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Abstract 
 

An object oriented system can be manipulated at a conceptual level by system 
state manipulation primitives. The possible manipulations include either 
queries or modifications to the state of the system. Modification primitives are 
used to describe the behavior of more complex state manipulations, such as 
system-level operations. A well defined semantics for these primitives is 
critical for a precise specification of system operations. In this paper, we 
present the semantics for the most common system state modification 
primitives. Their semantics will be specified by pre- and post-conditions 
expressed in OCL and using the UML metamodel as the model of systems for 
the OCL expressions. Every constraint was validated using the USE Tool. 
 
Key Words: Semantics, System State Modification Primitives, OCL, UML, USE 
Tool 

 
 
1    Introduction 
 
The implementation of an object oriented system is rarely a direct mapping from 
its conceptual definition (i.e. a definition that takes full advantage of all the 
concepts of object technology). Rather, it is usually a representation of this 
conceptual definition restricted by the programming language or implementation 
technology used. For example, the concept of association is usually not supported 
by programming languages as a first class construct and is “something that needs 
to be designed”. Also, compositions and association classes are eliminated during 
the design process for the same reason. Complex system state manipulations, such 
as system-level operations, are implemented as programs in terms of programming 
languages constructs driven by the representation of the system instead of its 
conceptual definition. 
In turn, at a conceptual level, the state of a system can be manipulated by a number 
of operations that are not constructs of a programming language, rather they are 
conceptual operations that enable primitive queries and modifications to systems 
in their purest form and not in the technology driven representation. At this level, 
system operations are described in terms of these primitives operations. This 
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approach is more appropriate to reason about behavior since the primitives use 
pure object terminology and abstract away the actual representation of the system 
implementation. In fact, contracts as used in [2,3] aim at specifying the behavior of 
system operations by suggesting which primitives should apply during the 
execution of the operation. The primitives can be regarded as constructs for 
describing system state manipulation at a higher level of abstraction, and most 
importantly, independently of the designs needed to overcome the lack of some 
constructs present in most of the object oriented programming languages. In [9], a 
simple command language is given for modifying system states where the 
commands are precisely system state modification primitives. 
The primitives seem to be the right tool to reason about and describe the behavior 
of system-level operations. Then a well defined semantics for them is crucial, both 
for writing and reading specifications, and for generating correct implementations. 
The problem addressed in this paper is the lack of a precise specification of the 
semantics of system state modification primitives. 
Several authors [3,4,10] identified a set of five primitives ([10] referred to them as 
system state manipulation commands) which allow us to add and remove an instance 
from the system state, add and remove a link between instances from the system 
state, and update the value of an attribute. In some cases, the effect of each 
primitive is briefly explained in natural language [4,10] and in others [3] no 
description is given, and the semantics of each primitive must be guessed from the 
operation name. The UML Reference Manual [12] introduced the term primitive but 
described only some of them, namely those regarding object and link creation, and 
object destruction. Version 1.5 of UML [5] added to the UML Specification an 
Action Package [7] including a metamodel in which metaclasses represent “actions 
that a modeler can use”. These actions include system state modification actions 
(e.g. CreateObjectAction metaclass), as well as others such as actions for querying a 
system. The metamodel and well-formedness rules clarify the syntax and action 
pre-conditions. However, the runtime effect of each action is again described in 
natural language. Finally, as mentioned above, [9] includes a command language 
where five of the commands correspond with each of the five primitives. Again, no 
semantics is given for those commands. Studying their behavior we found that one 
of them presents a flaw which will be pointed out in a later section.  
In this paper, our main goal is to provide a precise semantics, yet informal, for 
system state modification primitives. We use the UML metamodel to represent 
both system state and the system static structure. Each primitive is represented by 
an operation, and its semantics is given by means of pre- and post-conditions 
expressed in OCL [8]. All OCL expressions were validated using the USE Tool [9]. 
This paper is organized as follows. Section 2 reviews system state modification 
primitives. Section 3 explains the details of the metamodel used. Section 4 
introduces the semantics for each primitive. Section 5 contains a simple example of 
the effect of the primitives applied to a sample system state. Section 6 concludes. 
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2    System State Modification Primitives 
 
We now review the set of five modification primitives and introduce a brief 
motivation for each of them. In order to achieve this and standarize terminology, 
we first review the concept of object oriented system, from both the static and the 
dynamic points of view. 
 
2.1    System State and System Structure 
 
A system is object oriented when it is organized at runtime as a collection of 
connected objects that incorporate data structure and behavior [11]. From this 
definition we may extract as first class components of that organization, which we 
shall call system state, the notions of objects and connection between objects. We can 
say that there is a general consensus in considering a system state as composed by: 

• Objects (with values for its attributes) 
• Links 

 
A system may be described by one or more models [11]. An Object Model 
describes the static structure of objects in a system (their identity, their 
relationships to other objects, their attributes and their operations) [11]. We shall 
call this structure system structure, thus an Object Model describes the system 
structure, which in turn describes the set of all possible system states. 
 
2.2    Primitives 
 
Several authors [3,4,10] identified a set of five primitives, each of them allowing 
certain kind of modification upon a system state. According to the structure shown 
above, the possible modifications that are applicable to a system state are: 

• Object creation. Instantiates a class existing in the system structure 
creating a new object and adding it to the system state. 

• Object destruction. Removes an existing object from the system state. 
• Link creation. Creates a connection from a tuple of objects and adds it to 

the system state. 
• Link destruction. Removes a the connection between a tuple of objects 

from a system state. 
• Object attribute value update. The value held by an object for one of its 

attributes is replaced by another value. 
 
We shall name each primitive for further references. The following table maps each 
primitive to its name. 
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Primitive Name 

Object creation create 
Object destruction destroy 
Link creation link 
Link destruction unlink 
Object attribute value update set 

 
We model each primitive by an operation, and as said above, its semantics will be 
specified by pre- and post-conditions. In the next section we introduce the context 
for such constraints. 
 
 
3    Metamodel for System State and System Structure 
 
In order to be able to express in OCL pre- and post-conditions for the operations 
that represent the five primitives, we need an object oriented model that describes 
all the concepts considered relevant so far, that is, a metamodel for the system state 
and system structure. 
 
3.1    Metamodel 
 
The metamodel needed is just an object oriented representation of object oriented 
systems. For this reason, it seems quite reasonable that we use (part of) a well 
known existing model that fits our needs, instead of developing a new one. That 
model is the UML metamodel (level M2 of UML metamodeling architecture). A 
subset of the Core package together with a subset of the Common Behavior package 
and Data Types package will be enough for our purposes. Particularly, our 
metamodel includes metaclasses from Core - Backbone, Core – Relationships, and Core 
– Classifiers to model system structure, and Common Behavior – Instances and Common 
Behavior – Links to model system state. A graphical representation in the form of 
UML diagrams of the specified parts of the UML metamodel can be found in [6] in 
figures 2-5, 2-6 and 2-8 for the Core package, and in figures 2-16 and 2-17 for the 
Common Behavior package. 
Besides the concepts that constitute the system state and the system structure, we 
need to represent the system state and system structure themselves. We add to our 
metamodel two classes, SystemState and SystemStructure representing those 
concepts respectively. These classes are associated representing an instance of the 
former class is an instance of (or conforms to) an instance of the latter class. We 
also add relationships for nesting every class of the Core package in class 
SystemStructure, and for nesting every class of the Common Behavior package in class 
SystemState. This approach is depicted in the (partial) class diagram shown in Fig. 1.  
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create(o:Name;c:Name)()
destroy(o:Name)()
link(o1:Name;o2:Name;a:Name)()
unlink(o1:Name;o2:Name;a:Name)()
set(o:Name;a:Name;v:DataValue)()

SystemState

SystemStructure 0..1

structure

1  instance_of

Class Object
*

classifier

1..*

 
 

Figure 1: Structure of the metamodel 
 
 
In this way, an object model describing a system structure (at level M1) in our 
metamodel is represented by a set of instances nested within an instance of class 
SystemStructure. In turn, an actual system configuration at runtime, that is, a system 
state (at level M0), is represented by a set of instances nested in an instance of class 
SystemState. Now, the state of a system can be treated as an instance with access to 
the actual contents of the state and its structure, and more importantly, we have a 
clear context for the operations representing the primitives. 
Other approaches could have been used to structure our metamodel, concretely the 
parts concerning the state and its structure. The structure of the metamodel is 
conceptual, thus the alternative chosen is unimportant per se, as long as it fits our 
needs, that is, it gives us the ability to associate elements SystemStructure and 
SystemState, relate regular metaclasses to them, and also let SystemState own 
operations. For example, modeling both SystemState and SystemStructure using 
subsystems could have been appropriate. 
Finally, our metamodel supports multiple classification, but we do not provide a 
primitive to add or remove classes to objects such as action ReclassifyObjectAction in 
[7]. Thus, every object has exactly one class (the class used for instantiation when 
the object was created). For example, in the context of an object, the expression 
self.classifier is still of type Set(Classifier) but always yields a set with one element. 
This feature is widely used in the semantics in the next section. 
 
3.2    Well-formedness 
 
An important issue we did not discuss so far is state well-formedness. A model (in 
particular a state) is said to be well-formed if it satisfies all predefined and model-
specified rules or constraints [12]. Predefined rules and constraints are those 
imposed by the UML metamodel (e.g. an attribute may not realize a node), and we 
assume them all satisfied. Model-specified rules and constraints include the 
structure of the system (such as whether a class or an association exists and thus 
can be used, and association multiplicities), and system invariants. System 
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invariants go well beyond the scope of this work, so they are not considered. 
According to our semantics, structural well-formedness is achieved by 
construction, except for multiplicities. That is, we do not impose ourselves the 
invariant that system states are well-formed respect to multiplicities. So, the states 
we handle can be either well-formed or ill-formed. Well-formedness of a state can 
be checked anytime. As a consequence, we do not prevent the execution of a 
primitive that yields an ill-formed state. The reason for this is that it is often 
common that the path (sometimes all the paths) that leads to a certain well-formed 
state requires passing through intermediate states that are ill-formed [12]. Thus, 
restricting ourselves to only well-formed states is not an appropriate approach. In 
conclusion, the primitives may yield to states that are ill-formed respect to 
multiplicities; well-formedness might be checked separately, if desired. 
 
3.3   Sample System Structure 
 
We now introduce a sample object model and its correspondent as an instance of 
the metamodel defined above which will be used in the case study in section 5. The 
object model shown in Fig. 2 has been chosen to be as simple as possible. In Fig. 3 
we show an instance of our metamodel representing the model in Fig. 2. We elided 
the instance of class SystemStructure to avoid introducing noisy links in the diagram. 
Statically, there is no system running, thus there is no instance of class SystemState. 
 
 

name : Name = "foo"
Person Factory

** works_for

 
 

Figure 2: Sample object model 
 
 

isAbstract = false
Person : Class

isAbstract = false
Factory : Class

multiplicity = *
 : AssociationEnd

multiplicity = *
 : AssociationEndworks_for : Association

participant

association

connection connection

association

participant

initialValue = "foo"
 : Attributefeature

String : DataType

type

 
 

Figure 3: Instance of the metamodel 
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4    Semantics for Modification Primitives 
 
In this section we present the specification of system state modification primitives. 
Based on the metamodel introduced in the previous section, in the following 
subsections we show OCL expressions that contain pre- and post-conditions for 
the operations specified for the SystemState class. The semantics of the primitives is 
specified by those expressions. Each OCL expression is preceded by a description 
of the primitive, in which we dive into its details and which could be useful for the 
reader to understand the OCL code. It could be also convenient for the reader to 
have at hand a copy of the diagrams of the UML metamodel mentioned in 
subsection 3.1. The last subsection includes all the additional operations needed for 
the specification. 
As a final remark, the reader should notice that all the types used in this 
specification were taken from the UML metamodel, including those for the 
parameters of the operations modeling the primitives. As shown in Fig. 1, we used 
names (instances of Name) for identifying objects, classes, associations and so on in 
the system state or system structure, and data values (instances of DataValue) for 
referring to values of any type. 
 
4.1    Semantics for create 
 
This primitive lets us instantiate a class (i.e. create a new instance) and add the 
resulting instance to the system state. It needs a unique name for the instance to be 
created, as well as the name of the class to be instantiated. Thus, the chosen name 
for the instance might not have been used for an instance already in the system 
state, and the class from whom that instance will be created must be an existing 
class in the system structure, and it might not be abstract. After the primitive is 
completed, the system state owns a new instance of the specified class. 
The UML Action Semantics [7] specifies that after the execution of an instance of 
the CreateObjectAction class no attribute values are set for the created instance (the 
default values for its attributes), that is, no constructor executes. The UML 
Reference Manual [12] is consistent with this approach, but distinguishes two 
stages in the actual creation of an object; first, the allocation of the new instance in 
the environment of the system (instantiation), and second, the initialization of its 
attributes (initialization), which occurs immediately after the instantiation. It also 
warns that an object instantiated but not initialized (called raw instance) might be 
inconsistent and “is not available to the rest of the system until it has been 
initialized”. We expect an instance to be available after creation, so for practical 
reasons, we decided to assume that the create primitive should both instantiate a 
class producing an instance, and initialize it with the default values found in its 
descriptor. 
Next is the OCL expression that specifies the create primitive. 
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context SystemState::create(o:Name,c:Name) 
 
pre: -- Exists a class named "c" in the associated system structure and  
     -- is not an abstract class 
     self.structure.ownedInstance->exists(e | e.oclIsTypeOf(Class) and  
     e.name = c and e.isAbstract = false) 
 
pre: -- There is no object with name "o" in the system state 
     not self.ownedObject->exists(e | e.name = o) 
 
post: -- Exists a new object of class named "c" that is named "o" and all  
      -- its attributes are initialized with their default values 
      
     -- C is the set of descriptors needed to create the new object 
     let C = self.structure.ownedInstance->select(e | e.oclIsTypeOf(Class)  
        and e.name = c)->any(true).oclAsType(Class).getAncestors() in 
     -- O is the new object 
     let O = self.ownedObject->select(e | e.name = o and  
        e.oclIsNew())->any(true) in 
           -- C is the classifier for O 
           O.classifier->includes(C) and 
           -- the new instance is owned by self 
           O.owner = self and 
           -- self is the owner of the new instance 
           self.ownedObject->includes(O) and 
           -- for every feature a of class C 
           C.feature->forAll(a | a.oclIsTypeOf(Attribute) implies 
              -- if feature a is an attribute implies that a is attached  
              -- to an attribute link al that 
              a.oclAsType(Attribute).attributeLink->exists(al |  
                 -- is new 
                 al.oclIsNew() and 
                 -- is attached to the new object O 
                 al.instance = O and  
                 -- its value is the default value  
                 al.value.oclAsType(DataValue).value =  
                    a.oclAsType(Attribute).initialValue and  
                 -- is owned by the system state 
                 al.owner = self and 
                 self.ownedAttributeLink->includes(al) 
              ) 
           ) 

 
 
4.2    Semantics for destroy 
 
This primitive can remove an instance from the system state. It only needs the 
name of the object to be removed, and requires that an object with that name exists 
in the system. 
After the primitive is executed, the specified object is no longer available in the 
system. This implies that any link that involved that instance is also removed from 
the system state. Moreover, any composite object should be recursively removed. 
In our experience using the USE Tool, we detected that the command 
corresponding to this primitive did not work properly in all cases. In fact, the 
specified object and all the involved links are actually removed, but the composing 
objects (if exist) are not, and they must be removed explicitly. 
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Next is the OCL expression that specifies the destroy primitive. 
 
context SystemState::destroy(o:Name) 
 
pre: -- Exists an object with name "o" 
     self.ownedObject->exists(e | e.name = o) 
 
post:  
     let O = self.ownedObject@pre->select(e | e.name@pre = o)->any(true) in 
     let C = O.classifier@pre->any(true) in 
     let cs = C.oclAsType(Class).getTree() in 
     let insts:Sequence(Instance) = cs->iterate( 
        x:Class;acc:Sequence(Instance)=Sequence{} | 
        acc->union(x.instance@pre->asSequence) 
     ) in 
     -- The set of all objects removed (including composites) 
     let all:Set(Instance) = insts->iterate( 
        e:Instance;acc:Set(Instance)=Set{O} | 
        if e@pre.linkEnd@pre->collect(link@pre)->asSet-> 
           collect(connection@pre)->asSet->flatten->collect(instance@pre)-> 
           asSet->excluding(e)->intersection(acc)->size()>0 then 
              acc->including(e) 
        else 
              acc 
        endif 
     ) in 
     -- The set of all links removed 
     let ls:Set(Link) = self.ownedLink@pre->select(e | e.connection@pre-> 
        exists(le:LinkEnd | not le.instance@pre->intersection(all)-> 
        isEmpty()) 
     ) in 
     -- The set of all link ends removed 
     let les:Set(LinkEnd) = self.ownedLinkEnd@pre->select(e |  
        ls->includes(e.link@pre) 
     ) in 
        -- All the objects were removed together with their attribute links 
        all->forAll(z | self.ownedObject->excludes(z)  
           and self.ownedAttributeLink->excludesAll(z.slot@pre) 
        ) and 
        cs->forAll(instance->excludesAll(all)) and 
        -- No attribute is connected to any of the removed objects 
        all->forAll(y | test->forAll(feature->forAll(f |  
           f.oclIsTypeOf(Attribute) implies 
           f.oclAsType(Attribute).attributeLink->select(instance = y)-> 
           isEmpty())) 
        ) and 
        -- All the links and link ends were removed 
        self.ownedLink->excludesAll(ls) and  
        self.ownedLinkEnd->excludesAll(les) 
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4.3    Semantics for link 
 
This primitive lets us establish a connection between a tuple of objects. In this 
paper we restrict ourselves to binary associations, thus this tuple is actually a pair 
of objects. We also do not consider association classes, since these do not introduce 
interesting variants, as explained later. Thus every association is a direct instance 
of Association metaclass. 
The ability to connect the pair of objects must have been declared in the system 
structure, thus there must be an association between the classes of objects (or any 
of its ancestors) we want to connect. For the execution of this primitive to take 
place it is required that the objects to connect exist in the system state, and since 
the extent of an association (i.e. the collection of connections between instances of 
the associated classes) is a set, the objects might not be already connected. 
After the primitive is completed, there is a new link between the pair of specified 
objects according to the specified association. 
Considering the case of association classes would require the creation of an 
instance of metaclass LinkObject instead of Object. Since it is a Link, the semantics 
shown above still holds, and since it is an Object it is also needed to initialize its 
attributes as we did with create, using property feature of AssociationClass. 
Next is the OCL expression that specifies the link primitive. 
 
context SystemState::link(o1:Name,o2:Name,a:Name) 
 
pre: -- Objects named o1 and o2 exists in the system state 
     self.ownedObject->exists(e | e.name = o1) and  
     self.ownedObject->exists(e | e.name = o2) 
 
pre: -- Exists an association named "a" in the associated object model 
     self.structure.ownedInstance->exists(e | e.oclIsTypeOf(Association) and  
        e.name = a) 
 
pre: -- Classes of objects named "o1" and "o2" must be connected by  
     -- association named a 
     let O1 = self.ownedObject->select(e | e.name = o1)->any(true) in 
     let O2 = self.ownedObject->select(e | e.name = o2)->any(true) in 
     let A = self.structure.ownedInstance->select(e |  
        e.oclIsTypeOf(Association) and e.name = a)-> 
        any(true)->oclAsType(Association) in 
     let c1 = O1.classifier->any(true) in 
     let c2 = O2.classifier->any(true) in 
        c1.allParents()->including(c1)->intersection(A.connection.type-> 
           asSet)->size() = 1 and 
        c2.allParents()->including(c2)->intersection(A.connection.type-> 
           asSet)->size() = 1 
 
pre: -- Objects named "o1" and "o2" are not already linked by "a" 
     let O1 = self.ownedObject->select(e | e.name = o1)->any(true) in 
     let O2 = self.ownedObject->select(e | e.name = o2)->any(true) in 
     let A = self.structure.ownedInstance->select(e | 
        e.oclIsTypeOf(Association) and e.name = a)-> 
        any(true)->oclAsType(Association) in 
           A.link->select(l | l.connection.instance->includes(O1) and  
           l.connection.instance->includes(O2))->isEmpty() 
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post: -- There is a new link (instance of association named "a") between  
      -- objects named o1 and o2 
     let O1 = self.ownedObject->select(e | e.name = o1)->any(true) in 
     let O2 = self.ownedObject->select(e | e.name = o2)->any(true) in 
     let A = self.structure.ownedInstance->select(e | 
        e.oclIsTypeOf(Association) and e.name = a)-> 
        any(true)->oclAsType(Association) in 
     let c1 = O1.classifier->any(true) in 
     let c2 = O2.classifier->any(true) in 
     let C1 = c1.allParents()->including(c1)-> 
        select(w | w.oclAsType(Class).associationEnd.association-> 
        includes(A))->any(true) in 
     let C2 = c2.allParents()->including(c2)-> 
        select(w | w.oclAsType(Class).associationEnd.association-> 
        includes(A))->any(true) in 
     -- There is a new link l that 
     let l = self.ownedLink->select(e | e.oclIsNew())->any(true) in 
        -- is attached to association A 
        l.association = A and 
        -- has two link ends 
        l.connection->size() = 2 and 
        -- one of them is new and is attached to object O1 and to A's  
        -- association end at C1's end 
        l.connection->exists(le:LinkEnd | le.oclIsNew() and   
           C1=le.associationEnd.type and le.associationEnd.association = A   
           and le.instance = O1 and le.owner = self and self.ownedLinkEnd-> 
           includes(le) 
        ) and 
        -- the other is new too and is attached to object O2 and to A's  
        -- association end at C2's end 
        l.connection->exists(le:LinkEnd | le.oclIsNew() and  
           C2=le.associationEnd.type and le.associationEnd.association = A   
           and le.instance = O2 and le.owner = self and self.ownedLinkEnd-> 
           includes(le) 
        ) 

 
4.4    Semantics for unlink 
 
Using this primitive a link among instances can be removed. As said in the 
previous subsection we concern ourselves only with ordinary associations. The 
case of association classes is discussed later. 
This primitive requires that the specified association exists in the system structure 
and associates the classes of the specified objects (or any of its ancestors). It is also 
required that the objects to disconnect exist in the system state and are already 
linked specifically by the specified association. 
After completion, the link between the specified pair of objects through the 
specified association is removed. 
The case of an association class would require removing an instance of metaclass 
LinkObject. That instance is both a Link and an Object. The semantics below still holds 
for the “link” part of the instance. For the “object” part, instance destruction (i.e. 
attribute destruction, and possibly link and composite destruction) apply as in 
destroy. 
Next is the OCL expression that specifies the unlink primitive. 
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context SystemState::unlink(o1:Name,o2:Name,a:Name) 
 
pre: -- Objects named "o1" and "o2" exists in the system state 
     self.ownedObject->exists(e | e.name = o1) and self.ownedObject-> 
   
pre: -- Exists an association named "a" in the associated object model 

  exists(e | e.name = o2) 

     self.structure.ownedInstance->exists(e | e.oclIsTypeOf(Association) and  
     e.name = a) 
 
pre: -- Classes of objects named "o1" and "o2" must be connected by  
     -- association named "a" 
     let O1 = self.ownedObject->select(e | e.name = o1)->any(true) in 
     let O2 = self.ownedObject->select(e | e.name = o2)->any(true) in 
     let C1 = O1.classifier->any(true) in 
     let C2 = O2.classifier->any(true) in 
     let A = self.structure.ownedInstance->select(e |  
        e.oclIsTypeOf(Association) and e.name = a)->any(true)-> 
        oclAsType(Association) in 
           C1.allParents()->including(C1)->intersection(A.connection.type-> 
           asSet)->size() = 1 and 
           C2.allParents()->including(C2)->intersection(A.connection.type-> 
           asSet)->size() = 1 
 
pre: -- Objects named "o1" and "o2" are linked by association named "a" 
     let O1 = self.ownedObject->select(e | e.name = o1)->any(true) in 
     let O2 = self.ownedObject->select(e | e.name = o2)->any(true) in 
     let A = self.structure.ownedInstance->select(e |  
        e.oclIsTypeOf(Association) and e.name = a)->any(true)-> 
        oclAsType(Association) in 
           not A.link->select(l | l.connection.instance->includes(O1) and  
           l.connection.instance->includes(O2))->isEmpty() 
 
post: -- The link between objects named "o1" and "o2" by association named  
      -- "a" is no longer available in the system state 
     let O1 = self.ownedObject->select(e | e.name = o1)->any(true) in 
     let O2 = self.ownedObject->select(e | e.name = o2)->any(true) in 
     let A = self.structure.ownedInstance->select(e |  
        e.oclIsTypeOf(Association) and e.name = a)->any(true)-> 
        oclAsType(Association) in 
     let c1 = O1.classifier->any(true) in 
     let c2 = O2.classifier->any(true) in 
     -- 
     let C1 = c1.allParents()->including(c1)-> 

The class of O1 at A’s end  

        select(w | w.oclAsType(Class).associationEnd.association-> 
        includes(A))->any(true) in 
     -- The class of O2 at A’s end 
     let C2 = c2.allParents()->including(c2)-> 
        select(w | w.oclAsType(Class).associationEnd.association-> 
        includes(A))->any(true) in 
     -- The link end that connected O1 to the link removed 
     let le1:LinkEnd = O1@pre.linkEnd@pre->select(e |  
        e@pre.link@pre.association@pre = A and  
        e@pre.link@pre.connection@pre->exists(instance@pre = O2) 
        )->any(true) in 
     -- The link end that connected O2 to the link removed 
     let le2:LinkEnd = O2@pre.link @pre->select(e |  End
        e@pre.link@pre.associatio @pre = A and  n
        e@pre.link@pre onnection@pre->exists(instance@pre = O1) .c
        )->any(true) in 
     -- The link removed 
     let l:Link = le1.link@pre in 

12 



        -- Both link ends are not accessible from the disconnected objects 
        O1.linkEnd->excludes(le1) and 
        O2.linkEnd->excludes(le2) and 
        -- also not accessible from any association end 
        C1.oclAsType(Class).associationEnd->forAll(linkEnd->excludes(le1))  
        and 
        C2.oclAsType(Class).associationEnd->forAll(linkEnd->excludes(le2))  
        and 
        -- they are not available in the system state 
        self.ownedLinkEnd->excludes(le1) and 
        self.ownedLinkEnd->excludes(le2) and 
        -- The link is not accessible from the association 
        A.link->excludes(l) and 
        -- it is not available in the system state 
        self.ownedLink->excludes(l) 

 
4.5    Semantics for set 
 
Using this primitive the value of an attribute of an object can be changed. It takes 
as input the target object, the attribute, and the new value for it. It is required that 
the target object exists in the system state, and the specified attribute is defined in 
the target object class (or any of its ancestors). Also, the type of the new value must 
conform to the type of the attribute (i.e. either both types match or the type of the 
value is a subtype of the type of the attribute). 
After the primitive is completed, the object holds the new value for the attribute. 
Next is the OCL expression that specifies the set primitive. 
 
context SystemState::set(o:Name,a:Name,v:DataValue) 
 
pre: -- Object named "o" exists in the system state 
     self.ownedObject->exists(e | e.name = o) 
 
pre: -- The class of object named "o" has an attribute named "a" 
     let O:Object = self.ownedObject->select(e | e.name = o)->any(true) in 
     let C:Classifier = O.classifier->any(true) in 
        C.allParents()->including(C)->exists(oclAsType(Class).feature-> 
           exists(e | e.oclIsTypeOf(Attribute) and e.name = a)) 
 
pre: -- The type of value v mathces the type attribute named a of the class  
     -- of object named o 
     let c = self.ownedObject->select(e | e.name = o)->any(true).classifier 
        ->any(true) in 
     let C = c.allParents()->including(c) in 
     let t = C->collect(oclAsType(Class).feature)->flatten->select(e |  
        e.oclIsTypeOf(Attribute) and e.name = a)-> 
        any(true).oclAsType(Attribute).type in 
           v.classifier->collect(allParents())->flatten()-> 
           union(v.classifier)->includes(t) 
 
post: -- The value for attribute named a in object named o is now v 
     let O:Object = self.ownedObject->select(e | e.name = o)->any(true) in 
     let A:Attribute = self.structure.ownedInstance->select(e |  
        e.oclIsTypeOf(Attribute) and e.name = a)->any(true)-> 
        oclAsType(Attribute) in 
     let al:AttributeLink = O.slot->intersection(A.attributeLink)-> 
        any(true) in 
           al.value = v 
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4.6    Additional Operations 
 
We now show all the additional operations used in the specifications organized by 
the metaclass where they are intended to appear. 
 
GeneralizableElement 
 
The operation parents(), borrowed from [6], returns a Set containing all the 
Generalizable Elements directly inherited by this GeneralizableElement, excluding 
itself: 
 
parent() : Set(GeneralizableElement) = 
   self.generalization->collect(g | g.parent)->asSet 
 
 

The operation allParents(), also borrowed from [6], returns a Set containing all the 
Generalizable Elements inherited by this GeneralizableElement (the transitive 
closure), excluding the GeneralizableElement itself: 
 
allParents() : Set(GeneralizableElement) = 
   self.parent()->union( 
      self.parent()->collect(g | g.allParents())->flatten)->asSet 
 
 

The operation offspring() returns a Set containing all the Generalizable Elements 
that are direct descendants from this GeneralizableElement, excluding itself: 
 
offspring() : Set(GeneralizableElement) = 
   self.specialization->collect(g | g.child)->asSet 
 
 

The operation allOffspring() returns a Set containing all the Generalizable Elements 
that are descendants from this GeneralizableElement, excluding itself: 
 
allOffspring() : Set(GeneralizableElement) = 
   self.offspring()->union( 
      self.offspring()->collect(g | g.allOffspring())->flatten)->asset 
 

 
Class 
 
The operation getComponents() returns a Sequence containing all the classes related 
by composition with this Class and all its descendants (the transitive closure), 
ordered in a depth first search (DFS) basis: 
 
getComponents():Sequence(Class) = 
  self.associationEnd->iterate( 
     x:AssociationEnd; 
     acc:Sequence(Class)=Sequence{self}->union( 
        self.allOffspring()->iterate( 
           y:GeneralizableElement; 
           acc2:Sequence(Class)=Sequence{} 
           | acc2->including(y.oclAsType(Class)))) 
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     | if x.aggregation = #composite then 
          acc->union(x.association.connection->asSet->excluding(x)-> 
             any(true).type.oclAsType(Class).getComponents()) 
       else 
          acc 
       endif 
  ) 

 
 
5    Examples 
 
In this section we show an example of the application of each primitive to an 
instance of the sample model introduced in section 3. The examples consist of a 
pair of snapshots of our system, one that satisfies the pre-condition, and the other 
satisfying the post-condition of each primitive. This can be regarded as an 
animation of the system showing graphically the effect of the primitives. 
We assume that when the system is running, an instance named ss of class 
SystemState is available, and linked to the instance of SystemStructure, as shown in 
Fig. 4 (only showing one of the links between the structure and the actual instances 
that compose the system structure). Except for the first example, for clarity we 
elided in all the snapshots the instances of classes SystemState and SystemStructure 
and all the links involving them.  
 

isAbstract = false
Person : Class

isAbstract = false
Factory : Class

 : AssociationEnd  : AssociationEndworks_for : Association

participant

association

connection connection

association

participant

initialValue = "foo"
 : Attributefeature

String : DataType

type

 : SystemStructure ss : SystemStatestructure

ownedInstance

 
 

Figure 4: Snapshot of an empty system state 
 
5.1    Example of create 
 
For this primitive we can use Fig. 4 as a snapshot that satisfies the pre-conditions. 
It represents the empty state, since no object is present. 
After the invocation of ss.create("p","Person") a new person was created and its 
attributes (in our case attribute name) are initialized with the default values. A 
snapshot of the resulting state that satisfies the post-condition is shown in Fig. 5. 
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isAbstract = false
Person : Class

isAbstract = false
Factory : Class

 : AssociationEnd  : AssociationEndworks_for : Association

participant

association

connection connection

association

participant

initialValue = "foo"
 : Attributefeature

String : DataType

type

p : Object

classifier

 : AttributeLink

slot

attribute

value = "foo"
 : DataValue

value

classifier

 
 

Figure 5: Snapshot after create 
 
5.2    Example of destroy 
We can use the same pair of snapshots to illustrate the effect of the destroy 
primitive. Snapshot in Fig. 5 satisfies the pre-conditions. After the invocation of 
ss.destroy("p") the state is empty again, and the result is shown in Fig. 4. 
5.3    Example of link 
 
To apply this primitive we need at least two instances, so we create a person and a 
factory invoking ss.create("p","Person") and ss.create("f","Factory") to the empty state. 
The result is shown in Fig. 6 and that snapshot satisfies the pre-conditions of link. 
 

isAbstract = false
Person : Class

isAbstract = false
Factory : Class

 : AssociationEnd  : AssociationEndworks_for : Association

participant

association

connection connection

association

participant

initialValue = "foo"
 : Attributefeature

String : DataType

type

p : Object

classifier

 : AttributeLink

slot

attribute

value = "foo"
 : DataValue

value

classifier

f : Object

classifier

 
 

Figure 6: Snapshot before link 
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After the invocation to ss.link("p","f","works_for") there is a new link that connects 
objects p and f via its respective link ends. The resulting state is shown in Fig. 7. 
 

isAbstract = false
Person : Class

isAbstract = false
Factory : Class

 : AssociationEnd  : AssociationEndworks_for : Association

participant

association

connection connection

association

participant

initialValue = "foo"
 : Attributefeature

String : DataType

type

p : Object

classifier

 : AttributeLink

slot

attribute

value = "foo"
 : DataValue

value

classifier

f : Object

classifier

 : LinkEnd  : LinkEnd : Link

associationEnd

linkEnd

connection connection

association

ownedLink linkEnd

associationEnd

linkEnd

instance instance

linkEnd  
 

Figure 7: Snapshot after link and before unlink 
 
5.4    Example of unlink 
 
Again we use the same pair of snapshots of the previous subsection to illustrate the 
effect of unlink. Snapshot of Fig. 7 is valid before the call ss.unlink("p","f","works_for"). 
After the invocation, the two objects are disconnected since the link and link ends 
were removed. The result is again the snapshot in Fig. 6. 
 
5.5    Example of set 
 
For this primitive, we start from the state of Fig. 4 where only object p exists. For 
the invocation ss.set("p","name",dv) we need the data value dv shown in Fig. 8.  
 
 

String : DataType
value = "bar"
dv : DataValue classifier

 
 

Figure 8: Data value for applying set 
 
After the invocation, the value of attribute name of p is dv. The result is shown in 
Fig. 9. 
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isAbstract = false
Person : Class

isAbstract = false
Factory : Class

 : AssociationEnd  : AssociationEndworks_for : Association

participant

association

connection connection

association

participant

initialValue = "foo"
 : Attributefeature

String : DataType

type

p : Object

classifier

 : AttributeLink

slot

attribute

value = "bar"
dv : DataValue

value

classifier

 
 

Figure 9: Snapshot after set 
 
 
6    Conclusions 
 
We have written a specification of the semantics of system state modification 
primitives. Although this specification is not completely formal, it is more rigorous 
than other versions found in the bibliography. We used the UML metamodel as a 
description of both system structure and system state, and OCL for expressing the 
pre- and post-conditions that specify the semantics of each primitive. All OCL code 
was validated using the USE Tool. 
We used for validation the UML metamodel codification that comes as an example 
with the USE installation. Some minor changes were introduced to it: (meta) 
classes SystemState and SystemStructure, relationships between them and other 
metaclasses, and the additional operations of subsection 4.6. The main addition 
was the OCL expressions of section 4. We also generated more exhaustive test 
cases than those shown in section 5. It took about 30 man-hours to write the 
specification and complete the validation process. The specification file together 
with the test scripts is available at www.fing.edu.uy/~avignaga/Primitives. 
A semantics like the one we introduced in this work can be used to understand the 
effect of the primitives both when reasoning about the behavior of a system-level 
operation in order to write a precise specification for it, and when reading an 
existing specification, especially when designing or implementing a program that 
satisfies that specification. It can also be applied in the same manner to other 
contexts, such as subsystems, and even to components, since the semantics of 
component operations is a vital part of the component interface specification [1]. 
Moreover, it can be applied to operations of any interface realized by a coarse 
grained class, such as SystemState. 
Finally, it could be a start point towards a formal specification of the semantics of 
the primitives. A formal specification could be used in a formal definition of a 
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language such as provided by [9]. Most importantly, it could provide a framework 
for formally reasoning about the use of primitives, which in combination with a 
proof assistant would make it possible to prove certain kind of properties on 
system states.  
 
 
References 
 

[1]  J. Cheesman and J. Daniels. UML Components: A simple process for 
specifying Component-Based Software. Addison-Wesley, 2001. 

   

[2]  D. D’Souza and A. Wills. Objects, Components and Frameworks with 
UML: The Catalysis Approach. Addison-Wesley, 1998. 

   
[3]  C. Larman. Applying UML and Patterns. Prentice Hall, second edition, 

2002. 
   

[4]  I. Oliver. ‘Executing’ the OCL. In ECOOP'99 Workshop for PhD 
Students in OO Systems (PhDOOS '99), 1999. 

   
[5]  OMG. OMG Unified Modeling Language Specification, Version 1.5, 

March 2003. Object Management Group, Inc., Framingham, Mass., 
Internet: http://www.omg.org, 2003. 

   
[6]  OMG. UML Semantics. In OMG Unified Modeling Language 

Specification, Version 1.5, March 2003 [3], chapter 2. 
   

[7]  OMG. UML Action Semantics. In OMG Unified Modeling Language 
Specification, Version 1.5, March 2003 [3], sections 2.14-2.25. 

   
[8]  OMG. Object Constraint Language Specification. In OMG Unified 

Modeling Language Specification, Version 1.5, March 2003 [3], chapter 6. 
   

[9]  M. Richters. The USE Tool: A UML-based specification environment, 
2001. Internet: http://www.db.informatik.uni-bremen.de/ 
projects/USE/. 

   
[10]  M. Richters. A precise approach to validating UML models and OCL 

constraints. Biss Monographs, Logos Verlag Berlin, 2002. 
   

[11]  J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. 
Object-Oriented Analysis and Design. Prentice Hall, Engelwood Cliffs 
(NJ), 1991. 

   
[12]  J. Rumbaugh, I. Jacobson and G. Booch. The Unified Modeling 

Language Reference Manual. Addison-Wesley, 1998. 
 

19 


