
ON WORST CASE ROBIN-HOOD HASHING

Luc Devroye, Pat Morin

School of Computer Science

McGill University

Montreal, Canada H3A 2K6

luc@cs.mcgill.ca

and

Alfredo Viola

Pedeciba Informatica

Districto 6, Casilla de Correo 16120

Universidad de la Republica

Montevideo

Uruguay

February 23, 2002

Abstract. We consider open addressing hashing, and implement it by using the Robin

Hood strategy, that is, in case of collision, the element that has traveled the furthest can stay

in the slot. We hash ∼ αn elements into a table of size n where each probe is independent

and uniformly distributed over the table, and α < 1 is a constant. Let Mn be the maximum

search time for any of the elements in the table. We show that with probability tending

to one, Mn ∈ [log2 logn+ σ, log2 logn+ τ] for some constants σ, τ depending upon α only.

This is an exponential improvement over the maximum search time in case of the standard

FCFS (first come first served) collision strategy, and virtually matches the performance of

multiple choice hash methods.

Keywords and phrases. Open addressing, hashing, Robin Hood, worst-case search time,

collision resolution, probabilistic ananlysis of algorithms.

CR Categories: 3.74, 5.25, 5.5.

1991 Mathematics Subject Classifications: 60D05, 68U05.

The first two authors’ research was supported by NSERC Grant A3456 and FCAR Grant
90-ER-0291. The third author was supported by Proyecto de investigación CSIC fondos
2000-2002 at Universidad de la Republica.

Introduction

In hashing with chaining with a table of size n holding m = dαne elements, where

α > 0 is a constant, the worst-case search time is equal to the length of the longest chain. If

the hash values are independent and uniformly distributed over the table, then the maximum

chain length is asymptotic to log n/ log logn in probability (Gonnet, 1981; Devroye, 1985),

for any fixed value of α.

In this paper we consider open addressing hashing with random probing. A table of

size n is given, into which we place m = dαne elements, where α ∈ (0, 1) is a fixed constant.

Each element has associated with it an infinite probe sequence consisting of i.i.d. integers

uniformly distributed over {1, . . . , n}, representing the consecutive places of probes for that

element. It is assumed that when searching for an element, its infinite probe sequence is

available to the searcher. The probe sequence for element i is denoted by Xi,0, Xi,1, Xi,2,

Elements are inserted sequentially into the table. If element i is placed in position Xi,j ,

then we say that element i has age j, as it requires j hops to reach the element in case of

a search. When an element i of age j and an element i′ of age j′ compete for the same

slot (Xi,j = Xi′,j′), a collision resolution strategy is needed. Several collision resolution

strategies have dominated the literature.

The standard open addressing method resolves the collision by giving the place to

the first key to arrive there according to a first come first served policy (FCFS), so the

test is based on min(i, i′). Amble and Knuth (1974) suggested the idea that any of the

colliding elements could get the position in the hope of speeding up unsuccesful searches.

Note that for random probing, for any strategy that does not look ahead, the sum of the

ages of all elements in a hash table has a distribution that is independent of the collision

resolution strategy. There are differences though when one considers the maximal age among

all elements in a table. Two of the strategies that do not look ahead before deciding which

element should get the position are the LCFS (last come first served) heuristic (Poblete and

Munro, 1989), in which the position is given to the last element that arrives (thus, using

max(i, i′)), and the Robin Hood strategy (Celis, 1986; Celis, Larson and Munro, 1985; Viola

and Poblete, 1998), in which the position is given to the element that is furthest away from

its home location (the element corresponding to min(j, j ′)). The Robin Hood strategy tends

to equalize the ages of all inserted elements (hence the name Robin Hood), thus reducing

the maximum successful search time. Both FCFS and Robin Hood decrease the variance of

the search time. As pointed out earlier, for random probing, the expected search time for

a single random element is identical for all collision resolution strategies that do not look

ahead. An interesting property of Robin Hood is that every permutation of the insertion

sequence produces the same final hash table, provided that a consistent tie breaker is used

(for example, min(i, i′)).

For uniform probing (that is, a probe sequence without repetition) the expected

2

value of the longest probe sequence for the standard FCFS algorithm for α-full tables (α < 1)

is log1/α n− log1/α(log1/α n) +O(1) and for full tables is 0.631587 . . .× n+O(1) (Gonnet,

1981).

For random probing (that is, a probe sequence with repetition) the expected value

of the longest probe sequence for the LCFS heuristic is bounded by

1 + Γ
−1(αn)

(
1 +

log log(1/(1− α))

log Γ−1(αn)
+O

(
1

log2
Γ−1(αn)

))
,

where Γ is the Gamma function (Poblete and Munro, 1989). Although this is not a tight

bound, this was the first open addressing method for which a sub-logarithmic bound in n

was proven.

Celis (1986) proved that for random probing, the expected value of the longest

probe sequence for the Robin Hood heuristic is bounded by 3(Hn − Hn−m)/α + dlog(n −
2)e, where Hn =

∑
1≤i≤n 1/i. This bound is improved in this paper to log2 logn. For

further discussions and results, see Knuth (1998), Vitter and Flajolet (1990), Gonnet and

Baeza-Yates (1991) or Flajolet, Poblete and Viola (1998). It is perhaps worth reproducing

Table 5.9 from Celis’s dissertation, in which empirical estimates were computed for the

longest successful probe length with the Robin Hood strategy, which suggests a Θ(log logn)

complexity for the problem when α < 1.

n α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1021 3.629 ± .065 4.000 ± .013 4.329 ± .064 5.105 ± .041 10.443 ± .187

4093 3.967 ± .024 4.062 ± .033 4.800 ± .054 5.329 ± .064 12.133 ± .208

16273 4.014 ± .016 4.262 ± .060 5.000 ± .000 5.771 ± .057 13.819 ± .172

65537 4.029 ± .023 4.614 ± .066 5.000 ± .000 6.000 ± .000 15.181 ± .178

262139 4.098 ± .040 4.967 ± .024 5.022 ± .020 6.000 ± .000 16.815 ± .179

Expected length of longest successful probe sequence.

It is perhaps worthy of mention that there are several other ways other of obtaining

dynamic hash tables with O(log logn) expected maximum successful search times. Consider

hashing with chaining, and let the elements have a choice of two randomly picked positions.

An element is placed into the slot with the least number of elements (at the time of inser-

tion). This simple double choice shows that the maximum slot occupancy is in probability

asymptotic to log2 log2 n (Azar, Broder, Karlin and Upfal, 1994, 1999; Broder and Karlin,

1990; Czumaj and Stemann, 1997; Mitzenmacher, 1997).

There has been interest in obtaining O(1) expected worst-case performance, or

even O(1) deterministic worst-case performance for search in hash tables. For static hash

tables, Fredman, Komlós and Szemerédi (1984) proposed a solution. Czumaj and Stemann

(1997) showed that if each element has two randomly chosen hash positions, then with

3

high probability, a static (off-line) chaining hash table can be constructed that has worst

chain length 2, provided that the table size is at least αn for some threshold constant

α. For dynamic hash tables, the early research was in the direction of dynamic perfect

hash functions (Dietzfelbinger and Meyer auf der Heide (1990), Dietzfelbinger, Gil, Matias

and Pippenger (1992), Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der Heide, Rohnert and

Tarjan (1994), Brodnik and Munro (1999)). Cuckoo hashing (Pagh and Rodler, 2001) is also

an attempt in this direction. It stands out though through its simplicity and the promising

experimental results reported by Pagh and Rodler: each of m data points has two hash

functions, one to be used in each of two tables of size n ≥ (1 + ε)m. The element must be

placed in one of the tables at one of the two locations. Upon insertion of a new element,

old elements get kicked out and move around, kicking out other elements if necessary, until

either a loop is detected or the insertion process halts. In case of a loop, the entire table

is rehashed. The expected time for an insertion is still O(1), and the worst-case successful

search time is bounded by 2. However, one needs a powerful collection of hash functions, as

each rehash operation requires an entirely new and independent set of hash values.

Let us denote by Mn the maximal successful search time, that is, the maximal

age among any of the m elements in the hash table. In a FCFS strategy, we note that

Mn = Tn− 1, but this is no longer true with other strategies. In fact, in this paper we show

the following.

Theorem 1. In open addressing with Robin Hood collision resolution, there exists a con-

stant C depending upon α only such that

lim
n→∞ P {Mn ≥ log2 logn+ C} = 0 .

The result above implies an exponential improvement over the FCFS strategy. Fur-

thermore, this bound is optimal modulo a finite constant:

Theorem 2. In open addressing with Robin Hood collision resolution (and any method of

breaking ties),

lim
n→∞P{Mn ≤ log2 logn− log2(6 log(8/α))} = 0(1/

√
n) .

The implications of this are not be underestimated, as open addressing tables are

the oldest and simplest hashing structures. The multiple choice hashing methods in their

original form are intrinsically chaining methods, and thus slightly more inefficient spacewise.

4

Balls in urns

Throw m balls uniformly at random into n urns. Let urn i receive Ni balls, and

Define

A =
n∑

i=1

(Ni − 1)+

the number of balls left after removing one ball from each occupied urn. We say that A has

the (m,n) urn distribution.

The (m,n) urn distribution. Let A have the (m,n) urn distribution. Then

E{A} =
m∑

j=1

(
1− (1− 1/n)j−1

)
.

Note that (1− 1/n)m ≥ 1−m/n and (1− 1/n)m ≤ 1−m/n+m(m− 1)/2n2, so that

m2

2n
≥ m(m− 1)

2n

=
m−1∑

j=1

j

n

≥ E{A}

≥
m−1∑

j=1

j

n
−
m−1∑

j=1

j(j − 1)

2n2

=
m(m− 1)

2n
− m(m− 1)(m− 2)

6n2

≥ m(m− 1)

3n

≥ m2

4n
(the last step is true only if m ≥ 4) .

(1)

We also need some concentration inequalities for A. To present these inequalities, let

(X1, . . . , Xn) be a vector of independent random variables (on an arbitrary measurable

space S), let f : S → R be a measurable function, and set

Z = f(X1, . . . , Xm) .

Let X ′1, . . . , X
′
m be independent copies of X1, . . . , Xm, and write

Z(i) = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xm).

The Efron-Stein inequality (Efron and Stein, 1981; Steele, 1986) states that

V{Z} ≤ 1

2
E

{
m∑

i=1

(Z − Z(i))2

}
.

Exponential versions of the Efron-Stein inequalities were recently derived by Boucheron,

Lugosi and Massart (2001), who in turn based their work on that of Talagrand (1996) and

Ledoux (1996). However, for what follows, they are not needed. If Z ≡ A, and X1, . . . , Xm

5

are the urns chosen by elements 1 through m, and X ′i is independent of the Xj ’s and

distributed as Xi, then |Z(i) − Z| ≤ 1. Thus, V{Z} ≤ m/2. With the inequalities for EA
taken into account, we have, by Chebyshev’s inequality, for all t > 0,

P {|A− E{A}| ≥ t} ≤ V{A}
t2

≤ m

2t2
.

The head-and-belly view

The construction of the hash table may be looked at in a global manner for Robin

Hood strategies, since every permutation of the input sequence produces the same hash

table. We start by placing all elements at their first choices Xi,0, 1 ≤ i ≤ m. Some bins in

the table may have many elements, but that is acceptable. We call this the first stage. At

the k-th stage in our construction, picture a hash table (“the head”) containing elements of

age k, possibly many per cell, and a second hash table (“the belly”) containing at most one

element per cell, and that element is of age less than k. Furthermore—and this is crucial—,

if cell i in the head is occupied, then cell i is empty in the belly. This head-and-belly view

allows us to proceed, by letting k grow until finally the head is empty, and all elements are

in the belly.

The belly is initially empty, and all elements are in the head, in stage one. Given

the (k − 1)-st stage situation, we construct the k-th stage as follows.

A. All elements in the (k − 1)-stage head that are in positions two and above in their

bins move to a randomly selected bin in the k-head.

B. The remaining elements of the (k − 1)-head (at most one per cell) are added to

the (k − 1)-belly (in the corresponding position). Note that this may create some

conflicts with the k-head just created.

C. While there is a head-belly conflict, take a conflicting element in the belly (that is,

an element in cell i, such that the k-head also has an element in cell i), and let it

start hopping uniformly and ranomly (and aging by oner with each hop), according

to the rules of Robin Hood hashing, until it, or the element it causes to move, finds

a position in a cell by itself in the belly, without conflict with the k-head, or a

position in the k-head (an element that reaches age k must move to the k-head).

In the latter case, a new conflict may be triggered. At the end of this, there is no

further conflict, and the resulting tables are called the k-head and the k-belly.

6

(a)

HEAD

(b)

BELLY

(c) (d)

(e) (f)

Figure 1. In (a), we show a (k − 1)-head that is not empty. The elements in position one in their bins (in

white) move to the belly (step B). The other elements (in black) move to a random position in the k-head,

shown in figure (b). This is step A. Clearly, there are some conflicts between head and belly in (b). In step C,

these are resolved. For each conflict, an element in the belly is taken, and is moved to a random position in

the belly. For example, in (c), we show the moves of an element, as it first ages to age k (so that its randomly

picked position lands it in the head), which triggers a new conflict in the belly, which is immediately taken care

of by letting that element move to a random position, which again happens to be in the head (gray element),

and finally, the last conflict generated leads to yet another element in the head, causing no further conflicts.

The resulting configuration is (d). In (e), the last remaining conflict is taken care of by random hops, resulting

in the final configuration (f) of the k-belly and k-head. In example (e), all hops remain in the belly, and result

finally in a cell in the belly being filled with a new element.

7

Lemma 1. Let N be the number of elements added to the k-head in step C, given that

the k-head has at most K elements to start with after steps A and B, and given any

distribution of elements in belly and head at that point. Then, with λ = 1/ log(1/α), N

is stochastically smaller than λGK + K, where GK is a gamma (K) random variable. In

particular, E{N} ≤ (λ + 1)K, and

P{N ≥ (2λ+ 1)K} ≤
(

2

e

)K
.

Proof. There are initially at most K elements in the belly that can cause a conflict with

the head. When these elements move, at each step we have a probability at least 1 − α
of finding an empty slot (empty for both head and belly). When such a slot is found, the

chain of moves ends. In each step, at most one element moves to the k-head. The number

of additions to the k-head to just eliminate one belly conflict is thus stochastically smaller

than one plus a geometric (α) random variable Y :

P{Y ≥ i} ≤ αi , i ≥ 0 .

If E is unit exponential, then we see that

P{λE ≥ i} = exp

(
− i
λ

)
= αi

provided that α = exp(−1/λ), or λ = 1/ log(1/α). Therefore, Y ≺ E/ log(1/α). Since

we have to eliminate K possible conflict elements in the belly, the total number of ele-

ments added to the head is stochastically smaller than K + Y1 + · · ·YK , where the Yi’s

are independent and are all stochastically dominated by λE. Thus, if E1, . . . , EK are in-

dependent exponential random variables, and GK is a gamma (K) random variable, we

see that the number N of additions to the head in part C is stochastically smaller than

K + λ(E1 + · · ·+EK)
L
= K + λGK . In other words,

P{N ≥ (2λ+ 1)K} ≤ P{λGK ≥ 2λK}
= P{GK ≥ 2K}
≤ E

{
etGK e−2tK

}
(any t > 0)

=

(
e−2t

1− t

)K

=

(
2

e

)K
(take t = 1/2)

This concludes the proof of Lemma 1.

8

Lemma 2. Define b = (2λ+ 2)α and assume that b < 1. Let D be the integer

D =

⌊
log2

(
2

3 log(1/b)

)
− 0.1

⌋
.

Let Z be the number of elements in the r-head, with r = blog2 lognc+D. Then

lim
n→∞P

{
Z ≥ nb2

r

2λ+ 2

}
= 0 .

In particular,

lim
n→∞P

{
Z ≥ n1−1/(6×20.1)

}
= 0 .

Proof. Given that the k − 1-head has K elements or less, then if A denotes the number

of elements in the k-head after step A (not including steps B and C), we have

E{A} ≤ K2

2n

and

P{|A− E{A}| ≥ t} ≤ K

2t2
.

In particular, we note that

P
{
A ≥ K2

n

}
≤ 2n2

K3 .

After steps B and C, N more elements are added to the k-head. We have

P
{
A+N ≥ (2λ+ 2)K2

n

}
≤ P

{
A ≥ K2

n

}
+ P

{
N ≥ (2λ+ 1)K2

n

∣∣∣A ≤ K2

n

}

≤ 2n2

K3
+

(
2

e

)K2

n

.

Now define the sequence ak by a0 = m,

ak+1 =
(2λ+ 2)a2

k

n
.

Then it is easy to see that for k > 0,

ak =
n

2λ+ 2

(
(2λ+ 2)a0

n

)2k

=
n

2λ+ 2
((2λ+ 2)α)2k .

Let Ak, Nk denote the k-head cardinalities as defined above. Then

P{Ar +Nr ≥ ar} ≤ P{Ar +Nr ≥ ar | Ar−1 +Nr−1 ≤ ar−1}
+ P{Ar−1 +Nr−1 ≥ ar−1 | Ar−2 +Nr−2 ≤ ar−2}
+ · · ·+ P{A1 +N1 ≥ a1 | A0 +N0 ≤ a0} ,

since A0 + N0 = m = a0. By the definition of the ak sequence, we note that the general

term

P{Ak +Nk ≥ ak | Ak−1 +Nk−1 ≤ ak−1}

9

is bounded by

2n2

a3
k−1

+

(
2

e

)a2
k−1
n

.

Thus, defining b = (2λ+ 2)α, and assuming that b < 1, we have

P{Ar +Nr ≥ ar} ≤
r−1∑

k=0

2n2

a3
k

+

(
2

e

)a2
k
n

=
r−1∑

k=0

2(2λ+ 2)3

n ((2λ+ 2)α)3×2k
+

(
2

e

) ((2λ+2)α)2
k+1

n

(2λ+2)2

≤ C

 1

nb3×2r−1 +

(
2

e

) nb2
r

(2λ+2)2

(for some constant C) .

Let r = blog2 lognc +D for some integer D. Then 2r ≤ 2D logn, and nb2
r ≥ nb3×2r−1 ≥

nb(3/2)2D logn = n1+(3/2)2D log b. Thus, if 2D log(1/b) < 2/3, then

lim
n→∞ P{Ar +Nr ≥ ar} = 0 .

The last statement follows from the fact that

nb2
r ≤ nb2D−1 logn

= n1−2D−1 log(1/b)

≤ n1−2
log2

(
2

3 log(1/b)

)
−2.1

log(1/b)

= n1−1/(6×20.1) .

This concludes the proof of Lemma 2.

Remark. The condition b = (2λ + 2)α < 1 reduces to (2 + 2/ log(1/α))α < 1. This is

satisfied if α ≤ 0.306891

Lemma 3. Let r be as in Lemma 2. Then the probability that the (r+ 3)-head has at least

one element is o(1). Thus, with probability tending to one, the maximum successful search

time is bounded by r + 2.

10

Proof. Let r be as in Lemma 2, and let Z be the number of elements in the r-head. Then

it is of interest to study Zj , the number of elements in the (r + j)-head for j > 0. Recall

that ar ≤ n1−1/(6×20.1). Given Z, we have E{Z1 | Z} ≤ (2 + λ)Z2/2n, where we used (1)

and Lemma 1. On Z ≤ ar, we have E{Z1 | Z} ≤ (2 + λ)a2
r/2n ≤ (2 + λ)n1−20.9/6. Thus,

P
{
Z1 > (2 + λ) log n× n1−20.9/6 | Z

}
≤ 1/ logn by Markov’s inequality, on Z ≤ ar. Next,

on Z1 ≤ (2 + λ) log n× n1−20.9/6,

E{Z2 | Z1} ≤ (2 + λ)
(

(2 + λ) logn× n1−20.9/6
)2
/2n < (2 + λ)3 log2 n× n1−21.9/6 .

Thus,

P
{
Z2 > (2 + λ)3 log3 n× n1−21.9/6 | Z1

}
≤ 1

logn
.

Finally, on Z2 ≤ (2 + λ)3 log3 n× n1−21.9/6,

E{Z3 | Z2} ≤ (2+λ)
(

(2 + λ)3 log3 n× n1−21.9/6
)2
/2n < (2+λ)7 log6 n×n1−22.9/6 = o(1) .

Thus,

P {Z3 ≥ 1 | Z2} ≤ E{Z3 | Z2} = o(1) .

Thus,

P{Z3 > 0} ≤ P
{
Z ≥ n1−1/(6×20.1)

}

+ P
{
Z1 ≥ (2 + λ) log n× n1−20.9/6 | Z ≤ n1−1/6×20.1

}

+ P
{
Z2 ≥ (2 + λ)3 log3 n× n1−21.9/6 | Z1 ≤ (2 + λ) logn× n1−20.9/6

}

+ P
{
Z3 ≥ 1 | Z2 ≤ (2 + λ)3 log3 n× n1−21.9/6

}

= o(1).

Thus far, we have shown that if α ≤ 0..306891 . . ., the probability that the maximal

displacement of any element is more than log2 logn+C for a constant C depending upon α

only tends to zero. This matches the lower bound that we will present further on. We will

now fill the gap and show this result for all α.

Proof of Theorem 1

In the proof, we let m = bαnc without loss of generality. We define the level of an

element as the number of probes required to locate it. The level is one if the element is

stored at its original location. (thus, the level is one more than the age of an element). We

call the level of a cell in the table the level of the element occupying the cell if the cell is

occupied, and zero otherwise. At time t, when the table holds t elements, we define

Nt(i) = # elements of level ≥ i .

11

Note that Nt(i) is monotone in t for fixed i. When inserting the t-th element, let Kt be the

number of cells probed. Clearly, Kt is geometric:

P{Kt = k} =

(
1− t− 1

n

)(
t− 1

n

)k−1

, k ≥ 1.

We begin with a rough tail bound for Nt(i).

Lemma 4. Define

β =
2(1 + α)

(1− α) log((1 + α)/2α)
.

Then for all t ≤ m, i ≥ 1,

P
{
Nt(i) ≥ βmαi−1

}
≤ P

{
Nm(i) ≥ βmαi−1

}
≤ exp

(
−1 + α

1− αmα
i−1
)
.

Proof. When we insert the t-th element, we can increase the number of elements of level

≥ i by at most (Kt − i)+. Therefore,

Nt(i) ≤
t∑

j=1

(Kj − i)+ ,

whereK1,K2, . . . ,Kt are independent. As K1 ≺ K2 ≺ · · · ≺ Kt (where ≺ denotes stochastic

ordering), we see that

Nt(i) ≺
t∑

j=1

(Kt,j − i)+

where Kt,1, . . . ,Kt,t are i.i.d. and distributed as Kt. We will use Chernoff bounding (Cher-

noff, 1952; Hoeffding, 1963). Let λ, u > 0. Then

P{Nt(i) ≥ u} ≤ P{Nm(i) ≥ u}
≤ e−λu

(
E
{
eλ(Km−i)+

})m

≤ e−λu

P{Km ≤ i}+

∞∑

j=1

eλjP {Km = i+ j}

m

≤ e−λu

1 +

∞∑

j=1

eλj
(

1− m− 1

n

)(
m− 1

n

)i+j−1

m

≤ e−λu

1 +

∞∑

j=1

eλj (α)i+j−1

m

≤ e−λu
(

1 + αi−1 eλα

1− eλα

)m

= e−λu
(

1 +
1 + α

1− αα
i−1
)m

12

(set eλα = (1 + α)/2)

≤ exp

(
−u log((1 + α)/2α) +

1 + α

1− αα
i−1m

)

= exp

(
−1 + α

1− αα
i−1m

)

(set u =
2(1+α)αi−1m

(1−α) log((1+α)/2α)
).

This concludes the proof.

Note that the cardinality of the R-head in the previous section is not more than

Nm(R). Assume that we were to start with an R-head of size m′ ≤ α′n. Then, by mimicking

the argument of the previous section, we have

Lemma 5. Define b = (2λ+ 2)α′ and assume that b < 1. Define

D =

⌊
log2

(
2

3 log(1/b)

)
− 0.1

⌋
.

Let Z be the number of elements in the R+ r-head, with r = blog2 lognc+D. Then

lim
n→∞P

{
Z ≥ nb2

r

2λ+ 2

}
= 0 .

In particular,

lim
n→∞P

{
Z ≥ n1−1/(6×20.1)

}
= 0 .

Note in particular that the only difference between Lemma 2 and Lemma 5 is in

the replacement of α in the definition of b by α′. The definition of λ is unaltered. Lemma 3

would then imply that with probability tending to one, Mn ≤ R+r+2, with r as in Lemma

5. Since the number of elements in the R-head is random, we use the following argument,

based on Lemma 4. Define

β =
2(1 + α)

(1− α) log((1 + α)/2α)
.

Then

P{Mn > R+ r + 2}
≤ P

{
Nm(R) ≥ βmαR−1

}
+ P{Mn > R+ r + 2 | Nm(R) ≤ βmαR−1}

≤ exp

(
−1 + α

1− αmα
R−1

)
+ o(1)

provided that βmαR−1 ≤ α′n where α′ = 1/(2λ+ 3) (to make b in Lemma 5 less than one).

But βmαR−1 ≤ βnαR, and thus it suffices to set

R =

⌈
log (β(2λ+ 3))

log(1/α)

⌉
= dλ log (β(2λ+ 3))e .

13

With this choice of R, and the choice of r given in Lemma 5, we thus conclude that

lim
n→∞P{Mn > R+ r + 2} = 0 .

This concludes the proof of Theorem 1.

Proof of theorem 2

We prove the theorem by construction. This is done by identifying a subset of

elements that must be of age at least 1, a further subset of age 2, and so forth. We show

that this process can be carried out at least k times with high probability until we run out

of elements, where k is of the order of log logn. The problem is dealt with globally, by

considering all values Xi,0, 1 ≤ i ≤ m first. Consider that “ball” i is dropped in urn Xi,0.

If an urn receives j elements, then at least j − 1 of them must move on, and will have an

age at least equal to one. Who moves on depends upon the tie-breaking strategy, but in

our analysis, it only matters to know how many move on. We introduce Ar, the number of

elements that are marked in the r-th step. A1 is the number of elements of age at least 1

in the process above. We formally set A0 = m. Given Ar−1, we take the Ar−1 elements of

age at least r− 1 (note: these are not the only ones of age at least r− 1), and look at their

Xi,r values, with the number of i’s clearly being Ar−1. We consider the subset that has to

move on, so only urns with at least two elements can be of any use. Note that in view of the

tie-breaking policy, an earlier element may move on. But in any case, if an urn receives j

elements from the Ar−1, at least j− 1 of them must move on and increase their age by one.

These j − 1 elements are collected and form a further subset of size Ar, consisting entirely

of elements of age at least r.

We return now to our process Ar. We observe that Ar has the (Ar−1, n) urn

distribution. The inequalities from the section on urns suggest natural bounds for Ar.

We define an integer sequence ar such that with high probability, ar ≤ Ar . We have

a0 = m = dαne. Then set

ar+1 = a2
r/8n .

Note that

ar = 8n(a0/8n)2r ≥ 8n(α/8)2r .

Define the events

Er = ∩j≤r[aj ≤ Aj]

and let (.)c denote the complement of an event. Observe the following:

P{Ecr} ≤ P{Ec1}+
r∑

j=2

P{Ecj | E0, . . . , Ej−1} =
r∑

j=2

P{Ecj | Ej−1} .

14

Also, if r is so small that at all times ar−1 ≥ 4 (a condition that is needed so that we may

apply the inequalities derived in the section entitled “balls in urns”), we have

P{Ecr | Er−1} ≤ P {[Ar < ar] | ar−1 ≤ Ar−1}

≤ P
{
Ar <

1

2
E{Ar | ar−1 ≤ Ar−1} | ar−1 ≤ Ar−1

}
,

provided that ar ≤ (1/2)E{Ar | ar−1 ≤ Ar−1}. But this follows from ar = a2
r−1/8n =

(1/2)a2
r−1/4n ≤ E{Ar | ar−1 ≤ Ar−1}. We let A have the (dar−1e, n) urn distribution.

Thus,

P{Ecr | Er−1} ≤ P
{
A <

1

2
E{A}

}

≤ dar−1e
2(E{A}/2)2

≤ 2dar−1e
((dar−1e)2/4n)2

≤ 32n2

a3
r−1

≤ (8/α)3×2r−1

16n
.

Therefore,

P{Ecr} ≤
r−1∑

j=0

(8/α)3×2j

16n
=

1

16n

r−1∑

j=0

(8/α)3×2j ≤ (8/α)3×2r−1

16n(1− (α/8)3)
.

Set r = dlog2(c logn)e for c > 0, and note that the upper bound is not more than

n3c log(8/α)−1

16(1− α/8)

and this tends to zero if c < 1/3 log(8/α). With that choice of r, we note that

ar ≥
8n

(8/α)3×2r
≥ 8n

n6c log(8/α)
≥ 8

provided we take c = 1/6 log(8/α). With such a choice, we then have

P{Ar = 0} ≤ P{Ar < ar} ≤ P{Ecr} ≤
1

16(1− (α/8)3)
√
n
.

References

O. Amble and D. E. Knuth, “Ordered hash tables,” Computer Journal, vol. 17, pp. 135–

142, 1974.

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced allocations (extended ab-

stract),” in: Proceedings of the 26th ACM Symposium on the Theory of Comput-

ing, pp. 593–602, 1994.

15

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced allocations,” SIAM Jour-

nal on Computing, vol. 29, pp. 180–200, 1999.

K. Azuma, “Weighted sums of certain dependent random variables,” Tohoku Mathemati-

cal Journal, vol. 37, pp. 357–367, 1967.

S. Boucheron, G. Lugosi, and P. Massart, “A sharp concentration inequality with applica-

tions in random combinatorics and learning,” Random Structures and Algorithms, vol. 16,

pp. 277–292, 2000.

S. Boucheron, G. Lugosi, and P. Massart, “Concentration of measure based on logarith-

mic Sobolev inequalities,” Submitted, 2001.

A. Z. Broder and A. R. Karlin, “Multilevel adaptive hashing,” in: Proceedings of the

First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 43–53, SIAM, Philadel-

phia, 1990.

A. Z. Broder and M. Mitzenmacher, “Using multiple hash functions to improve IP lookups,”

in: INFOCOM 2001, pp. 0–0, 2001.

A. Brodnik and I. Munro, “Membership in constant time and almost-minimum space,”

SIAM Journal on Computing, vol. 28, pp. 1627–1640, 1999.

P. Celis, P.-Å. Larson, and J. I. Munro, “Robin Hood hashing,” in: 26th IEEE Sympu-

sium on the Foundations of Computer Science, pp. 281–288, 1985.

P. Celis, “Robin Hood hashing,” Technical Report CS-86-14, Computer Science Depart-

ment, University of Waterloo, 1986.

H. Chernoff, “A measure of asymptotic efficiency of tests of a hypothesis based on the sum

of observations ,” Annals of Mathematical Statistics, vol. 23, pp. 493–507, 1952.

A. Czumaj and V. Stemann, “Randomized Allocation Processes,” in: Proceedings of the 38th

IEEE Symposium on Foundations of Computer Science (FOCS’97), October 19-22, 1997, Mi-

ami Beach, FL, pp. 194–203, 1997.

L. Devroye, “The expected length of the longest probe sequence when the distribu-

tion is not uniform,” Journal of Algorithms, vol. 6, pp. 1–9, 1985.

M. Dietzfelbinger and F. Meyer auf de Heide, “A new universal class of hash func-

tions and dynamic hashing in real time,” in: Proceedings of the 17th International Col-

loquium on Automata, Languages and Programming (ICALP ’90), vol. 443, pp. 6–19, Lec-

ture Notes in Computer Science, 1990.

M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger, “Polynomial hash functions are re-

liable (extended abstract),” in: Proceedings of the 19th International Colloquium on Au-

tomata, Languages and Programming (ICALP ’92), vol. 623, pp. 235–246, Lecture Notes in

Computer Science, 1992.

16

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf de Heide, H. Rohnert, and

R. E. Tarjan, “Dynamic perfect hashing: upper and lower bounds,” SIAM Journal on Com-

puting, vol. 23, pp. 738–761, 1994.

B. Efron and C. Stein, “The jackknife estimate of variance,” Annals of Statistics, vol. 9,

pp. 586–596, 1981.

P. Flajolet, P. V. Poblete, and A. Viola, “On the analysis of linear probing hashing,” Algo-

rithmica, vol. 22, pp. 490–515, 1998.

M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a sparse table with O(1) worst case

access time,” Journal of the ACM, vol. 31, pp. 538–544, 1984.

G. H. Gonnet, “Expected length of the longest probe sequence in hash code searching,” Jour-

nal of the ACM, vol. 28, pp. 289–304, 1981.

G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures (2nd ed.),

Addison-Wesley, 1991.

G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, Oxford Univer-

sity Press, 1992.

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Jour-

nal of the American Statistical Association, vol. 58, pp. 13–30, 1963.

S. Janson, Poisson Approximation, Oxford University Press, 1992.

D. E. Knuth, The Art of Computer Programming, Vol. 3 : Sorting and Searching, 2nd edi-

tion, Addison-Wesley, Reading, Mass., 1998.

M. Ledoux, “On Talagrand’s deviation inequalities for product measures,” ESAIM: Proba-

bility and Statistics, vol. 1, pp. 63–87, 1996.

C. McDiarmid, “On the method of bounded differences,” in: Surveys in Combina-

torics, (edited by J. Siemons), vol. 141, pp. 148–188, London Mathematical Society Lec-

ture Note Series, Cambridge University Press, 1989.

C. McDiarmid, “Concentration,” in: Probabilistic Methods for Algorithmic Discrete Math-

ematics, (edited by M. Habib and C. McDiarmid and J. Ramirez-Alfonsin and B. Reed),

pp. 195–248, Springer, New York, 1998.

M. Mitzenmacher, “Studying balanced allocations with differential equations,” Techni-

cal Note 1997024, Digital Equipment Corporation Systems Research Center, Palo Alto,

CA, 1997.

M. Mitzenmacher, A. W. Richa, and R. Sitaraman, “The power of two random choices: a sur-

vey of techniques and results,” Technical Report, 2000.

17

R. Pagh and F. F. Rodler, “Cuckoo hashing,” BRICS Report Series RS-01-32, Depart-

ment of Computer Science, University of Aarhus, 2001.

P. V. Poblete and J. I. Munro, “Last-Come-First-Served hashing,” Journal of Algo-

rithms, vol. 10, pp. 228–248, 1989.

J. M. Steele, “An Efron-Stein inequality for nonsymmetric statistics,” Annals of Statis-

tics, vol. 14, pp. 753–758, 1986.

M. Talagrand, “A new look at independence,” Annals of Probability, vol. 24, pp. 1–

34, 1996.

A. Viola and P. V. Poblete, “Analysis of linear probing hashing with buckets,” Algorith-

mica, vol. 21, pp. 37–71, 1998.

J. S. Vitter and P. Flajolet, “Average-case analysis of algorithms and data struc-

tures,” in: Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-

plexity, (edited by J. van Leeuwen), pp. 431–524, MIT Press, Amsterdam, 1990.

18

