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Abstract—This paper models a large-scale Internet of Things
(IoT) network as a stochastic system that offloads computing
towards Fog and Cloud via a shared access medium. The
analysis of this large IoT system by stochastic methods is a
challenging problem, if possible, to solve. This paper proposes
the approximation of the dynamic of the IoT network via the
fluid limit of the stochastic process. This method allows the
analysis of the large-scale system and also allows finding the
equilibrium point of the system. The results obtained with
stochastic simulations show that the fluid model is an excellent
approximation of the stochastic system.

Index Terms—Edge Computing, Fog Computing, Cloud
Computing, Computation Offloading, Markov Process, Fluid
Limit, Switched Systems, Wireless Communications, Internet
of Things

I. INTRODUCTION

In recent years, the number of IoT devices has grown
significantly, and the trend is expected to continue and accel-
erate with the arrival of 5G networks [1]. New applications
and services will also require an increase in processing
capabilities while lowering latency: Augmented Reality, In-
ternet of Vehicles, Smart Home, Health Monitoring Devices.
For this purpose, edge and fog computing emerge as key
technological enablers.

While cloud computing is supposed to have a signif-
icant availability of resources, edge and fog processing
could help in reducing latency and communication costs.
However, these last devices are limited in their capabilities
(energy constraints, buffer size, CPU, etc.). Therefore, one
important problem is determining an optimal offloading
factor at the different stages of the three-tier computing
architecture (Local-Fog-Cloud) to maximize the system’s
overall performance.

The literature on this area has presented various stochastic
offloading models, the articles [2], [3] are detailed surveys
on this topic. Authors in [4]–[6] propose Markov Process
models for offloading computation.

However, large-scale network offloading modeling re-
mains an open challenge because as the network scales,
typical models increases the decision delay and therefore
the offloading delay. Although there are several works with
scalable methods such as those based on game theory and
machine learning, the challenge still exists [7].

In this context, in this article we are interested in knowing
if the method of the fluid approximation of a Markov

Process, which is inherently scalable, is appropriate for this
type of scenario.

To the best of our knowledge, no previous work has stud-
ied the asymptotic behaviour of a large-scale IoT network
that offloads processing towards Fog-Cloud via a shared
access medium. The main contributions of this work are:
• Modeling of a large-scale population of IoT nodes

that are processing, transmitting, or at idle state as
a switched system via the fluid approximation of a
Markov Process.

• Location of equilibrium points as a function of system
parameters.

II. SYSTEM MODEL

A set of IoT nodes (sensor nodes, mobiles, M2M devices)
receives task requests. These tasks require processing that
can be performed locally or offloaded to fog nodes or cloud
servers, in a three-tier computing architecture (see Fig. 1).
The arriving tasks follow a Poisson process with rate λ.

Fig. 1: Three-tier computing architecture

Suppose a new request arrives and the IoT device is avail-
able (neither processing nor transmitting). In that case, it is
processed locally with probability α (the offloading factor)
or transmitted wirelessly to the fog node with probability
1 − α. The completion time for local processing and the
transmission time are random variables with exponential
distribution.

Let N be the number of IoT nodes; ÑN
tx(t), Ñ

N
p (t) and

ÑN
idle(t) be the stochastic processes corresponding to the

number of IoT nodes that are transmitting, processing and
idle at time t respectively with ÑN

tx(t)+Ñ
N
p (t)+ÑN

idle(t) =
N .



Shared access medium

The communication channel is shared among IoT nodes
and has a throughput function C̃N (Ñtx) that is scalable with
N . Let L be the number of Fog Gateways such that L ∝
N , each Gateway can service up to M IoT devices with a
constant throughput per transmitting device k, the maximum
throughput per Gateway is cg = Mk and the maximum
throughput per device c = cgL/N .

A medium access control is implemented, i.e ALOHA,
CSMA/CA, etc. Following the analysis obtained in [8] about
the throughput of a CSMA wireless network varying the
number of users, a piecewise linear function with parameters
k and k1 modeling the throughput is considered:

C̃N (ÑN
tx) =

{
kÑN

tx , if 0 ≤ ÑN
tx ≤ cN/k

cN(1 + k1
k
)− k1Ñ

N
tx , if cN/k < ÑN

tx ≤ N

Initially the channel throughput increases with the number
of transmitting nodes, until the maximum capacity is reached
and the performance of the link decreases (see Fig. 2).
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Fig. 2: Channel throughput C̃N (ÑN
tx).

Number of transmitting and processing nodes as population
processes

We can think of the system as a population process with
a fixed number of similar “particles” of different classes.
The particles, in this case, will be IoT nodes, each of them
classified according to its state: transmitting, processing, or
idle.

The rate at which each class evolves will depend on the
intensity between the transitions of the different states. As
an example, let us consider the intensity for the birth of
a processing node. The birth will occur when a new task
arrives at any of the idle nodes, and the system decides to
process the task locally. Because the time between arrivals
follows an exponential distribution with parameter λ, the
time until a first task arrives to an idle node has an expo-
nential distribution with parameter λNidle. Considering the
offloading factor, the intensity for the birth of a new process-
ing node is αλÑN

idle. Similarly, the processing population
will decrease by one, with the first task completed among
all nodes processing locally. In this case, the death intensity
of processing nodes is µÑN

p where µ is the processing rate.
Analogously, the intensity for the birth of a new transmit-

ting node is (1−α)λÑN
idle. The transmission rate for a single

node (tasks transmitted per second) can be calculated as the

available throughput per user C̃N (ÑN
tx)/Ñ

N
tx divided by the

packet size 1/v. Therefore, the time until a first transmission
ends among all existing transmissions will be exponen-
tially distributed with rate parameter vÑN

tx C̃
N (ÑN

tx)/Ñ
N
tx =

vC̃N (ÑN
tx).

The Markov Process (ÑN
p (t), ÑN

tx(t)) has transition rates
q̃((ÑN

p , Ñ
N
tx), (Ñ

′
p
N , Ñ ′tx

N )) from state (ÑN
p , Ñ

N
tx) to state

(Ñ ′p
N , Ñ ′tx

N ), defined by:

q̃((ÑN
p , Ñ

N
tx), (Ñ

N
p + 1, ÑN

tx)) = αλ(N − ÑN
p − ÑN

tx) (1)

q̃((ÑN
p , Ñ

N
tx), (Ñ

N
p − 1, ÑN

tx)) = µÑN
p (2)

q̃((ÑN
p , Ñ

N
tx), (Ñ

N
p , Ñ

N
tx + 1)) = (1− α)λ(N − ÑN

p − ÑN
tx)

(3)

q̃((ÑN
p , Ñ

N
tx), (Ñ

N
p , Ñ

N
tx − 1)) = vC̃N (ÑN

tx) (4)

Fluid limit approximation

We are interested in evaluating the system’s performance
for a large number of IoT nodes as a function of the offload-
ing factor. Although simulations can be run for different
parameters, the asymptotic behavior can be more easily
studied with an equivalent deterministic system.

For this purpose we introduce a fluid limit approximation
for the Markov Process. More information about this method
can be found in [9] [10] [11].

Following the notation used in [10], let X̃N (t) be a
Markov process parametric in N and its Martingale decom-
position:

X̃N (t) = X̃N (0) +

∫ t

0

Q̃N (X̃N (s))ds+ M̃N (t)

where M̃N (t) is a Martingale, Q̃N (l) =
∑
m∈S(m −

l)q(l,m) is the process drift, q(l,m) is the transition rate
from state l to state m and the state space is denoted by S.
Let XN (t) = X̃N (t)/N be the scaled process,

XN (t) = XN (0) +
1

N

∫ t

0

Q̃N (X̃N (s))ds+
M̃N (t)

N

If a Lipschitz function Q exists such that:

lim
N→∞

supl∈S

∥∥∥∥∥ Q̃N (l)

N
−Q(l/N)

∥∥∥∥∥ = 0

then M̃N (t)
N converges to zero in probability and XN (t)

converges in probability to a deterministic process x(t)
described by the ordinary differential equation (ODE):

ẋ = Q(x(t))

We define nNtx = ÑN
tx/N , nNp = ÑN

p /N and nNidle =

ÑN
idle/N such that 0 ≤ nNtx ≤ 1 and 0 ≤ nNp ≤ 1. The aver-

age throughput function per IoT node, C(nNtx) =
C̃N (ÑN

tx)
N

is given by:

C(nNtx) =

{
knNtx, if 0 ≤ nNtx ≤ c/k
c(1 + k1

k )− k1n
N
tx, if c/k < nNtx ≤ 1

(5)



Proposition 1. The scaled process (nNp (t), nNtx(t)) =
1
N (ÑN

p (t), ÑN
tx(t)) converges in probability when N →∞

to (np(t), ntx(t)), solution of the following deterministic
ODE:

(ṅp, ṅtx) = Q(np, ntx) (6)

where Q(.) is given by:

Q(np, ntx) =

(
αλ(1− np − ntx)− µnp

(1− α)λ(1− np − ntx)− vC(ntx)

)

The proofs on this paper are not included for lack of
space.

III. ANALYSIS OF THE DETERMINISTIC ODE
The throughput defined in Eq. (5) generates an ODE with

two right-hand sides, depending on channel congestion. For
this reason, a polyhedral partition is considered: Xlin =
{(np, ntx)|0 ≤ ntx ≤ c/k, 0 ≤ np ≤ 1, np + ntx ≤ 1} and
Xsat = {(np, ntx)|c/k ≤ ntx ≤ 1, 0 ≤ np ≤ 1, np + ntx ≤
1} and X = Xlin∪Xsat is the feasible triangle (see Fig. 3).
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Fig. 3: Regions of the state-dependent switching system.

The system switches following a sequence s =
[(i0, t0), (i1, t1), ..., (iN , tN )] between two first-order linear
systems of the form:

ẋ(t− tk) = Aikx(t− tk) + rik , (7)

for tk ≤ t < tk+1 where x = (np, ntx)
T , Aik is the

fundamental matrix, rik is a source input.
When x ∈ Xlin then ik = 1 and System I is active. If

x ∈ Xsat then ik = 2 and System II is active. For the
rest of this paper we denote Alin = Aik=1

, Asat = Aik=2
,

rlin = rik=1 and rsat = rik=2
.

We face a planar switched system that swings between
two linear dynamics. We want to find the equilibria of
the system and to study their stability properties. This
can be done for each subsystem using the eigenvalues of
the fundamental matrices. However, we must be careful,
since switched systems can be unstable even when both
subsystems are stable [12]. We first look at every subsystem.

Analysis of System I (x ∈ Xlin)

The dynamic in this zone is given by:{
ṅp =αλ(1− ntx − np)− npµ
ṅtx =(1− α)λ(1− ntx − np)− kvntx

with matrices:

Alin =
[
−αλ−µ −αλ
−(1−α)λ −kv−(1−α)λ

]
, rlin =

[
αλ

(1−α)λ

]
Since Alin is non-singular, there is a unique equilibrium
point n̂lin = (n̂linp , n̂lintx ) which is always asymptotically
stable and it always lies inside the feasible triangle. Whether
it is inside Xlin or Xsat depends on parameter values.

Analysis of System II (x ∈ Xsat)
The dynamic in this zone is given by:

{
ṅp =αλ(1− ntx − np)− npµ

ṅtx =(1− α)λ(1− ntx − np) + k1vntx − c(1 + k1/k)v

with matrices:

Asat =
[
−αλ−µ −αλ
−(1−α)λ k1v−(1−α)λ

]
, rsat =

[
αλ

(1−α)λ−c(1+k1/k)v

]
Once again, there is a unique equilibrium point n̂sat =

(n̂satp , n̂sattx ). Both its stability property and its location
depends on parameter values. It can be stable or unstable
and it can be inside or outside the feasible triangle.

A careful analysis, not included here, reveals a total of
six different scenarios regarding the stability and location
of equilibria. A thorough analytical examination indicates
that all the trajectories of the switched system converge to a
unique equilibrium point within the feasible triangle, either
n̂lin or n̂sat. At this stage, given the system parameters,
we can analytically determine the system’s attractor, that
is, the steady-state population density of transmitting and
processing nodes.

IV. RESULTS

For the purpose of this study we carried out a discrete-
event simulation in Python to recreate the stochastic pro-
cesses presented in this paper. In this section we present the
results obtained for a particular set of parameters to show
that the fluid limit model is an excellent approximation of
the dynamics of the simulated system.

One interesting set of parameters to simulate are those of
the scenario that depending on the offloading factor we could
have an equilibrium point in where the channel is saturated
or not.

The simulation parameters are listed in Table I and the
results are shown in Fig. 4. We can observe that for each
population density (transmitting, processing and idle), the
solution of the fluid model ODE is a good approximation of
the simulated densities, not only regarding the equilibrium
point but also the transient response.



TABLE I: Simulation parameters

Parameter Description Value
N Number of IoT devices 500
M Number of Fog gateways 25
λ Task arrival rate 1 task/s
µ Task processing rate 0.5 task/s
cg Gateway Maximum Throughput 100 Mbps
k Throughput in linear zone 10 Mbps/user
k1 Throughput saturation parameter 3
v Task transmission bit ratio 2× 10−7 task/bit
Ntx(t0) Initial transmitting nodes 0
Np(t0) Initial processing nodes 0
Nidle(t0) Initial idle nodes 500
T Simulation time 50 s

In the first case with α = 0.9 the equilibrium point is in
Xlin and the trajectory never enters Xsat, so there is no
switching between systems. However with α = 0.1, the
system is initially in Xlin but the equilibrium point is in
Xsat and a switching occurs when the transmission density
reaches c/k = 0.5.

In order to numerically compare the expected equilibrium
point with the mean of the stochastic processes and to reduce
the effect of the transient response, we conducted a new sim-
ulation changing the initial condition to match the expected
equilibrium point. Therefore in the case with α = 0.9 we set
(Ntx(0), Np(0)) = (Nn̂linp , Nn̂lintx ) and for the case with
α = 0.1 we set (Ntx(0), Np(0)) = (Nn̂satp , Nn̂sattx ). The
results are shown in Table II, for each class and offloading
factor we compare the mean value of the simulated system
with the equilibrium coordinate of the fluid model. Although
the number of IoT devices is finite we can conclude that the
fluid model is a good approximation to obtain the expected
value of the stochastic processes.

TABLE II: Mean value of the stochastic processes vs Fluid
Model Equilibrium

α = 0.1 α = 0.9
Param. Mean Sim. Fluid Model Mean Sim. Fluid Model
ntx 0.8947 0.8985 0.1503 0.1515
np 0.0172 0.0169 0.5512 0.5454

V. CONCLUSIONS AND FUTURE WORK

This work proposes a novel approach to analyze a large-
scale IoT stochastic system using a fluid limit model. The
results show that the fluid model is an excellent approxima-
tion to the stochastic system. They also show that the fluid
model is a suitable tool to determine the equilibrium point
of a large-scale IoT network.

Future studies will have to investigate how to incorporate
QoS metrics for determining an optimal offloading factor
considering cost functions with QoS restrictions. Addition-
ally, energy models can be studied to investigate the effect
of energy scarcity in the dynamics of the population of
transmitting and processing nodes.
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Fig. 4: Evolution of population densities. The stochastic
trajectory of each class is compared with the corresponding
fluid limit approximation. Two simulations are represented
varying the offloading factor.
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