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Abstract — A communication network is composed by a set of centers which transmit
and receive data, and a set of links which transport this data. To evaluate the capacity
of a communication network architecture to resist to the possible failures of some of its
components, several reliability metrics are currently used.

When designing such a network, one of the problems is the definition of its topology to
guarantee a maximum of reliability. In this work, we tackle the following version of this
problem: given an user-defined network topology, find a more reliable alternative network.
The proposed methodology is based on the Simulated Annealing meta-heuristic, of recent
use in combinatorial optimization.
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Resumen — Una red de comunicaciones es un sistema compuesto por un conjunto de centros
que reciben y envian informacién, y un conjunto de conexiones que transportan esa informacién.
La capacidad de una red de comunicaciones para resistir a posibles fallos de algunos de sus
componentes se evalia a través de distintas métricas de confiabilidad.

Uno de los problemas que se plantean durante el disefio de una red, es el de elegir su topologia
precisamente para asegurar al maximo las comunicaciones. En este trabajo, abordamos una
versién de este problema, en la que el objetivo es encontrar una topologia mas confiable a partir
de una red dada por el usuario. La metodologia empleada corresponde a la metaheuristica
“simulated annealing”, de reciente utilizacién en el campo de la optimizacién combinatoria.

Palabras clave — Confiabilidad de redes, optimizacién combinatoria, “simulated annealing”.

*This work is a result of BID/CONICYT Project 153



1 Introduction

During the design of a communication network, one of the problems is the definition of its
topology in such a way as to guarantee a maximum of reliability in the communications.
Such a network can be modeled by a graph G = (V,€), with node set V and edge
set €. Its reliability is defined as the probability of successful communication between the
nodes, and can be computed from its components’ reliabilities and the topology of the
network, either by exact, NP-hard methods, or by Monte Carlo estimation. If there is no
information on the behavior of the components, vulnerability measures based solely on
the topology can be used [Fis86].

In this work, we have considered the following problem: given an initial network G,
find an improved (more reliable) topology in the feasible set F. The combinatorics of
the problem are such that preclude trying to find the best topology (global optimum
in F). Therefore, techniques that give locally optimal results must be applied. In a
previous work [CRU92] we explored the use of a simple local search heuristic (based on
2-opt), with results that showed the need for a more powerful technique. In this work, we
consider the application of simulated annealing/simulated quenching techniques. These
meta-heuristics have known recent success in different optimization domains, in particular
in combinatorial optimization [Egl90] [Con92].

This paper is organized as follows. In Section 2 we give the problem definition. In Sec-
tion 3 we present the basic elements of the simulated annealing meta-heuristic. Section 4
deals with the application of simulated annealing to the network optimization problem.
In Section 5 we present some computational results, based on a model of a subset of
Montevideo’s optical fiber telephonic network. Finally, some conclusions are given in
Section 6.

2 Problem definition

Consider a communication network G where nodes are perfect and links fail randomly and
independently. We consider GG to be an undirected graph, connected and without loops.
When the link failure probabilities are known, the success of communication between
nodes in some fixed subset K of the node-set is a random event. The probability Rx of
this event is usually called the K-terminal reliability, equivalently the parameter Qx =
1 — Rg is called the K-terminal unreliability. The problem of its evaluation has received
considerable attention from the research community (see [LS86], [Col87] and [Rub94] for
many references). One of the reasons is that in the general case, this problem is in the
#P-complete class, a family of NP-hard problems not known to be in NP [Bal80] [Bal86]
[Pro86]. Roughly speaking, this means that it is most unlikely that a general algorithm to
compute exactly Rx exists, whose running time grows polynomially with the problem size.
Practically, the computational time required to solve a medium size general model (say,
with many dozens of links) is prohibitive on a workstation. A Monte Carlo approach is an
alternative allowing the evaluation of larger networks, specially when used in conjunction



with variance reduction techniques (see for example [Fis86], [ER92], [EMR90], [EGLI1],
[CK94]).

Depending on the choice of the set K, we have different reliability metrics. The most
used ones are source-terminal reliability R, where s and ¢ are two fixed nodes of V,
and all-terminal reliability Ry. This work uses the reliability metrics Ry, but the ideas
presented are independent of the choice of K.

When there is no information available on the network components’ reliability, purely
topological measures can be used to quantify the fragility of a network. These measures
(called vulnerability indexes) generally are simple functions of easily computed network
parameters having clear relations with the intuitive notion of fragility of a topology [SA81].

In this context, we consider the following problem: given a feasible set of network
topologies F, and given an initial network G € F, find the optimal topology (in the sense
of maximal reliability or minimal vulnerability). We will consider F as a subset of the set
of connected networks with the same node set as G. If there’s no further restriction upon
F, the optimal topology is trivially the complete graph. A more interesting case is when
the cost of a network is defined as the sum of the individual costs of all its edges, which
are defined to take into account the special characteristics of the problem (geographical,
or other). We may then impose an arbitrary (user defined) upper bound on the consid-
ered networks’ cost. Then F = {¢g|COST(g) < BOUND}, where COST() is the cost
function and BOUND is the cost upper bound. In this case, the optimization problem
is rather hard, because of the combinatorial explosion in size of the search state space.
An additional difficulty is that the objective function (network reliability) is computa-
tionally hard to evaluate. In practice, we must then restrict ourselves to consideration of
the following modified problem: given a feasible set of network topologies F, and given
an initial network G € F, find an improved (more reliable or less vulnerable) topology
respect to the original one. This is then the problem addressed in Section 4.

3 Simulated Annealing

Simulated annealing (SA) is a method for obtaining good solutions to difficult optimization
problems which has received much attention over the last few years. In particular, it has
been applied with success in the domain of combinatorial optimization [Egl90] [Con92].
The recent interest began with the work of Kirkpatrick et al [KGV83] and Cerny [Cer82],
which generalized previous results by Metropolis et al. [MRR153].

Suppose that the solution space & is the finite set of all solutions and the energy
function f is a real valued function defined on members of §. The problem is to find
a solution or state, s € §, which minimizes f over §. Simulated annealing works by
generating a random neighbor of current state s, and accepting (or rejecting) it following
an acceptance rule. The acceptance rule always accepts a move if it results in a reduced
value of the objective function f; but if the considered neighborhood move results in an
increase § in f, it may still be accepted, with probability e™%/7 (Metropolis acceptance
rule). Here T is a control parameter (called temperature), which controls the probability



Select an initial state ¢ € S;
Select an initial temperature T' > 0;
Set temperature change counter ¢ := 0;
Repeat
Set repetition counter n := 0;
Repeat
Generate state j, a random neighbor of ¢;
Calculate ¢ := f(5) — f(i);
If 6 < 0 then
1= 7;
If f(1) < f(¢*) then " :=3;
else if random(0,1) < e™%/T then i := j;
n:=n+tl;
until n := N(¢);
t:=t+1;
T:=T(t);
Until stopping criterion true;
Return best found solution ¢*

Figure 1: Pseudo-code for Simulated Annealing

of uphill moves: when T is high, most moves will be accepted, but as it approaches 0,
most uphill moves will be rejected. In classical simulated annealing, the algorithm is
started with a relatively high value of T, and proceeds by attempting a certain number
of moves at each temperature, while the temperature parameter is gradually dropped.
The simulated annealing heuristics is illustrated in pseudo-code in Figure 1. The general
scheme of this meta-heuristic is very simple, but its application to a given problem is only
possible after a number of problem-specific choices.

We may identify several elements to be defined when applying SA to a particular prob-
lem [Egl90]: the energy function f, usually taken as the objective function for the
original problem; the neighborhood structure, with a generation probability function;
the acceptance rule, usually taken to be the Metropolis rule, as illustrated in Figure 1;
the cooling schedule, i.e: the functions N(¢), the number of iterations at step ¢, and
T(t), the temperature; the stopping criterion, which may be a final temperature, a
number of steps, a number of steps without changes in the state, etc.

There are a number of results concerning the convergence of SA to an optimal solution
in quite general conditions (see between others [AF87], [LM86]). But for the most part,
they depend on using a cooling schedule which leads to an exponential number of itera-
tions. In most practical applications, a cooling schedule is used which doesn’t guarantee



the convergence to the global optimum. The resulting algorithms are sometimes labeled

Simulated Quenching [Ing93].

4 Simulated Annealing for reliability improving

In this section we discuss the tailoring of SA to our problem. In choosing among different
alternatives, we take as first criterion the simplicity of concept and implementation, in
order to obtain a basic algorithm which may be improved in the future in the directions
suggested by the results of this work.

Solution space and energy function

The most obvious choices for the solution space & and the energy function f are the
set F of all feasible networks (as defined in Section 2) and the unreliability Qv (or a
vulnerability index Vul), respectively. A better approach is to relax the cost restriction
and incorporate it in the objective function [CS94].

We propose that the solution space be defined as the set of all networks having the
same node set V as the original network G, and that the cost network restriction be
incorporated in the energy function f. Then this function will be the sum of two terms,
one related to the network’s reliability and the other a penalty term related to the cost.
As these two quantities have different measure units, they must be normalized in some
way. We use, for any given network g,

_ Qvig) COST(g)
— e + o(T) max (BOUW -1, 0)

f(9)

where G is the initial network topology, BOUND is the (user-defined) upper bound on
the cost of a network, and «(T") = K/T is decreasing on T (then, it’s increasing on t). The
penalty term is 0 for all feasible networks (those with cost not greater than BOUN D).

For infeasible networks, the penalty is decreasing with 7'; this means that in the start
of the SA algorithm, a network can be accepted even if it doesn’t satisfy the cost con-
straint, but as 7' decreases, the penalty term will grow, leading the algorithm to only
accept feasible solutions. The constant K must be fixed following some criterion. In our
implementation, we choose to take it equal to the starting temperature T5: this means
that at the start of the search, reliability and cost have same relative weight, and so a
given percent increase of cost can be offset by an equal decrease in unreliability.

When the elementary link reliabilities are not known, the measure Qv () is not defined,
and a vulnerability index must be used instead. In this work we consider the vulnerability

index Vul defined in [CRU92]| as

D+ CE(e)+CV(c
Vaitg) = 2ECED+EV()

constructed with the following parameters:



o D : diameter of graph g, 1.e. the lenght of the longest shortest path between a pair
of nodes of V;

o ¢ : girth of graph g, i.e. the lenght of the shortest cycle of g¢;

o ¢ : edge connectivity, i.e. the minimum number of edges whose removal disconnects
the graph;

e ¢ : connectivity (also called node connectivity), i.e. the minimum number of nodes

whose removal disconnects the graph;

e CE(m): the maximum over all pairs of nodes i, j of the number of 7, cutsets of
size m (an ¢,j cutset is a set of edges whose removal disconnects 7 and j),

CE(m) = max {7, 7 cutsets of size m}|;
l7]

e CV(m): the maximum over all pairs of nodes ¢, j of the number of i, j node-cutsets
of size m (an 7, j node-cutset is a set of nodes whose removal disconnects ¢ and j),

CV(m) = max {7, 7 node — cutsets of size m}|.
l7]

The energy function is then

_ Vllg) C0ST(g)
1) = 0L 4 o) ma (m - 1,0) |

and has the same properties as in the previous case (when the elementary link reliabilities
are known).

Neighborhood structure

To choose the neighborhood structure of our problem we take into account the following
properties: to have access to the entire state space (defined as the set of all networks with
same node set as (), and to have an efficient implementation of the random generation
function. We define the neighborhood of a graph ¢ as being composed of all graphs with
an added or deleted link with respect to g. The random selection of a neighbor is done in
the following way: two nodes ny, ny are taken at random; if the link (ny, ny) was present in
g, it is deleted, else it is incorporated. With this neighborhood definition, the maximum
distance between any two networks (in terms of moves needed to pass from one to the
other) is n(n — 1)/2 (this is the distance between any network and its complementary,
where to pass from one to the other we must delete all existing links and add all non-
existing ones). The convergence speed, as discussed in [Haj88], is inversely proportional
to this maximum distance. Another property of this neighborhood structure is that the
size of N(g) is also n(n —1)/2 for all ¢ (this is the number of ways to choose two different
nodes).



Acceptance rule

The standard Metropolis acceptance rule' was selected. This is the choice made in most
SA schemes, even when there are theoretical and empirical results [AF87] [Egl90] showing
that a wide gamma of other rules give comparable results. As reported in [Egl90], there’s
some literature on the use of an approximate value of ¢, when its exact evaluation is
computationally hard. For our problem, we use a Monte Carlo estimate of the unreliability
parameter Qv () to compute d, instead of its exact value.

Cooling schedule

For the cooling schedule, several choices are possible. To assure the convergence to the
global optimum, a logarithmic schedule (T'(t) = Ty/log(t)) is necessary, but this leads to
computational requirements too high for practical use. An exponential schedule (T'(¢) =
Toel=Vt) is most often used, but given the highly combinatorial nature of the network
reliability optimization problem, we have chosen an heuristic proposed by Lundy and Mees
[LMS86], and used with good results in [Con92]. This schedule performs only one iteration
for each temperature level (N(¢) = 1,Vt) and uses a temperature function T'(¢t + 1) =
T(t)/(1+BT(t)). This function decreases more slowly than the exponential schedule, but
without guaranteeing global convergence. The actual speed of descent in temperature is
proportional to the cooling constant B; [Con90] suggests taking B << Tp.

Stopping criterion

Following the simplicity rule stated at the beginning of the section, the stopping criterion
selected is a total number of iterations: the search ends when t = MAX_REPL. In our
implementation, this is equivalent to setting a final temperature level, as we have that
Ty =To/(1+ MAX_REPL x B x Ty).

The above choices define a SA algorithm suited for the network reliability optimization
problem. But there are still some free parameters: the initial temperature, Tp; the cooling
constant B; the total number of replications MAX_REPL; the initial topology G and
the cost upper bound, BOUND. All these must be fixed in a problem by problem basis,
and will be discussed in the case study treated in the following section.

5 Computational Results

In this section we present the results of applying the previously defined SA algorithm to a
model of a subset of Montevideo’s optical fiber telephonic network. The topology shown
in Figure 2 (14 nodes, 21 links) is the one in operation in 1992, and was designed by the
national telecommunications company following heuristic rules.

—5/kT

L Pr(acceptance) = e , with é the change in the energy function



a) Original topology b) Alternative (by long runs SA)

Figure 2: Montevideo’s network

If we take the costs of the links to be their geographical length (in an arbitrary lenght
unit), this network has an overall cost of 1186. Its reliability parameter, as computed by
a Monte Carlo method, is Ry ~ 0.896 when the elementary reliability of the links is set
to 0.9. The value of the vulnerability index for this topology is Vul = 2.429.

The objective of the experimentation was to validate the approach defined in the
previous section, and to find which range of parameters was appropriate for the network
under consideration. We considered two main scenarios for the network cost upper bound
as related to the cost of the existing network: either no cost increase, or an increase of
10% (the upper bounds for the network cost being 1186 and 1304 respectively). Both
with the reliability and the vulnerability measures were considered.

The SA algorithm was implemented using the C+4 network classes and methods
available in the HEIDI tool [CRU92|. The evaluation of the )y component of the objective
function was done by a standard Monte Carlo method (number of replicacions 10?). The
reliability estimates for the best found topologies was done with an increased number of
replications, namely 10°.

For the vulnerability measure, the experiments couldn’t be finished, as the time per
iteration of the SA algorithm was exceedingly large (due to the cost of computing the
index Vul). After 20 hours of work, less than 500 iterations were completed, and no
global improvement had been found.

Three series of experiments were done with the reliability measure Ry. In the first two,
the initial topology was set to the original network (Figure 2), while varying the lenght of
the SA runs. The first series consisted of short runs of 5 x 10% replications each, while the
second corresponds to longer runs (5 x 10 replications each). For the shorter runs the
cooling parameter B was set to 0.005, and for the longer ones B = 0.001. The third series
corresponds to short runs of a different initial topology, namely the complete graph Ki4.
In all cases, the initial temperature, Ty, was set to 0.5 as this was considered a high enough



value to allow exploration of the whole state space (at this temperature, a move resulting
in network cost increment of 50% is accepted with probability e™! ~ 0.368).

In order to compare the results, the SA algorithm was run five times for each considered
parameter combination. The results presented in tables 1, 2 and 3 show the reliability
and the cost of the best topology found in each run, as well as the mean value over all
runs. For quick reference, in each table the reliability and cost of the best topology over
the five runs is tabulated in the last column.

Run
1 2 3 4 5 | Mean | Best
Ry 9357 | L9088 | .9348 | .9075 | .9234 | .9220 | .9357
Cost | 1161 | 1150 | 1169 | 1139 | 1140 | 1152 | 1161
Parameters: MAX_REPL =5 x 10°, BOUND = 1186.

Run
1 2 3 4 5 | Mean | Best
Ry 9549 | .9602 | .9304 | .9454 | .9470 | .9476 | .9602
Cost | 1303 | 1281 | 1287 | 1275 | 1295 | 1288 | 1281
Parameters: MAX_REPL =5 x 10>, BOUND = 1304.

Table 1: Results of SA short runs.

Run
1 2 3 4 5 | Mean | Best
Ry 9383 | .9358 | .9589 | .9533 | .9250 | .9423 | .9589
Cost | 1178 | 1183 | 1186 | 1172 | 1161 | 1176 | 1186
Parameters: MAX_REPL =5 x 10*, BOUND = 1186.

Run
1 2 3 4 5 | Mean | Best
Ry 9639 | .9527 | 19619 | .9563 | .9717 | .9613 | .9717
Cost | 1300 | 1281 | 1294 | 1301 | 1304 | 1296 | 1304
Parameters: MAX_REPL =5 x 10*, BOUND = 1304.

Table 2: Results of SA long runs.

Table 1 shows the results for the short runs when the starting solution is the original
graph given in Figure 2. In all runs, the SA algorithm found an improved topology
over the original one. The amount of the reliability improvement varies from one run to



Run
1 2 3 4 5 | Mean | Best
Ry 9134 | 9135 | .9032 | .9125 | .9041 | .9093 | .9135
Cost | 1169 | 1168 | 1174 | 1182 | 1173 | 1173 | 1168
Parameters: MAX_REPL =5 x 10°, BOUND = 1186.

Run
1 2 3 4 5 | Mean | Best
Ry 9364 | .9417 | .9507 | .9489 | .9406 | .9436 | .9507
Cost | 1275 | 1291 | 1303 | 1304 | 1301 | 1295 | 1303
Parameters: MAX_REPL =5 x 10>, BOUND = 1304.

Table 3: Results of SA short runs with initial topology the complete graph.

another; when BOUND = 1186 the improvement is in the range 1% — 4%, and when
BOUND = 1304 it is in 3% — 7%.

Table 2 shows the results for the longer runs. These results, compared with those of
Table 1, show a more stable behaviour of the algorithm. This is probably due to the
increased number of iterations and the slower cooling schedule. The average reliability
improvement is of 5% and 7% respectively for both cost upper bounds, and the best
solutions over the five iterations are also considerably better than the ones obtained with
the shorter runs. The best network topology obtained for BOUND = 1186 is also shown
in Figure 2.

Finally, Table 3 shows the results when the starting solution is the complete graph
K4, for short runs (MAX_REPL = 5000, B = 0.005). This corresponds to starting the
search from a “highly energetic” state, which might be advantageous to more thoroughly
search the solution space. The results are rather worse those obtained with the original
starting solution (results in Table 1). Then, we can conclude that the starting solution
has a non negligeable influence in the search.

6 Conclusions

In this paper we have presented the network reliability optimization problem, and we
have proposed a Simulated Annealing algorithm which can be applied to this problem.
The performance of the algorithm was tested on a particular case (a model of a subset
of Montevideo’s telephonic network) for different parameter values. The results obtained
show the potential of the SA heuristic to find improved alternatives to a given network
topology, when using a Monte Carlo estimate of the reliability measure Ry. Further
work is needed to determine the appropriate parameter values for different topologies.
On the other hand, when using the vulnerability index Vul the SA took too much time

10



to be useful. Future work must include the developement of other, less computationally
expensive vulnerability indexes, suitable for use with this methodology.

Some other modifications of the SA heuristic which should be considered are the in-
clusion of a local descent algorithm at the end of the SA search, and the study of the
behaviour of the search with other cooling schedules (in particular, with a temperature
automatically fixed at a suitable level); also, the Monte Carlo evaluation of the reliability
measure could be modified to incorporate variance reduction techniques and to take into
account the local nature of the proposed neighborhood moves.
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