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1 IntroductionDuring the design of a communication network, one of the problems is the de�nition of itstopology in such a way as to guarantee a maximum of reliability in the communications.Such a network can be modeled by a graph G = (V; E), with node set V and edgeset E. Its reliability is de�ned as the probability of successful communication between thenodes, and can be computed from its components' reliabilities and the topology of thenetwork, either by exact, NP-hard methods, or by Monte Carlo estimation. If there is noinformation on the behavior of the components, vulnerability measures based solely onthe topology can be used [Fis86].In this work, we have considered the following problem: given an initial network G,�nd an improved (more reliable) topology in the feasible set F . The combinatorics ofthe problem are such that preclude trying to �nd the best topology (global optimumin F). Therefore, techniques that give locally optimal results must be applied. In aprevious work [CRU92] we explored the use of a simple local search heuristic (based on2-opt), with results that showed the need for a more powerful technique. In this work, weconsider the application of simulated annealing/simulated quenching techniques. Thesemeta-heuristics have known recent success in di�erent optimization domains, in particularin combinatorial optimization [Egl90] [Con92].This paper is organized as follows. In Section 2 we give the problem de�nition. In Sec-tion 3 we present the basic elements of the simulated annealing meta-heuristic. Section 4deals with the application of simulated annealing to the network optimization problem.In Section 5 we present some computational results, based on a model of a subset ofMontevideo's optical �ber telephonic network. Finally, some conclusions are given inSection 6.2 Problem de�nitionConsider a communication network G where nodes are perfect and links fail randomly andindependently. We consider G to be an undirected graph, connected and without loops.When the link failure probabilities are known, the success of communication betweennodes in some �xed subset K of the node-set is a random event. The probability RK ofthis event is usually called the K-terminal reliability, equivalently the parameter QK =1 �RK is called the K-terminal unreliability. The problem of its evaluation has receivedconsiderable attention from the research community (see [LS86], [Col87] and [Rub94] formany references). One of the reasons is that in the general case, this problem is in the#P-complete class, a family of NP -hard problems not known to be in NP [Bal80] [Bal86][Pro86]. Roughly speaking, this means that it is most unlikely that a general algorithm tocompute exactlyRK exists, whose running time grows polynomially with the problem size.Practically, the computational time required to solve a medium size general model (say,with many dozens of links) is prohibitive on a workstation. A Monte Carlo approach is analternative allowing the evaluation of larger networks, specially when used in conjunction2



with variance reduction techniques (see for example [Fis86], [ER92], [EMR90], [EGL91],[CK94]).Depending on the choice of the set K, we have di�erent reliability metrics. The mostused ones are source-terminal reliability Rst where s and t are two �xed nodes of V ,and all-terminal reliability RV . This work uses the reliability metrics RV , but the ideaspresented are independent of the choice of K.When there is no information available on the network components' reliability, purelytopological measures can be used to quantify the fragility of a network. These measures(called vulnerability indexes) generally are simple functions of easily computed networkparameters having clear relations with the intuitive notion of fragility of a topology [SA81].In this context, we consider the following problem: given a feasible set of networktopologies F , and given an initial network G 2 F , �nd the optimal topology (in the senseof maximal reliability or minimal vulnerability). We will consider F as a subset of the setof connected networks with the same node set as G. If there's no further restriction uponF , the optimal topology is trivially the complete graph. A more interesting case is whenthe cost of a network is de�ned as the sum of the individual costs of all its edges, whichare de�ned to take into account the special characteristics of the problem (geographical,or other). We may then impose an arbitrary (user de�ned) upper bound on the consid-ered networks' cost. Then F = fgjCOST (g) � BOUNDg, where COST () is the costfunction and BOUND is the cost upper bound. In this case, the optimization problemis rather hard, because of the combinatorial explosion in size of the search state space.An additional di�culty is that the objective function (network reliability) is computa-tionally hard to evaluate. In practice, we must then restrict ourselves to consideration ofthe following modi�ed problem: given a feasible set of network topologies F , and givenan initial network G 2 F , �nd an improved (more reliable or less vulnerable) topologyrespect to the original one. This is then the problem addressed in Section 4.3 Simulated AnnealingSimulated annealing (SA) is a method for obtaining good solutions to di�cult optimizationproblems which has received much attention over the last few years. In particular, it hasbeen applied with success in the domain of combinatorial optimization [Egl90] [Con92].The recent interest began with the work of Kirkpatrick et al [KGV83] and Cerny [Cer82],which generalized previous results by Metropolis et al. [MRR+53].Suppose that the solution space S is the �nite set of all solutions and the energyfunction f is a real valued function de�ned on members of S. The problem is to �nda solution or state, s 2 S, which minimizes f over S. Simulated annealing works bygenerating a random neighbor of current state s, and accepting (or rejecting) it followingan acceptance rule. The acceptance rule always accepts a move if it results in a reducedvalue of the objective function f ; but if the considered neighborhood move results in anincrease � in f , it may still be accepted, with probability e��=T (Metropolis acceptancerule). Here T is a control parameter (called temperature), which controls the probability3



Select an initial state i 2 S;Select an initial temperature T > 0;Set temperature change counter t := 0;RepeatSet repetition counter n := 0;RepeatGenerate state j, a random neighbor of i;Calculate � := f(j)� f(i);If � < 0 theni := j;If f(i) < f(i�) then i� := i;else if random(0; 1) < e��=T then i := j;n := n+1;until n := N(t);t := t+ 1;T := T (t);Until stopping criterion true;Return best found solution i�Figure 1: Pseudo-code for Simulated Annealingof uphill moves: when T is high, most moves will be accepted, but as it approaches 0,most uphill moves will be rejected. In classical simulated annealing, the algorithm isstarted with a relatively high value of T , and proceeds by attempting a certain numberof moves at each temperature, while the temperature parameter is gradually dropped.The simulated annealing heuristics is illustrated in pseudo-code in Figure 1. The generalscheme of this meta-heuristic is very simple, but its application to a given problem is onlypossible after a number of problem-speci�c choices.We may identify several elements to be de�ned when applying SA to a particular prob-lem [Egl90]: the energy function f , usually taken as the objective function for theoriginal problem; the neighborhood structure, with a generation probability function;the acceptance rule, usually taken to be the Metropolis rule, as illustrated in Figure 1;the cooling schedule, i.e: the functions N(t), the number of iterations at step t, andT (t), the temperature; the stopping criterion, which may be a �nal temperature, anumber of steps, a number of steps without changes in the state, etc.There are a number of results concerning the convergence of SA to an optimal solutionin quite general conditions (see between others [AF87], [LM86]). But for the most part,they depend on using a cooling schedule which leads to an exponential number of itera-tions. In most practical applications, a cooling schedule is used which doesn't guarantee4



the convergence to the global optimum. The resulting algorithms are sometimes labeledSimulated Quenching [Ing93].4 Simulated Annealing for reliability improvingIn this section we discuss the tailoring of SA to our problem. In choosing among di�erentalternatives, we take as �rst criterion the simplicity of concept and implementation, inorder to obtain a basic algorithm which may be improved in the future in the directionssuggested by the results of this work.Solution space and energy functionThe most obvious choices for the solution space S and the energy function f are theset F of all feasible networks (as de�ned in Section 2) and the unreliability QV (or avulnerability index V ul), respectively. A better approach is to relax the cost restrictionand incorporate it in the objective function [CS94].We propose that the solution space be de�ned as the set of all networks having thesame node set V as the original network G, and that the cost network restriction beincorporated in the energy function f . Then this function will be the sum of two terms,one related to the network's reliability and the other a penalty term related to the cost.As these two quantities have di�erent measure units, they must be normalized in someway. We use, for any given network g,f(g) = QV (g)QV (G) + �(T )max COST (g)BOUND � 1; 0!where G is the initial network topology, BOUND is the (user-de�ned) upper bound onthe cost of a network, and �(T ) = K=T is decreasing on T (then, it's increasing on t). Thepenalty term is 0 for all feasible networks (those with cost not greater than BOUND).For infeasible networks, the penalty is decreasing with T ; this means that in the startof the SA algorithm, a network can be accepted even if it doesn't satisfy the cost con-straint, but as T decreases, the penalty term will grow, leading the algorithm to onlyaccept feasible solutions. The constant K must be �xed following some criterion. In ourimplementation, we choose to take it equal to the starting temperature T0: this meansthat at the start of the search, reliability and cost have same relative weight, and so agiven percent increase of cost can be o�set by an equal decrease in unreliability.When the elementary link reliabilities are not known, the measure QV () is not de�ned,and a vulnerability index must be used instead. In this work we consider the vulnerabilityindex V ul de�ned in [CRU92] asV ul(g) = D + CE(c) + CV (c0)t+ c:c0 ;constructed with the following parameters: 5



� D : diameter of graph g, i.e. the lenght of the longest shortest path between a pairof nodes of V;� t : girth of graph g, i.e. the lenght of the shortest cycle of g;� c : edge connectivity, i.e. the minimum number of edges whose removal disconnectsthe graph;� c0 : connectivity (also called node connectivity), i.e. the minimum number of nodeswhose removal disconnects the graph;� CE(m): the maximum over all pairs of nodes i, j of the number of i; j cutsets ofsize m (an i; j cutset is a set of edges whose removal disconnects i and j),CE(m) = maxi;j2V jfi; j cutsets of size mgj;� CV (m): the maximum over all pairs of nodes i, j of the number of i; j node-cutsetsof size m (an i; j node-cutset is a set of nodes whose removal disconnects i and j),CV (m) = maxi;j2V jfi; j node� cutsets of size mgj:The energy function is thenf(g) = V ul(g)V ul(G) + �(T )max COST (g)BOUND � 1; 0! ;and has the same properties as in the previous case (when the elementary link reliabilitiesare known).Neighborhood structureTo choose the neighborhood structure of our problem we take into account the followingproperties: to have access to the entire state space (de�ned as the set of all networks withsame node set as G), and to have an e�cient implementation of the random generationfunction. We de�ne the neighborhood of a graph g as being composed of all graphs withan added or deleted link with respect to g. The random selection of a neighbor is done inthe following way: two nodes n1, n2 are taken at random; if the link (n1; n2) was present ing, it is deleted, else it is incorporated. With this neighborhood de�nition, the maximumdistance between any two networks (in terms of moves needed to pass from one to theother) is n(n � 1)=2 (this is the distance between any network and its complementary,where to pass from one to the other we must delete all existing links and add all non-existing ones). The convergence speed, as discussed in [Haj88], is inversely proportionalto this maximum distance. Another property of this neighborhood structure is that thesize of N(g) is also n(n�1)=2 for all g (this is the number of ways to choose two di�erentnodes). 6



Acceptance ruleThe standard Metropolis acceptance rule1 was selected. This is the choice made in mostSA schemes, even when there are theoretical and empirical results [AF87] [Egl90] showingthat a wide gamma of other rules give comparable results. As reported in [Egl90], there'ssome literature on the use of an approximate value of �, when its exact evaluation iscomputationally hard. For our problem, we use a Monte Carlo estimate of the unreliabilityparameter QV () to compute �, instead of its exact value.Cooling scheduleFor the cooling schedule, several choices are possible. To assure the convergence to theglobal optimum, a logarithmic schedule (T (t) = T0= log(t)) is necessary, but this leads tocomputational requirements too high for practical use. An exponential schedule (T (t) =T0e(c�1)t) is most often used, but given the highly combinatorial nature of the networkreliability optimization problem, we have chosen an heuristic proposed by Lundy and Mees[LM86], and used with good results in [Con92]. This schedule performs only one iterationfor each temperature level (N(t) = 1,8t) and uses a temperature function T (t + 1) =T (t)=(1+BT (t)). This function decreases more slowly than the exponential schedule, butwithout guaranteeing global convergence. The actual speed of descent in temperature isproportional to the cooling constant B; [Con90] suggests taking B << T0.Stopping criterionFollowing the simplicity rule stated at the beginning of the section, the stopping criterionselected is a total number of iterations: the search ends when t = MAX REPL. In ourimplementation, this is equivalent to setting a �nal temperature level, as we have thatTf = T0=(1 +MAX REPL �B � T0).The above choices de�ne a SA algorithm suited for the network reliability optimizationproblem. But there are still some free parameters: the initial temperature, T0; the coolingconstant B; the total number of replications MAX REPL; the initial topology G andthe cost upper bound, BOUND. All these must be �xed in a problem by problem basis,and will be discussed in the case study treated in the following section.5 Computational ResultsIn this section we present the results of applying the previously de�ned SA algorithm to amodel of a subset of Montevideo's optical �ber telephonic network. The topology shownin Figure 2 (14 nodes, 21 links) is the one in operation in 1992, and was designed by thenational telecommunications company following heuristic rules.1Pr(acceptance) = e��=kT , with � the change in the energy function7



............................................ a) Original topology b) Alternative (by long runs SA)Figure 2: Montevideo's networkIf we take the costs of the links to be their geographical length (in an arbitrary lenghtunit), this network has an overall cost of 1186. Its reliability parameter, as computed bya Monte Carlo method, is RV ' 0:896 when the elementary reliability of the links is setto 0:9. The value of the vulnerability index for this topology is V ul = 2:429.The objective of the experimentation was to validate the approach de�ned in theprevious section, and to �nd which range of parameters was appropriate for the networkunder consideration. We considered two main scenarios for the network cost upper boundas related to the cost of the existing network: either no cost increase, or an increase of10% (the upper bounds for the network cost being 1186 and 1304 respectively). Bothwith the reliability and the vulnerability measures were considered.The SA algorithm was implemented using the C++ network classes and methodsavailable in the HEIDI tool [CRU92]. The evaluation of theQV component of the objectivefunction was done by a standard Monte Carlo method (number of replicacions 103). Thereliability estimates for the best found topologies was done with an increased number ofreplications, namely 105.For the vulnerability measure, the experiments couldn't be �nished, as the time periteration of the SA algorithm was exceedingly large (due to the cost of computing theindex V ul). After 20 hours of work, less than 500 iterations were completed, and noglobal improvement had been found.Three series of experiments were done with the reliability measure RV . In the �rst two,the initial topology was set to the original network (Figure 2), while varying the lenght ofthe SA runs. The �rst series consisted of short runs of 5�103 replications each, while thesecond corresponds to longer runs (5 � 104 replications each). For the shorter runs thecooling parameter B was set to 0:005, and for the longer ones B = 0:001. The third seriescorresponds to short runs of a di�erent initial topology, namely the complete graph K14.In all cases, the initial temperature, T0, was set to 0:5 as this was considered a high enough8



value to allow exploration of the whole state space (at this temperature, a move resultingin network cost increment of 50% is accepted with probability e�1 ' 0:368).In order to compare the results, the SA algorithm was run �ve times for each consideredparameter combination. The results presented in tables 1, 2 and 3 show the reliabilityand the cost of the best topology found in each run, as well as the mean value over allruns. For quick reference, in each table the reliability and cost of the best topology overthe �ve runs is tabulated in the last column.Run1 2 3 4 5 Mean BestRV .9357 .9088 .9348 .9075 .9234 .9220 .9357Cost 1161 1150 1169 1139 1140 1152 1161Parameters: MAX REPL = 5� 103, BOUND = 1186.Run1 2 3 4 5 Mean BestRV .9549 .9602 .9304 .9454 .9470 .9476 .9602Cost 1303 1281 1287 1275 1295 1288 1281Parameters: MAX REPL = 5� 103, BOUND = 1304.Table 1: Results of SA short runs.Run1 2 3 4 5 Mean BestRV .9383 .9358 .9589 .9533 .9250 .9423 .9589Cost 1178 1183 1186 1172 1161 1176 1186Parameters: MAX REPL = 5� 104, BOUND = 1186.Run1 2 3 4 5 Mean BestRV .9639 .9527 .9619 .9563 .9717 .9613 .9717Cost 1300 1281 1294 1301 1304 1296 1304Parameters: MAX REPL = 5� 104, BOUND = 1304.Table 2: Results of SA long runs.Table 1 shows the results for the short runs when the starting solution is the originalgraph given in Figure 2. In all runs, the SA algorithm found an improved topologyover the original one. The amount of the reliability improvement varies from one run to9



Run1 2 3 4 5 Mean BestRV .9134 .9135 .9032 .9125 .9041 .9093 .9135Cost 1169 1168 1174 1182 1173 1173 1168Parameters: MAX REPL = 5� 103, BOUND = 1186.Run1 2 3 4 5 Mean BestRV .9364 .9417 .9507 .9489 .9406 .9436 .9507Cost 1275 1291 1303 1304 1301 1295 1303Parameters: MAX REPL = 5� 103, BOUND = 1304.Table 3: Results of SA short runs with initial topology the complete graph.another; when BOUND = 1186 the improvement is in the range 1% � 4%, and whenBOUND = 1304 it is in 3%� 7%.Table 2 shows the results for the longer runs. These results, compared with those ofTable 1, show a more stable behaviour of the algorithm. This is probably due to theincreased number of iterations and the slower cooling schedule. The average reliabilityimprovement is of 5% and 7% respectively for both cost upper bounds, and the bestsolutions over the �ve iterations are also considerably better than the ones obtained withthe shorter runs. The best network topology obtained for BOUND = 1186 is also shownin Figure 2.Finally, Table 3 shows the results when the starting solution is the complete graphK14, for short runs (MAX REPL = 5000, B = 0:005). This corresponds to starting thesearch from a \highly energetic" state, which might be advantageous to more thoroughlysearch the solution space. The results are rather worse those obtained with the originalstarting solution (results in Table 1). Then, we can conclude that the starting solutionhas a non negligeable in
uence in the search.6 ConclusionsIn this paper we have presented the network reliability optimization problem, and wehave proposed a Simulated Annealing algorithm which can be applied to this problem.The performance of the algorithm was tested on a particular case (a model of a subsetof Montevideo's telephonic network) for di�erent parameter values. The results obtainedshow the potential of the SA heuristic to �nd improved alternatives to a given networktopology, when using a Monte Carlo estimate of the reliability measure RV . Furtherwork is needed to determine the appropriate parameter values for di�erent topologies.On the other hand, when using the vulnerability index V ul the SA took too much time10
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