 2006). Además, en el grupo 2 se encontró el patógeno oportunista *Acinetobacter lwoffii*, un bacilo gramnegativo aerobio que se ha encontrado asociado a diferentes enfermedades infecciosas en humanos (Regalado et al. 2009).

En el grupo 3 uno de los indicadores está conformado por la combinación del género *Aquabacterium* (también encontrado en el grupo 4), que fue aislado de biopelículas de agua potable en Berlín (Kalmbach et al. 1999) y el género *Pedomicrobium*, que se encuentra en hábitats tanto acuáticos como terrestres y es dominante en biopelículas de sistemas de distribución de agua y biorreactores, el cual ha sido asociado a la generación del "agua sucia" debido a su capacidad de oxidar el manganeso (Sly et al. 1988). También en este grupo se han encontrado indicadores del género *Flavobacterium*, que es típico de los sistemas de agua salobre y marina (Alonso et al. 2007) y ha sido reportado para la LR previamente (Piccini et al. 2006; Amaral et al. 2016).

En el grupo 4, y por lo tanto el de mayor impacto, se encontraron indicadores conformados por algunos géneros novedosos como es el caso de Ideonella perteneciente a la familia Comamonadaceae. Una de las especies de este género fue hallada en el interior de una planta de reciclaje de botellas de plástico y es capaz de descomponer el tereftalato de polietileno (PET) (Shosuke et al. 2016). Además, el género Malikia también perteneciente a la misma familia, cuya especie Malikia granosa fue aislada de lodo activado de una PTAR (Spring et al. 2005). Estos dos géneros conformaron un indicador en combinación con el género Aeromonas, un género asociado a enfermedades infecciosas humanas (Soler et al. 2003), así como a una amplia variedad de infecciones en animales de sangre caliente y fría incluyendo animales domésticos, anfibios, peces de agua dulce y salada e invertebrados (Martin-Carnahan & Joseph 2015). Estas bacterias son emblemáticas por el papel que juegan en la diseminación de la resistencia antimicrobiana. Producen naturalmente 3 β -lactamasas pertenecientes a la clase B (carbapenemasa), clase C (cefalosporinasa) y clase D (oxacilinasa) y pueden intercambiar genes de resistencia con otras bacterias en el medio ambiente ya que poseen grandes cantidades de MGE como los integrones de clase 1 (Henriques et al. 2006) o por transferencia horizontal de plásmidos que albergan genes de resistencia como, por ejemplo, el gen de resistencia a fluoroquinolonas (qnr) (Cattoir et al. 2008).

En el grupo 4 aparece también como indicador la familia *Obscuribacteraceae*, una cianobacteria para la cual el conocimiento de su fisiología deriva de la anotación metagenómica de secuencias obtenidas de sistemas de tratamiento de efluentes (Dueholm et al. 2022) en combinación con *Bradyrhizobium*, un género de bacterias del suelo, muchas de las cuales tienen la capacidad de fijar nitrógeno (Kuykendall 2015) y *Sediminibacterium*, de la familia *Chitinophagaceae* con algunas especies aisladas de sedimentos de un reservorio eutrófico (Qu & Yuan 2008), sedimento de aguas residuales (Song et al. 2017) y suelo (Wu et al. 2021). Finalmente, se encontraron también en este grupo indicadores pertenecientes al género *Bryobacter*, que alberga bacterias quimio-organotróficas que habitan humedales y suelos ácidos (Kulichevskaya1 et al. 2010).

En la Tabla 21 se muestran los indicadores de arroyos asociados a la categorización según AQI, esta vez conformados por 4 grupos. Se destaca la cantidad de indicadores relacionados a ambientes terrestres encontrados en estos grupos. En el grupo 1 se encontró el género *Acidovorax*,

un género de distribución ubicua aislado de suelos, agua, muestras clínicas, lodos activados y plantas infectadas (Willems & Gillis 2015).

En el grupo 2, se encontraron miembros del grupo Rhodoferax, cuyas especies se encuentran con frecuencia en sistemas acuáticos estancados expuestos a la luz (Imhoff 2006) y se han aislado alguna de sus especies de zanjas de agua y lodos activados, agua de estanque y aguas residuales (Hiraishi et al. 1991; Imhoff 2006), que conforman una importante fracción de la comunidad bacteriana de Laguna de Castillos (Alonso et al. 2009). También se encontraron indicadores conformados por la familia Isosphaeraceae una familia del filo Planctomycetes que habita suelos, humedales y sistemas de agua dulce (Dedysh & Ivanova 2020), incorporándose recientemente un género muy extendido en hábitats con bajo oxígeno (Dedysh et al. 2019). También en este grupo, se encontró la especie Candidatus Liberibacter, que afecta distintos cultivos y fue asociada a la enfermedad denominada "permanente del tomate" (Secor & Rivera 2004). En el grupo 3 (integrado por sitios únicamente pertenecientes al arroyo Las Conchas, R_ST_03), el género Arcticibacter, perteneciente a la familia Sphingobacteriaceae, aislado de suelos árticos (Prasad et al. 2013) y hielo glaciar (Liu et al. 2014), en combinación con un miembro de la familia Comamonadaceae, conformaron un indicador con valor de IndVal perfecto. Finalmente, en el grupo 4 (el de mayor impacto) se encontraron dos géneros (Acinetobacter y Pseudomonas) que pueden estar asociados a enfermedades infecciosas humanas. Acinetobacter está ampliamente distribuido en suelos y sistemas acuáticos, también asociado a plantas y animales. Varias especies pueden causar infecciones hospitalarias, siendo frecuentemente resistentes a múltiples antibióticos (Nemec 2022). Asimismo, han demostrado capacidad de dominar la comunidad del bacterioplancton de Laguna de Rocha en condiciones experimentales (Piccini et al. 2013).

La asignación de las diferentes muestras de arroyos se realizó en base a las probabilidades de pertenencia a cada uno de los grupos utilizando los distintos indicadores. En el caso del WQI (Figura 41), el acierto global fue de un 90 %, con un 6,7 % de error de asignación para el grupo 2 y 25 para el grupo 3. Se destaca que para el grupo 4 de mayor impacto, se asignaron correctamente todas las muestras. Los errores de asignación para los grupos 2 y 3 se debieron a muestras que no fueron asignadas a ninguno de los grupos. Para el caso del AQI el acierto global fue de 97 %,

debido únicamente a una muestra que no pudo ser agignada porque tanto los indicadores del grupo 2 y 3 presentaron una probabilidad máxima de pertenencia a esos grupos (Figura 42).

Tabla 20. Indicadores taxonómicos bacterianos de los 3 grupos definidos para los arroyos de las cuencas de las Lagunas de Rocha y Castillos según el WQI. A y B denotan los componentes del IndVal de especificidad y sensibilidad, respectivamente. Las variantes de secuencias de amplicones (ASVs) del indicador son la combinación de las ASVs candidatas que fueron seleccionadas como los mejores indicadores de cada grupo entre todas las posibles combinaciones significativas (p < 0,05). Los porcentajes de cobertura fueron de 93,3, 75 y 100 % para los grupos 2, 3 y 4 respectivamente.

Grupo (WQI)	Nº de especies candidatas	A	В	IndVal	Filiación taxonómica de las ASVs indicadoras
G2	110	1	0,40	0,40	Chitinophagales 37-13 + Gemmataceae + Acinetobacter lwoffii
		1	0,27	0,27	Cryomorphaceae + Sphingomonas + Candidatus_Methylopumilus
		1	0,27	0,27	Pseudomonas + Gammaproteobacteria Ga0077536 + Sutterellaceae
		1	0,27	0,27	Rhodospirillaceae + Schlesneria + Sphingobium
G3	233	1	0,25	0,25	Comamonadaceae RS62_marine_group + Pseudomonas + Schlesneria
		1	0,25	0,25	Sphingomonas + Schlesneria + Pseudomonas
		1	0,13	0,13	Aquabacterium + Pedomicrobium + Pseudomonas
		1	0,13	0,13	Flavobacterium + Heliimonas saccharivorans + Rhodoferax
G4	166	0,89	0,71	0,64	Comamonadaceae Ideonella + Comamonadaceae Malikia + Aeromonas
		0,91	0,29	0,26	Obscuribacteraceae + Bradyrhizobium + Sediminibacterium
		0,90	0,29	0,26	Chthonomonadaceae Chthonomonas + Bryobacter + Aquabacterium

Tabla 21. Indicadores taxonómicos bacterianos de los 3 grupos definidos para los arroyos de las cuencas de las Lagunas de Rocha y Castillos según el AQI. A y B denotan los componentes del IndVal de especificidad y sensibilidad, respectivamente. Las variantes de secuencias de amplicones (ASVs) del indicador son la combinación de las ASVs candidatas que fueron seleccionadas como los mejores indicadores de cada grupo entre todas las posibles combinaciones significativas (p < 0.05). Los porcentajes de cobertura fueron de 100 % para todos los grupos.

- 8

Grupo	N° de	А	В	IndVal	ASV indicadora y filiación taxonómica
(AQI)	especies				
	candidatas				
G1	104	1	0,80	0,80	Acidovorax + Chitinophagales + Sphingomonas
		1	0,40	0,40	Chitinophagales + Hyphomicrobiaceae + Elsteraceae
G2	52	0.93	0.58	0 54	SAR11 clade Ia
02	52	0,25	0,00	0,01	
		0,88	0,42	0,37	Pseudoarcicella + Obscuribacteraceae + Pseudomonas +
					Rhodoferax
		0,89	0,33	0,29	Isosphaeraceae + Candidatus_Ovatusbacter + Bryobacter
G3	149	1	1	1	Comamonadaceae + Sphingobacteriaceae Arcticibacter
G4	152	1	0,70	0,70	Acinetobacter + Pseudorhodobacter
		1	0,60	0,60	Isosphaeraceae + Bradyrhizobium + Pseudomonas

•

Figura 42. Asignación a grupos de muestras de arroyos definidos según el WQI de acuerdo a los indicadores taxonómicos bacterianos, utilizando la técnica de validación cruzada. De izquierda a derecha se muestra: la pertenencia de cada muestra a los diferentes grupos según la clasificación de WQI, la probabilidad de pertenencia a cada grupo utilizando los indicadores taxonómicos y la asignación a cada uno de los grupos según las probabilidades obtenidas.
			â	·	3		A	NOUR
			Prop. G.	Prop. G.	Prob. C.	Prob.	o pret	S. Q.
	R_ST_AUT_01-	G1	1	0	0	0	G1	
	R_ST_SPR_01-	G1	1	0	0	0	G1	
	R_ST_SPR_10	G1	1	0	0	0	G1	
	R_ST_SUM_01-	G1	1	0.96	0	0	G1	
	R_ST_WIN_10-	G1	1	0.95	0	0	G1	
	C_ST_AUT_01-	G2	0	0.89	0	0	G2	
	C_ST_SPR_01-	G2	0	0.93	0	0	G2	
	C_ST_SPR_02 -	G2	0	0.92	0	0	G2	
	C_ST_SPR_03 -	G2	0	0.88	0	0	G2	
	C_ST_SUM_01-	G2	0	0.93	0	0	G2	
	C_ST_SUM_02 -	G2	0	0.92	0	0	G2	
	C_ST_SUM_03 -	G2	0	0.92	0	0	G2	
	C_ST_WIN_02 -	G2	0	0.83	0	0	G2	
	C_ST_WIN_03 -	G2	0	0.88	0	0	G2	
	R_ST_AUT_04 -	G2	0	0.88	0	0	G2	
	R_ST_SUM_04 -	G2	0	0.87	0	0	G2	
	R_ST_WIN_04 -	G2	0	0.88	0	0	G2	
(V)	R_ST_SPR_03 -	G3	0	1	1	0	NA	
	R_ST_SUM_03 -	G3	0	0	1	0	G3	
	R_ST_WIN_03 -	G3	0	0	1	0	G3	
	C_ST_AUT_04 -	G4	0	0	0	1	G4	
	C_ST_SPR_04 -	G4	0	0.94	0	1	G4	
	C_ST_SPR_05-	G4	0	0	0	1	G4	
	C_ST_SUM_04 -	G4	0	0	0	1	G4	
	C_ST_SUM_05 -	G4	0	0	0	1	G4	
	C_ST_WIN_04 -	G4	0	0.94	0	1	G4	
	C_ST_WIN_05	G4	0	0.94	0	1	G4	
	R_ST_SPR_02 -	G4	0	0.93	0	1	G4	
	R_ST_SUM_02 -	G4	0	0	0	1	G4	
	R_ST_WIN_02 -	G4	0	0	0	1	G4	

Figura 43. Asignación a grupos de muestras de arroyos definidos según el AQI de acuerdo a los indicadores taxonómicos bacterianos, utilizando la técnica de validación cruzada. De izquierda a derecha se muestra: la pertenencia de cada muestra a los diferentes grupos según la clasificación de AQI, la probabilidad de pertenencia a cada grupo utilizando los indicadores taxonómicos y la asignación a cada uno de los grupos según las probabilidades obtenidas.

2.3.4.2 Indicadores taxonómicos bacterianos de lagunas

Los indicadores de lagunas para los sitios categorizados según el WQI se muestran en la Tabla 22. En este caso la agrupación fue únicamente para los grupos 1, 2 y 3. Los valores de IndVal fueron muy altos, casi perfectos para todos los grupos, y se observa la presencia de grupos con influencia de ambientes salinos. Sin embargo, se encontraron algunas excepciones como en el grupo 2 la familia *Gemmataceae* que alberga Planctomycetes aeróbicos y quimioorganotróficos, que habitan en varios ecosistemas de agua dulce, humedales y suelos (Kulichevskaya et al. 2017). Además, en el grupo 3 (el de mayor impacto) la familia *Solimonadaceae* que se encuentran principalmente en el suelo y en agua dulce y, como ya se mencionó, tiene capacidad para descomponer algunos contaminantes (Zhou & Lai 2014). La presencia de este indicador está dada por su alta abundancia en el sitio C_LA_09. También en este grupo el género *Reyranella*, con algunas especies que han sido aisladas de ambientes de agua dulce o incluso suelos agrícolas (Lee et al. 2017).

En la Tabla 23 se muestran los indicadores para lagunas clasificadas según el AQI. Aquí, al igual que para arroyos, los sitios se dividieron en 4 grupos. Se observó nuevamente la incidencia de grupos de agua dulce y terrestres, y una mayor presencia de grupos patógenos e indicadores de ambientes impactados en comparación con la clasificación de WQI. En el grupo 1, se ve la incidencia de grupos terrestres o de agua dulce. Por ejemplo, uno de sus indicadores está conformado por la combinación de especies de SAR11 III, grupo asociado a ambientes de agua dulce (Giovannoni et al. 2017). Este indicador se encontró en junto con otra especie de la clase de *Actinobacteria*, que están asociadas principalmente al suelo, jugando un importante rol en la descomposición de materia orgánica, promediando un 64% de la biomasa bacteriana del suelo (Battistuzzi & Hedges 2008). También, este indicador está conformado con un grupo de la clase *Bradyrhizobium* (asociado también al suelo) y el género *Sulfuritalea*, componentes importantes de los ambientes de agua dulce, suelo, aguas subterráneas y humedales (Watanabe et al. 2017).

En el grupo 2, nuevamente se encontraron indicadores del género *Schlesneria*, además de *Candidatus_Actinomarina* un clado de actinobacterias marinas que tienen el contenido de GC más bajo informado hasta ese momento, así como las células más pequeñas encontradas entre los procariotas de vida libre (Ghai et al. 2013).

En el grupo 3 se encontró como indicador el género Nitrospira, que se encuentra entre los nitrificantes más diversos y extendidos en ecosistemas naturales y tratamiento biológico de aguas residuales (Daims et al. 2001). También, se encontró el género Alcanivorax, que son bacterias

degradadoras de alcanos, aisladas de ambientes marinos contaminados con hidrocarburos (Martins et al. 2008; Golyshin et al. 2015). Además, la especie *Sphingobium yanoikuyae*, una especie que se ha encontrado incluso en algunos lugares contaminados con compuestos tóxicos, como pentaclorofenol, PCBs, herbicidas y creosota, y se ha demostrado que puede utilizar estos compuestos como sus fuentes de carbono (Gu et al. 2009), además de ser capaz de degradar cycloalcanos, hidrocarburos aromáticos policíclicos (PAH) y polyhydroxyalcanoatos (PHA) (Mitra et al. 2020)

Finalmente, en el grupo 4, además de Bacteroidetes, ampliamente distribuidos en los ambientes acuáticos (Barberán & Casamayor 2010) y de Alphaproteobacteria típicas del suelo (Oliverio et al. 2020) se encuentran algunos patógenos potenciales como las *Pseudomonas*, y *Nevskia*, un género de Gammaproteobacteria que producen infecciones en plantas (Parker et al. 2003).

Tabla 22. Indicadores taxonómicos bacterianos de los 3 grupos definidos para las lagunas de las cuencas de las Lagunas de Rocha y Castillos según el WQI. A y B denotan los componentes del IndVal de especificidad y sensibilidad, respectivamente. Las variantes de secuencias de amplicones (ASVs) del indicador son la combinación de las ASVs candidatas que fueron seleccionadas como los mejores indicadores de cada grupo entre todas las posibles combinaciones significativas (p < 0.05). Todos los indicadores lograron una cobertura del grupo del 100 %.

Grupo (WQI)	Nº de especies candidatas	А	В	IndVal	ASV indicadora y filiación taxonómica
G1	132	1	1	1	Chitinophagales 37-13 + Gemmataceae + Acinetobacter lwoffii
G2	173	1	1	1	Comamonadaceae RS62_marine_group + Pseudomonas + Schlesneria
G3	146	0,92	0,93	0,85	Solimonadaceae
		0,90	0,70	0,63	Reyranella + Comamonadaceae RS62_marine_group+SAR11 Clade_Ia

Tabla 23. Indicadores taxonómicos bacterianos de los 3 grupos definidos para las lagunas de las cuencas de las Lagunas de Rocha y Castillos según el AQI. A y B denotan los componentes del IndVal de especificidad y sensibilidad, respectivamente. Las variantes de secuencias de amplicones (ASVs) del indicador son la combinación de las ASVs candidatas que fueron seleccionadas como los mejores indicadores de cada grupo entre todas las posibles combinaciones significativas (p < 0.05). Todos los indicadores lograron una cobertura del grupo del 100 %

Grupo	Nº de	А	В	IndVal	ASV indicadora y filiación taxonómica
(AQI)	especies				
G1	100	1	0,50	0,50	SAR11_Clade_III + Actinobacteria + Bradyrhizobium + Sulfuritalea
		1	0,50	0,50	Algoriphagus + Cryomorphaceae + Pseudomonas + SAR11_cladeIa
		1	0,38	0,38	Rhodocyclaceae C39 + Gammaproteobacteria Ga0077536
G2	242	1	0,70	0,70	Schlesneria + Rhodobacteraceae HIMB11 + Flavobacteriaceae NS4_marine_group
		1	0,70	0,70	Schlesneria + Flavobacteriaceae + Candidatus_Actinomarina
G3	126	0,91	0,63	0,57	Nitrospira + Alcanivorax + Parvibaculaceae + Cryomorphaceae
		0,94	0,50	0,47	Pseudarcicella + Candidatus_Solibacter + Sutterellaceae AAP99 + Sphingobium yanoikuyae
		1	0,38	0,38	Isosphaeraceae + Bradyrhizobium + Afipia + Chitinophagales
G4	110	0,90	0,50	0,45	Elsterales + Obscuribacteraceae + Pseudomonas
		0,92	0,42	0,39	Algoriphagus + Pseudomonas + Woeseia
		0,90	0,33	0,30	Cryomorphaceae + Nevskia + Alphaproteobacteria

Para el WQI la asignación de muestras a las distintas categorías fue perfecta a partir de los indicadores identificados, con un acierto global de 100 % (Figura 43). En el caso del AQI, nuevamente el porcentaje de error de asignación depende de la categoría a analizar. Se obtuvo un acierto global fue del 94,3 %, con un 12,5 y 8,3 % de error en los grupos 3 y 4 respectivamente. Para los grupos 1 y 2 la asignación fue perfecta (Figura 44).

		6 [°]	୍ତି	Ġ	þ	dionb
		Prob.	Prob.	Prob.	P10	ð. ,
C_LA_AUT_11 -	G1	1	0	0.93	G1	
C_LA_SPR_11 -	G1	1	0	0.93	G1	
C_LA_SUM_11 -	G1	1	0	0.92	G1	
C_LA_WIN_11 -	G1	1	0	0.96	G1	
C_LA_AUT_08-	G2	0	1	0.92	G2	
C_LA_SPR_08 -	G2	0	1	0.95	G2	
C_LA_SUM_08 -	G2	0	1	0.92	G2	
C_LA_WIN_08 -	G2	0	1	0.94	G2	
C_LA_AUT_06 -		0	0	0.91	G3	
C_LA_AUT_07 -		0	0	0.91	G3	
C_LA_AUT_09-		0	0	0.92	G3	
C_LA_AUT_10-		0	0	0.91	G3	
C_LA_SPR_06 -		0	0	0.91	G3	
C_LA_SPR_07 -		0	0	0.91	G3	
C_LA_SPR_09 -		0	0	0.9	G3	
C_LA_SPR_10-		0	0	0.91	G3	
C_LA_SUM_06 -		0	0	0.92	G3	
C_LA_SUM_07 -		0	0	0.92	G3	
C_LA_SUM_09 -		0	0	0.91	G3	
C_LA_SUM_10-		0	0	0.92	G3	
C_LA_WIN_06 -		0	0	0.91	G3	
C_LA_WIN_07 -		0	0	0.91	G3	
C_LA_WIN_10 -		0	0	0.92	G3	
R_LA_AUT_05-		0	0	0.91	G3	
R_LA_AUT_06 -		0	0	0.92	G3	
R_LA_AUT_07 -		0	0	0.92	G3	
R_LA_SPR_05-		0	0	0.92	G3	
R_LA_SPR_06 -		0	0	0.92	G3	
R_LA_SPR_07		0	0	0.92	G3	
R_LA_SUM_05		0	0	0.92	G3	
R_LA_SUM_06		0	0	0.92	G3	
R_LA_SUM_07 -		0	0	0.92	G3	
R_LA_WIN_05		0	0	0.9	G3	
R_LA_WIN_06		0	0	0.91	G3	
R_LA_WIN_07 -		0	0	0.92	G3	

Figura 44. Asignación a grupos de muestras de lagunas definidos según el WQI de acuerdo a los indicadores taxonómicos bacterianos, utilizando la técnica de validación cruzada. De izquierda a derecha se muestra: la pertenencia de cada muestra a los diferentes grupos según la clasificación de AQI, la probabilidad de pertenencia a cada grupo utilizando los indicadores taxonómicos y la asignación a cada uno de los grupos según las probabilidades obtenidas.

Figura 45. Asignación a grupos de muestras de lagunas definidos según el AQI de acuerdo a los indicadores taxonómicos bacterianos, utilizando la técnica de validación cruzada. De izquierda a derecha se muestra: la pertenencia de cada muestra a los diferentes grupos según la clasificación de AQI, la probabilidad de pertenencia a cada grupo utilizando los indicadores y la asignación a cada uno de los grupos según las probabilidades obtenidas.

En la selección de indicadores se priorizó el componente de especificidad (A) ya que el objetivo en esta Tesis fue explorar la capacidad predictiva del IndVal. Como se explica en la sección 2.4.7, la probabilidad de pertenecer al grupo objetivo es igual a su especificidad y al realizar el *pruning* para seleccionar los mejores indicadores, se ponderaron valores altos de este componente. Es por ello, que los altos valores de IndVal obtenidos aquí se debieron principalmente

al componente (A). Además, la alta especificidad podría ser una característica de las comunidades microbianas, debido a su gran tamaño de población y potencial dispersión a larga distancia (Finlay & Clarke 1999; Cohan & Koeppel 2008) combinado con su alta capacidad de respuesta a condiciones ambientales cambiantes (de Wit & Bouvier 2006).

El acierto global de cada uno de los grupos tanto para arroyos como para lagunas también fue alto. La probabilidad de pertenecer al grupo objetivo se calcula de forma independiente excluyendo la muestra a analizar del set de datos mediante la técnica de validación cruzada. De esta forma, se calcula como una probabilidad de Bernoulli, es decir una probabilidad complementaria por lo que el porcentaje de error de asignación se puede estimar de manera global pero no es un error real de predicción, ya que la suma de los valores de probabilidad de la muestra en todos los grupos no necesariamente tiene que ser 1. Para esto, se propone como perspectiva aplicar IndVal para seleccionar las especies indicadoras, y luego predecir distintas categorías de calidad de agua utilizando técnicas de *machine learning* (ML). Este tipo de enfoques han sido llevados a cabo con éxito en otros trabajos, para predecir el estado de eutrofización y temperatura en sistemas marinos (Glasl et al. 2019) o la pertenencia a distintos tipos de estuarios (Alonso et al. 2022)

En abordajes similares a este trabajo, se demostró que el uso de marcadores bacterianos en combinación con técnicas de ML representa una herramienta altamente robusta para el biomonitoreo (Cordier et al. 2018). Asimismo, estas herramientas predictivas permiten realizar la evaluación de impactos múltiples (ej. índice de presión antropogénica, índices bióticos, parámetros de impacto abióticos) a partir tanto de la distribución de estas comunidades (Lanzén et al. 2020). Sin embargo, el uso de una selección previa de indicadores utilizando *IndVal* o una aproximación similar, ayudaría a optimizar el desempeño de las aproximaciones de ML, en virtud del gran número de especies que involucra estas comunidades.

2.6 Conclusiones generales

Los resultados obtenidos, muestran la aplicación de dos índices que proveen de información valiosa con respecto a la identificación espacial de la contaminación e identificación de sitios vulnerables y no vulnerables de las cuencas de las Lagunas de Rocha y Castillos. Uno de ellos (el WQI) es tradicionalmente utilizado por los programas de monitoreo para transformar los datos crudos de calidad de agua, en información que pueda ser transmisible a los tomadores de decisiones (CARU 2011; Kareem et al. 2021; Maansi & Wats 2021; Tanjung et al. 2022). En el caso del AQI, cuyo desarrollo es más reciente, se logró implementar un índice que permite evaluar la ecotoxicidad de mezclas de contaminantes considerando la frecuencia de exposición a organismos acuáticos no diana a concentraciones de CEs superiores a los umbrales de seguridad ecotoxicológica y la intensidad de esta exposición. Estos índices fueron utilizados con éxito para categorizar los sitios según su calidad de agua y buscar indicadores de estos grupos.

Para ambos sistemas, los valores de IndVal para los indicadores bacterianos fueron relativamente altos. Además, el acierto global en las predicciones también fue muy bueno. Por lo anterior, se demuestra la utilidad de la aplicación de IndVal para encontrar indicadores que responden no solo a variables ambientales clásicas, sino que son capaces de integrar la información de otro tipo de variables como los CEs. Fundamentalmente, esta herramienta arroja información sobre la ecología de las especies, ayudando a comprender los procesos que están detrás de los patrones encontrados. Finalmente, el uso de indicadores basados en la caracterización molecular de la diversidad bacteriana es realmente prometedora para la aplicación de medidas de gestión ambiental, teniendo en cuanta que la medición exhaustiva de contaminantes químicos resulta costosa y corre el riesgo de perder compuestos específicos que pueden estar ejerciendo un impacto en los ecosistemas. Los costos del metabarcoding, por otro lado, se benefician enormemente de la ampliación del número de muestras que se pueden analizar, especialmente a medida que disminuyen los costos de automatización. Sumado a la aplicación de una herramienta estadística como IndVal, con un alto componente predictivo que la hace altamente atractiva para su aplicación en el área de la gestión ambiental.

CAPITULO III: Indicadores de contaminación emergente basados en el seguimiento de la resistencia a antibióticos a través de herramientas metagenómicas

¢.

.

3.1 Antecedentes

Además de los distintos mecanismos de resistencia que confieren los genes de resistencia a antibióticos (ARG) (ver sección I.4.1), los ARG se pueden dividir en las siguientes categorías basadas en la clase de antibióticos a los que otorgan resistencia: tetraciclinas (*tet*), sulfonamidas (*sul*), β-lactámicos (bla), macrólidos (*erm*), aminoglucósidos (*aac*), fluoroquinolona (*fca*), colistina (*mcr*), vancomicina (*van*) y multidrogas (*mdr*) (He et al. 2020). Las distintas fuentes de estos genes, y por lo tanto su distribución en el ambiente, varían según el tipo de ARG. Los ARG más comunes de los hospitales fueron multidrogas, β-glicopéptido y β-lactámicos (*mecA*, *vanA*, *vanB*, y *bla*), mientras que las sulfonamidas y tetraciclinas (*sul* y *tet*) están más relacionados a las zonas de ganadería intensiva, PTAR, agua y suelo (Zhuang et al. 2021).

Los antibióticos provenientes de las aguas residuales ubicadas en las zonas urbanas pueden llegar a las aguas superficiales y ejercer una presión de selección sobre las comunidades bacterianas (Almakki et al. 2019) (Figura 48). Por ejemplo, a concentraciones muy bajas, pueden modificar la expresión génica en estas comunidades lo que conduce a la inducción de genes de resistencia y tolerancia a los antibióticos (Bernier & Surette 2013). Además, pueden causar una reducción en el crecimiento de los grupos más susceptibles de la comunidad bacteriana que resulta en un desequilibrio en la microbiota del ecosistema (Almakki et al. 2017; Gullberg et al. 2011). Al igual que en otros animales, el 90 % de los antibióticos consumidos por los humanos se excretan en orina y heces como compuestos originales o como subproductos (Tiwari et al. 2017). Además, los fármacos vencidos suelen descartarse directamente en el inodoro y terminan en el sistema de alcantarillado, pero también son desechados en tarros de basura y luego en basureros, contaminando así directamente tanto el suelo como el agua. La mayoría de las familias de antibióticos se han detectado en aguas residuales en todo el mundo en concentraciones variables que van desde ngL⁻¹ hasta mgL⁻¹ (Li & Zhang 2010). Cuando los antibióticos y sus metabolitos alcanzan las PTAR, se pueden eliminar parcialmente por adsorción en los flóculos de biomasa, biodegradación o biotransformación, pero también por procesos físico-químicos como hidrólisis, fotólisis y volatilización (Li & Zhang 2010; Pruden et al. 2013). Sin embargo, el tratamiento de aguas residuales no es suficiente para eliminar por completo los compuestos farmacéuticos, incluidos los antibióticos (Tiwari et al., 2017). El mayor consumo de antibióticos se da principalmente en hospitales, donde alrededor de la mitad de los pacientes son tratados con al

menos una clase de estos, algunas veces durante períodos relativamente largos (Baggs et al. 2016). Como resultado, mayores cantidades de antibióticos y sus metabolitos se excretan en efluentes de aguas residuales de hospitales y luego combinados con aguas residuales municipales (Baquero et al. 2008; Oberlé et al. 2012). Aunque las aguas residuales hospitalarias sólo representan alrededor del 1 % de las aguas residuales municipales (Kümmerer 2009), son consideradas como el principal contribuyente de antibióticos a las PTAR (Figura 51). De hecho, se ha encontrado que las concentraciones de antibióticos en los efluentes hospitalarios son 100 veces superiores a la de los efluentes municipales (Santos et al. 2013; Carraro et al. 2016).

Además del tratamiento contra infecciones, los antibióticos son utilizados como agentes promotores del crecimiento en animales a través de la alimentación, administrados a bajas concentraciones durante largos períodos, aunque esto está prohibido en algunos lugares; como en Europa, desde el año 2006 (Silbergeld et al. 2008; Charuaud et al. 2019). Cantidades significativas (30–90 %) de los antibióticos consumidos pueden eliminarse sin modificaciones o como metabolitos activos a través de la excreción urinaria y/o fecal (Du & Liu 2012; Shao et al. 2018). Una vía secundaria para la diseminación ambiental de los antibióticos y sus metabolitos son las aplicaciones en campo de estiércol como fertilizante (Sarmah et al. 2006). De hecho, el contenido de genes de resistencia en zona de industrias asociados a la cría intensiva de animales, es mucho mayor que en hospitales, suelos, aguas subterráneas y aguas superficiales (Jian et al. 2021). La mayor concentración de residuos de antibióticos asociados a desechos provenientes de la ganadería intensiva, en comparación a los desechos humanos podría deberse al uso continuo de antibióticos para promover el crecimiento y prevenir enfermedades. Esto, a su vez, impone una mayor presión de selección sobre las bacterias en el ganado de tambos o *feedlots* para la evolución de genes de resistencia (Sim et al. 2011).

Los antibióticos también se utilizan en la agricultura para tratar enfermedades de algunas frutas y verduras ocasionadas por bacterias, y también como promotor del crecimiento de la fruta (Kümmerer 2009). A pesar de su uso limitado en esta área (a modo de ejemplo, representan alrededor de 0,1 % del uso total de antibióticos en agricultura en los EE. UU.), un cuidado particular es necesario ya que algunos antibióticos como la estreptomicina y la oxitetraciclina son altamente resistentes a factores degradantes naturales como alta temperatura, radiación ultravioleta y oxidación (McManus et al. 2002). De esta forma, su persistencia en el medio ambiente puede

aumentar la presión selectiva y por lo tanto la selección de bacterias resistentes. Asimismo, la escorrentía de los campos agrícolas puede posteriormente impactar las aguas urbanas aguas abajo. En conclusión, en una cuenca hidrográfica, los antibióticos utilizados con fines agrícolas, actividades acuícolas o ganaderas realizadas aguas arriba de una zona urbana pueden llegar a aguas destinadas a usos urbanos y finalmente alcanzar los cuerpos de aguas superficiales (Almakki et al. 2019) (Figura 45).

Figura 46. Ciclo urbano del agua y contaminantes. Los escurrimientos y transportes de contaminantes se indican mediante flechas según la leyenda de colores. Tomado de Almakki et al. 2019.

La transferencia horizontal de genes, impulsada principalmente por procesos donde participan una variedad de elementos genéticos móviles, es uno de los principales determinantes de la transmisión de mecanismos de resistencia a antibióticos en el ambiente, ocurriendo en comunidades del suelo, acuáticas, intestinales y de biofilms (Jian et al. 2021). Además, muchas de las investigaciones recientes se centran en la propagación de las propias bacterias resistentes a antibióticos (ARB) además de los ARG que se descargan en el medio ambiente desde zonas de cría de ganado, instituciones médicas, instituciones farmacéuticas y PTAR. Los ARG se pueden propagar mediante transferencia horizontal tanto entre cepas resistentes, como no resistentes en el ambiente (Gu et al. 2020). Por ejemplo, se han detectado ARB y ARG en cultivos de suelos enriquecidos con fertilizantes (Hatcher et al. 2017). También se ha demostrado que las bacterias endófitas que poseen ARG pueden colonizar plantas y pueden persistir a lo largo de la etapa de crecimiento vegetal (Want et al. 2017). Por lo tanto, los ecosistemas microbianos no están aislados, y existe la posibilidad de intercambio horizontal de genes entre diferentes compartimientos del mismo. De hecho, se ha demostrado que la transferencia horizontal de genes es muy relevante en la propagación de ARG en las PTAR (Zhang et al. 2011) e incluso ambientes naturales (Hsu et al. 2014).

Existen varios antecedentes de estudios centrados en los destinos de antibióticos, ARG y ARB en las PTAR y los ríos como receptores (Rodriguez-Mozaz et al. 2015; Xu et al. 2015; Jia et al. 2017). Además, trabajos recientes incluyen la distribución de ARG en otros ambientes como estuarios (Zhu et al. 2017; Chen et al., 2020), lagunas costeras (Leite et al. 2019) y mar (Yang et al. 2019; Gerhard & Gunsch 2020; Sabatino et al. 2020; Su et al. 2020). Asimismo, estos compuestos generan cambios en las comunidades microbianas de suelo (Chen et al. 2016), agua potable (Jia et al. 2015) y ríos (Qiu et al. 2019). Y a su vez, que la distribución de ARG depende tanto de variables ambientales como de variaciones en estas comunidades, mostrando patrones de distribución espaciales claros y correlaciones con dichas variables. Por ejemplo, Zhou et al (2017) encontraron que la abundancia de ARG totales se correlacionaba positivamente con el número de copias del gen ARNr 16S, y las transposasas, el carbono orgánico total y el nitrógeno total disuelto también se correlacionaba positivamente con la abundancia absoluta de ARG totales. Asimismo, Chen et al (2020) hallaron que la salinidad y el pH eran los principales factores ambientales que afectaban la variación espacial de ARG. Sin embargo, no existen antecedentes aún del uso de estos genes como indicadores de calidad ambiental, a pesar de que la presencia de estos compuestos, al igual que cualquier perturbación, pueden alterar la funcionalidad de la comunidad (Allison & Martiny 2008).

El análisis metagenómico basado en secuenciación de alto rendimiento es un método rápido, universal y preciso para la detección y cuantificación de amplio espectro de ARG, llevado a cabo con éxito para aguas residuales y superficiales (Li et al. 2015; Ng et al. 2017; Quince et al. 2017; Lekunberri et al. 2018; Yang et al. 2019; Agrawal et al. 2020; Stanton et al. 2020; Tsuyoshi et al. 2020; Zhang et al. 2020). La amplia aplicación actual de la metagenómica en varios campos ha sido facilitada en gran medida por la continua disminución de los costos de secuenciación y la creciente sofisticación en el análisis bioinformático (Quince et al. 2017).

3.2 Objetivos

- ✓ Determinar la presencia de genes de resistencia a antibióticos (ARG) en las cuencas de las Lagunas de Rocha y Castillos a partir de técnicas de metagenómica.
- ✓ Analizar la variabilidad de ARG en los distintos tipos de ambientes, para ambas cuencas.
- ✓ Explorar el potencial de los ARG como indicadores de categorías de sitios con diferente grado de impacto por CEs.

3.3 Hipótesis y predicciones asociadas

✓ H1. La entrada de genes de resistencia a antibióticos a las cuencas de las lagunas estudiadas está estrechamente relacionada con el uso urbano del suelo.

P1. La riqueza de estos genes será mayor en los sitios asociados a este uso (arroyos).

✓ H2. La exposición de las comunidades bacterianas a antibióticos genera la diseminación de los mecanismos de resistencia en las mismas.

P2. Será posible encontrar una amplia variedad de mecanismos de resistencia a antibióticos, en particular a los detectados en el capítulo 1.

3.4 Materiales y métodos

3.4.1 Secuenciación metagenómica shotgun y análisis bioinformático

A partir del ADN extraído (ver sección 2.4.4.1), se seleccionaron un total de 48 sitios para la secuenciación de metagenomas correspondientes a lagunas y arroyos, ya que es donde se esperaba encontrar un mayor efecto de estos contaminantes en las comunidades. Reportes previos muestran que la concentración de antibióticos en cuerpos de agua naturales disminuye gradualmente con la distancia de la fuente de contaminación, debido al factor de dilución del hidrosistema receptor y a los mecanismos naturales de atenuación como fotólisis, biodegradación, hidrólisis o adsorción (Yang & Carlson 2003; Yan et al. 2013). Además, para dicha selección, también se tuvo en cuenta que el rango de variabilidad de salinidad estuviera acotado, de forma de minimizar el efecto del gradiente ambiental natural frente al efecto de los contaminantes. La secuenciación masiva de estos metagenomas (Illumina NovaSeq), se llevó a cabo a través de una contratación de servicio en la empresa LGC Genomics GmbH de Alemania. Esta parte de la Tesis se realizó en el marco del convenio DINAMA-CURE para la implementación de la metagenómica en el monitoreo de las Lagunas Costeras (2018).

En la figura 46, se muestra un resumen del flujo de trabajo utilizado para la obtención de datos metagenómicos. A partir de la toma de muestras de ADN se realizó la secuenciación después de crear una biblioteca metagenómica *shotgun*, es decir sin amplificación previa por PCR. A partir de la secuenciación de los metagenomas, se obtuvieron los archivos en formato FASTQ, los cuales fueron preprocesados aplicando el siguiente flujo de tareas: 1) Evaluar la presencia de adaptadores y removerlos utilizando la herramienta BBDuk (Bushnell 2014); 2) Realizar la unión de las secuencias pareadas con la herramienta PEAR (Zhang et al. 2013); 3) Hacer un control de calidad de las secuencias con la herramienta BBDuk. Para realizar el preprocesado de datos metagenómicos, se utilizó el *pipeline* de nuestro laboratorio, desarrollado por el Dr. Emiliano Pereira Flores, disponible en https://github.com/pereiramemo/metagenomic_pipelines.

Para el procesamiento de datos se utilizó el pipeline Mg-Traits_lite, desarrollado por el Dr. Emiliano Pereira. Dicho pipeline permite calcular varios de los rasgos funcionales previamente implementados en la herramienta Mg-Traits (Pereira-Flores 2020). Los rasgos funcionales son rasgos biológicos que influyen en el desempeño de los organismos y que pueden estar relacionados con los procesos ecosistémicos (flujo de materia y energía), la estabilidad de los ecosistemas (resistencia y resiliencia), las interacciones biológicas (intra e interespecíficas) y/o la modificación del hábitat (Hooper et al. 2005; Villéger et al. 2010). Estos rasgos permiten caracterizar distintos aspectos de la ecología microbiana e identificar patrones en su distribución espacial y ambiental (Barberán et al. 2014, Fierer et al. 2014, Violle et al. 2014). Uno de los grupos de rasgos funcionales que analiza la herramienta Mg-Traits_lite, contiene rasgos que derivan de la anotación funcional de ORFs (marcos abiertos de lectura). En primer lugar, se lleva a cabo la anotación de genes funcionales utilizando la base de datos Pfam (Finn et al. 2016), así como la anotación de genes de resistencia a antibióticos (ARG) con la base de datos Resfam (Gibson et al. 2015). La anotación de estas bases de datos es realizada con la herramienta UProC (Meinicke 2015). De esta forma, se obtiene el perfil funcional a nivel general y el perfil de genes de resistencia a antibióticos, realizando el compuntado de recuento de genes.

Figura 47. Flujo de trabajo utilizado para la secuenciación metagenómica. Tomado de Secuenciador Illumina.

3.4.2 Búsqueda de indicadores funcionales y asignación de muestras

Para la búsqueda de indicadores, se trabajó únicamente con los genes de la base de datos Resfam, que cuenta con 174 genes.

Al igual que para los indicadores taxonómicos, se rarificó la matriz de abundancias de ARG como método de normalización. Para esto, se tomó el mínimo de abundancia por muestra

utilizando la matriz de ORFs, donde se encuentran todas las secuencias obtenidas que probablemente correspondan a un gen, y se rarificó por ese mínimo (6.087.525 secuencias). A partir de los ARG identificados, se realizó la búsqueda de indicadores únicamente de sitios de arroyos categorizados según el AQI, en virtud de que este índice incorpora información específica sobre la presencia de CEs. Para ello se utilizó el IndVal con exactamente el mismo procedimiento que para las ASV (ver sección 2.2.6). La asignación de muestras agrupadas según el AQI, también se llevó a cabo de la misma manera que los indicadores taxonómicos (ver sección 2.4.7).

3.4.3 Análisis estadísticos

Para visualizar la capacidad de diferenciar arroyos y lagunas a partir de los rasgos funcionales y los ARG, se realizó un análisis de coordenadas principales (PCoA) sobre la matriz funcional de disimilitud de Bray-Curtis y la matriz de genes ResFam normalizadas previamente con la transformación de Hellinger. Se utilizó el análisis de redundancia (RDA) para estudiar la relación entre la matriz de abundancia de genes ResFam transformados por Hellinger (Y) y las variables ambientales (VA), incluyendo los CEs (categorizados como concentración total de plaguicidas y emergentes). Previo a la realización del RDA, se estudió la co-linealidad entre las variables explicativas calculando el factor de varianza inflada (VIF), reteniendo solo aquellas variables con VIF <5. Para todos los análisis se utilizó el software libre R versión 3.6.1.

3.3 Resultados y discusión

3.3.1 Procesamiento bionformático de las secuencias obtenidas

Luego de preprocesar los datos metagenómicos, se obtuvo un promedio de 11.673.420 secuencias por muestra, con un largo promedio de 376,8 pares de bases. En la Tabla 24 se muestran los números obtenidos de secuencias por muestra, comparando el total de secuencias obtenidas, con las remanentes luego del chequeo de calidad (pre-procesamiento). Como puede observarse, la calidad de los resultados obtenidos fue muy alta, reteniéndose un alto porcentaje de las secuencias (Figura 47).

	Brutos	Pre- procesados
Nº de muestras	48	48
N° total de secuencias	845.341.450	560.324.167
Promedio de secuencias por muestra	17.611.280	11.673.420
Largo promedio de secuencias	R1** = 250; R2= 250	376,83

Tabla 24. Estadísticos generales de calidad de secuenciación metagenómica comparando datos brutos y pre-procesados.

-0

ŧ

** R1 y R2 = secuencias generadas por los cebadores forward y reverse respectivamente

÷

-0

Figura 48. Comparación del número de secuencias crudas vs. preprocesadas para los datos metagenómicos

3.3.2 Estructura de la composición funcional de las comunidades microbianas

El PCoA computado sobre la matriz de genes funcionales muestra una clara separación entre ambos sistemas dada principalmente por el eje 2 (PCo1 y PCo2; 41,48 y 13,94 % de la varianza total respectivamente) (Figura 48).

Figura 49. Análisis de coordenadas principales computados sobre las disimilitudes Bray Curtis de la composición funcional, normalizadas con la transformación de Hellinger.

Al realizar este mismo análisis sobre la matriz de genes de resistencia (Resfam), no se observa una clara separación entre lagunas y arroyos (PCo1 y PCo2; 28,4 y 3,9 % de la varianza total respectivamente) (Figura 49).

Figura 50. Análisis de coordenadas principales computados sobre las disimilitudes Bray Curtis de la composición de genes de resistencia, normalizadas con la transformación de Hellinger.

3.3.3 Distribución espacial de los genes de resistencia a antibióticos

De los 174 ARG que contiene la base de datos Resfam, en las muestras analizadas se encontraron 122. En la Figura 53 se muestra la abundancia relativa de los ARG detectados en cada metagenoma. Un resultado inmediato es que no se observa un perfil diferente entre lagunas y arroyos. Se observó que ambos sistemas presentan una gran variedad de genes de resistencia contra distintas familias de antibióticos (ej. flourquinolonas, tetraciclinas, cloranfenicol, vancomicina, macrólidos) y distintos mecanismos de resistencia (ej. reguladores transcripcionales, metiltransferasas, β -lactamasas, bombas de eflujo).

Se destaca que los genes mayoritarios corresponden a aquellos que codifican para diferentes combinaciones de bombas de eflujo múltiples específicas que pueden causar resistencia a múltiples fármacos (MDR) y aumentar significativamente la resistencia bacteriana a múltiples

antibióticos (Jian et al. 2021). De hecho, los genes con mayor abundancia (y presentes en todas las muestras) incluyen una bomba de eflujo por división de nodulación de resistencia (RND) que son uno de los determinantes más importantes de la MDR (Fernando et al. 2013), el gen *msbA* que es una bomba de eflujo del tipo ABC y el gen *macB*, una subunidad del transportador ABC.

En el curso de la evolución, las bacterias han ido adquiriendo mecanismos que les permiten sobrevivir bajo una mayor concentración de antibióticos. La sobreexpresión de las bombas de eflujo es uno de esos fenómenos que conduce a una mayor resistencia a estos compuestos (Li et al. 2009). La sobreexpresión de muchos de estos transportadores está asociada con la resistencia a múltiples fármacos en diferentes patógenos clínicos (Piddock 2006). Por ejemplo, se ha descubierto que QacA y NorA de Staphylococcus aureus (Wang et al. 2008; Costa et al. 2018), MexAB de Pseudomonas aeruginosa (Llanes et al. 2004) y EfrAB de Enterococcus faecalis (Lee et al. 2003; Shiadeh et al. 2019) son responsables de la resistencia en muchas cepas clínicas. Las bombas de flujo pueden transportar sustratos múltiples o individuales. Los primeros se conocen como transportadores de múltiples fármacos. Las bombas de eflujo también se clasifican según la fuente de energía. Los transportadores primarios, como la superfamilia del casete de unión a ATP (ABC), usan energía de la hidrólisis de ATP (Shumen 1987), mientras que los transportadores secundarios, como la superfamilia de facilitadores principales (MFS), dependen de la fuerza protón motriz (Forrest et al. 2011). Las familias de transportadores ABC y MFS se distribuyen de manera ubicua entre las bacterias y representan casi la mitad de todos los transportadores codificados por el genoma bacteriano (Paulsen et al. 1998).

A pesar de que no es evidente una distinción entre la composición de los resistomas de arroyo y laguna (Figura 50), sí se observó que los arroyos presentan una mayor riqueza de genes de resistencia (Figura 51), por lo que la hipótesis I de trabajo se cumple. De hecho, al realizar el test de Wilcoxon se observa una diferencia significativa entre arroyos y laguna para un tamaño de muestra de 25.500 reads (W = 430, p-valor = 0,00044). Esto podría estar relacionado a una mayor presencia de antibióticos en los arroyos provenientes de las PTAR, aunque el diseño experimental de esta Tesis no permite confirmar esta hipótesis. Si bien diversos estudios muestran el papel de los residuos de antibióticos en la formación y promoción de la diseminación de los ARG, mostrando que comúnmente se correlacionan positivamente con la concentración de antibióticos en varios ambientes (Yang et al. 2017; Yi et al. 2019; Zhang et al. 2019). Existen varios factores

que pueden estar ejerciendo una presión selectiva sobre la distribución de ARG, por lo que una relación causal no es tan sencilla de establecer. Por ejemplo, se han sugerido compuestos bioactivos como detergentes, biocidas, solventes orgánicos y metales para seleccionar cepas bacterianas, con una mayor expresión de determinantes de resistencia y, por lo tanto, co-seleccionan para la resistencia a los antibióticos (Alonso et al. 2001; Berg et al. 2010; Ji et al. 2012).

Figura 51. Figura de barras, representando la abundancia relativa de genes de resistencia a antibióticos anotados con la base de datos ResFam (Gibson et al. 2015), en los 48 metagenomas. La barra punteada divide las muestras de sistemas de arroyo y laguna.

Tamaño de muestra

Figura 52. Histogramas representando los valores de riqueza de genes de resistencia a antibióticos en sistemas de arroyo y laguna, estimada aplicando una rarefacción a distintos tamaños de muestra.

Al hacer foco en los genes asociados a las PTAR, se observa que la muestra C_ST_05 en invierno posee la riqueza más alta de ARG de todo el set de muestras. Esto coincide con lo que reportan la mayoría de los estudios que analizan variación temporal de ARG, donde se detectan concentraciones más altas en invierno que en verano (Kim & Carlson 2007; Jiang et al. 2011; Yan et al. 2011, 2013). Estas variaciones estacionales podrían explicarse por las bajas temperaturas y la escasa luz UV en invierno, que pueden reducir la degradación microbiana y fotodegradación de antibióticos, además del aumento de la incidencia de enfermedades infecciosas y el consumo de antibióticos en invierno (Yan et al. 2013). Sin embargo, para poner a prueba esta hipótesis se tendría que hacer un análisis de variación temporal de ARG con un mayor número de muestras. Además, se encontró únicamente en ese punto de muestreo el gen *blaI*, que modula la resistencia a los betalactámicos regulando la betalactamasa PC1 codificada por *blaZ*, un mecanismo común de resistencia a la penicilina en *S. aureus* (Strynadka et al. 1994).

Dentro de los genes presentes aguas abajo ciudad de Rocha (R_ST_02) y ausentes aguas arriba (R_ST_01), se encuentran *blaR1*, con un mecanismo de acción similar a *blaI*. También en R_ST_02 se encontró el gen ErmA, una metiltransferasa de la subunidad 23S del ARN ribosomal.

Además, se encontraron allí el gen Qnr que confiere resistencia a las quinilonas, y VanW: un gen de resistencia a vancomicina. El gen Qnr se encontró también en gran abundancia tanto en C_ST_04 como en C_ST_05.

Si bien en esta Tesis no se realizó un deseño experimental para estudiar las correlaciones entre la concentración de antibióticos y ARG, si se identificaron algunos antibióticos con el método de *screening target* en el capítulo I. Tres de los cuales pertenecen a la familia de las fluorquinolonas: Lomefloxacina, con valores por debajo de su LOQ (10 μ gL⁻¹), enrofloxacina (con concentraciones > 1 μ gL⁻¹ en el 7 % de las muestras donde se detectó) y ciprofloxacina, con valores por debajo de su LOQ (10 μ gL⁻¹). Por último, el trimetropim un bactericida de amplio uso, se encontró con valores de 0,1-1 μ gL⁻¹ en el 43 % de las muestras donde se detectaron antibióticos, y por debajo de su LOQ (0,1 μ gL⁻¹) en el resto de las muestras. Si analizamos cómo fue la distribución de estos antibióticos, se observa que aparecen en los dos sitios identificados cómo vulnerables asociados a la PTAR de Castillos (C_ST_04 y 05), así como en la parte sur de la Laguna de Castillos (C_LA_09) (Figura 52). Como ya se mencionó, el sitio C_ST_05 fue el que presentó mayor riqueza de ARG, y tanto en C_ST_04 como en C_ST_05 se encontró una gran abundancia del gen *Qnr* que confiere resistencia a las quinolonas. Este resultado es intereseante teniendo en cuenta que 3 de los 4 antibióticos hallados en estos sitios pertenecen a esta familia de antibióticos.

En resúmen, la segunda hipótesis de trabajo se cumple parcialmente, ya que se encontró una variedad de mecanismos de resistencia, pero estos no están especialmente relacionados a los antibióticos encontrados en el capítulo I. La dinámica de los antibióticos en el ambiente hace que su detección sea compleja en las matrices ambientales sobre todo a grandes distancias de la fuente de liberación. Sin embargo, los ARG tienen mecanismos de propagación que hacen que sea mas fácil detectar en el ambiente los impactos frente a estos compuestos en comparación de la medición directa del antibiótico.

Figura 53. Distribución de antibióticos identificados por sitio mediante screening target.

3.3.4 Asociación de ARG con variables ambientales

El RDA reveló que un 42 % de variabilidad en la distribución de los ARG es explicado por las variables ambientales y los CEs, aunque dicha estructuración no es significativa (Tabla 25). Además, tanto en el biplot como en la tabla de pesos de variables explicativas se observa que el NT y la concentración de CEs son las variables con mayor aporte al eje 1 en sentido opuesto, y que el el pH, la temperatura y el OD, las que más aportan al eje 2 en sentido positivo las primeras 2 y en negativo la tercera (Figura 53, Tabla 26).

Tabla 25. Partición de la varianza del RDA

Varianza	Inercia	Proporción	R ²	p valor
Total	0,023	1	0,097	0,18
Restringida	0,0095	0,42		
No-	0,013	0,58		
restringida				

.

ŧ.

Tabla 26. Pesos de las variables explicativas a los primeros dos ejes del RDA

	RDA1	RDA2
Temperatura	-0,26	0,38
Salinidad	0,10	0,25
pН	0,20	0,35
OD	0,55	-0,28
Solidos,susp	0,28	-0,14
Mo,susp	0,10	0,07
NT	-0,49	-0,15
cloA	0,27	-0,20
Emergentes	0,55	-0,04
Plaguicidas	-0,06	0,01

Figura 54. Biplot RDA funcional. Las coordenadas de las puntas de los vectores representan las variables explicativas: Temperatura, Salinidad, pH, OD, Solidos.susp (sólidos totales en suspensión), Mo.susp (materia orgánica en suspensión), NT (Nitrógeno total), cloA, Conc.Emerg (concentración total de compuestos de uso urbano), Conc.Pest (concentración total de plaguicidas). Los puntos rojos representan los ARG y los círculos blancos los sitios.

Las variables con mayor peso en la estructuración de ARG obtenidas en esta Tesis ya han sido reportadas en otros trabajos por tener efecto en la distribución de estos genes en distintos sistemas. Por ejemplo, en ambientes estuarinos, la salinidad y el pH son factores ambientales vitales que afectan la distribución de los ARG (Lu et al. 2015; Tang et al. 2015; Chen et al. 2020). En ríos urbanos se ha encontrado correlación entre distintas formas del Nitrógeno (NO₂⁻, NH₄⁺ y NO₃⁻) y las abundancias de ARG (Chen et al. 2020).

La temperatura tiene un impacto directo en el ciclo de vida de la mayoría de los seres vivos y en particular en el crecimiento bacteriano. Tanto la temperatura atmosférica como la estación influye en la temperatura de las aguas superficiales, pero la temperatura del agua de escorrentía también puede verse afectada por las actividades humanas, en particular por efluentes industriales y urbanización. El OD, es indicador del grado de contaminación de las aguas, y valores muy bajos pueden favorecer la proliferación de ciertos grupos que carguen ciertos mecanismos de resistencia. El NT también es un indicador de aguas que reciben aportes de efluentes urbanos. Varios estudios sugieren que los determinantes de la resistencia a antibióticos en las bacterias ambientales tienen funciones primarias además de desactivar antibióticos hechos por el hombre. Este fenómeno biológico consistente en un cambio en función de un rasgo durante la evolución se denomina exaptación. Por ejemplo, las betalactamasas que hidrolizan antibióticos naturales y artificiales de la familia de los betalactámicos y las enzimas para la biosíntesis de la pared celular han evolucionado del mismo ancestro (Meroueh et al. 2003). La variabilidad en las VA en los diferentes sitios representan condiciones de presión selectiva que probablemente promuevan la exaptación y causen estrés sobre comunidades bacterianas cuya composición y estructura influyen en los perfiles de los ARG (Zhou et al. 2017; Fresia et al., 2019).

3.3.5 Indicadores funcionales bacterianos de arroyos

A partir de la matríz de abundancias de ARG se corrió el análisis IndVal con el paquete indicspecies para buscar los indicadores de las diferentes categorías de sitios de arroyos categorizados según el AQI. Se seleccionaron los ARG (o combinaciones de estos) indicadores en base a los componentes A y B del valor de IndVal (ver sección 2.4.6).

En la Tabla 27 se muestran los indicadores funcionales para arroyos, de sitios clasificados según el AQI. En este caso la agrupación fue en 3 grupos (1,2 y 4), ya que había únicamente una muestra (R_ST_SPR_03) correspondiente a la categoría 3 (deficiente), que no se incluyó en el análisis. Al igual que los indicadores taxonómicos, los valores de IndVal fueron altos y se encontraron una amplia variedad de genes de resistencia asociados a diferentes mecanismos y contra distintos tipos de antibióticos.

En el grupo 1 se encontraron diferentes tipos de betalactamasas, incluyendo *cblA*, que confiere resistencia a las cefalosporinas, o betalactamasas de tipo B o D. La resistencia a los antibióticos β -lactámicos es un problema emergente y la producción de β -lactamasas es el mecanismo más común de resistencia a los antimicrobianos, especialmente en organismos Gramnegativos (Dallenne et al. 2010). Uno de los mecanismos de resistencia brindados por estas enzimas es el de las metalo- β -lactamasas (MBL), que pertenecen a la clase B de betalactamasas. En el grupo 1 también se encontró una carbapenemasa del tipo IPM, una MBL con capacidades

hidrolíticas versátiles, como hidrolizar penicilinas, cefalosporinas, monobactámicos y carbapenémicos y cuyo mecanismo de resistencia se encuentra codificado en un plásmido (Chen et al. 2009). También en el grupo 1 se encontraron otros ARG con mecanismos que incluyen modificaciones de distintos antibióticos o sitios diana, como la aminoglucósidonucleotidiltransferasa, una enzima modificadora de aminoglucósidos, que confiere resistencia a bacterias patógenas frente a varios antibióticos aminoglucósidos, incluidos la gentamicina, la kanamicina y la tobramicina (Wright et al. 2004). Además, se encontró la estreptomicina fosfotransferasa, que confiere resistencia a la estreptomicina, fosforilando distintos sitios de este antibiótico e inactivándolo (Ashenafi et al. 2014). Finalmente, entre los indicadores de este grupo se encontró el gen *tetx*, que es un gen contenido en un plásmido que codifica para una enzima de resistencia a la tetraciclina catalizando su degradación (Park & Levy 1988).

En el grupo 2, también se encontraron como indicadores varias betalactamasas, una de ella (CARB-PSE) responsable de la resistencia intrínseca a la penicilina (Chiou et al. 2015). Además, se identificó la betalactamasa IND, una MLB altamente divergente con algunas de sus variedades aisladas de *Chryseobacterium indologenes* (Zeba et al. 2009). El género *Chryseobacterium* y otros géneros pertenecientes a la familia *Flavobacteriaceae* incluyen organismos que pueden comportarse como patógenos humanos, causando diferentes tipos de infecciones (Izaguirre-Anariba & Sivapalan 2020). Además, algunas especies de *Chryseobacterium* resisten la cloración y pueden sobrevivir en los suministros de agua municipales (Mukerji et al. 2016). Además, como indicadores de este grupo se encontraron genes moduladores de bombas de eflujo y finalmente, enzimas modificadoras como cloranfenicol fosfotransferasa, aminoglucósido acetiltransferasa y aminoglucósido fosfotransferasa.

En el grupo 4, el de mayor impacto, se encontró una gran variedad de ARG. Por ejemplo, el gen *VanH* que confiere resistencia a la vancomicina o la betalactamasa *PC1* codificada por *blaZ* (que se hayo únicamente en el sitio C_ST_05). También, *VEB* (betalactamasa de espectro extendido vietnamita) y *PER* (resistencia extendida de *Pseudomonas*) que son tipos de betalactamasas de espectro extendido (ESBL) (Stürenburg et al. 2003). Si bien los plásmidos son responsables de la distribución de la mayoría de las betalactamasas, el gen que codifica estas enzimas también puede estar en los cromosomas o en los elementos transponibles como los integrones (Rasheed et al. 1997). *Pseudomonas* fue uno de los indicadores que se encontraron en este mismo grupo (Tabla 19), por lo que es de esperar se haya encontrado un mecanismo de resistencia extendido en este género. También, se encontró otra MBL codificada por integrón de Verona, que se encuentra entre las MBL más comunes en infecciones en humanos (Walsh et al. 2005). En la última década esta carbapenemasa se ha convertido en una grave amenaza para la salud en instituciones sanitarias de países como Grecia, Italia y España (Giani et al 2013; Spyropoulou et al. 2016). Se ha asociado con brotes de infecciones adquiridas en hospitales debido a *Pseudomonas aeruginosa* y *Enterobacteriaceae* y se ha encontrado tanto en aguas residuales como superficiales en muchos países (Piedra-Carrasco et al. 2017; Zurfluh et al. 2017; Müller et al. 2018). Además, los 3 indicadores de este grupo están conformados por aminoglucósido nucleotidiltransferasas, asociadas a la resistencia varios antibióticos aminoglucósidos. Finalmente, se destaca la presencia del gen *norA*, una bomba de eflujo de antibióticos de la superfamilia facilitadora principal, que como ya se mencionó está asociada a la resistencia a múltiples fármacos en el patógeno clínico *Staphylococcus aureus*.

En la Figura 54 se muestra la asignación de arroyos a cada grupo definido según el AQI, en base a los indicadores funcionales encontrados. El acierto global de 89 %, con un 33 % de error para el grupo 1, 18 % de error para el 2 y una asignación perfecta en el grupo 4. Este resultado es esperable teniendo en cuenta que los ARG responden a muchas variables y aun así, los valores de IndVal fueron altos y nuevamente el grupo de mayor impacto se predice sin error, lo cual resulta altamente relevante en términos de monitoreo ambiental.

Tabla 27. Indicadores funcionales bacterianos de los 3 grupos definidos para los arroyos de las cuencas de las Lagunas de Rocha y Castillos según el AQI. A y B denotan los componentes del IndVal de especificidad y sensibilidad, respectivamente. Los ARG del indicador son la combinación de las ARG candidatos que fueron seleccionados como los mejores indicadores de cada grupo entre todas las posibles combinaciones significativas (p < 0,05). Todos los indicadores lograron una cobertura del grupo del 100 %.

-0

Grupo	Nº de	А	В	IndVal	ARG
(AQI)	genes cabdidatos				
G1	94	0,85	0,50	0,43	Cefalosporina CblA + carbapenemasas de tipo IMP mediadas por plásmidos (betalactamasas)
		0,80	0,50	0,40	Aminoglucósido nucleotidiltransferasa + betalactamasa B + betalactamasa B + estreptomicina fosfotransferasa
		0,80	0,50	0,40	Aminoglucósido fosfotransferasa + betalactamasas D + betalactamasa GOB + tetX: enzima de inactivación de tetraciclina
G2	102	0,80	0,90	0,72	baeS: subunidad del gen modulador del flujo de antibióticos + betalactamasa BJP + betalactamasas CARB-PSE + cloranfenicol fosfotransferasa
		0,80	0,73	0,58	Aminoglucósido acetiltransferasa + baeS + betalactamasas IND + aminoglucósido fosfotransferasa de amplio espectro
G4	108	0,96	0,67	0,63	Aminoglucósido acetiltransferasa + PC1: blaZ betalactamasa (clase a) + VanW: gen de resistencia a glicopéptidos + Betalactamasas VEB y PER (clase a)
		0,97	0,50	0,49	Aminoglucósido nucleotidiltransferasa + betalactamasa II de Bacillus cereus + norA: bomba de salida de antibióticos de la superfamilia de facilitadores principales + aminoglucósido
		0,97	0,33	0,32	nucleotidiltransferasa Aminoglucósido nucleotidiltransferasa + metalobetalactamasa codificada por integrón Verona + aminoglucósido nucleotidiltransferasa

		۵ ^۲	୍ଦେ	G	ĸ	dione
		Prob.	Prob.	Prob.	21e	ò. ⁹
R_ST_AUT_10-	G1	0.66	0	0	G1	
R_ST_SPR_01-	G1	0.84	0.93	0	G2	
R_ST_SPR_10-	G1	0.82	0.93	0	G2	
R_ST_SUM_01 -	G1	0.79	0	0	G1	
R_ST_WIN_01 -	G1	0.8	0	0	G1	
R_ST_WIN_10	G1	0.73	0	0	G1	
C_ST_SPR_02 -	G2	0.86	0.92	0.99	G4	
C_ST_SPR_03	G2	0.86	0.92	0	G2	
C_ST_SUM_02 -	G2	0.79	0.84	0.97	G4	
C_ST_SUM_03 -	G2	0.83	0.84	0	G2	
C_ST_WIN_02 -	G2	0.81	0.92	0	G2	
C_ST_WIN_03 -	G2	0	0.79	0	G2	
R_ST_AUT_04 -	G2	0	0.84	0	G2	
R_ST_SUM_03 -	G2	0.87	0.84	0	G1	
R_ST_SUM_04 -	G2	0.86	0.92	0	G2	
R_ST_WIN_03	G2	0.82	0.83	0	G2	
R_ST_WIN_04 -	G2	0	0.91	0	G2	
C_ST_AUT_04 -		0	0	0.93	G4	
C_ST_AUT_05	G4	0	0.85	0.94	G4	
C_ST_SPR_04 -	G4	0	0	0.94	G4	
C_ST_SPR_05-		0.89	0.95	0.96	G4	
C_ST_SUM_04 -	G4	0.8	0.93	0.96	G4	
C_ST_SUM_05 -		0.85	0	0.97	G4	
C_ST_WIN_04 -	G4	0.86	0.93	0.96	G4	
C_ST_WIN_05	G4	0.9	0.95	0.97	G4	
R_ST_AUT_02 -		0.8	0.93	0.96	G4	
R_ST_SPR_02 -		0.86	0.85	0.96	G4	
R_ST_SUM_02 -	G4	0.85	0.85	0.97	G4	
R ST WIN 02-		0	0.85	0.97	G4	

÷

-0

Figura 55. Asignación a grupos de muestras de arroyos definidos según el AQI de acuerdo a los indicadores funcionales bacterianos, utilizando la técnica de validación cruzada. De izquierda a derecha se muestra: la pertenencia de cada muestra a los diferentes grupos según la clasificación de AQI, la probabilidad de pertenencia a cada grupo utilizando los indicadores funcionales y la asignación a cada uno de los grupos según las probabilidades obtenidas.

3.4 Conclusiones generales

A partir de estos resultados se demostró que es posible encontrar indicadores funcionales basados en los genes de resistencia a antibióticos de sitios con distinto grado de calidad ambiental. A su vez, estos indicadores son capaces de asignar grupos de sitios categorizados según el índice de calidad de agua, algo que no se ha reportado en la literatura hasta ahora.

Los análisis estadísticos muestran que la composición de los ARG no explica la separación de los sitios según los 2 sistemas analizados, lo que arroja la necesidad de ampliar el set de datos utilizados para obtener una mayor resolución. Sin embargo, se observa cierto efecto de estas variables (incluídos los CEs) sobre la distribución de ARG (Figura 50). Resultado esperable teniendo en cuenta que imponen una presión selectiva sobre las comunidades microbianas.

Si bien en general la riqueza de genes fue mayor en arroyos que en lagunas, en ambos sistemas se encontró una distribución similar de ARG lo que podría reflejar algún mecanismo de transferencia horizontal subyacente que permite la rápida difusión de los mismos en el ambiente Jian et al. 2021), a pesar de que los antibióticos se encontraron principalmente asociados a las PTAR. De hecho, muchos de los ARG encontrados poseen algún mecanismo de transferencia horizontal de genes asociados. Este resultado es sumamente importante ya los contaminantes químicos descargados por las actividades humanas en ambas cuencas podrían inducir la diseminación de la resistencia de los antibióticos entre bacterias resistentes a otras bacterias coresidentes en estos ambientes.

Se observó mayor presencia de algunos ARG en sitios ubicados aguas abajo en comparación a aguas arriba de las PTAR. Además, se relacionó la presencia de algunos de estos genes con bacterias indicadoras identificadas mediante Indval, que podrían ser portadoras de esos mecanismos de resistencia. Finalmente, el Indval nuevamente demostró ser una herramienta con mucho potencial para aplicar en el área de monitoreo y gestión ambiental dado su potencial predictivo, sumado a que permite entender los procesos que pueden estar involucrados tras los genes indicadores encontrados.

DISCUSIÓN GENERAL, CONCLUSIONES Y PERSPECTIVAS

Este trabajo constituye el primer reporte de análisis de CEs a nivel de cuenca en lagunas costeras del Uruguay y del análisis de riesgo asociado a dichos compuestos. A nivel internacional, existen pocos trabajos que analicen la presencia de CEs a escala de cuenca y en menor medida aún en 3 sistemas con características diferentes. En algunos trabajos se ha investigado la presencia de CEs y plaguicidas a nivel de cuenca encontrando que el número y concentración de estos contaminantes es menor en las partes superiores de las cuencas; así como un claro gradiente asociado a los usos del suelo. En los mismos se muestran, por ejemplo, análisis de correlación y de partición de varianza que evidencian un claro efecto de los usos del suelo y el tipo y/o concentración de los contaminantes identificados (Pascual Aguilar et al. 2017; Arenas-Sánchez et al. 2019; Sardiña et al. 2019; Liu et al. 2021). En esta Tesis, a pesar que no se hizo un análisis específico de usos de suelo, se observó un patrón en el tipo y la concentración de los compuestos hallados asociados a los diferentes usos de la cuenca. Los análisis estadísticos revelaron que los plaguicidas se distribuyeron de manera más uniforme en la cuenca en comparación con los compuestos de uso doméstico, que presentaron mayor número y concentración en las zonas urbanas asociado a las PTAR, mostrando un claro gradiente desde los arroyos hacia las lagunas y mar costero.

Los CEs fueron detectados de manera ubicua en los diferentes sistemas, con concentraciones altamente variables que fueron desde < 0,1 ngL⁻¹ a 45 µgL⁻¹. Los máximos hallados corresponden a los sitios asociados a las PTAR y coinciden con los reportados en estos sistemas (Hug et al. 2014; Barbosa et al. 2016; Gros et al. 2017; Rivera-Jaimes et al. 2018; Picó et al. 2021). En general, los CEs encontrados concuerdan con los hallados en sistemas similares incluyendo arroyos (Robles-Molina et al. 2014a; Pascual Aguilar et al. 2017; Arenas-Sánchez et al. 2019; Casado et al. 2019; Villa et al. 2020) humedales (Chaves et al. 2020) y mar costero (Köck-Schulmeyer et al. 2019; Xie et al. 2019).

Se pudo implementar un método de *screening target* para identificar y cuantificar más de 300 CEs. Si bien se logró un alcance realmente alto de compuestos monitoreados, el equipo utilizado también permite la realización de otros flujos de trabajo como el *screening non-target* logrando el análisis de CEs que inicialmente no se encuentran en la lista, ampliando las
capacidades de monitoreo. Estudios futuros podrían incluir la profundización en la aplicación del flujo *non-target* para otros CEs y sus productos de transformación. Además, sería interesante analizar los CEs que quedan retienidos en los filtros ya que muchos de estos compuestos pueden quedar retenidos en el material particulado.

Se hallaron algunos plaguicidas que no se encuentran registrados en el Ministerio de Ganadería Agricultura y Pesca (MGAP 2022), que incluyeron el fenazaquin, neburon, prosulfocarb, pyridaben, bitertanol, cadusafos, ethoxyquin, picolinafen, proquinazid y pyrazophos. De estos a su vez, el prosulfocarb y fenazaquín se encontraron con una DF de 96 y 85 % de las muestras respectivamente. Una posible hipótesis para explicar la detección de estos compuestos es la entrada de países limítrofes donde si están registrados como Brasil y Argentina.

Se aplicó un esquema de priorización para CEs que logró identificar candidatos potenciales para el monitoreo de contaminantes específicos de las cuencas de las LR y LC. Una profundización en este análisis incluyendo el estudio de parámetros fisicoquímicos y de toxicidad de varios CEs es recomendable para ampliar el esquema aplicado en este estudio. Los candidatos potenciales para el monitoreo incluyeron los plaguicidas pendimetalina, cadusafos, azoxystrobina y metolaclor que ya habían sido identificados como candidatos de compuestos a ser monitoreados como contaminantes específicos de cuencas fluviales asociados a un uso agrícola intensivo (Tsaboula et al. 2016). Además, las hormonas 17-α-etinilestradiol y 17-β-estradiol fueron identificadas como candidatos potenciales por los efectos adversos que pueden tener en la salud de los seres humanos. Estos compuestos fueron identificados como contaminantes de alta prioridad en estudios previos donde se aplicó un esquema de priorización similar aplicado sobre lagos urbanos (Deere et al. 2021). Finalmente, tanto el insecticida fenazaquín como el fármaco tamoxifeno presentaron alta frecuencia de detección y alto riesgo ecotoxicológico. Aunque estos compuestos no fueron incluidos en el esquema de priorización (ya que no se cuenta con datos de DT_{50}), teniendo en cuenta estos valores se recomienda su inclusión en futuros estudios de monitoreo. Ambos compuestos fueron previamente reportados como posibles candidatos a ser monitoreados y como contaminantes de alta prioridad (Tsaboula et al. 2016; Deere et al. 2021). Otro aspecto a destacar, es que a pesar de la extensa evaluación de riesgo realizada antes de que un plaguicida sea aprobado para su uso, la evaluación de riesgo revelada sobre algunos compuestos en este trabajo,

proporciona evidencia confiable que los plaguicidas registrados podrían representar un riesgo potencialmente alto.

Los compuestos identificados en el esquema de priorización podrían ser candidatos generales para el monitoreo de impacto por CEs. Específicamente las hormonas podrían utilizarse en el monitoreo asociado a áreas urbanas y los plaguicidas para las áreas agrícolas. Sin embargo, es importante analizar las particularidades del uso de suelo de la cuenca para poder trasladar a otros sistemas. Por ejemplo, la cuenca de Castillos ya presenta diferencias con la de Rocha donde el número y concentración de compuestos en general es mayor, posiblemente por la mayor relación agricultura/superficie de cuenca y la menor influencia de la conexión del océano en la LC (Rodríguez-Gallego et al. 2017). También podría haber un efecto de la configuración espacial de los campos agrícolas, que son más pequeños y extendidos en la cuenca de la LR, mientras que en la LC la agricultura se concentra en áreas más grandes cerca de la laguna.

En los sitios asociados a la PTAR de Castillos fue donde se encontró mayor concentración y número de compuestos. El hecho que la PTAR de Castillos sea más simple (tratamiento primario) que la de Rocha (tratamiento secundario) podría explicar la mayor ocurrencia de CEs en esta cuenca, ya que este tipo de tratamiento elimina parcialmente algunos CEs (Boix et al. 2016). De todas formas, para tener una mirada más completa sería importante analizar el caudal de descarga de estas plantas de tratamiento en relación al caudal del cuerpo receptor, aunque es algo que excede los objetivos de esta Tesis. La mayoría de los CEs no son eliminados por los sistemas de tratamiento convencionales (Rivera-Jaimes et al. 2018; Čelić et al. 2019; Serra-Compte et al. 2021), por lo que la incorporación de nuevas tecnologías de tratamiento terciario sería conveniente para disminuir la liberación de estos compuestos en el ambiente (Díaz-Garduño et al. 2017). Los procesos de oxidación avanzada (POA) se consideran procesos de tratamiento de agua altamente competitivos y han sido evaluados como tecnologías emergentes para la eliminación de contaminantes (Ibáñez et al. 2013; Sichel et al. 2011).

Se logró aplicar el WQI a partir de los parámetros de calidad de agua medidos; y el AQI, que midió el nivel de riesgo ambiental integrando información sobre la frecuencia de ocurrencia de CEs por encima de ciertos umbrales ambientales, así como la intensidad de esta ocurrencia y la distribución espacial de la misma. El rango de variación del WQI fue amplio (22,7–83,4), pudiéndose identificar 4 categorías de sitios según este índice: buena, regular, deficiente y pobre. Al comparar con otros estudios en sistemas con usos del suelo similares, se observa que en general las categorías halladas coinciden. Por ejemplo, los valores de WQI para tres estaciones en el río Éufrates (Irak), con impacto agrícola y urbano fueron 63,83, 60,40 y 55,69 cayendo dentro de las categorías regular y marginal (Kareem et al. 2021). En otro estudio en el lago Sukhna (India), se hallaron valores de WQI en el rango de 52,4-81,61, revelado una calidad de agua de buena a deficiente (Maansi & Wats 2021). En estos trabajos, al igual que en esta Tesis, el cálculo del WQI tuvo en cuenta valores límites de la normativa considerando el uso de sustento de la vida acuática en el ecosistema. Sin embargo, esta herramienta también puede ser utilizada para comparar la calidad de agua utilizando el WQI en 4 ríos de Indonesia, encontrando que dos de ellos (Jabawi y Komba) caían dentro de la categoría regular (75,50 y 69,33) para sustentar la vida acuática, mientras que otros 2 (Damsari y Kleblow) estaban dentro de la categoría deficiente (59,00 y 61,25). Sin embargo, la calidad del agua de los cuatro ríos resultó ser apta para ser utilizada como fuente de agua para riego (categoría Buena; 80,00 – 88,00).

Los valores de AQI hallados corresponden únicamente a las 2 categorías de mayor impacto (V y VI) según la clasificación de Tsaboula et al (2018). Esto significa que los valores de AQI siempre están igual o por encima de WQI y aunque ambos índices miden diferentes variables, esto estaría indicando que las VA clásicas no son informativas del impacto por contaminación emergente. Esto se debe principalmente al tipo de variable que es utilizada para construir cada uno de los índices, y los umbrales utilizados para calcular cada uno de ellos. En el caso del AQI por ejemplo se utiliza el *pnec* como umbral, y esto significa que este índice ya mide un efecto ecotoxicológico. Sin embargo, estudios a largo plazo permitirían explorar esta hipótesis, sobre todo teniendo los recaudos de que el AQI aún no es utilizado en ninguna reµamentación ni estudio de monitoreo.

El análisis de calidad de agua de ambas cuencas reveló resultados que van en línea con otros estudios que sugieren que ambas lagunas, en especial Laguna de Castillos, presenta indicios de un aceleramiento del proceso de eutrofización antrópica (Aubriot et al. 2005; Rodríguez-Gallego et al. 2010). Además, relacionado al consumo humano, algunos plaguicidas y el marcador de uso doméstico cafeína se encontraron asociados al punto de toma de OSE para potabilizar en la ciudad de Rocha. Si bien estos compuestos se encontraron en concentraciones bajas, pueden tener efectos sinérgicos o aditivos a largo plazo (Qin et al. 2018; Baek et al. 2019), por lo que su monitoreo es recomendable.

Además, altas concentraciones de nutrientes, sobre todo fósforo total, y la presencia de algunos CEs fueron encontradas en los sitios asociados al mar. Se identificaron una variedad compuestos en el mar costero, incluido compuestos de uso doméstico como cafeína o DEET, plaguicidas como atrazina, fenazaquín, pendimetalina y el fármaco tamoxifeno. En general, el tipo de contaminantes identificados concuerda con otros trabajos en estos sistemas. Esto estaría indicando una señal de alerta del aporte de distintos contaminantes al sistema marino desde la cuenca, haciendo necesario la implementación de medidas para reducir estos aportes a todos los sistemas asociados a ambas cuencas. Si bien cada vez hay más trabajos sobre incidencia de CEs en el mar, es necesario ahondar sobre el conocimiento en esta temática, sobre todo profundizar sobre los efectos de estos compuestos cada vez más abundantes sobre las comunidades biológicas y particularmente sobre las comunidades microbianas que responden rápidamente a estos compuestos.

Además de describir la calidad de agua en los sistemas, tanto el WQI como el AQI fueron utilizados con éxito para categorizar los sitios según su calidad de agua como insumo para la búsqueda indicadores de estos grupos utilizando la herramienta de IndVal. La misma permitió identificar diversos grupos bacterianos con diferentes características en su ecología. Por ejemplo, se encontraron como indicadores desde taxones típicos de sistemas terrestres o de agua dulce a grupos de ambientes marinos, o los principales géneros responsables de los procesos de desnitrificación, grupos aislados de ambientes impactados como las plantas de tratamiento, patógenos oportunistas, descomponedores de contaminantes, degradadores de plásticos o taxones descomponedores de la materia orgánica. Los indicadores encontrados según la clasificación por AQI, revelaron una mayor presencia de grupos patógenos e indicadores de ambientes impactados en comparación con la clasificación de WQI tanto en arroyos como en lagunas. Nuevamente demostrando una mayor sensibilidad para detectar impactos tempranos de AQI frente a WQI.

Los indicadores encontrados en arroyos, como era de esperar, mostraron la influencia del ecosistema terrestre con grupos que habitan principalmente el suelo (*Pedomicrobium, Ideonella*,

Bradyrhizobium, Sediminibacterium, Bryobacter, Acidovorax, Isosphaeraceae, Candidatus Liberibacter, Arcticibacter y Acinetobacter). Estudios metacomunitarios de redes muestran que la estructura espacial de las comunidades de arroyos esta direccionada por un origen terrestre común, donde dominan los taxones reclutados de estos ambientes (Ruiz-Gonzáles 2015). Sin embargo, a diferencia de ese trabajo en donde se estudiaron arroyos prístinos, en los sistemas analizados en esta Tesis se ve la clara influencia del impacto antropogénico predominando los géneros de patógenos oportunistas y microorganismos con diversos metabolismos especializados para degradar todo tipo de contaminantes (*Pseudomonas, Sphingomonas, Acinetobacter lwoffii, Ideonella, Aeromonas, Acidovorax, Candidatus Liberibacter, Esterales, Isosphaeraceae*, y Acinetobacter).

En el caso de las lagunas, se ve la influencia de grupos de agua dulce (*Gemmataceae*, *Solimonadaceae*, *Reyranella*, *Actinobacteria*, *Bradyrhizobium*, *Sulfuritalea* y *Nitrospira*) y principalmente marinos (*SAR11*, *Candidatus_Actinomarina*, *Alcanivorax*, *Sphingobium yanoikuyae*, *Comamonadaceae*, *Algoriphagus*, *Cryomorphaceae* y *Rhodobacteraceae*). Además, llamativamente, se encontraron algunos grupos patógenos también como indicadores como la especie *Sphingobium yanoikuyae*, aunque ya se ha reportado que bajo determinadas condiciones este grupo dominó la comunidad en la LR bajo condiciones naturales (Piccini et al. 2006). Existen reportes de que esta especie es capaz de degradar contaminantes como pentaclorofenol, PCBs, herbicidas, cycloalcanos, PAH y PHA (Mitra et al. 2020). Se encontraron otros grupos capaces de degradar contaminantes como atrazina, hidrocarburos clorados y hexano (*Solimonadaceae*) (Zhou & Lai, 2014) e hidrocarburos (*Alcanivorax*) (Golyshin et al. 2015).

Para el mar costero, no se realizó la búsqueda de indicadores debido a que se contaba con un número reducido de muestras (n = 20) y con la categorización según WQI y AQI los grupos quedarían muy pequeños para realizar el IndVal. Además, se cuenta con la limitación que los valores estándares para el WQI están definidos para agua dulce según las normativas y no se cuenta con valores de referencia para el sistema marino. Como perspectiva, se podría aumentar el tamaño de muestra en este sistema, y utilizar algún otro índice basado en variables ambientales clásicas como ya se ha explorado en sistemas costeros utilizando una modificación del WQI (Ma et al. 2020).

Se estudió la distribución de genes de resistencia a antibióticos (ARG) utilizando la herramienta de metagenómica. Los resultados arrojan que ambas lagunas actúan como un reservorio tanto para contaminantes químicos como para ARG. Esto indica que el servicio ecosistémico de las zonas ribereñas y de amortiguamiento en el destino de las CEs debe ser evaluado, considerando la transformación que los humedales naturales están recibiendo debido al crecimiento agrícola y urbano. La entrada de estos genes está relacionada a los usos de suelo de la cuenca. La mayoría de las familias de antibióticos se han detectado en aguas residuales en todo el mundo en concentraciones variables que van desde ngL⁻¹ hasta mgL⁻¹ (Li & Zhang 2010). Sin embargo, el tratamiento de aguas residuales no es suficiente para eliminar por completo estos compuestos (Tiwari et al. 2017). Además, las mayores cantidades de antibióticos y sus metabolitos se han encontrado asociados a los efluentes de aguas residuales de hospitales (Baquero et al. 2008; Oberlé et al. 2012). En cuanto al uso agropecuario, el contenido de genes de resistencia en zona de cría intensiva de animales es mucho mayor que en hospitales, suelos, aguas subterráneas y aguas superficiales, debido al uso continuo de antibióticos para promover el crecimiento y prevenir enfermedades (Jian et al. 2021). Aunque la ganadería representa más de la mitad de todos los antibióticos utilizados a nivel mundial, el número de estudios relevantes sobre esta temática no supera el 17% de todos los estudios publicados sobre la resistencia a los antibióticos, a partir de 2020 (Jian et al. 2021). Por ello, es necesario impulsar la investigación en esta área para reducir el riesgo de resistencia a los antibióticos. Además, los antibióticos pueden administrarse como fertilizantes (Sarmah et al. 2006), o para tratar enfermedades de algunas frutas y verduras y también como promotores del crecimiento de la fruta, aunque se estima que el aporte por estos usos es mínimo (Kümmerer 2009).

Las aguas residuales podrían estar actuando como un punto de encuentro entre distintas bacterias humanas y ambientales, ya sea patógenos o no patógenos; pudiendo favorecer la aparición y diseminación de la resistencia a los antibióticos. Si bien la presencia de muchos ARG está asociada a la ganadería intensiva, no existen áreas de estas características en las cuencas estudiadas (ej. tambos o *feedlots*), por lo que la entrada de estos genes probablemente provenga del uso urbano. De todas formas, un análisis más profundo entre los distintos usos de suelo y la abundancia y tipo de ARG ayudaría a comprender la naturaleza de las fuentes de genes encontrados.

Se encontraron una gran variedad de mecanismos de resistencia a antibióticos en ambas cuencas contra distintas familias de antibióticos (ej. flourquinolonas, tetraciclinas, cloranfenicol, vancomicina, macrólidos) y distintos mecanismos de resistencia (reguladores transcripcionales, metiltransferasas, B-lactamasas bombas de eflujo). De los 174 ARG presentes en la base de datos se encontraron 122 genes en 4 muestreos, lo que está indicando el importante impacto que existe en estos ecosistemas. Al comparar con otros estudios donde también se utilizó la herramienta de metagenómica para el estudio de ARG en el ambiente, en un estudio comparativo se encontraron 93 subtipos ARG en efluentes de aguas residuales en Alemania y 277 en influentes de aguas residuales en Namibia (Agrawal et al. 2020). Li et al (2015) hallaron 260 ARG en 50 muestras ambientales que incluyeron agua, suelos, sedimentos, lodos, biopelículas y heces en USA. Por último, Ng et al. 2015 compararon la presencia de ARG en aguas residuales y superficiales de ambientes acuáticos urbanos en Singapur, encontrando 303 ARG en aguas residuales hospitalarias y municipales, 58 ARG en efluentes de aguas residuales tratadas y 35 en aguas superficiales.

Entre los ARG más ampliamente encontrados se destaca la presencia de las bombas de eflujo. Las mismas son máquinas complejas que pueden expulsar moléculas del citoplasma a través de la(s) membrana(s) y la pared celular. Este mecanismo inespecífico expulsa los diferentes productos del metabolismo de la bacteria, pero la gran cantidad de mutaciones de genes o la sobreexpresión de los mismo, lograron expandir el repertorio de moléculas extruidas por el sistema de eflujo conduciendo a la generación de resistencia a muchos compuestos xenobióticos (Jian et al. 2021). La sobreexpresión de las bombas de eflujo es uno de esos fenómenos que conduce a una mayor resistencia a estos compuestos (Li et al. 2009). La sobreexpresión de muchos de estos transportadores está asociada con la resistencia a múltiples fármacos en diferentes patógenos clínicos (Piddock 2006).

A su vez, la mayoría de los genes encontrados poseen un mecanismo de transferencia horizontal de genes (HTS) asociado por el cual fueron adquiridos. La diseminación de varios de estos mecanismos de resistencia puede estar vinculado a elementos genéticos móviles (MGE). Junto a los plásmidos conjugativos, los integrones son MGE formados por varios casetes de genes y conocidos por su papel en la captura y propagación de ARG, principalmente entre bacilos Gramnegativos y particularmente entre patógenos (Escudero et al. 2015; Partridge et al. 2018). Los integrones en sí no son móviles, pero a menudo son transportados casetes de más de 130 MGE que confieren resistencia no sólo a las familias antibióticos sino también a los antisépticos y biocidas (Stalder et al. 2012). Los integrones se encuentran en una amplia gama de ecosistemas y se ha propuesto un vínculo entre la prevalencia de integrones en comunidades bacterianas y la presión de antibióticos en numerosos estudios, así como su mayor prevalencia en poblaciones de Escherichia coli cercanas a áreas urbanas (Stalder et al. 2012). Teniendo en cuenta la influencia de las condiciones externas en la HGT y el desarrollo de resistencia, es probable que las presiones antropogénicas faciliten la transferencia de genes de resistencia cromosómica al conjunto de MGE y, por lo tanto, a acelerar la evolución y propagación de cepas resistentes (Cattoir et al. 2008). En este contexto, los contaminantes ambientales como metales, detergentes, y los nanomateriales pueden facilitar la transmisión de ARG por HGT, posiblemente aumentando la permeabilidad de la barrera de la membrana celular (Wang et al. 2015). En resumen, todo esto torna la resistencia a antibióticos en una temática altamente desafiante y con muchas puntas por explorar. Siendo un desafío tanto para la salud humana como ecosistémica, ya que el aumento de la resistencia puede afectar niveles tróficos superiores, teniendo consecuencias sobre la biodiversidad y multifuncionalidad del ambiente acuático que son factores importantes para el mantenimiento de los servicios provistos por este ecosistema (Moi et al. 2022).

Los análisis estadísticos arrojaron que las variables ambientales VA clásicas incluyendo pH, salinidad, nutrientes (NT y PT) y turbidez juegan un rol en la estructuración las comunidades microbianas. En el caso de la estructura funcional determinada a partir de la presencia de ARG no se encontró una ordenación estadísticamente significativa dada por las VA. Esto probablemente se deba a la dinámica y conectividad del sistema donde se necesite un mayor número de muestras para obtener resultados más robustos. De todas formas, los análisis de ordenación revelan aportes (aunque no estadísticamente significativos) tanto de VA clásicas (OD, temperatura, pH, NT) como de CEs. La influencia de las VA clásicas en la distribución de ARG ya ha sido reportada en estudios previos (Lu et al. 2015; Tang et al. 2015; Hu et al. 2018; Chen et al. 2020). Sin embargo, para el caso de emergentes no existen trabajos que analicen esta relación, a excepción del caso de los residuos de antibióticos, cuyo papel en la formación y promoción de la diseminación de los ARG ya ha sido demostrado (Yang et al. 2017; Yi et al. 2019; Zhang et al. 2019).

Finalmente, la herramienta de metagenómica ofrece además del panorama general del perfil ARG presentes en las muestras, una vista altamente resuelta de cada ARG individual en un

contexto genómico de toda la muestra, permitiendo así el análisis de ARG como indicadores. En este trabajo se eligió la aproximación de IndVal, como una herramienta prometedora para aplicaciones de monitoreo ambiental, que tiene en cuenta tanto la abundancia como la frecuencia de los diferentes genes. En este caso se analizaron grupos definidos según un índice de calidad de agua, pero esta aproximación sería también muy útil para discriminar el seguimiento de distintas fuentes de contaminación (Li et al. 2020). En el análisis ARG guiado por metagenómica, precisión en la anotación de genes similares a ARG es esencial para el análisis posterior, que se puede realizar en lecturas cortas o *contigs* ensamblados.

La identificación de ciertos indicadores taxonómicos y su asociación con ARG encontrados resulta un abordaje prometedor para comprender qué microorganismos son portadores de los diferentes ARG hallados en estos sistemas. Algunos de estos grupos fueron arrojados en un primer análisis exploratorio, como por ejemplo el gen *Qnr* que fue encontrado en gran abundancia en los sitios C_ST_04 y 05, donde también se encontró como indicador el género *Aeromonas* que porta el gen *Qnr* en un plásmido (Cattoir et al. 2008). Además, se encontró el gen *PER* (resistencia extendida de Pseudomonas) como indicador en uno los grupos de arroyos, donde también fue encontrado como indicador el género *Pseudomonas*. Como perspectiva, se podrían identificar los principales taxa en base a la anotación de genes de ARNr de 16 S asociados a los ARGs encontrados y evaluar dicha asociación a través por ejemplo de un análisis de redundancia o un análisis canónico de correspondencia (RDA, CCA) como se ha realizado en otros estudios (Zhou et al. 2017). También, se podría comparar la variación taxonómica con la de los ARGs para estimar el grado de dependencia que tienen, como forma de evaluar que tan extendida o concentrada en algunos taxa están los mecanismos de resistencia.

Tanto en el análisis taxonómico como funcional a través de IndVal, revela la presencia de indicadores particulares en cada tipo de ambiente y/o grado de calidad de agua del grupo donde eran hallados. Reafirmando las características que tienen estas comunidades en ajustar rápidamente su composición y/o funciones en respuesta a entornos cambiantes, revelando características intrínsecas de estos sistemas como ser los gradientes naturales y los relacionados al impacto antrópico. Además, una de las ventajas de la herramienta IndVal, es que permite conocer cuál es la identidad del indicador lo que permitió arrojar que la composición de la comunidad muestra la huella de contaminación, ya que se encontraron frecuencias relativamente altas de

distintos grupos que son capaces de degradar contaminantes, patógenos o que fueron aislados de ambientes impactados. Existen pocos trabajos que utilicen esta herramienta en el bacterioplancton y hasta ahora, los indicadores bacterianos para evaluar la calidad ambiental se han centrado más en los estudios en sedimento (Gillan et al. 2005; Zhou et al. 2009; Wang & Tam 2011; Quero et al. 2015; Zhang et al. 2020).

Las aproximaciones basadas en herramientas moleculares son mucho más informativas que lo que hay actualmente en la legislación nacional. La composición de la comunidad determinada mediante NGS puede servir como línea de base o referencia para el monitoreo ambiental permitiendo acceder a un montón de información de la comunidad, permitiendo también analizar la relación entre la composición de las comunidades y diversos factores ambientales (Yergeau et al. 2012). Esto se vio reflejado en los resultados de los coliformes que estuvieron por encima del límite establecido solamente en dos muestras. Si bien los mismos son utilizados para informar contaminación fecal siendo un enfoque diferente al bordado en este trabajo, los resultados de esta Tesis muestran que 1) los sistemas de ambas cuencas están altamente impactados más allá de la contaminación fecal y 2) se encontraron numerosos grupos bacterianos que son potencialmente patógenos más allá de los coliformes. El uso de coliformes representa una determinación rápida que puede utilizarse de manera rutinaria como indicador de contaminación fecal. Este indicador fue incorporado en la legislación del año 79 en nuestro país (Decreto 253/79 1979), como indicador de calidad de agua, sin embargo, hoy en día con el gran desarrollo del conocimiento existen grandes problemáticas y desafíos en cuanto a la contaminación para la salud ambiental y humana que requieren de abordajes más amplios, por lo que la incorporación de nuevas técnicas de monitoreo es necesaria (Caruso et al. 2015).

Los valores de IndVal obtenidos en este trabajo se explican principalmente por el componente (A). En la selección de indicadores se priorizó este componente ya que el objetivo principal fue explorar la capacidad predictiva del IndVal. Sin embargo, dependiendo el enfoque del trabajo, se puede priorizar el valor de IndVal para la selección de indicadores obteniendo mayores valores del componente de fidelidad (B) y por lo tanto también del valor global de IndVal (Alonso et al. 2022). La aplicación de una herramienta estadística como IndVal, con un alto componente predictivo la hace altamente atractiva para su aplicación en el área de la gestión ambiental. Sin embargo, también presenta una serie de debilidades. Por un lado, al haber sido

desarrollada para comunidades de macroorganismos (Dufrene & Legendre 1997) no considera algunos aspectos típicos de las comunidades microbianas como el alto número de taxa o funciones con el que se trabaja lo que a veces requiere de altos tiempos computacionales a la vez de experiencia en el manejo del paquete. Modificaciones en el esquema de trabajo aplicado que incluyan, por ejemplo, distintas formas de seleccionar las especies candidatas, manteniendo un compromiso entre la abundancia de las mismas (no pueden ser especies raras) y lo específicas que sean. Este último aspecto es altamente desafiante teniendo en cuenta la ubicuidad de los taxa sobre todo en sistemas conectados hidrológicamente como son los estudiados en esta Tesis. Otra de las limitantes es que la función predict del paquete indicspecies, solo tiene en cuenta la información de presencia-ausencia y además considera uno solo de los componentes del indicador, por lo que se puede perder información valiosa en esta selección. Es por ello, que se propone como perspectiva aplicar IndVal para seleccionar las especies indicadoras, y luego predecir distintas categorías de calidad de agua utilizando técnicas de *machine learning* (ML).

La incorporación de técnicas estadísticas de aprendizaje automático en combinación con esta herramienta, resulta un abordaje altamente prometedor para la aplicación de este abordaje en el monitoreo ambiental, y su incorporación en el uso de indicadores de monitoreo en sistemas acuáticos. Este tipo de enfoques han sido llevados a cabo con éxito en otros trabajos, para predecir la pertenencia a distintos tipos de estuarios (Alonso et al. 2022) o el estado de eutrofización y temperatura en sistemas marinos (Glasl et al. 2019). Las ventajas de la incorporación de la combinación de ambas técnicas incluyen, 1) mejorar el componente predictivo de IndVal 2) permitir el uso de una selección previa de indicadores lo que ayuda a optimizar el desempeño de las aproximaciones de ML, en virtud del gran número de especies que involucra estas comunidades en relación a la cantidad de muestras que se cuenta para entrenar estos modelos. Con la posible excepción de hábitats muy extremos, el número de filotipos bacterianos en una comunidad dada siempre excederá en órdenes de magnitud el número de muestras. Tal desequilibrio puede causar fácilmente un sobreajuste. Aunque los diferentes enfoques de ML muestran una sensibilidad diferente a este problema, todos se benefician de una reducción en la proporción de variables predictoras por número de muestra, y la selección de variables se considera una herramienta clave (Hastie et al. 2009).

REFERENCIAS

- Aalizadeh, R., Thomaidis, N.S., Bletsou, A.A., Gago-Ferrero, P. 2016. Quantitative structure-retention relationship models to support nontarget high-resolution mass spectrometric screening of emerging contaminants in environmental samples. Journal of Chemical Information and Modeling, 56:1384–1398.
- Agrawal, S., Orschler, L., Sinn, J., Lackner, S. 2020. High-throughput profiling of antibiotic resistance genes in wastewater: comparison between a pond system in Namibia and an activated sludge treatment in Germany. Journal of Water and Health, 18(6): 867-878.
- Ahmed, W., Staley, C., Sadowsky, M.J., Gyawali, P., Sidhu, J., Palmer, A., et al. 2015. Toolbox approaches using molecular markers and 16S rRNA gene amplicon data sets for identification of fecal pollution in surface water. Applied Environmental Microbiology, 81:7067–77.
- Alcántara-Durán, J., Moreno-González, D., García-Reyes, J.F., Molina-Díaz, A. 2019. Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chemistry, 279: 144-149.
- Alcántara-Durán, J., Moreno-González. D., Gilbert-López. B., Molina-Díaz. A., García-Reyes. J.F. 2018. Matrix-effect free multi-residue analysis of veterinary drugs in food samples of animal origin by nanoflow liquid chromatography high resolution mass spectrometry. Food Chemistry, 245: 29-38.
- Ali Asghar, M., Zhu, Q., Sun, S., Ye, Peng, Shuai, Q. 2018. Suspect Screening and Target Quantification of Human Pharmaceutical Residues in the Surface Water of Wuhan, China, Using UHPLC-Q-Orbitrap HRMS. Science of the Total Environment, 635: 828-837.
- Alonso, L.L., Demetrio, P.M., Agustina Etchegoyen, M., Marino, D.J. 2018. Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina. Science of the Total Environment, 645: 89–96.
- Alonso, C., Gómez-Pereira, P., Ramette, A., Ortega, L., Fuchs, B.M., Amann, R. 2010. Multilevel analysis of the bacterial diversity along the environmental gradient Río de La Plata-South Atlantic Ocean. Aquatic Microbial Ecology, 61:57-72.
- Alonso, C., Pereira, E., Bertoglio, F., De Cáceres, M., & Amann, R. 2022. Bacterioplankton composition as an indicator of environmental status: proof of principle using indicator value analysis of estuarine communities. Aquatic Microbial Ecology, 88: 1–18.
- Alonso C, Warnecke F, Amann R, Pernthaler J. 2007. High local and global diversity of Flavobacteria in marine plankton. Environmental Microbiology, 9(5): 1253-66.

- Alonso-S´aez, L., Balagu´e, V., Sa` EL, S´anchez, O., Gonz´alez, J.M., Pinhassi, J, Massana, R., Pernthaler, J., Pedr´ os-Ali ´o, C. & Gasol, J.M. 2007. Seasonality in bacterial diversity in northwest Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbial Ecology, 60: 98–112.
- Alonso, C., Zeder, M., Piccini, C., Conde, D., Pernthaler, J. 2009. Ecophysiological differences of betaproteobacterial populations in two hydrochemically distinct compartments of a subtropical lagoon. Environtal Microbiology, 11(4): 867-76.
- Amaral, V., Graeber, D., Calliari, D., Alonso, C. 2016. Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnology and Oceanography, 61: 906–918
- Arnold, L., van Den Wollenberg. 1977. Method Is Presented. Psychometrika, 42(2): 207–219.
- Auguet, J.C., Barberan, A., Casamayor, E.O. 2010. Global ecological patterns in uncultured archaea. ISME Journal 4: 182-190
- Aubriot, L., Conde, D., Bonilla, S., Hein, V. y Brito, A. 2005. Vulnerabilidad de una laguna costera reserva de biosfera: indicios recientes de eutrofizacion. En: Vila, I. y Pizarro, J., ed. Taller Internacional de Eutrofización y Embalses CYTED VXIIB. Santiago de Chile: Patagonia Impresores. pp. 65-87.
- Allison, S.D. & Martiny, J.B.H. 2008. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences USA, 105: 11512–11519.
- Allison, S. D., Wallenstein, M. D., Bradford, M. A. 2010. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3: 336–340.
- Ancion, P.Y., Lear, G., Lewis, G.D. 2010. Three commonmetal contaminants of urban runoff (Zn, Cu& Pb) accumulate in freshwater biofilm and modify embedded bacterial communities. Environmental Pollution, 158:2738–2745.
- Andrey, R.E. 2003. Liquid chromatography mass spectrometry: an introduction. Analytical Techniques in the Sciences (AnTS). Chichester, Inglaterra, John Wiley & Sons, Ltd.
- Arenas-Sánchez, A., Rico, A., Rivas-Tabares, D., Blanco, A., Garcia-Doncel, P., Romero-Salas, A., Nozala, L., Vighia, M. 2019. Identification of contaminants of concern in the upper Tagus river basin (central Spain). Part 2: Spatio-temporal analysis and ecological risk assessment. Science of the Total Environment, 667: 222–233.
- Atwood, D., Jones, C.P. 2017. Pesticides Industry Sales and Usage 2008–2012 Market Estimates. United States Environmental Protection Agency (US EPA) report Available online at:. <u>https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-</u> 2008-2012-marketestimates Accessed August 2019.
- Avagyan, R., Aberg, M., Westerholm, R. 2016. Suspect screening of OH-PAHs and non- target screening of other organic compounds in wood smoke particles using HR- Orbitrap-MS. Chemosphere, 163:313–321.

- Aylagas, E., Borja, Á., Tangherlini, M., Dell'Anno, A., Corinaldesi, C., Michell, C. T., Irigoien, X., Danovaro, R., & Rodríguez-Ezpeleta, N. 2017. A bacterial community-based index to assess the ecological status of estuarine and coastal environments. Marine Pollution Bulletin, 114(2): 679– 688.
- Aydin, E. Talinli, I. 2013. Analysis, occurrence and fate of commonly usedpharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey, Chemosphere, 90: 2004–2012.
- Azcune, G., Griffero, L., Pareja, L., Ríos, J.M., Galbán-Malagón, C., Pérez-Parada, A. 2022. Trends in the monitoring of legacy and emerging organic pollutants in protected areas. Trends in Environmental Analytical Chemistry, 34: e00165.
- Bade, R., Causanilles, A., Emke, E., Bijlsma, L., Sancho, J.V.,Hernandez, F., de Voogt, P. 2016. Facilitating high resolutionmass spectrometry data processing for screening of environmental water samples: an evaluation of two deconvolution tools. Science of the Total Environment. 569– 570:434–441.
- Bade, R., Rousis, N.I., Bijlsma, L., Gracia-Lor, E., Castiglioni, S., Sancho, J.V., Hernandez, F. 2015. Screening of pharmaceuticals and illicit drugs in wastewater and surface waters of Spain and Italy by high resolution mass spectrometry using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS. Analytical and Bioanalytical Chemistry, 407: 8979-8988.
- Baek, I.H., Kim, Y., Baik, S., Kim, J. 2019. Investigation of the synergistic toxicity of binary mixtures of pesticides and pharmaceuticals on AliiVibrio fischeri in major river basins in South Korea. International Journal of Environmental Research and Public Health 16(2):208.
- Baggs, J., Fridkin, S.K., Pollack, L.A., Srinivasan, A., Jernigan, J.A. 2016. Estimating national trends in inpatient antibiotic use among US hospitals from 2006 to 2012. JAMA Internal Medicine, 176: 1639–1648.
- Baker, D.R., Kasprzyk-Hordern, B. 2011. Critical evaluation of methodology commonly used in sample collection, storage and preparation for the analysis of pharmaceuticals and illicit drugs in surface water and wastewater by solid phase extraction and liquid chromatography–mass spectrometry. Journal of Chromatography A, 1218: 8036-8059.
- Baquero, F., Martínez, J.-L., Cantón, R., 2008. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol, 19: 260–265.
- Barberán, A., Casamayor, E.O. 2010. Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquatic Microbial Ecology, 59: 1-10.
- Barberán, A., Ramirez, K.S., Leff, J.W., Bradford, M.A., Wall, D.H., Fierer, N. 2014. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecology Letters, 17(7): 794-802.
- Barbieri, M.V., Postigo, C., Monllor-Alcaraz, L.S., Barceló, D., López de Alda, M. 2019. A reliable LC-MS/MS-based method for trace level determination of 50 medium to highly polar pesticide

residues in sediments and ecological risk assessment. Analytical Bioanalytical Chemestry, 411: 7981–7996.

- Barbosa, M.O.. Moreira, N.F.F., Ribeiro, A.R., Pereira, M.F.R., Silva, A.M.T. 2016. Occurrence and removal of organic micropollutants: an overview of thewatch list of EU Decision 2015/495, Water Research, 94: 257–279.
- Battistuzzi, H. 2009. A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land. Multiple Evidence Supporting Two Major Groups of Eubacteria. Molial Biology and Evolution, 26 (2): 335-343.
- Bendschneider, K., Robinson, R.J. 1952. A new spectrophotometric method for determination of nitrite in the sea water. Journal of Marine Research, 11: 87–96.
- Berg, J., Thorsen, M.K., Holm, P.E., Jensen, J., Nybroe, O., Brandt, K.K. 2010. Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-ndependent bacterial community tolerance assay. Environmental Sciences and Technology, 44: 8724-8728.
- Bernier, S.P., Surette, M.G. 2013. Concentration-dependent activity of antibiotics in natural environments. Frontiers in Microbiology, 4: 20.
- Bhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E.D., Johnston, M.D., H.A. Barton, G.D., Wright. 2012. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One, 7: e34953.
- Bier, R.L., Voss, K.A., Bernhardt, E.S. 2015. Bacterial community responses to a gradient of alkaline mountaintop mine drainage in central Appalachian streams. ISME Journal, 9: 1378-1390.
- Bissett, A., Burke, C., Cook, P.L.M., Bowman, J.P., 2007. Bacterial community shifts in organically perturbed sediments. Environmental Microbiology 9, 46.
- Boden, R., Hutt, L.P., Rae, A.W. 2017. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales. Internation Journal of Systematic and Evolution Microbiology, 67: 1191-1205.
- Boeckel, T.P. Van, Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., 2015. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences USA, 112: 5649-5654.
- Boix, C., Ibáñez, M., Fabregat-Safont, D., Morales, E., Pastor, L., Sancho, J.V., Sánchez-Ramírez, J.E., Hernández, F. 2016. Behaviour of emerging contaminants in sewage sludge after anaerobic digestion. Chemosphere, 163:296-304.
- Bonilla, S. 1998. Estructura y dinámica de la comunidad epifítica algal en un sistema somero mixohalino. Tesis de Maestría, PEDECIBA/Biología-Ecología (Montevideo). 70pp.

- Bonilla, S., Haakonsson, S., Somma, A., Gravier, A., Britos, A., Vidal, L., De León, L., Brena, B., Pírez, M., Piccini, C., Martínez de la Escalera, G., Chalar, G., González-Piana, M., Martigani, F., & Aubriot, L. 2015. Cyanobacteria and cyanotoxins in freshwaters of Uruguay. Innotec, 10: 9–22.
- Bonometto, A., Giordani, G., Ponis, E., Facca, C., Boscolo, Brusà, R., Sfriso, A., Viaroli, P. 2019. Assessing eutrophication in transitional waters: A performance analysis of the Transitional Water Quality Index (TWQI) under seasonal fluctuations. Estuarine, Coastal and Shelf Science, 216: 218-228.
- Borja, A., Bricker, S.B., Dauer, D.M., Demetriades, N.T., Ferreira, J.G., Forbes, A.T., Hutchings, P., Xiaoping, J., Kenchington, R., Marques, J.C., Zhui, C. 2008. Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Marine Pollution Bulletin, 56: 1519-1537.
- Borja, A., Franco, J., Pérez, V. 2000. A marine biotic index to establish the ecological quality of softbottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin, 40(12): 1100–1114.
- Boulesteix, A.L., Janitza, S., Kruppa, J., & König, I. R. 2012. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, *2*(6), 493:507.
- Brack, W., Dulio, V., Ågerstrand, M., Allan, I., Altenburger, R., Brinkmann, M., Bunke, D., Burgess, R.M., Cousins, I., Escher, B.I., Hernández, F.J., Hewitt, L.M., Hilscherová, K., Hollender, J., Hollert, H., Kase, R., Klauer, B., Lindim, C., Herráez, D.L., Miège, C., Munthe, J., O'Toole, S., Posthuma, L., Rüdel, H., Schäfer, R.B., Sengl, M., Smedes, F., van de Meent, D., van den Brink, P.J., van Gils, J., van Wezel, A.P., Vethaak, A.D., Vermeirssen, E., von der Ohe, P.C., Vrana, B. 2017. Towards the review of the European Union Water Framework Directive: recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Science of the Total Environment, 576: 720–737.

Breiman, L. 2001. Random Forests. Machine Learning, 45: 5-32.

- Brena, B., Fabiano, G., Pirez, M., Gabito, L., Alcántara, I., & YannicellI, B. 2019. Floración excepcional de cianobacterias tóxicas en la costa de Uruguay, verano 2019. Innotec, 18: 36–68.
- Brown, M. V., Lauro, F. M., DeMaere, M. Z., Muir, L., Wilkins, D., Thomas, T., et al. 2012. Global biogeography of SAR11 marine bacteria. Molecular Systems Biology, 8: 595.
- Brown, C.M., Staley, C., Wang, P., Dalzell, B., Chun, C.L., Sadowsky, M.J. 2017. A high-throughput DNA sequencing approach to determine sources of fecal bacteria in a Lake Superior estuary. Environtal Sciences and Technology, 51: 8263–71.
- Brumovský, M., Bečanová, J., Kohoutek, J., Borghini, M., Nizzetto, L. 2017. Contaminants of emerging concern in the open sea waters of the Western Mediterranean. Environmental Pollution, 229: 976-983.

- Bushnell, B. 2014. "BBMap: A Fast, Accurate, Splice-Aware Aligner". In: 9th Annual Genomics of Energy & Environment Meeting. California.
- Caldwell, D.J., Mastrocco, F., Margiotta-Casaluci, L., Brooks, B.W. 2014. An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research. Chemosphere, 115:4–12.
- Callahan, B. J., McMurdie, P. J., Holmes, S. P. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME Journal, 11(12), 2639: 2643.
- Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., Holmes, S.P. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13: 581–583.
- Carraro, E., Bonetta, Si, Bertino, C., Lorenzi, E., Bonetta, Sa, Gilli, G. 2016. Hospital effluents management: chemical, physical, microbiological risks and legislation in different countries. Journal of Environmental Management, 168: 185–199.
- CARU. 2011. Plan de monitoreo de la calidad ambiental del río Uruguay en aéreas de plantas celulósicas. Informe técnico, 14 pp.
- Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R., Stabili, L., Todorova, N., Karamfilov, V., Danovaro, R. 2015. Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European marine strategy framework directive. Critical Reviews in Microbiology, 42(6).
- Casado, J., Brigden, K., Santillo, D., Johnston, P. 2019. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Science of the Total Environment, 670: 1204–1225.
- Cattoir, V., Poirel, L., Aubert, C., Soussy, C.-J., Nordmann, P., 2008. Unexpected occurrence of plasmidmediated quinolone resistance determinants in environmental Aeromonas spp. Emerging Infectious Diseases, 14: 231–237.
- CCME. 2001."Canadian water quality guidelines for the protection of aquatic life: Canadian Water Quality Index 1.0 Technical Report". In Canadian environmental quality guidelines.
- Charuaud, L., Jarde, E., Jaffrezic, A., Thomas, M.-F., Le Bot, B. 2019. Veterinary pharmaceutical residues from natural water to tap water: sales, occurrence and fate. Journal of Hazardous Materiasl. 361: 169–186.
- Chen, Q., An, X., Li, H., Su, J., Ma, Y., Zhu, Y.-G. 2016. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environment International, 92-93: 1-10.

- Chen, Y-r., Guo, X-p., Niu, Z-s., Lu, D-p., Sun, X-l., Zhao, S., et al. 2020. Antibiotic resistance genes (ARGs) and their associated environmental factors in the Yangtze Estuary, China: From inlet to outlet. Marine Pollution Bulletin, 158: 111360.
- Chen, L. R., Zhou, H. W., Cai, J. C., Zhang, R., & Chen, G. X. 2009. Detection of plasmid-mediated IMP-1 metallo-beta-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate. Journal of Zhejiang University. Science. B, 10(5): 348–354.
- Chiou, J., Li, R., Chen, S. 201). CARB-17 family of β-lactamases mediates intrinsic resistance to penicillins in Vibrio parahaemolyticus. Antimicrobial agents and chemotherapy, 59(6): 3593– 3595.
- Čelić, M., Gros, M., Farré, M., Barceló, D., Petrović, M. 2019. Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain). Science of the Total Environment, 652: 952-963.
- Chagas, G.G., Suzuki, M.S. 2005. Seasonal hydrochemical variation in a tropical coastal lagoon (Açu Lagoon, Brazil). Brazilian Journal of Biology, 65 (4): 597-607.
- Chaves, M.J.S., Barbosa, S.C., Malinowski, M.M., Volpato, D., Castro, Í.B, Franco, T., Primel, E.G. 2020. Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. Science of the Total Environment, 734: 139374.
- Chee-Sanford, J.C., Mackie, R.I., Koike, S., Krapac, I.G., Lin, Y.-F., Yannarell, A.C., Maxwell, S., Aminov, R.I., 2009. Fate and transport of antibiotic residues and antibiotic resistance genes. Journal of Environmental Quality, 38: 1086-1108.
- Christia, C., Giordani, G., Papastergiadou, E. 2014. Assessment of ecological quality of coastal lagoons with a combination of phytobenthic and water quality indices. Marine Pollution Bulletin, 86: 411-423.
- Cloern, J.E., Jassby, A.D. 2008. Complex seasonal patterns of primary producers at the land–sea interface. Ecological Letters, 11:1294–1303.
- Cohan, F.M., Koeppel, A.F. 2008. The origins of ecological diversity in prokaryotes. Currents in Biology, 18: R1024–R1034.
- Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495 (notified under document C(2018) 3362).
- Conde, D., Aubriot, L., Bonilla, S., Sommaruga, R. 2002. Marine intrusions in a coastal lagoon enhances the effects of UV radiation on the phytoplankton photosynthetic rate. Marine Ecology Progress Series, 240: 57–70.

- Conde, D., S. Bonilla, L. Aubriot, R. De León, W. Pintos. 1999. Comparison of the areal amount of chlorophyll a of planktonic and attached microalgae in a shallow coastal lagoon. Hydrobiologia, 408-409: 285–291.
- Convenio DINAMA-CURE. 2016. Convenio de cooperación técnica y científica entre el Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente (DINAMA) y la Universidad de la república (Centro Universitario Regional del Este) para la implementación de un plan de monitoreo de las lagunas costeras de uruguay. Responsable: Dr. Lorena Rodríguez-Gallego.
- Convenio DINAMA-CURE. 2018. Convenio entre el ministerio de vivienda, ordenamiento territorial y medio ambiente (DINAMA) y la Universidad de la república (Centro Universitario Regional del Este) para la implementación de la evaluación metagenómica en el plan de monitoreo de las lagunas costeras de uruguay. Responsable: Dr. Cecilia Alonso.
- Cordier, T., Forster, D., Dufresne, Y., Martins, C. I. M., Stoeck, T., Pawlowski, J. 2018. Supervised machine learning outperforms taxonomy-based environmental DNA metabarcoding applied to biomonitoring. Molecular Ecology Resources, 18(6): 1381–1391.
- Costa, S.S., Sobkowiak, B., Parreira, R., Edgeworth, J.D., Viveiros, M., Clark, T.G., Couto, I. 2018. Genetic diversity of norA, coding for a main efflux pump of Staphylococcus aureus. Frontiers in Genetic, 9: 710.
- Coutinho, F.H., Silveira, C.B., Pinto, L.H., Salloto, G.R.B., Cardoso, A.M., Martins, O.B., Clementino, M.M. 2014. Antibiotic resistance is widespread in urban aquatic environments of Rio de Janeiro, Brazil. Microbial Ecology, 68(3):441–452
- Creusot, N., Casado-Martinez, C., Chiaia-Hernandez, A., Kiefer, K., Ferrari, B.J.D., Fu, Q., Munzae, N., Stamma, C., Tlilia, A., Hollender, J. 2020. Retrospective screening of high-resolution mass spectrometry archived digital samples can improve environmental risk assessment of emerging contaminants: A case study on antifungal azoles. Environment International, 139: 105708.
- Czekalski, N., Gascón Díez, E., Bürgmann, H., 2014. Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME Journal. 8, 1381:1390.
- Czekalski, N., Sigdel, R., Birtel, J., Matthews, B., Bürgmann, H., 2015. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environmental International, 81: 45–55.
- Dafouz R, Cáceres N, Rodríguez-Gil JL, Mastroianni N, López de Alda M, Barceló D, Gil de Miguel, A., Valcárcel, Y. 2018. Does the presence of caffeine in the marine environment represent an environmental risk? A regional and global study. Science of the Total Environment, 615: 632-642.
- Daginnus, K., Gottardo, S., Payá-Pérez, A., Whitehouse, P., Wilkinson, H., Zaldívar, J.M. 2011. Amodelbased prioritisation exercise for the Europeanwater framework directive. International Journal of Environmental Research and Public Health, 8: 435–455.

- Daims, H. 2014. The Family Nitrospiraceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg.
- Daims, H., Nielsen, J.L., Nielsen, P.H., Schleifer, K.H., Wagner, M. 2001. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Applied Environ mental Microbiology, 67: 5273–5284.
- Dale, V.H., Beyeler, S. 2001. Challenges in the Development and Use of Ecological Indicators. Ecological Indicators. 1(1):3–10.
- Dallenne, C., da Costa, A., Decre, D., Favier C., Arlet, G. 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important β -lactamases in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 65:490–495.
- Du, L., Liu, 2012. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agronomy for Sustainable Development, 32: 309–327.
- D'Costa, V.M., Griffiths, E., Wright, G.D. 2007. Expanding the soil antibiotic resistome: exploring environmental diversity. Current Opinion in Microbiology, 10: 481–489.
- D'Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W.L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G.B., Poinar, H.N., Wright, G.D. 2011. Antibiotic resistance is ancient. Nature, 477: 457-461.
- De Cáceres, M. 2013. How to use the indicspecies package (ver. 1.7.1). R Project 29. https:// github. com/ cran/ indicspecies/ blob/ master/ vignettes/ indicspecies Tutorial. Rnw
- De Cáceres, M., Legendre, P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology, 90 (12): 3566-3574.
- De Cáceres, M., Legendre, P., Moretti, M. 2010. Improving indicator species analysis by combining groups of sites. Oikos, 119: 1674-1684.
- De Cáceres, M., Legendre, P., Wiser, S.K., Brotons, L. 2012 Using species combinations in indicator value analyses. Methods in Ecology and Evolution, 3: 973–982.
- de Wit, R., Bouvier, T. 2006. 'Everything is everywhere, but, the environment selects'; What did Baas Becking and Beijerinck really say? Environmental Microbiology, 8: 755–758.
- Deblonde, T. Cossu-Leguille, C. Hartemann, P. 2011. Emerging pollutants inwastewater: a review of the literature, International Journal of Hygiene and Environmental Health, 214: 442–448.
- Decreto 253/79, 1979. Republica Oriental del Uruguay. Normas para prevenir la contaminación ambiental mediante el control de la contaminación de aguas. <u>https://mvotma.gub.uy/decretos-ministerio/item/10010048-decreto-253-97</u>.

- Dedysh, S. N., Ivanova, A. A. 2020. Isosphaeraceae. Bergey's Manual of Systematics of Archaea and Bacteria, 1–5.
- Dedysh, S.N., Kulichevskaya, I.S., Beletsky, A.V., Ivanova, A.A., Rijpstra, W.I.C., Damsté, J.S.S., Mardanov, A.V., Ravin, N.V. 2019. Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov. Systematic and Applied Microbiology, 43:126050.
- Dedysh, S. N., Kulichevskaya, I. S., Zavarzin, G. A. 2015. Schlesneria. Bergey's Manual of Systematics of Archaea and Bacteria, 1–5.
- Deere, J.R., Streets, S., Jankowski, M.D., Ferrey, M., Chenaux-Ibrahim, Y., Convertino, M, E J I., Phelps, B.D.N., Primus, A., Servadio, J.L., Singer, R.S., Travis, D.A., Moore, S., Wolf., T.M. 2021. A chemical prioritization process: Applications to contaminants of emerging concern in freshwater ecosystems (Phase I). Science of The Total Environment, 772: 146030.
- Della Greca, M., Iesce, M.R., Isidori, M., Nardelli, A., Previtera, L., Rubino, M. 2007. Phototransformation products of tamoxifen by sunlight in water. Toxicity of the drug and its derivatives on aquatic organisms. Chemosphere, 67: 1933–1939.
- Determinación de Coliformes Termotolerantes en aguas naturales superficiales o subterráneas, aguas recreacionales y aguas residuales. Técnica de filtración por membrana 5053 UY. 2009. Manual de procedimientos analíticos para muestras ambientales. Dirección Nacional de Medio Ambiente.
- Di Cesare, A., Eckert, E.M., Teruggi, A., Fontaneto, D., Bertoni, R., Callieri, C., Corno, G., 2015. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake. Molecular Ecology, 24: 3888–3900
- Di Cesare, A., Fontaneto, D., Doppelbauer, J., Corno, G. 2016. Fitness and Recovery of Bacterial Communities and Antibiotic Resistance Genes in Urban Wastewaters Exposed to Classical Disinfection Treatments. Environmental Science & Technology, 50: 10153-10161.
- Diamanti, K.S., Alygizakis, N.A., Nika, M.C., Oswaldova, M., Oswald, P., Thomaidis, N.S., Slobodnik, J. 2020. Assessment of the chemical pollution status of the Dniester River Basin by wide-scope target and suspect screening using mass spectrometric techniques. Analytical and Bioanalytical Chemistry; 412: 4893-4907.
- Díaz, R., Ibáñez, M., Sancho, J.V., Hernández, F. 2012. Target and non-target screening strategies for organic contaminants, residues and illicit substances in food, environmental and human biological samples by UHPLC-QTOF-MS. Analytical Methods, 4: 196-209.
- Díaz-Garduño, B., Pintado-Herrera, M. G., Biel-Maeso, M., Rueda-Márquez, J. J., Lara-Martín, P. A., Perales, J. A., Manzano, M. A., Garrido-Pérez, C., & Martín-Díaz, M. L. 2017. Environmental risk assessment of effluents as a whole emerging contaminant: Efficiency of alternative tertiary treatments for wastewater depuration. Water Research, 119: 136–149.

- Digesto sobre el uso y aprovechamiento del Río Uruguay: Aprobado por resolución CARU Nº 28/19, 2019.
- DINACEA, OSE, DINARA, IDR, CURE. 2021. Evaluación Ambiental de las Lagunas Costeras (José Ignacio, Garzón, Rocha y Castillos) y de sus principales tributarios (2017 2020). Informe Técnico. MMA-DINACEA. Montevideo. 200 pg.
- Doiron, K., Pelletier, E., Lemarchand, K. 2012. Impact of polymer-coated silver nanoparticles on marine microbial communities: A microcosm study. Aquatic Toxicology; 124(125): 22-27.
- Donia, M.S., Cimermancic, P., Schulze, C.J., Wieland Brown, L.C., Martin, J., Mitreva, M., Clardy, J., Linington, R.G., Fischbach, M.A. 2014. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell Separation, 158(6):1402-1414.
- Ducklow, H. 2008. Microbial services: challenges for microbial ecologists in a changing world. Aquat Microbial Ecology, 53:13-19.
- Dueholm, M.S., Nierychlo, M., Andersen, K.S., Rudkjøbing, V., Knudsen, S., the MiDAS Global Consortium, Albertsen, M., Nielsen, P.H. 2021. MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants.
- Dufrene, M., Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345-366.
- Duwig, C., Archundia, D., Lehembre, F., Spadini, L., Morel, M.C., Uzu, G., Chincheros, J., Cortez, R., Martins, J.M.F. 2014. Impacts of anthropogenic activities on the contamination of a sub watershed of lake Titicaca. Are antibiotics a concern in the Bolivian Altiplano? Progress in Earth and Planetary Science, 10: 370–375.
- Dworak, T., Berglund, M., Haider, S., Leujak, W., Claussen, U. (ECOSTAT WG). 2016. Results from questionnaires and spreadsheets sent to Member States in relation to nutrient boundaries set for the WFD and MSFD.
- ECHA, 2019. European Chemicals Agency Information on chemicals. Available. https://echa.europa.eu/information-on-chemicals/cl-inventory-database. (Accessed 20 April 2019).
- ECHA, 2008. Characterisation of dose [concentration]-response for the environment. In Guidance on Information Requirements and Chemical Safety Assessment. https://echa.europa.eu/documents/10162/13632/information_requirements_r10_en.pdf.
- Edgar, R.C. 2016. UNOISE2: improved error-correction for Illumina 16 S and ITS amplicon sequencing. bioRxiv 081257.
- Emma, 2006. European Medicine Agency Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use (EMEA/CHMP/SWP/4447/00).

- Eren, A.M., Maignien, L., Sul, W.J., Murphy, L.G., Grim, S.L., Morrison, H.G. Sogin, M. 2013. Oligotyping: differentiating between closely related microbial taxa using 16 S rRNA gene data. Methods in Ecology and Evolution, 4: 1111–1119.
- Erustes, J.A., Andrade-Eiroa, A., Cladera, A., Forteza, R., Cerdà,, V. 2001. Fast sequential injection determination of benzo[A]pyrene using variable angle fluorescence with on-line solid-phase extraction, Analyst 126: 451–456.
- Escudero, J.A., Loot, C., Nivina, A., Mazel, D. 2015. The integron: adaptation on demand. Microbiology Spectrum.
- European Commission. 1998. Directive 98/83/EC on the Quality of Water Intended for Human Consumption.Available online at: https://eur-lex.europa.eu/legal-content/ EN/TXT/?uri=CELEX:01998L0083-20151027 Accessed July 2019
- European Commission. 2002. Guidance document on aquatic ecotoxicology in the context of the Directive 91/414/EEC. Sanco/3268/2001 rev.4 (final) 17 October 2002.
- European Commission. 2008a. Regulation (EC) No.1272/2008 on the Classification, Labelling and Packaging of Substances and Mixtures.
- European Commission. 2000. Directive 2000/60/EC of the European Parliament and the council establishing the framework for community action in the field of water policy. Official Journal of European Communities 2000 (L 327 (22.12.2000).
- European Commission. 2006. Regulation (EC) No 1907/2006 of the European Parliamentand of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).
- European Commission. 2013. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. https://eur-lex.europa.eu/legalcontent/EN/ALL/?uri=CELEX%3A32013L0039.
- European Commission.2022. Commission Implementing Decision (EU) 2022/1307 of 22 July 2022 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council (notified under document C(2022) 5098).
- Fabre, A., Martínez, A., Bonilla, S. 2014. Informe Técnico: Floraciones de Cianobacterias en Laguna de Castillos (2010-2014), FC, DINARA y GEFF, CSIC
- Falkowski, P.G., Fenchel, T., Delong, E.F. 2008. The microbial engine that drives the Earth's biogeochemical cycles. Science 320:1034–1039.
- Farell, E.M., Alexandre, G. 2012. Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Research Notes, 5: 257.

- Farley, K.A., Jobbagy, E.G., Jackson, R.B. 2005. Effects of afforestation on water yield: a global synthesis with implications for policy. Global Change Biology, 11: 1565–1576.
- Fenn, J.B., Mann, M., Meng, C. K., Wong, S.F. Whitehouse, C.M. 1989. Electrospray Ionization For Mass-Spectrometry of Large Biomolecules. Science, 246 (4926): 64–71.
- Fernando, D.M., Kumar, A. 2013. Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence. Antibiotics (Basel), 2(1): 163-81.
- Fierer, N., Barberán, A., Laughlin, D.C. 2014. "Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities". In: Front Microbiol 5, pp.
- Fierer, N., Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences USA, 103: 626–631.
- Figueras, M. J., and Borrego, J. J. (2010). New perspectives in monitoring drinking water microbial quality. International Journal of Environmental Research and Public Health 7: 4179–4202.
- Finlay, B.J., Clarke, K.J. 1999. Ubiquitous dispersal of microbial species. Nature, 400: 828.
- Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., Bateman, A. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 4(44): 79-85.
- Forrest, L.R., Krämer, R., Ziegler, C. 2011. The structural basis of secondary active transport mechanisms. Biochimica et Biophysica Acta, 1807: 167–188.
- Forsberg, K.J., Patel, S., Gibson, M.K., Lauber, C.L., Knight, R., Fierer, N., Dantas, G. 2014. Bacterial phylogeny structures soil resistomes across habitats. Nature, 509(7502): 612–616.
- Fortunato, C. S., Eiler, A., Herfort, L., Needoba, J. A., Peterson, T. D., Crump, B. C. 2013. Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. ISME Journal, 7(10): 1899–1911.
- Freeman, M.C., Pringle, C.M., Jackson, C.R. 2007. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional Scales1. Journal of the American Water Resources Association, 43: 5–14.
- Fresia P, Antelo V, Salazar C, Giménez M, D'Alessandro B, Afshinnekoo E, Mason, C., Gonnet, G.H.,
- Iraola, G. 2019. Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome; 7: 35.
- Fuhrman, J.A., Hewson, I., Schwalbach, M.S., Steele, J.A., Brown, M.V., Naeem, S. 2006. Annually reoccurring bacterial communities are predictable from oceanic conditions. Proceedings of the National Academy of Sciences, 103: 13104–13109.

- Fuhrman, J.A., Steele, J.A., Hewson, I., Schwalbach, M.S., Brown, M.V., Green, J.L., Brown, J.H. 2008. A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Sciences USA 105: 7774–7778.
- GESTA-AGUA. 2014. Propuesta de modificación del Decreto 253/79 "Normas reglamentarias para prevenir la contaminación ambiental mediante el control de las aguas".
- Garrity, G. M., Bell, J. A., Lilburn, T. 2005. Pseudomonadales Orla-Jensen 1921, 270AL. Bergey's Manual® of Systematic Bacteriology, 323–442.
- Garrity, George M.; Brenner, Don J.; Krieg, Noel R.; Staley, James T. (eds.) 2005. Bergey's Manual of Systematic Bacteriology, Volume Two: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. New York, New York: Springer. ISBN 978-0-387-24145-6.
- Gerhard, W.A., Gunsch, C.K. 2020. Higher normalized concentrations of tetracycline resistance found in ballast and harbor water compared to ocean water. Marine Pollution Bulletin, 151: 110796.
- Ghai, R., Mizuno, C., Picazo, A., Camacho, A. & Rodriguez-Valera, F. 2013. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Scientific Reports, 3: 2471.
- Giani, T., Pini, B., Arena, F., Conte, V., Bracco, S., Migliavacca, R., et al. 2013. Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: Results of the first countrywide survey, 15 May to 30 June. Euro surveillance: bulletin europeen sur les maladies transmissibles = European communicable disease bulletin.
- Gibson, Molly K, Kevin J Forsberg, and Gautam Dantas. 2015. "Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology". The ISME Journal, 9(1): 207–216.
- Gies, E.A., Konwar, K.M., Beatty, J.T., Hallam, S.J. 2014. Illuminating microbial dark matter in meromictic Sakinaw Lake. Applied Environmental Microbiology 80: 6807-6818.
- Gillan, D.C., Danis, B., Pernet, P., Joly, G., Dubois, P., 2005. Structure of sediment associated microbial communities along a heavy-metal contamination gradient in the marine environment. Applied and Environmental Microbiology, 71: 679–690.
- Giovannoni, S.J. 2017. SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Annual Review of Marine Science, 9: 231-255.
- Gu, Y., Shen, S., Han, B., Tian, X., Zhang, K. 2020. Family livestock waste: an ignored pollutant resource of antibiotic resistance genes. Ecotoxicology and Environmental Safety, 197: 110567.
- Guía Sata. 2022. https://www.laguiasata.com /principio-activo/fitosanitarios.
- Gullberg, E., Cao, S., Berg, O.G., Ilbäck, C., Sandegren, L., Hughes, D., Andersson, D.I. 2011. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens, 7: e1002158.

- Glasl, B., Bourne, D. G., Frade, P. R., Thomas, T., Schaffelke, B., & Webster, N. S. 2019. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome, 7(1): 1–13.
- González-Mariño, I., Quintana, J.B., Rodríguez, I., Cela, R. 2010. Determination of drugs of abuse in water by solid-phase extraction, derivatisation and gas chromatography-ion-trap-tandem mass spectrometry. Journal of Chromatography A, 1217: 1748–1760.
- Golyshin, P. N., Harayama, S., Timmis, K. N., & Yakimov, M. M. 2015. Alcanivorax. Bergey's Manual of Systematics of Archaea and Bacteria, 1–7.
- Golyshin, P., Martins dos Santos, V.A., Yakimov, M.M., Timmis, K.N., Golyshin, P.N., Diaz, E. (Editor). 2008. «Genomic Insights into Oil Biodegradation in Marine Systems». Microbial Biodegradation: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-17-2.
- Gorito, A.M., Ribeiro, A.R., Almeida, C.M.R., Silva, A.M.T. 2017. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation, Environmental Pollution. 227: 428–443.
- Goyenola, G., Meerhoff, M., Teixeira-de Mello, F., González-Bergonzoni, I., Graeber, D., Fosalba, C., Vidal, N., Mazzeo, N., Ovesen, N.B., Jeppesen, E. Kronvang, B. 2015. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes. Hydrology and Earth System Sciences, 19: 4099–4111.
- Griffero, L., Alcántara-Durán, J., Alonso, C., Rodríguez-Gallego, L., Moreno-González, D., García-Reyes, J.F., Molina-Díaz, A., Pérez-Parada, A. 2019. Basin-scale monitoring and risk assessment of emerging contaminants in South American Atlantic coastal lagoons. Science of The Total Environment, 697: 134058.
- Gros, M., Blum, K.M., Jernstedt, H., Renman, G., Rodríguez-Mozaz, S., Haglund, P., Anderssonb, P.L.,Wiberga, K., Ahrens, L. 2017. Screening and prioritization of micropollutants in wastewaters from on-site sewage treatment facilities. Journal of the Hazardous Mateials, 328: 37–45.
- Gu, J., Han, B., Duan, S., Zhao, Z., W, Yuping. 2009. "Degradation of the endocrine-disrupting dimethyl phthalate carboxylic ester by Sphingomonas yanoikuyae DOS01 isolated from the South China Sea and the biochemical pathway". International Biodeterioration & Biodegradation, 63 (4): 450– 455.
- Guo, F., Ju, F., Cai, L., and Zhang, T. 2013. Taxonomic precision of different hypervariable regions of 16S rRNA gene and annotation methods for functional bacterial groups in biological wastewater treatment. PLoS ONE 8:e76185.
- Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D'Agrosa, C., Brunokenneth, J.F., Casey, K.S., Ebert, C.....2008. A Global Map of Human Impact on Marine Ecosystems. Science, 319: 948-952.

- Hastie, T., Tibshirani R., Friedman, J. 2009. The elements of statistical learning, second edition: data mining, inference, and prediction. New York: Springer.
- Hatcher, S.M., Rhodes, S.M., Stewart, J.R., Silbergeld, E., Pisanic, N., Larsen, J., et al. 2017. The prevalence of antibioticresistant Staphylococcus aureus nasal carriage among industrial hog operation workers, community residents, and children living in their households: North Carolina, USA. Environtal Health and Perspectives, 125 (4): 560–9.
- He, K., Soares, A.D., Adejumo, H. McDiarmid, M. Squibb, K. Blaney, L. Detection of a wide variety of human and veterinary fluoroquinoloneantibiotics in municipal wastewater and wastewaterimpacted surfacewater, Journal of Pharmaceutical and Biomedical Analysis, 106 (2015): 136–143.
- He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R., Alvarez, P.J.J. 2020. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. NPJ Clean Water, 3 (1): 1– 11.
- Hembach, N., Schmid, F., Alexander, J., Hiller, C., Rogall, E. T. & Schwartz, T. 2017. Occurrence of the mcr-1 colistin resistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany. Frontiers in Microbiology 8.
- Hermans, S.M., Buckley, H.L., Case, B.S., Curran-Cournane, F., Taylor, M., Lear, G. 2017. Bacteria as emerging indicators of soil condition. Applications in Environmental Microbiology 83:02826– 02816.
- Henriques, I.S., Fonseca, F., Alves, A., Saavedra, M.J., Correia, A. 2006. Occurrence and diversity of integrons and beta-lactamase genes among ampicillin-resistant isolates from estuarine waters. Research in Microbiology, 157: 938–947.
- Hernández, F., Castiglioni, S., Covaci, A., de Voogt, P., Emke, E., Kasprzyk-Hordern, B. 2018. Mass spectrometric strategies for the investigation of biomarkers of illicit drug use in wastewater. Mass Spectrometry Reviews, 37: 258–280.
- Hernández, F., Ibáñez, M., Bade, R., Bijlsma, L., Sancho, J.V. 2014. Investigation of pharmaceuticals and illicit drugs in waters by liquid chromatography-high-resolution mass spectrometry. Trends in Analitical Chemical. 63: 140–157.
- Hernández, F., Sancho, J.V., Ibáñez, M., Guerrero, C. Antibiotic residue determination in environmental waters by LC-MS. 2007. Trends in Analytical Chemistry, 26: 466-485.
- Hernando, M.D., Gómez, M.J., Agüera, A., Fernández-Alba, A.R. LC-MS analysis of basic pharmaceuticals (beta-blockers and anti-ulcer agents) in wastewater and surface water. 2007. Trends in Analytical Chemistry, 26: 581-594.

- Hess, J. Kohl TA, Kotrová M, Rönsch K, Paprotka T, Mohr V. Hutzenlaub, T., Brüggemannd, M, Zengerleaf, R., Niemannb, S., Paustaf, N. 2020 Library preparation for next generation sequencing: A review of automation strategies. Biotechnology Advances, 41:107537I
- Heuett, N.V., Batchu, S.R., Gardinali, P.R., 2015. Understanding the magnitude of emergent contaminant releases through target screening and metabolite identification using high resolution mass spectrometry: illicit drugs in raw sewage influents. Journal of the Hazardous Materials. 282: 41–50.
- Hilty, J., Merenlender, A. 2000. Faunal indicator taxa selection for monitoring ecosystem health. Biological Conservation, 92: 185–197.
- Hiraishi, A.; Hoshino, Y.; Satoh, T. 1991. "Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the Rhodocyclus gelatinosus-like group". Archives of Microbiology, 155 (4): 330–336.
- Hollender, J., Schymanski, E.L., Singer, H.P., Ferguson, P.L. 2017. Nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environal Science and Technology. 51: 11505–11512.
- Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S. et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.
- Hou, W., Sun, S., Wang, M., Li, X., Zhang, N., Xin, X., Sun, L., Li, W., Jia, R. 2016. Assessing water quality of five typical reservoirs in lower reaches of Yellow River, China: Using a water quality index method. Ecological Indicators, 61: 309–316.
- Hsu, J.-T., Chen, C.-Y., Young, C.-W., Chao, W.-L., Li, M.-H., Liu, Y.-H., Lin, C.-M., Ying, C., 2014. Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Journal of Hazardous Materials, 277: 34-43.
- Huang, H., Li, Z., He, Y., Huang, L., Xu, X., Pan, C, Guob, F., Yanga, H., Tange, S. 2021. Nontarget and high-throughput screening of pesticides and metabolites residues in tea using ultra-highperformance liquid chromatography and quadrupole-orbitrap high-resolution mass spectrometry. Journal of Chromatography B, 1179: 122847.
- Hubbard, C. J., Brock, M. T., Van Diepen, L. T., Maignien, L., Ewers, B. E., & Weinig, C. 2018. The plant circadian clock influences rhizosphere community structure and function. ISME Journal, 12(2): 400–410.
- Hug, C., Ulrich, N., Schulze, T., Brack, W., Krauss, M. 2014. Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environmental Pollution, 184: 25–32.

- Ibáñez, M., Gracia-Lor, E., Bijlsma, L., Morales, E., Pastor, L., Hernández, F. 2013. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone. Journal of Hazardous Matererials. 260, 389e398.
- Illumina. 2013. 16S metagenomic sequencing library preparation protocol: preparing 16S ribosomal RNA gene amplicons for the Illumina MiSeq system. Part no. 15044223 Rev B. Illumina, San Diego, CA.
- Imhoff, J. F. 2006. The phototrophic β-Proteobacteria. In The Prokaryotes (pp. 593-601). Springer New York.
- Informe de asesoría a la mesa técnica del agua. 2017. Establecimiento de niveles guía de indicadores de estado trófico en cuerpos de agua superficiales.
- IUPAC Pesticide Properties DataBase, 2019. (PPDB) Agriculture & Environment Research Unit (AERU). University of Hertfordshire. <u>http://sitem.herts.ac.uk/aeru/</u> iupac/index.htm.
- Izaguirre-Anariba, D.E., Sivapalan, V. 2020. Chryseobacterium indologenes, an Emerging Bacteria: A Case Report and Review of Literature. Cureus; 12(1): e6720
- James, G., Witten, D., Hastie, T., Tibshirani, R. 2013. An introduction to statistical learning with applications in R. Springer, New York, NY.
- Jeffries, T.C., Schmitz, Fontes, M.L., Harrison, D.P., Van-Dongen-Vogels, V., Eyre, B.D., Ralph, P.J., Seymour, J.R. 2016. Bacterioplankton Dynamics within a Large Anthropogenically Impacted Urban Estuary. Frontiers in Microbiology, 6.
- Jespersen, A.M., Christoffersen, K. 1987. Measurements of chlorophyll-afrom phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie, 109: 445-454.
- Ji, X., Shen, Q., Liu, F., Ma, J., Xu, G., Wang, Y., Wu, M., 2012. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China. Journal of Hazardous Materials, 235-236: 178-185.
- Jia, S., He, X., Bu, Y., Shi, P., Miao, Y., Zhou, H. 2014. Environmental fate of tetracycline resistance genes originating from swine feedlots in river water. Journal of Environmental Science and Health. 49: 624-631.
- Jia, S., Shi, P., Hu, Q., Li, B., Zhang, T., Zhang, X.X. 2015. Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination. Environmental Sciences and Technology, 49(20):12271-12279.
- Jia, S., Zhang, X-X., Miao, Y., Zhao, Y., Ye, L., Li, B., et al. 2017. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. Water Research, 124: 259-268.

- Jian, Z., Zeng, L., Xu, T., Sun, S., Yan, S., Yang L, et al. 2021. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. Journal of Basic Microbiology, 61: 1049-1070.
- Jiang, L., Hu, X., Yin, D., Zhang, H., Yu, Z. 2011. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere. 82: 822–828.
- Jorcin, A. 1999. Temporal and spatial variability in the macrobenthic community along a salinity gradient in the Castillos lagoon (Uruguay). Archeal Hydrobiology; 146: 369–384.
- Jurado, A., Walther, M., Díaz-Cruz, M.S. 2019. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the watch lists set by EU decisions 2015/495 and 2018/840 in the groundwater of Spain. Science of the Total Environment, 663: 285–296.
- Kalmbach, S.; Manz, W.; Wecke, J.; Szewzyk, U. 1999. "Aquabacterium gen. Nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. And Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system". International Journal of Systematic Bacteriology, 49 (2): 769–77.
- Kan, J., Crump, B.C., Wang, K., Chen, F. 2006. Bacterioplankton community in Chesapeake Bay: predictable or random assemblages. Limnology and Oceanography, 51: 2157–2169.
- Kan, J., Suzuki, M.T., Wang, K., Evans, S.E., Chen, F. 2007. High temporal but low spatial heterogeneity of bacterioplankton in the Chesapeake Bay. Applied Environmental Microbiology, 73: 6776– 6789.
- Kareem, S.L., Jaber, W.S., Al-Maliki, L.A., Al-husseiny, R.A., Al-Mamoori, S.K., Alansari, N. 2021. Water quality assessment and phosphorus effect using water quality indices: Euphrates River- Iraq as a case study. Groundwater for Sustainable Development, 14: 100630.
- Keeley, N., Wood, S. A., & Pochon, X. 2018. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecological Indicators, 85: 1044–1057.
- Khan, S.T., Horiba, Y., Yamamoto, M., Hiraishi, A. 2002. Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Applied Environmental Microbiology, 68(7): 3206-3214.
- Khan, H., Khan, A., Hall, S. 2005. The Canadian water quality index: a tool for water resources management.
- Kim, S.-C., Carlson, K. 2007. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environmental Sciences and Technoly, 41: 50–57.

- Koroleff, F., 1970. Direct determination of ammonia in natural water as indophenol-blue. In: International Conference in the Exploration of the Sea. C.M 1969/C9. ICES. Information on Techniques and Methods for Sea Water Analysis. Interlaboratory Reports 3, pp. 19–22.
- Köck-Schulmeyer, M., Ginebreda, A., Petrovic, M., Giulivo, M., Aznar-Alemany, O., Eljarrat, E., Valle-Sistac, J. Molins-Delgado, D. Diaz-Cruz, M.S., Monllor-Alcaraz, L.S., Guillem-Argiles, N., Martínez, E., Miren, L.D.A., Llorca, M., Farré, M., Peña, J.M., Mandaric, L., Pérez, S., Majone, B., Bellin, A., Kalogianni, E., Skoulikidis, N.T., Milačič, R., Barceló, D. 2021. Priority and emerging organic microcontaminants in three Mediterranean river basins: Occurrence, spatial distribution, and identification of river basin specific pollutants. Science of the Total Environment, 754.
- Köck-Schulmeyer, M., Postigo, C., Farré, M., Barceló, D., López de Alda, M., 2019. Medium to highly polar pesticides in seawater: analysis and fate in coastal areas of Catalonia (NE Spain). Chemosphere, 215: 515–523.
- Korlevi'c, M., Zucko, J., Dragi'c, M.N., Blažina, M., Pustijanac, E., Zeljko, T. Gacesa, R., Baranasi D., Starcevi, A., Diminic, J., Long, P.F., Cullum, J., Hranueli, D., Orlićah, S. 2015. Bacterial diversity of polluted surface sediments in the northern Adriatic Sea. Systematic and Appllied Microbiology, 38: 189–197.
- Kortenkamp, A. Backhaus, T. Faust, M. 2009. State of the Art Report on Mixture Toxicity. Final report.
- Krauss, M., Singer, H., Hollender, J., 2010. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Analytical and Bioanalytical Chemestry, 397: 943–951.
- Kretschmann, A., Gottardi, M., Dalhoff, K., Cedergreen, N. 2015. The synergistic potential of the azole fungicides prochloraz and propiconazole toward a short α-cypermethrin pulse increases over time in Daphnia magna. Aquatic and Toxicology, 162: 94–101.
- Kreuger, J. 1998. Pesticides in stream water within an agricultural catchment in southern Sweden, 1990– 1996. Science of the Total Environment, 216: 227–251.
- Kruk, C., Martínez, A., De La Escalera, G. M., Trinchin, R., Manta, G., Segura, A. M., Piccini, C., Kumar, P.M., Prabhahar. 2012. Physico chemical parameters of river water a review. International Journal of Pharmacology and Biological Archives, 3.
- Kulichevskaya, I.S., Ivanova A.A., Baulina O.I., Rijpstra, W.I.C., Sinninghe Damsté J.O.S., Dedysh, S.N. 2017. Fimbriiglobus ruber gen. nov., sp. nov., a Gemmata-like planctomycete from Sphagnum peat bog and the proposal of Gemmataceae fam. nov. Interntional Journal of Systematic and Evolution Microbiology; 67:218–224.
- Kulichevskaya1, I.S., Suzina, N.E., Liesack, W., Dedysh, S.N. 2010. Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. International journal of systematic and evolutionary microbiology, 60: 2.

- Kümmerer, K., 2009. Antibiotics in the aquatic environment—a review—part I. Chemosphere, 75: 417–434.
- Kurt-Karakus, P.B., Teixeira, C., Small, J., Muir, D., Bidleman, T.F. 2011. Current-use pesticides in inland lake waters, precipitation, and air from Ontario, Canada. Environtal and Toxicological Chemestry, 30: 1539–1548.
- Kuykendall, L.D. 2015. Bradyrhizobium . In Bergey's Manual of Systematics of Archaea and Bacteria (eds M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman).
- Kuzmanović, M., Ginebreda, A., Petrović, M., Barceló, D. 2015. Risk assessment based prioritization of 200 organic micropollutants in 4 Iberian rivers. Science of the Total Environment, 503–504: 289–299.
- Lanzén, A., Mendibil, I., Borja, Á., & Alonso-Sáez, L. 2020. A microbial mandala for environmental monitoring: Predicting multiple impacts on estuarine prokaryote communities of the Bay of Biscay. Molecular Ecology, 0–2.
- Lapara, T.M., Burch, T.R., McNamara, P.J., Tan, D.T., Yan, M., Eichmiller, J.J. 2011. Tertiary-treated municipal wastewater is a significant point-source of antibiotic resistance genes into duluthsuperior harbor. Environtal Sciences and Technology, 45: 9543-9549.
- Lau, K. E. M., Washington, V. J., Fan, V., Neale, M. W., Lear, G., Curran, J., & Lewis, G. D. 2015. A novel bacterial community index to assess stream ecological health. Freshwater Biology, 60(10): 1988–2002.
- Lee, E-W., Huda, M.N., Kuroda, T., Mizushima, T., Tsuchiya, T. 2003. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrobial Agents and Chemotherapy, 47: 3733–3738.
- Lee, H., Kim, D-U., Lee, S., Park, S., Yoon, J-H., Seong, C.N., et al. 2017. Reyranella terrae sp. nov., isolated from an agricultural soil, and emended description of the genus Reyranella. International Journal of Systematic and Evolutionary Microbiology, 67: 2031-2035.
- Leendert, V., Van Langenhove, H., Demeestere, K. 2015. Trends in liquid chromatography coupled to high-resolution mass spectrometry for multi-residue analysis of organic micropollutants in aquatic environments. TrAC Trends in Analytical Chemistry, 67: 192-208.
- Lehotay, S.J., Sapozhnikova, Y., Mol, H.G.J. 2015. Current issues involving screening and identification of chemical contaminants in foods by mass spectrometry. Trends in Analytical Chemestry, 69: 62–75.
- Lei, B., Liu, Q., Sun, Y., Wang, Y., Yu, Z., Zeng, X., Fu, J., Sheng, G. 2012. Water quality criteria for 4nonylphenol in protection of aquatic life. Science China Earth Sciences, 55: 892-899.

- Lekunberri, I., Balcázar, J.L., Borrego, C.M. 2018. Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges. Environmental Pollution; 234: 538-542.
- Li, F., Chen, L., Chen, W., Bao, Y., Zheng, Y., Huang, B., Mu, Q., Wen, D., Feng, C. 2020. Antibiotics in coastal water and sediments of the East China Sea: distribution, ecological risk assessment and indicators screening. Marine Pollution Bulletin, 151, 110810.
- Li, X-Z., Nikaido, H. 2009. Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623.
- Li, L.G, Huang, Q., Yin, X., Zhang, T. 2020. Source tracking of antibiotic resistance genes in the environment Challenges, progress, and prospects. Water Research, 116-127.
- Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J.M., Zhang, T. 2015. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance gene. ISME Journal, 9(11): 2409-2502.
- Li, B., Zhang, T. 2010. Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science and Technology, 44: 3468–3473.
- Liess, M., Schafer, R.B., Schriever, C.A. 2008. The footprint of pesticide stress in communities—species traits reveal community effects of toxicants. Science of the Total Environment, 406: 484–490.
- Lin, J.N., Lai, C.H., Chen, Y.H., Lin, H.L., Huang, C.K., Chen, W.F., Wang, J.L., Chung, H.C., Liang, S.H., Lin, H.H. 2010. Sphingomonas paucimobilis bacteremia in humans: 16 case reports and a literature review. Journal of Microbiology, Immunology and Infection, 43(1):35-42.
- Liu, Q., Kim, S.-g., Liu, H.-c., Xin, Y.-h., Zhou, Y.-g. 2014. "Arcticibacter pallidicorallinus sp. nov. isolated from glacier ice". International Journal of Systematic and Evolutionary Microbiology. 64(7): 2229–2232.
- Liu, Y., Tong, L., Si, N., Xing, J., Zhang, Q., Ma, Q., Lv, Q. 2021. Non-targeted identification of unknown chemical hazardous substances in infant teether toys by gas chromatography-Orbitrap high resolution mass spectrometry. Ecotoxicology and Environmental Safety, 224: 112676.
- Liu, S., Wang, C., Wang, P., Chen, J., Wang, X., Yuan, Q. 2021. Anthropogenic disturbances on distribution and sources of pharmaceuticals and personal care products throughout the Jinsha River Basin, China. Environmental Research, 198: 110449.
- Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plésiat P. 2004. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrobial Agents and Chemotherapy, 48: 1797–1802.
- Loman, N.J., Constantinidou, C., Christner, M., Rohde, H., Chan, J.Z., Quick, J., Weir, J.C., Quince, C., Smith, G.P., Betley, J.R., Aepfelbacher, M., Pallen, M.J. 2013. A culture-independent sequence-

based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA, 309(14): 1502-10.

- Loman, N.J., Misra, R.V., Dallman, T.J., Constantinidou, C., Gharbia, S.E., Wain, J. 2012. Performancecomparisonofbenchtophigh-throughput sequencing platforms. Natural Biotechnology, 30: 434–439.
- Lozupone, C.A., Knight, R. 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences, 104: 11436-11440.
- Lu, Z., Na, G., Gao, H., Wang, L., Bao, C., Yao, Z. 2015. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities. Science of the Total Environment, 527–528: 429–438.
- Ma, Z., Li, H., Ye, Z., Wen, J., Hu, Y., Liu, Y. 2020. Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of Dalian, China. Marine Pollution Bulletin, 157: 111285.
- Maansi, J.R., Wats, M. 2022. Evaluation of surface water quality using water quality indices (WQIs) in Lake Sukhna, Chandigarh, India. Applied Water Science, 12, 2.
- Mackereth, F.J.H., Heron, J., Talling, J.F. 1978. Water analysis: some revised methods for limnologists. The Freshwater Biological Association, 36: 1–120.
- Madsen, E.L. 2016. Environmental Microbiology: From Genomes to Biogeochemistry. Wiley Blackwell, New Jersey 590 pp.
- Magalhães, C.M., Machado, A., Matos, P., Bordalo, A.A. 2011. Impact of copper on the diversity, abundance and transcription of nitrite and nitrous oxide reductase genes in an urban European estuary. FEMS Microbiology Ecology, 11: 1–11.
- Makarov, A. 2000. «Electrostatic axially harmonic orbital trapping: A high-performance technique of mass analysis». Analytical Chemistry 72 (6): 1156-62.
- Mallin, M.A., Johnson, V.L., Ensign, S.H. 2009. Comparative impacts of stormwater runoff on water quality of an urban, a suburban, and a rural stream. Environment Monitor Assessment, 159: 475–491.
- Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17: 10–12.
- Martin-Carnahan, A., Joseph, S. W. 2015. Aeromonas. Bergey's Manual of Systematics of Archaea and Bacteria, 1–44.
- Martínez Bueno, M.J., Agüera, A., Gómez, M.J., Hernando, M.D., García-Reyes, J.F., Fernández-Alba, A.R. 2007. Application of Liquid Chromatography/Quadrupole-Linear Ion Trap Mass

Spectrometry and Time-of-Flight Mass Spectrometry to the Determination of Pharmaceuticals and Related Contaminants in Wastewater. Analytical Chemistry, 79: 9372-9384.

- Meher, A.K., Chen, Y.C. 2017. Electrospray Modifications for Advancing Mass Spectrometric Analysis. Mass spectrometry, 6: S0057.
- Meinicke, P. 2015. UProC: Tools for Ultra-Fast Protein Domain Classification. Bioinformatics, 31(9): 1382–13888.
- Mendoza, A., Aceña, J., Pérez, S., López de Alda, M., Barceló, D., Gil, A., Valcárcel, Y. 2015. Pharmaceuticals and iodinated contrast media in a hospital wastewater: a case study to analyse their presence and characterise their environmental risk and hazard. Environmental Research, 140: 225–241.
- Meroueh, S.O., Minasov, G., Lee, W., Shoichet, B.K., Mobashery, S. 2003. Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. Journal of American Chemesty Society, 125: 9612–9618.
- Meyer-Reil, L-A., Köster, M. 2000. Eutrophication of Marine Waters: Effects on Benthic Microbial Communities. Marine Pollution Bulletin, 41: 255-263.
- McGeoch, M.A., Chown, S.L. 1998. Scaling up the value of bioindicators. Trends in Ecology and Evolution, 13: 46-7.
- McGeoch, M.A., Van Rensburg, B.J., Botes, A. 2002. The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. Journal of Applied Ecology, 39: 661–672.
- McLellan, S.L., Huse, S.M., Mueller-Spitz, S.R., Andreishcheva, E.N., and Sogin, M.L. 2010. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environtal Microbiology, 12: 378–392.
- MGAP, 2016. Ministerio de Ganadería Agricultura y Pesca. Resolución N° 104 DGSA de 05/ 12/2016. Prohíbase la importación, registro y renovación de los productos fitosanitarios a base de Atrazina. http://www.mgap.gub.uy/
- Mhuka, V., Dube, S., Nindi, M.M. 2020. Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving waters in South Africa using LC-Orbitrap[™] MS. Emerging Contaminants, 6: 250-258.
- Minguez, L., Pédelucq, J., Farcy, E., Ballandonne, C., Budzinski, H., Halm, M.-P. 2014. Toxicities of 48 Pharmaceuticals and their Freshwater and Marine Environmental Assessment in Northwestern France, Environmental Science and Pollution Research, 23(6):4992-5001.
- Ministerio de Ganadería, Agricultura y Pesca. 2022. Listado de productos fitosanitarios registrados al 28/07/2022. Work With Productos (mgap.gub.uy)

- Mitra, M., Nguyen, K.M., Box, T.W., Gilpin, J.S., Hamby, S.R., Berry, T.L., Duckett, E.H. 2020. Isolation and characterization of a novel Sphingobium yanoikuyae strain variant that uses biohazardous saturated hydrocarbons and aromatic compounds as sole carbon sources, 9:767.
- Moi, D.A., Lansac-Tôha, F.M., Romero, G.Q. Sobral-Souza, T., Cardinale, B.J., Kratina, P., Perkins, D.M. Teixeira de Mello, F., Jeppesen, E., Heino, J., Lansac-Tôha, F.A., Velho, L.F.M., Mormul, R.P. 2022. Human pressure drives biodiversity–multifunctionality relationships in large Neotropical wetlands. Nature Ecology & Evolution, 6: 1279–1289.
- Mol, H.G.J., Zomer, P., De Koning, M. 2012. Qualitative aspects and validation of a screening method for pesticides in vegetables and fruits based on liquid chromatography coupled to full scan high resolution (Orbitrap) mass spectrometry. Analytical and Bioanalytical Chemistry, 403: 2891-2908.
- Moreno-González, D., Alcántara-Durán, J., Gilbert-López, B., García-Reyes, J.F., Molina-Díaz, A. 2017a. Matrix-effect free quantitative liquid chromatography mass spectrometry analysis in complex matrices using nanoflow liquid chromatography with integrated emitter tip and high dilution factors. Journal of Chromatography A, 1519: 110-120.
- Moreno-González, D., Pérez-Ortega, P., Gilbert-López, B., Molina-Díaz, A., García-Reyes, J.F., Fernández-Alba, A.R. 2017b. Evaluation of nanoflow liquid chromatography high resolution mass spectrometry for pesticide residue analysis in food. Journal of Chromatography A, 1512: 78-87.
- Morris, R.M., Vergin, K.L., Cho, J.C., Rapp'e, M.S., Carlson, C.A., Giovannoni, S.J. 2005. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnology and Oceanography, 50:1687–1696.
- Moschet, C., Piazzoli, A., Singer, H., Hollender, J. 2013. Alleviating the reference standard dilemmausing a systematic exact mass suspect screening approach with liquid chromatography-high resolution mass spectrometry. Analytical Chemestry, 85 (21): 10312–10320.
- Mukerji, R., Kakarala, R., Smith, S.J., Kusz, H.G. 2016. Chryseobacterium indologenes: an emerging infection in the USA. BMJ Case Reports, bcr2016214486.
- Müller, H., Sib, E., Gajdiss, M., Klanke, U., Lenz-Plet, F., Barabasch, V., Albert, C., Schallenberg, A., Timm, C., Zacharias, N., Schmithausen, R.M., Engelhart, S., Exner, M., Parcina, M., Schreiber, C., Bierbaum, G. 2018. Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters. FEMS Microbiologly Ecology, 1: 94(5).
- Münze, R., Hannemann, C., Orlinskiy, P., Gunold, R., Paschke, A., Foit, K., Becker, J., Kaske, O., Paulsson, E., Peterson, M., Jernstedt, H., Kreuger, J., Schüürmann, G. Liess, M. 2017. Pesticides fromwastewater treatment plant effluents affect invertebrate communities. Science of the Total Environment. 599-600: 387–399.
- Murphy, J., Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytical Chimica Acta, 27: 31–36
- Nemec. 2022. Acinetobacter Update based on the original article by Juni, E. in Bergey's Manual of Systematics of Archaea and Bacteria, published by John Wiley & Sons, Inc., in association with Bergey's Manual Trust. ©2015, Bergey's Manual Trust.
- Newton, R.J., Huse, S.M., Morrison, H.G., Peake, C.S., Sogin, M.L., McLellan, S.L. 2013. Shifts in the microbial community composition of Gulf Coast beaches following beach oiling. PLOS ONE, 8: e74265.
- Ng, C., Tay, M., Tan, B., Le, T-H., Haller, L., Chen, H., et al. 2017. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters. Frontiers in Microbiology, 8.
- Nika, M.C., Ntaiou, K., Elytis, K., Thomaidi, V.S., Gatidou, G., Kalantzi, O.I. Thomaidisa, N.S., Stasinakisb, A.S. 2020. Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using Risk Quotient methodology. Journal of Hazardous Materials, 394: 122-493.
- Nogales, B., Aguil ´ o-Ferretjans, M.M., Mart´ın-Cardona, C., Lalucat, J., Bosch, R. 2007. Bacterial diversity, composition and dynamics in and around recreational coastal areas. Environmental Microbiology, 9: 1913–1929.
- Oberlé, K., Capdeville, M.-J., Berthe, T., Budzinski, H., Petit, F. 2012. Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment. Environtal Sciences and Technology, 46: 1859–1868.
- OECD (Organización para la Cooperación y el Desarrollo Económico) (1982). Eutrophication of Waters. Monitoring, Assessment and Control. Cooperative Programmers on Monitoring of Inland Waters (Eutrophication Control), Environment Directorate, OECD Paris, Final Report. France. 1982.
- Oliverio, A.M., Bissett, A., McGuire, K., Saltonstall, K., Turner, B.L., Fierer, N. 2020. The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities. mBio, 11:e01718-20.
- Pagnier, I., Raoult, D., La Scola, B. 2011. Isolation and characterization of Reyranella massiliensis gen. nov., sp. nov. from freshwater samples by using an amoeba co-culture procedure. International Journal of Systematic and Evolutionary Microbiology, 61: 2151-2154.
- Pallares-Vega, R., Blaak, H., van der Plaats, R., de Roda Husman, A. M., Hernandez Leal, L., van Loosdrecht, M. C. M., Weissbrodt, D. G., Schmitt, H. 2019. Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: a cross-sectional study.Water Research, 161: 319–328.
- Palma, P., Kock-Schulmeyer, M., Alvarega, P., Ledo, L., Barbosa, I.R., LopezdeAlda, M., Barcelo, D. 2014. Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Science of the Total Environment, 488–489: 208–219.

- Papadakis, E.N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., Makris, K.C., Papadopoulou-Mourkidou, E. 2015. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicology and Environmental Safety. 116: 1–9.
- Parada, A.E., Needham, D.M., Fuhrman, J.A. 2016. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental microbiology, (18): 1403-1414.
- Park, N., Choi, Y., Kim, D., Kim, K., Jeon, J. 2018. Prioritization of highly exposable pharmaceuticals via a suspect/non-target screening approach: a case study for Yeongsan River, Korea.. Science of the Total Environment, 639: 570–579.
- Park, B. H., Levy, S. B. 1988. The cryptic tetracycline resistance determinant on Tn4400 mediates tetracycline degradation as well as tetracycline efflux. Antimicrobial Agents and Chemotherapy, 32: 1797–1800.
- Parker, C.T., Wigley, S., Garrity, G.M. 2003. Taxonomic Abstract for the genera. The Names for Life Abstracts.
- Pascual Aguilar, J.A., Andreu, V., Campo, J., Picó, Y., Masiá, A. 2017. Pesticide occurrence in the waters of Júcar River, Spain from different farming landscapes. Science of The Total Environment, 607-608: 752-760.
- Partridge, S.R., Kwong, S.M., Firth, N., Jensen, S.O. 2018. Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Review. 31.
- Paulsen, I.T., Sliwinski, M.K., Saier, M.H. 1998. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. Journal of Molecular Biology, 277: 573–592.
- Payraudeau, S., Gregoire, C. 2012. Modelling pesticides transfer to surface water at the catchment scale: a multi-criteria analysis. Agronomy for Sustainable Development, 32: 479–500.
- Pei, R., Kim, S., Carlson, K.H., Pruden, A. 2006. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research, 40: 2427-2435.
- Peng, F-J, Pan, C.G, Zhang M, Zhang N.S, Windfeld R, Salvito D, Selck, H., Van den Brink, P. J. Ying, G-G. 2017. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China. Science of The Total Environment, 589: 46-55.
- Pereira, E. 2020. Improvements in natural product biosynthetic gene clusters research and functional traitbased approaches in metagenomics. PhD Thesis, Jacobs University Bremen. URL: <u>http://nbn-resolving.org/urn:nbn:de:gbv:579-opus-1008965</u>.
- Pérez-Parada, A. 2012. Estudios de determinación de compuestos orgánicos a niveles traza en matrices complejas. Tesis Doctorado, Universidad de la República, Uruguay. 293 pp

- Pérez. S., Barceló, D. 2007. Application of advanced MS techniques to analysis and identification of human and microbial metabolites of pharmaceuticals in the aquatic environment. Trends in Analytical Chemistry, 26: 494-514.
- Perkons, I., Rusko, J., Zacs, D., Bartkevics, V. 2021. Rapid determination of pharmaceuticals in wastewater by direct infusion HRMS using target and suspect screening analysis. Science of The Total Environment, 755: 142688.
- Perrodin, Y., Boillot, C., Angerville, R., Donguy, G., Emmanuel, E. 2011. Ecological risk assessment of urban and industrial systems: A review. Science of The Total Environment; 409: 5162-5176.
- Perry, J.A., Wright, G.D., 2013. The antibiotic resistance "mobilome": searching for the link between environment and clinic. Frontiers in Microbiology. 4: 138.
- Petrie, B., Youdan, J., Barden, R., Kasprzyk-Hordern, B. 2016. Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1431: 64-78.
- Petrovic, M., Gros, M., Barcelo, D. 2006. Multi-residue analysis of pharmaceuticals in wastewater by ultra-performance liquid chromatography–quadrupole–time-of-flight mass spectrometry. Journal of Chromatography A, 1124: 68-81.
- Phipps, R. J., Smith, J. J., Darwin, W. D., & Cone, E. J. 2008. Chapter 2 Current methods for the separation and analysis of cocaine analytes. In Forensic Science (pp. 73-125). (Handbook of Analytical Separations; Vol. 6). Elsevier.
- Piccini, C., Conde, D., Alonso, C., Sommaruga, R., Pernthaler, J. 2006. Blooms of Single Bacterial Species in a Coastal Lagoon of the Southwestern Atlantic Ocean. Applied and Environmental Microbiology, 72: 6560-6568.
- Piccini, C., Conde, D., Pernthaler, J., Sommaruga, R. 2013. Photoalteration of macrophyte-derived chromophoric dissolved organic matter induces growth of single bacterial populations in a coastal lagoon. Journal of Limnology, 72(3): 582-591.
- Picó, Y., Campo, J., Alfarhan, A.H., El-Sheikh, M.A., Barceló, D. 2021. A reconnaissance study of pharmaceuticals, pesticides, perfluoroalkyl substances and organophosphorus flame retardants in the aquatic environment, wild plants and vegetables of two Saudi Arabia urban areas: Environmental and human health risk assessment. Science of The Total Environment, 776: 145843.
- Piddock, L.J.V. 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clinical Microbiology Reviews, 19: 382–402.
- Piedra-Carrasco, N., Fàbrega, A., Calero-Cáceres, W., Cornejo-Sánchez, T., Brown-Jaque, M., Mir-Cros, A., Muniesa, M., González-López, J.J. 2017. Carbapenemase-producing enterobacteriaceae recovered from a Spanish river ecosystem. PLoS One, 12(4): e0175246.

- Pokrovsky, O.S., Shirokova, L.S., Kirpotin, S.N. 2014. Biogeochemistry of Thermokarst Lakes of Western Siberia Nova Science Publishers, Inc, New York.
- Postigo, C., Ginebreda, A., Barbieri, M.V., Barceló, D., Martín-Alonso, J., de la Cal A, Boleda, M. R. Otero, N., Carrey, R., Solà, V., Queralt, E., Isla, E., Casanovas, A., Frances, G., López de Alda, M. 2021. Investigative monitoring of pesticide and nitrogen pollution sources in a complex multistressed catchment: The lower Llobregat River basin case study (Barcelona, Spain). Science of the Total Environment, 755.
- Prasad, S, Manasa, B.P., Buddhi, S., Pratibha, M.S., Begum, Z., Bandi, S., Tirunagari, P., Shivaji, S. 2013. "Arcticibacter svalbardensis gen. nov., sp. nov., of the family Sphingobacteriaceae in the phylum Bacteroidetes, isolated from Arctic soil". International Journal of Systematic and Evolutionary Microbiology, 63 (5): 1627–32.
- Proia, L., Adriana, A., Jessica, S., Carles, B., Marinella, F., Marta, L., Luis, B.J., Servais, P. 2018. Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. Chemosphere, 206: 70–82.
- Prosser, J.I., Head, I.M., Stein, L.Y. 2014. The Family Nitrosomonadaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg.
- Pruden, A., Larsson, D.G.J., Amézquita, A., Collignon, P., Brandt, K.K., Graham, D.W., Lazorchak, J.M., Suzuki, S., Silley, P., Snape, J.R., Topp, E., Zhang, T., Zhu, Y.-G. 2013. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health and Perspectives, 121: 878–885.
- Pruden, A., Pei, R., Storteboom, H., Carlson, K.H. 2006. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environmental. Sciences and Technolog. 40: 7445– 7450.
- Qian, X., Chen, L., Guo, X., He, D., Shi, M., & Zhang, D. 2018. Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting Mussaenda shikokiana along an elevation gradient. PeerJ, 10: 1–23.
- Qin, L.-T., Chen, Y.-H., Zhang, X., Mo, L.-Y., Zeng, H.-H., Liang, Y.-P. 2018. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide. Chemosphere, 198: 122– 129.
- Qiu, W., Sun, J., Fang, M., Luo, S., Tian, Y., Dong, P., et al. 2019. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community. Science of the Total Environment, 653: 334-341.
- Qu, J.H., Yuan, H.L. 2008. Sediminibacterium salmoneum gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment of a eutrophic reservoir. International Jorunal of Systematic and Evolutionary Microbiology, 58: 2191-2194.

- Quero, G.M., Cassin, D., Botter, M, Perini L, Luna GM. 2015. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Frontiers in Microbiology, 6.
- Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., Segata, N. 2017. Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35: 833-844.
- Raina, J.B., Tapiolas, D., Willis, B.L., Bourne, D.G. 2009. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Applied and Environmental Microbiology 75: 3492–3501.
- Ramamurthy, T., Ghosh, A., Pazhani, G. P., and Shinoda, S. 2014. Current perspectives on viable but nonculturable (VBNC) pathogenic bacteria. Frontiers in Public Health 2: 103.
- Ramette, A. 2007. Multivariate analyses in microbial ecology, FEMS Microbiology Ecology; 62: 142–160,
- Rasheed, J.K., Jay, C., Metchock, B., Berkowitz, F., Weigel, L., Crellin, J., et al. 1997. Evolution of extended-spectrum b-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother, 41:647–653.
- Regalado, N.G., Martin, G., Antony, S.J. 2009. Acinetobacter lwoffii: bacteremia associated with acute gastroenteritis. Travel Medicine and Infectious Disease, 7(5): 316-7.
- Richardson, S.D., Ternes, T.A. 2018. Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 90: 398-428.
- Rime, T., Hartmann, M., Brunner, I., Widmer, F., Zeyer, J., Frey, B. 2015. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Molecular Ecology, 24: 1091-1108.
- Rygg, B. 2002. Indicator species index for assessing benthic ecological quality in marine waters of Norway.
- Rygg, B. 2006. Developing indices for quality status classification of marine soft-bottom fauna in Norway.
- Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M.C., Michael, I., Fatta-kassinos, D. 2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447: 345–360.
- Riva, F., Zuccato. E., Davoli., E., Fattore., E., Castiglioni., S. 2019. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. Journal of Hazardous Materials, 361: 103-110.
- Rivera-Jaimes, J.A., Postigo, C., Melgoza-Alemán, R.M., Aceña, J., Barceló, D., López de Alda, M. 2018. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: occurrence and environmental risk assessment. Science of the Total Environment, 613(614): 1263–1274.

- Robles-Molina, J., Gilbert-López, B., García-Reyes, J.F., Molina-Díaz, A. 2014a. Monitoring of selected priority and emerging contaminants in the Guadalquivir River and other related surface waters in the province of Jaén, South East Spain. Science of the Total Environment, 479-480: 247-25.
- Robles-Molina, J., Lara-Ortega, F.J., Gilbert-López, B., García-Reyes, J.F., Molina-Díaz, A. 2014b. Multi-residue method for the determination of over 400 priority and emerging pollutants in water and wastewater by solid-phase extraction and liquid chromatography-time-of-flight mass spectrometry. Journal of Chromatography A, 1350: 30-43.
- Rodríguez-Gallego, L., Achkar, M., Defeo, O., Vidal, L., Meerhoff, E., Conde, D. 2017. Effects of land use changes on eutrophication indicators in five coastal lagoons of the Southwestern Atlantic Ocean. Estuarine, Coastal and Shelf Science, 188: 116–126.
- Rodríguez-Gallego, L., Meerhoff, E., Clemente, J.M., Conde, D. 2010. Can ephemeral proliferations of submerged macrophytes influence zoobenthos and water quality in coastal lagoons?. Hydrobiologia, 646: 253–269.
- Roguet, A., Eren, A.M., Newton, R.J., McLellan, S.L. 2018. Fecal source identification using random forest. Microbiome, 6: 185.
- Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sánchez- Melsió, A., Borrego, C.M., Barceló, D., Balcázar, J.L. 2015. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69: 234,242.
- Roos, V., Gunnarsson, L., Fick, J., Larsson, D.G.J., Rudén, C. 2012. Prioritising pharmaceuticals for environmental risk assessment: towards adequate and feasible first-tier selection. Science of the Total Environment, 421–422: 102–110.
- Rösch, A., Gottardi, M., Vignet, C., Cedergreen, N., Hollender, J. 2017. Mechanistic Understanding of the Synergistic Potential of Azole Fungicides in the Aquatic Invertebrate Gammarus pulex. Environmental Science & Technology, 51: 12784-12795.
- Ruiz-González, C., Niño-García, J.P., Del Giorgio, P.A. 2015. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecological Letters, 18(11):1198-1206.
- Rysz, M., Alvarez, P.J.J., 2004. Amplification and attenuation of tetracycline resistance in soil bacteria : aquifer column experiments. Water Research, 38: 3705-3712.
- Sabatino, R., Di Cesare, A., Dzhembekova, N., Fontaneto, D., Eckert, E.M., Corno, G., Monchevab, S., Bertonia, R., Callieria, C. 2020. Spatial distribution of antibiotic and heavy metal resistance genes in the Black Sea. Marine Pollution Bulletin, 160: 111635.
- Salazar, V.W., Tschoeke, D.A., Swings, J., Cosenza, C.A., Mattoso, M., Thompson, C.C. and Thompson, F.L. 2020. A new genomic taxonomy system for the Synechococcus collective. Environ Microbiol, 22: 4557-4570.

- Sanderson, H., Johnson, D.J., Reitsma, T., Brain, R.A., Wilson, C.J., Solomon, K.R. 2004. Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regulatory Toxicology and Pharmacology, 39: 158–183.
- SANTE/11312/2021. European Commission, DG-SANTE: Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed.
- Santos, L.H.M.L.M., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., Barceló, D., Montenegro, M.C.B.S.M. 2013. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Science of the Total Environment, 461(462); 302–316.
- Sardiña, P., Leahy, P., Metzeling, L., Stevenson, G., Hinwood, A. 2019. Emerging and legacy contaminants across land-use gradients and the risk to aquatic ecosystems. Science of The Total Environment, 695: 133842.
- Sarmah, A.K., Meyer, M.T., Boxall, A.B.A. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725–759.
- Sarmento. H., Montoya. J,M., Vázquez-Domínguez. E., Vaqué D, Gasol, J.M. 2010. Warming effects on marine microbial food web processes: How far can we go when it comes to predictions? Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 2137-2149.
- Sauvé, S., Desrosiers, M. 2014. A review of what is an emerging contaminant. Chemestry Central Journal, 8: 15.
- Sichel, C., Garcia, C., Andre, K. 2011. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Water Research, 45: 6371e6380.
- Schiaffino, M.R., Unrein, F., Gasol, J.M., Massana, R., Balagué, V., Izaguirre, I. 2011. Bacterial community structure in a latitudinal gradient of lakes: the roles of spatial versus environmental factors. Freshwater Biology, 56: 1973–1991.
- Schymanski, E. L., Singer, H. P., Slobodnik, J., Ipolyi, I. M., Oswald, P., Krauss, M., Schulze, T., Haglund, P., Letzel, T., Grosse, S., Thomaidis, N. S., Bletsou, A., Zwiener, C., Ibañ ez, M., Portoles, T., De Boer, R., Reid, M. J., Onghena, M., Kunkel, U., Schulz, W., Guillon, A., Noyon, N., Leroy, G., Bados, P., Bogialli, S., Stipanieev, D., Rostkowski, P., Hollender, J. 2015. Nontarget screening with highresolution mass spectrometry: Critical review using a collaborative trial on water analysis. Anal. Bioanal. Chem, 407 (21): 6237–6255.
- Secor, G.A., Rivera, V.V., Abad, I.M., Lee, G.R.G., Clover, L.W., Liefting, X., Li, De Boer S.H. 2009. Association of ' Candidatus Liberibacter solanacearum' with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease, 93: 574-583.

- Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12(6).
- Seiler, C., Berendonk, T.U. 2012. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol, 3: 399.
- Sekizuka, T., Itokawa, K., Tanaka, R., Hashino, M., Yatsu, K., Kuroda, M. 2020. Characterization of urban wastewater treatment plant effluent from Tokyo using metagenomics and β-lactam-resistant Enterobacteriaceae isolates.
- Serra-Compte, A., Pikkemaat, M. G., Elferink, A., Almeida, D., Diogène, J., Campillo, J. A., Llorca, M., Álvarez-Muñoz, D., Barceló, D., & Rodríguez-Mozaz, S. 2021. Combining an effect-based methodology with chemical analysis for antibiotics determination in wastewater and receiving freshwater and marine environment. Environmental Pollution, 271: 116313.
- Serra-Roig MP, Jurado A, Díaz-Cruz MS, Vázquez-Suñé E, Pujades E, Barceló D. 2016. Occurrence, fate and risk assessment of personal care products in river–groundwater interface. Science of the Total Environment; 568: 829-837.
- Shao, S., Hu, Y., Cheng, J., Chen, Y., 2018. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Critical Reviews in Biotechnologies, 38: 1195–1208.
- Shiadeh, S.M.J., Hashemi, A., Fallah, F., Lak P, Azimi L, Rashidan M. 2019. First detection of efrAB, an ABC multidrug efflux pump in Enterococcus faecalis in Tehran, Iran. Acta Microbiolica et Immunologica Hungarica, 66: 57–68.
- Shosuke, Y., Kazumi, H., Toshihiko, T., Ikuo, T., Hironao, Y., Yasuhito. M. 2016. "Una bacteria que degrada y asimila el PET", Science, 351(11): 1196-1199.
- Shuman, H.A. 1987. The genetics of active transport in bacteria. Annual Review of Genetics, 21:155–177.
- Sim, W.J., Lee, J.W., Lee, E.S., Shin, S.K., Hwang, S.R., Oh, J.E. 2011. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82:179–86.
- Silbergeld, E.K., Graham, J., Price, L.B. 2008. Industrial food animal production, antimicrobial resistance, and human health. Annual Reviews in Public Health, 29; 151–169.
- Singer, H.P., Wössner, A.E., McArdell, C.S., Fenner, K. 2016. Rapid screening for exposure to "nontarget" pharmaceuticals from wastewater effluents by combining HRMSbased suspect screening and exposure modeling. Environmental Sciences and Technology, 50: 6698–6707.
- Silva, C.P., Otero, M., Esteves, V. Processes for the elimination of estrogenic steroid hormones from water: a review, Environal Pollution, 165(2012): 38–58.

- Sly, L.I., Arunpairojana, V., Hodgkinson, M.C. 1988. 'Pedomicrobium manganicum from drinking-water distribution systems with manganese-related "dirty water" problems'; Systematic and Applied Microbiology, 11: 75–84.
- Smith, M.B., Rocha, A.M., Smillie, C.S., Olesen, S.W., Paradis, C., Wu, L., Campbell, K.H., Fortney, J.L., Mehlhorn, T.L., Lowe, K.A., Earles, J.E., Phillips, J., Techtmann, S.M., Joyner, D.C., Elias, D.A., Bailey, K.L., Hurt, R.A., Preheim, S.P., Sanders, M.C., Yang, J., Mueller, M.A., Brooks, S., Watson, D.B., Zhang, P., He, Z., Dubinsky, E.A., Adams, P.D., Arkin, A.P., Fields, M.W., Zhou, J., Alm, E.J., Hazen, T.C. 2015. Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors. MBio, 6(3):1–13.
- Soares, K.L., Sunyer-Caldú, A., Barbosa, S.C., Primel, E.G., Fillmann, G., Diaz Cruz, M.S. 2021. Rapid and cost-effective multiresidue analysis of pharmaceuticals, personal care products, and antifouling booster biocides in marine sediments using matrix solid phase dispersion. Chemosphere, 267: 129085.
- Sodré, F.F., Sampaio, T.R. 2020. Development and application of a SPE-LC-QTOF method for the quantification of micropollutants of emerging concern in drinking waters from the Brazilian capital. Emerging Contaminants, 6: 72-81.
- Soler, L., Marco, F., Vila, J., Chacón, M., Guarro, J., Figueras, M. 2003. Evaluation of Two Miniaturized Systems, MicroScan W/A and BBL Crystal E/NF, for Identification of Clinical Isolates of Aeromonas spp. Journal of Clinical Microbiology, 41(12): 5732–5734.
- Solliec, M., Roy-Lachapelle, A., Sauvé, S. 2015. Development of a suspect and non-target screening approach to detect veterinary antibiotic residues in a complex biological matrix using liquid chromatography/high-resolution mass spectrometry, 29.
- Song, Y., Jia, J., Liu, D., Choi, L., Wang, G., Li, M. 2017. Sediminibacterium roseum sp. nov., isolated from sewage sediment. International Journal of Systematic and Evolutionary Microbiology, 67: 4674-4679.
- Sousa, J.C.G., Ribeiro, A.R., Barbosa, M.O., Pereira, M.F.R., Silva, A.M.T. 2018. A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardouds Materials, 344: 146–162.
- Spietz, R.L., Williams, C.M., Rocap, G., Horner-Devine, M.C. 2015. A dissolved oxygen threshold for shifts in bacterial community structure in a seasonally hypoxic estuary. PLOS ONE 10: e0135731.
- Spring, S., Wagner, M., Schumann, P., Kämpfer, P. 2005. Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov. International Journal of Systematic and Evolutionary Microbiology. 55(2): 621-629.
- Spyropoulou, A., Papadimitriou-Olivgeris, M., Bartzavali, C., Vamvakopoulou, S., Marangos, M., Spiliopoulou I, et al. 2016. A ten-year surveillance study of carbapenemase-producing Klebsiella

pneumoniae in a tertiary care Greek university hospital: predominance of KPC- over VIM- or NDM-producing isolates. Journal of Medical Microbiology, 65: 240-246.

- Stalder, T., Barraud, O., Casellas, M., Dagot, C., Ploy, M.-C. 2012. Integron involvement in environmental spread of antibiotic resistance. Frontiers in Microbiology, 3: 119.
- Stanton, I.C., Murray, A.K., Zhang, L., Snape, J., Gaze, W.H. 2020. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Communications Biology, 3: 467.
- Stasinakis, A.S. 2020. Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using Risk Quotient methodology. Journal of Hazardous Materials, 394.
- Streets, S., Dobbins, L. 2017. Minnesota's Aquatic Toxicity Profiles. Methods and application, 32 pp.
- Strynadka, N.C.J., Jensen, S.E., Johns, K., Blanchard, H., Page, M., Matagne, A., Frere, J.M., James, M.N.G. 1994. Structural and kinetic characterization of a β-lactamase-inhibitor protein. Nature, 368:657–660.
- Stürenburg, E., Mack, D. 2003. Extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory, therapy, and infection control. Journal of Infection, 47: 273–295.
- Su, Z., Li, A., Chen, J., Huang, B., Mu, Q., Chen, L., Wen, D. 2020. Wastewater discharge drives ARGs spread in the coastal area: a case study in Hangzhou Bay, China. Marine Pollution Bulletin, 151: 110856.
- Su, J.Q., Wei, B., Ouyang, W.Y., Huang, F.Y., Zhao, Y., Xu, H.J., Zhu, Y.G. 2015. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environtal Sciences and Technology, 49(12): 7356–7363.
- Subirats, J., Di Cesare, A., Varela della Giustina, S., Fiorentino, A., Eckert, E.M., Rodriguez-Mozaz, S, Borrego, C,M., Corno, G. 2019. High-quality treated wastewater causes remarkable changes in natural microbial communities and intI1 gene abundance. Water Research, 167: 114895.
- Subirats J, Timoner X, Sànchez-Melsió A, Balcázar JL, Acuña V, Sabater S, Borrego, C.M. 2018. Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intI1) and sul1 genes within stable streambed bacterial communities. Water Research; 138: 77-85.
- Subirats, J., Triadó-Margarit, X., Mandaric, L., Acuña, V., Balcazar, J.L., Sabater, S., Borrego, C.M. 2017. Wastewater pollution differently affects the antibiotic resistance gene pool and biofilm bacterial communities across streambed compartments. Molecular Ecology, 26: 5567–5581.
- Sun, M., Dafforn, K., Johnston, E., Brown, M. 2013. Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environmental microbiology, 15.

- Sutton, R., Xie, Y., Moran, K.D., Teerlink, J. 2019. Occurrence and Sources of Pesticides to Urban Wastewater and the Environment. Pesticides in Surface Water: Monitoring, Modeling, Risk Assessment, and Management. 1308. American Chemical Society, pp. 63–88.
- Tan, E. L.Y., Mayer-Pinto, M., Johnston, E. L., & Dafforn, K. A. 2015b. Differences in intertidal microbial assemblages on urban structures and natural rocky reef. Frontiers in Microbiology, 6(NOV).
- Tan, B. F., Ng, C., Nshimyimana, J. P., Loh, L. L., Gin, K. Y. H., Thompson, J. R. 2015a. Next-generation sequencing (NGS) for assessment of microbial water quality: Current progress, challenges, and future opportunities. Frontiers in Microbiology.
- Tang, X.J., Lou, C.L., Wang, S.X., Lu, Y.H., Liu, M., Hashmi, M.Z., Liang, X.Q., Li, Z.P., Liao, Y.L., Qin, W.J., Fan, F., Xu, J.M., Brookes, P.C. 2015. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: evidence from four field experiments in south of China. Soil Biology and Biochemestri, 90: 179–187.
- Tang, X., Zhu, B., Katou, H. 2012. A review of rapid transport of pesticides from sloping farmland to surface waters: processes and mitigation strategies. Journal of Environmental Sciences, 24: 351– 361.
- Tanjung, R.H.R, Yonas MN, Suwito S, Maury HK, Sarungu Y, Hamuna B. 2022. Analysis of Surface Water Quality of Four Rivers in Jayapura Regency, Indonesia: CCME-WQI Approach. Journal of Ecological Engineering, 23(1):73-82.
- Tavakoly Sany, S.B., Hashim, R., Rezayi, M., Salleh, A., Safari, O. 2014. A review of strategies to monitor water and sediment quality for a sustainability assessment of marine environment. Environmental Science and Pollution Research International, 21: 813–833.
- Techtmann, S.M., Fortney, J.L., Ayers, K.A., Joyner, D.C., Linley, T.D., Pfiffner, S.M., Hazen, T.C. 2015. The unique chemistry of eastern Mediterranean water masses selects for distinct microbial communities by depth. PLOS ONE, 10: e0120605.
- Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R.D., Buelna, G. 2017. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224: 1–12.
- Treseder, K.K., Balser, T.C., Bradford, M.A. et al. 2012. Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry, 109: 7–18.
- Tsaboula, A., Papadakis, E-N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., Papadopoulou-Mourkidou, E. 2016. Environmental and human risk hierarchy of pesticides: A prioritization method, based on monitoring, hazard assessment and environmental fate. Environment International, 91: 78-93.
- Tsaboula, A., Papadakis, E-N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., Papadopoulou-Mourkidou, E. 2019b. Assessment and management of pesticide pollution at a river basin level part I: Aquatic ecotoxicological quality indices. Science of The Total Environment, 25: 653-1597-1611.

- Underwood AJ. 1992. Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. Journal of Experimental Marine Biology and Ecology; 161: 145-178.
- Underwood, A.J. 2000. Importance of experimental design in detecting and measuring stresses in marine populations. Journal of Aquatic Ecosystem Stress and Recovery, 7: 3-24.
- University of Hertfordshire, (PPDB), 2013. The Pesticide Properties DataBase (PPDB) developed by the Agriculture & Environment Research Unit (AERU), 2006–2013. http://sitem.herts.ac.uk/aeru/iupac/index.htm.
- Urakawa, H., Bernhard, A.E. 2017. Wetland management using microbial indicators. Ecological Engineering, 108: 456-476.
- USEPA. 2020. Estimation Programs Interface SuiteTM for Microsoft®Windows, v 4.11. United States Environmental Protection Agency
- US EPA. 1998. Guidelines for Ecological Risk Assessment. Washington: United States Environmental Protection Agency, p. 188.
- Valderrama, J.C. 1981. The simultaneous analysis of total N and P in natural waters. Marine Chemistry, 10: 109–122.
- van der Werf, H.M.G. 1996. Assessing the impact of pesticides on environment. Agriculture Ecosystem and Environment, 60: 81–96.
- Van Dijk, E. L., Auger, H., Jaszczyszyn, Y., and Thermes, C. 2014. Ten years of next-generation sequencing technology. Trends in Genetic, 30: 418–426.
- Van Horn, D.J., Barrett, J.E., Gooseff, M.N., Altrichter, A.E. 2013. Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale. PLoS ONE; 8: e66103.
- Van Leeuwen, K. 2003. In: Commission E (Ed.), Technical Guidance Document on Risk Assessment. Part II. Office for Official Publications of The European Communities, Luxembourg.
- Van Vooren, S., De Waele, J.J., Boelens, J., Polet, M., Stove, V., Vanhaecke, L, Verstraete, A.G. 2021. Development and validation of a liquid chromatography high-resolution mass spectrometry orbitrap method for the sensitive quantification of amoxicillin, piperacillin, tazobactam and meropenem in human faeces. Analytical Chimical Acta, 1177: 338760
- Vandewalle, J. L., Goetz, G. W., Huse, S. M., Morrison, H. G., Sogin, M. L., Hoffmann, R. G., Yan, K., McLellan, S.L. 2012. Acinetobacter, Aeromonas and Trichococcus populations dominate the microbial community within urban sewer infrastructure. Environmental Microbiology, 14: 2538– 2552.

- Vanryckeghem, F., Huysman, S., Van Langenhove, H., Vanhaecke, L., Demeestere, K. 2019. Multiresidue quantification and screening of emerging organic micropollutants in the Belgian Part of the North Sea by use of Speedisk extraction and Q-Orbitrap HRMS. Marine Pollution Bulletin, 142: 350-360.
- Vergeynst, L., Van Langenhove, H., Joos, P., Demeestere, K. 2014. Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry. Analytical and Bioanalytical Chemestry, 406 (11): 2533–2547.
- Verro, R., Finizio, A., Otto, S., Vighi, M. 2009. Predicting pesticide environmental risk in intensive agricultural areas. I: Screening level risk assessment of individual chemicals in surface waters. Environtal Science and Technology, 43: 522–529.
- Vieira, L.T.A., Polisel, R.T., Ivanauskas, N.M., Shepherd, G.J., Waechter, J.L., Yamamoto, K., Martins, F.R. 2015. Geographical patterns of terrestrial herbs: A new component in planning the conservation of the Brazilian Atlantic forest. Biodiversity and Conservation, 24: 2181–2198.
- Villa, S., Di Nica, V., Castiglioni, S., Finizio, A. 2020. Environmental risk classification of emerging contaminants in an alpine stream influenced by seasonal tourism. Ecological Indicators, 115.
- Villéger, S., Miranda, J.R., Hernández, D.F., Mouillot, D. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20: 1512-1522.
- Violle, C., Reich, P.B., Pacala, S.W., Enquist, B.J., Kattge, J. 2014. "The emergence and promise of functional biogeography". PNAS 111 (38): 13690–6.
- Vitousek, P. Mooney, H.A., Lubchenco, J., Melillo, J.M. 1997. Human domination of Earth's Ecosystems. Science, 277: 494–499.
- von der Ohe, P.C., Dulio, V., Slobodnik, J., De Deckere, E., Kuhne, R., Ebert, R.U., Ginebreda, A., De Cooman, W., Schuurmann, G., Brack, W. 2011. A newrisk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potentialriver basin specific pollutants under the European Water Framework Directive. Science of the Total Environment, 409: 2064–2077.
- Vryzas, Z., Vassiliou, G., Alexoudis, C., Papadopoulou-Mourkidou, E. 2009. Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Researc, 43: 1– 10.
- Vryzas, Z., Alexoudas, C., Vassiliou, G., Galanis, K., Papadopoulou-Mourkidou, E. 2011. Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece. Ecotoxicological and Environmental Safety, 74: 174–181.

- Wang, C., Cai, P., Zhan, Q., Mi, Z., Huang, Z., Chen, G. 2008. Distribution of antiseptic-resistance genes qacA/B in clinical isolates of meticillin-resistant Staphylococcus aureus in China. Journal of Hospital Infection, 69: 393–394.
- Wang, J., Chow, W., Wong, J.W., Leung, D., Chang, J., Li, M. 2019. Non-target data acquisition for target analysis (nDATA) of 845 pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap. Analytical and Bioanalytical Chemistry, 411(7): 1421-143.
- Wang, Q., Garrity, G.M., Tiedje, J.M., J.R., Cole. 2007. "Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy". In: Applied Environ mental Microbiology, 73(16): 5261-7.
- Wang, Q., Mao, D., Mu, Q., Luo, Y. 2015. Enhanced horizontal transfer of antibiotic resistance genes in freshwater microcosms induced by an ionic liquid. PLoS One 10: e0126784.
- Wang, Y., Sheng, H. F., He, Y., Wu, J. Y., Jiang, Y. X., Tam, N. F. Y., & Zhou, H. W. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Applied and Environmental Microbiology, 78(23): 8264–8271.
- Wang, Y., Zhang, R., Li, J., Wu, Z., Yin, W., Schwarz, S, et al. 2017. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Natural Microbiology, 2: 16260.
- Wang, Y., Tam, N., 2011. Microbial community dynamics and biodegradation of polycyclic aromatic hydrocarbons in polluted marine sediments in Hong Kong. Marine Pollution Bulletin, 63: 424– 430.
- Walsh, T. R., Toleman, M. A., Poirel, L., Nordmann, P. 2005. Metallo-lactamases: the Quiet before the Storm?. Clinical Microbiology Reviews, 18: 306–325.
- Watanabe, T., Miura, A., Iwata, T., Kojima, H. and Fukui, M. 2017. Dominance of Sulfuritalea species in nitrate-depleted water of a stratified freshwater lake and arsenate respiration ability within the genus. Environmental Microbiology Reports, 9: 522-527.
- Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., Zaneveld, J. R., Vázquez-Baeza, Y., Birmingham, A., Hyde, E. R., Knight, R. 2017. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5(1), 1–18.
- Welshons, W.V., Thayer, K.A., Judy, B.M., Taylor, J.A., Curran, E.M., vom Saal, F.S. Large effects from small exposures. I. 2003. Mechanisms for endocrine-disrupting chemicals with estrogenic activity, Environtal Health Perspectives, 111: 994–1006.
- Wieder, W.R., Bonan, G.B., Allison, S.D. 2013. Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change, 3(10): 909-912.
- Wild, C.P. 2012. The exposome: from concept to utility. International Journal of Epidemiology, 41 (1): 24–32.

- Wilkinson JL, Boxall ABA, Kolpin DW, Leung KMY, Lai RWS, Galbán-Malagón C, et al. 2022. Pharmaceutical pollution of the world's rivers. Proceedings of the National Academy of Sciences; 119: e2113947119.
- Willems, A. & Gillis, M. 2015. Acidovorax. Bergey's Manual of Systematics of Archaea and Bacteria, 1– 16.
- Willey, J.M., Sherwood, L.M., Woolverton, C.J. 2017. Proteobacteria. In: Prescott's microbiology. 10th ed. New York: McGraw-Hil; p. 504–34.
- Wisplinghoff, H. 2017. 181 Pseudomonas spp., Acinetobacter spp. and Miscellaneous Gram-Negative Bacilli. In: Cohen J, Powderly WG, Opal SM, editors. Infectious Diseases (Fourth Edition). Elsevier, pp. 1579-1599.e2.
- Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., De Vos P, Verstraete, W., Boon, N. 2009. Initial community evenness favours functionality under selective stress. Nature, 458: 623–626.
- Wright, E., Serpersu, E.H. 2004. Isolation of aminoglycoside nucleotidyltransferase (2")-Ia from inclusion bodies as active, monomeric enzyme. Protein Expression Purification, 35(2): 373-80.
- Wu, S., Zhong, L., Liao, S. et al. 2021. Sediminibacterium soli sp. nov., isolated from soil. Arch Microbiol 203, 967–973.
- Xie, H., Wang, X., Chen, J., Li, X., Jia, G., Zou, Y., Zhang, Y., Cui, Y. 2019. Occurrence, distribution and ecological risks of antibiotics and pesticides in coastal waters around Liaodong Peninsula, China. Science of the Total Environment, 656: 946-951.
- Xiong, J., Ye, X., Wang, K., Chen, H., Hu, C., Zhu, J., Zhang, D. 2014. Biogeography of the sediment bacterial community responds to a nitrogen pollution gradient in the East China Sea. Applied Environmental Microbiology, 80: 1919–1925.
- Xiong, J., Zhu, J., Zhang, D. 2014. The application of bacterialindicator phylotypes to predict shrimp health status. Applied Microbiological Biotechnology, 98: 8291-8299.
- Xu, Y., Guo, C., Luo, Y., Lv, J., Zhang, Y., Lin, H., Xu, J. 2016. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China. Environmental Pollution, 213: 833–840.
- Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., Zhang, Y., Li, X., Meng, W. 2014. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119: 1379–1385.
- Yan, C., Yang, Y., Zhou, J., Liu, M., Nie, M., Shi, H., Gu, L. 2013. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environmental Pollution, 175: 22– 29.

- Yang, S., Carlson, K. 2003. Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes. Water Research, 37: 4645–4656.
- Yang, Y., Li, Z., Song, W., Du, L., Ye, C., Zhao, B., et al. 2019. Metagenomic insights into the abundance and composition of resistance genes in aquatic environments: Influence of stratification and geography. Environment International, 127: 371-380.
- Yang, Y., Xu, C., Cao, X., Lin, H., Wang, J. 2017. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. Ecotoxicology, 26: 831–840.
- Yergeau, E., Lawrence, J. R., Sanschagrin, S., Waiser, M. J., Korber, D. R., and Greer, C. W. 2012. Nextgeneration sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Applied and Environmental Microbiology, 78: 7626–7637.
- Yi, X., Lin, C., Ong, E.J.L., Wang, M., Li, B., Zhou, Z. 2019. Expression of resistance genes instead of gene abundance are correlated with trace levels of antibiotics in urban surface waters. Environtal Pollution, 250: 437–446.
- Yuan, X., Li, T., Zhou, L., Zhao, X. 2014. Characteristics and risk assessment of estrogenic compounds in Rivers of Southern Jiangsu Province, China. IERI Procedia, 9: 176–184.
- Zeba, B., De Luca, F., Dubus, A., Delmarcelle, M., Simporé, J., Nacoulma, O.G., Rossolini, G.M., Frère, J.M., Docquier, J.D. 2009. IND-6, a highly divergent IND-type metallo-beta-lactamase from Chryseobacterium indologenes strain 597 isolated in Burkina Faso. Antimicrobial Agents and Chemotherapy, 53(10): 4320-6.
- Zha, J., Sun, L., Zhou, Y., Spear, P.A., Ma, M., Wang, Z. 2008. Assessment of 17α- ethinylestradiol effects and underlyingmechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus). Toxicology and Applied Pharmacology, 226: 298–308.
- Zhang, J., Chang, V., Giannis, A., Wang, J. 2013. Removal of cytostatic drugs from aquatic environment: a review. Science of the Total Environment, 445 (446): 281–298.
- Zhang, G., Guan, Y., Zhao, R., Feng, J., Huang, J., Ma, L., Li, B. 2020 Metagenomic and network analyses decipher profiles and co-occurrence patterns of antibiotic resistome and bacterial taxa in the reclaimed wastewater distribution system. Journal of Hazardous Materials, 123170.
- Zhang, J., Kobert, K., Flouri, T., Stamatakis, A. 2013. PEAR: A fast and accurate Illumina Paired-End reAd merger. Bioinformatics, 30(5): 614-20.
- Zhang, R., Lau, S.C.K., Ki, J.S., Thiyagarajan, V., Qian, P.Y. 2009a. Response of bacterioplankton community structures to hydrological conditions and anthropogenic pollution in contrasting subtropical environments. FEMS Microbiology and Ecology, 69: 449–460.

- Zhang, J., Lu, T., Chai, Y., Sui, Q., Shen, P., Wei, Y. 2019. Which animal type contributes the most to the emission of antibiotic resistance genes in large-scale swine farms in China? Science of the Total Environment, 658: 152–159.
- Zhang, L., Tu, D., Li, X., Lu, W., Li, J. 2020. Impact of long-term industrial contamination on the bacterial communities in urban river sediments. BMC Microbiology, 20: 254.
- Zhang, X., Xu, Y., He, X., Huang, L., Ling, J., Zheng, L., Du, Q. 2016. Occurrence of antibiotic resistance genes in land fill leachate treatment plant and its effluent receiving soil and surface water. Environmental Pollution, 218: 1255-1261.
- Zhang, Y., Zhang, X., Zhang, H., He, Q., Zhou, Q., Su, Z., Zhang, C. 2009b. Responses of soil bacteria to long-term and short-term cadmium stress as revealed by microbial community analysis. Bulletin of Environmental Contamination and Toxicology, 82: 367–372.
- Zhao, Y., Pei, Y. 2012. Risk evaluation of groundwater pollution by pesticides in China: a short review. Procedia Environmental Science, 13: 1739–1747.
- Zhenchao, Z., Zheng, J., Wei, Y-Y., Chen, T.A., Dahlgren, R., Shang, X, Chen, H. 2017. Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters, 24(30): 23753-23762.
- Zhou, Y., Lai, R., Li, W-J. 2014. The Family Solimonadaceae, pp. 627-638.
- Zhou, H.W., Wong, A.H.Y., Yu, R.M.K., Park, Y.D., Wong, Y.S., Tam, N.F.Y. 2009. Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment. Microbial Ecology, 58: 153–160.
- Zhou, Z.C., Zheng, J., Wei, Y.Y., Chen, T., Dahlgren, R.A., Shang, X, Chen H. 2017. Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Environtal Sciences and Pollution Research, 24: 23753-23762.
- Zhu, Y.G., Zhao, Y., Li, B., Huang, C.L., Zhang, S.Y., Yu, S., Chen, Y.S., Zhang, T., Gillings, M.R., Su, J.Q. 2017. Continental-scale pollution of estuaries with antibiotic resistance genes. Natural Microbiology, 2: 16270.
- Ziegler, M., Roik, A., Porter, A., Zubier, K., Mudarris, M. S., Ormond, R., Voolstra, C. R. 2016. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Marine Pollution Bulletin, 105(2): 629–640.
- Zomer, P., Molm H.G. 2015. Simultaneous quantitative determination, identification and qualitative screening of pesticides in fruits and vegetables using LC-Q-Orbitrap-MS. Food Addit Contam Part A Chemical Analytical Control Expose Risk Assessment, 32(10):1628–36.
- Zurfluh, K., Bagutti, C., Brodmann, P., Alt, M., Schulze, J., Fanning, S., Stephan, R., Nüesch-Inderbinen, M. 2017. Wastewater is a reservoir for clinically relevant carbapenemase- and 16s rRNA

methylase-producing Enterobacteriaceae. International Journal of Antimicrobial Agents, 50: 436–440.

•

ŧ:

ÍNDICE DE FIGURAS

Figura 1.Analizador Orbitrap (Thermo Scientific).	<u>2</u> 4
Figura 2. Área de estudio y localización de los puntos de muestreo. Tomado de Griffero et al (2019)4	11
Figura 3. Cañada de los Olivera. Aguas abajo de la PTAR de la ciudad de Castillos. Sitio C_ST_054	12
Figura 4. Arroyo Valizas cercano a su desembocadura en el Océano Atlántico (sitio C_CS_11)4	12
Figura 5. Manifold con cartuchos de SPE Oasis® HLB utilizado durante el tratamiento de agua para el	
análisis de CEs	15
Figura 6. Esquema de tratamiento de muestra utilizado	16
Figura 7. Izquierda: Nano-LC/Q-Exactive Orbitrap. Derecha: Emisor de nanospray	18
Figura 8. Comparación de eficiencia de ionización en ESI y Nano-ESI. Tomado de: http://Principle of	
Nanoelectrospray Ionization and High Sensitivity Analysis (uab.edu).	51
Figura 9. Diagrama de flujo de categorización de CEs. Tomado de Tsalouba et al. 20166	51
Figura 10. Distribución del EM de los compuestos estudiados ($n = 362$) en la matriz arroyos por nano-	
LC-HRMS	56
Figura 11. Frecuencia de detección (DF (%)) de (izquierda): productos de uso urbano farmacéuticos,	
hormonas, drogas de abuso, productos de uso doméstico y (derecha) plaguicidas por sitio para el set	
completo de datos (n=91). La DF se determinó para el total de sitios analizados incluyendo arroyo, lagun	ıa
y mar a lo largo de las 4 estaciones de año6	58
Figura 12. Concentración media de contaminantes para la cuenca de Laguna de Castillos para los tres	
sistemas a lo largo de las 4 estaciones del año7	1
Figura 13. Concentración media de contaminantes para la cuenca de Laguna de Rocha para los tres	
sistemas a lo largo de las 4 estaciones del año7	1
Figura 14. Número total de contaminantes emergentes a lo largo del mar costero, laguna y arroyos de	
ambas cuencas para todo el set de datos incluyendo las 4 estaciones del año. *** denotan diferencias	
significativas entre los arroyos y el resto de los sistemas (GLM, modelo de Poisson). Los valores	
extremos se representan con círculos blancos7	12
Figura 15. Número total de productos farmacéuticos, hormonas, drogas de abuso y productos de uso	
doméstico a lo largo del mar costero, laguna y arroyos de ambas cuencas para todo el set de datos	
incluyendo las 4 estaciones del año. *** denotan diferencias significativas entre los arroyos y el resto de	
los sistemas	/3
Figura 16. Número total de plaguicidas a lo largo del mar costero, laguna y arroyos de ambas cuencas	
para todo el set de datos incluyendo las 4 estaciones del año. * denota diferencias significativas entre	
arroyos y lagunas y ** entre arroyos y mar costero (GLM, modelo de Poisson). Los valores extremos se	
representan con círculos blancos	/3
Figura 17. Uso del suelo, cobertura del suelo y distribución espacial de contaminantes emergentes	_
identificados a lo largo de las cuencas de Laguna de Rocha y Castillos. El tamaño del círculo representa	el
número total de contaminantes emergentes. Tomado de Griffero et al. 2019	/4
Figura 18. Número relativo de productos farmacéuticos (P), hormonas (H), drogas de abuso (A),	
productos de uso doméstico (U) y plaguicidas a lo largo de arroyos (negro), lagunas (azul) y mar costero	
(rojo) en cada sitio de muestreo. Tomado de Griffero et al (2019)7	<i>'</i> 6

Figura 19. Análisis de componentes principales (PCA) sobre número de contaminantes emergentes por
categoria: farmacos, drogas de abuso, compuestos de uso domestico, antibioticos, fungicidas, insecticidas
y herbicidas
Figura 20. Distribución temporal de contaminantes emergentes a lo largo de la cuenca de la Laguna de
Rocha. Tomado de Griffero et al (2019)79
Figura 21. Distribución temporal de contaminantes a lo largo de la cuenca de la Laguna de Castillos.
Tomado de Griffero et al (2019)
Figura 22. Distribución temporal de la concentración de 17- β -estradiol (μ gL ⁻¹) a lo largo de un año de muestreo para ambas cuencas. Se representan la mediana, el primer y tercer cuartil y el IC (intervalo de
confianza) al 95 %. Tomado de Griffero et al (2019)
Figura 23. Distribución temporal de la concentración de atrazina (μ gL ⁻¹) a lo largo de un año de muestreo para ambas cuencas. Se representan la mediana, el primer y tercer cuartil y el IC (intervalo de confianza) al 95 %. Tomado de Griffero et al (2019)
Figura 24. Mapa de evaluación de riesgo. Círculos grises: transformación logarítmica del ROmax (Ln
ROmax). Círculos negros: número de compuestos con RO>1. El tamaño del círculo es proporcional al
nivel de riesgo asociado para cada sitio. Tomado de Griffero et al (2019)
Figura 25 Número de compuestos según la categoría de riesgo ambiental
Figura 26. Elujo de trabajo aplicado para el análisis de la estructura taxonómica de las comunidades
microbianas
Figura 27. Sistema de filtración utilizado para recolectar el ADN bacteriano
Figura 28. Diagrama del fluio de trabajo utilizando el protocolo de preparación de bibliotecas 168 Kit
Nextera XT Index Tomado de Ilumina (2013)
Figura 29. Gradilla accesoria a la placa de PCR. A: Cebadores index 2. B: Cebadores index 1. C: Placa de
96 pocillos. Tomado de Ilumina (2013)
Figura 30. Esquema representando los análisis estadísticos realizados para estudiar la estructura
taxonómica de las comunidades
Figura 31. Distribución espacial de la concentración de nutrientes y cloA a lo largo de un año de
muestreo. Se representan la mediana, el primer y tercer cuartil y el IC (intervalo de confianza) al 95 %.
Figura 32. Histograma de los valores de AOI y rangos de categorías definidos por la distribución de los
primeros 4 cuantiles (25 % · 40 64 · 50 % · 48 62 · 75 % · 58 92 · 100 % · 75 29)
Figura 33 Categorización de los sitos según índice de calidad de agua basado en variables ambientales
(WOI) y en CEs (AOI) para los arroyos de las cuencas de las lagunas de Rocha y Castillos Los rangos de
las categorías son: 1-Bueno, 2-Regular, 3-Deficiente y 4-Pobre para WQI, 1er cuartil. 2do cuartil, 3er
cuartil y 4to cuartil para AQI.
Figura 34. Categorización de los sitos segun indice de calidad de agua basado en variables ambientales
(WQI) y en CEs (AQI) para las lagunas y mar costero de las cuencas de las lagunas de Rocha y Castillos. Los rangos de las categorías son: 1-Bueno, 2-Regular, 3-Deficiente y 4-Pobre para WQI, 1er cuartil. 2do
cuartil, 3er cuartil y 4to cuartil para AQI
Figura 35. Tabla de frecuencias absolutas de sitios pertenecientes a las 4 categorias según el WQI (Buena, Regular, Deficiente y Pobre) para los tres sistemas analizados: arroyos (verde), lagunas (azul) y mar costero (celeste). El tamaño de los cuadrantes es proporcional al número de sitios de cada sistema
asignados a cada una de las categorías de WQI
Figura 36. Tabla de frecuencias absolutas de sitios pertenecientes a las 4 categorías según el AQI (1er cuartil. 2do cuartil, 3er cuartil y 4to cuartil) para los tres sistemas analizados: arroyos (verde), lagunas

ŧ:

•

(azul) y mar costero (celeste). El tamaño de los cuadrantes es proporcional al número de sitios de cada sistema asignados a cada una de las categorías de WOI......127 Figura 37. Composición de la comunidad bacteriana para las diferentes muestras de las cuencas de las Lagunas de Rocha y Castillos a nivel de Familia. Las proporciones detalladas se muestran para las 20 Familias más abundantes del todo el set de datos incluyendo las 4 estaciones de muestreo, y para facilitar la visualización se excluyeron las secuencias sin asignación taxonómica......131 Figura 38. Análisis de coordenadas principales (PCoA) realizado sobre la matriz de disimilitud de Bray-Curtis de perfiles de abundancia relativa de las 39.766 ASVs definidas......132 Figura 39. Correlograma entre los 2 primeros ejes del PCoA y las variables ambientales. Los valores de correlación positivos se representan con color azul y los negativos con rojo......133 Figura 40. Biplot RDA taxonómico. Las coordenadas de las puntas de los vectores representan las variables explicativas: Temperatura, Salinidad, pH, OD, Solidos.susp (sólidos totales en suspensión), Mo. susp (materia orgánica en suspensión), PT (fósforo), NT (nitrógeno total), cloA, AbusDrug (drogas de abuso), Pharm (fármacos), Fung (fungicidas), Herb (herbicidas), Insec (insecticidas), LifeStyle (compuestos de uso doméstico), Conc.Pest (concentración total de plaguicidas). Los puntos rojos Figura 41. Biplot RDA parcial. Las coordenadas de las puntas de los vectores representan las variables explicativas: AbusDrug (drogas de abuso), Pharm (fármacos), Fung (fungicidas), Herb (herbicidas), Insec (insecticidas), LifeStyle (compuestos de uso doméstico), Conc.Pest (concentración total de plaguicidas). Figura 42. Asignación a grupos de muestras de arroyos definidos según el WQI de acuerdo a los indicadores taxonómicos bacterianos, utilizando la técnica de validación cruzada. De izquierda a derecha se muestra: la pertenencia de cada muestra a los diferentes grupos según la clasificación de WQI, la probabilidad de pertenencia a cada grupo utilizando los indicadores taxonómicos y la asignación a cada uno de los grupos según las probabilidades obtenidas.....144 Figura 43. Asignación a grupos de muestras de arroyos definidos según el AOI de acuerdo a los indicadores taxonómicos bacterianos, utilizando la técnica de validación cruzada. De izquierda a derecha se muestra: la pertenencia de cada muestra a los diferentes grupos según la clasificación de AQI, la probabilidad de pertenencia a cada grupo utilizando los indicadores taxonómicos y la asignación a cada uno de los grupos según las probabilidades obtenidas......145 Figura 44. Asignación a grupos de muestras de lagunas definidos según el WQI de acuerdo a los indicadores taxonómicos bacterianos, utilizando la técnica de validación cruzada. De izquierda a derecha se muestra: la pertenencia de cada muestra a los diferentes grupos según la clasificación de AQI, la probabilidad de pertenencia a cada grupo utilizando los indicadores taxonómicos y la asignación a cada uno de los grupos según las probabilidades obtenidas.....149 Figura 45. Asignación a grupos de muestras de lagunas definidos según el AQI de acuerdo a los indicadores taxonómicos bacterianos, utilizando la técnica de validación cruzada. De izquierda a derecha se muestra: la pertenencia de cada muestra a los diferentes grupos según la clasificación de AQI, la probabilidad de pertenencia a cada grupo utilizando los indicadores y la asignación a cada uno de los Figura 46. Ciclo urbano del agua y contaminantes. Los escurrimientos y transportes de contaminantes se Figura 47. Flujo de trabajo utilizado para la secuenciación metagenómica. Tomado de Secuenciador Figura 48. Comparación del número de secuencias crudas vs. preprocesadas para los datos

Figura 49. Análisis de coordenadas principales computados sobre las disimilitudes Bray Curtis de la composición funcional, normalizadas con la transformación de Hellinger.165 Figura 50. Análisis de coordenadas principales computados sobre las disimilitudes Bray Curtis de la composición de genes de resistencia, normalizadas con la transformación de Hellinger......166 Figura 51. Figura de barras, representando la abundancia relativa de genes de resistencia a antibióticos anotados con la base de datos ResFam (Gibson et al. 2015), en los 48 metagenomas. La barra punteada divide las muestras de sistemas de arroyo y laguna......168 Figura 52. Histogramas representando los valores de riqueza de genes de resistencia a antibióticos en sistemas de arroyo y laguna, estimada aplicando una rarefacción a distintos tamaños de muestra....... 169 Figura 54. Biplot RDA funcional. Las coordenadas de las puntas de los vectores representan las variables explicativas: Temperatura, Salinidad, pH, OD, Solidos.susp (sólidos totales en suspensión), Mo.susp (materia orgánica en suspensión), NT (Nitrógeno total), cloA, Conc.Emerg (concentración total de compuestos de uso urbano), Conc.Pest (concentración total de plaguicidas). Los puntos rojos representan los ARG y los círculos blancos los sitios......173 Figura 55. Asignación a grupos de muestras de arroyos definidos según el AQI de acuerdo a los indicadores funcionales bacterianos, utilizando la técnica de validación cruzada. De izquierda a derecha se muestra: la pertenencia de cada muestra a los diferentes grupos según la clasificación de AQI, la probabilidad de pertenencia a cada grupo utilizando los indicadores funcionales y la asignación a cada

ÍNDICE DE TABLAS

Tabla 1. Localización geográfica y descripción de los sitios de muestreo y cobertura de uso de suelo43
Tabla 2. Parámetros analíticos y resumen de resultados de los compuestos detectados53
Tabla 3. Resumen de resultados de los compuestos identificados en las cuencas de las Lagunas de Rocha
y Castillos con recuperaciones que cumplen con el Documento Nº SANTE/11312/2021. Ordenados por
frecuencia de detección67
Tabla 4. Comparación de valores de concentración hallados en este estudio y valores máximo admisibles
en la legislación europea (EU 2013) y uruguaya (GESTA 2014)69
Tabla 5. Datos de evaluación de riesgos de los compuestos identificados, % de recuperación >70 y
concentraciones >LOQ
Tabla 6. Cálculo de índice de riesgo ambiental para los compuestos de las categorías 1 y 5 a partir de la
Frecuencia de superación, distribución espacial, grado de superación, criterio de PBT (PW=persistencia +
$B{=}bioacumulación + T{=}\ toxicidad + EDC{=}potencial\ disruptor\ endócrino\89$
Tabla 7. Esquema de categorización del WQI99
Tabla 8. Valores objetivos de los estándares utilizados para WQI
Tabla 9. Rango de la escala de clasificación del AQIST y descripción del respectivo riesgo ambiental103
Tabla 10. Rango de la escala de clasificación del AQILT y descripción del respectivo riesgo ambiental. 104
Tabla 11. Reacción de PCR para el chequeo de calidad de ADN106
Tabla 12. Reacción de primera etapa de PCR utilizando ADN, primers y el Mix 2x KAPA HiFi HotStart
(Conteniendo la enzima Polimerasa y los buffers utilizados en la reacción de PCR)110

Tabla 13. Reacción de segunda etapa de PCR o PCR index utilizando ADN, cebadores index 1 y 2, Mix 2x KAPA HiFi HotStart (Conteniendo la enzima Polimerasa y los buffers utilizados en la reacción de Tabla 14, Resumen de los resultados de las variables fisicoquímicas medidas para las cuencas de las Tabla 15. Estadísticos generales de calidad de secuenciación del 16S comparando datos brutos y pre-Tabla 18. Partición de la varianza del RDA parcial......136 Tabla 20. Indicadores taxonómicos bacterianos de los 3 grupos definidos para los arroyos de las cuencas de las Lagunas de Rocha y Castillos según el WQI. A y B denotan los componentes del IndVal de especificidad y sensibilidad, respectivamente. Las variantes de secuencias de amplicones (ASVs) del indicador son la combinación de las ASVs candidatas que fueron seleccionadas como los mejores indicadores de cada grupo entre todas las posibles combinaciones significativas (p < 0.05). Los porcentajes de cobertura fueron de 93,3, 75 y 100 % para los grupos 2, 3 y 4 respectivamente......142 Tabla 21. Indicadores taxonómicos bacterianos de los 3 grupos definidos para los arroyos de las cuencas de las Lagunas de Rocha y Castillos según el AQI. A y B denotan los componentes del IndVal de especificidad y sensibilidad, respectivamente. Las variantes de secuencias de amplicones (ASVs) del indicador son la combinación de las ASVs candidatas que fueron seleccionadas como los mejores indicadores de cada grupo entre todas las posibles combinaciones significativas (p < 0.05). Los porcentajes de cobertura fueron de 100 % para todos los grupos......143 Tabla 22. Indicadores taxonómicos bacterianos de los 3 grupos definidos para las lagunas de las cuencas de las Lagunas de Rocha y Castillos según el WOI. A y B denotan los componentes del IndVal de especificidad y sensibilidad, respectivamente. Las variantes de secuencias de amplicones (ASVs) del indicador son la combinación de las ASVs candidatas que fueron seleccionadas como los mejores indicadores de cada grupo entre todas las posibles combinaciones significativas (p < 0.05). Todos los Tabla 23. Indicadores taxonómicos bacterianos de los 3 grupos definidos para las lagunas de las cuencas de las Lagunas de Rocha y Castillos según el AQI. A y B denotan los componentes del IndVal de especificidad y sensibilidad, respectivamente. Las variantes de secuencias de amplicones (ASVs) del indicador son la combinación de las ASVs candidatas que fueron seleccionadas como los mejores indicadores de cada grupo entre todas las posibles combinaciones significativas (p < 0.05). Todos los Tabla 24. Estadísticos generales de calidad de secuenciación metagenómica comparando datos brutos y Tabla 27. Indicadores funcionales bacterianos de los 3 grupos definidos para los arroyos de las cuencas de las Lagunas de Rocha y Castillos según el AQI. A y B denotan los componentes del IndVal de especificidad y sensibilidad, respectivamente. Los ARG del indicador son la combinación de las ARG candidatos que fueron seleccionados como los mejores indicadores de cada grupo entre todas las posibles combinaciones significativas (p < 0.05). Todos los indicadores lograron una cobertura del grupo del 100

PRESENTACIONES EN CONGRESOS Y EVENTOS RELACIONADAS A LA TESIS

Griffero L., González B, Pereira E, Pérez-Parada A, Alonso C. Exploring the use of new water quality indicators based on microbial communities. DNAqua international Conference, 2021.

Girffero L, González B, Pereira E, Alcántara-Durán J, García-Reyes Juan F, Rodríguez L, Greif G, Pérez-Parada A, Alonso C. Comunidades bacterianas a lo largo de un gradiente de impacto antropogénico. 2do Taller de la Red colaborativa en Ecología Microbiana Acuática en América Latina, Chascomús Argentina 2019.

Girffero L, Alcántara-Durán, J, Alonso C, García-Reyes Juan F, Pérez-Parada A. Target and non-target screening of emerging contaminantsin Eastern Uruguay streams by nanoflow LC-HRMS. XIV Latin American Symposium on Environmental Analytical Chemistry, Bento Gonçalves Brasil 2019.

Griffero L, González B, Pereira E, Alcántara-Durán J, García-Reyes J.F, Greif G, Pérez A, Alonso C. Comunidades microbianas como indicadoras de calidad ambiental: estudio preliminar en dos lagunas costeras aplicado a contaminantes emergentes. Primer Congreso ISME América Latina, Valparaíso Chile 2019.

Griffero L. Presentación (Capítulo I de la Tesis): Monitoreo y análisis de riesgo de contaminantes emergentes en dos cuencas (lagunas de Rocha y Castillos). 2019. Seminario Interinstucional con participación de CURE, DINAMA, y OSE.

Griffero L. Presentación (Capítulo I de la Tesis): Monitoreo y análisis de riesgo de contaminantes emergentes en dos cuencas (lagunas de Rocha y Castillos). 2019. Taller de presentación con la Comisión específica asesora del área protegida Laguna de Rocha

Alonso C, **Griffero L**, González B, Pereira E, Alcántara-Durán J, García-Reyes J.F, Greif G, Pérez A Comunidades bacterianas como indicadores de calidad de agua, énfasis en contaminantes emergentes. II Jornada de la Red Interinstitucional de Metagenómica Ambiental 28 y 29 Marzo 2019, Montevideo

Girffero L, Alcántara-Durán, J, García-Reyes Juan F, Pérez-Parada A, Alonso C. Análisis de contaminantes emergentes en aguas residuales y naturales mediante cromatografía líquida de nanoflujos acoplada a espectrometría de masas de alta resolución (nanoLC - Q/Orbitrap). 5° Congreso Uruguayo de Química Analítica, Montevideo 2018. Mención modalidad póster.

Girffero L, Pérez-Parada A, Alonso C. Comunidades microbianas como indicadoras de calidad ambiental, con énfasis en contaminantes emergentes. Primer Red colaborativa en Ecología Microbiana Acuática en América Latina. Rocha, Uruguay 2017.

Comunidades microbianas como indicadoras de calidad ambiental, con énfasis en contaminantes emergentes

ÍNDICE DE FIGURAS

Figura 1. Ejemplos seleccionados de las categorías I, II y III según los criterios de identificación. A:
Cromatograma de Iones Extraídos (XIC) y espectro de masas de nicotina, Categoría I: tR (min) +
[M+H]+ + 2 iones AIF. B: XIC y espectro de masas de codeína, C: XIC y espectro de masas de
picolinafen, Categoría III: t_R (min) + $[M+H]^+$, faltando 2 iones por concentración4

ÍNDICE DE TABLAS

Tabla 1. Identificación de los compuestos estudiados por nanoLC-HRMS	6
Tabla 2. Indicadores de destino ambiental y puntajes de evaluación de riesgo para el criterio PBT	58
Tabla 3. Propiedades químicas utilizadas para el esquema de priorización relacionadas con el destino	
ambiental y el factor de bio-concentración de pesticidas cuyos valores encontrados fueron mayores a su	
LOQ	60
Γabla 4 Identificación y concentración indidividual (μg L-1) de los CEs detectados. Ver Anexo aparte).
	61
Tabla 5. Parámetros fisicoquímicos para todos los puntos de muestreo.	61
Fabla 6. Cálculos del WQI y del AQI para todos los sitios de ambas cuencas	65

Figura 1. Ejemplos seleccionados de las categorías I, II y III según los criterios de identificación. A: Cromatograma de Iones Extraídos (XIC) y espectro de masas de nicotina, Categoría I: tR (min) + [M+H]+ + 2 iones AIF. B: XIC y espectro de masas de codeína, C: XIC y espectro de masas de picolinafen, Categoría III: t_R (min) + [M+H]⁺, faltando 2 iones por concentración

Figura 2. Ejemplo de aplicación de non-target screening para un metabolito de Amoxicilina.

Compuesto	Fórmula elemental	lon precursor	lones producto (AIF)	rT (min)	Error (ppm)
	HORMONES (12)				
17-α-Ethynilestradiol	C12H15	[M-H2O+H]+	159.1168	30.30	-0.63
17-α-Ethynilestradiol F1	C10H11		131.0855		
17α-Hydroxyprogesterone	C21H31O3	[M+H]+	331.2268	25.56	0.35
17α-Hydroxyprogesterone F1	C21H29O2		313.2162		
17α-Hydroxyprogesterone F2	C21H27O		295.2056		
17α-Hydroxyprogesterone F3	C19H27O		271.2056		
17-β-estradiol	C18H23O	[M-H2O+H]+	255.1743	28.07	0.00
17-β-estradiol F1	C14H15O		199.1117		
17-β-estradiol F2	C12H13O		173.0961		
17-β-estradiol F3	C11H11O		159.0804		
4-Androsten-3,17-dione	C19H26O2	[M+H]+	287.2006	25.34	0.00
Androsterone	C19H29O2	[M+H]+	273.2213		
Androsterone F1	C19H27		255.2107		
Estriol	C18H24O3	[M+H]+	289.1798	31.37	0.35
Estrone	C18H22O2	[M+H]+	271.1693	24.07	0.00
Estrone F1	C18H21O		253.1587		
Estrone F2	C14H13O		197.0961		
Estrone F3	C11H9O		157.0648		
Estrone F4	C9H8O		133.0648		
Hydrocortison	C21H31O5	[M+H]+	363.2166	19.71	0.00
Hydrocortison F1	C21H29O4		345.2060		
Hydrocortison F2	C21H27O3		327.1955		
Mesterolone	C20H33O2	[M+H]+	305.2475	25.00	-0.04

Tabla 1. Identificación de los compuestos estudiados por nanoLC-HRMS

Mesterolone F1	C20H29		269.2264		
Mesterolone F2	C17H25		229.1951		
Mesterolone F3	C13H17		173.1325		
Methyltestosterone	C20H31O2	[M+H]+	303.2319	19.94	0.00
Methyltestosterone F1	C20H29O		285.2213		
Methyltestosterone F2	C14H21		189.1638		
Methyltestosterone F3	C7H9O		109.0648		
Methyltestosterone F4	C6H9O		97.0648		
Nandrolone	C18F27O2	[M+H]+	275.2006	27.10	-1.57
Nandrolone F1	C18H25O		257.1900		
Nandrolone F2	C18H23		239.1794		
Nandrolone F3	C15H19		199.1481		
Norethindrone	C20H27O2	[M+H]+	299.2006	29.42	0.93
Testosterone	C19H28O2	[M+H]+	289.2162	24.54	0.00
	ABUSED DRUGS (11)				
(-)-N-Methylephedrine	C11H18NO	[M+H]+	180.1383	3.15	0.00
(-)-N-Methylephedrine F1	C11H16N		162.1277		
Amphetamine	C9H13N	[M+H]+	136.1121	4.05	1.47
Amphetamine F1	C9H11		119.0858		
Amphetamine F2	C7H7		91.0542		
Benzoylecgonine	C16H19NO4	[M+H]+	290.1387	3.18	0.00
Benzoylecgonine F1	C9H14NO2		168.1019		
Cocaine	C17H21NO4	[M+H]+	304.1543	3.18	0.00
Cocaine F1	C10H16NO2		182.1176		
Codeine	C18H21NO3	[M+H]+	300.1594	3.18	-0.33
MDA	C10H13NO2	[M+H]+	180.1019	3.17	3.78
MDA F1	C10H11O2		163.0754		
MDA F2	C8H7O2		135.0441		
MDA F3					
	C8H9		105.0699		

MDEA F1	C10H11O2		163.0754		
MDEA F2	C8H7O2		135.0441		
MDEA F3	C8H9		105.0699		
Methamphetamine	C10H15N	[M+H]+	150.1277	3.17	0.00
Methamphetamine F1	C9H11		119.0858		
Methamphetamine F2	C7H7		91.0542		
Morphine	C17H19NO3	[M+H]+	286.1438	3.18	0.00
19-Norandrosterone	C18H29O2	[M+H]+	277.2162	25.23	-0.04
19-Norandrosterone F1	C18H27O		259.2056		
19-Norandrosterone F2	C18H26		241.1951		
Δ-9-THC	C21H31O2	[M+H]+	315.2319	3.03	-0.63
Δ-9-THC F1	C17H23O2		259.1693		
Δ-9-THC F2	C12H17O2		193.1223		
	LIFE STYLE(4)				
Caffeine	C8H10N4O2	[M+H]+	195.0877	30.94	-0.51
Caffeine F1	C6H8N3O		138.0662		
Caffeine F2	C5H8N4		110.0713		
Caffeine F3	C4H4N4		94.0400		
Caffeine F4	C4H7N3		83.0604		
Caffeine F5	C3H5N3		69.0447		
DEET	C12H17NO	[M+H]+	192.1383	25.68	0.00
DEET F1	C8H7O		119.0491		
DEET F2	C7H8		92.0542		
Nicotine	C10H14N2	[M+H]+	163.1230	3.22	0.00
Nicotine F1	C9H10N		132.0808		
Nicotine F2	C9H8N		130.0651		
Nicotine F3	C7H8N		106.0651		
Paraxanthine	C7H9N4O2	[M+H]+	181.0720	27.10	-0.55
Paraxanthine F1	C5H8N3O2		142.0611		
Paraxanthine F2	C5H6N3O		124.0505		

	NITROSAMINES (7)				
N-nitrosodiethylamine	C4H10N2O	[M+H]+	103.0866	3.12	0.00
N-nitrosodiethylamine F1	C2H7N2O		76.0553		
N-nitrosodi-n-dibutylamine	C8H18N2O	[M+H]+	159.1492	22.65	0.00
N-nitrosodi-n-dibutylamine F1	C4H11N2O		103.0866		
N-nitrosodi-n-dibutylamine F2	C4H10		57.0699		
N-nitrosodi-n-dipropylamine	C6H14N2O	[M+H]+	131.1174	31.13	0.00
N-nitrosodi-n-dipropylamine F1	C3H9N2O		90.0709		
N-nitrosomorpholine	C4H8N2O2	[M+H]+	117.0659	28.10	-0.63
N-nitrosomorpholine F1	C4H7NO		87.0606		
N-nitroso-n-diphenylamine	C12H10N2O	[M+H]+	199.0866	17.13	0.00
N-nitroso-n-diphenylamine F1	C9H11N		170.0886		
N-nitrosopiperidine	C5H10N2O	[M+H]+	115.0866	16.23	0.87
N-nitrosopiperidine F1	C5H10		70.0699		
N-nitrosopyrrolidine	C4H8N2O	[M+H]+	101.0709	3.13	-2.97
N-nitrosopyrrolidine F1	C4H8		56.0542		
	PESTICIDES (247)				
1-Naphtalene-Acetamide	C12H11NO	[M+H]+	186.0913	17.58	-0.54
1-Naphtalene-acetamide F1	C12H8O		169.0648		
1-Naphtalene-acetamide F2	C11H9		141.0699		
Acetamiprid	C10H11CIN4	[M+H]+	223.0745	12.46	0.00
Acetamiprid F1	C6H5CIN		126.0105		
Acetamiprid F2	C5H4Cl		99.0001		
Aclonifen	C12H9CIN2O3	[M+H]+	265.0374	28.38	0.00
Aclonifen F1	C12H9CIN2O2		248.0347		
Aclonifen F2	C12H9CINO		218.0367		
Aclonifen F3	C12H8NO		182.0600		
Alachlor	C14H20CINO2	[M+H]+	270.1255	27.53	0.00
Alachlor F1	C13H17CINO		238.0993		
Alachlor F2	C11H16N		162.1277		

Alachlor F3	C9H10N		132.0808		
Alachlor F4	C3H5CIN		90.0105		
Albendazole	C12H15N3O2S	[M+H]+	266.0958	20.32	0.38
Albendazole F1	C11H12N3OS		234.0696		
Albendazole F2	C8H6N3OS		192.0226		
Albendazole F3	C10H7O2S		191.0161		
Albendazole F4	C10H7O2		159.0441		
Aldicarb	C7H14N2O2S	[M+H]+	213.0668	23.18	-0.47
Aldicarb sulfone	C7H14N2O4S	[M+H]+	223.0747	12.46	0.45
Aldicarb sulfone F1	C5H12NSO3		166.0532		
Aldicarb sulfone F2	C5H9NSO2		148.0247		
Aldicarb sulfone F3	C4H8NO		86.0600		
Aldicarb sulfone F4	CH5O2S		81.0005		
Aldicarb sulfone F5	C2H6NO2		76.0393		
Aldicarb sulfone F6	CH3OS		62.9899		
Aldicarb sulfone F7	C3H7O		59.0491		
Aldicarb sulfoxide	C7H14N2O3S	[M+H]+	207.0798	3.18	0.00
Aldicarb sulfoxide F1	C9H12NS		166.0685		
Aldicarb sulfoxide F2	C5H10NOS		132.0478		
Aldicarb sulfoxide F3	C4H9OS		105.0369		
Aldicarb sulfoxide F4	C4H9S		89.0419		
Aldicarb sulfoxide F5	C2H6NO2		76.0393		
Allethrin	C19H27O3	[M+H]+	303.1955	29.46	0.23
Allethrin F1	C9H11O		135.0804		
Allethrin F2	C9H15		123.1168		
Allethrin F3	C7H9		93.0699		
Ametryn	C9H17N5S	[M+H]+	228.1277	17.90	-0.44
Ametryn F1	C6H12N5S		186.0807		
Ametryn F2	C4H8N5S		158.0495		
Ametryn F3	C5H10N3S		144.0590		
Ametryn F4	C5H8N5		138.0774		

Ametryn F5	C3H6N3S		116.0277		
Ametryn F6	C4H6N3		96.0556		
Ametryn F7	C2H7N2S		91.0324		
Ametryn F8	C2H4NS		74.0059		
Ametryn F9	C3H7N2		71.0604		
Aminocarb	C11H16N2O2	[M+H]+	209.1285	3.09	0.00
Aminocarb F1	C9H13NO		152.1073		
Aminocarb F2	C8H11NO		137.0835		
Aminocarb F3	C7H8NO		122.0600		
Amitraz	C19H23N3	[M+H]+	294.1965	30.44	0.00
Amitraz F1	C17H21N2		253.1699		
Amitraz F2	C10H15N2		163.1230		
Amitraz F3	C8H12N		122.0964		
Anilophos	C13H19CINO3PS2	[M+H]+	368.0305	28.67	0.00
Anilophos F1	C4H8O3PS2		198.9647		
Anilophos F2	C3H8O2PS2		170.9698		
Anilophos F3	C2H6O2PS2		156.9541		
Anilophos F4	C2H6O2PS		124.9821		
Asulam	C8H10N2O4S	[M+H]+	231.0434	24.06	0.00
Asulam F1	C6H6NO2S		156.0114		
Asulam F2	C6H6NO		108.0444		
Asulam F3	C6H6N		92.0495		
Atrazine	C8H14CIN5	[M+H]+	216.1010	3.86	-0.46
Atrazine F1	C5H9CIN6		174.0541		
Atrazine F2	C3H5CIN5		146.0228		
Atrazine F3	C3H5CIN5		138.0780		
Atrazine F4	C4H7CIN4		132.0323		
Atrazine F5	C2H3CIN4		104.0001		
Atrazine F6	C4H6N4		96.0556		
Atrazine F7	CH4CIN3		79.0058		
Atrazine desisopropyl	C5H8CIN5	[M+H]+	174.0541	3.09	0.00

Atrazine desisopropyl F1	C3H5CIN6		146.0228		
Atrazine desisopropyl F2	C4H7CIN4		132.0323		
Atrazine desisopropyl F3	C2H3CIN4		104.0010		
Atrazine desisopropyl F4	C4H6N4		96.0556		
Atrazine desisopropyl F5	CH4CIN3		79.0058		
Azinphos-ethyl	C12H16N3O3PS2	[M+H] ⁺	346.0443	24.00	-0.29
Azinphos-ethyl F1	C12H17NO3PS3		318.0382		
Azinphos-ethyl F2	C7H6N		104.0495		
Azinphos-ethyl F3	H2O2PS		96.9508		
Azinphos-ethyl F4	C12H9N3O2PS		290.0148		
Azinphos-ethyl F5	C11H14O3PS3		289.0117		
Azinphos-ethyl F6	C5H12O2PS3		199.0011		
Azinphos-ethyl F7	C3H8O2PS3		170.9698		
Azinphos-ethyl F8	C8H6N3O		160.0505		
Azinphos-ethyl F9	C6H5N2OS		153.0117		
Azinphos-ethyl F10	C8H6NO		132.0440		
Azinphos-ethyl F11	C2H6O2PS		124.9821		
Azinphos-methyl	C10H12N3O3PS2	[M+H] ⁺	346.0444	26.36	0.00
Azinphos-methyl F1	C9H10O3PS3		260.9803		
Azinphos-methyl F2	C8H6N3O		160.0505		
Azinphos-methyl F3	C8H6NO		132.0443		
Azinphos-methyl F4	C2H6O2PS		124.9821		
Azobenzene	C12H11N2	[M+H] ⁺	183.0917	3.13	0.93
Azobenzene F1	C6H5N2		105.0447		
Azobenzene F2	C6H7O		95.0491		
Azoxystrobin	C22H17N3O5	[M+H]+	404.1241	26.27	0.00
Azoxystrobin F1	C21H15N3O5		372.0979		
Azoxystrobin F2	C12H9NO4		216.0655		
Barban	C11H9Cl2NO2	[M+H]+	258.0083	3.13	1.16
Barban F1	C10H9CIN		178.0418		
Benalaxyl	C20H23NO3	[M+H]+	326.1751	23.25	0.00
Benalaxyl F1	C19H20NO3		294.1489		
-----------------------	--------------	--------	----------	-------	-------
Benalaxyl F2	C18H20NO		266.1539		
Benalaxyl F3	C12H18NO3		208.1332		
Benalaxyl F4	C10H14N		148.1121		
Benalaxyl F5	C5H13O4		121.0859		
Bensulfuron methyl	C16H18N4O7S	[M+H]+	411.0969	24.63	0.00
Bensulfuron methyl F1	C15H4NO6		278.0084		
Bensulfuron methyl F2	C7H8N3O4		182.0560		
Bensulfuron methyl F3	C8H8N3O3		178.0611		
Bensulfuron methyl F4	C9H9O3		149.0597		
Bensulfuron methyl F5	C8H7O		119.0491		
Bensulide	C14H24NO4PS3	[M+H]+	398.0678	28.28	0.00
Bensulide F1	C11H19NO4PS4		356.0208		
Bensulide F2	C8H13NO4PS4		313.9739		
Bensulide F3	C8H12NO2S3		218.0304		
Bensulide F4	C8H10NOS3		200.0198		
Bensulide F5	C2H8NO2S		158.0270		
Bensulide F6	C6H5O2S		141.0005		
Bensulide F7	C2H5S		61.0106		
Bentazon	C10H12N2O3S	[M+H]+	241.0641	27.02	0.00
Bentazone F1	C7H5N2O3S		197.0026		
Bentazone F2	C10H11N2O		175.0877		
Benzidine	C12H12N2	[M+H]+	185.1073	29.63	-0.54
Benzidine F1	C12H10N		168.0808		
Benzidine F2	C12H8N		166.0651		
Benzidine F3	C11H10N		156.0808		
Bifenazate	C17H20N2O3	[M+H]+	301.1547	24.57	0.00
Bifenazate F1	C14H15N2O4		259.1077		
Bifenazate F2	C13H12NO		198.0913		
Bifenazate F3	C12H10NO		184.0757		
Bifenazate F4	C12H12N		170.0964		

Bifenazate F5	C12H9		153.0699		
Bifenox	C14H9Cl2NO5	[M+H]+	341.9931	28.59	0.00
Bifenox F1	C13H6Cl2NO5		309.9668		
Bifenox F2	C12H5Cl2NO3		265.9770		
Bifenox F3	C7H3Cl2O3		188.9505		
Bitertanol	C20H23N3O2	[M+H]+	338.1863	27.28	0.00
Bitertanol F1	C18H21O3		269.1536		
Bitertanol F2	C6H11O		99.0804		
Bitertanol F3	C2H4N4		70.0400		
Boscalid	C18H12Cl2N2O	[M+H]+	343.0399	31.33	0.00
Boscalid F1	C18H12CIN2O		307.0633		
Boscalid F2	C18H10CIN3		289.0527		
Boscalid F3	C18H11N2O		271.0866		
Boscalid F4	C6H3CINO		139.9898		
Boscalid F5	C5H3CIN		111.9951		
Bromacil	C9H13BrN2O2	[M+H]+	261.0233	26.67	0.00
Bromacil F1	C5H6BrN2O3		204.9607		
Bromacil F2	C5H3BrNO3		187.9342		
Bromacil F3	C5H4BrN2O		186.9502		
Bromacil F4	C4H5BrNO		161.9549		
Bromacil F5	C3H3BrN		131.9443		
Bromuconazole	C13H12BrCl2N3O	[M+H]+	375.9613	29.68	0.00
Bromuconazole F1	C11H10BrCl2O		306.9286		
Bromuconazole F2	C11H9Cl2O		227.0025		
Bromuconazole F3	C7H3Cl2O		172.9555		
Bromuconazole F4	C7H5Cl3		158.9763		
Bromuconazole F5	C2H4N4		70.0400		
Bupirimate	C13H24N4O3S	[M+H]+	317.1641	19.46	0.00
Bupirimate F1	C11H18N3O3S		272.1063		
Bupirimate F2	C11H20N3O		210.1601		
Bupirimate F3	C8H12N3O		166.0975		

Bupirimate F4	C8H12N4		150.1026		
Bupirimate F5	C2H6NO2S		108.0114		
Buprofezin	C16H23N3OS	[M+H]+	306.1635	26.13	0.00
Buprofezin F1	C9H17N2OS		201.1056		
Buprofezin F2	C5H9N2OS		145.0430		
Buprofezin F3	C5H10NS		116.0527		
Buprofezin F4	C7H8N		106.0650		
Butachlor	C17H26CINO2	[M+H]+	312.1725	24.59	0.00
Butachlor F1	C13H17CINO		238.0993		
Butachlor F2	C12H15CINO		224.0837		
Butachlor F3	C11H16N		162.1277		
Butachlor F4	C7H15O4		147.1016		
Butachlor F5	C9H10N		132.0808		
Butachlor F6	C3H5CIN		90.0105		
Butoxycarboxim	C7H14N2O4S	[M+H]+	223.0747	28.07	0.45
Butoxycarboxim F1	C5H12NO3S		166.0532		
Butoxycarboxim F2	C5H10NO2S		148.0432		
Butoxycarboxim F3	C3H8NOS		106.0321		
Butoxycarboxim F4	C4H8NO		86.0606		
Butoxycarboxim F5	CH5O2S		81.0010		
Butoxycarboxim F6	C3H6NO		72.0449		
Butoxycarboxim F7	CH5OS		65.0056		
Butralin	C14H21N3O4	[M+H] ⁺	296.1605	25.57	0.07
Butralin F1	C10H14N3O4		240.0979		
Butralin F2	C10H12N3O3		222.0873		
Butralin F3	C9H10N3O3		208.0717		
Butralin F4	C9H10N		132.0808		
Buturon	C12H13CIN2O	[M+H]+	237.0789	22.85	0.00
Buturon F1	C8H10CIN2O		185.0476		
Buturon F2	C8H8N2Cl		167.0371		
Buturon F3	C6H5CIN		126.0105		

Buturon F4	C5H10N		84.0808		
Buturon F5	C4H6N		68.0495		
Buturon F6	C3H8N		58.0651		
Buturon F7	C4H6		53.0386		
Cadusafos	C10H23O2PS2	[M+H]+	271.0948	27.23	-0.37
Cadusafos F1	C6H16O2PS2		215.0324		
Cadusafos F2	C2H8O2PS2		158.9698		
Carbadox	C11H10N4O4	[M+H]+	263.0775	3.10	-0.37
Carbadox F1	C10H7N4O4		231.0513		
Carbadox F2	C9H6N3O3		188.0455		
Carbadox F3	C9H7N2O3		175.0502		
Carbadox F4	C8H5N2O		145.0413		
Carbadox F5	C8H7N3		131.0591		
Carbadox F6	C8H5N3		129.0447		
Carbadox F7	C7H7N		104.0495		
Carbendazim	C9H9N3O2	[M+H]+	192.0768	24.99	0.00
Carbendazim F1	C8H6N3O		160.0505		
Carbendazim F2	C6H5N3		132.0553		
Carbofuran	C12H15NO3	[M+H]+	222.1125	3.20	0.45
Carbofuran F1	C10H13O3		165.0910		
Carbofuran F2	C7H7O3		123.0441		
Carbofuran F3	C6H7O		95.0491		
Carbofuran F4	C4H8		55.0542		
Carboxine	C12H13NO2S	[M+H]+	236.0740	22.02	0.00
Carboxine F1	C6H7O2S		143.0161		
Carboxine F2	C8H6NO		132.0444		
Carboxine F3	C6H6NS		124.0215		
Carboxine F4	C3H3OS		86.9899		
Carfentrazone ethyl	C15H14Cl2F3N3O3	[M+H]+	412.0437	3.09	-0.49
Carfentrazone-ethyl F1	C13H9Cl2F3N3O3		366.0018		
Carfentrazone-ethyl F2	C13H8Cl2F2N3O3		345.9956		

Carfentrazone-ethyl F3	C10H5Cl2F2N2O		276.9742		
Chlorbromuron	C9H10BrClN2O2	[M+H]+	292.9686	20.78	0.00
Chlorbromuron F1	C8H7BrCIN2O		260.9425		
Chlorbromuron F2	C6H4BrCIN		203.9210		
Chlordimeform	C10H13CIN2	[M+H]+	197.0840	21.32	-0.51
Chlordimeform F1	C8H7CIN		152.0262		
Chlordimeform F2	C7H6Cl		125.0153		
Chlordimeform F3	C8H7N		117.0573		
Chlorfenvinfos	C12H14Cl3O4P	[M+H]+	358.9768	3.09	0.00
Chlorfenvinfos F1	C10H11Cl3O4P		330.9455		
Chlorfenvinfos F2	C7H4Cl2OP		204.9371		
Chlorfenvinfos F3	C8H4Cl3		169.9863		
Chlorfenvinfos F4	C4H12O4P		155.0468		
Chlorfenvinfos F5	C2H8O4P		127.0155		
Chlorfenvinfos F6	H4O4P		98.9842		
Chloridazon (Pyrazon)	C10H8CIN3O	[M+H]+	222.0429	22.06	0.00
Chlorotoluron	C10H13CIN2O	[M+H]+	213.0789	24.34	0.00
Chlorotoluron F1	C8H7CINO		168.0211		
Chlorotoluron F2	C7H7CIN		140.0262		
Chlorotoluron F3	C3H6NO		72.0444		
Chloroxuron	C15H15CIN2O2	[M+H]+	291.0894	26.14	0.00
Chloroxuron F1	C3H6NO		73.0444		
Chlorpyrifos ethyl	C9H11Cl3NO3PS	[M+H]+	349.9336	28.22	0.00
Chlorpyrifos ethyl F1	C8Cl2O2		197.9275		
Chlorpyrifos ethyl F2	H4O3PS		114.9616		
Chlorpyrifos methyl	C7H7Cl3NO3PS	[M+H]+	321.9023	26.33	0.00
Chlorpyrifos methyl F1	C6H4Cl3NO2PS		289.8760		
Chlorpyrifos methyl F2	C3H6ClOS		124.9822		
Chlorpyrifos methyl F3	CH4PO3		78.9943		
Chlorsulfuron	C12H12CIN5O4S	[M+H]+	358.0371	20.10	0.00

Chlorsulfuron F1	C6H6N4O3		167.0564		
Chlorsulfuron F2	C10H11S		163.0576		
Chlorsulfuron F3	C5H9N4O		141.0770		
Chlorsulfuron F4	C6H4Cl		110.9923		
Chlorsulfuron F5	C3H6N		56.0495		
Cinosulfuron	C15H19N5O7S	[M+H]+	414.1078	3.09	0.00
Cinosulfuron F1	C7H9N3O7S		280.0234		
Cinosulfuron F2	C6H7N4O4		183.0513		
Cinosulfuron F3	C6H11O7		179.0550		
Cinosulfuron F4	C5H9N4O3		157.0720		
Cinosulfuron F5	C6H5O2S		141.0005		
Cinosulfuron F6	C6H5OS		125.0056		
Clofentezin	C14H8Cl2N4	[M+H]+	303.0198	31.75	-0.26
Clofentezin F1	C13H13CIN4		261.0902		
Clofentezin F2	C7H5CIN		138.0105		
Clofentezin F3	C5H10CIN2		133.0527		
Clomazone	C12H14CINO2	[M+H]+	240.0786	3.09	0.42
Clomazone F1	C7H6Cl		125.0153		
Coumaphos	C14H16ClO5PS	[M+H]+	363.0217	22.78	0.00
Coumaphos F1	C12H13ClO5PS		334.9904		
Coumaphos F2	C10H9ClO5PS		306.9591		
Coumaphos F3	C10H7ClO4PS		288.9486		
Cyanazine	C9H13CIN6	[M+H]+	241.0963	20.78	0.00
Cycloate	C11H21NOS	[M+H]+	216.1417	29.84	0.00
Cyproconazole	C15H18CIN3O	[M+H]+	292.1211	23.70	0.00
Cyproconazole F1	C7H6Cl		125.0153		
Cyproconazole F2	C2H4N4		70.0401		
Cyprodinil	C14H15N3	[M+H]+	226.1339	29.96	0.00
Cyprodinil F1	C3H12N5		210.1026		
Cyprodinil F2	C10H10N		144.0808		

Cyprodinil F3	C8H9N4		133.0760		
Cyprodinil F4	C7H7N4		119.0604		
Cyprodinil F5	C8H6N		116.0495		
Cyprodinil F6	C7H10N		108.0808		
Cyprodinil F7	C6H7N		93.0573		
Cyprodinil F8	C6H7		77.0386		
Cyromazine	C6H10N6	[M+H]+	167.1039	26.03	0.00
Cyromazine F1	C5H9N5		125.0822		
Cyromazine F2	C6H6N4		108.0556		
Cyromazine F3	C2H5N5		85.0509		
Cyromazine F4	CH6N4		60.0556		
Desethyl-terbuthylazine	C7H12CIN5	[M+H]+	202.0853	27.78	0.00
Desethyl-terbuthylazine F1	C3H5CIN6		146.0227		
Desethyl-terbuthylazine F2	C2H9CIN4		110.0480		
Desethyl-terbuthylazine F3	C2H3CIN4		104.0010		
Desethyl-terbuthylazine F4	CH4CIN3		79.0058		
Desmetryn	C8H15N5S	[M+H]+	214.1121	16.23	0.00
Desmetryn F1	C5H10N5S		172.0651		
Desmetryn F2	C4H8N3S		130.0433		
Desmetryn F3	C4H6N6		124.0618		
Desmetryn F4	C3H6N3S		116.0277		
Desmetryn F5	C2H7N2S		91.0324		
Desmetryn F6	C3H4N4		82.0400		
Desmetryn F7	C2H5N3		57.0447		
Diazinon	C12H21N2O3PS	[M+H]+	305.1083	27.67	0.00
Diazinon F1	C8H13N2S		169.0794		
Diazinon F2	C8H13N2O		153.1021		
Diazinon F3	C4H6NO		84.0444		
Dichlofenthion	C10H13Cl2O3PS	[M+H]+	314.9773	3.09	0.00
Dichlofenthion F1	C6H6Cl2O3PS		259.9147		
Dichlorvos	C4H7Cl2O4P	[M+H]+	220.9532	23.78	0.00

Dichlorvos F1	C2H6O3P		110.0049		
Dicrotophos	C8H16NO5P	[M+H]+	238.0839	46.96	0.00
Dicrotophos F1	C6H10O5P		193.0260		
Dicrotophos F2	C2H8O4P		127.0155		
Dicrotophos F3	C6H10NO		112.0757		
Dicrotophos F4	C2H6O3P		109.0049		
Dicrotophos F5	C3H6NO		72.0444		
Diethofencarb	C14H21NO4	[M+H]+	268.1543	23.33	0.00
Diethofencarb F1	C11H16NO5		226.1074		
Diethofencarb F2	C9H12NO5		198.0761		
Diethofencarb F3	C10H14NO3		180.1019		
Diethofencarb F4	C8H10NO3		152.0706		
Diethofencarb F5	C6H6NO3		124.0393		
Difenoconazole	C19H17Cl2N3O3	[M+H]+	406.0720	3.16	0.00
Difenoconazole F1	C17H15Cl2O4		337.0392		
Difenoconazole F2	C13H9Cl2O		251.0025		
Difenoxuron	C16H18N2O3	[M+H]+	287.1390	3.10	0.00
Difenoxuron F1	C7H7O3		123.0441		
Difenoxuron F2	C3H6NO		72.0444		
Diflubenzuron	C14H9ClF2N2O2	[M+H]+	311.0393	20.84	0.00
Diflubenzuron F1	C4H5ClFN2O		151.0080		
Diflubenzuron F2	C6H3F3		113.0208		
Diflubenzuron F3	C6H2F		93.0146		
Diflufenican	C19H11F5N2O2	[M+H]+	395.0813	10.90	0.00
Diflufenican F1	C13H7F3NO3		266.0423		
Diflufenican F2	C16H4FNO		246.0350		
Dimethametryn	C11H21N5S	[M+H]+	256.1590	29.18	0.00
Dimethametryn F1	C11H21N5S		186.0808		
Dimethametryn F2	C4H8N5S		158.0495		
Dimethametryn F3	C5H8N6		138.0770		

Dimethametryn F4	C4H6N4		96.0056		
Dimethametryn F5	C2H7N2S		91.0324		
Dimethametryn F6	C3H7N3		71.0604		
Dimethenamid	C12H18CINO2S	[M+H]+	276.0820	31.30	0.00
Dimethenamid F1	C11H15CINOS		244.0557		
Dimethenamid F2	C9H14NS		168.0841		
Dimethenamid F3	C6H7S		111.0263		
Dimethomorph	C21H22CINO4	[M+H]+	388.1310	20.61	0.26
Dimethomorph F1	C17H14ClO4		301.0626		
Dimethomorph F2	C16H14ClO3		273.0677		
Dimethomorph F3	C9H9O4		165.0546		
Dimethomorph F4	C7H4ClO3		138.9945		
Dimetridazole	C5H7N3O2	[M+H]+	142.0611	3.52	1.41
Dimetridazole F1	C5H7N2		95.0604		
Dimetridazole F2	C4H5N2		81.0447		
Diniconazole	C15H17Cl2N3O	[M+H]+	326.0821	26.89	0.00
Diniconazole F1	C8H8N3O		162.0662		
Diniconazole F2	C7H5Cl3		158.9763		
Diniconazole F3	C2H4N4		70.0400		
Diphenylamine	C12H11N	[M+H]+	170.0964	3.18	0.00
Diphenylamine F1	C6H7N		94.0573		
Diquat dibromide	C12H12Br2N2	[M-Br2-H]⁺	183.0917	29.44	0.00
Diquat dibromide F1	C11H9N2		169.0760		
Diuron	C9H10Cl2N2O	[M+H]+	233.0243	3.15	0.00
Diuron F1	C6H4Cl2N		159.9715		
Diuron F2	C3H6NO		72.0444		
DMST (N,N-dimethyl-N- tolylsulfonyldiamide)	C9H15N3	[M+H]+	151.1230	30.97	0.66
DMST F1	C7H9N		106.0651	-	
DMST F2	C6H8		79.0542		
Dodine	C13H30N3	[M+H]+	228.2434	3.13	0.00

Edifenphos	C14H15O2PS2	[M+H]+	311.0324	16.39	0.00
Edifenphos F1	C12H12O2PS3		283.0010		
Edifenphos F2	C6H6O2PS		172.9821		
Edifenphos F3	C6H5S3		140.9827		
Edifenphos F4	C6H5S		109.0106		
Eprinomectin b1a	C50H75NO14	[M+H]+	914.5260	25.29	0.00
Eprinomectin b1a F1	C50H74NO14		896.5155		
Eprinomectin b1a F2	C50H72NO13		878.5049		
Eprinomectin b1a F3	C49H72NO11		834.5151		
Eprinomectin b1a F4	C36H52NO10		642.3637		
Eprinomectin b1a F5	C25H42NO8		468.2956		
Eprinomectin b1a F6	C16H28NO7		330.1911		
Eprinomectin b1a F7	C15H24NO6		298.1649		
Eprinomectin b1a F8	C15H15O4		243.1016		
Eprinomectin b1a F9	C9H16NO4		186.1125		
Eprinomectin b1a F10	C7H14NO2		154.0863		
Eprinomectin b1a F11	C7H14NO2		144.1019		
Eprinomectin b1a F12	C6H10NO		112.0757		
Ethiofencarb sulfone	C11H15NO4S	[M+H] ⁺	258.0795	24.07	0.39
Ethiofencarb sulfone F1	C9H13O3S		201.0580		
Ethiofencarb sulfone F2	C10H13O4		181.0859		
Ethiofencarb sulfone F3	C10H11O3		163.0754		
Ethiofencarb sulfone F4	C9H11O		135.0804		
Ethiofencarb sulfone F5	C7H7O		107.0492		
Ethiofencarb sulfoxide	C11H15NO2S	[M+H]+	248.0716	28.38	0.00
Ethiofencarb sulfoxide F1	C9H13O2S		185.0631		
Ethiofencarb sulfoxide F2	C9H10NO3		164.0706		
Ethiofencarb sulfoxide F3	C7H7O		107.0492		
Ethiofencarb sulfoxide F4	C6H8		79.0542		
Ethion	C9H22O4P2S4	[M+H]+	384.9949	27.26	0.00
Ethion F1	C5H12O2PS4		230.9732		

Ethion F2	C6H16O2PS3		215.0324		
Ethion F3	C5H12O2PS3		199.0011		
Ethion F4	C3H8O2PS3		170.9698		
Ethion F5	C4H10O2PS		153.0134		
Ethion F6	CH4O2PS3		142.9384		
Ethion F7	C2H6O2PS		124.9821		
Ethiprole	C13H9Cl2F3N4OS	[M+H]+	396.9899	25.60	0.00
Ethiprole F1	C11HCl2F3N4S		350.9480		
Ethiprole F2	C8H4Cl2F3N3		254.9714		
Ethoxyquin	C14H19NO	[M+H]+	218.1539	21.49	0.00
Ethoxyquin F1	C13H16NO		202.1226		
Ethoxyquin F2	C12H16NO		190.1226		
Ethoxyquin F3	C12H14NO		188.1070		
Ethoxyquin F4	C11H12NO		174.0913		
Ethoxyquin F5	C10H10NO		160.0757		
Ethoxyquin F6	C9H10NO		148.0757		
Ethoxyquin F7	C8H8NO		134.0600		
Ethoxyquin F8	C8H10N		120.0808		
Etoprofos	C8H19O2PS2	[M+H]+	243.0637	23.36	0.00
Etrimphos	C10H17N2O4PS	[M+H]+	293.0719	23.94	0.00
Etrimphos F1	C8H14N2O4PS		265.0406		
Etrimphos F2	C5H14N2O3P		181.0737		
Etrimphos F3	C5H11NO3P		164.0471		
Etrimphos F4	C2H8O3PS		142.9926		
Etrimphos F5	C2H6O2PS		124.9821		
Etrimphos F6	C6H7N2O		123.0553		
Etrimphos F7	C2H6O3P		109.0051		
Etrimphos F8	C5H10N		84.0817		
Famphur	C10H16NO5PS2	[M+H]+	326.0280	27.48	0.00
Famphur F1	C8H10O5PS3		280.9702		
Famphur F2	C8H10O3PS		217.0083		

Famphur F3	C2H6O2PS		124.9821		
Famphur F4	C2H6O2P		93.0100		
Fenamiphos	C13H22NO3PS	[M+H]+	304.1131	18.43	0.00
Fenamiphos F1	C11H19NO3PS		276.0818		
Fenamiphos F2	C10H17NO3PS		262.0661		
Fenamiphos F3	C8H13NO3PS		234.0348		
Fenamiphos F4	C8H10O3PS		217.0083		
Fenamiphos F5	C10H5NPS		201.9875		
Fenamiphos F6	C3H10N		60.0808		
Fenarimol	C17H12Cl2N2O	[M+H]+	331.0399	4.01	0.00
Fenarimol F1	C7H4ClO		138.9945		
Fenarimol F2	C4H5N3		81.0447		
Fenazaquin	C20H22N2O	[M+H]+	307.1805	3.17	0.00
Fenazaquin F1	C12H18		161.1324		
Fenazaquin F2	C8H7N2O		147.0552		
Fenhexamid	C14H17Cl2NO2	[M+H]+	302.0709	26.70	0.00
Fenhexamid F1	C7H14		98.1011		
Fenitrothion	C9H12NO5PS	[M+H]+	278.0247	31.71	-0.36
Fenobucarb	C12H17NO2	[M+H]+	208.1332	29.03	0.00
Fenobucarb F1	C8H10NO3		152.0706		
Fenobucarb F2	C6H7O		95.0491		
Fenpiclonil	C11H6Cl2N2	[M+H] ⁺	236.9981	3.71	0.00
Fenpiclonil F1	C11H7CIN2		202.0292		
Fenpropidine	C19H31N	[M+H]+	274.2529	25.71	0.00
Fenpropidine F1	C11H16		147.1168		
Fenpropidine F2	C5H12N		86.0964		
Fenpropimorphe	C20H33NO	[M+H]+	304.2635	26.22	0.00
Fenpropimorphe F1	C7H16NO		130.1226		
Fenpropimorphe F2	C6H14NO		116.1070		
Fenpropimorphe F3	C6H12N		98.0964		

Fensulfothion	C11H17O4PS2	[M+H]+	309.0379	27.09	0.00
Fensulfothion F1	C9H14O4PS3		281.0066		
Fensulfothion F2	C7H10O4PS3		252.9753		
Fensulfothion F3	C7H8O3PS3		234.9647		
Fensulfothion F4	C7H9OS3		173.0089		
Fensulfothion F5	C7H9O2S		157.0318		
Fenthion	C10H15O3PS2	[M+H]+	279.0273	28.83	0.00
Fenthion F1	C9H12O2PS3		247.0011		
Fenthion F2	C9H12O3PS		231.0239		
Fenthion F3	C9H9S3		169.0140		
Fenthion F4	C8H9OS		153.0369		
Fenthion F5	C2H6O2PS		124.9821		
Fenuron	C9H12N2O	[M+H]+	165.1022	20.10	0.00
Fenuron F1	C3H6NO		73.0444		
Fipronil	C12H3N4OSCl2F6	[M-H]-	434.9314	20.53	0.46
Fipronil F1	C11H3N4OSCl2F3		365.9362		
Fipronil F2	C11H3NOSCl2F3		329.9596		
Fipronil F3	C11H3N4OSCl2F3		317.9691		
Fipronil F4	C10H2N3OSCI2		249.9585		
Fluazifop	C15H12F3NO4	[M+H]+	328.0791	8.39	0.00
Fluazifop F1	C14H11F3NO3		283.0736		
Fluazifop-p-butyl	C19H20F3NO4	[M+H]+	384.1417	25.90	0.00
Fluazifop-p-butyl F1	C15H13F3NO5		328.0791		
Fluazifop-p-butyl F2	C14H11F3NO3		282.0736		
Fluazifop-p-butyl F3	C13H11F3NO		254.0787		
Fluazifop-p-butyl F4	C4H8FO		91.0554		
Flufenacet	C14H13F4N3O2S	[M+H]+	364.0737	28.05	0.00
Flufenacet F1	C11H13FNO		194.0976		
Flufenacet F2	C8H7FNO		152.0506		
Flufenacet F3	C7H7FN		124.0557		

Flufenacet F4	C7H6F		109.0448		
Fluometuron	C10H11F3N2O	[M+H]+	233.0896	28.18	0.00
Fluroxypyr	C7H5Cl2FN2O3	[M+H]+	254.9734	23.35	0.00
Fluroxypyr F1	C5Cl2FN2O		195.9534		
Flutolanil	C17H16F3NO2	[M+H]+	324.1206	4.39	0.00
Flutolanil F1	C14H11F3NO3		282.0736		
Flutolanil F2	C17H9FNO		262.0663		
Flutolanil F3	C14H9FNO3		242.0612		
Flutolanil F4	C8H4F3O		173.0209		
Flutolanil F5	C8H4NO		130.0287		
Flutolanil F6	C3H5FO3		93.0346		
Flutriafol	C16H13F2N3O	[M+H]+	302.1099	27.66	0.00
Flutriafol F1	C14H11F2O		233.0772		
Flutriafol F2	C7H4FO		123.0241		
Flutriafol F3	C7H5F		109.0448		
Flutriafol F4	C2H4N4		70.0400		
Furmecyclox	C14H21NO3	[M+H]+	252.1594	22.38	0.00
Furmecyclox F1	C8H12NO4		170.0812		
Furmecyclox F2	C7H7O3		123.0441		
Furmecyclox F3	C6H8NO		110.0600		
Furmecyclox F4	C6H9O		97.0648		
Furmecyclox F5	C4H8		55.0542		
Griseofulvin	C17H17ClO6	[M+H]+	353.0786	18.96	0.00
Griseofulvin F1	C13H14ClO6		285.0524		
Griseofulvin F2	C9H7ClO7		215.0119		
Griseofulvin F3	C9H9O4		165.0546		
Griseofulvin F4	C4H5O		69.0335		
Haloxyfop	C15H11ClF3NO4	[M+H]+	362.0401	31.73	0.00
Haloxyfop F1	C14H10ClF3NO3		316.0347		
Haloxyfop F2	C13H10CIF3NO		288.0398		

Haloxyfop F3	C15H5ClF2N		272.0073		
Haloxyfop F4	C4H7FO		91.0055		
Hexazinone	C12H20N4O2	[M+H]+	253.1659	3.88	0.00
Hexazinone F1	C6H11N4O3		171.0877		
Hexazinone F2	C4H8N3		85.0760		
Hexazinone F3	C3H7N3		71.0604		
Hexythiazox	C17H21CIN2O2S	[M+H]+	353.1085	26.60	0.00
Hexythiazox F1	C11H12CIN2O2S		271.0303		
Hexythiazox F2	C10H11CINOS		228.0244		
Hexythiazox F3	C10H9CINO		194.0367		
Hexythiazox F4	C9H11CIN		168.0575		
Hexythiazox F5	C9H8Cl		151.0309		
Imazalil	C14H14Cl2N2O	[M+H]+	297.0556	20.83	0.00
Imazalil F1	C11H9Cl2N2O		255.0086		
Imazalil F2	C9H7Cl2O		200.9868		
Imazalil F3	C8H7Cl3		172.9913		
Imazalil F4	C7H5Cl3		158.9763		
Imazalil F5	C6H9N3		109.0760		
Imazalil F6	C4H5N3		81.0447		
Imazalil F7	C3H5N3		69.0447		
Imazamethabenz-methyl	C16H20N2O3	[M+H]+	289.1547	9.28	0.00
Imazamethabenz-methyl F1	C15H17N2O3		257.1285		
Imazamethabenz-methyl F2	C14H17N2O		229.1335		
Imazamethabenz-methyl F3	C12H10N2O3		215.0815		
Imazamethabenz-methyl F4	C10H10NO3		176.0706		
Imazamethabenz-methyl F5	C9H9N2O		161.0709		
Imazamethabenz-methyl F6	C9H6NO		144.0444		
Imazamethabenz-methyl F7	C5H12N		86.0964		
Imazapyr	C13H15N3O3	[M+H]+	262.1186	9.33	-0.38
Imazapyr F1	C12H16N3O3		234.1237		
lmazapyr F2	C10H10N3O4		220.0717		

Imazapyr F3	C13H15N3O4		217.0971		
Imazapyr F4	C10H8N3O3		202.0611		
Imazapyr F5	C5H12N		86.0964		
Imazaquin	C17H17N3O3	[M+H]+	312.1343	29.61	0.00
Imazaquin F1	C16H18N3O3		284.1394		
Imazaquin F2	C14H12N3O4		270.0873		
Imazaquin F3	C16H15N2O3		267.1128		
Imazaquin F4	C14H10N3O4		252.0768		
Imazaquin F5	C13H10N3O		224.0818		
Imazaquin F6	C11H7N2O3		199.0502		
Imazaquin F7	C11H5N2O		181.0396		
Imazaquin F8	C5H12N		86.0964		
Imidacloprid	C9H10CIN5O2		256.0596	29.67	0.00
Imidacloprid F1	C9H10CIN5		209.0589		
Imidacloprid F2	C9H11N5		175.0978		
Imidacloprid F3	C3H6N4		84.0564		
Indoxacarb	C22H17ClF3N3O7	[M+H]+	528.0779	25.56	0.00
Indoxacarb F1	C17H3F3N3		293.0321		
Indoxacarb F2	C12H10CIN2O3		249.0425		
Indoxacarb F3	C11H8ClO4		223.0156		
Indoxacarb F4	C9H7F3NO3		218.0423		
Indoxacarb F5	C7H7O8		203.0186		
Indoxacarb F6	C10H5CINO		190.0054		
Indoxacarb F7	C8H5CIN		150.0105		
Iprodione	C13H13Cl2N3O3	[M+H]+	330.0407	25.34	0.00
Iprodione F1	C10H8Cl2N3O4		287.9932		
Iprodione F2	C3H5N2O3		101.0346		
Iprodione F3	C3H3N2O3		99.0182		
Isocarbophos	C11H16NO4PS	[M+H] ⁺	312.0430	25.36	0.64
Isocarbophos F1	C11H14O4PS		273.0344		
Isocarbophos F2	C8H8O4PS		230.9875		

Isocarbophos F3	C7H4O3PS		198.9613		
Isocarbophos F4	C7H5OS		137.0056		
Isocarbophos F5	C4H9O2S		121.0318		
Isoprocarb	C11H15NO2	[M+H]+	194.1175	24.02	0.00
Isoprocarb F1	C8H10NO2		152.0706		
Isoprocarb F2	C8H10NO2		137.0961		
Isoprocarb F3	C6H7O		95.0491		
Isoproturon	C12H18N2O	[M+H]+	207.1492	26.96	0.00
Isoproturon F1	C9H13N2O		165.1022		
Isoproturon F2	C9H12N		134.0964		
Isoxaben	C18H24N2O4	[M+H]+	333.1809	19.86	0.00
Isoxaben F1	C9H9O4		165.0546		
Isoxaben F2	C6H3O3		107.0128		
Kresoxim-methyl	C18H19NO4	[M+H]+	314.1387	26.53	0.00
Kresoxim-methyl F1	C17H16NO4		282.1125		
Kresoxim-methyl F2	C17H15O4		267.1016		
Kresoxim-methyl F3	C16H16NO3		254.1176		
Kresoxim-methyl F4	C16H11O3		235.0754		
Kresoxim-methyl F5	C15H12NO5		222.0917		
Kresoxim-methyl F6	C11H12NO4		206.0812		
Kresoxim-methyl F7	C14H12N		194.0964		
Kresoxim-methyl F8	C6H11O4		131.0703		
Lenacil	C13H18N2O2	[M+H]+	235.1441	20.83	0.00
Lenacil F1	C7H9N2O3		153.0659		
Lenacil F2	C7H6NO3		136.0393		
Lenacil F3	C6H8NO3		110.0600		
Lenacil F4	C5H8N		82.0651		
Linuron	C9H10Cl2N2O2	[M+H]+	249.0192	21.55	0.00
Linuron F1	C8H7CIN2O		182.0241		
Linuron F2	C6H4Cl2N		159.9715		
Linuron F3	C5H3Cl3		132.9606		

Linuron F4	С9НО		125.0022		
Malachite green	C23H24N2	[M+H]+	329.2012	25.23	0.00
Malachite Green F1	C22H21N2		313.1703		
Malachite Green F2	C15H14N		208.1124		
Malachite Green F3	C8H7N2		131.0607		
Malaoxon	C10H19O7PS	[M+H]+	315.0662	3.09	0.00
Malaoxon F1	C8H13O5		173.0808		
Malaoxon F2	C2H8O3PS		142.9926		
Malaoxon F3	C6H7O4		127.0390		
Malaoxon F4	C4H3O4		99.0077		
Malathion	C10H19O6PS2	[M+H]+	331.0433	21.84	0.00
Malathion F1	C8H14O5PS3		285.0015		
Malathion F2	C7H14O4PS3		257.0066		
Malathion F3	C5H8O3PS3		210.9647		
Malathion F4	C6H7O4		127.0390		
Mebendazole	C16H13N3O3	[M+H]+	296.1030	28.27	0.00
Mebendazole F1	C15H9N3O3		264.0768		
Mebendazole F2	C7H5O		105.0335		
Mecarbam F1	C6H13O3PS3		226.9961	3.15	0.28
Mecarbam F2	C5H12O2PS3		199.0011		
Mecarbam F3	C4H10O2PS3		184.9854		
Mecarbam F4	C3H7O2PS3		170.9698		
Mecarbam F5	C4H10O2PS		153.0134		
Mecarbam F6	CH4O2PS3		142.9385		
Mecarbam F7	C2H6N2PS		124.9821		
Mecarbam F8	C4H6NO4		116.0342		
Mecarbam F9	H2O2PS		96.9508		
Mefenacet	C16H14N2O2S	[M+H]+	299.0849	21.84	0.00
Mefenacet F1	C9H5NO2S		192.0114		
Mefenacet F2	C9H10NO		148.0757		

Mefenacet F3	C8H10N		120.0808		
Metalaxyl	C15H21NO4	[M+H]+	280.1543	25.83	0.00
Metalaxyl F1	C14H18NO4		248.1281		
Metalaxyl F2	C13H18NO3		220.1332		
Metalaxyl F3	C12H18NO		192.1383		
Metalaxyl F4	C11H16N		162.1277		
Metalaxyl F5	C11H14N		160.1121		
Metalaxyl F6	C10H14N		148.1121		
Metalaxyl F7	C7H13O4		145.0859		
Metalaxyl F8	C9H12N		134.0964		
Metalaxyl F9	C9H10N		133.0808		
Metamitron	C10H10N4O	[M+H]+	203.0927	25.62	0.00
Metamitron F1	C9H11N5		175.0978		
Metamitron F2	C7H6N		104.0495		
Metazachlor	C14H16CIN3O	[M+H]+	278.1055	3.73	0.00
Metazachlor F1	C14H16N3O		242.1288		
Metazachlor F2	C11H13CINO		210.0680		
Metazachlor F3	C9H12N		134.0964		
Methabenzthiazuron	C10H11N3OS	[M+H]+	222.0696	27.14	0.00
Methabenzthiazuron F1	C8H9N2S		165.0481		
Methabenzthiazuron F2	C7H6NS		150.0246		
Methabenzthiazuron F3	C6H6NS		124.0215		
Methabenzthiazuron F4	C6H6N		92.0495		
Methamidophos	C2H8NO2PS	[M+H]+	142.0086	24.17	0.00
Methidathion	C6H11N2O4PS3	[M+H] ⁺	324.9511	27.52	0.00
Methidathion F1	C4H5N2O2S		145.0066		
Methidathion F2	C3H5N2O		85.0396		
Methiocarb	C11H15NO2S	[M+H]+	169.0682	19.94	0.59
Methiocarb F1	C9H13OS		169.0682		
Methiocarb F2	C8H9O		121.0648		

Methomyl	C5H10N2O2S	[M+H]+	163.0536	20.52	0.00
Methomyl F1	C3H7NOSNa		128.0141		
Methomyl F2	C3H8NOS		106.0321		
Methomyl F3	C3H6NS		88.0215		
Methomyl F4	C2H4NO		58.0287		
Methoxyfenozide	C22H28N2O3	[M+H]+	369.2173	27.48	0.00
Methoxyfenozide F1	C18H21N2O3		313.1546		
Methoxyfenozide F2	C18H21N2O3		149.0597		
Metobromuron	C9H11BrN2O2	[M+H]+	259.0076	23.08	0.00
Metobromuron F1	C8H8BrN2O		226.9815		
Metobromuron F2	C6H5BrN		169.9600		
Metobromuron F3	C5H4Br		142.9491		
Metolachlor	C15H22CINO2	[M+H]+	284.1412	3.09	0.00
Metolachlor F1	C14H19CINO		252.1150		
Metolachlor F2	C12H18N		176.1434		
Metolachlor F3	C11H14N		160.1121		
Metolachlor F4	C10H12N		146.0964		
Metolachlor F5	C9H12N		134.0964		
Metolcarb	C9H11NO2	[M+H]+	166.0863	18.21	0.60
Metoxuron	C10H13CIN2O2	[M+H]+	229.0738		
Metoxuron F1	C3H6NO		73.0444		
Metribuzin	C8H14N4OS	[M+H]+	215.0961	20.52	0.00
Metribuzin F1	C7H15N4S		187.1012		
Metribuzin F2	C3H7N4S		131.0386		
Mevinphos	C7H13O6P	[M+H]+	225.0523	3.14	0.00
Mevinphos F1	C6H10O5P		193.0260		
Mevinphos F2	C2H8O4P		127.0155		
Mevinphos F3	C2H6O3P		109.0049		
Mevinphos F4	C5H7O3		99.0441		
Mevinphos F5	C4H3O		67.0178		

Molinate	C9H17NOS	[M+H]+	188.1104	26.59	0.00
Molinate F1	C7H12NO		126.0913		
Molinate F2	C6H12N		98.0964		
Molinate F3	C4H8		55.0542		
Monocrotophos	C7H14NO5P	[M+H]+	224.0682	24.22	0.00
Monocrotophos F1	C6H10O5P		193.0260		
Monocrotophos F2	C2H8O4P		127.0155		
Monocrotophos F3	C2H6O3P		109.0049		
Monocrotophos F4	C5H8NO		98.0600		
Monocrotophos F5	C2H4NO		58.0287		
Monolinuron	C9H11CIN2O2	[M+H]+	215.0582	3.33	0.00
Monolinuron F1	C8H8CIN2O		183.0320		
Monolinuron F2	C6H5CIN		126.0105		
Monuron	C9H11CIN2O	[M+H]+	199.0633	24.78	0.00
Monuron F1	C7H5CINO		154.0054		
Monuron F2	C6H5CIN		126.0105		
Monuron F3	C3H6NO		72.0444		
Myclobutanil	C15H17CIN4	[M+H]+	289.1215	3.13	0.00
Myclobutanil F1	C7H8Cl		151.0309		
Myclobutanil F2	C7H6Cl		125.0153		
Myclobutanil F3	C2H4N4		70.0399		
Naptalam	C18H13NO3	[M+H]+	292.0968	20.14	0.00
Naptalam F1	C18H14NO4		274.0863		
Naptalam F2	C18H10NO		256.0757		
Naptalam F3	C8H5O4		149.0233		
Naptalam F4	C10H10N		144.0808		
Neburon	C12H16Cl2N2O	[M+H]+	275.0712	26.28	0.00
Neburon F1	C6H12NO		114.0913		
Neburon F2	C5H14N		88.1121		
Nitenpyram	C11H15CIN4O2	[M+H]+	271.0956	22.01	0.00

Nitenpyram F1	C11H16CIN4		225.1027		
Nitenpyram F2	C11H15CIN4		224.0949		
Nitenpyram F3	C10H13CIN4		210.0793		
Nitenpyram F4	C9H11CIN4		196.0636		
Nitenpyram F5	C11H16N4		190.1339		
Nitenpyram F6	C8H10CIN3		169.0527		
Nitenpyram F7	C6H5CIN		126.0105		
Nitenpyram F8	C5H11N3		99.0917		
Nitenpyram F9	C3H6N		56.0495		
Norflurazon	C12H9ClF3N3O	[M+H]+	304.0459	24.09	0.00
Norflurazone F1	C12H9ClF2N3O		284.0397		
Norflurazone F2	C12H8CIFN3O		264.0334		
Norflurazone F3	C7H5F3N		160.0369		
Nuarimol	C17H12CIFN2O	[M+H]+	315.0695	25.35	0.00
Nuarimol F1	C16H12CIFNO		288.0586		
Nuarimol F2	C16H11FNO		252.0819		
Nuarimol F3	C15H9ClF		243.0371		
Nuarimol F4	C7H4ClO		138.9945		
Nuarimol F5	C7H4FO		123.0241		
Nuarimol F6	C4H5N3		81.0447		
Ofurace	C14H16CINO3	[M+H]+	282.0891	3.18	0.00
Ofurace F1	C13H16CINO3		254.0942		
Ofurace F2	C13H14CINO		236.0837		
Ofurace F3	C12H14CINO		224.0837		
Ofurace F4	C11H16NO		178.1226		
Ofurace F5	C11H14N		160.1121		
Ofurace F6	C10H14N		148.1121		
Omethoate	C5H12NO4PS	[M+H]+	214.0297	28.75	0.00
Omethoate F1	C5H11NO3PS		196.0192		
Omethoate F2	C3H8O4PS		182.9881		
Omethoate F3	C3H8O3PS		154.9926		

Omethoate F4	C2H6O2PS		124.9821		
Omethoate F5	C2H6O3P		109.0049		
Omethoate F6	CH4O2P		78.9943		
Oxadiazon	C15H18Cl2N2O3	[M+H]+	345.0757	26.32	0.00
Oxadiazon F1	C12H13Cl2N2O4		303.0298		
Oxadiazon F2	C7H4Cl2NO4		219.9563		
Oxadiazon F3	C4H7Cl2N2O3		184.9879		
Oxadiazon F4	C6H3Cl2O3		176.9505		
Oxfendazole	C15H13N3O3S	[M+H]+	316.0750	22.04	0.00
Oxfendazole F1	C14H10N3O2S		284.0488		
Oxfendazole F2	C9H10N3O2		191.0685		
Oxfendazole F3	C8H6N3O		159.0419		
Paclobutrazol	C15H20CIN3O	[M+H]+	294.1368	20.91	0.00
Paclobutrazol F1	C10H10Cl		165.0465		
Paclobutrazol F2	C7H6Cl		125.0155		
Parathion	C6H7NO5PS ⁺	[M+H]+	235.9777	27.31	0.00
Parathion F1	C8H11NO5PS		264.0090		
Parathion F2	C6H7NO5PS		235.9777		
Parathion F3	C6H5NO4PS		217.9599		
Parathion F4	C6H7NPS		156.0031		
Parathion F5	C6H6NO4		140.0338		
Parathion F6	C2H9NPS		110.0188		
Parathion F7	C2H9NOP		94.0416		
Parathion-methyl	C8H10NO5PS	[M+H]+	264.0090	29.09	0.00
Parathion-methyl F1	C7H7NO4PS		231.9828		
Parathion-methyl F2	C2H6O2PS		124.9821		
Parathion-methyl F3	C2H6O3P		109.0053		
Paraoxon-methyl	C8H10NO6P	[M+H] ⁺	248.0319	27.60	-1.21
Paraoxon-methyl F1	C12H7O5		231.0288		
Paraoxon-methyl F2	C8H11O4P		202.0389		
Paraoxon-methyl F3	C2H6O3P		109.0049		

Paraoxon-methyl F4	C7H7O		107.0491		
Paraoxon-methyl F5	C4H3NP		95.9998		
Paraoxon-methyl F6	C3H9NP		90.0467		
Pebulat	C10H21NOS	[M+H]+	204.1417	28.84	0.00
Pebulate F1	C3H22NS		176.1467		
Pebulate F2	C7H16NOS		162.0947		
Pebulate F3	C7H14NO		128.1070		
Pebulate F4	C3H8NOS		106.0321		
Penconazole	C13H15Cl2N3	[M+H]+	284.0715	29.84	0.00
Penconazole F1	C8H7Cl3		172.9919		
Penconazole F2	C7H5Cl3		158.9763		
Penconazole F3	C2H4N4		70.0400		
Pencycuron	C19H21CIN2O	[M+H]+	329.1415	27.40	0.00
Pencycuron F1	C13H13CIN		218.0731		
Pencycuron F2	C7H6Cl		125.0153		
Pendimethalin	C13H19N3O4	[M+H]+	282.1448	22.06	0.00
Pendimethalin F1	C8H10N3O4		212.0666		
Pendimethalin F2	C8H8N3O3		194.0560		
Pendimethalin F3	C5H10NO4		148.0604		
Phosalone	C12H15CINO4PS2	[M+H]+	367.9941	29.49	0.00
Phosalone F1	C11H14CINO4PS		322.0064		
Phosalone F2	C8H5CINO3		182.0003		
Phosalone F3	C8H6ClO		153.0102		
Phosalone F4	C7H5NCI		138.0105		
Phosalone F5	C6H4Cl		110.9996		
Phosmet	C9H6NO2	[M+H]+	160.0393	29.88	0.00
Phosmet F1	C8H5O2		133.0284		
Picolinafen	C19H12F4N2O2	[M+H]+	377.0908	29.56	0.00
Picolinafen F1	C19H11F4N2O		359.0802		
Picolinafen F2	C12H7F3NO		238.0474		

Pirimicarb	C11H18N4O2	[M+H]+	239.1502	26.31	0.00
Pirimicarb F1	C9H16N3O		182.1288		
Pirimicarb F2	C7H9N2O		137.0709		
Pirimicarb F3	C3H8N3		72.0682		
Pirimiphos methyl	C11H20N3O3PS	[M+H]+	306.1036	30.51	0.00
Pirimiphos methyl F1	C9H17N3O3PS		278.0723		
Pirimiphos methyl F2	C10H17N3O2PS		274.0774		
Pirimiphos methyl F3	C9H14N4		164.1182		
Pirimiphos methyl F4	C7H10N4		136.0869		
Pirimiphos methyl F5	C5H6N4		108.0556		
Pirimiphos methyl F6	C5H7N3		95.0604		
Pirimiphos methyl F7	C3H3N3		67.0291		
Pretilachlor	C17H26CINO2	[M+H]+	312.1725	3.65	0.00
Pretilachlor F1	C14H19CINO		252.1150		
Pretilachlor F2	C12H18N		176.1434		
Pretilachlor F3	C11H14N		160.1121		
Pretilachlor F4	C10H14N		148.1121		
Pretilachlor F5	C8H8N		118.0651		
Prochloraz	C15H16Cl3N3O2	[M+H]+	376.0380	29.03	0.00
Prochloraz F1	C12H13Cl3NO3		308.0006		
Prochloraz F2	C11H13Cl3NO		280.0057		
Prochloraz F3	C9H7Cl3NO3		265.9536		
Prochloraz F4	C11H12Cl2NO		244.0288		
Prochloraz F5	C8H6Cl2NO		201.9821		
Prochloraz F6	C4H8N		70.0651		
Prochloraz F7	C3H4NO		70.0287		
Procymidone	C13H11Cl2NO2	[M+H]+	284.0240	26.72	0.00
Procymidone F1	C12H12Cl2NO		257.0290		
Profenofos	C11H15BrClO3PS	[M+H]+	372.9424	31.54	-0.27
Profenofos F1	C9H12BrClO3PS		344.9111		
Profenofos F2	C6H6BrClO3PS		302.8642		

Profenofos F3	C6H4BrClO2PS		284.8533		
Profenofos F4	C6H4BrClO3P		268.8764		
Profenofos F5	CH2CIOS		96.9509		
Promecarb	C12H17NO2	[M+H]+	208.1332	20.85	0.00
Promecarb F1	C11H16NO3		194.1176		
Promecarb F2	C10H15O		151.1117		
Promecarb F3	C7H8O		109.0648		
Prometon	C10H19N5O	[M+H]+	226.1662	30.53	0.00
Prometon F1	C7H14N5O		184.1193		
Prometon F2	C4H8N5O		142.0723		
Prometon F3	C3H6N3O		100.0510		
Prometon F4	C2H4N3O		86.0356		
Prometon F5	C2H7N3O		75.0561		
Prometon F6	C2H5N3		57.0458		
Prometryn	C10H19N5S	[M+H]+	242.1434	29.92	0.00
Prometryn F1	C7H14N5O		200.0964		
Prometryn F2	C4H8N5O		158.0495		
Prometryn F3	C3H6N3S		116.0272		
Prometryn F4	C2H5N5		85.0509		
Propachlor	C11H14CINO	[M+H]+	212.0837	30.17	0.00
Propachlor F1	C8H9CINO		170.0367		
Propachlor F2	C8H7CIN		152.0262		
Propachlor F3	C7H8N		106.0651		
Propachlor F4	C6H8N		94.0651		
Propamocarb	C9H20N2O2	[M+H]+	189.1598	25.06	0.00
Propamocarb F1	C7H14NO3		144.1019		
Propamocarb F2	C4H8NO3		102.0550		
Propamocarb F3	C2H4NO3		74.0237		
Propamocarb F4	C3H8N		58.0651		
Propanil	C9H9Cl2NO	[M+H]+	218.0134	3.13	0.00
Propanil F1	C8H7Cl2O		188.9868		

Propanil F2	C6H6Cl2N		161.9872		
Propanil F3	C9H3O		127.0178		
Propanil F4	C3H5O		57.0335		
Propaquizafop	C22H22CIN3O5	[M+H]+	444.1321	27.64	0.00
Propaquizafop F1	C19H16CIN2O5		371.0793		
Propaquizafop F2	C17H12CIN2O4		327.0501		
Propaquizafop F3	C16H12CIN2O3		299.0582		
Propaquizafop F4	C5H10NO		100.0757		
Propazine	C9H16CIN5	[M+H]+	230.1167	25.24	0.00
Propazine F1	C6H11CIN6		188.0697		
Propazine F2	C3H5CIN6		146.0228		
Propazine F3	C2H9CIN4		110.0480		
Propazine F4	C2H3CIN4		104.0010		
Propazine F5	CH4CIN3		79.0058		
Propiconazole	C15H17Cl2N3O2	[M+H]+	342.0771	26.07	1.75
Propiconazole F1	C7H5Cl3		158.9763		
Propiconazole F2	C5H10		69.0649		
Propisochlor	C15H22CINO2	[M+H]+	284.1412	3.13	0.00
Propisochlor F1	C12H15CINO		224.0837		
Propisochlor F2	C11H15CINO		212.0837		
Propisochlor F3	C10H14N		148.1121		
Propisochlor F4	C9H11N		133.0884		
Propoxur	C11H15NO3	[M+H]+	210.1125	13.15	0.00
Propoxur F1	C8H10NO4		168.0655		
Propoxur F2	C9H13O3		153.0910		
Propoxur F3	C6H7O3		111.0439		
Propoxur F4	C6H5O		93.0332		
Propoxur F5	C2H4NO		58.0287		
Propyzamid	C12H11Cl2NO	[M+H]+	256.0290	24.40	0.00
Propyzamid F1	C7H6Cl2NO		189.9821		
Propyzamid F2	C7H3Cl2O		172.9555		

Propyzamid F3	C6H5Cl3		146.9763		
Propyzamid F4	C6H3Cl3		144.9601		
Propyzamid F5	C5H8		67.0542		
Proquinazid	C14H17IN2O2	[M+H]+	373.0407	3.14	0.00
Proquinazid F1	C11H12IN2O3		330.9938		
Proquinazid F2	C8H6IN2O3		288.9468		
Proquinazid F3	C8H3INO3		271.9203		
Prosulfocarb	C14H21NOS	[M+H]+	252.1417	25.35	0.00
Prosulfocarb F1	C7H14NO		128.1070		
Prosulfocarb F2	C7H8		91.0542		
Prosulfocarb F3	C4H8NO		86.0600		
Prosulfuron	C15H16F3N5O4S	[M+H]+	420.0948	26.83	0.00
Prosulfuron F1	C5H9N4O4		173.0669		
Prosulfuron F2	C6H7N4O3		167.0564		
Prosulfuron F3	C5H9N4O		141.0771		
Prosulfuron F4	C7H6F		109.0448		
Pymetrozin	C10H11N5O	[M+H]+	218.1036	30.33	0.00
Pymetrozin F1	C6H5N5O		106.0447		
Pyraclostrobin	C19H18CIN3O4	[M+H]+	388.1059	27.82	0.00
Pyraclostrobin F1	C16H11CIN3O		296.0585		
Pyraclostrobin F2	C10H12NO4		194.0812		
Pyraclostrobin F3	C9H10NO3		164.0706		
Pyraclostrobin F4	C6H12CIN2O		163.0633		
Pyraclostrobin F5	C5H10CIN2		149.0476		
Pyraclostrobin F6	C5H10CIN2		133.0527		
Pyranocoumarin	C20H18O	[M+H]+	323.1278	27.82	0.00
Pyranocoumarin F1	251.0703		251.0703		
Pyranocoumarin F2	223.0754		223.0754		
Pyranocoumarin F3	183.0804		183.0804		
Pyranocoumarin F4	173.0233		173.0233		

Pyrazophos	C14H20N3O5PS	[M+H]+	374.0934	27.73	0.00
Pyrazophos F1	C12H17N3O5PS		346.0621		
Pyrazophos F2	C10H12N3O2S		238.0645		
Pyrazophos F3	C10H12N3O4		222.0873		
Pyrazophos F4	C8H8N3O2S		210.0332		
Pyrazophos F5	C12H13O4		205.0859		
Pyrazophos F6	C8H8N3O4		194.0560		
Pyridaben	C19H25CIN2OS	[M+H]+	365.1448	3.14	0.00
Pyridaben F1	C15H18CIN2OS		309.0823		
Pyridaben F2	C11H16		147.1168		
Pyridaphenthion	C14H17N2O4PS	[M+H]+	341.0719	26.85	0.00
Pyridaphenthion F1	C12H14N2O4PS		313.0406		
Pyridaphenthion F2	C10H9N2OS		205.0430		
Pyridaphenthion F3	C10H9N2O3		189.0659		
Pyridaphenthion F4	C6H6N		92.0495		
Pyrimethanil	C12H13N3	[M+H]+	200.1182	32.59	0.00
Pyrimethanil F1	C12H11N3		183.0917		
Pyrimethanil F2	C6H7N3		107.0604		
Pyrimethanil F3	C6H7N		82.0648		
Pyriproxifen	C20H19NO3	[M+H]+	322.2220	3.65	-2.17
Pyriproxifen F1	C15H15O3		227.1067		
Pyriproxifen F2	C12H9O3		185.0597		
Pyriproxifen F3	C5H6NO		96.0440		
Pyriproxifen F4	C5H4N		78.0338		
Pyroquilon	C11H11NO	[M+H]+	174.0913	27.37	0.00
Pyroquilon F1	C9H10N		132.0808		
Pyroquilon F2	C8H7N		117.0573		
Quinalphos	C12H15N2O3PS	[M+H]+	299.0613	31.01	0.00
Quinalphos F1	C10H12N2O3PS		271.0301		
Quinalphos F2	C8H8N2O3PS		242.9988		

Quinalphos F3	C8H7N2S		163.0320		
Quinalphos F4	C8H7N2O		147.0558		
Quinalphos F5	C6H10OP		129.0464		
Quinmerac	C11H8CINO2	[M+H]+	222.0316	3.56	0.00
Quinmerac F1	C11H7CINO		204.0211		
Quinmerac F2	C10H7CIN		176.0260		
Quinmerac F3	C7H9O4		141.0571		
Quinoclamine	C10H6CINO2	[M+H]+	208.0160	18.88	0.00
Quinoclamine F1	C10H6NO3		172.0393		
Quinoclamine F2	C9H6NO		144.0444		
Quinoclamine F3	C7H5O		105.0335		
Quinoxyfen	C15H8Cl2FNO	[M+H]+	308.0039	30.37	0.00
Quinoxyfen F1	C9H6Cl2NO		213.9821		
Quinoxyfen F2	C9H5Cl2N		196.9797		
Quizalofop-P-ethyl	C19H17CIN2O4	[M+H]+	373.0950	25.84	0.00
Quizalofop-P-ethyl F1	C16H12CIN2O3		299.0582		
Quizalofop-P-ethyl F2	C15H12CIN2O		271.0632		
Quizalofop-P-ethyl F3	C14H8CIN2O		255.0319		
Rimsulfuron	C14H17N5O7S2	[M+H]+	432.0642	28.80	0.23
Rimsulfuron F1	C13H17N4O4S		325.0965		
Rimsulfuron F2	C7H8N3O3		182.0560		
Rimsulfuron F3	C6H10N3O2		156.0768		
Simazine	C7H12CIN5	[M+H]+	202.0854	3.65	0.23
Simazine F1	C4H7CIN4		132.0323		
Simazine F2	C6H10N4		124.0869		
Simazine F3	C2H3CIN4		105.0088		
Spiromesifen	C23H30O4	[M+H]+	371.2216	28.59	-0.27
Spiromesifen F1	C19H19O4		295.1329		
Spiromesifen F2	C17H21O4		273.1485		
Spiromesifen F3	C17H19O3		256.1380		

Spiromesifen F4	C16H19O3		227.1430		
Spiromesifen F5	C12H11O3		187.0754		
Spiromesifen F6	C11H13O		161.0961		
Spiromesifen F7	C5H8		67.0542		
Spiroxamine	C18H35NO2	[M+H]+	298.2740	19.24	0.00
Spiroxamine F1	C8H18NO		144.1383		
Spiroxamine F2	C6H14N		100.1121		
Spiroxamine F3	C4H10N		72.0808		
Sulcotrione	C14H13ClO5S	[M+H]+	329.0245	25.27	0.00
Sulcotrione F1	C14H13O5S		293.0478		
Sulcotrione F2	C7H7O4		139.0390		
Sulcotrione F3	C6H7O3		111.0441		
Sulfometuron methyl	C15H16N4O5S	[M+H]+	365.0914	26.25	0.00
Sulfometuron methyl F1	C14H2NO6		263.9927		
Sulfometuron methyl F2	C8H7O4S		199.0060		
Sulfometuron methyl F3	C7H8N3O		150.0662		
Sulfometuron methyl F4	C8H8N4		146.0713		
Sulfometuron methyl F5	C6H7N3		107.0604		
Sulfotep	C8H20O5P2S2	[M+H]+	323.0300	19.82	0.00
Sulfotep F1	C6H17O5P2S2		294.9992		
Sulfotep F2	C6H17O5P2S2		171.0239		
Sulfotep F3	C2H8O3PS		142.9926		
Sulfotep F4	C7H7O3		123.0441		
Sulfotep F5	H4O3PS		114.9613		
Sulfotep F6	H2O2PS		96.9508		
Sulprofos	C12H19O2PS3	[M+H] ⁺	323.0358	3.13	0.00
Sulprofos F1	C7H8O2PS2		218.9698		
Sulprofos F2	C7H7OS		139.0212		
Tebuconazole	C16H22CIN3O	[M+H]+	308.1524	3.17	0.00
Tebuconazole F1	C7H6Cl		125.0153		
Tebuconazole F2	C2H3N4		70.0400		

Tebuconazole F3	C4H10		57.0699		
Tebufenpyrad	C18H24CIN3O	[M+H]+	334.1680	20.07	0.00
Tebufenpyrad F1	C7H8CIN2O		171.0320		
Tebufenpyrad F2	C6H10CIN3		145.0527		
Tebufenpyrad F3	C4H6CIN3		117.0214		
Tebuthiuron	C9H16N4OS	[M+H]+	229.1118	9.76	0.00
Tebuthiuron F1	C7H14N3S		172.0903		
Tebuthiuron F2	C3H6N3S		116.0277		
Tebuthiuron F3	C2H5N2S		89.0168		
Tebuthiuron F4	C2H4NS		74.0559		
Teflubenzuron	C14H6Cl2F4N2O2	[M+H]+	380.9815	32.18	0.00
Teflubenzuron F1	C14H4Cl2F3N2O3		358.9607		
Teflubenzuron F2	C14H3Cl2F2N2O3		338.9545		
Tembotrione	C17H16ClF3O6S	[M+H]+	441.0381	3.13	0.00
Tembotrione F1	C15H14ClO5S		341.0245		
Tembotrione F2	C15H13O5S		305.0470		
Tepraloxydim	C17H24CINO4	[M+H]+	342.1467	27.31	0.00
Tepraloxydim F1	C14H20NO4		250.1438		
Tepraloxydim F2	C9H12NO3		166.0863		
Tepraloxydim F3	C6H5N3		105.0447		
Terbumeton	C10H19N5O	[M+H]+	226.1662	3.13	0.00
Terbumeton F1	C6H12N5O		170.1036		
Terbumeton F2	C4H8N5O		142.0725		
Terbumeton F3	C5H10N3O		128.0818		
Terbumeton F4	C4H8N3O		114.0662		
Terbumeton F5	C3H6N3O		100.0505		
Terbumeton F6	C4H6N4		96.0556		
Terbumeton F7	C2H4N3O		86.0349		
Terbumeton F8	C2H7N2O		75.0553		
Terbumeton F9	C2H5N3		57.0447		

Terbuthylazine	C9H16CIN5	[M+H]+	230.1167	28.84	0.00
Terbuthylazine F1	C5H9CIN6		174.0540		
Terbuthylazine F2	C5H8N6		138.0774		
Terbuthylazine F3	C4H7CIN4		132.0323		
Terbuthylazine F4	C2H3CIN4		104.0010		
Terbuthylazine F5	C4H6N4		96.0556		
Terbuthylazine F6	CH4CIN3		79.0058		
Terbutryn	C10H19N5S	[M+H]+	242.1434	3.14	0.00
Terbutryn F1	C6H12N5S		186.0808		
Terbutryn F2	C2H7N2S		91.0324		
Thiabendazole	C10H7N3S	[M+H]+	202.0433	28.82	0.00
Thiabendazole F1	C9H7N2S		175.0327		
Thiabendazole F2	C8H7N2		131.0607		
Thiacloprid	C10H9CIN4S	[M+H]+	253.0309	31.43	0.00
Thiacloprid F1	C8H9CINS		186.0139		
Thiacloprid F2	C6H5CIN		126.0105		
Thiacloprid F3	C5H4Cl		98.9996		
Thiacloprid F4	C6H4N		90.0338		
Thiamethoxam	C8H10CIN5O3S	[M+H]+	292.0266	29.49	0.00
Thiamethoxam F1	C8H11N4OS		211.0648		
Thiamethoxam F2	C7H9N4S		181.0542		
Thiamethoxam F3	C6H6N3S		152.0277		
Thiamethoxam F4	C4H3CINS		131.9669		
Thiocyclam	C5H11NS3	[M+H]+	182.0126	27.15	0.00
Thiodicarb	C10H18N4O4S3	[M+H]+	355.0563	13.09	0.00
Tralkoxidym	C20H27NO3	[M+H] ⁺	330.2064	12.04	0.30
Tralkoxidym F1	C18H22NO2		284.1645		
Tralkoxidym F2	C8H10NO2		152.0706		
Tralkoxidym F3	C7H8NO2		138.0550		
Tralkoxidym F4	C6H8NO		110.0600		

Tralkoxidym F5	C5H8NO		98.0600		
Tralkoxidym F6	C5H6NO		96.0444		
Tralkoxidym F7	C5H8N		82.0651		
Tralkoxidym F8	C3H6NO		72.0444		
Triadimefon	C14H16CIN3O2	[M+H]+	294.1004	19.73	0.00
Triadimefon F1	C12H14ClO3		225.0677		
Triadimefon F2	C11H14ClO		197.0728		
Triadimenol	C14H18CIN3O2	[M+H]+	296.1160	27.16	0.00
Triadimenol F1	C12H16ClO3		227.0833		
Triadimenol F2	C6H11O		99.0804		
Triadimenol F3	C2H4N4		70.0399		
Triallat	C10H16Cl3NOS	[M+H]+	304.0091	17.14	0.33
Triallat F1	C7H11Cl3NOS		261.9621		
Triallat F2	C3H2Cl4		142.9217		
Triallat F3	C7H14NO		128.1070		
Triallat F4	C4H8NO		86.0600		
Triasulfuron	C14H16CIN5O5S	[M+H]+	402.0633	20.46	0.00
Triasulfuron F1	C11H6CINO4S		283.9769		
Triasulfuron F2	C8H8ClO3S		218.9877		
Triasulfuron F3	C6H7N4O3		167.0564		
Triasulfuron F4	C6H10O6		163.0601		
Triasulfuron F5	C5H9N4O		141.0771		
Triazophos	C12H16N3O3PS	[M+H]+	314.0722	2.40	0.00
Triazophos F1	C10H12N3O3PS		286.0410		
Triazophos F2	C8H8N3S		178.0430		
Triazophos F3	C8H8N3O		162.0662		
Triazophos F4	C7H2N3		119.0604		
Triazophos F5	H2O2PS		96.9508		
Trichlorfon	C4H8Cl3O4P	[M+H]+	256.9299	31.28	0.00
Trichlorfon F1	C4H8Cl2O4P		220.9531		
Trichlorfon F2	C2H6O3P		109.0051		

Trichlorfon F3	CH4O2P		78.9943		
Trietazine	C9H16CIN5	[M+H]+	230.1167	3.03	0.00
Trietazine F1	C7H13CIN6		202.0854		
Trietazine F2	C4H7CIN4		132.0323		
Trietazine F3	C6H10N4		124.0869		
Trietazine F4	C2H3CIN4		104.0010		
Trietazine F5	C5H11N3		99.0917		
Trietazine F6	C3H7N3		71.0604		
Trifloxystrobin	C20H19F3N2O4	[M+H]+	409.1370	30.75	0.00
Trifloxystrobin F1	C9H11F3NO		206.0812		
Trifloxystrobin F2	C9H7F3N		186.0525		
Trifloxystrobin F3	C7H4F4		145.0260		
Trifloxystrobin F4	C9H10N		132.0808		
Trifloxystrobin F5	C8H6N		116.0495		
Triflumizole	C15H15ClF3N3O	[M+H]+	346.0929	28.36	0.00
Triflumizole F1	C12H12CIF3NO		278.0554		
Triflumizole F2	C3H5N3		69.0447		
Triflumuron	C15H10ClF3N2O3	[M+H]+	359.0405	26.52	0.00
Triflumuron F1	C10H4F2N		176.0317		
Triflumuron F2	CHF3O		84.9907		
Trifluralin	C13H16F3N3O4	[M+H]+	336.1166	3.09	0.00
Trinexapac-ethyl	C13H16O5	[M+H]+	253.1071	24.58	0.00
Trinexapac-ethyl F1	C11H11O5		207.0652		
Trinexapac-ethyl F2	C13H11O3		199.0754		
Trinexapac-ethyl F3	C9H13O5		185.0808		
Trinexapac-ethyl F4	C10H11O4		179.0703		
Trinexapac-ethyl F5	C8H5O5		165.0182		
Trinexapac-ethyl F6	C7H5O4		137.0233		
Trinexapac-ethyl F7	C4H5O		69.0335		
	PHARMACEUTICAL (82)				

6α-Methylprednisolone	C22H31O5	[M+H]+	375.2166	21.59	0.53
6α-Methylprednisolone F1	C22H29O4		357.2060		
6α-Methylprednisolone F2	C22H27O3		339.1955		
Antipyrine	C11H12N2O	[M+H]+	189.1022	3.78	0.00
Atenolol	C14H22N2O3	[M+H]+	267.1703	23.12	0.00
Atenolol F1	C11H17N2O3		225.1234		
Atenolol F2	C11H12NO2		190.0863		
Atropine	C17H23NO3	[M+H]+	290.1751	27.86	0.00
Atropine F1	C16H22NO2		260.1649		
Atropine F2	C8H14N		124.1121		
Atropine F3	C7H9		93.0703		
Carbamazepine	C15H12N2O	[M+H]+	237.1022	12.47	0.00
Carbamazepine F1	C14H13N		195.1043		
Carbamazepine F2	C14H12N		194.0964		
Carbamazepine F3	C14H11N		193.0886		
Carbamazepine F4	C14H10N		192.0808		
Chlortetracycline	C22H23CIN2O8	[M+H]+	479.1216	3.09	0.00
Chlortetracycline F1	C22H22O8N		428.1350		
Chlortetracycline F2	C16H24O7N2		356.1576		
Chlortetracycline F3	C18H20O2N2Cl		331.1221		
Chlortetracycline F4	C20H19O3N		321.1356		
Chlortetracycline F5	C7H14O8N2		254.0751		
Chlortetracycline F6	C11H6ONCI		203.0136		
Chlortetracycline F7	C8H16NO2		158.1179		
Chlortetracycline F8	C8H8N2		132.0686		
Ciprofloxacin	C17H18FN3O3	[M+H]+	332.1405	28.07	0.21
Ciprofloxacin F1	C16H19FN3O3		314.1299		
Ciprofloxacin F2	C16H19FN3O		288.1507		
Ciprofloxacin F3	C14H14FN2O		245.1085		
Ciprofloxacin F4	C12H8FN2O3		231.0564		
Ciprofloxacin F5	C11H8FN2O		203.0615		
-------------------	---------------	--------	----------	-------	-------
Clarithromycin	C38H69NO13	[M+H]+	748.4842	9.49	0.30
Clarithromycin F1	C30H56NO11		590.3899		
Clarithromycin F2	C29H52NO10		558.3637		
Clarithromycin F3	C8H16NO3		158.1176		
Clarithromycin F4	C6H14NO		116.1070		
Clindamycin	C18H34N2O5SCI	[M+H]+	425.1871	3.17	0.00
Clindamycin F1	C17H30N2O5Cl		377.1838		
Clindamycin F2	C8H16N		126.1277		
Clomiphene	C26H28CINO	[M+H]+	406.1932	22.26	-1.18
Clomiphene F1	C6H14N		100.1121		
Cotinine	C10H12N2O	[M+H]+	177.1025	29.18	0.00
Cotinine F1	C8H10NO		136.0757		
Danofloxacin	C19H20FN3O3	[M+H]+	358.1561	25.01	0.00
Danofloxacin F1	C18H20FN3O		314.1663		
Danofloxacin F2	C17H15FN2O		283.1241		
Danofloxacin F3	C6H9N		96.0808		
Demeclocycline	C21H21CIN2O8	[M+H]+	465.1059		
Demeclocycline F1	C21H19CINO9		448.0794		
Demeclocycline F2	C21H17CINO8		430.0688		
Demeclocycline F3	C6H6NO		108.0444		
Demeclocycline F4	C6H6N		92.0495		
Diazepam	C16H13CIN2O	[M+H]+	284.0711	27.38	-0.04
Diazepam F1	C15H14CIN2		257.0840		
Diazepam F2	C8H9CIN		154.0418		
Diclofenac	C14H11Cl2NO2	[M+H]+	296.0240	3.10	0.00
Diclofenac F1	C13H10Cl2N		250.0196		
Diclofenac F2	C13H10CIN		214.0426		
Difloxacin	C21H19F2N3O3	[M+H]+	400.1467	29.03	0.00
Difloxacin F1	C21H18F2N3O2		382.1362		

Difloxacin F2	C20H20F2N3O		356.1569			
Diphenhydramine	C17H21NO	[M+H]+	256.1696	28.10	0.75	
Diphenhydramine F1	C13H12		167.0855			
Diphenhydramine F2	C12H9		152.0621			
Doxycycline	C22H24N2O8	[M+H]+	445.1605	3.16	0.78	
Enoxacin	C15H17FN4O3	[M+H]+	321.1357	3.42	-0.22	
Enoxacin F1	C15H16FN4O3		303.1252			
Enoxacin F2	C15H12N4		234.1026			
Enrofloxacin	C19H22FN3O3	[M+H]+	360.1718	25.35	0.00	
Enrofloxacin F1	C19H21FN3O3		342.1612			
Enrofloxacin F2	C18H23FN3O		316.1820			
Enrofloxacin F3	C18H23FN3O		245.1085			
Erythromycin	C37H67NO13	[M+H]+	734.4685	28.55	0.75	
Erythromycin F1	C29H53NO11		576.3742			
Erythromycin F2	C29H52NO10		558.3637			
Erythromycin F3	C29H48NO8		522.3495			
Erythromycin F4	C8H16NO3		158.1176			
Erythromycin F5	C6H14NO		116.1070			
Erythromycin F6	C5H7O		83.0491			
Finasteride	C23H37N2O2	[M+H]+	373.2850	3.14	0.75	
Finasteride F1	C19H29N2O2		317.2222			_
Fleroxacin	C17H18F3N3O3	[M+H] ⁺	370.1373	25.87	0.27	
Fleroxacin F1	C4H7F3N3O3		202.0432			
Fleroxacin F2	C3H6O3N2F3		175.0327			
Fleroxacin F3	C8H13O2N		158.1178			
Flufenamic acid	C14H10F3NO2	[M+H]+	282.0736	30.85	0.00	
Flufenamic acid F1	C14H9F3NO		264.0631			
Flufenamic acid F2	C13H10N		180.0808			_
Flumequine	C14H12FNO3	[M+H]+	262.0874	26.60	0.00	
Flumequine F1	C14H11FNO3		244.0768			

Flumequine F2	C11H5FNO3		202.0299		
Flumequine F3	C10H5FNO		174.0350		
Gemfibrozil	C15H22O3	[M+H]+	273.1461	26.14	0.00
Gemfibrozil F1	C15H21O3		233.1536		
Gemfibrozil F2	C14H21O		205.1587		
Gemfibrozil F3	C7H13O3		129.0910		
Gemfibrozil F4	C6H12		83.0855		
Ibuprofen	C13H18O2	[M+H]+	207.1380	26.80	0.00
Ibuprofen F1	C12H17		161.1325		
Ibuprofen F2	C8H9		105.0699		
Indomethacine	C19H16CINO4	[M+H]+	358.0841	23.93	0.00
Indomethacine F1	C11H12NO		174.0913		
Indomethacine F2	C7H4ClO		138.9945		
Indomethacine F3	C6H4Cl		110.9996		
Josamycin	C42H69NO15	[M+H]+	828.4740	20.14	0.00
Josamycin F1	C30H50NO12		600.3378		
Josamycin F2	C12H21O5		229.1431		
Josamycin F3	C8H16NO4		174.1125		
Josamycin F4	C7H9O		109.0648		
Ketoprofen	C16H14O3	[M+H]+	255.1016	24.29	0.00
Ketoprofen F1	C15H13O		209.0961		
Ketoprofen F2	C14H10O		194.0726		
Ketoprofen F3	C10H9O4		177.0546		
Ketoprofen F4	C7H5O		105.0335		
Levamisole	C11H12N2S	[M+H]+	205.0794		
Levamisole F1	C9H7N2S		175.0324		
Levamisole F2	C8H7N2		131.0604		
Levamisole F3	C10H12NS		178.0683		
Leucomalachite green	C23H26N2	[M+H]+	331.2169	22.57	-0.98
Leucomalachite green F1	C16H19N3		240.1542		

Lincomycin	C18H34N2O6S	[M+H]+	407.2210	27.49	0.00
Lincomycin F1	C8H16N		126.1278		
Lomefloxacin	C17H19F2N3O3	[M+H]+	352.1467	3.06	0.00
Lomefloxacin F1	C16H20F2N3O		308.1584		
Lomefloxacin F2	C13H12F2N2O		251.0994		
Marbofloxacin	C17H20FN4O4	[M+H]+	363.1463	25.58	0.00
Marbofloxacin F1	C17H17FN4O3		345.1355		
Marbofloxacin F2	C15H15FN3O4		320.1041		
Meclofenamic acid	C14H11Cl2NO2	[M+H]+	296.0240	24.78	-0.55
Meclofenamic acid F1	C14H10Cl2NO		278.0134		
Meclofenamic acid F2	C14H10CINO		243.0445		
Mefenamic acid	C15H15NO2	[M+H]+	242.1176	23.06	0.00
Metoprolol	C15H26NO3	[M+H]+	268.1907	27.08	0.00
Metronidazole	C6H9N3O3	[M+H]+	172.0717	29.88	-0.37
Metronidazole F1	C4H6N3O3		128.0456		
Metronidazole F2	C6H7O3		111.0441		
Metronidazole F3	C4H6N3		82.0525		
Miconazole	C18H14Cl4N2O	[M+H]+	414.9933	22.09	0.00
Miconazole F1	C10H9Cl2N3		227.0137		
Miconazole F2	C7H5Cl3		158.9760		
Miconazole F3	C3H5N3		69.0447		
Nadolol	C17H28NO4	[M+H]+	310.2013	3.18	0.00
Nadolol F1	C13H19NO4		254.1387		
Nalidixic acid	C12H13N2O3	[M+H]+	233.0921	3.18	0.00
Nalidixic acid F1	C12H11N2O2		215.0815		
Naproxen	C14H14O3	[M+H]+	231.1016	23.57	0.00
Naproxen F1	C13H13O		185.0961		
Naproxen F2	C12H10O		170.0726		
Naproxen F3	C12H10		153.0699		
Naproxen F4	C11H10		141.0699		

Nifuroxazide	C12H9N3O5	[M+H]+	276.0615	23.46	0.00
Norfloxacin	C16H18FN3O3	[M+H]+	320.1405	3.14	0.00
Norfloxacin F1	C15H19FN3O		276.1511		
Norfloxacin F2	C13H14FN2O		233.1087		
Ofloxacin	C18H20FN3O4	[M+H]+	362.1511	3.13	0.00
Ofloxacin F1	C17H20FN2O2		318.1611		
Ofloxacin F2	C14FN2O2		261.0104		
Orbifloxacin	C19H21F3N3O3	[M+H]+	396.1530	31.43	0.00
Orbifloxacin F1	C20H19F2N3O3		386.1311		
Orbifloxacin F2	C17H20ONF2		291.1451		
Orbifloxacin F3	C11H17O2N2F3		265.1158		
Orbifloxacin F4	C8H17N		126.1281		
Oxacillin	C19H19N3O5S	[M+H]+	160.0427	3.14	-0.50
Oxacillin F1	C9H6ON		144.0447		
Oxacillin F2	C5H8NS		114.0375		
Oxibendazole	C12H15N3O3	[M+H]+	250.1186	22.65	0.62
Oxibendazole F1	C11H12N3O2		218.0925		
Oxibendazole F2	C8H6N3O3		176.0454		
Oxolinic acid	C13H11NO5	[M+H]+	262.0710	3.13	-1.28
Oxolinic Acid F1	C13H10O4N		244.0603		
Oxolinic Acid F2	C11H8NOS		234.0396		
Oxolinic Acid F3	C10H6O3N		188.0349		
Oxolinic Acid F4	C9H6O2N		160.0395		
Oxytetracycline	C22H24N2O9	[M+H]+	461.1555	26.32	0.00
Oxytetracycline F1	C3H10O8N		202.0433		
Oxytetracycline F2	C8H16O3N		174.1119		
Oxytetracycline F3	C8H16O2N		158.1171		
Oxytetracycline F4	C8H7N2		131.0599		
Paracetamol	C8H9NO2	[M+H]+	152.0706	3.26	-0.87
Penicillin G	C16H18N2O4S	[M+H]+	335.1064	32.50	-0.66

Penicillin G F1	C10H10NO2		176.0706		
Penicillin G F2	C6H10NO2S		160.0427		
Penicillin G F3	C5H8NS		114.0372		
Penicillin V	C16H18N2O5S	[M+H]+	351.1009	29.98	0.00
Penicillin V F1	C9H13O2NS		213.0692		
Penicillin V F2	C6H10NO2S		160.0427		
Phenylbutazone	C19H20N2O2	[M+H]+	309.1598	14.42	0.00
Phenylbutazone F1	C13H11ON2		211.0869		
Phenylbutazone F2	C11H14N		160.1121		
Phenylbutazone F3	C7H6NO		120.0447		
Phenylbutazone F4	C7H8N		106.0656		
Phenylbutazone F5	C8H6NO		132.0449		
Pipemidic acid	C14H18N5O3	[M+H]+	304.1404	26.92	-0.97
Pipemidic acid F1	C13H18N5O		260.1506		
Pipemidic acid F2	C13H15N4O		243.1240		
Pipemidic acid F3	C11H13N4O		217.1084		
Prednisone	C21H27O5	[M+H]+	359.1853	27.01	0.00
Prednisone F1	C21H25O4		341.1741		
Prednisone F2	C21H23O2		232.1642		
Prednisone F3	C20H25O3		313.1798		
Prednisone F4	C20H23O2		295.1693		
Prednisone F5	C18H19O2		267.1380		
Propranolol	C16H21NO2	[M+H]+	260.1645	22.04	0.00
Propranolol F1	C13H11O		183.0804		
Propranolol F2	C12H12		157.0648		
Propranolol F3	C6H14NO		116.1070		
Propranolol F4	C3H8NO		74.0600		
Ranitidine	C13H22N4O3S	[M+H]+	315.1485	3.13	0.00
Ranitidine F1	C11H16N3O3S		270.0907		
Ranitidine F2	C5H10N3O2S		176.0488		
Ranitidine F3	C6H5OS		125.0056		

Ranitidine F4	C4H8NS		102.0372		
Roxithromycin	C41H76N2O15	C41H76N2O15 [M+H]+			0.00
Roxithromycin F1	C33H63N2O13		679.4376		
Roxithromycin F2	C8H16NO3		158.1176		
Sarafloxacin	C20H17F2N3O3	[M+H]+	386.1311	29.19	0.00
Sarafloxacin F1	C20H16F2N3O3		368.1205		
Sarafloxacin F2	C19H18F2N3O		342.1412		
Sarafloxacin F3	C20H12FN3		299.0979		
Scopolamine	C17H22NO4	[M+H]+	304.1543	12.93	0.00
Scopolamine F1	C8H14NO2		156.1019		
Scopolamine F2	C8H12NO		138.0913		
Scopolamine F3	C7H12N		110.0964		
Sulfabenzamide	C13H12N2O3S	[M+H]+	156.0114	3.13	0.00
Sulfacetamide	C8H10N2O3S	[M+H]+	156.0114	3.44	0.00
Sulfadiazine	C10H12N4O2S	[M+H]+	251.0597	14.79	0.00
Sulfadiazine F1	C4H4N3O2S		158.0019		
Sulfadiazine F2	C6H6NO		108.0441		
Sulfadimethoxyn	C12H14N4O4S	[M+H]+	311.0809	22.51	0.00
Sulfadoxine	C12H14N4O4S	[M+H]+	311.0809	3.15	0.00
Sulfaguanidine	C7H10N4O2S	[M+H]+	215.0597	29.32	0.00
Sulfaguanidine F1	C7H7O		107.0497		
Sulfamethoxazole	C10H13N3O3S	[M+H]+	254.0594	26.90	0.00
Sulfamethoxazole F1	C6H6NO2S		156.0113		
Sulfamethoxazole F2	C6H3O2N3		149.0234		
Sulfamethoxazole F3	C6H6NO		108.0441		
Sulfamethoxypyridazine	C11H12N4O3S	[M+H]+	281.0703	29.41	0.00
Sulfamonomethoxine	C11H12N4O3S	[M+H]+	281.0703	4.88	0.00
Sulfapyridine	C11H11N3O2S	[M+H]+	250.0645	20.78	0.00
Sulfapyridine F1	C11H10NO3		184.0869		
Sulfapyridine F2	C6H6ON		108.0447		

Sulfaquinoxaline	C14H12N4O2S	[M+H]+	301.0754	30.27	0.00
Sulfaquinoxaline F1	C6H6ON		108.0447		
Sulfaquinoxaline F2	C6H6O2SN		156.0114		
Sulfathiazole	C9H11N3O2S2	[M+H]+	256.0209	3.33	0.00
Sulfathiazole F1	C6H6NO2S		156.0114		
Sulfathiazole F2	C8H15N		126.1279		
Sulfathiazole F3	C6H6NO		108.0448		
Sulfisoxazol	C11H13N3O3S	[M+H]+	268.0750	29.64	0.00
Tamoxifen	C26H29NO	[M+H] ⁺	372.2322	3.15	0.00
Tamoxifen F1	C10H9		129.0699		
Tamoxifen F2	C4H10N		72.0808		
Terbutaline	C12H20NO3	[M+H]+	226.1438	3.18	0.00
Terbutaline F1	C8H10NO2		152.0706		
Tetracycline	C22H24N2O8	[M+H]+	445.1605	5.09	0.00
Tetracycline F1	C18H24O3N		302.1748		
Tetracycline F2	C2H9O8N		175.0327		
Tetracycline F3	C8H7N2		131.0607		
Theobromine	C7H8N4O2	[M+H]+	181.0720	20.32	0.00
Theobromine F1	C6H8N3O		138.0662		
Theobromine F2	C5H8N4		110.0713		
Theophylline	C7H8N4O2	[M+H]+	181.0720	22.36	1.10
Theophylline F1	C5H6N3O		125.0506		
Tolfenamic Acid	C14H12CINO2	[M+H]+	262.0629	21.72	0.63
Tolfenamic Acid F1	C14H11NCIO		244.0523		
Tolfenamic Acid F2	C14H11N		209.0834		
Trimethoprim	C14H18N4O3	[M+H]+	291.1452	31.09	0.38
Trimethoprim F1	C8H16N		126.1284		
Trimethoprim F2	C7H9ON		123.0670		
Tylosin	C46H77NO17	[M+H]+	916.5264	31.98	0.00
Tylosin F1	C8H16NO4		174.1125		

Tylosin F2	C7H13O4		145.0859		
Tylosin F3	C5H11NO	101.0835			
Tylosin F4	C5H9O3		101.0597		
Warfarin	C19H16O4	[M+H]+	309.1121	23.73	0.00
	COMPUESTO SURROGADO				
Triphenylphosphate (TPP)	C18H16O4P	[M+H]+	327.0781	28.83	0.00

Criterio			Casificación	Rankeo/Clasificación				
Persistencia e	en agua	dulce _a	Agua dulce DT> 40 días	1/Persistente				
			Agua dulce DT> 60 días	2/Muy persistente				
Bioacumulación _a			Factor de bioconcentración> 100	1/Umbral de preocupación				
			Factor de bioconcentración> 2000	2/Bioacumulable				
Toxicidad			Toxicidad acuática a largo plazo <0.01 mg L-1 ^b Toxicidad acuática a corto plazo <0.1 mg L-1 Tiene efectos en la salud humana ^c Sospechoso carcinógeno o Carcinogénica categoría 14 o 1B	1/Tóxico para los organismos de agua dulce o que tiene efectos sobre la salud humana				
			Mutagénico categoría 1A o 1B Tóxico para la reproducción categoría 1A, 1B o 2 o Toxicidad específica en órganos diana después de exposición repetida (STOT RE 1 o STOT RE 2)	2/Tóxico para los organismos de agua dulce y tiene efectos sobre la salud humana				
Potencial endócrino _{d,e}	de	disrupción	Categoría I	2/Al menos un estudio provee evidencia de disrupción endócrina				
			Categoría II					
			-	1/Potencial disruptor endócrino				

Tabla 2. Indicadores de destino ambiental y puntajes de evaluación de riesgo para el criterio PBT.

a University of Hertfordshire (2013). The Pesticide Properties DataBase (PPDB) developed by the Agriculture & Environment Research Unit (AERU). University of Hertfordshire. 2006–2013. http://sitem.herts.ac.uk/aeru/iupac/index.htm.

b ECHA (2014). Guidance on Information Requirements and Chemical Safety Assessment Chapter R.11: PBT/vPvB assessment Version 2.0 <u>https://comments.echa.europa.eu/</u> comments_cms/FeedbackGuidance.aspx.

c CLP Regulation (EC) No. 1272/2008 on the classification, labelling and packaging of substances andmixtures http://ec.europa.eu/enterprise/sectors/chemicals/documents/classification/ index_en.htm#h2-1.

d IEH (2005). Chemicals purported to be Endocrine Disrupters: a compilation of published lists (Web ReportW20), Leicester UK, MRC Institute for Environment and Health available at http://www.le.ac.uk/ieh/.

Groshart and Okkerman, Annex 10 (2000). List of 564 substances with their selection criteria e http://ec.europa.eu/environment/archives/docum/pdf/bkh_annex_10.pdf.

		BCF Factor de
Compuesto	DT ₅₀ (días) ₁	bioconcentracion (I kg ⁻¹) ₁
Amitraz	0.025	-
Atrazina	0.19725	14-20
Azoxystrobina	0.00025275	6.1
Cadusafos	0.2025	37
Carbofurano	0.01035	6.1
Fenazaquina	0.001855	-
Metolaclor	0.2135	9
Neburon	0.016725	-
Pendimetalina	2.4	4
Picolinafen	0.08625	1.3
Prosulfocarb	0.0000875	0.94
Piraclostrobina	0.0141	2
Pyrazofos	0.019525	-
Piridaben	0.007125	1.18

Tabla 3. Propiedades químicas utilizadas para el esquema de priorización relacionadas con el destino ambiental y el factor de bioconcentración de pesticidas cuyos valores encontrados fueron mayores a su LOQ. 1 University of Hertfordshire (2013). Pesticide Properties DataBase (PPDB) developed by the Agriculture & Environment Research Unit (AERU). University of Hertfordshire. 2006-2013. http://sitem.herts.ac.uk/aeru/iupac/index.htm

Tabla 4. . Identificación y concentración indidividual (µg L-1) de los CEs detectados. Ver Anexo aparte.

Tabla 5. Parámetros fisicoquímicos para todos los puntos de muestreo.

		Temp	Salinidad		OD	SST	Turbidez	РТ	NT	NH_{4}^{+}	NO_2	NO ₃ -	cloA	Coliformes
Sitio	Sistema	(°C)	(ppt)	pН	(mgL^{-1})	(mgL^{-1})	(NTU)	(µgL ⁻¹)	(µgL ⁻¹)	(µgL ⁻¹)	(µgL-1)	(µgL ⁻¹)	(µgL ⁻¹)	UFC/100mL
R_ST01_Sum	Arroyo	21.31	0.10	6.92	8.44	9.33	23.30	41.89	354.47	262.49	3.81	92.70	0.00	500
R_ST02_Sum	Arroyo	21.96	0.10	6.98	8.28	8.00	33.20	94.15	861.25	74.59	18.73	164.81	3.40	400
R_ST03_Sum	Arroyo	23.65	0.10	7.33	5.21	3.00	26.90	237.22	569.21	32.16	12.07	262.38	1.02	500
R_ST04_Sum	Arroyo	23.76	0.10	7.15	8.27	18.46	39.40	478.51	1430.46	102.88	13.34	164.81	16.98	800
C_ST01_Sum	Arroyo	20.92	0.10	7.26	6.29	10.00	34.70	80.43	929.96	19.37	3.49	160.57	0.51	300
C_ST02_Sum	Arroyo	21.57	0.10	7.14	9.07	19.00	41.20	70.06	929.96	180.32	7.30	122.39	0.00	600
C_ST03_Sum	Arroyo	15.38	0.10	7.71	8.35	2.00	9.60	28.17	431.78	37.55	15.24	92.70	0.41	1600
C_ST04_Sum	Arroyo	23.33	0.20	6.92	6.73	15.00	31.90	513.72	2867.20	834.93	317.14	347.22	1.54	900
C_ST05_Sum	Arroyo	23.40	0.30	7.35	2.43	12.00	24.70	670.51	5809.39	2630.05	101.27	190.27	0.00	1000
R_ST01_Aut	Arroyo	14.80	0.18	7.45	6.34	-	8.09	100.00	0.00	140.04	36.48	565.00	1.00	163
R_ST02_Aut	Arroyo	14.40	0.34	7.50	6.44	-	5.59	20.00	0.00	20.00	<3	113.00	3.90	205
R_ST03_Aut	Arroyo	14.50	7.66	7.57	7.66	-	6.10	510.00	0.00	20.00	<3	135.60	5.05	210
R_ST04_Aut	Arroyo	15.00	8.56	6.81	4.72	-	10.10	110.00	0.00	93.36	3.00	67.80	5.39	120
R_ST10_Aut	Arroyo	16.20	0.20	7.10	3.60	16.19	31.10	200.52	835.48	17.68	3.18	118.15	0.81	<5

C_ST01_Aut	Arroyo	16.50	0.14	6.90	2.02	-	2.45	10.00	-	23.34	<3	180.80	8.30	230
C_ST02_Aut	Arroyo	16.40	0.16	7.73	9.43	-	19.50	10.00	-	20.00	3.04	180.80	1.00	121
C_ST03_Aut	Arroyo	13.50	0.10	7.74	7.49	3.06	2.40	28.17	448.96	32.50	1.27	135.12	0.58	400
C_ST04_Aut	Arroyo	15.50	0.24	7.48	5.82	3.33	12.40	1373.63	11275.20	3912.15	81.27	101.18	3.06	800
C_ST05_Aut	Arroyo	14.27	0.54	7.53	1.42	-	13.40	600.00	-	2614.08	209.76	2915.40	5.10	795
R_ST01_Win	Arroyo	14.80	0.12	7.52	10.34	-	37.70	90.00	290.00	7.78	9.12	142.38	2.54	128
R_ST02_Win	Arroyo	14.40	0.12	7.17	9.25	-	45.50	140.00	510.00	7.78	9.12	194.36	9.87	276
R_ST03_Win	Arroyo	14.50	0.15	7.05	7.14	-	49.90	340.00	820.00	7.78	12.16	411.32	2.96	1230
R_ST04_Win	Arroyo	15.00	0.15	7.09	8.83	-	74.40	350.00	940.00	23.34	9.12	300.58	7.28	1250
R_ST10_Win	Arroyo	16.20 -		7.12	6.71	106.78	58.60	233.08	1701.73	134.60	4.40	263.80	2.04	100
C_ST01_Win	Arroyo	16.50	0.15	7.40	9.34	-	57.40	140.00	980.00	7.78	6.08	253.12	1.48	102
C_ST02_Win	Arroyo	16.40	0.12	7.49	9.84	-	46.40	150.00	840.00	7.78	3.04	198.88	1.55	161
C_ST03_Win	Arroyo	13.50	0.10	6.44	9.07	10.00	23.90	45.32	560.00	389.56	3.49	149.95	0.81	2000
C_ST04_Win	Arroyo	15.50	0.20	6.81	4.96	-	23.70	270.00	1100.00	23.34	6.08	411.32	1.55	0
C_ST05_Win	Arroyo	14.27	0.20	6.54	7.48	49.33	128.00	454.38	2757.80	626.72	56.82	417.28	2.26	180
R_ST01_Spr	Arroyo	19.80	0.12	7.40	7.90	-	44.10	110.00	930.00	8.00	6.00	110.00	2.54	-
R_ST02_Spr	Arroyo	19.80	0.13	7.20	6.20	-	31.50	190.00	850.00	179.00	33.00	350.00	9.87	-
R_ST03_Spr	Arroyo	18.80	0.13	7.10	5.12	-	32.60	410.00	1050.00	16.00	30.00	550.00	4.93	-
R_ST04_Spr	Arroyo	21.60	0.19	7.40	7.00	-	58.70	230.00	1150.00	39.00	9.00	330.00	7.28	-
R_ST10_Spr	Arroyo	21.40	0.23	7.30	5.38	22.31	29.80	210.62	480.26	15.33	6.43	134.46	4.75	100
C_ST01_Spr	Arroyo	20.40	0.14	7.57	7.58	-	20.10	80.00	400.00	10.00	6.00	170.00	0.89	-
C_ST02_Spr	Arroyo	20.70	0.13	7.38	7.77	-	33.90	100.00	500.00	50.00	6.00	180.00	1.26	-
C_ST03_Spr	Arroyo	17.53 -		7.40	8.02	12.67	53.10	58.66	281.73	5.00	2.81	44.37	2.85	250
C_ST04_Spr	Arroyo	18.10	0.23	7.30	4.88	-	11.20	460.00	1100.00	62.00	18.00	290.00	1.81	-
C_ST05_Spr	Arroyo	23.13 -		7.34	3.68	3.90	8.40	900.30	5014.30	240.70	42.64	30.86	11.79	30000
R_LA05_Sum	Lagu	23.90	18.30	7.96	7.22	205.71	132.00	166.80	932.75	43.61	1.27	5.00	12.22	5
R_LA06_Sum	Lagu	20.20	19.10	7.80	7.12	67.06	52.80	106.01	731.53	64.49	2.54	5.00	4.07	<5
R_LA07_Sum	Lagu	20.90	18.30	7.89	7.79	107.14	85.40	111.94	702.79	137.22	1.27	5.00	6.79	<5
C_LA06_Sum	Lagu	21.61 -		7.93	7.49	86.00	96.50	75.62	1026.48	5.00	0.32	5.00	5.43	<5
C_LA07_Sum	Lagu	21.57	5.10	7.92	7.66	151.43	147.00	77.47	958.99	106.92	0.32	3.45	6.52	10
C_LA08_Sum	Lagu	22.20	2.70	8.43	7.48	11.15	14.20	38.18	1028.98	11.30	0.32	5.00	3.06	20
C_LA09_Sum	Lagu	22.81	8.60	8.77	8.09	14.00	14.40	22.61	870.26	5.90	0.95	5.00	1.22	10
C_LA10_Sum	Lagu	22.67	8.70	8.64	6.82	11.20	7.90	37.44	852.76	35.53	0.32	5.05	1.22	25

C_CS11_Sum	Lagu	23.31	32.00	8.25	7.13	28.40	21.20	46.33	341.59	197.83	0.32	5.00	2.13	<4
R_LA05_Aut	Lagu	14.54	15.40	8.33	6.92	10.00	6.30	111.94	821.52	5.00	2.22	5.00	1.63	5
R_LA06_Aut	Lagu	13.26	17.20	8.16	7.54	30.73	26.30	138.26	1155.21	38.90	0.95	5.00	3.26	<5
R_LA07_Aut	Lagu	13.42	17.40	8.16	6.82	8.20	5.30	99.34	722.78	5.00	1.27	5.00	1.02	<5
C_LA06_Aut	Lagu	13.16	7.80	9.02	8.65	4.00	3.60	49.67	978.99	5.00	0.32	5.00	1.75	5
C_LA07_Aut	Lagu	13.45	8.10	8.51	8.00	12.33	19.50	45.22	946.50	10.61	0.50	5.00	2.04	50
C_LA08_Aut	Lagu	14.00	3.80	8.41	7.80	3.40	4.40	29.65	966.49	5.00	0.64	5.00	1.83	<5
C_LA09_Aut	Lagu	14.20	9.60	8.38	7.07	8.00	0.70	36.70	816.52	5.00	0.50	5.00	1.63	10
C_LA10_Aut	Lagu	15.91	21.30	8.39	7.44	19.61	21.30	89.33	725.28	5.00	0.00	5.00	4.07	500
C_CS11_Aut	Lagu	13.69	27.20	8.33	7.67	9.71	5.70	117.13	390.34	5.00	3.81	10.38	5.70	<2
R_LA05_Win	Lagu	14.54	0.10	7.43	7.85	62.11	86.20	143.69	1279.10	22.22	6.66	63.28	4.63	2400
R_LA06_Win	Lagu	13.26	8.40	6.64	9.16	145.00	125.00	128.83	870.71	139.79	3.17	96.96	5.09	30
R_LA07_Win	Lagu	13.42	8.50	7.30	9.57	50.00	40.80	99.46	877.31	33.03	3.17	129.77	3.13	20
C_LA06_Win	Lagu	13.16	5.70	7.41	9.61	2.00	0.00	23.03	650.74	22.89	0.63	5.00	0.00	20
C_LA07_Win	Lagu	13.45	5.90	7.69	9.18	10.38	6.60	24.79	639.55	5.00	1.27	5.00	1.48	10
C_LA08_Win	Lagu	14.00	2.00	7.65	8.86	2.00	0.00	23.73	846.55	5.00	3.17	5.00	1.63	70
C_LA09_Win	Lagu	14.20	5.50	7.59	8.17	9.00	3.50	23.03	575.22	5.00	0.95	5.00	1.22	<10
C_LA10_Win	Lagu	15.91	4.60	7.68	8.12	20.00	24.70	94.15	1119.66	14.79	5.08	1.88	6.93	600
C_CS11_Win	Lagu	13.69	7.70	6.93	7.26	10.00	4.70	85.30	604.59	62.08	3.17	5.10	4.58	52
R_LA05_Spr	Lagu	23.85	7.10	8.25	9.02	12.12	9.20	46.20	285.97	5.00	1.14	5.00	4.79	5
R_LA06_Spr	Lagu	19.90	14.00	7.31	8.57	52.22	46.50	87.13	258.89	92.20	0.50	5.00	2.07	<5
R_LA07_Spr	Lagu	20.33	14.30	7.63	7.45	9.71	0.00	45.85	177.65	5.00	0.50	5.00	2.25	<5
C_LA06_Spr	Lagu	20.96	0.20	7.47	7.18	28.00	104.00	104.21	552.89	19.06	3.92	77.04	6.79	<10
C_LA07_Spr	Lagu	21.03	0.40	7.44	7.61	81.33	166.00	149.05	665.08	20.55	2.81	244.82	8.49	10
C_LA08_Spr	Lagu	21.37	0.10	7.19	6.64	3.25	0.00	50.12	293.70	17.57	2.25	1.08	1.22	15
C_LA09_Spr	Lagu	21.88	0.40	7.52	7.53	106.67	191.00	145.49	502.60	11.60	2.81	153.49	10.97	<10
C_LA10_Spr	Lagu	22.10	0.50	7.53	7.74	95.56	194.00	155.46	732.77	13.84	1.97	92.68	11.88	40
C_CS11_Spr	Lagu	19.45	25.20	7.65	7.03	11.00	0.00	49.41	247.28	24.28	1.14	5.00	2.43	-
R_CS08_Sum	Mar	22.60	31.75	-	-	21.60	-	54.86	546.56	3.20	3.18	5.00	7.89	30
R_CS09_Sum	Mar	22.60	31.90	-	-	20.80	-	58.94	514.07	33.51	1.91	5.00	10.77	<5
C_CS12_Sum	Mar	23.18	31.90	8.24	8.53	22.42	1.20	37.81	224.11	37.55	1.91	5.00	2.26	<4

C_CS13_Sum	Mar	23.25	31.80	8.27	6.18	11.20	11.50	31.88	245.36	35.53	1.91	5.00	1.63	<4
R_CS08_Aut	Mar	14.22	23.70	8.14	9.15	8.77	13.90	77.52	371.02	5.00	22.22	146.15	0.52	-
R_CS09_Aut	Mar	14.42	23.80	8.19	8.19	7.72	10.30	79.64	317.87	16.14	14.92	58.97	0.97	-
C_CS12_Aut	Mar	14.11	37.30	8.23	7.14	8.67	6.40	107.49	245.36	9.94	23.18	116.06	2.85	<2
C_CS13_Aut	Mar	14.27	23.70	8.20	7.20	8.27	6.40	133.44	539.06	10.61	21.59	116.85	3.06	-
R_CS08_Win	Mar	14.22	28.30	7.57	7.35	12.20	3.30	66.20	352.84	5.00	5.08	92.43	3.06	0
R_CS09_Win	Mar	14.42	29.80	7.75	7.37	17.53	0.00	53.46	337.45	8.70	3.49	118.95	2.35	0
C_CS12_Win	Mar	14.11	28.20	7.93	8.72	39.61	2.70	54.16	193.40	0.60	3.17	7.72	6.43	6
C_CS13_Win	Mar	14.27	28.30	7.87	8.36	24.12	5.30	51.69	350.04	5.00	3.81	9.71	6.40	10
R_CS08_Spr	Mar	16.68	28.60	7.38	6.12	22.80	0.00	36.59	48.05	226.50	1.14	77.54	0.41	7
R_CS09_Spr	Mar	16.47	29.80	7.56	5.99	84.80	0.00	41.93	123.49	5.00	3.09	23.08	0.61	3
C_CS12_Spr	Mar	19.12	-	7.65	7.36	12.35	0.00	44.42	187.32	10.10	1.42	5.00	3.48	-
C_CS13_Spr	Mar	18.90	29.60	7.58	6.80	12.93	3.70	49.41	311.11	5.00	6.71	33.15	2.68	3

		Nº de variables	Nº de pruebas					
Cuenca	Sitio	fallidas	fallidas	F1	F2	nse	F3	WQI
	R_ST10	5	7	55.56	25.93	1.17	53.85	52.89
	R_ST04	5	11	55.56	34.38	1.72	63.22	47.51
	R_ST03	2	7	22.22	21.88	1.78	64.04	58.88
	R_ST02	2	6	22.22	18.75	0.65	39.26	71.79
Pocha	R_ST01	3	6	33.33	18.75	0.37	27.12	72.93
ROCIIa	R_LA07	4	10	44.44	27.78	0.61	37.88	62.66
	R_LA06	4	13	44.44	36.11	0.89	47.08	57.20
	R_LA05	6	13	66.67	36.11	0.98	49.56	47.70
	R_CS09	4	7	44.44	21.88	0.23	18.58	69.45
	R_CS08	3	6	33.33	18.75	0.18	15.04	76.27
	C_ST05	8	18	88.89	52.94	5.64	84.94	22.71
	C_ST04	4	12	44.44	36.36	5.75	85.18	40.69
	C_ST03	3	5	33.33	13.89	0.10	8.74	78.55
	C_ST02	2	7	22.22	21.88	0.50	33.41	73.61
	C_ST01	4	7	44.44	25.93	0.67	40.01	62.37
	C_LA10	6	12	66.67	33.33	0.83	45.43	49.60
Castillos	C_LA09	6	10	66.67	27.78	0.59	36.92	53.17
	C_LA08	2	5	22.22	13.89	0.41	29.19	77.35
	C_LA07	5	12	55.56	33.33	0.85	46.01	54.12
	C_LA06	5	11	55.56	30.56	0.64	39.18	56.97
	C_CS13	2	5	22.22	14.29	0.19	15.97	82.18
	C_CS12	2	5	22.22	14.29	0.13	11.28	83.42
	C_CS11	2	5	22.22	14.29	0.23	18.93	81.24

Tabla 6. Cálculos del WQI y del AQI para todos los sitios de ambas cuencas.

		Nº de variables	Nº de pruebas					
Cuenca	Sitio	fallidas	fallidas	F1	F2	nse	F3	AQI
	R_ST10	2	5	15.38	35.71	1.07	51.78	62.61
	R_ST04	3	7	23.08	33.33	128.11	99.23	38.11
	R_ST03	3	6	23.08	33.33	7.78	88.61	43.74
	R_ST02	2	5	15.38	50.00	1.00	49.94	58.24
Pocha	R_ST01	3	5	23.08	41.67	0.94	48.50	60.75
RUCHA	R_LA07	2	5	15.38	35.71	3.12	75.73	50.85
	R_LA06	2	5	15.38	50.00	0.87	46.49	59.59
	R_LA05	1	2	7.69	50.00	1.50	59.98	54.70
	R_CS09	5	12	38.46	38.71	247.32	99.60	34.43
	R_CS08	6	14	46.15	50.00	4.00	80.00	39.36
	C_ST05	3	6	23.08	60.00	9.02	90.02	36.13
	C_ST04	3	5	23.08	38.46	8.93	89.93	41.98
	C_ST03	2	6	15.38	35.29	0.67	40.22	67.86
	C_ST02	3	6	23.08	46.15	183.65	99.46	35.31
	C_ST01	2	3	15.38	23.08	245.19	99.59	40.31
	C_LA10	1	4	7.69	44.44	0.97	49.34	61.40
Castillos	C_LA09	3	6	23.08	33.33	2.52	71.60	52.49
	C_LA08	2	4	15.38	36.36	3.94	79.75	48.62
	C_LA07	2	3	15.38	37.50	0.16	13.78	75.28
	C_LA06	2	6	15.38	66.67	3.16	75.99	40.96
	C_CS13	2	5	15.38	62.50	1.44	59.07	49.56
	C_CS12	1	4	7.69	30.77	5.36	84.27	48.01
	C_CS11	1	4	7.69	66.67	1.56	60.96	47.65