

Análisis de la influencia de la gravedad en la nivelación geométrica, en la zona con mayor altitud del país

María Lorena Gómez María Lucía Lujambio Camila Machado

Proyecto de grado presentado a la Facultad de Ingeniería de la Universidad de la República en cumplimiento parcial de los requerimientos para la obtención del título de Ingeniero Agrimensor

> Tutor Ing. Agrim. Jorge Faure

Tribunal Ing. Agrim. Fernanda Camisay Ing. Agrim. Roberto Perez Ing. Agrim. Esteban Striewe

> Montevideo, Uruguay Noviembre de 2022

Página de aprobación

FACULTAD DE INGENIERÍA

de grado:
Título
Autores
Tutor
Carrera
Puntaje
Tribunal
Profesor(Nombre y firma)
Profesor(Nombre y firma)
Profesor(Nombre y firma)
Fecha:

El tribunal docente integrado por los abajo firmantes aprueba el Proyecto

TABLA DE CONTENIDOS

1	RE	ESUMEN	9
2	INT	TRODUCCIÓN	10
3	PA	LABRAS CLAVE	12
4	OB	BJETIVOS	13
	4.1	Objetivos Generales	13
	4.2	Objetivos Específicos	13
5	MA	ARCO TEÓRICO	14
	5.1	Aspectos generales	14
	5.2	Superficies de Referencia en Geodesia	14
	5.3	Altitudes de un punto sobre la Tierra	16
	5.4	Marcos y Sistemas de Referencia	17
	5.5	Nivelación Geométrica	17
	5.6	Número Geopotencial	21
	5.7	Altura Ortométrica	22
	5.7	7.1 Corrección Ortométrica	24
	5.7	7.2 Precisión en la determinación de alturas ortométricas	27
	5.8	Altura Normal	28
	5.8	3.1 Corrección normal	32

5.8	8.2	Diferencia entre la ondulación geoidal y la anomalía de la altu	ra
		32	
5.9	Mé	todo de mínimos cuadrados	36
5.9).1	Ajuste de Mínimos Cuadrados de las Magnitudes	36
5.9).2	Ajuste de Mínimos Cuadrados de las Correcciones	38
5.9	9.3	Propagación de cofactores	40
5.10	Мо	delos Geopotenciales	44
5.1	0.1	Modelo Geoidal EGM-2008	45
5.11	Po	sicionamiento satelital	46
5.1	1.1	Generalidades del sistema GNSS	46
5.1	1.2	GPS (Sistema de Posicionamiento Global)	46
5.12	GN	ISS Diferencial	47
5.13	Cir	nemático en tiempo real RTK	48
5.14	Po	st proceso	50
5.15	Arc	chivos RINEX (Receiver Independent Exchange Format)	51
5.16	Off	set y variación del centro de fase de la antena	52
5.17	Niv	velación GNSS	53
5.18	Gra	avimetría	55
5.19	Re	d Gravimétrica Nacional de Uruguay	58
5.20	Infr	raestructura de Datos Espaciales6	30

6	ME	TOE	DOLOGÍA	60
	6.1	Zor	na de estudio	60
	6.2	Est	tudio de datos existentes	62
	6.3	Cá	Iculo de números Geopotenciales	63
	6.4	Cá	Iculo de alturas	74
	6.5	Ana	álisis de datos	78
	6.6	Tar	reas de campo	82
	6.6	.1	Relevamiento con GNSS	83
	6.6	.2	Relevamiento con nivel electrónico	90
	6.7	Ana	álisis y procesamiento	93
	6.7	.1	Post proceso del relevamiento con GNSS	93
	6.7	.2	Nivelación geométrica1	00
	6.7	.3	Comparación distintas metodologías1	04
	6.7	.4	Comparación con altura de MDE de la IDE1	05
	6.7	.5	Desniveles ortométricos 1	07
7	CO	NCL	LUSIONES1	09
8	BIE	BLIO	GRAFIA 1	12
9	AN	EXC	D	14

INDICE DE TABLAS

Tabla 5-1: Nomenclatura RINEX 51
Tabla 6-1: Datos de C de los Puntos Nodales 64
Tabla 6-2: Sumatoria de dC de las líneas 64
Tabla 6-3: Comparación de las diferencias de C y de dC65
Tabla 6-4: Comparación de σdC de la línea 224-225
Tabla 6-5: Comparación de σdC de la línea 223
Tabla 6-6: Cálculo de corrección ortométrica y altura ortométrica a partir de
dicha corrección
Tabla 6-7: Cálculo de corrección normal y altura normal a partir de dicha
corrección
Tabla 6-8: Resumen comparación de alturas ortometricas
Tabla 6-9: Resumen comparación de alturas normales
Tabla 6-10: Resultados del post proceso de la red Geodésica Nacional y
del perfil de nivelación
Tabla 6-11: Continuación Tabla 6-1099
Tabla 6-12: Datos de nivelación geométrica de ida 101
Tabla 6-13: Datos de nivelación geométrica de vuelta
Tabla 6-14: Resultados de la nivelación geométrica 102
Tabla 6-15: Comparación del desnivel geométrico y desnivel ortométrico.
Tabla 6-16: Comparación de distintas metodologías

Tabla 6-17: Datos los puntos de la base (Cerro Catedral) y de los puntos
de la Red Geodésica Nacional 107
Tabla 6-18: Cálculo de la altura de la base (Cerro Catedral) 107
Tabla 9-1: Cálculo manual de alturas ortométricas 116
Tabla 9-2: Cálculo manual de alturas normales117
Tabla 9-3: Cálculo de alturas ortométricas en ejecutable de Matlab 118
Tabla 9-4: Cálculo de alturas normales en ejecutable de Matlab 119

INDICE DE ILUSTRACIONES

Ilustración 5.1: Esquema nivelación geométrica18
Ilustración 5.2: Representación de dos puntos sobre la superficie terrestre
y su proyección sobre el geoide25
Ilustración 5.3: Esquema de Teluroide y Cuasgeoide
Ilustración 5.4: Esquema de la latitud normal
Ilustración 5.5: Geoide a una profundidad H por debajo de la superficie
terrestre
Ilustración 5.6: Concepto de posicionamiento relativo
Ilustración 5.7: Esquema de offset de antena52
Ilustración 5.8: Esquema de nivelación con GNSS54
Ilustración 6.1: Pie del Cerro Catedral 61
Ilustración 6.2: Ubicación de la zona de estudio. Google Earth61
Ilustración 6.3: Línea 223 (rojo), línea 224 (azul), línea 225 (celeste).
Google Earth63
Ilustración 6.4: Ubicación de los puntos geodésicos. Google Earth 84
Ilustración 6.5: Conformación de VRS-J86
Ilustración 6.6: Ubicación punto 2.24.003 87
Ilustración 6.7: Ubicación punto 1.11.04688
Ilustración 6.8: Ubicación punto I-Aiguá 89
Ilustración 6.9: Ubicación punto 1.11.04290
Ilustración 6.10: Nivelación geométrica en el Cerro Catedral

Ilustración 6.11: Relevamiento con GNSS del perfil de nivelación92
Ilustración 6.12: Ingreso de datos en software Leica Geo Office94
Ilustración 6.13: Ingreso de datos en software Emlid94
Ilustración 6.14: Post proceso Cerro Catedral, software Leica Geo Office.
Ilustración 6.15: Post proceso Cerro Catedral, software Emlid
Ilustración 6.16: Resultados post proceso Cerro Catedral, software Leica
Geo Office
Ilustración 6.17: Resultado post proceso Cerro Catedral, software Emlid.
Ilustración 6.18: Post proceso de puntos de la red geodésica nacional,
software Leica Geo Office
Ilustración 6.19: Post proceso del perfil de nivelación geométrica, software
Leica Geo Office
Leica Geo Office. 98 Ilustración 6.20: Punto Cerro Catedral georreferenciado y MDE de la IDE. Software Qgis. 106 Ilustración 9.1: Interfaz NUMGEOPOT. 114 Ilustración 9.2: Interfaz COMPNGP. 114 Ilustración 9.3: Soluciones del ejecutable en las líneas 224-225. Software
Leica Geo Office
Leica Geo Office

1 RESUMEN

En este proyecto se busca estudiar la influencia gravimétrica sobre las determinaciones altimétricas en la zona del Cerro Catedral, ubicado en Maldonado, más específicamente sobre el Camino al Cerro Catedral.

Se busca analizar cómo afecta la gravedad en el cálculo de las alturas normales y ortométricas a partir de una nivelación geométrica realizada sobre un perfil geodésico, determinado por puntos con alturas considerables en el Uruguay con respecto a nivel del mar (más de 400m).

Las determinaciones altimétricas de cierta precisión en geodesia implican la determinación del desnivel geométrico, así como la gravedad, a los efectos de poder calcular diferentes tipos de altura, ya sea a partir de los números geopotenciales o a través de las diferentes correcciones. Esto supone considerar la influencia de la gravedad.

Los datos gravimétricos son obtenidos en el banco de datos gravimétricos (Bureau Gravimétrique International) y son los utilizados para realizar la interpolación correspondiente para obtener los datos de gravedad en la zona en la cual se trabaje.

Se considera la Red de nivelación nacional que se sitúa en la zona de estudio. A partir de la misma, y mediante determinaciones de campo sumadas a cálculos de gabinete, se busca analizar efectivamente la influencia de la gravedad. Las tareas de campo consisten en la determinación de un perfil de nivelación, lo cual implica:

- Nivelación geométrica
- Posicionamiento satelital (GNSS)
- Procesamiento geodésico de las observaciones realizadas.

La disponibilidad actual de un Modelo Digital de Terreno por parte de la IDE (Infraestructura de Datos Espaciales), el cual está determinado en términos de alturas ortométricas sobre el modelo EGM08, permitirá analizar la exactitud de este en la zona.

A partir de esta práctica se podrá corroborar también la altura del punto más alto del Cerro Catedral, considerado en este momento el punto más alto del país.

2 INTRODUCCIÓN

En Uruguay, al igual que a la mayor parte de América del Sur, los sistemas de alturas fueron introducidos y desarrollados con el fin de complementar las posiciones horizontales en la preparación de la Carta Topográfica planialtimétrica de la República. Por lo cual, el control vertical se ha llevado a cabo mediante la existencia de la Red Fundamental de Nivelación, determinada mediante técnicas geodésicas de alta precisión ejecutada por el SGM (Servicio Geográfico Militar), hoy IGM (Instituto Geográfico Militar). Se contaban con datos medidos en los puntos de la nivelación, los cuales se ubicaban en la Carta Topográfica entonces se obtenían las coordenadas geodésicas teóricas, y a las mismas se le aplicaban correcciones de gravedad teóricas, es decir no se medía la gravedad en dichos puntos. Actualmente se haya medida y compensada en su totalidad.

Este trabajo llevado a cabo durante años con el apoyo de recubrimientos aerofotográficos del País, determinaron que el punto con mayor altimetría de la República es la cumbre del Cerro Catedral.

Este dato en conjunto con toda la información recabada por el IGM motiva a escoger la zona de estudio, y de esta forma partir de datos reales, y obtener nuevos datos propios que luego puedan ser utilizados en trabajos futuros o trabajos de estudiantes en sus cursos de grado.

Así mismo, motivadas por el trabajo de Laura Sánchez de Determinación de alturas físicas en Colombia, donde expone: "Dado que las alturas niveladas satisfacían las especificaciones de precisión requeridas por las escalas cartográficas utilizadas en los mapas nacionales, no se dio mayor importancia al efecto del campo de gravedad terrestre en las diferencias de nivel medidas y, con el tiempo, se omitió tradicionalmente la reducción por gravedad. Esto significa que en la mayoría de los países de América del Sur las alturas oficiales son cantidades meramente geométricas, que en forma de redes de nivelación han sido ajustadas, asumiendo el efecto del *campo de gravedad como un error más de medición.*⁷⁷, se pretende analizar la influencia de la gravedad en estas mediciones de alturas a partir de las nivelaciones geométricas.

3 PALABRAS CLAVE

- Gravedad
- Altura física
- Altura normal
- Altura ortométrica
- Nivelación geométrica
- Cerro Catedral

¹ Extraído de Determinación de alturas físicas en Colombia, Sánchez, 2002, página 3.

4 OBJETIVOS

4.1 **OBJETIVOS GENERALES**

El objetivo principal del presente trabajo es estudiar la influencia de la gravedad en mediciones altimétricas, escogiendo una zona de alturas considerables, para Uruguay, respecto al nivel del mar, donde además los desniveles son pronunciados. Se busca evaluar si los parámetros físicos inciden en los geométricos.

4.2 OBJETIVOS ESPECÍFICOS

- Análisis en la zona de estudio, a partir del cálculo de alturas físicas, ortométricas y normales, derivadas del número geopotencial.
- Observación de la influencia de la gravedad en la nivelación geométrica.
- Comparación de datos obtenidos mediante distintas metodologías.

5 MARCO TEÓRICO

5.1 ASPECTOS GENERALES

"El objeto de la Geodesia es el estudio y determinación de la forma y dimensiones de la Tierra, de su campo de gravedad, y sus variaciones temporales; constituye un apartado especialmente importante la determinación de posiciones de puntos de su superficie. Esta definición incluye la orientación de la Tierra en el espacio", (Miguel J. Sevilla de Lerma, España).

"La Geodesia es la ciencia que tiene como fin principal la determinación de la figura de la Tierra, el posicionamiento de puntos sobre la superficie física terrestre y el estudio del campo de la gravedad externo del planeta", (Benavidez, 2004).

5.2 SUPERFICIES DE REFERENCIA EN GEODESIA

Las superficies de referencia son aquellas a las que se puede referir un modelo de la realidad. Estas desempeñan un rol fundamental en Geodesia, ya que son imprescindibles a la hora de ajustar las medidas realizadas, con los modelos matemáticos adoptados.

Para la toma de medidas altimétricas se adopta como superficie de referencia a la denominada superficie de nivel, cuya principal característica es que en cada uno de sus puntos la dirección de la pesantez (vertical) es la normal a la superficie. Sobre dicha superficie la pesantez no es constante,

sino que crece del Ecuador hacia los Polos. La pesantez depende de la distribución de las masas y de la distribución de las densidades de los materiales. Las alturas de esos puntos sobre esta superficie se denominan cotas.

Son dos las principales superficies sobre las que se refieren las altitudes de los puntos sobre la Tierra: el Geoide y el Elipsoide.

"El geoide es la superficie matemática de la tierra, se define como una superficie equipotencial de la gravedad para un valor especial constante W_0 ", (Benavidez, 2004).

La desigualdad de la distribución de las masas continentales, así como la densidad variable de los materiales que componen nuestro planeta, hacen que el geoide no sea una superficie regular y que, en cambio, presente protuberancias y depresiones.

La superficie matemática que mejor se aproxima a la forma del geoide, es el "Elipsoide de revolución" o sea un elipsoide al que se lo hace girar sobre su eje menor y constituir un cuerpo con superficie. De esa manera, sobre la superficie del elipsoide, se pueden efectuar los cálculos angulares de posicionamiento y los cálculos de distancias.

La fórmula general que representa el elipsoide de revolución geocéntrico es:

15

$$\frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2} = 1$$
(5.1)

donde a y b, son los semiejes mayor y menor respectivamente, de la elipse generatriz.

5.3 ALTITUDES DE UN PUNTO SOBRE LA TIERRA

En relación con las superficies definidas anteriormente, pueden ser calculadas tres tipos de altitudes de un punto sobre la Tierra: Altura Ortométrica (H), altura Elipsoidal (h) y altura Geoidal u ondulación del geoide (N).

La altura ortométrica se define como la distancia vertical entre la superficie física de la Tierra y la superficie del geoide. Esta distancia se mide a lo largo de la línea de plomada, la cual es la curva que es tangencial a la dirección de la gravedad en cualquier punto. La línea de plomada no es una línea recta, ya que tiene una leve curvatura y giro, debido a que la dirección de la gravedad varía dependiendo de las características de densidad local.

La altura elipsoidal es la distancia entre la superficie topográfica y el elipsoide medida a lo largo de la normal al elipsoide. Esta altura es de tipo matemático, debido a que no responde a ningún principio físico. La altura es positiva por encima del elipsoide y negativa por debajo de él.

La altura geoidal o también conocida como anomalía geoidal (N), es la distancia que separa al elipsoide del geoide tomada sobre la normal elipsoidal de un punto. Si la distancia es positiva, significa que el geoide se

encuentra situado en parte superior al del elipsoide, si es negativa entonces el geoide se encuentra en la parte inferior.

5.4 MARCOS Y SISTEMAS DE REFERENCIA

"Un Sistema de Referencia es una definición conceptual de teorías, hipótesis y constantes que permiten situar una tripleta de coordenadas en el espacio.

Un Marco de Referencia es la materialización de un sistema de referencia, es una serie de puntos fiduciales que junto con sus coordenadas constituyen la realización práctica del sistema de referencia.

Un Sistema de Coordenadas, es la parametrización de las coordenadas de los puntos que forman el marco de referencia." (Berné J., 2016)

5.5 NIVELACIÓN GEOMÉTRICA

La nivelación es el proceso de medición de elevaciones o altitudes de puntos sobre la superficie de la tierra. La elevación o altitud es la distancia vertical medida desde la superficie de referencia hasta el punto considerado. La distancia vertical debe ser medida a lo largo de una línea vertical definida como la línea que sigue la dirección de la gravedad o dirección de la plomada.

Ilustración 5.1: Esquema nivelación geométrica².

La nivelación geométrica o nivelación diferencial es el procedimiento topográfico que nos permite determinar el desnivel entre dos puntos mediante el uso del nivel y la mira vertical.

El desnivel entre dos puntos es la distancia vertical entre las superficies equipotenciales que pasan por dichos puntos. El desnivel también se puede definir como la diferencia de elevación o cota entre ambos puntos.

La nivelación geométrica mide la diferencia de nivel entre dos puntos a partir de la visual horizontal lanzada desde el nivel hacia las miras colocadas en dichos puntos.

Cuando los puntos a nivelar están dentro de los límites del campo topográfico altimétrico y el desnivel entre dichos puntos se puede estimar con una sola estación, la nivelación recibe el nombre de nivelación

² Ilustración 5-1 extraída de Physical Geodesy, Moritz, 2005, página 157 fig. (4.1).

geométrica simple. Cuando los puntos están separados a una distancia mayor que el límite del campo topográfico, o que el alcance de la visual, es necesario la colocación de estaciones intermedias y se dice que es una nivelación compuesta.

La nivelación geométrica se desarrolla orientando verticalmente al sistema (instrumento y miras) según la línea de la plomada del campo de gravedad, de modo que el plano horizontal del instrumento coincide con la línea tangente a la superficie equipotencial que pasa por el punto de observación. Las diferencias de nivel se corresponden con la línea de la plomada, coincidente con el eje vertical de las miras, entre la superficie terrestre y la tangente a la equipotencial, dada por el instrumento. La separación entre dos equipotenciales varía con la gravedad en proporción inversa, dado que no son paralelas, por lo que la determinación de alturas mediante la nivelación clásica se ve afectada por el campo de gravedad.

Debido al no paralelismo, las diferencias de nivel *dn*, obtenidas en un circuito cerrado contienen el error de cierre teórico (ecuación 3.2), además de los errores aleatorios de observación, lo que obliga su corrección por el efecto de la gravedad o su transformación en diferencias de potencial.

$$\varepsilon = \oint dn \tag{5.2}$$

En otras palabras, debido a que el instrumento y miras se encuentran alineados con la dirección de la gravedad local, los desniveles siguientes observados, se verán afectados por diferentes orientaciones respecto a la

19

línea de la plomada en cada sitio donde se estaciona el equialtímetro, dichas variaciones en las orientaciones se acumulan.

La derivada direccional del potencial coincide con la componente del vector fuerza en esa dirección, a lo largo de la línea de la plomada se tiene:

$$-\frac{dW}{dn} = g \tag{5.3}$$

Por lo cual,

$$dW = -gdn \tag{5.4}$$

Considerando dos puntos A y B, distantes uno del otro, mediante la integración y considerando δn infinitamente pequeño puede deducirse:

$$-\int_{A}^{B} dW = \int_{A}^{B} g \delta n = \hat{g}(H_{B} - H_{A}) = W_{A} - W_{B}$$
(5.5)

siendo \hat{g} el valor medio de gravedad a lo largo de la línea de nivelación entre los equipotenciales de A y B.

Así, la diferencia de nivel entre dos puntos sobre la superficie de la tierra y sobre superficies equipotenciales diferentes pueden representarse de la siguiente forma:

$$dn_{AB} = (H_B - H_A) = \frac{W_A - W_B}{\hat{g}}$$
 (5.6)

En los circuitos cerrados de nivelación la sumatoria de todos los desniveles consecutivos δn (ecuación 5.7), generalmente no es igual a cero, dado que depende del camino recorrido en la nivelación.

$$\Delta H_{AB} = \sum_{A}^{B} \delta n \tag{5.7}$$

5.6 NÚMERO GEOPOTENCIAL

Si se conectan mediante nivelación geométrica, un punto O sobre el geoide y un punto A, la diferencia de potencial se conoce como número geopotencial y está dado por:

$$\int_{0}^{A} g dn = W_{0} - W_{A} = C$$
 (5.8)

con g como el promedio del valor de gravedad medido sobre los dos puntos nivelados consecutivamente.

La determinación de *C* no depende de la trayectoria de nivelación, por lo tanto, para un circuito cerrado cumple que la integración sobre la equipotencial es cero.

La altura *H* en A se obtiene a partir de,

$$H_A = \frac{C}{G} \tag{5.9}$$

En función de la estimación de *G*, se obtienen diferentes alturas físicas.

El número geopotencial es medido en unidades geopotenciales; 1 *g.p.u* es equivalente a 1 *kiloGal por metro* [kGal m].

5.7 ALTURA ORTOMÉTRICA

Sea *P* un punto sobre la superficie de la tierra y P_0 su proyección sobre el geoide según la línea de la plomada. La altura ortométrica *H* es la distancia, sobre la línea de la plomada entre *P* y P_0 .

El número geopotencial en P será:

$$C = \int_0^H g dH \tag{5.10}$$

Para obtener *H* de forma directa usamos

$$dC = -dW = gdH \tag{5.11}$$

$$dH = -\frac{dW}{g} = \frac{dC}{g} \tag{5.12}$$

entonces,

$$H = -\int_{W_0}^{W} \frac{dW}{g} = \int_0^C \frac{dC}{g}$$
 (5.13)

La expresión de *H* no es funcional, por lo cual se realiza el siguiente cambio:

$$C = \int_{0}^{H} g dH = H \cdot \frac{1}{H} \int_{0}^{H} g dH$$
 (5.14)

de esta forma,

$$C = \overline{g}H \tag{5.15}$$

Donde,

$$\overline{g} = \frac{1}{H} \int_0^H g dH \tag{5.16}$$

es la gravedad media entre el geoide y la superficie terrestre.

Despejando de la ecuación (5.15),

$$H = \frac{C}{\overline{g}} \tag{5.17}$$

se necesita conocer el valor de la gravedad media para determinar el valor de *H*. Para estimar la gravedad con alta precisión se debe medir la aceleración de esta en cada punto de la línea de la plomada entre el geoide y la superficie terrestre. Como la gravedad no puede ser medida, se han definido aproximaciones, mediante las cuales se estima la gravedad media con el valor qué se observa en la superficie terrestre.

Una de las funciones es la de Helmert, donde la gravedad varía linealmente con la altura; es decir, la densidad de las masas internas es constante y el gradiente vertical de la gravedad real es igual al de la teórica. El efecto de la topografía se evalúa mediante una placa de Bouguer, cuyo espesor es constante y equivale a la altura H.

$$\overline{g} = g + 0.0424.H \tag{5.18}$$

(g en gal, H en km)

Sustituyendo en (5.17):

$$H = \frac{C}{g + 0.0424.H} \tag{5.19}$$

También se calcula la altura ortométrica de Baranov, cuya hipótesis también indica que los campos de gravedad real y teóricos son idénticos y tienen el mismo gradiente vertical. Así la gravedad g sobre el geoide puede reemplazarse por la gravedad normal γ y gm depende solo de la altura.

$$gm = \frac{1}{2} \cdot (g + \gamma) \tag{5.20}$$

5.7.1 Corrección Ortométrica

La corrección ortométrica se suma a la diferencia de altura medida, para así convertirlo en una diferencia de altura ortométrica.

Dada una línea de nivelación que conecte dos puntos A y B se le aplica:

$$\Delta H_{AB} = H_B - H_A = H_B - H_A - H_B^{dyn} + H_A^{dyn} + (H_B^{dyn} - H_A^{dyn})$$

= $\Delta H_{AB}^{dyn} + (H_B - H_B^{dyn}) - (H_A - H_A^{dyn})$ (5.21)

Ilustración 5.2: Representación de dos puntos sobre la superficie terrestre y su proyección sobre el geoide³.

A partir de la deducción de la altura dinámica, la cual no se detalla en el presente informe se sabe:

$$\Delta H_{AB}^{dyn} = \Delta n_{AB} + DC_{AB} \tag{5.22}$$

Entonces, considerando la diferencia entre la altura ortométrica y dinámica

 $H_A - H_A^{dyn}$, $H_B - H_B^{dyn}$, si se imagina una línea de nivelación ficticia que parta del punto A_0 en el geoide hasta el punto A de la superficie a lo largo de la plomada, la diferencia de altura medida sería H_A , considerando $\Delta n_{A_0A} = H_A$.

$$DC_{A_0A} = \Delta H_{A_0A}^{dyn} - \Delta n_{A_0A} = H_A^{dyn} - H_A$$
(5.23)

³ Ilustración 5-2 extraída de Physical Geodesy, Moritz, 2005, página 164, fig. (4.5).

$$H_A - H_A^{dyn} = -DC_{A_0A} (5.24)$$

$$H_B - H_B^{dyn} = -DC_{B_0B} (5.25)$$

Sustituyendo en (5.21),

$$\Delta H_{AB} = \Delta n_{AB} + DC_{AB} + DC_{A_0A} + DC_{B_0B}$$
(5.26)

ó

$$\Delta H_{AB} = \Delta n_{AB} + OC_{AB} \tag{5.27}$$

donde

$$OC_{AB} = DC_{AB} + DC_{A_0A} - DC_{B_0B}$$
(5.28)

es la corrección ortométrica, con la relación directa entre la altura ortométrica y dinámica.

Se puede invertir la secuencia del último término y en consecuencia su signo,

$$OC_{AB} = DC_{AB} + DC_{A_0A} + DC_{BB_0}$$
(5.29)

Con $DC_{B_0A_0} = 0$ se puede decir,

$$OC_{AB} = DC_{AB} + DC_{A_0A} + DC_{BB_0} + DC_{B_0A_0}$$
(5.30)

Por lo tanto,

$$OC_{AB} = DC_{ABB_0A_0A} \tag{5.31}$$

Es así que la corrección ortométrica equivale a la corrección dinámica sobre ABB_0A_0A .

La corrección dinámica está dada por:

$$DC_{AB} = \int_{A}^{B} \frac{g - \gamma_{0}}{\gamma_{0}} dn = \sum_{A}^{B} \frac{g - \gamma_{0}}{\gamma_{0}} \delta n$$
(5.32)

Por lo que se tiene,

$$DC_{A_0A} = \int_{A_0}^{A} \frac{g - \gamma_0}{\gamma_0} dH = \frac{\overline{g_A} - \gamma_0}{\gamma_0} H_A$$
(5.33)

$$DC_{B_0B} = \int_{B_0}^{B} \frac{g - \gamma_0}{\gamma_0} dH = \frac{\overline{g_B} - \gamma_0}{\gamma_0} H_B$$
(5.34)

donde $\overline{g_A}$ y $\overline{g_B}$ son los valores medios de la gravedad a lo largo de la línea de la plomada de A hasta B.

Por lo tanto, se obtiene,

$$OC_{AB} = \sum_{A}^{B} \frac{g - \gamma_{0}}{\gamma_{0}} \delta n + \frac{\overline{g_{A}} - \gamma_{0}}{\gamma_{0}} H_{A} + \frac{\overline{g_{B}} - \gamma_{0}}{\gamma_{0}} H_{B}$$
(5.35)

Nuevamente se necesitan los valores medios de la gravedad $\overline{g_A}$ y $\overline{g_B}$, γ_0 es una constante arbitraria para la cual siempre se toma la gravedad normal a una latitud de 45°.

5.7.2 Precisión en la determinación de alturas ortométricas

Se evalúa el efecto de dado por un error en la gravedad media, sobre la altura H.

Aplicando diferencial a la ecuación (5.17)

Se obtiene,

$$\delta H = -\frac{C}{\overline{a}^2} \overline{\delta g} = -\frac{H}{\overline{g}} \overline{\delta g}$$
(5.36)

Dado qué \overline{g} es aproximadamente *1000gal* se puede expresar la ecuación (5.35) como,

$$\delta H_{[mm]} = \overline{\delta g}_{[mgal]} H_{[km]} \tag{5.37}$$

 $con \delta H$ error de H, $y \overline{\delta g}$ error de g.

Por lo tanto, para un H = 1km, se tiene que un error del orden de los 100mgal, genera un error de 10cm en una elevación 1000m.

$$\delta H_{[mm]} = \overline{\delta g}_{[mgal]} \tag{5.38}$$

5.8 ALTURA NORMAL

Ilustración 5.3: Esquema de Teluroide y Cuasgeoide.

El cuasigeoide se forma buscando los puntos de la vertical donde $W_P = U_Q$, puede hacerse por la linealidad de la gravedad. Se construye la superficie conocida como teluroide, el potencial normal en Q es igual al potencial de la gravedad normal en P sobre la superficie. Se considera la distancia superficie topográfica – teluroide, y a esa distancia del elipsoide estará el cuasigeoide. El cuasigeoide no es una superficie equipotencial porque se construye puntualmente.

La altura normal es la distancia sobre la línea de la plomada teórica, entre el teluroide y el elipsoide, o entre el cuasigeoide y el punto de observación. Si se supone qué la gravedad de la tierra es normal, $W = U, g = \gamma, T = 0$. De esta forma se habla de alturas normales y se definen como H^* . Y así las ecuaciones (5.8) quedan,

$$W_0 - W = C = \int_0^{H^*} \gamma dH^*$$
 (5.39)

$$H^* = \int_0^C \frac{dC}{\gamma} \tag{5.40}$$

$$C = \overline{\gamma} H^* \tag{5.41}$$

donde,

$$\overline{\gamma} = \frac{1}{H^*} \int_0^{H^*} \gamma dH^*$$
 (5.42)

es la gravedad normal media a lo largo de la línea de la plomada.

Como el potencial normal U es una función analítica simple, estas fórmulas se pueden evaluar directamente; pero el potencial de la tierra no es normal. Entonces se considera un punto P en la superficie física de la tierra, qué tiene un cierto potencial W_P y también un cierto potencial normal U_P , pero en general $W_P \neq U_P$. Sin embargo, hay un cierto punto Q en la línea de la plomada de P, tal que $U_Q = W_P$; es decir, el potencial normal Q es igual al potencial real W en P. La altura normal H^* de P es la altura elipsoidal de Q sobre el elipsoide, y la altura ortométrica de P es la altura de P sobre el geoide.

$$\overline{\gamma} = \frac{1}{H^*} \int_0^{H^*} \gamma(z) dz \tag{5.43}$$

Con γ la gravedad normal al elipsoide qué depende de la latitud φ ,

$$\gamma(z) = \gamma [1 - \frac{2}{a}(1 + f + m - 2fseno^2(\varphi))z + \frac{3}{a^2}z^2]$$
(5.44)

Calculando la gravedad normal media de la siguiente forma, se calcula la altura normal de Molodensky,

$$\overline{\gamma} = \gamma [1 - (1 + f + m - 2fseno^2(\varphi)) * \frac{H^{*2}}{a} + \frac{H^{*2}}{a^2}]$$
(5.45)

La ecuación (5.45) debe evaluarse iterativamente, dada la dependencia de la gravedad normal media en función de la altura normal. Despejando de la ecuación (5.40) se calcula la altura normal de Molodensky como,

$$H^{*} = \frac{C}{\gamma} [1 + (1 + f + m - 2fseno^{2}(\varphi))\frac{C}{a\gamma} + (\frac{C}{a\gamma})^{2}]$$
(5.46)

Para el cálculo de la altura normal de Vignal la gravedad normal media se calcula con la siguiente ecuación,

$$\overline{\gamma} = \gamma - 3,086x10^{-6} \frac{H^*}{2}$$
 (5.47)

Se omiten los términos no lineales de la ecuación (5.45) y el promedio global del gradiente normal de gravedad.

La altura normal de Bomford:

$$\overline{\gamma} = \gamma_o - 3,086x10^{-6}\frac{H^*}{2}$$
 (5.48)

Donde la gravedad normal del punto de observación sobre el elipsoide se sustituye con la gravedad de la latitud $\varphi = 45^{\circ}$.

La altura normal de Hirvonen de acuerdo con la ecuación de gravedad normal media y los parámetros del elipsoide GRS80 se calcula a partir de las siguientes ecuaciones:

$$H^* = \frac{C}{\gamma_o} +$$

$$+ \left[\frac{C}{\gamma_o}\right]^2 * (1,578576x10^{-7} - 1,029316x10^{-9}\sin^2 \varphi^N + 1,66432x10^{-11}\sin^4 \varphi^N)$$

$$+ \left[\frac{C}{\gamma_o}\right]^3 \cdot (2,4761x10^{-14} - 2,01x10^{-16}\sin^2\varphi^N)$$
 (5.49)

Siendo φ^N la latitud normal, que se obtiene mediante:

$$\varphi - \varphi^N = -0,00017' \sin(2\varphi) \cdot H^*$$
 (5.50)

Se introduce para mejorar la precisión de H^* .

Ilustración 5.4: Esquema de la latitud normal⁴.

5.8.1 Corrección normal

Existe una corrección normal, derivada de las correcciones dinámicas y ortométricas. Surge de reemplazar en la ecuación (3.34), \overline{g} por $\overline{\gamma}$ y H por H^* .

$$NC_{AB} = \sum_{A}^{B} \frac{g - \gamma_{0}}{\gamma_{0}} \delta n + \frac{\overline{\gamma_{A}} - \gamma_{0}}{\gamma_{0}} H_{A}^{*} + \frac{\overline{\gamma_{B}} - \gamma_{0}}{\gamma_{0}} H_{B}^{*}$$
(5.51)

5.8.2 Diferencia entre la ondulación geoidal y la anomalía de la altura La altura elipsoidal geométrica h por encima del elipsoide es obtenida a partir de la altura ortométrica H sobre el geoide, y la ondulación geoidal N,

$$h = H + N \tag{5.52}$$

⁴ Ilustración 5-3 extraída de Determinación de alturas físicas en Colombia, Sánchez, 2002, página 15 fig. (3).

Ilustración 5.5: Geoide a una profundidad H por debajo de la superficie terrestre. 5

El punto *P*, en la superficie terrestre, se proyecta nuevamente sobre el elipsoide según Helmert.

Sin embargo, la altura elipsoidal h queda determinada por,

$$h = H^* + \zeta \tag{5.53}$$

Se considera la superficie cuyo potencial normal U en cada punto Q es igual al potencial real W en el punto P, de modo que $U_Q = W_P$, estando los puntos P y Q correspondientes situados en la misma normal elipsoidal. La distancia vertical desde el elipsoide al teluroide es laaltura normal H^* , mientras que la altura elipsoidal *h* es la distancia vertical desde el elipsoide a la superficie

⁵ Ilustración 5-4 extraída de Physical Geodesy, Moritz, 2005, página 324, fig. (8.11).

terrestre. Por lo tanto, la diferencia entre estas dos alturas es la anomalía de altura,

$$\zeta = h - H^* \tag{5.54}$$

Por lo que se tiene,

$$N - \zeta = H^* - H \tag{5.55}$$

Esto significa que la diferencia entre la ondulación geoidal N y la anomalía de altura ζ es igual a la diferencia entre la altura normal H^* y la altura ortométrica H. Dado que ζ es también la ondulación del cuasigeoide, esta diferencia es también la distancia entre geoide y cuasigeoide.

A partir de las definiciones de las alturas, $H = \frac{c}{\overline{g}}, H^* = \frac{c}{\overline{\gamma}}$, y operando con ellas,

$$H^* - H = \frac{\overline{g} - \overline{\gamma}}{\overline{\gamma}} H \tag{5.56}$$

Entonces,

$$N = \zeta + \frac{\overline{g} - \overline{\gamma}}{\overline{\gamma}} H \tag{5.57}$$

El término $\overline{g} - \overline{\gamma}$ se aproxima a la anomalía de Bouguer,

$$\overline{\gamma} = \gamma - \frac{1d\varphi}{2dh}H\tag{5.58}$$

 $\overline{\gamma}$ en el denominador se puede sustituir por γ_0 , utilizando la gravedad normal para $\varphi = 45^o$.

Dado que la anomalía de Bouguer es suficientemente insensible a las irregularidades de la topografía local, el coeficiente es localmente constante, y conlleva qué exista una relación aproximadamente lineal entre ζ y las irregularidades locales de la altura H. Es decir, el cuasigeoide es igual a la superficie topográfica.

Para estimar la diferencia entre N y ζ se usa nuevamente,

$$\frac{\overline{g} - \overline{\gamma}}{\overline{\gamma}} = \frac{\Delta g_B}{981 \, gal} = 10^{-3} \Delta g_B \tag{5.59}$$

 $\operatorname{con} \varDelta_{g_B}$ es la anomalía de Bouguer en gal, entonces,

$$(\zeta - N)_{[m]} = -\Delta_{g_{B}[gal]} \cdot H_{[km]}$$
(5.60)

La diferencia *N*- ζ es generalmente positivo, debido a que Δ_{g_B} suele ser negativo. En otras palabras, la anomalía de altura es en general mayor qué la ondulación geoidal correspondiente en tierra.

Se tiene que $N = \zeta$ en los océanos. Si $\Delta_{g_B} = -100mgal = -0.1gal$ y H = 1km entonces,

$$\zeta - N = 0.1 \, m \tag{5.61}$$

La anomalía de Bouguer depende también de la elevación media del terreno, disminuyendo aproximadamente en 0.1 gal por elevación de promedios de 1km.

La diferencia $\zeta - N$ aumenta más rápido qué la altura.
Un punto importante es que el cuasigeoide se puede determinar sin tomar hipótesis sobre la densidad, a diferencia del geoide. Evitar estas consideraciones ha sido la base de la investigación de Molodensky.

Sin embargo, las alturas ortométricas se ven muy poco afectadas por los errores de densidad. El error en *H* debido al conocimiento imperfecto de la densidad apenas excede 1 o 2 decímetros, incluso en casos extremos. Es incluso menor que la falta de exactitud de ζ , incluso con buena cobertura de la gravedad, por los errores inevitables de interpolación, etc. Con el método descripto el geoide se puede determinar virtualmente casi con la misma exactitud que el cuasigeoide (Moritz, 8.10).

5.9 MÉTODO DE MÍNIMOS CUADRADOS

El método de mínimos cuadrados realiza un ajuste de las observaciones que propone minimizar la suma de los residuos de las observaciones al cuadrado, modificando mínimamente las observaciones realizadas y realizando un ajuste con independencia del observador. Existen dos algoritmos de resolución para la aplicación del método de mínimos cuadrados, denominados Ajuste de Mínimos Cuadrados de las Magnitudes (AMC-M) y Ajuste de Mínimos Cuadrados de las correcciones (AMC-C).

5.9.1 Ajuste de Mínimos Cuadrados de las Magnitudes

Esta técnica mediante su proceso de resolución permite el cálculo directo de las magnitudes. Este tipo de ajuste tiene las siguientes características:

Las ecuaciones de condición incluyen observaciones y parámetros incógnita.

El número de ecuaciones de condición es el mismo que el de observaciones.

Cada ecuación de condición contiene una sola observación con un coeficiente igual a 1.

Las ecuaciones se escriben de la siguiente forma:

$$\overline{l} + B\Delta = d \tag{5.62}$$

Donde

$$\overline{l} = l + v \tag{5.63}$$

Siendo:

- *B* matriz formada por los coeficientes de los parámetros
- *Δ* matriz que contiene los parámetros
- *d* vector que está formado por las constantes del método
- \overline{l} magnitud ajustada
- *l* magnitud observada
- *v* errores residuales

Por lo tanto:

$$(l + v) + B\Delta = d \tag{5.64}$$

$$v + B\Delta = d - l \tag{5.65}$$

de donde d - l = f y la forma de expresar las ecuaciones de condición es:

$$v + B\Delta = f \tag{5.66}$$

Con este método se determinan u parámetros y se tienen n residuales, por lo que el número de incógnitas es n + u, y al ser un sistema de necuaciones y n + u incógnitas estamos ante un sistema indeterminado. Para resolver estas indeterminaciones es que se incorporan u ecuaciones de condición, de forma de obtener un sistema determinado de dimensión (n + u) * (n + u).

El algoritmo de resolución es:

$$v + B\Delta = f$$
$$W$$
$$N = B'WB$$
$$t = B'Wf$$
$$\Delta = N^{-1}t$$

siendo W la matriz peso de las observaciones.

5.9.2 Ajuste de Mínimos Cuadrados de las Correcciones

Esta técnica mediante su proceso de resolución permite el cálculo directo de las correcciones. Este tipo de ajuste tiene las siguientes características:

En las ecuaciones de condición no se incluyen los parámetros incógnitas.

El número de ecuaciones de condición es igual al de mediciones redundantes.

Las ecuaciones se escriben de la siguiente forma:

$$A\overline{l} = d \tag{5.67}$$

$$A(l+v) = d \tag{5.68}$$

$$Al + Av = d \tag{5.69}$$

$$Av = d - Al \tag{5.70}$$

de donde d - Al = f y la forma de expresar las ecuaciones de condición es:

$$Av = f \tag{5.71}$$

Siendo *A* de tamaño rxn, *v* de tamaño nx1y f de tamaño rx1, donde *r* es la redundancia y *n* el número de observaciones.

Cuando aplicamos el método se obtienen r ecuaciones de condición con n residuales no conocidos, donde $r = n - n_o$ (n_o el mínimo número de observaciones) y r < n, por lo tanto, no existe una única solución y se deben incorporar r ecuaciones adicionales que hacen que el sistema sea determinado.

El algoritmo de resolución es:

$$Av = f$$
$$W$$
$$Q = W^{-1}$$
$$Q_e = AQA'$$
$$K = Q_e^{-1}f$$
$$v = QA'K$$

5.9.3 Propagación de cofactores

Se tiene la Matriz Covarianza:

$$\sum_{XX} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1n} & \cdots & \cdots & \sigma_n^2 \end{bmatrix}$$
(5.72)

Matriz Varianza:

$$\sum_{XX} = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \sigma_n^2 \end{bmatrix}$$
(5.73)

Matriz cofactor:

$$Q_{XX} = W^{-1} = \frac{1}{\sigma_0^2} * \sum_{XX} = \begin{pmatrix} \frac{\sigma_1^2}{\sigma_0^2} & \cdots & \cdots & \cdots \\ \vdots & \frac{\sigma_2^2}{\sigma_0^2} & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \frac{\sigma_n^2}{\sigma_0^2} \end{pmatrix} = \begin{pmatrix} \frac{1}{\omega_1} & \cdots & \cdots & \cdots \\ \vdots & \frac{1}{\omega_2} & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \frac{1}{\omega_n} \end{pmatrix}$$
(5.74)

de donde:

$$\Sigma_{XX} = \sigma_o^2 * Q_{XX} \tag{5.75}$$

Podría ocurrir que σ_o^2 no fuera conocido a priori y se puede estimar

$$\hat{\sigma}_o^2 = \frac{v^t W v}{r} \tag{5.76}$$

Con r = n - no. Se le llama "a posteriori". Estadisticamente ha sido testeada y es un parametro consistente e insesgado con σ_o^2 . Por lo tanto, es utilizable siempre que no conozcamos σ_o^2 a priori.

Se realiza la propagación de la matriz varianza y covarianza. Para funciones lineales y = ax + b se tiene: $\Sigma_{YY} = A * E_{XX} * A^T$, y para funciones linealizadas y = f(x) se tiene: $\Sigma_{YY} = J_{YX} * E_{XX} * J_{YX}^T$.

Sabemos que $\Sigma_{XX} = \sigma_o^2 * Q_{XX}$ para variables *X* y $\Sigma_{YY} = \sigma_o^2 * Q_{YY}$ para variables *Y*. Sustituyendo se obtiene:

$$\Sigma_{YY} = A * \sigma_o^2 * Q_{XX} * A^T \tag{5.77}$$

$$\Sigma_{YY} = J_{YX} * \sigma_o^2 * Q_{XX} * J_{YX}^T$$
 (5.78)

de donde:

$$Q_{YY} = A * Q_{XX} * A^T$$
 (5.79)

$$Q_{YY} = J_{YX} * Q_{XX} * J_{YX}^T$$
 (5.80)

siendo esta la Ley de Aplicación de Cofactores.

Propagación de cofactores para AMC+M:

La ecuación de condición es:

$$v + B\Delta = f \tag{5.81}$$

de donde d - l = f siendo d datos numéricos y l observaciones. Además, la Matriz de cofactor asociada a las observaciones es $Q_{ll} = Q = W^{-1}$ y el algoritmo de resolución es:

$$N = B^{T}WB$$
$$t = B^{T}Wf$$
$$\Delta = N^{-1}t$$
$$v = f - B\Delta$$
$$\overline{l} = l + v$$

Desarrollando el algoritmo:

$$v + B\Delta = f \tag{5.82}$$

$$\Sigma_{\Delta\Delta} = \sigma_o^2 * Q_{\Delta\Delta} \tag{5.83}$$

$$Q_{vv} = Q - BN^{-1}B^T (5.84)$$

$$\Sigma_{\nu\nu} = \sigma_o^2 * Q_{\nu\nu} \tag{5.85}$$

$$Q_{\overline{ll}} = BN^{-1}B^T \tag{5.86}$$

$$\Sigma_{\overline{II}} = \sigma_o^2 * Q_{\overline{ll}} \tag{5.87}$$

Por lo tanto, se tiene $Q_{\overline{ll}} = Q - Q_{vv}$ de donde se deduce que las varianzas de las observaciones ajustadas son menores que las de las observaciones realizadas. De esta manera con la propagación de cofactores del método de mínimos cuadrados de las magnitudes, se pueden calcular las σ_o^2 o σ de las magnitudes ajustadas, de las observaciones ajustadas y de los residuales de cada observación. La precisión de las magnitudes ajustadas es menor a la precisión de las magnitudes observadas, por lo cual se ajusta y se mejoran los datos.

Propagación de cofactores para AMC+C:

La ecuación de condición es:

$$Av = f \tag{5.88}$$

de donde d - l = f siendo d datos numéricos y l observaciones. El algoritmo de resolución es el siguiente:

$$Q_e = AQA^T$$
$$W_e = Q_e^{-1}$$
$$K = W_e f$$
$$v = QA^T k$$
$$\overline{l} = l + v$$

 Q_e es la matriz cofactor y W_e es la matriz peso correspondiente.

Desarrollando el algoritmo:

$$Q_{\nu\nu} = QA^T W_e A Q \tag{5.89}$$

$$\Sigma_{\nu\nu} = \sigma_o^2 * Q_{\nu\nu} \tag{5.90}$$

$$Q_{\overline{ll}} = Q - QA^T W_e A Q \tag{5.91}$$

$$\Sigma_{\overline{II}} = \sigma_o^2 * Q_{\overline{II}} \tag{5.92}$$

Por lo tanto, se tiene:

$$Q_{\overline{ll}} = Q - Q_{\nu\nu} \tag{5.93}$$

5.10 MODELOS GEOPOTENCIALES

Los modelos geopotenciales permiten calcular los valores de N que vinculan h con H, y tienen asociado un conjunto de constantes: de atracción gravimétrica terrestre (GM), semieje mayor y aplastamiento del elipsoide

terrestre, velocidad de rotación de la tierra y los coeficientes del desarrollo armónico.

Para el desarrollo de un modelo geopotencial de alto grado se utilizan tres tipos de información: obtenida a partir del estudio de las perturbaciones de órbitas de satélites, gravimétricas terrestre y aérea, y altimétricas de satélites sobre los océanos. Combinando estos tres tipos de soluciones se obtiene una mejor solución que utilizando una sola de ellas. Esta solución depende del tratamiento de las altimetrías de los satélites, la disponibilidad de datos en tierra firme y la resolución de buenas computadoras.

5.10.1 Modelo Geoidal EGM-2008

Para este trabajo, el modelo geoidal que se utilizará será el EGM2008.

Éste, es un modelo geoidal global, que ha sido publicado por la Agencia Nacional de Inteligencia Geoespacial (NGA). Los cálculos del geoide local se han basado tradicionalmente en la filosofía Helmert de condensación: la topografía se condensa en una capa delgada sobre el geoide, mientras que el efecto directo de la anomalía de la gravedad tiende hacia abajo del geoide. Numéricamente, esto se hace mediante la sustitución de la anomalía de la gravedad por la anomalía de Faye.

Este modelo ofrece una resolución y precisión sin precedentes, exponiendo hasta el más mínimo error de incompatibilidad. El logro de mejores resultados en los cálculos, utilizando el geoide EGM08, dependerá de la forma en que las reducciones topográficas y de gravedad se lleven a cabo.

5.11 POSICIONAMIENTO SATELITAL

5.11.1 Generalidades del sistema GNSS

El sistema Global de Navegación por satélite (Global Navigation Satellite System) proporciona un posicionamiento y localización geoespacial con cobertura global o sea en todo el globo terrestre, tanto de forma autónoma como con sistemas de aumentación. Dentro de los sistemas activos se encuentran el GPS, GLONASS y GALILEO.

5.11.2 GPS (Sistema de Posicionamiento Global)

GPS es un sistema que tiene como objetivo la determinación de las coordenadas espaciales de puntos respecto de un sistema de referencia mundial. Los puntos pueden estar ubicados en cualquier lugar del planeta, pueden permanecer estáticos o en movimiento y las observaciones pueden realizarse en cualquier momento del día.

Para la obtención de coordenadas el sistema se basa en la determinación simultánea de las distancias a cuatro satélites (como mínimo) de coordenadas conocidas. Estas distancias se obtienen a partir de las señales emitidas por los satélites, las que son recibidas por receptores especialmente diseñados. Las coordenadas de los satélites son provistas al receptor por el sistema.

Está constituido por tres segmentos fundamentales: espacial, de control y del usuario.

Segmento Espacial: Consiste en 27 satélites distribuidos en seis planos orbitales inclinados 55º respecto al ecuador. Los satélites se mueven a una altura aproximada de 20600 km, completando dos revoluciones por día sidéreo.

Segmento de Control: estaba compuesto en sus inicios por una estación de control maestra en Colorado Springs (EEUU), 5 estaciones de observación y 4 antenas de tierra distribuidas entre 5 puntos muy cercanos al ecuador terrestre. En la actualidad se han anexado varias estaciones de rastreo: Australia, Quito, Usno, Montevideo, Bahrain, Inglaterra. El segmento de Control rastrea los satélites GPS, actualiza su posición Orbital determinando la órbita de cada satélite, predice su trayectoria para las siguientes 24 horas, calibra y sincroniza sus relojes.

Segmento de Usuarios: comprende a cualquiera que reciba las señales GPS con un receptor, determinando su posición y/o la hora.

5.12 GNSS DIFERENCIAL

El método diferencial, es uno de los métodos más utilizados para la determinación del posicionamiento a través de tecnología GNSS. El mismo se basa en la observación de dos receptores simultáneamente. Se calculan las coordenadas de puntos respecto de al menos una estación de referencia que debe tener coordenadas conocidas. La situación esperada es que el cálculo diferencial no se encuentre afectado por errores sistemáticos apreciables. En este caso, la exactitud de las coordenadas

calculadas estará dada por la de las coordenadas de la estación de referencia. La precisión de las mismas en cambio estará determinada por el método diferencial en sí y por las condiciones en las que se lo utiliza.

Ilustración 5.6: Concepto de posicionamiento relativo.6

5.13 CINEMÁTICO EN TIEMPO REAL RTK

El concepto general de las soluciones RTK (real time kinematic), se basa en la colocación de uno o varios receptores GNSS en una posición geográfica cuyas coordenadas son conocidas y a partir de la medida de observables, se determinan las ambigüedades iniciales de observación de la estación permanente y móvil, y se determina y modelan los errores recibidos en la recepción de la señal, generando el modelo de correcciones. Luego se transmite esta información al receptor móvil, para que corrija sus observables de acuerdo a esta información. Con esto se logra realizar

⁶ Ilustración 5-5 extraída de Physical Geodesy, Moritz, 2005, página 185, fig. (5.1).

relevamientos en tiempo real sin la necesidad de post proceso logrando precisiones centimétricas. Un factor importante es el lapso de tiempo que lleva el cálculo de las correcciones y el tiempo que tardan en llegar dichas correcciones al móvil. El receptor móvil recibe la señal de correcciones completa y aplica las correcciones pertinentes a las señales de los satélites que están recibiendo. Las correcciones se transmiten en un formato llamado RTCM, y por diversos métodos y protocolos, sistemas de radio, internet y telefonía, etc.

Existen dos clasificaciones para RTK: convencional o clásica y protocolo NTRIP.

RTK Convencional o Clásica: se basa en una comunicación por radio entre la base y el móvil o sea que se necesitan dos receptores y puede haber una o varias estaciones y tiene un alcance entre móvil/base de 5 a 10km.

RTK Protocolo NTRIP: En este caso la comunicación es mediante internet. En donde existe una estación permanente del sistema y solo se necesita un receptor, ya que el fijo está en la red. Puede haber estación próxima, la corrección es individual y la distancia máxima recomendada es 30km. Otra forma puede ser mediante modelos de correcciones de red con una distancia máxima recomendada de 70km (VRS estación de referencia, FKP, MAX, I-MAX).

5.14 POST PROCESO

El post proceso es la etapa del procesamiento en la cual, mediante la utilización de un software apropiado, en tiempo no real, permite a partir de la determinación del vector entre la base y el móvil calcular las coordenadas de los puntos posicionados, empleando los datos brutos almacenados en los receptores GNSS. La mayoría de los softwares disponibles tienen un procesamiento automatizado, los cuales siguen un protocolo común: carga de archivos con las opciones de alturas de antena, tipo de receptor, modo de procesamiento, puntos fijos y coordenadas, ajuste y análisis final.

El post proceso de los datos de campo se inicia una vez finalizada la captura de los mismos, el objetivo es que los datos crudos registrados en los dispositivos de memoria deben ser manipulados mediante la utilización del software con la finalidad de desechar aquellos registros que no cumplan con la precisión deseada y mantener aquellos que van a ser utilizados en el proceso de cálculo para la obtención de las coordenadas de los puntos levantados.

Los ficheros de datos para post proceso se encuentran disponibles en formato RINEX a través de un servicio de descarga de un servidor. Los archivos se encuentran distribuidos según la frecuencia de observación y por fechas, con todos los observables seguidos.

5.15 ARCHIVOS RINEX (RECEIVER INDEPENDENT EXCHANGE FORMAT)

El RINEX son las siglas de un formato de intercambio de información GPS. Los ficheros RINEX contienen los observables, los datos de navegación y datos atmosféricos.

La base del RINEX parte de que la mayoría de los softwares para GPS emplea los siguientes observables:

- La medida de la portadora de fase en una o dos frecuencias (L1 o L1 y L2).
- El tiempo obtenido en el instante de validar las medidas de fase y código.
- La medida de la Pseudodistancia o código.

SSSS	Código de la estación, eiem	Código de la estación, ejemplo VALE de Valencia		
ddd 10510	El día del año sobre los 365	El día del año sobre los 365 días, por ejemplo día 118		
f	El número de la sesión dent	El número de la sesión dentro del día o fichero horario		
YY	Los dos últimos dígitos del	Los dos últimos dígitos del año, ejemplo 2013		
Т		O observación (este caso)		
	Tipo de fichero	N navegación		
		M meteorológico		
z	Comprimido z			

Tabla 5-1: Nomenclatura RINEX 7

⁷ Tabla 5-1 extraída de GNSS. GPS: fundamentos y aplicaciones en geomática, página
165, tabla (6.4).

5.16 OFFSET Y VARIACIÓN DEL CENTRO DE FASE DE LA ANTENA

La variación y desfase del centro de fase de la antena se debe a la falta de coincidencia entre el centro radioeléctrico (punto al que llega la señal) y el centro mecánico o físico. Esta falta de coincidencia se debe a que varía el centro radioeléctrico en función del azimut, elevación e intensidad y frecuencia de la señal recibida.

Ilustración 5.7: Esquema de offset de antena.8

⁸ Ilustración 5-6 extraída de GNSS. GPS: fundamentos y aplicaciones en geomática, página 188, fig. (7.5).

En la corrección del centro de fase hay que distinguir tres referencias en la antena: el centro de fase de la antena, el centro geométrico de la antena y la posición media del centro de fase de la antena. Para receptores de doble frecuencia, habrá dos centros de fase.

La diferencia entre la posición media y el centro geométrico se conoce como offset del centro de fase de la antena. Ese desfase es proporcionado por el fabricante.

Las correcciones de fase de antena para distintos modelos de receptores están publicadas por el International GNSS Servicie (IGS), las cuales se pueden descargar en la web.

En los softwares de cálculo diferencial se incluyen ficheros para la corrección.

5.17 NIVELACIÓN GNSS

En la práctica la expresión h = H + N se puede considerar como válida, ya que el desvío de la vertical es un valor muy pequeño (nunca se encontró un valor que supere los 30"). Con GPS se pueden determinar las coordenadas cartesianas x, y, z de un punto, luego aplicando las fórmulas de conversión correspondientes se podrán calcular inmediatamente las coordenadas geodésicas. Posteriormente se podrá calcular la cota ortométrica H (la que interesa en nivelación), utilizando un modelo geoidal, si el valor de N en ese punto es conocido, donde N representa la distancia geoide-elipsoide denominada ondulación del geoide.

Ilustración 5.8: Esquema de nivelación con GNSS.9

Si se trata de determinar la diferencia de nivel entre dos puntos es necesario determinar la diferencia de alturas ortométricas. Más precisamente, podremos decir que, si se consideran los puntos P y Q, resulta:

$$h_Q = H_Q + N_Q \tag{5.94}$$

$$h_P = H_P + N_P \tag{5.95}$$

$$H_Q - H_P = (h_Q - h_P) - (N_Q - N_P)$$
(5.96)

⁹ Ilustración 5-7 extraída de Physical Geodesy, Moritz, 2005, página 172, fig. (4.6).

El problema inverso consistirá en determinar ondulaciones en puntos discretos de una región que permitan inferir (por interpolación) la ondulación en cualquier punto. Es lo que se llama Modelo de geoide.

Una forma de modelizar el geoide consiste en determinar h sobre puntos de cota ortométrica conocida o recíprocamente nivelar entre puntos de altitud elipsóidica conocidas, entonces se podrán determinar diferencias de ondulación con:

$$N_Q - N_P = (h_Q - h_P) - (H_Q - H_P)$$
(5.97)

Existen modelos globales de geoide, como EGM08 (ya mencionado) entre otros, que permiten calcular las ondulaciones del geoide desde un desarrollo en armónicos esféricos del potencial gravitacional terrestre. Estos modelos, aunque carecen de resolución suficiente para muchas aplicaciones resultan útiles como referencia para modelos regionales.

5.18 GRAVIMETRÍA

Es un método de prospección a partir de la medición de la gravedad. Se parte de la base de que todo objeto sobre la superficie es atraído por la masa de la Tierra. Hay dos formas de medir la gravedad: absoluta y relativa. Para la absoluta se requieren equipos sofisticados, difíciles de transportar y mucho tiempo para realizar las mediciones. De esta forma se obtiene el valor total de la gravedad en el punto. Los métodos para realizar estas mediciones son de péndulo (requiere de aparato voluminoso que no es práctico para campo) o caída libre (solo en laboratorios). Para la relativa se requieren equipos más simples, fáciles de transportar. Se obtiene la medición a partir de Δg en dos estaciones. Usan un sistema con un resorte y una masa. Aplica la Ley de Hooke. Los equipos nos dan la gravedad vertical, es decir, en el caso de que un cuerpo está afectando la medición, tengo que aplicar trigonometría para conocer las demás componentes.

Se tienen dos tipos de gravímetros: dinámicos y estáticos. Los dinámicos son aquellos en los que se observa el movimiento de un cuerpo bajo la acción de la gravedad. Los estáticos son aquellos en los que se observa un cambio en la posición de equilibrio de un cuerpo bajo acción de la gravedad y otra fuerza compensadora, obteniendo desplazamiento lineal o angular.

Existen correcciones gravitatorias a realizar:

Deriva: es la variación de lectura que se registra en un punto al transcurrir el tiempo. El muelle dentro del gravímetro puede encogerse o estirarse lentamente. Por ejemplo, afecta la marea, la atracción luna-tierra, sol tierra en el día. Depende del momento en que hago la medición. La deriva se corrige periódicamente regresando al punto inicial de las mediciones para obtener la variación temporal. Esta se sustrae al resto de los datos. Se utiliza una estación base para determinar las variaciones temporales. Las lecturas en esta estación son normalizadas y se sustraen al resto de los datos. En este caso requiero dos gravímetros uno en base y otro midiendo.

- Corrección por latitud: Aún si el interior de la Tierra fuera homogéneo y no existieran variaciones topográficas habría que corregir por latitud. La gravedad es mínima en el ecuador y máxima en los polos. La Tierra rota alrededor de su eje creando una fuerza centrífuga que es mayor en el ecuador que en los polos. La fuerza centrífuga causa que la Tierra se deforme: abultada en el ecuador y achatada en los polos. Con esto el radio de la tierra es mayor en el ecuador y menor en los polos y como sabemos la fuerza de gravedad es inversamente proporcional a la distancia al centro de la Tierra. Esta variación se resta por cada km al norte.
- Corrección por Aire Libre o Faye: Debido a que la gravedad decrece con el aumento de la altura en el punto de observación. Se realiza para llevar la superficie topográfica al nivel del mar y se suma.
- Corrección por Capa Intermedia: es aquella que considera las masas responsables del cambio de elevación (aquellas situadas entre el nivel del mar y el punto de interés).
- Corrección de Bouguer: Combina las dos correcciones anteriores.
 Anomalía de Bouguer: El propósito de esta es ofrecer la anomalía debida a las variaciones de densidad sin los efectos de la topografía y la latitud.
- Corrección topográfica: Si en los alrededores de donde estoy midiendo hay un valle o una cresta disminuirán el valor de la gravedad (en ambos casos). El objetivo de esta corrección es

eliminar estos efectos. Requiere de una detallada información sobre el relieve alrededor del punto de medición. Existen diferentes métodos de cálculo y siempre será positiva.

5.19 RED GRAVIMÉTRICA NACIONAL DE URUGUAY

Con la finalidad de establecer un Datum Gravimétrico en Uruguay, las Universidades de Buenos Aires y Montevideo, realizaron un conjunto de enlaces aéreos con tres gravímetros Worden. Se efectuaron tres enlaces diarios en dos días consecutivos entre los Aeropuertos de Carrasco y Ezeiza, agregándose enlaces entre los aeropuertos de ambas ciudades. De esta forma, agregando observaciones submarinas ya hechas, se pudo cerrar el enlace con un error de $1.7 \mu m s^{-2}$, siendo el valor de gravedad 9797474.7 $\mu m s^{-2}$.

En 1967, el SGM (hoy IGM) de Uruguay, a cargo de la determinación del campo normal de gravedad, comienza una serie de levantamientos de campo, de manera de cubrir el país con estaciones gravimétricas. La planificación realizada incluyó un nuevo enlace con la Estación Absoluta de Miguelete en Buenos Aires, la división del país en 25 polígonos, superpuestos a la Red de nivelación de 1er. orden, con un total de 900 estaciones (Red gravimétrica fundamental) y finalmente una densificación de los polígonos, visando obtener un punto de gravimetría cada 10km de distancia en todo el país.

El siguiente paso comenzó en junio de 1967 y finalizó en mayo de 1968. Los levantamientos de campo planificados tuvieron 45 líneas en los 25 polígonos y 35 nodales (intersección de dos o más líneas) y estaciones terminales. Cada línea tuvo estaciones espaciadas entre 3 y 5km, se usó el método de perfil y se aceptó una discrepancia de reocupación de $0.5\mu ms^{-2}$.

Se midieron un total de 942 estaciones con 4490km de líneas y más de 15000km recorridos a lo largo de las líneas. Al finalizar esta etapa se enlazaron por vinculación aérea 12 estaciones nodales de manera de verificar las diferencias de gravedad (G) establecidas.

El procesamiento de las observaciones incluyó el cálculo de la gravedad observada, verificación del ajuste de líneas y ajuste por Método de Mínimos Cuadrados de la red completa, obteniendo como resultado un valor de gravedad ajustado para cada estación. Se calcularon las anomalías de Aire libre y Bouguer, utilizando la fórmula Internacional de la Gravedad de 1930. Finalmente se editó como información pública, una publicación con la Red Gravimétrica Fundamental completa, que incluyó estaciones, coordenadas, valores de gravedad y anomalías (SGM, 1970) y en 1973 un mapa de anomalías cada 5mgal escala 1/1000000.

En 1984 se retoman los relevamientos, que incluyen mediciones de gravedad, por lo cual se ajusta nuevamente la Red Gravimétrica.

5.20 INFRAESTRUCTURA DE DATOS ESPACIALES

La Infraestructura de Datos Espaciales (IDE) fue creada en el 2013, como un órgano desconcentrado de Presidencia de la República, con autonomía técnica.

Su cometido es liderar la articulación y el fortalecimiento de la producción y el acceso de la información geográfica del Uruguay para que sea fiable, oportuna, interoperable, de alta calidad, y brinde apoyo en la toma de decisiones para el desarrollo nacional. Se inspira en los principios de cooperación y coordinación entre las administraciones, así como en la transparencia y el acceso a la información pública.

6 METODOLOGÍA

6.1 ZONA DE ESTUDIO

Se decide como zona de estudio el Cerro Catedral, ya que para el análisis de la influencia de la gravedad interesa una zona de gran elevación (el punto más alto de Uruguay) e importantes desniveles. El Cerro Catedral se ubica en el Departamento de Maldonado en el municipio de Aiguá y pertenece a la Sierra Carapé. La información proporcionada por la monografía del punto geodésico del IGM indica que la altura del Cerro Catedral es de 513,66m referida al datum vertical.

Ilustración 6.1: Pie del Cerro Catedral.

Ilustración 6.2: Ubicación de la zona de estudio. Google Earth.

Otros lugares de gran altura y desniveles pronunciados que se tuvieron en consideración como zona de estudio son el Cerro de las Ánimas que tiene una altura de 501m, perteneciente a la Sierra de las Ánimas ubicada en el Departamento de Lavalleja y Maldonado, y la zona del Repecho de Pena o Bajada de Pena, ubicada en el Departamento de Rivera a 22 km de la ciudad de Tranqueras, sobre la Ruta Nº30.

La elección final del Cerro Catedral se da por diferentes motivos, siendo el más importante que se considera de mayor interés poder realizar el análisis de las diferentes alturas en la zona más alta del Uruguay. Además, al ser más cerca de Montevideo, es más sencillo para el traslado necesario para realizar las tareas de campo.

6.2 ESTUDIO DE DATOS EXISTENTES

Se solicitan al Instituto Geográfico Militar los datos de la Red Gravimétrica Nacional. Los documentos proporcionados consisten en las líneas de segundo orden de la zona de estudio denominadas 223, 224 y 225. Cada línea cuenta con un número finito de puntos nombrados correlativamente. La línea 223 abarca desde el punto 2293 al 2269, la línea 224 desde el punto 2269 al 539, y la línea 225 desde el punto 2269 al 2292. La documentación contiene la latitud, longitud, gravedad, sigma gravedad, desnivel, distancia y año de cada punto.

Ilustración 6.3: Línea 223 (rojo), línea 224 (azul), línea 225 (celeste). Google Earth. Los puntos extremos de las líneas mencionadas, se encuentran ubicados en las ciudades de Aiguá (punto 539), San Carlos (punto 2292) y Rocha (punto 2293). Los números geopotenciales de dichos puntos son extraídos de la Tesis de Maestría "Ajuste de la Red altimétrica Nacional de primer orden en términos de números geopotenciales y derivación de los diferentes tipos de alturas físicas en Uruguay" del Ing. Agrimensor Jorge Faure Valbi.

Las tres líneas convergen al punto en común 2269, del cual no se conoce *C*, pero puede ser calculado a partir de los valores extremos conocidos.

6.3 CÁLCULO DE NÚMEROS GEOPOTENCIALES

Para llevar a cabo dicha operación, se calcula manualmente para cada línea, el *C* de todos los puntos, a partir del desnivel, la gravedad medida y

C de los puntos nodales. En consecuencia, de que las líneas sólo cuentan con un extremo de valor conocido; se considera un tramo completo, a la unión de dos líneas (224-225), para trabajar en ambos extremos con valor C.

Se calcula C para cada punto, a partir de

$$dC = g_m \cdot dn \tag{6.1}$$

$$C_B = C_A + dC \tag{6.2}$$

con C_A valor inicial conocido.

Al momento de trabajar con la línea 223 se detectan inconsistencias en la misma, pero no es posible determinar en qué punto o tramo de la línea es que se genera este error. Se calculan las diferencias de los números geopotenciales de los puntos y la diferencia de las sumatorias de los dC de las líneas unidas por los puntos correspondientes.

Punto nodal	C conocido
539	871.630
2292	201.783
2293	420.872

Tabla 6-1: Datos de C de los Puntos Nodales.

Linea	sumatoria dC
223	2510.641
224	-1890.820
225	2556.199

Tabla 6-2: Sumatoria de dC de las líneas.

	Línea 223 y 224 (2293-539)	Línea 224 y 225 (2292-539)	Línea 223 y 225 (2292-2293)
Diferencia C	450.758	669.847	219.089
Diferencia dC	619.821	665.379	45.558

Tabla 6-3: Comparación de las diferencias de C y de dC.

Se observa que en los cálculos en los que está involucrada la línea 223 las diferencias entre ambos resultados son considerablemente mayores que las diferencias obtenidas en el resultado donde están unidas solamente las líneas 224 y 225, que de todas formas presenta una diferencia, lo que indica también la presencia de un error en algún tramo de esas líneas, no obstante, menos grosero que el de la línea 223. Así mismo por esta razón es que los cálculos de los números geopotenciales se deciden realizar con las líneas 224 y 225 unidas, como se explica anteriormente.

Como siguiente paso se deciden utilizar los softwares NUMGEOPOT y COMPNGP para obtener un nuevo cálculo de *C*.

El programa NUMGEOPOT calcula números geopotenciales a partir de nivelación geométrica y valores de gravedad en los puntos de nivelación. Se sugiere un archivo de entrada por cada línea de nivelación, de punto nodal a punto nodal. El formato de los archivos de entrada es:

- Primera línea: texto arbitrario como titulo
- Segunda línea: formato de los datos de entrada con la siguiente secuencia:
 - \circ id. punto,

- $_{\circ}$ latitud,
- longitud [decimal],
- $_{\circ}$ gravedad,
- $\circ \sigma g_{[mgal]},$
- desnivel [m],
- o distancia [km],
- ∘ año.

Los resultados se escriben en 4 archivos de salida:

- 1. Listado completo de las líneas calculadas,
- Archivo con diferencias de potencial entre los nodales para ajustar la red con COMPNGP,
- Listado de los puntos nodales (este archivo) se requiere para el ajuste con COMPNGP),
- Archivo con los números geopotenciales de las líneas de nivelación para su ajuste con COMPNGP una vez se haya ajustado la red de nodales.

El programa COMPNGP calcula el ajuste por mínimos cuadrados de una red de números geopotenciales apoyada en puntos con valores conocidos, de una red libre con el datum calculado como promedio de los valores dados, de una línea entre dos nodos con números geopotenciales conocidos. El cálculo se basa en números geopotenciales derivados de nivelación geométrica con corrección de gravedad. Se requieren dos archivos de entrada, el primer archivo con el listado de las estaciones a ajustar, y el segundo archivo con las diferencias de nivel entre las estaciones listadas en el primer archivo.

El formato del primer archivo de entrada es:

- Primera línea: texto arbitrario como titulo
- Segunda línea: formato de los datos de entrada
- Líneas siguientes: id. del punto, latitud, longitud.

El formato del segundo archivo de entrada es:

- Primera línea: texto arbitrario como titulo
- Segunda línea: formato de los datos de entrada
- Líneas siguientes:
 - primer punto (id del punto del IGM),
 - segundo punto (id del punto del IGM),
 - \circ dC ,
 - $\circ \quad \sigma dC \ \left[\frac{m^2}{s^2}\right],$
 - o distancia [km],
 - ∘ año,
 - Coeficiente de refracción (en este caso no se indica coeficiente de refracción, por lo tanto, el cálculo arroja resultado 0, no se calcula).

El desarrollo del cálculo consiste en:

- En la carpeta NUMGEOPOT se guarda un archivo.prn (se nombra 2292_0539.prn para indicar punto de inicio y fin), con los datos de las líneas 224-225 unidas.
- Se crea un archivo de parámetros (.txt) del programa NUMGEOPOT que luego se indica en el ejecutable. El mismo contiene el Nombre del proyecto, Nombre del Archivo con listado completo con la siguiente secuencia: Nombre, latitud, longitud [decim.], gravedad [mgal], *σg*, desnivel [m], distancia [km] y año (se nombra CCC.out), Nombre del Archivo desnivel entre nodales (se nombra CCDNN.out), Nombre del Archivo con listado de nodales (se nombra CCDNN.out), Nombre del Archivo de desniveles en línea (se nombra CCDNL.out), un factor de precisión, en este caso 9, y Nombre del Archivo de entrada (2292_0539.prn).
- Se inicia el ejecutable y como resultado de la ejecución se obtienen cuatro archivos .out ya mencionados.
- A partir del archivo CCC.out se obtienen nombre, latitud y longitud de los puntos que se agregan al archivo CCN.out obtenido. Se debe tener la precaución de borrar aquellos puntos que se encuentren repetidos. Este nuevo archivo se guarda como CCE.in (primer archivo mencionado para el programa COMPNGP), correspondiendo al listado de las estaciones. Se toma el archivo CCDNL.out obtenido del programa NUMGEOPOT y se cambia su extensión a .in para ser ingresado en el programa COMPNGP

(segundo archivo mencionado para el programa COMPNGP), siendo este el archivo de números geopotenciales.

- De igual forma que para el programa anterior se crea un archivo de parámetros (.txt) para el programa COMPNGP, el cual contiene el nombre del archivo CCE.in correspondiendo al listado de las estaciones, nombre del archivo CCDNL.in de números geopotenciales, nombre del archivo de salida CCCOMP.out que será el listado de puntos resultante, se indica que se quiere realizar el ajuste de línea (se ingresa valor 1) y que se quiere imprimir la matriz de covarianza (se indica valor s).
- Se inicia el ejecutable del COMPNGP. Como resultado se obtiene el archivo CCCOMP.out (nombre del archivo de salida), con el listado de puntos y sus correspondientes: latitud, longitud, *C* (número geopotencial), *σC* (sigma del número geopotencial), *H*^{*} (altura normal), *σH* (sigma de la altura normal), obs.
- El procedimiento anterior se repite para la línea 223, pues nos interesan los datos a pesar de que se detecta un error en la misma.

Los resultados obtenidos con esta ejecución son los considerados como válidos para el análisis de alturas a realizar más adelante. Es importante destacar que el análisis de alturas es con un fin académico, por eso se continúa con el trabajo a pesar de que al ajustar la línea se utiliza un factor de precisión de 9mm lo que lleva a considerar las observaciones con poca precisión, haciendo que deban "moverse" mucho al momento de ajustar la

línea. En definitiva, a pesar de los errores que se perciben en las líneas se decide seguir adelante con el trabajo, a partir de las líneas de nivelación se calculan los números geopotenciales sabiendo que los resultados pueden no ser buenos. Esto sirve para ejercitar como se procesan datos reales. Por esta razón, el análisis de los distintos tipos de alturas se realiza de todas maneras, explicando cómo se calculan a partir del número geopotencial, a pesar de saber que se tiene un error inicial en dichos números geopotenciales. Los datos entre sí son correctos pues la línea puede ajustarse.

Se procede a realizar el ajuste por mínimos cuadrados de las magnitudes de de las correcciones. mediante los algoritmos resolución V correspondientes, explicados en el marco teórico. Esto se realiza con el objetivo de comparar el ajuste de las líneas con el software con el ajuste calculado manualmente. Finalmente se realiza la propagación de cofactores para obtener un σC y comparar con el resultado de σC arrojado por el ejecutable. El problema que se presenta es que al realizar la propagación manual no hay manera de introducir el σdC calculado, mientras que el programa COMPNGP si introduce el σdC en su ejecución. Por esta razón es que no se utilizan los resultados de la propagación. Se presentan las ecuaciones igualmente.

Se propaga la ecuación dC = gm * dn para obtener σdC .

Realizando una nivelación entre los puntos A y B, se procede a la propagación de la ecuación antes mencionada:

$$\sigma dC^{2} = \left(\frac{\partial dC}{\partial gm}\right)^{2} \cdot \sigma gm^{2} + \left(\frac{\partial dC}{\partial dn}\right)^{2} \cdot \sigma dn^{2}$$
(6.3)

Donde

$$\sigma g m^{2} = \left(\frac{\partial g m}{\partial g A}\right)^{2} \cdot \sigma g A^{2} + \left(\frac{\partial g m}{\partial g B}\right)^{2} \cdot \sigma g B^{2}$$
(6.4)

tomando σgA y σgB del resultado del software, y a la ecuación

$$\sigma dn^2 = 9 \cdot \sqrt{d(km)^2} \tag{6.5}$$

donde 9 es el factor de precisión utilizado por el software y d la distancia entre los dos puntos A y B. De esta forma, se obtiene:

$$\sigma dC^2 = dn^2 \cdot \left(\frac{1}{4} \cdot (\sigma g A^2 + \sigma B^2)\right) + gm^2 \cdot 9\sqrt{d(km)^2}$$
(6.6)

Se comprueba que los resultados de σdC calculados son los mismos que el programa COMPNGP utiliza en su ejecución. Por esta razón se toman como válidos los resultados del programa y su ejecución.
Nombre	sigma dC calc	sigma dC software	Diferencia (abs)
SGM2292			
SGM1745	0.13372	0.13372	0.00000
SGM1746	0.17635	0.17635	0.00000
SGM1747	0.18705	0.18705	0.00000
SGM1748	0.16497	0.16498	0.00001
SGM1749	0.19116	0.19117	0.00001
SGM1750	0.00000	0.00001	0.00001
SGM1751	0.07887	0.07888	0.00001
SGM1752	0.17635	0.17635	0.00000
SGM1753	0.18285	0.18287	0.00002
SGM1754	0.15773	0.15773	0.00000
SGM1755	0.16019	0.1602	0.00001
SGM1756	0.16017	0.16017	0.00000
SGM1757	0.16270	0.16282	0.00012
SGM1758	0.16017	0.16017	0.00000
SGM1759	0.16262	0.16265	0.00003
SGM2269	0.16495	0.16495	0.00000
SGM1734	0.02788	0.02788	0.00000
SGM1735	0.02788	0.02788	0.00000
SGM1736	0.16258	0.16257	0.00001
SGM1737	0.18283	0.18283	0.00000
SGM1738	0.16729	0.16729	0.00000
SGM1739	0.13659	0.13659	0.00000
SGM1740	0.02788	0.02788	0.00000
SGM1741	0.14754	0.14754	0.00000
SGM1742	0.18495	0.18495	0.00000
SGM1743	0.02788	0.02788	0.00000
SGM1744	0.00001	0.00001	0.00000
SGM0539	0.15015	0.15015	0.00000

Tabla 6-4:	Comparación	de σdC	de la	línea	224-225
------------	-------------	--------	-------	-------	---------

Nombre	sigma dC calc	sigma dC software	Diferencia (abs)
SGM2269			
SGM1733	0.13077	0.13077	0.0000
SGM1732	0.14218	0.14221	0.0000
SGM1731	0.14219	0.14222	0.0000
SGM1730	0.14224	0.14232	-0.0001
SGM1729	0.14760	0.14766	-0.0001
SGM1728	0.14487	0.14487	0.0000
SGM1727	0.13372	0.13371	0.0000
SGM1726	No se calcula	0.12153	
SGM1725	No se calcula	0.13077	
SGM1724	No se calcula	0.13077	
SGM1723	No se calcula	0.00004	
SGM1722	No se calcula	0.05576	
SGM1721	No se calcula	0.15271	
SGM1720	No se calcula	0.11152	
SGM1719	No se calcula	0.14487	
SGM1718	No se calcula	0.10798	
SGM1717	No se calcula	0.13077	
SGM1716	No se calcula	0.14753	
SGM1715	No se calcula	0.12470	
SGM1714	No se calcula	0.14217	
SGM1713	No se calcula	0.02788	
SGM1712	No se calcula	0.00001	
SGM1711	No se calcula	0.09658	
SGM1710	No se calcula	0.15777	
SGM1709	No se calcula	0.15524	
SGM1708	No se calcula	0.16258	
SGM1707	No se calcula	0.15015	
SGM1706	No se calcula	0.15272	
SGM2293	No se calcula	0.12778	

Tabla 6-5: Comparación de σdC de la línea 223.

Estos resultados muestran que los errores que se pueden tener al momento del cálculo de los números geopotenciales son elevados, estando todo relacionado a los explicado anteriormente respecto al factor de precisión de 9mm que se utiliza para el ajuste de las líneas de nivelación, lo que lleva a resultados de números geopotenciales con poca precisión.

6.4 CÁLCULO DE ALTURAS

Se procede al cálculo las diferentes alturas, aplicando las ecuaciones correspondientes.

Para evaluar la altura ortométrica con exactitud es necesario conocer el valor medio de la gravedad a lo largo de la línea de la plomada. Como no puede ser medida debe ser estimada con el valor que se observa en la superficie terrestre, adoptando hipótesis sobre la distribución topográfica de la masa y densidad.

Se calcula la altura ortométrica de Helmert (H), a partir de la ecuación (5.19) considerando la reducción de la gravedad, ecuación (5.18), y utilizando la altura normal (H^*) obtenida del software como altura inicial. La misma se vuelve a obtener a partir de la corrección ortométrica.

Considerando una hipótesis diferente se procede al cálculo de la altura ortométrica de Baranov.

La altura normal elimina la necesidad de conocer la topo-densidad. Se basa en el conocimiento del valor medio de la gravedad normal a lo largo de la normal entre el elipsoide de referencia y el teluroide.

Se calcula la altura normal de Molodensky, a partir de la ecuación (5.46), y también en función de la corrección normal, ecuación (5.51). Se hallan las alturas normales de Vignal, ecuación (5.47), Bomford, ecuación (5.48) y Hirvonen, ecuación (5.49).

La altura ortométrica de Helmert calculada partiendo de la corrección ortométrica, y la altura normal de Molodensky calculada partiendo de la corrección normal, difieren de sus homólogas debido a que al calcular las primeras sólo se corrige el error de gravedad y no el error de medición. Lo que conlleva una acumulación de los errores groseros, generando una diferencia de valores considerables sobre los puntos finales de la línea.

Al hallar las alturas partiendo del número geopotencial de cada punto, por ser estos conocidos en sus extremos, los valores se ajustan de tal modo que los errores se compensan a lo largo de la línea.

75

Punto	Corr. Ortometrica(OC)	H (OC)
SGM2292		20.5959
SGM1745	0.0001	24.8500
SGM1746	0.0001	32.2521
SGM1747	0.0001	28.8252
SGM1748	0.0002	56.4614
SGM1749	0.0001	33.9305
SGM1750	0.0000	33.9725
SGM1751	0.0001	49.6926
SGM1752	0.0003	64.9069
SGM1753	0.0006	99.6274
SGM1754	0.0002	99.3517
SGM1755	0.0008	131.7175
SGM1756	0.0005	143.7120
SGM1757	0.0027	241.1628
SGM1758	0.0005	238.4543
SGM1759	0.0028	304.1321
SGM2269	0.0003	281.5285
SGM1734	-0.0001	277.6954
SGM1735	0.0001	278.8245
SGM1736	-0.0019	200.5306
SGM1737	-0.0010	127.9478
SGM1738	-0.0001	101.5326
SGM1739	0.0001	101.4385
SGM1740	0.0000	101.4503
SGM1741	0.0001	104.2028
SGM1742	0.0003	92.6174
SGM1743	0.0000	93.1243
SGM1744	0.0000	93.0138
SGM0539	-0.0002	88.5164

Tabla 6-6: Cálculo de corrección ortométrica y altura ortométrica a partir de dicha corrección.

Punto	Corr. Normal (NC)	H*(NC)
SGM2292		20.5961
SGM1745	0.0001	24.8503
SGM1746	0.0002	32.2525
SGM1747	0.0000	28.8255
SGM1748	0.0006	56.4621
SGM1749	-0.0003	33.9308
SGM1750	0.0000	33.9728
SGM1751	0.0003	49.6932
SGM1752	0.0005	64.9076
SGM1753	0.0010	99.6286
SGM1754	0.0002	99.3529
SGM1755	0.0011	131.7190
SGM1756	0.0006	143.7136
SGM1757	0.0037	241.1653
SGM1758	0.0005	238.4568
SGM1759	0.0033	304.1351
SGM2269	-0.0002	281.5308
SGM1734	-0.0001	277.6978
SGM1735	0.0001	278.8269
SGM1735	0.0001	278.8269
SGM1736	-0.0024	200.5325
SGM1737	-0.0018	127.9489
SGM1738	-0.0004	101.5335
SGM1739	0.0001	101.4394
SGM1740	0.0000	101.4512
SGM1741	0.0003	104.2038
SGM1742	0.0000	92.6181
SGM1743	0.0000	93.1250
SGM1744	0.0000	93.0145
SGM0539	0.0000	88.5173

Tabla 6-7: Cálculo de corrección normal y altura normal a partir de dicha corrección.

Se calculan las mismas alturas con un ejecutable en el software Matlab, para realizar la comparación entre las alturas y verificar los cálculos respecto a los hallados manualmente.

El cálculo de alturas se continúa como modo de ejemplo de cómo se trabaja con datos reales, pues en realidad ya sabemos que hay una inconsistencia, como se explicó anteriormente. A raíz de esto, se decide no realizar el cálculo de las alturas de la línea 223 por ser esta la que presenta un error mayor imposible de detectar.

6.5 ANÁLISIS DE DATOS

Para realizar un correcto análisis de datos se procede a la comparación de las alturas anteriormente mencionadas.

La primera comparación para realizar es entre las alturas calculadas manualmente con las ejecutadas en Matlab. La diferencia permite verificar que los cálculos son correctos, ya que su valor es 0mm en todos los casos.

A modo de ejemplo se visualiza gráficamente para la altura ortométrica de Helmert y para la altura normal de Molodensky.

Gráfico 6-1: Comparación alturas ortométricas de Helmert calculadas.

Gráfico 6-2: Comparación alturas normales de Molodensky calculadas.

Considerando la altura ortométrica de Helmert y la altura normal de Molodensky, halladas manualmente, como datos primarios, se comparan entre sí. Como resultado se observa un incremento en la diferencia sobre el centro de la línea, lo que manifiesta el ajuste realizado a partir de los números geopotenciales.

Gráfico 6-3: Comparación altura normal de Molodensky con altura ortométrica de Helmert calculadas.

Las diferencias entre altura normal y altura ortométrica es mínima, lo que indica que en la zona de estudio estas alturas se consideran equivalentes.

Además, se contrastan también todos los tipos de alturas entre sí. Se presentan los resultados de forma resumida en las siguientes tablas.

	Baranov	
	0.0037	max
Helmort	-0.0003	min
nemert	0.0006	promedio
	0.0012	desviación estandar

Tabla 6-8: Resumen comparación de alturas ortometricas.

	Vignal	Bomford	Hirvonen	
	0.0000	0.2907	0.2907	max
Molodosky	0.0000	0.0189	0.0189	min
WOODESKY	0.0000	0.1170	0.1170	promedio
	0.0000	0.0836	0.0836	desviación estandar
	-	0.2907	0.2907	max
Vignal	-	0.0189	0.0189	min
Vignar	-	0.1170	0.1170	promedio
	-	0.0836	0.0836	desviación estandar
	-	-	0.0000	max
Romford	-	-	-0.0001	min
Bonnoru	-	-	0.0000	promedio
	-	-	0.0000	desviación estandar

Tabla 6-9: Resumen comparación de alturas normales.

Con los resultados de las tablas anteriores se ve claramente que Bomford y Hirvonen utilizan una hipótesis similar (gravedad normal del punto de observación sobre el elipsoide se sustituye con la gravedad normal de la latitud a 45°) y se diferencian notoriamente de las alturas normales de Molodensky y de Vignal, las cuales no presentan discrepancias entre ellas.

En relación con las alturas ortométricas, los resultados muestran que las diferencias entre ellas son mínimas.

Una vez obtenidas y analizadas las distintas alturas, la idea original consistía en el traslado de las cotas a través de las líneas de nivelación de la red geodésica, hasta un punto próximo a la cumbre del Cerro Catedral. Al iniciar el análisis de los datos existentes se detectan errores internos que no se pueden descifrar con la metodología empleada. Por lo tanto, a pesar de seguir con los cálculos de los números geopotenciales y las distintas alturas derivadas de estos, no existe el modo de relacionarlo con lo relevado en campo sabiendo de antemano que los resultados obtenidos están afectados por los errores de las líneas de nivelación de la red geodésica. Si se hubiera logrado tener las cotas de las líneas ajustadas sin problemas, se hubiera tenido un punto próximo al Cerro Catedral con alta precisión, para hacer el traslado de cota correspondiente a la cumbre del Cerro Catedral.

6.6 TAREAS DE CAMPO

Con el propósito de analizar las diferentes alturas en la zona de estudio, viendo la influencia de la gravedad, se concurre al Cerro Catedral a realizar diversos relevamientos.

Se toman como datos de apoyo las líneas de la Red altimétrica Nacional de 1er y 2do orden, y los puntos nodales mencionados en los capítulos anteriores.

Ubicado en la cumbre del cerro se encuentra un mojón con el punto geodésico I-218-Cordillera.

El instrumental necesario para las tareas de campo a realizar se detalla a continuación:

- Nivel electrónico
- 2 Galápagos
- 2 Niveletas
- 2 Miras
- GNSS Leica rover y base (IA)
- GNSS CHCNAV (Jorge Faure)
- 3 Trípodes
- Dos bípodes
- 3 Bases Nivelantes
- Batería de Gel
- Planillas de nivelación
- Monografía de los puntos a relevar
- Pinza para la batería de gel
- Cable de conexión batería-equipo.

6.6.1 Relevamiento con GNSS

El comienzo del procedimiento consiste en situar el equipo GNSS (marca Leica), en la cumbre del cerro. La configuración establecida es modo estático, con máscara de elevación de 10°, y la época definida cada 1'; la duración en total del proceso es de ocho horas. Por consiguiente, se obtienen mediante post proceso latitud, longitud, y altura elipsoidal del punto.

Luego de dicha configuración se seleccionan puntos geodésicos de primer orden, siendo estos el 1.11.042, 1.11.046 y 1.11.048, de segundo orden, siendo estos 2.24.003, y I-Aigua, que no pertenece a una línea determinada, para su relevamiento, por ser estos los puntos más cercanos de la Red Geodésica Nacional al punto geodésico de la cordillera.

Ilustración 6.4: Ubicación de los puntos geodésicos. Google Earth.

A pesar de que los puntos geodésicos 1.11.042 y 1.11.046 son los más distantes de la cumbre, son particularmente los de mayor interés debido a su pertenencia a una de las líneas de primer orden, lo cual facilita los cálculos debido al dato de su número geopotencial. Por dicha razón, se escogen todos los puntos mencionados, no obstante, hay gran cantidad de puntos correspondientes a las líneas de segundo orden más cercanos a la región a analizar. El punto 1.11.048 no fue posible localizar, debido a que se ubica en un antiguo camino en el que hoy en día no es posible su circulación.

A continuación, se relevan los puntos geodésicos con el método estático rápido, con máscara de elevación de 10°, y la época definida cada 5'.

Cada uno de ellos es tomado durante treinta minutos aproximadamente. Asimismo, cada uno fue relevado durante un minuto con los procedimientos RTK protocolo NTRIP con una antena del geográfico y con la antena virtual (VRS).

La estación de referencia perteneciente al IGM, de menor distancia a la zona es la ubicada en la cuidad de Minas, Lavalleja, conocida como base UYLA, mediante la cual se ejecuta el NTRIP. A su vez, la estación de referencia virtual conformada por las bases próximas es la VRS-J, creada a partir de las bases de Lavalleja, La Paloma, Montevideo, Florida, Durazno y Treinta y Tres.

Ilustración 6.5: Conformación de VRS-J.

• Punto 2.24.003:

Se mide el punto con el móvil de Leica, estacionando sobre el punto con un bípode durante 25 minutos, desde las 10:42hs hasta las 11:07hs. La altura del bastón es de 1,80m a la base del equipo. Luego de finalizada esta medición, se procede a medir el punto con protocolo NTRIP conectándose a la antena UYLA del IGM y a la antena virtual VRS-J (específica para la zona de estudio).

Ilustración 6.6: Ubicación punto 2.24.003.

• Punto 1.11.046:

El punto es relevado con el equipo GNSS CHCNAV, estacionado sobre el punto con un trípode durante 43 minutos, desde las 11:06hs hasta las 11:49hs. Se mide la altura del instrumento, considerando la distancia entre el punto al nivel del suelo y el punto inferior del ARP (Antena Reference Point), que está definido como la intersección del eje de simetría de la antena con la parte inferior de la misma. La altura medida en este caso es de 1.393 metros. Posteriormente se procede a medir el punto con protocolo

NTRIP conectándose a la antena UYLA del IGM y a la antena virtual VRS-

J.

Ilustración 6.7: Ubicación punto 1.11.046.

• Punto I-Aiguá:

Se mide el punto con el móvil de Leica, estacionando sobre el punto con un trípode durante 30 minutos. Se mide la altura del instrumento, considerando la distancia entre el punto al nivel del suelo y el punto inferior del ARP, siendo esta 1,255m. Luego se mide con protocolo NTRIP conectándose

con las antenas UYLA y VRS-J. Con la antena virtual (VRS-J) se demora en fijar la conexión.

Ilustración 6.8: Ubicación punto I-Aiguá.

• Punto 1.11.042:

El punto es relevado con el equipo GNSS CHCNAV, estacionado sobre el punto con un trípode durante 30 minutos, desde las 12:39hs hasta las 13:09hs. Se mide la altura de igual forma que el punto anterior, siendo esta de 1.480 metros. En este caso, no es posible medir el punto con la antena

VRS ni con la antena UYLA, debido a que no se logra la conexión fija, por consiguiente, carece de precisión necesaria para llevar a cabo el trabajo.

Ilustración 6.9: Ubicación punto 1.11.042.

6.6.2 Relevamiento con nivel electrónico

Con el objetivo de obtener datos propios se pretende comparar tramo a tramo el desnivel geométrico con el desnivel ortométrico en una zona de gran altura. En otras palabras, se quiere conocer la diferencia entre el desnivel geométrico y el desnivel ortométrico, lo que resulta en la corrección ortométrica, siendo esta la influencia en la parte física, es decir, de la gravedad.

La nivelación se desarrolla de ida y vuelta simulada, desde el camino de la base del cerro hasta la cumbre del mismo, específicamente al mojón del IGM, incluyendo 14 puntos, por lo tanto, 13 tramos de nivelación. Se lleva a cabo con cinco operadores, dos encargados de las miras, uno tomando las medidas en el nivel, uno registrando los datos en la planilla de nivelación y el último midiendo los puntos con GNSS. La distancia entre los puntos seleccionados no es constante debido a la pendiente pronunciada del cerro. A medida que se avanza, se decide donde estacionar el nivel y así lograr una buena visualización de las miras. Se materializan los puntos con galápagos, para mantener la posición exacta de los puntos en los cambios de estación. Los puntos nivelados son relevados con GNSS, con el método cinemático (Stop&Go) que permite resolver las ambigüedades en movimiento y se mantiene la solución del punto. Graba como una "cadena" y cuando se toma un punto lo graba para luego realizar el post proceso correspondiente.

Ilustración 6.10: Nivelación geométrica en el Cerro Catedral.

Ilustración 6.11: Relevamiento con GNSS del perfil de nivelación.

Los datos se registran manualmente en una planilla, la tarea se lleva a cabo controlando, tramo a tramo, los desniveles obtenidos, producto de las dos mediciones, ida y vuelta. Se consideran aceptables las diferencias menores a 3mm entre los distintos desniveles, pues el objetivo del trabajo en sí no es tomar el desnivel geométrico entre dos puntos, sino que es cuánto influye la gravedad en el desnivel, según el desnivel ortométrico. Luego, se calcula el desnivel total de forma más ajustada.

Los resultados alcanzados se demuestran en la sección de análisis y procesamiento.

6.7 ANÁLISIS Y PROCESAMIENTO

6.7.1 Post proceso del relevamiento con GNSS

El primer análisis es realizando el post proceso de los puntos del IGM relevados y de los puntos del perfil de nivelación.

Primero se descargan los datos de las distintas estaciones de referencia del IGM (UYLA, UYLP, UYMA, UYTT) accesibles a través de la página web del propio servicio. Con estos datos se procede a controlar los archivos de las estaciones de referencia para verificar las antenas, con el fin de corroborar que tengan los datos presentes en la página web y que las antenas sean reconocidas por el software.

Para el post proceso se utiliza el software Leica Geo Office (comercial) y el software Emlid (libre).

Ilustración 6.12: Ingreso de datos en software Leica Geo Office.

Ilustración 6.13: Ingreso de datos en software Emlid.

Para realizar el post proceso, se toman como puntos fiduciales, es decir, de base (referencia) las antenas del IGM, mencionadas anteriormente, y lo relevado desde la cumbre del Cerro Catedral como móvil, para obtener así las coordenadas de este.

Point Id	Point		09:00
UYLA	Control	07/:	
UYLP	Control	07/:	
UYMA	Control	07/.	
UYTT	Control	07/:	
BASE	Averaged	07/:	

Emlid Studio 1.3 × _ New plot 💿 Static processing 🖂 Static receiver CATE2110.220 Measured height is 0 m. LEIGS08 offset will be applied Edit 0 Uploaded base files Base 🗋 uyla2110.22o 🗅 uyla2110.220 +3 files uylp2110.22o **RINEX Header Position** 🗋 uyma2110.22o uytt2110.22o Latitude Longitude Clear all Ellip. height 148.386 Measured height is 0 m. LEIAR20 offset will be applied Edit Navigation RINEX (2) 1 m

Ilustración 6.14: Post proceso Cerro Catedral, software Leica Geo Office.

Ilustración 6.15: Post proceso Cerro Catedral, software Emlid.

Las mismas son el resultado del promedio de las soluciones de las cuatro antenas del IGM. El móvil se coloca en la base del Cerro Catedral durante cuatro horas y media y el archivo se exporta a RINEX para trabajarlo en varios softwares. Sobre el post proceso, el programa resuelve una solución por cada antena que se utilice como base y luego promedia estas soluciones. Pero la diferencia máxima entre estas soluciones es de 4cm, entonces si se quiere mejorar esta precisión, lo ideal es dejar el móvil en el Cerro Catedral durante un tiempo más prolongado, por ejemplo, durante 24 horas y no 4 horas como fue en el caso de este trabajo.

General	Stochastics	Thematical Da	ta Mean	Images			
Point	ld: BASE			Averagin Position	ng Limit : 0.0750 m	Height: (0.0750 m
-Curren E:	nt Mean Coordi 713841.8850 r	nates m	N: 619293	34.9728 m	Ellip.	Hgt.: 528.43 CQ: 0.0174	98 m m
Use	State	Reference	Date	/Time	Posn.diff	Hgt. diff	Posn. +
	Automatic	UYTT	07/30/20	22 09:42:29	0.0131	0.0133	
\square	Automatic	UYLP	07/30/20	22 09:42:29	0.0039	-0.0378	
\square	Automatic	UYMA	07/30/20	22 09:42:29	0.0201	0.0107	
	Automatic	UYLA	07/30/20	22 09:42:29	0.0036	0.0300	
<							>
Compu	uted Mean Coo	ordinates					
E:	713841.8850	m	N: 619293	34.9728 m	Ellip.	Hgt.: 528.43	98 m
Error D	Detection:	0 measureme	ent(s) out of	limit		CQ: 0.0174	m

Ilustración 6.16: Resultados post proceso Cerro Catedral, software Leica Geo Office.

Emlid Studio 1.3						
Static pr	Static processing ~					
Static receiver						
AIGU2110).220	8				
Measured hei LEIGS08 offse	Edit					
Base						
CATE2110	CATE2110.220					
Lat/Lon/He	eight, dd	~				
Latitude	-34.382905756	dd				
Longitude	-54.67413078	dd				
Ellip. height	Ellip. height 528.4398					

Ilustración 6.17: Resultado post proceso Cerro Catedral, software Emlid.

La información obtenida en el post proceso de las coordenadas del Cerro Catedral, se utiliza como base (referencia), y lo relevado en los puntos conocidos de la Red Geodésica del IGM como móviles. De este post proceso se obtienen las coordenadas de los puntos conocidos de la Red Geodésica de Nivelación.

BASE	Averaged 0	
2.24.003	Measured 0	
1.11.046	Navigated 0.	
AIGUA	Measured 0:	
1.11.042	Measured 0	

Ilustración 6.18: Post proceso de puntos de la red geodésica nacional, software Leica Geo Office.

El mismo procedimiento se realiza para los puntos del perfil de nivelación, pero tomando como base las siguientes cuatro horas de lo relevado en la cumbre del Cerro Catedral.

Ilustración 6.19: Post proceso del perfil de nivelación geométrica, software Leica Geo Office.

Punto		La	titud			I	Longitud	
1.11.042	34°	13'	25.69356"	S	54°	52'	44.47283"	W
2.24.003	34°	19'	06.64849"	S	54°	48'	11.31713"	W
1	34°	22'	56.60636"	S	54°	40'	36.35039"	W
2	34°	22'	56.57620"	S	54°	40'	34.45547"	W
3	34°	22'	56.47298"	S	54°	40'	33.78266"	W
4	34°	22'	56.21919"	S	54°	40'	32.79608"	W
5	34°	22'	56.12995"	S	54°	40'	31.88650"	W
6	34°	22'	55.77936"	S	54°	40'	31.20364"	W
7	34°	22'	55.48953"	S	54°	40'	30.25401"	W
8	34°	22'	55.56315"	S	54°	40'	29.72488"	W
9	34°	22'	56.01079"	S	54°	40'	29.84080"	W
10	34°	22'	56.23982"	S	54°	40'	29.29154"	W
11	34°	22'	56.27344"	S	54°	40'	28.51253"	W
12	34°	22'	56.91605"	S	54°	40'	27.85555"	W
13	34°	22'	58.14012"	S	54°	40'	26.99205"	W
14	34°	22'	58.53968"	S	54°	40'	26.83718"	W
AIGUA	34°	13'	38.45551"	S	54°	52'	27.80713"	W
BASE	34°	22'	58.46072"	S	54°	40'	26.87079"	W

Tabla 6-10: Resultados del post proceso de la red Geodésica Nacional y del perfil de nivelación.

h	н	N	H Of	Dif
300,0659	285,6759	14,390	285,28	0,3959
142,7166	128,6666	14,050	128,42	0,2466
489,6653	475,9813	13,684		
489,8065	476,1235	13,683		
491,8851	478,2021	13,683		
494,0140	480,3320	13,682		
497,1656	483,4836	13,682		
498,9189	485,2369	13,682		
501,7009	488,0199	13,681		
505,2032	491,5222	13,681		
509,4251	495,7441	13,681		
513,9595	500,2795	13,680		
518,3109	504,6309	13,680		
522,5265	508,8475	13,679		
526,3582	512,6802	13,678		
527,3910	513,7130	13,678	513,66	0,0530
332,4100	318,0340	14,376	317,70	0,3340
528,4398	514,7618	13,678		

Tabla 6-11: Continuación Tabla 6-10.

Las tablas anteriores muestran los resultados del post proceso con el software Leica Geo Office de los puntos de la red geodésica y de los 14 puntos del perfil de nivelación. El post proceso no arrojó resultado del punto 1.11.046 pues no se resolvieron las ambigüedades. Se obtienen la latitud y la longitud, la altura elipsoidal, la altura ortométrica asociada al modelo geoidal EGM08 y la ondulación geoidal. Se calcula la diferencia entre la altura oficial de las monografías de los puntos y la altura ortométrica obtenida del post proceso.

6.7.2 Nivelación geométrica

El siguiente análisis para realizar es el de la nivelación. A partir de las planillas de nivelación se realizan los cálculos de los desniveles brutos totales de ambas nivelaciones, de ida y vuelta simulada. En cada tramo se cumplen las tolerancias establecidas. Se observa que se obtiene el mismo resultado para ambas, por lo que se considera una excelente nivelación.

PUNTO	ATRAS	ADELANTE	DH 1
1	2,1990		
2	2,2190	2,0530	0,1460
3	2,4830	0,1420	2,0770
4	3,3110	0,3540	2,1290
5	3,0050	0,1640	3,1470
6	3,1720	1,2500	1,7550
7	3,9740	0,3860	2,7860
8	4,4670	0,4710	3,5030
9	4,7160	0,2430	4,2240
10	4,6230	0,1500	4,5660
11	4,6380	0,2730	4,3500
12	4,7240	0,4280	4,2100
13	1,9370	0,8890	3,8350
14		0,9080	1,0290
Total			37,7570

Tabla 6-12: Datos de nivelación geométrica de ida.

PUNTO	ATRAS	ADELANTE	DH2
1	2,0730		
2	2,3320	1,9270	0,1460
3	2,4910	0,2560	2,0760
4	3,2960	0,3610	2,1300
5	2,8620	0,1490	3,1470
6	3,0910	1,1080	1,7540
7	3,7650	0,3050	2,7860
8	4,4710	0,2620	3,5030
9	4,7080	0,2480	4,2230
10	4,4990	0,1400	4,5680
11	4,5670	0,1490	4,3500
12	4,6840	0,3560	4,2110
13	1,9330	0,8490	3,8350
14		0,9050	1,0280
Total			37,7570

Tabla 6-13: Datos de nivelación geométrica de vuelta.

PUNTO	DIF	DH promedio
1		
2	0,000	0,1460
3	0,001	2,0765
4	-0,001	2,1295
5	0,000	3,1470
6	0,001	1,7545
7	0,000	2,7860
8	0,000	3,5030
9	0,001	4,2235
10	-0,002	4,5670
11	0,000	4,3500
12	-0,001	4,2105
13	0,000	3,8350
14	0,001	1,0285
Total		37,7570

Tabla 6-14: Resultados de la nivelación geométrica.

En función de la nivelación geométrica y el resultado del post proceso de dichos puntos, es posible el cálculo de cada número geopotencial y la altura ortométrica corregida.

Para ello es necesaria la interpolación de la gravedad de forma tal de obtener la gravedad para cada punto nivelado. En este caso se ejecuta mediante el software de interpolación de la gravedad PREDGRAV, ingresando los datos existentes de la zona, con valores de latitud, longitud, altura y gravedad del punto. Para este caso se solicitan los datos de gravedad del Bureau Gravimetrique International (BGI), simplemente ingresando la zona que se desea, en este caso Uruguay, y explicando que se van a utilizar estos datos para investigación académica. Se ingresan en

el programa dos archivos .in, uno que contiene los datos de los puntos con gravedad conocida y otro con los datos de latitud, longitud y altura de los puntos donde se quiere conocer la gravedad. Como resultado se obtiene un archivo .out con los datos de gravedad de los puntos de interés. Este software realiza la interpolación mediante el método de mínimos cuadrados.

Para el punto "14", punto geodésico Cordillera, el *C* es calculado directamente con la ecuación (5.15), con *H* obtenida del post proceso y *g* gravedad reducida, obteniendo C = 5032.341, a partir de la gravedad interpolada que sería la gravedad medida. Para el resto de los puntos se calcula utilizando el *C*_{anterior}, aplicando la siguiente ecuación

$$C = dn \cdot g_m + C_{anterior} \tag{6.7}$$

La altura ortométrica de cada punto es hallada a partir de la ecuación (5.19), la corrección ortométrica mediante la ecuación (5.35), y el desnivel ortométrico a partir de (5.27).

Por lo cual, procediendo a la comparación del desnivel geométrico con el desnivel ortométrico, en el que influye la gravedad, la diferencia es de 2mm.

Punto	dn	g (m/s2)	g reducida	С	Н	OC	dn OC
1		9,795876	9,796077816	4662,480	475,964		
2	0,146	9,795875	9,796076876	4663,910	476,110	0,0000	0,146
3	2,077	9,79587	9,796072758	4684,251	478,186	0,0002	2,077
4	2,130	9,795866	9,796069661	4705,111	480,316	0,0001	2,130
5	3,147	9,795859	9,796063997	4735,939	483,463	0,0002	3,147
6	1,755	9,795855	9,79606074	4753,126	485,218	0,0001	1,755
7	2,786	9,795849	9,79605592	4780,417	488,004	0,0002	2,786
8	3,503	9,795842	9,796050405	4814,732	491,508	0,0002	3,503
9	4,224	9,795834	9,796044195	4856,105	495,732	0,0002	4,224
10	4,567	9,795825	9,796037119	4900,842	500,299	0,0002	4,567
11	4,350	9,795816	9,796029964	4943,454	504,650	0,0003	4,350
12	4,211	9,795808	9,796023751	4984,699	508,860	0,0002	4,211
13	3,835	9,795801	9,796018376	5022,266	512,696	0,0002	3,835
14	1,029	9,795799	9,796016814	5032,341	513,724	0,0001	1,029
	37,757					0,0022	37,759

Tabla 6-15: Comparación del desnivel geométrico y desnivel ortométrico.

Este resultado de una diferencia de 2mm es para un desnivel de 37m, que se considera un valor interesante para ese desnivel que no es tan pronunciado.

6.7.3 Comparación distintas metodologías

En el siguiente análisis se comparan las coordenadas tomadas con protocolo NTRIP, conectándose a una antena del IGM (UYLA) y con una antena virtual (VRS-J), específica para la zona, y lo procesado con los softwares antes mencionados.

		PROTOCO	OLO NTRIP	POST PROCESO	POST PROCESO	
		UYLA	VRS J	LEICA GEO OFFICE	EMLID	
	ESTE	695787.52	695787.53	695787.53	695787.50	
AIGUA	NORTE	6210592.23	6210592.23	6210592.24	6210592.22	
	ALTURA	332.38	332.41	332.41	332.36	
2.24.003	ESTE	702132.75	702132.75	702132.77	702132.74	
	NORTE	6200341.57	6200341.57	6200341.56	6200341.58	
	ALTURA	142.72	142.76	142.72	142.84	

Tabla 6-16: Comparación de distintas metodologías.

Como se puede ver en la tabla 6-16, no se obtuvieron datos de todos los puntos para poder comparar, esto se debe a la falta de conexión del instrumento con la antena (Punto 1.11.42), y porque no se pudo post procesar correctamente (1.11.46). Igualmente se decide hacer la comparación entre metodologías para los puntos en los que se tienen todos los datos, considerando que dicha comparación no es el objetivo principal de este trabajo.

En términos generales, los valores de las coordenadas obtenidos son similares, con una diferencia no mayor de 4cm, a excepción de los datos post procesados con el software Emlid, donde se obtienen diferencias de hasta 12cm con respecto a los otros valores. Este último resultado podría deberse a una interpretación errónea del dato de la antena al momento de post procesar, además, el software Emlid no utiliza modelos de corrección atmosférica y demás, mientras que el Leica sí.

6.7.4 Comparación con altura de MDE de la IDE

Los usuarios de la IDE tienen la posibilidad de descargar el modelo digital del terreno (MDE) de cualquier zona del país deseada. Por ello, se descarga el correspondiente a la zona de estudio, para procesarlo con el software Qgis. También es cargado como punto la base del Cerro Catedral con las coordenadas obtenidas en el post proceso. El software GIS permite extraer el dato del MDE específicamente en el punto ingresado, y así se obtiene la elevación del mismo según los datos relevados y procesados por la IDE. Este dato se contrasta con la altura obtenida anteriormente en el post proceso, pero para que sean comparables a esta última se le debe restar la altura del soporte del GNSS, debido a que el dato del MDE se corresponde al nivel del terreno.

Dado que la elevación del punto Cerro Catedral es 514.7618 m y la altura medida del soporte es 1.196 m, aplicando:

$$H_{Cerro\ terreno} = H_{post\ proceso} - h_{soporte\ GNSS} \tag{6.8}$$

se obtiene $H_{Cerro\ terreno} = 513.536m$ y la elevación del MDE resulta de $H_{Cerro\ terreno\ MDE} = 513.000m$, por lo tanto, la diferencia es $\Delta H = 0.536m$.

La discrepancia obtenida es aceptable, ya que estamos ante un Modelo Digital a nivel Nacional, realizado con vuelos y apoyo en campo, y más estando en el medio rural, donde el tamaño de píxel utilizado en las imágenes es mayor.

Ilustración 6.20: Punto Cerro Catedral georreferenciado y MDE de la IDE. Software Qgis.

6.7.5 Desniveles ortométricos

En función de las alturas ortométricas de los puntos mencionados, es posible extraer desniveles ortométricos, entre cada punto y la base del cerro. Con estos se puede obtener un valor de altura ortométrica del Cerro Catedral en función de cada punto, considerando sus alturas oficiales proporcionadas por el IGM. De tal modo es posible comparar las cotas alcanzadas según cada punto con la altura obtenida del post proceso.

Para obtener los desniveles se utiliza:

$$dn_{orto} = H_{cerro} - H_{ptoGEODESICO}$$
(6.9)

Y así, las diferentes alturas del cerro se obtienen con:

$$H_{cerro} = H_{ptoGEODESICO}^{of} + dn_{orto}$$
(6.10)

Punto	h	H post proceso	dn ortmetrico	H Oficial
BASE	528.44	514.76		
1.11.042	300.07	285.68	229.09	285.28
2.24.003	142.72	128.67	386.10	128.42
AIGUA	332.41	318.03	196.73	317.70

Tabla 6-17: Datos los puntos de la base (Cerro Catedral) y de los puntos de la Red Geodésica

Nacional.

A partir del Punto	H BASE	Diferencia con H post proceso
1.11.042	514.37	0.40
2.24.003	514.52	0.25
AIGUA	514.43	0.33

Tabla 6-18: Cálculo de la altura de la base (Cerro Catedral).
Como se ilustra, se obtiene la altura de la base del cerro a partir de los puntos 1.11.042, 2.24.003 y Aiguá. Las cotas obtenidas por este método con respecto a la cota obtenida por el post proceso son aceptables. La máxima diferencia alcanzada es de 40cm respecto al punto más lejano y la mínima es de 25cm respecto al punto más cercano al Cerro Catedral, tratándose de una solución razonable.

7 CONCLUSIONES

En función del objetivo principal del presente trabajo es posible concluir que la gravedad, característica física, influye en las mediciones altimétricas. El procedimiento con GNSS arroja 2mm de diferencia entre los desniveles geométricos y ortométricos, en consecuencia, de la influencia de la gravedad. Si bien no se esperan mayores diferencias, los resultados obtenidos son coherentes con la topografía del territorio uruguayo. En caso de que se realizaran trabajos de alta precisión en estas zonas de gran altura, habría que tener en consideración los datos de la gravedad en los puntos para poder obtener los mejores resultados.

Producto de las comparaciones entre las alturas ortométricas y normales de cada punto de la red de nivelación del IGM, se concluye que las alturas mencionadas son equivalentes para la zona de estudio, debido a que la diferencia máxima obtenida es de 3mm, lo que conlleva a concluir que la diferencia entre el geoide y el cuasigeoide es mínima, y más considerando que la zona en cuestión es de las zonas con mayor elevación del país.

Respecto a la nivelación geométrica los resultados son excelentes, la diferencia de los desniveles obtenidos entre la ida y la vuelta es de 0mm. Además, considerando tramo a tramo de la nivelación, la diferencia es de de 2mm, menor a la tolerancia establecida de 3mm. Por lo que concluimos que la elección de dicha tolerancia es acertada. Cabe mencionar que para

llegar a estos resultados es fundamental tomar los recaudos necesarios al momento de la práctica.

Resulta necesario resaltar la utilidad de los servicios del IGM, la existencia de las estaciones de referencia permite trabajar en todo el territorio nacional, debido a la cantidad de bases establecidas que cubren la mayor parte del país. Esta herramienta es la base para las tareas de campo del presente trabajo, debido a que se utilizan como base para el post proceso, y así mismo para el relevamiento con protocolo NTRIP. Gracias a la comparación de los datos obtenidos con estos dos métodos, obteniendo resultados similares, concluimos que en la zona estudiada el protocolo NTRIP tiene una precisión aceptable.

En base a los errores detectados en los puntos de la red de nivelación del IGM existente, se destaca la importancia de poder trabajar con datos propios, de este modo se pueden analizar los datos con mayor precisión, tomando en cuenta el conocimiento con el cual es relevado cada punto, para así darles relevancia o descartarlos. Por ejemplo, para el caso de la nivelación geométrica, una buena práctica sería la utilización de un gravímetro para obtener los datos de gravedad reales de los puntos nivelados, y no así hallarlos a partir de la interpolación de la gravedad mediante el software.

Sobre la comparación de la altura ortométrica de la base del cerro respecto la altura del modelo digital de elevación de la IDE, se concluye que el error

110

del modelo en dicho punto es de 0.5m, lo cual se considera razonable dado que el MDE se basa en imágenes de un vuelo Nacional, el cual para la zona rural utiliza un tamaño de pixel mayor, lo que implica menor precisión.

Considerando trabajos a futuro, un posible estudio es realizar un tramo de nivelación geométrica ida y vuelta al Cerro Catedral, pero de mayor extensión. De esta forma se logra un desnivel mayor, lo que lleva a manifestar la influencia de la gravedad de manera más explícita, pues en un desnivel de 37m ya se detecta una influencia de 2mm. También se puede hacer el mismo análisis, pero en otra zona, por ejemplo, en el Cerro de las Animas.

Continuando con el tema de la importancia de tener datos propios, también como trabajo a futuro se podría analizar más en profundidad la Red Geodésica Nacional y realizar una nivelación geométrica de las líneas involucradas en este trabajo, para ver dónde está la discrepancia y el error detectados previamente.

8 **BIBLIOGRAFIA**

BERNÉ, Berné Valero, José Luis. Anquela Julián, Ana Belén. Garrido Villén, Natalia. 2014. *GNSS: GPS: fundamentos y aplicaciones en geomática.* España. Editorial de la Universidad Politécnica de Valencia.

Boletín Del Servicio Geográfico Militar, Ministerio de Defensa Nacional, Comando General del Ejército, Servicio Geográfico Militar. 1984. Volumen Nº7.

BUREAU GRAVIMÉTRIQUE INTERNATIONAL, Land Gravity Data [sitio web]. 2021. Francia. [Consulta: 20 mayo 2021]. Disponible en: http://bgi.obs-mip.fr/data-products/gravity-databases/land-gravity-data/

INSTITUTO DE AGRIMENSURA, FAURE, Jorge. Apuntes del curso Geodesia 2. 2019. Facultad de Ingeniería. Uruguay.

INSTITUTO DE AGRIMENSURA, RAMOS, Julián. *Apuntes del curso Geofísica.* 2017. Facultad de Ingeniería. Uruguay. MORITZ, Helmunt. Hofmann-Wellenhof, Bernard. 2005. *Physical Geodesy.* Segunda edición. Austria: SpringerWienNewYork.

SANCHEZ, Laura Sánchez. 2002. Determinación de alturas físicas en Colombia. Institut für planetare geodäsie technische universität. Alemania.

YAÑEZ, Laura Yañez - Nestor Cuentas. *Modelado del cuasigeoide a partir de nivelación geométrica, gravimétrica y posicionamiento satelital.* 2017. Proyecto de grado. Tutor Jorge Faure Valbi. Instituto de Agrimensura, Facultad de Ingeniería. Uruguay.

9 ANEXO

Capturas interfaz softwares de cálculo:

Ilustración 9.1: Interfaz NUMGEOPOT.

Compensacion de una red de numeros geopotenciales L. Sanchez, H. Drewes (2016)
El calculo se basa en numeros geopotenciales derivados de nivelacion geometrica con correccion de gravedad. Se requieren dos archivos de entrada: Archivo 1: Listado de las estaciones a ajustar Archivo 2: Diferencias de nivel entre las estaciones listadas en el archivo 1 El formato de los archivos de entrada es: Archivo 1, linea 1 (A80): Texto arbitrario como titulo Segunda linea (A80): Formato de los datos de entrada, por ejemplo (A20,F11.5,F10.5) Lineas siguientes: id. del punto (max. A20),lat.,long. Archivo 2, linea 1 (A80): Texto arbitrario como titulo Segunda linea (A80): Formato de los datos de entrada, por ejemplo (A20,1X,A20,F12.4,F7.4,F9.3,I5,I2) Lineas siguientes: BM1, BM2, dC y sigma [m**2/s**2], distancia [km], anno, refr. (refr. = id. del coef. de refracci%n (1,2,3; 0 no calcula). Valores de referencia se dan con BM2 = blanco.
Listado de las estaciones:

Ilustración 9.2: Interfaz COMPNGP.

Capturas resultados obtenidos con los softwares:

	CCCOMP.OUT X								
CCCOMP.OUT	Ajuste de números ge	eopotencial	es en una	linea entre	2 nodos	de valores	conocid	os	
	Estaciones: CERRO_CA Num. geop.: LINEA 2	ATEDRAL 292-0539							
		Listado	de los pu	ntos fiducia	ales				
	Estación		Latitud	Longitud	Núm.geop	p. Sigma			
	SGM2292		-34,7923	-54,915	-201.78	3 0.273			
	SGM0539		-34.1949	-54.780	-871.63	0.352			
	Números co	mpensados y	su desvia	ción estánda	ar (29 e	estaciones)			
	Números co	npensados y	su desvia	ción estánda	ar (29 e	estaciones)			
	De	sviación es	tándar del	peso unitar	io 1.00	90			
	Estación	Latitud	Longitud	Núm.geop.	Sigma	H(normal)	Sigma O	bs	
	SGM2292	-34.7923	-54.9154	-201.783	0.273	20.5961	0.0279	2	
	SGM0539	-34.1949	-54.7800	-871.630	0.352	88.9734	0.0359	2	
	SGM1745	-34.7637	-54.9156	-243.596	0.296	24.8641	0.0302	2	
	SGM1746	-34.7260	-54.9119	-316.351	0.329	32.2904	0.0336	2	
	SGM1747	-34.6877	-54.9091	-283.042	0.360	28.8906	0.0367	2	
					0 370	56 5483	0.0387	2	
	SGM1748	-34.6652	-54.8841	-554.002	0.5/5	2012102			
	SGM1748 SGM1749	-34.6652 -34.6272	-54.8841 -54.8730	-554.002	0.400	34.0453	0.0409	2	
	SGM1748 SGM1749 SGM1750	-34.6652 -34.6272 -34.6260	-54.8841 -54.8730 -54.8728	-554.002 -333.541 -333.952	0.400	34.0453 34.0873	0.0409 0.0409	2	
	SGM1748 SGM1749 SGM1750 SGM1751	-34.6652 -34.6272 -34.6260 -34.6209	-54.8841 -54.8730 -54.8728 -54.8680	-554.002 -333.541 -333.952 -488.010	0.400 0.400 0.403	34.0453 34.0873 49.8124	0.0409 0.0409 0.0412	2 2 2	
	SGM1748 SGM1749 SGM1750 SGM1751 SGM1752	-34.6652 -34.6272 -34.6260 -34.6209 -34.5883	-54.8841 -54.8730 -54.8728 -54.8680 -54.8546	-554.002 -333.541 -333.952 -488.010 -637.298	0.400 0.400 0.403 0.417	34.0453 34.0873 49.8124 65.0510	0.0409 0.0409 0.0412 0.0426	2 2 2 2	
	SGM1748 SGM1749 SGM1750 SGM1751 SGM1752 SGM1753	-34.6652 -34.6272 -34.6260 -34.6209 -34.5883 -34.5598	-54.8841 -54.8730 -54.8728 -54.8680 -54.8546 -54.8546	-554.002 -333.541 -333.952 -488.010 -637.298 -977.701	0.400 0.400 0.403 0.417 0.429	34.0453 34.0873 49.8124 65.0510 99.7979	0.0409 0.0409 0.0412 0.0426 0.0438	2 2 2 2 2 2	
	SGM1748 SGM1749 SGM1750 SGM1751 SGM1752 SGM1753 SGM1754	-34.6652 -34.6272 -34.6260 -34.6209 -34.5883 -34.5598 -34.5341	-54.8841 -54.8730 -54.8728 -54.8680 -54.8546 -54.8240 -54.8194	-554.002 -333.541 -333.952 -488.010 -637.298 -977.701 -975.186	0.400 0.400 0.403 0.417 0.429 0.435	34.0453 34.0873 49.8124 65.0510 99.7979 99.5414	0.0409 0.0409 0.0412 0.0426 0.0438 0.0444	2 2 2 2 2 2 2	
🛾 Expl 🏾 🖉 Selec 🖉 Libre	SGM1748 SGM1749 SGM1750 SGM1751 SGM1752 SGM1753 SGM1754 ↓ <	-34.6652 -34.6272 -34.6260 -34.6209 -34.5883 -34.5598 -34.5341	-54.8841 -54.8730 -54.8728 -54.8680 -54.8546 -54.8240 -54.8194	-554.002 -333.541 -333.952 -488.010 -637.298 -977.701 -975.186	0.400 0.400 0.403 0.417 0.429 0.435	34.0453 34.0873 49.8124 65.0510 99.7979 99.5414	0.0409 0.0409 0.0412 0.0426 0.0438 0.0444	2 2 2 2 2 2	>

Ilustración 9.3: Soluciones del ejecutable en las líneas 224-225. Software Textpad.

Selector de Documentos 4	X LIZZCOMPOLIT X								- >
L223COMP.OUT	Ajuste de número	s geopotencia	les en una	linea entre	2 nodos	de valores	conocio	los	~
	Estaciones: 1223								
	Num, geop.; LINE	A NODAL D feh	(2.23) - P	TO. FUND. R	OCHA				
	0								
		Listad	o de los pu	ntos fiduci	ales				
	Estaci	ón	Latitud	Longitud	Núm.geo	p. Sigma			
	S GM 2 2 G	0	-24 2707	-54 702	- 2761 02	0 165			
	5GM220	3	-34 4728	-54 290	-420 87	2 0.105			
	JUNZZS	-	-34.4/20	-54.250	-420.07	0.010			
	Números	compensados	y su desvia	ción estánd	ar (30)	estaciones)			
		Desviación e	stándar del	peso unita	rio 1.0	90			
	S 10 100		67 9.27 12	100723	32.02		8320 84	2	
	Estación	Latitud	Longitud	Núm.geop.	Sigma	H(normal)	Sigma ()bs	
	5693360	24 2707	E4 7039	2761 022	0 165	201 0411	0 0169	2	
	SGM1733	-34.3839	-54.7528	-2708 635	0.105	276 4932	0.0100	2	
	SGM1732	-34.3880	-54.7525	-3195.868	0.241	326,2316	0.0246	2	
	SGM1731	-34.3832	-54.7314	-2737.497	0.271	279.4395	0.0276	2	
	SGM1730	-34.3811	-54.7093	-3571.013	0.295	364.5285	0.0301	2	
	SGM1729	-34.3827	-54.6840	-4404.901	0.317	449.6576	0.0323	2	
	SGM1728	-34.3707	-54.6640	-4373.231	0.335	446.4250	0.0342	2	
	SGM1727	-34.3709	-54.6429	-3673.260	0.347	374.9668	0.0355	2	
	SGM1726	-34.3591	-54.6365	-3360.963	0.357	343.0861	0.0364	2	
	SGM1725	-34.3444	-54.6253	-3342.428	0.366	341.1944	0.0374	2	
	SGM1724	-34.3383	-54.6070	-3267.130	0.374	333.5078	0.0382	2	~
Ca Expl., 🛛 🛱 Selec., 🖉 Libre	(<	24 2202	F# 6060	2250 500		331 0103	0 0202	-	>
Content Changer A more									

Ilustración 9.4: Soluciones del ejecutable en la línea 223. Software Textpad.

Cálculo de alturas:

Punto	H Helmert	H Baranov
SGM2292	20.5959	20.5960
SGM1745	24.8638	24.8639
SGM1746	32.2900	32.2901
SGM1747	28.8902	28.8903
SGM1748	56.5475	56.5477
SGM1749	34.0449	34.0450
SGM1750	34.0868	34.0870
SGM1751	49.8118	49.8120
SGM1752	65.0501	65.0504
SGM1753	99.7965	99.7966
SGM1754	99.5400	99.5402
SGM1755	131.9258	131.9256
SGM1756	143.9402	143.9399
SGM1757	241.4113	241.4094
SGM1758	238.7227	238.7208
SGM1759	304.4210	304.4173
SGM2269	281.8384	281.8352
SGM1734	278.0060	278.0029
SGM1735	279.1356	279.1325
SGM1736	200.8622	200.8610
SGM1737	128.3053	128.3051
SGM1738	101.9118	101.9118
SGM1739	101.8322	101.8322
SGM1740	101.8445	101.8446
SGM1741	104.6139	104.6140
SGM1742	93.0550	93.0551
SGM1743	93.5625	93.5626
SGM1744	93.4520	93.4521
SGM0539	88.9721	88.9723

Tabla 9-1: Cálculo manual de alturas ortométricas

Punto	H* Molodensky	H* Vignal	H *Bomford	H* Hirvonen
SGM2292	20.5961	20.5961	20.5772	20.5772
SGM1745	24.8641	24.8641	24.8411	24.8411
SGM1746	32.2904	32.2904	32.2605	32.2605
SGM1747	28.8906	28.8906	28.8637	28.8637
SGM1748	56.5483	56.5483	56.4956	56.4956
SGM1749	34.0453	34.0453	34.0135	34.0135
SGM1750	34.0873	34.0873	34.0554	34.0554
SGM1751	49.8125	49.8125	49.7658	49.7658
SGM1752	65.0511	65.0511	64.99	64.99
SGM1753	99.7979	99.7979	99.7039	99.7039
SGM1754	99.5414	99.5414	99.4474	99.4474
SGM1755	131.9275	131.9275	131.8026	131.8026
SGM1756	143.9419	143.9419	143.8055	143.8055
SGM1757	241.4141	241.4141	241.1847	241.1847
SGM1758	238.7254	238.7254	238.498	238.498
SGM1759	304.4243	304.4243	304.1336	304.1336
SGM2269	281.8411	281.8411	281.5713	281.5713
SGM1734	278.0086	278.0086	277.7425	277.7425
SGM1735	279.1383	279.1383	278.871	278.8711
SGM1736	200.8645	200.8645	200.6716	200.6717
SGM1737	128.3068	128.3068	128.1833	128.1833
SGM1738	101.913	101.913	101.8147	101.8147
SGM1739	101.8334	101.8334	101.735	101.735
SGM1740	101.8458	101.8458	101.7474	101.7474
SGM1741	104.6153	104.6153	104.514	104.514
SGM1742	93.0561	93.0561	92.9657	92.9657
SGM1743	93.5637	93.5637	93.4728	93.4728
SGM1744	93.4531	93.4531	93.3623	93.3623
SGM0539	88.9734	88.9734	88.8869	88.8869

Tabla 9-2: Cálculo manual de alturas normales.

Punto	H Helmert	H Baranov
SGM2292	20.5959	20.5960
SGM1745	24.8638	24.8639
SGM1746	32.2900	32.2901
SGM1747	28.8902	28.8903
SGM1748	56.5475	56.5477
SGM1749	34.0449	34.0450
SGM1750	34.0868	34.0870
SGM1751	49.8118	49.8120
SGM1752	65.0501	65.0504
SGM1753	99.7965	99.7966
SGM1754	99.5400	99.5402
SGM1755	131.9258	131.9256
SGM1756	143.9402	143.9399
SGM1757	241.4113	241.4094
SGM1758	238.7227	238.7208
SGM1759	304.4210	304.4173
SGM2269	281.8384	281.8352
SGM1734	278.0060	278.0029
SGM1735	279.1356	279.1325
SGM1736	200.8622	200.8610
SGM1737	128.3053	128.3051
SGM1738	101.9118	101.9118
SGM1739	101.8322	101.8322
SGM1740	101.8445	101.8446
SGM1741	104.6139	104.6140
SGM1742	93.0550	93.0551
SGM1743	93.5625	93.5626
SGM1744	93.4520	93.4521
SGM0539	88.9721	88.9723

Tabla 9-3: Cálculo de alturas ortométricas en ejecutable de Matlab.

Punto	H* Molodensky	H* Vignal	H *Bomford	H* Hirvonen
SGM2292	20.5961	20.5961	20.5772	20.5772
SGM1745	24.8641	24.8641	24.8411	24.8411
SGM1746	32.2904	32.2904	32.2605	32.2605
SGM1747	28.8906	28.8906	28.8637	28.8637
SGM1748	56.5483	56.5483	56.4956	56.4956
SGM1749	34.0453	34.0453	34.0135	34.0135
SGM1750	34.0873	34.0873	34.0554	34.0554
SGM1751	49.8125	49.8125	49.7658	49.7658
SGM1752	65.0511	65.0510	64.9899	64.9900
SGM1753	99.7979	99.7978	99.7039	99.7039
SGM1754	99.5414	99.5413	99.4474	99.4474
SGM1755	131.9275	131.9274	131.8026	131.8026
SGM1756	143.9419	143.9419	143.8054	143.8055
SGM1757	241.4141	241.4139	241.1844	241.1847
SGM1758	238.7254	238.7252	238.4978	238.4980
SGM1759	304.4243	304.4239	304.1332	304.1336
SGM2269	281.8411	281.8408	281.5710	281.5713
SGM1734	278.0086	278.0083	277.7422	277.7425
SGM1735	279.1383	279.1380	278.8707	278.8711
SGM1736	200.8645	200.8643	200.6715	200.6717
SGM1737	128.3068	128.3068	128.1833	128.1833
SGM1738	101.9130	101.9130	101.8146	101.8147
SGM1739	101.8334	101.8334	101.7350	101.7350
SGM1740	101.8458	101.8458	101.7473	101.7474
SGM1741	104.6153	104.6153	104.5139	104.5140
SGM1742	93.0561	93.0561	92.9657	92.9657
SGM1743	93.5637	93.5636	93.4727	93.4728
SGM1744	93.4531	93.4531	93.3623	93.3623
SGM0539	88.9734	88.9734	88.8868	88.8869

Tabla 9-4: Cálculo de alturas normales en ejecutable de Matlab.