Internal Program Extraction
in the Calculus of Inductive Constructions

Paula Severi' and Nora Szasz? *
! Departimento di Informatica, Universita di Torino, Torino, Italy
% Instituto de Computacién, Facultad de Ingenieria, Montevideo, Uruguay

Abstract. Based on the Calculus of Constructions extended with inductive defini-
tions we present a Theory of Specifications with rules for simultaneously constructing
programs and their correctness proofs. The theory contains types for representing spec-
ifications, whose corresponding notion of implementation is that of a pair formed by a
program and a correctness proof. The rules of the theory are such that in implemen-
tations the program parts appear mixed together with the proof parts. A reduction
relation performs the task of separating programs from proofs. Consequently, every
implementation computes to a pair composed of a program and a proof of its correct-
ness, and so the program extraction procedure is immediate.

1 Introduction

In Coq [Bar99], the set construction {x: A|(P x)} is used to write specifications
formed by a set A and a propositional function P over A. Then from an element
in a set of the form (z : A){y:B|(P xy)} a program of type A—B can be
extracted by means of an external function based on realizability interpretation
[PM89]. The extracted program obtained in Coq does not belong to the system
itself and hence it cannot be manipulated inside Coq.

In [Sza97] and [SS01] a Theory of Specifications with built-in program extraction
is presented based on Martin Lof’s Type Theory. This calculus internalizes the
notion of realizability. Besides data types (sets) and propositions, we have a
third sort of types for specifications. The essential property of a specification
is that it computes to a pair formed by a data type and a predicate over it.
This concept of pair is not defined as a mere existential or inductive type since
it has its own particular reduction rules. Applying these rules, every object of
a specification computes to a pair composed by a program and its correctness
proof. The process of program extraction consists in first computing the normal
form of this reduction and then taking the first projection. We can also extract
the correctness proof internally by applying the second projection.

The aim of this paper is to extend the Theory of Specifications to include induc-
tive types like natural numbers in order to be able to write useful examples and
extract real programs. The idea in [SSO01] of defining a reduction relation that
captures the process of program extraction will be adapted to the framework

* This work has been supported by the ECOS-Sud program of cooperation between
France and Uruguay. The second author is also partially supported by IST-2001-
322222 MIKADO; IST-2001-33477 DART.

of the Calculus of Constructions and extended with inductive data types and
inductive propositions.

Next we describe briefly the structure of this paper. In section 2 we present the
Verification Calculus as two copies of the same type system, one for programs
and one for proofs. In section 3 we present the Theory of Specifications: we
introduce the syntax, the reduction relation —, and the type system of the
theory. In section 4 we show an example of how to extract a program using o-
reduction. In section 5 we extend the Theory of Specifications with inductive data
types and propositions. In section 6 we prove that the o-reduction is confluent
and normalizing. We then show how the projections can be encoded in this
theory and we prove that the function nf, that computes the o-normal form
is a mapping from the Theory of Specifications into the Verification Calculus.
Finally, in section 7 we suggest some directions for future research.

2 Verification Calculus

In this section we define the Verification Calculus. This calculus contains two
copies of the Calculus of Constructions extended with an infinite type hierarchy
[Luo89,Bar99], one for data types and one for propositions.

We assume the reader to be familiar with Pure Type Systems [Bar92] and just
recall the typing rules.

Definition 2.1. Let (S,.4, R) be a specification, i.e. a set S of sorts, a set A of
axioms and a set R of rules. A Pure Type System (PTS) is defined by the rules
shown in Figure 1.

Axiom
Fkitke (k1,k2) €A

Start Weakening
I'+U:k I'+rU:k I'Ew:V

TaUr zo & [iesh ToUr o © 1-fresh

Product Abstraction

I'tU:k1 @Nz:UFEViks NzUFR0V I'EIz:UV:E
't z:U.V:iks (k1,k2, ks) € R ' e:Uv:Iz:UV

Application B-Conversion

I'tov:llz:UV I'twU I'FwU T'FU"k Ul
T'FowVu/z] T'Fuwl =

Fig. 1. Typing rules for Pure Type Systems

The specification ECC for the Extended Calculus of Constructions.
The extended Calculus of Constructions [Luo89) is obtained as a PTS with the
following specification ECC.

1. Sorts. Type™ for all n € IN.
2. Axioms. Type” : Type™*! for all n € IN.
3. Rules. (Type®, Type®, Type®) (Type®, Type™, Type™) for n < m.

Duplicating ECC for the Verification Calculus. The Verification Calculus,
used to prove the soundness of the Theory of Specifications, can be defined as
a PTS with specification VC consisting of two copies of ECC, one for data types
and the other for propositions, in the following way:

1. Sorts. The sorts are either data-sorts dType’ or prop-sorts pType’ for i € IN.
Note that the sorts in VC are obtained by concatenating the letter d or p to
the sorts of ECC. We write dk for the concatenation of the letter d with the
sort k and pk for the concatenation of the letter p with the sort .

2. Axioms. For each axiom k : k' in ECC we add two axioms in the Verification
Calculus:

dk : dk' pk:pk'.

3. Rules. For each rule (k1, k2, k3) in ECC, we add three rules in the Verification
Calculus:

(dky,dks,dks) (dki, pks, pks) (pki,pk2, pks)

Since in the Verification Calculus there are no rules of the form (pki, dks, dks)
data types cannot depend on propositions.

3 Theory of Specifications

In this section we define the Theory of Specifications as a PTS (with the speci-
fication TS defined below) extended with pairs.

Definition 3.1. The specification TS (sorts, axioms and product rules) for the
Theory of Specifications is defined as follows:

1. Sorts. The sorts in the Theory of Specifications are either data-sorts dType?,
prop-sorts pType® or spec-sorts sType’ for i€ IN. Note that for each sort & in
ECC, the data-sorts are obtained as the concatenation of d with k (written
dk), similarly we obtain the prop-sorts and the spec-sorts as pk and sk.

2. Axioms. For each axiom k : k' in ECC we add three axioms in the Theory of
Specifications:

dk:dk' pk:pk' sk:sk'

3. Rules. For each rule (k1, k2, k3) in ECC, we add the following rules:
(Hkl, sz, ng)
where u and v are either d, p or s.

We define the sort for data types: data:=dType®, the sort for propositions:
prop:=pType® and the sort for specifications: spec:=sType’.

Note that in the specification TS defined above, we have rules of the form
(pk1, dks, dks) that allow the formation of data types dependending on proposi-
tions and hence, programs may contain proofs in it.

In order to be able to give a definition of the reduction —, which does not
depend on the typing relation, we distinguish between data-pseudoterms, prop-
pseudoterms and spec-pseudoterms (Figure 2).

We split the set of variables into three: data-variables (denoted by z4,yq...),
prop-variables (denoted by zp,y,...) and spec-variables (denoted by zs,ys...).
An arbitrary pseudoterm is denoted by u,v,U,V ... as in the previous section.

Data-pseudoterms Prop-pseudoterms
A:=z4| dk P .=z, | pk
| Aza:A.A | Azp:P. A | Azs:S.A | Azg:A.P | Azp:P.P | Azs:S.P
| AA|AP|AS | PA|PP|PS
| Hzq:A.A| [Izp:P.A| Iz,:S.A | Hz4:A.P | IIzp:P.P | IIz,:S.P
Spec-pseudoterms Contexts
S:=uzs|sk|(A,P) Ir:=()
| Aza:A.S | Azp:P.S | Azs:S.S | I, za: A
|SA|SP|SS | Iy zp: P
| Hz4:A.S | Hzp:P.S | Hzs:S.S | I'yzs:S

Fig. 2. Syntax for the Theory of Specifications

We define the reductions —, and —3 on pseudoterms. The first reduction gives
an operational semantics to program extraction. The essential property of the
notion of specification is that it always computes to a pair. The reduction relation
—, performs the task of splitting spec-pseudoterms into pairs. For the latter to
hold, a spec-variable should also reduce to a pair. For this, from now on we
assume that there exists a function ¥ such that ¥(z;) = (x4, z,) for all spec-
variables z,. The function ¥ should be injective in each component.

Definition 3.2. We define —, as the least relation on pseudoterms that con-
tains the rules shown in Figure 3.

We denote —», the reflexive, symmetric and transitive closure of — .

Splitting
Ts —o (Za,Tp)
sType™ — (dType™ , Azq:dType™.(xqg — pType™))

Eliminating proofs from programs Currifying

Hzp:P A=, Aif zp,zs & FV(A) Hzs:(A,P).U =, Hxg:AIlzy:(Pxg).U
Aep:P.a —,a if zp,zs & FV(a) Azs:{A, PYu —o ATa:AMzp:(P d).u
ap —sa u{a,p) —Ssuap

Distributivity

HOz:U((A,P)—, (IIz:U. A, \f:IIz:U.AIlz:U.(P (f z)))
Az:U.{a,p) —o {(Az:U.a, z:U.p)

(a,p)u —o {au,pu)

Fig. 3. Definition of o-reduction

Definition 3.3. We define the reduction —g as the least relation on pseu-
doterms that contains the following rules:

(Azg:Au) a —p ula/zq)

(Azp:P.uw)p —p ulp/zp]

(Azs:S.u)s —p uls/xs)
Definition 3.4. The Theory of Specifications is inductively defined by adding
the rules shown in Figure 4 to the ones in Figure 1 for Pure Type Systems with
the fixed specification TS (Definition 3.1).

Remark 3.5. The following notion of completeness is needed to restrict sub-
stitution (this is used in the SB-rule and in the Application rule). We also need a
modified definition of freshness with respect to a typing context.

— The variable z4 (resp. z,) is complete for a term u if z;, ¢ FV(u). The
variable x4 (resp.) is fresh for a context I (I'-fresh for short) if x5 and
x4 (resp. zp) do not occur in I'.
— The variable z; is complete for a term u if x4, z, € FV (u). It is fresh for a
context I if x5, 4 and z, do not occur in I'.
Whenever a substitution is performed u[v/z] we require that the variable z is
complete for wu.

In the following example we show that we may loose confluence if we do not
assume that the variable is complete.

(Azs: (A, P).zs) (a,p) =5 (Axq:AANzp:(Pzg).zs)ap

% s

(a,p) (Azp:(Pa).zs)p
I Ip

<a' 7p> Ts

These last two terms cannot be joined.

Pair Type Pair Object
't A:dType™ 'k P:A — pType™ I'ta:A I'kp:Pa I't (A, P):sType™
I't (A, P):sType™ I't{a,p):(A,P)

Spec-variable

. . . n
I'tzq:A 'k xzp:(Pzq) ' (A, P):sType 2 is not in I

I'tzs:(A,P)
Data-variable Prop-variable
I'tz(A,P) . . I'tz:(A,P) . .
W x4 1S not in I m Tp 18 not in I"

o-conversion
I'FwU Uk

T FuwU U=V’

Fig. 4. Typing rules for pairs

4 An example of program extraction

In order to develop an example of program extraction, we illustrate how o-
reduction is extended to deal with natural numbers. Figure 5 shows the typing
and reduction rules for natural numbers. There are in total 6 elimination rules.
When i = 0 (k is either dType®, pType® or sType®) we can define functions
by induction on natural numbers where the type of the result is a data type,
a proposition or a specification. When i = 1 (k is either dType!, pType' or
sType') we have three elimination rules (called strong elimination rules) that
allow us to define data types, propositions and specifications by induction on
natural numbers. Strong elimination is necessary to prove, for instance, that
0 # (succO0).

The o-reduction is extended with a distribituvity rule. Note that the predicate
P is in fact the predicate P applied to the first component of the pair.

In the next section we generalize this extension for a wide class of inductive data
types and inductive propositions.

We are now ready to give an example of program extraction in the Theory of
Specifications. We consider the specification stating that every natural number
not equal to zero has a predecessor. Using Yz:A.P =%f (A P) : spec, this
specification is written as follows:

S = IIn:Nat.¥m:Nat.n > 0 = Eqn (succm)

In first-order logic S would be written as Vn.3m.(n > 0) — (n = (succm)). We
use the following abbreviations and assumptions:

— A = Mn:Nat.Nat,

— P = dn:Nat.Adm:Nat.n > 0 — Eqn (succm),

— U = M:Nat. ¥m:Nat.(P nm),

— there are terms pg, p,, such that - pg:(P 00) and m:Nat b p,,:(P (succm) m),
— g = dm:Nat.Az:(U m).pp,.

Then, the following term is an inhabitant of the type S (for the sake of exposition
we omit the first parameter of natrec):

s = An : Nat. (natrec (0, po)
(Am:NatAz:(Um).(m,pm))
n)
Using o-reduction, s is reduced to a pair. The first component is the extracted
program, that is, the predecesor function, and the second component is the proof
of its correctness.

s—, (An:Nat.natrec 0 (Am:Nat.Az4:Nat.m) n, An:Nat.natrec po gn)

predecesor

We assume Nat : data and succ : Nat — Nat.

Elimination
I'n:Nat I'U:Nat—k I'Fui:(UO0)
I' b ug:IIm:Nat.((Um) — (U (succm)))

I' - (natrec U w1 ug n):(Un)

where k is either dType', pType' or sType' for i =0, 1.

Primitive recursion
(natrec U w1 u2 0) U1
(natrec U w1 uz2 (succm)) —, (u2 m (natrec U u1 u2 m))

Distributivity
(natrec (A, P) {a1,p,) (az,p,) n) =, ((natrec A a1 as n), (natrec P p, p, n))

where P = An:Nat.(P n(natrec A a; as n)),
Py = Mn:Nat.Ag:(P n).(py n (natrec A a1 a2 n)q),

Fig. 5. Natural Numbers

5 Inductive Types

In this section we extend the Verification Calculus and the Theory of Specifi-
cations with Inductive Types. These extensions are based on the Calculus of
Inductive Constructions introduced in [Wer94].

Following [Wer94], inductive types (data types or propositions) are represented
by terms of the form Ind(X:k){C4(X)...C,(X)}. We use the abbreviation I =
Ind(X:£k){C1(X)...Cpr(X)}. To simplify our presentation, we do not consider
inductive types with parameters, i.e. we assume that k=data or k=prop. The
pseudoterms C4(X)...C,(X) are the types of the constructors. For example,
Nat=Ind(X:data){X, X — X}.

We denote the constructor in the position ¢ of the inductive type I by constr(z, I)
with 1 < ¢ < n. For instance 0=constr(1,Nat) and succ=constr(2, Nat). The
elimination constant for the inductive type I (data type or proposition) is
written as elim(I,U,v){u; ... un}. The pseudoterm v is the object to be elim-
inated and it has type I. The pseudoterms uy,...,u, are the branches which
are applied depending on the constructor. For instance (natrec U u; uz n) =
elim(Nat, U, n){ujus}.

In Figure 6 we give the typing rules for inductive data types (k = data) and
inductive propositions (k = prop). The parameter D(k) is similar to the set R
in the rules for pure type systems and it is used to forbid the elimination of a
data type from a proposition: we impose the restriction that the set D(prop)
contains neither data-sorts nor spec-sorts. In Coq there is a similar restriction.
The functions A and p used in the elimination, primitive recursion and distribu-
tivity rules will be defined later (Definition 5.5, Definition 5.6 and Definition 5.7).

Definition 5.1. The Verification Calculus with Inductive Types is obtained
from the Verification Calculus by adding the rules for inductive types (Figure 6)
instantiated with the sets D(data) and D(prop) given in the following table:

% DR
data | dType' pType' i=0,1
prop pTypet i=0,1

Definition 5.2. The Theory of Specifications with Inductive Types is obtained
from the Theory of Specifications by adding the rules for inductive types (Fig-
ure 6) instantiated with the sets D(data) and D(prop) given in the following
table:

k D(k)
data | dType' pType' sType' i=0,1
prop pTypet i=0,1

The type of the constructors should satisfy the restrictions given below to avoid
inconsistences. Moreover, in the strong elimination rules the constructors should
be small [Wer94].

Definition 5.3. We say that X is strictly positive in ITz:V.X ! if X does not
belong to the free variables of V' and it is not any of the bound variables .

! We abbreviate v1 ...vm by v and Hz1:Vi ... &m: ViU by IIx:V.U.

We assume I = Ind(X:k){C1(X)...Cn(X)} where k is either data or prop.

Formation Introduction

INX:kFCi(X):k Vi,1<i<n '+ Ik 1<i<n
't Ik I' - constr(i, I):C;(1)

Elimination

eIk THUI—K, K eD(k)
I'tvi I'buj:A{C;(I),U,constr(j, 1)} Vj,1<j<mn
I'telim(I,U,v){u1...un}:(U v)

Primitive Recursion
elim(Z,U,constr(i,)W){u1 ... un} =, (A[Ci(I),us, F]W)

where F' = Az:L.elim(I,U,z){us ... un},

W =wWi...Wn-

Distributivity
elim(1, (A, P),v){(a1,py) ... (an,p,)} —o
(elim(I, A,v){a1...an},elim(I,P,v){p;...p,})

where P = Az:[.(Pzelim(I, A,z){a1...an}),
p; = plCi(I),p;, Az:I.elim(I, A, z){a1...an}]

Fig. 6. Typing rules for Inductive Types

Definition 5.4. A type constructor C(X) is inductively defined by the following

clauses:
1. 0(X) =X,
2. C(X) = Iz:U.C(X) where C(X) is a type constructor, X does not belong

3.

to the free variables of U and X # z,
C(X) =U — C(X) where C(X) is a type constructor and X is strictly
positive in U.

The function A{ } used in the elimination rule (Figure 6) gives the type of a
branch u; and it is defined as follows.

Definition 5.5. We define A{C(X),U,c} by induction on C(X).
A{X,U,c} = (Ue)

A{llz:V.C(X),U,c} = Hz:V.A{C(X),U, (cz)}

A{([Tz:V.X) = C(X),U,c} =

Hy:(ITxe:V.X).(ITxe:V.U(y) — A{C(X),U, (cy)}

For instance, for Nat we have:

A{X,U,0} = (U0)
A{X — X,U,succ} = IIn:X.(Un) — (U(succn))

The function A[] used in the primitive recursion scheme (Figure 6) is defined

as

follows.

Definition 5.6. We define A[C(X), f, F] by induction on C(X).
AX, f, Fl=f

Allz:V.C(X), f, F] = \x:V.A[C(X), (f z), F]

Al(x:V.X) = C(X), f,F] =

Ay:(Txe:V.X).A[C(X), (f y Qx:V.F(yz))), F]

For instance, for Nat we have:

AX, f, F] =,
AX - X, f, Fl = x:X.(f = (Fz)).

The function p used in the distributivity rule (Figure 6) is defined as follows.

Definition 5.7. We define p[C(X), p, F] by induction on C(X).
plX,p, Fl=p

plz:V.C(X),p, F] = Az:V.p[C(X),pz, F]

A(IT2:V . X) 5 C(X),p, F] =

Ay:(ITz:V.X) Az:(ITx:V . P(y)).p[C(X),p y (\&:V.F(yx))z, F]

For instance, for Nat we have:

p[X,p, F] = p, X
o[X = X,p, F] = Ax: X \y:Pz.(p z (Fz) y).

6 Properties

In this section we prove some properties of the Theory of Specifications with
Inductive Types.

6.1 Soundness

Lemma 6.1. —, is confluent and normalizing.

To prove that it is confluent we show that the parallel o-reduction satisfies the
diamond property. Normalization is proved by induction on the structure of the
term.

By the previous lemma, the o-normal form of a pseudoterm u exists and it is
unique. We denote it as nf,(u).

Lemma 6.2. Let s be a spec-pseudoterm. Then, nf,(s) = (a,p).

Substitution lemma holds excluding the problematic cases mentioned in re-
mark 3.5.

Lemma 6.3.

1. nf,(ula/z4]) = nf,(v)[nf,(a)/z4)-
2. nfs(u[p/zp)) = nfo(u)[nfs (p)/2p].
3. nfy(ul[s/zs]) = nfs(u)[a/z4][p/zp] where nfs(s) = (a,p).

In the next lemma we show that the o-normal form preserves G-reduction steps.

Lemma 6.4. If u—g,u' then nf,(u)—»g,nfs(u').
The proof is done by induction on the structure of the term.

As an immediate consequence of the previous lemmas and theorems we obtain
the following theorem.

Theorem 6.5. —g,, is confluent.

We prove that the Verification Calculus (with Inductive Types) is a syntactic
model for the Theory of Specifications (with Inductive Types). The interpreta-
tion function is given by the mapping nf,. Derivation in the Theory of Specifi-
cations (with Inductive Types) is denoted by I and in the Verification Calculus
(with Inductive Types) is denoted by Fyc.

Theorem 6.6. (Soundness). Let I' F w:U.

1. If u is a data- or prop-pseudoterm then nf,(I") Fy ¢ nf, (u):nf,(U)
2. If u is a spec-pseudoterm then nf, (U)=(A, P), nf,(u)={(a, p),
nf,(I') Fyc a:A and nf, (') Fye p:Pa

The proof is by induction on the derivation.

6.2 Projections

In this section we show how to encode the projections in the Theory of Specifi-
cations and prove that a variant of the application rule is derivable.

Figure 7 shows the encoding of the projections in the Theory of Specifications.

Projections for spec-sorts Projections for arbitrary spec-pseudoterms
D =)\xS:sTypef.xd Tq =)\xs:sTypef.)\yS:xS.yd
mp = Axs:sType'.zp Tp = Aes:SType' Ays:Ts.Yp

Fig. 7. Codification of the projections for ¢ € IN.

Lemma 6.7.

1. mp <A,P>%>ﬁJA and wp <A,P>%>ﬁop.
2. 4 (A, P)(a,p)—»gsa and m, (A, P) {a,p)—»asD-

Lemma 6.8.

1. If I' + S:sType' then I' - 7p S:dType' and I' F np S:(np S) — pType'.
2. fI'rs:SthenI'ng Ssimp S and I'F 1, S s:mp S(mq S s).

Proof. It is easy to derive that mp has type sType! — dType’ and that 7p has
type Izs:sType'.(zq — pType'). Note that mp x5 =p, 4. Then, by applying
conversion rule, we obtain that 7p has also type IIzs:sType'.((rpxs) — pType')

Lemma 6.9.

1. Szﬁg <7TDS,7TPS>.
2. s=p5 (Mg S s,m, S s)

This is proved using Lemma 6.2.

When z is not complete for u, the substitution u[v/z] is now allowed (see Re-
mark 3.5). We will prove that there exists u' =g, u such that z is complete for
u' and, then, the substitution in «’ can be performed.

Definition 6.10. For each spec-variable z,, we define the reduction —,, as the
least relation on pseudoterms that is closed under the rule z5— ;5 (zq,2p). We
denote the normal form of this reduction as nfgz,.

Definition 6.11. We define u% by cases:
u[(mq S zs)/za)[(mp S zs)/2p] if 2= x4

nfz, (u) ife=zqorz=u2

The variable z is complete for u* and the substitution u® [v/z] is allowed (see
Remark 3.5).

Lemma 6.12.

1. f Iz:V,AF wU then Iz:V, A* + u® : U".
2. u* =g, u

The first part is proved by induction on the derivation and the second one by
induction on the structure of u.

Theorem 6.13. The following variant of the application rule is derivable.

I'tovlle:UV I't w:U
I'Fow V? [u/z)]

Proof: By the previous lemma we have that I' F v:ITz:U. V*

7 Conclusions

We mention some differences between the Theory of Specifications and Cogq.
First in Coq there is only one type hierarchy of universes Type’ instead of three
dType!, pType' and sType'. Also in Coq there is a cumulativity rule, if U:prop
then U:Typet! that we do not have in the Theory of Specifications. As a con-
sequence, the status of an object of type Type'*! with respect to extraction is
not clear in Coq. The Theory of Specifications, however, has interesting prop-
erties concerning extraction (Theorem 6.6). Due to these differences, it is not
possible to implement the Theory of Specifications within Coq. A tool based on
the Theory of Specifications should be implemented independently of Cogq.

The Theory of Specifications is related to other programming logics that allow
the derivation of implementations as pairs program-proof developed in parallel.
Besides Coq, we also mention the Deliverables [BM90] and the programming
logic Awy, [Pol94]. In the theory of Deliverables [BM90], a specification is a pair
consisting of a data type and a predicate over it, and the definition of deliverable
corresponds in a certain way to our notion of functions between specifications.
Y-types are used to put together both the components of specifications and the
functions between them. This makes it problematic to obtain a good definition
of function in a direct way. To overcome this difficulty second order deliver-
ables have to be defined using a global specification as a parameter. In fact, the
need of having second order deliverables arises from not having defined what
a specification depending on another specification is. We think that to avoid
these problems, it is essential to have a special construct for specifications, dif-
ferent from the Y-types and to give special meaning to the dependences between
specifications. Poll’s Awr,[Pol94] is a subsystem of the Verification Calculus (see
Section 2). However, in [Pol94] the notions of specification and implementation
are not completely formalized in the language.

We mention possible directions of future research. Firstly, in this paper we study
neither subject reduction nor strong normalization for —+, and —g, and this is
something we plan to do in the immediate future. Subject Reduction is not so
easy to prove since for the case of o-reduction we need to prove Strengthening.
This study is necessary to design a syntax-directed system and a type checking
algorithm for the Theory of Specifications. Secondly, this paper presents only a
particular PTS (the one with specification TS) extended with pairs. It will be
interesting to see if we could give a formulation of Pure Type Systems extended
with pairs that includes the system in [SS01] and the one in the present paper.

Acknowledgement. We would like to thank the referees for their useful comments
on an earlier version of this paper.

References

[Bar92] H. P. Barendregt. Lambda Calculi with Types. In Samson Abramsky, Dov
Gabbay, and Tom Maibaum, editors, Handbook of Logic in Computer Science,
volume 1, pages 118-310. Oxford University Press, 1992.

[Bar99] Barras et al. The Coq Proof Assistant Reference Manual. Technical report,
INRIA, 1999.

[BM90] R. Burstall and J. McKinna. Deliverables: An approach to program develop-
ment in the calculus of constructions. In Proceedings of the First Workshop on
Logical Frameworks, Antibes, pages 113,121, 1990.

[Luo89] Z. Luo. ECC, an extended calculus of constructions. In 4th. Symposium on
Logic in Computer Science., 1989.

[PM89] C. Paulin-Mohring. Extracting F,’s programs from proofs in the Calculus of
Constructions. In Sizteenth Annual ACM Symposium on Principles of Prog
ramming Languages, Austin, January 1989. ACM.

[Pol94] E. Poll. A Programming Logic Based on Type Theory. PhD thesis, Eindhoven
University of Technology, October 1994.

[SS01] P. Severi and N. Szasz. Studies of a Theory of Specifications with Built-in
Program Extraction. Journal of Automated Reasoning, 27(1):61-87, 2001.

[Sza97] N. Szasz. A Theory of Specifications, Programs and Proofs. PhD thesis, De-
partment of Computing Science, Chalmers University of Technology, S-412 96
Goteborg, Sweden, June 1997.

[Wer94] B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Universite
Paris 7, Paris, France, May 1994.

