Secure Object Sharing Development Kit for Java Card

Daniel Perovich
Daniel.Perovich@sophia.inria.fr

INCO - PEDECIBA Project Lemme

Facultad de Ingenieria Sophia Antipolis
Universidad de la Reptublica INRIA
Uruguay France

http://www.fing.edu.uy/inco http://www-sop.inria.fr/lemme

November 23, 2001

Abstract

Nowadays, JavaCard Platform-based SmartCards are multi-application and support inter-
applet collaboration. The JavaCard framework enforces applet isolation by means of the
Applet Firewall to prevent highly sensitive data in one applet to be leaked to another. The
framework provides the Shareable Interface Object mechanism to allow developers to share
services through the firewall protection. The working of the mechanism presents serious flaws,
which have been addressed and partially solved in work we shall in turn discuss in this paper.
We present the Secure Object Sharing Development Kit, which constitutes a programming
setting for the formulation of inter-applet collaboration. Its conception elaborates on the
solutions proposed for improving the Shareable Interface Object mechanism, which can be
applied, and even enriched, when implementing cooperating applets using the framework
provided by the kit. We also discuss challenge/response authentication mechanisms, which
are a basic ingredient of the various sharing mechanisms presented in this work.

1 Introduction

A JavaCard is a SmartCard capable of running programs developed for a subset of the well-known
Java Platform, which presents additional technology-specific features. The JavaCard architecture
consists of the JavaCard Virtual Machine (JCVM), the JavaCard Framework (JCAPI) and Indus-
try Add-On classes. The JavaCard Virtual Machine is built on top of a specific integrated circuit
and native operating system implementation, and it is made of two separate components, namely
the converter and the bytecode interpreter. The converter runs on a workstation. It loads and
preprocesses the class files that make up a Java package and outputs a cap (converted applet) file,
which is then loaded on a JavaCard SmartCard. The bytecode interpreter runs on the JavaCard
and interprets the bytecode in the cap files. The JavaCard Framework [10] provides framework
classes and interfaces for the core functionality of a JavaCard application. The JavaCard Runtime
Environment (JCRE) [11] consists of the JavaCard system components that run inside a Smart-
Card, namely the JCVM, JCAPI, system classes, the installer application and industry-specific
extensions. The JCRE is responsible for card resource management, communication, applet exe-
cution, and on-card system and applet security [2]. JavaCard applications are called applets. They
are implemented by extending the Applet base class provided in the JavaCard Framework. When
an applet is registered to the JCRE, it indicates the applet identifier (AID) it will use. The AID
is unique within a JavaCard, so if the AID is already in use the applet registration will fail [11].
Applets from different vendors can coexist in a single card and additional applets can be
downloaded after card manufacture. An applet usually stores highly sensitive information, so
sharing this information among applets must be carefully limited. In the JavaCard platform
applet isolation is achieved through the applet firewall [11] mechanism. It confines an applet to its
own designated area, thus each applet is prevented from accessing fields and operations of objects
owned by other applet. The applet firewall partitions the JavaCard object system into separate
protected object spaces called group contexts. The firewall can be considered as the boundary

between one context and another. Each Java package is assigned a group context, thus applets in
the same Java package share the group context. Applets are allowed to access objects of applets
in the same group context. However, applets residing in different group contexts will not be able
to access each other’s objects.

To support cooperative applications on a single card, the JavaCard technology provides well-
defined sharing mechanisms. These mechanisms are the JCRE Privileges, JCRE Entry Point
Objects, Global Arrays and the Shareable Interface Object mechanism [11]. The first three mech-
anisms are used for JCRE-applet interaction, while the last one is intended to provide inter-applet
collaboration.

The working of the Shareable Interface Object mechanism presents serious flaws, which make
it possible to develop inter-applet cooperation risking applet impersonation or unauthorized use of
resources. In addition to this, the mechanism prevents the number of recipients of a server applet
services from being incremented after deployment. These problems have been put forward in [6],
and two approaches to solve them have been presented in [6, 8]. These approaches base their
solution on a challenge/response mechanism for client authentication. This mechanism relies on a
shared knowledge between the client and the server. However, the challenge/response mechanism
does not fit well in commercial JavaCard applications where services are sold to clients and the
server cannot trust that this client will keep secret the shared knowledge. Furthermore, these two
approaches present some drawbacks, namely, changes needed in the JCRE specification in one of
them, and the lack of dynamic checks at service request in the other.

This paper begins by presenting an overview of the disadvantages of the Shareable Interface
Object mechanism. After, it comments on the two approaches to address the problems and their
drawbacks. Then, it focuses on the Secure Object Sharing Development Kit. The Kit represents
a new approach to overcome the problems and enriches the JavaCard inter-applet collaboration
mechanism. It is strongly based on the approach introduced in [8] and solve the drawbacks that
it presents.

Section 2 introduces the JavaCard Shareable Interface Object mechanism and its disadvan-
tages. Section 3 presents an overview of the two approaches already proposed. Section 4 makes
considerable remarks on the challenge /response authentication mechanism and proposes a method-
ological solution for solving the problem it presents. Later, Section 5 presents the Secure Object
Sharing Development Kit. Finally, Section 6 concludes.

2 Shareable Interface Object Mechanism

The Shareable Interface Object mechanism is the only sharing mechanism in the JavaCard platform
intended for inter-Applet collaboration. The Global Array mechanism can be used to pass data
from one applet to another, but service request cannot be implemented using it.

For two software components to interact, it is needed to define in which way one of them
will require services, and also how this component will get access to the provider which resides
in the other component. The first requirement is met by defining the interface (with the set
of operations, i.e. services) that the client component should use. For the second requirement,
static fields and/or operations can be used. Instead of this, a global component which knows all
components in the system can be used. The client requests a provider of the desired services by
asking the global component for it.

In the JavaCard platform there is an extra requirement: the firewall mechanism must be by-
passed so as to share services among applets. The Shareable Interface Object mechanism provides
this functionality.

Subsection 2.1 presents the working of the Shareable Interface Object mechanism, while Sub-
section 2.2 introduces it disadvantages.

2.1 SIO Mechanism

The javacard.framework package provides a tagging interface called Shareable, and any inter-
face which extends the Shareable interface will be considered as a Shareable interface. Requests
for services to objects whose class implements a Shareable interface are allowed by the firewall
mechanism.

When a server applet wants to provide services to other applets within the JavaCard, it must
define the services it wants to export in an interface tagged as Shareable. Using this kind of
interface, two of the software interaction requirements are solved, i.e. a client applet must use this
interface to require services from the server applet, and the firewall protection will be bypassed as
the interface is tagged as Shareable.

Within the JavaCard, only instances of classes are owned by applets (i.e. are confined to a
group context), classes themselves are not. No runtime check is performed when a static field
is accessed or when a static operation is invoked. This means that static fields and operation
are accessible from any applet; however, objects stored in static fields belong to the applet which
instantiates them.

The server applet may decide whether to publish its Shareable Interface Objects (SIOs) in
static fields, or return them in static operations. Additionally, the JavaCard platform provides
a special component called JCSystem. This component provides white pages' functionality for
services exported by applets. The JCSystem.getAppletShareableInterfaceObject operation can be
used by client applets to obtain a reference to a service provider from a server applet, i.e. a reference
to an object implementing the desired Shareable interface. To share services using the white pages
functionality the server applet must override the getShareableInterfaceObject operation of the
base Applet class, and return, within this method, the object implementing the requested interface.
Client and server identification is based on their AID. The JCSystem.getAppletShareableInterfa-
ceObject operation receives the server’s AID and the getShareableInterfaceObject receives the
client’s AID.

Applet Interaction. Figure 2.1 shows the UML [7, 9] Sequence Diagram for getting the desired
reference using the JCSystem.getAppletShareableInterfaceObject service. The client applet ca
invokes the getAppletShareableInterfaceObject static operation of the JCSystem class passing the
server’s AID and a option parameter indicating the desired service. The JCSystem, in turn, invokes
the getShareableInterfaceObject of the corresponding server applet sa passing the client’s AID
and the option parameter received. The JCSystem.getAppletShareableInterfaceObject operation
may return null, so it is not warranted that the desired object will be obtained after an invocation
to this service. What is more, the returned object is such that its class implements the Shareable
interface, so the client applet has to cast this reference to the interface defined by the server applet.
Neither is it warranted that the object returned can be successfully cast into the Shareable interface
the client applet expects.

Figure 2.2 shows the UML Sequence Diagram that describes how a client applet ca gets the
desired reference using a public static operation. Note that this diagram does not show the server
applet making public the SIO. This mechanism has an advantage on the previous one: the server
applet getSI0 operation can receive as many parameters as needed, and also it can have a more
adequate return type (SI in the Figure). Notice, however, that null can be also returned.

2.2 Drawbacks of the SIO mechanism

Improved security is one of the most relevant characteristics for preferring JavaCard systems. Even
though, the working of the Shareable Interface Object mechanism presents important drawbacks,
and some of them are considerable security problems.

1The white pages communication mechanism is such that the client knows the service it needs (denoted by the
server applet’s AID and the byte parameter), but not where this service is located (which is the instance of the
Shareable Interface that provides those services) [5].

ca sa
Clientapplet JCSysterm Seterapplet

| 1: sio=getappletShare ablainterfac e Objectis, o):Shareatle I
| Lsio-geltpy lectis, o): = 1.1: sio=getShareahlainterfaceOhject(c; o). Shareable |
=

1 — e s

Figure 2.1: Service Request using the JCSystem class

ca
Clientdpplet Serertpplet

| |
| 1 sion=getSI0M, o, e1sl |

Figure 2.2: Service Request using a static operation

These problems were put forward in [6] It presents four disadvantages, namely Applet Imper-
sonation, Limited Clients, Inappropriate Casting and Impossibility for Passing Objects as Param-
eters. We present them in what follows while Section 3 briefly explains the two approaches [6, 8]
for overcoming these problems.

Applet Impersonation. The authorization of a client to obtain a SIO is based on its AID.
Then, a malicious applet could be installed with the same AID of a valid client, in a compromised
card, and thus gain access to restricted data. Other proposals have been made to restrict applet
loading so as to prevent this kind of attack [4]. These proposals are based on annotated code for
checking information flow by static or dynamic analysis.

Limited Clients. Another problem with this selection criterion is that the server applet must
know the AID of every possible client, so as to authorize access to its SIOs. This would make it
impossible to allow access to new valid clients once the server applet has been deployed and widely
used.

Inappropriate Casting. It is also possible for a client applet to access a SIO for which it is
not authorized. This may happen only if a class implements more than one Shareable interface,
namely SIA and SIB. A reference to an instance of SIA, which has been legitimately got by a client
applet, can be cast to a reference of SIB. The firewall will allow the use of services provided by SIB
as these services are defined in a Shareable interface.

Impossibility of Passing Objects as Parameters. If an applet gets a reference to an object
that belongs to an applet in other group context, it will not be able to use its services due to the
firewall. If the operations within a Shareable interface passes objects as parameters or returns an
object, it is practically useless as the other applet will not be able to use the services provided by
those objects. In spite of this, preserving the reference and checking equality with other references

can be a valid use.

The Applet Impersonation and Inappropriate Casting problems represent important security
breaches. The Limited Client problem is not a security matter, but it is a considerable dis-
advantage of the mechanism. Neither is the Impossibility of Passing Objects as Parameters a
security matter. However, the developer must be aware of it because this is detected at runtime
when a SecurityException is thrown, and usually debugging applets is a very hard task. Nev-
ertheless, it is not impossible to pass usable objects as parameters. It can be done by defining
Shareable interfaces for the services provided by the objects which are passed as parameters, and
making their classes implement these interfaces. Notice that, as in usual applications, the callee
(or the caller when considering the returned object) can hold a reference to the objects it receives.
This means that these objects could be used in any time by the other applet, and also could be
passed to a third applet as a parameter, and the firewall would allow the usage of them. For
security reasons, the client should first be authenticated using any of the approaches presented in
Sections 3 and 5. When a complex data structure (i.e. non primitive data) needs to be passed as
parameters, the standard solution is to develop a class only with query operations?. The instances
of this class should be reused for each invocation in which they are passed as parameters. It would
be a good practice to put the fields to their default value, because the callee can hold a reference
to this object, and, in this case, it would be able to read the information passed as a parameter
to another applet.

3 Approaches to Address the Drawbacks

This Section details proposed solutions for addressing some of the drawback of the Shareable
Interface Object mechanism, namely Applet Impersonation, Limited Clients and Inappropriate
Casting.

3.1 Delegate Object Approach

The solution introduced in [6] relies on the existence of a Delegate Object. A delegate object is an
object tagged as delegate, and it is registered when the applet registers itself. The JCRE preserves
the reference to the delegate object of each applet. This object provides all applet’s services, and
they can be both fields and operations. Access to delegate objects would be granted to any applet
requesting it, and the delegate object handles all security concerns. The security mechanism
proposed is the use of a challenge/response sequence occurring at each method invocation. Using
challenge/response both the Applet Impersonation and Limited Client problems are solved as
client authentication is not based on AIDs. The challenge/response mechanism can differ in the
function it uses to convert challenges to responses on per method basis. All shared services are
managed by the delegate object, so a client cannot gain unauthorized access by Inappropriate
Casting.

Interaction. Figure 3.3 shows the UML Sequence Diagram for the interaction of a client applet
ca requesting a service from a server applet sa. The client applet gets the server’s delegate object
(sd) and requests the service. The server’s delegate object gets the client’s delegate object (cd) and
goes through the authentication process, i.e. issues a challenge (ch) and gets the response (rsp).
The client’s delegate object asks the client applet for the response to the challenge and returns it.
The server’s delegate object checks the response, and if it is correct, requests the desired service
(byte service(byte) in the Figure) from the server applet.

Changes to the JCRE. The Delegate Object approach requires changes to the current JCRE
specification. A delegate object is registered with the applet so the register method of the base
Applet class must be changed. Also the JCSystem must preserve the reference to each delegate

2A query operation is such that has no side effects.

ca cd sd sa
Clientapplet ClientDelegate JCBystem ServetDelegate SemvetApplet

|
| 1 sd=getDelegate(said, oy Delegate

e ____ — 1] i
i |
|

! 2 ret=sericeiparamybyte

|
Il Iome
} o=
|

|
|
|
|
|
|
2.1 cdi=getDelegate(caid, ayDelegate :
|
|
|
|
|
|

2.3 [rspok] ret=seniceiparamibyte

|

- |

_'_2.2.1: rzp=authenticate(chi Response f |
|

|

R e B (S R O B T P e T R Rk e T RE
|
|
|
|
|

Figure 3.3: Interaction using the Delegate Object Approach

object. The delegate object can be used by any client applet, thus the applet firewall must be
changed so as not to restrict the usage of services of delegate objects. Note that the current
firewall does a similar task with objects implementing a Shareable interface.

Drawbacks. This approach presents compatibility issues with the existing JavaCard hardware
and software. It eliminates the Shareable Interface Object mechanism as legitimate access through
separate contexts is provided by the delegate object. Therefore, current JavaCard applications
that rely on the Shareable Interface Object Mechanism will not be functional on hardware based
on this approach. In addition, JavaCard applications developed on this approach will not be able
to run on the current hardware as the approach needs to change the current JCRE specification.

Another drawback, from Software Engineering, is that all exported services in one applet
must be provided in one object, namely its Delegate Object. Additionally, the approach limits
the possibility of passing complex data structures from one applet to another, as only Delegate
Objects can be used through the firewall.

Furthermore, this approach requires that the client goes through the authentication process
at each service request. This leads to a more obscure client source code and to a performance
penalty.

3.2 Methodological approach

The Methodological approach has been presented in [8], and has been proposed as an alternative
to the Delegate Object approach. Its main goal is to solve the same problems but using the
current JCRE specification. It is based on similar basic concepts of the Delegate Object approach,
as it uses challenge/response authentication, and provides fine-grained control over access to the
applet’s services.

Main concepts. This methodology is based on the existence of an object in the server applet’s
package, called SecureSI0. This object is an instance of a class which implements a Shareable
interface called SecureSI. The SecureSI interface provides operations for authentication, namely
getChallenge and setResponse. The case study in [8] presents an authentication mechanism using
a short challenge/response, but it is clear that a more complex mechanism can be used instead.

ca ssio sa
ClientApplet JCBystem Securesi0 ServerApplet

]]
| 1:ssio=gethppletShareablelnterfaceObject(server, ssinidkShareable |

o= "M ssin:

Figure 3.4: Interaction using the Methodological Approach

The server applet contains an AuthorizationManager, which keeps record of all registered clients
together with the SIOs they can access during a session. Both the SecureSI0 and the Authoriza-
tionManager manage all security concerns within the server applet. The registration lasts for one
session as the AuthorizationManager stores the information of the registered clients on a transient
Object array.

Development and Interaction. The methodology suggests to create the SecureSI interface
which defines the authentication mechanism, and to create a class SecureSI0 which implements it.
An AuthorizationManager class must be implemented for maintaining the set of registered clients.
The getShareableInterfaceObject operation of the server applet must be implemented in order to
return the SecuresI0 if the client applet is not registered to the desired service. If the client applet
has already registered the corresponding SIO is returned. Figure 3.4 shows the UML Sequence
Diagram for the interaction using the Methodological approach. The client applet ca requests an
object whose class implements the SecureSI interface. Then the client applet asks for the challenge
and issues the response. If the response is correct the SecureSIO0 registers the client in the server
applet. After registration, the client applet requests for an object whose class implements the
desired Shareable interface.

Inappropriate Casting. In order to solve the Inappropriate Casting problem, the methodology
suggests implementing different Shareable interfaces in separate classes and being sure that those
classes are not in the subclassing relation.

Suppose we have two Shareable interfaces SIA and SIB, and two classes CA and CB implementing
SIA and SIB respectively. It is not enough to avoid implementing more than one Shareable interface
in one class, i.e. making both cA and ¢B different classes. It must be checked also that those classes
are not in the subclassing relation, i.e. CA is not a direct or indirect subclass of CB or vice-versa.

Note that the case in which a class extends two different classes where each of them implements
a different Shareable interface is not possible as Java does not support multi-inheritance.

3.2.1 Remarks

The Applet Impersonation and the Limited Clients problems are solved, using this approach, as
client authentication is based on the challenge/response mechanism. The Inappropriate Casting
is solved by following the suggestion mentioned above.

The advantages of the Methodological approach are that it does not require any changes to
the JCRE, so it runs on existing hardware. Also, the Shareable Interface Object mechanism is
preserved, so passing objects as parameters can be done as explained in Subsection 2.2.

The drawbacks of this approach are that the developer must implement the mechanism for each
server applet, so there is extra code (and a bigger cap file size) in each package. In addition, extra
memory is needed for administrative information within the AuthorizationManager. Moreover, the
AuthorizationManager is just used to check if a client can get a SIO, but it is not used to check the
usage of a SIO after the client applet gets the reference. Once a client applet gets the reference
to a SIO, the client can hold this reference and use it later.

4 Challenge/Response Problem

The authentication mechanism used by the two approaches presented in Section 3 are based on
a challenge/response sequence. For simplicity, it can be used just a shared key, i.e. a constant
function from challenges to responses. Therefore, the client applet must answer the secret key,
independently of the challenge. More complex functions can be used to convert challenges to
responses, and also the data structure of both challenges and responses can be made very compli-
cated.

Independently of the function used, the challenge/response mechanism is secure enough if in
the environment in which it is used, the server can trust the client.

In what follows, we introduce the problem that this mechanism presents. Later, we propose a
methodological solution to overcome it. This solution is an alternative for client authentication,
even though it is still vulnerable.

4.1 Challenge-Response Problem

The challenge/response mechanism relies on a shared knowledge between both the client and the
server. This knowledge is the way a challenge is computed to generate a response. However, this
authentication mechanism is not adequate in contexts where server’s services are being sold to
clients, or when the server cannot trust the client.

If the company developing the server applet sells the secret to a company which develops the
client applet, the former need to be sure that only this client company is going to use this secret,
i.e. that the client company will not make public (or resell) the secret. The main problem here is
that the server applet can be already deployed, so it may be too late to include a new secret in
the server applet when the company detects that the secret was made public.

The following subsection presents a methodological solution for this problem, in which at most
one client in each card will use the service sold.

4.2 Solution

A simple solution to this problem is by limiting the amount of clients, i.e. if we sell the service
twice, we accept at most two clients to this service. However, using this solution we face again
the Limited Client problem mentioned before.

The solution we propose is a bit more complex. The developer of the server creates a class
called Certificate. If a client applet holds a certificate of this kind, the server applet will allow
access to its exported services. This certificate shares a secret with the server applet (using the
challenge/response mechanism). Notice that the Certificate class is developed by the server’s
developer, and its secret is never published nor given explicitly to the client’s developer. The
special consideration here is that this class must be instantiated at most once, so as to prevent
more than one client from using this kind of certificate. This is simply done by using the Singleton
Design Pattern [3] in the Certificate class. This pattern suggests to have one private constructor
in the class, and a getInstance static operation that returns the value of a private static field. If
the field is null, the getInstance operation creates an instance and stores it in this field. Then, in

ca cert ssio sa
ClientApplet Centificate JCBystem SecureSio SemerApplet

1: ok=authenticate(sioid) hoolean | | }
1.1: ssio: Ohjectisaid, sioid).Shareable |

Figure 4.1: Authentication Procedure

any case, the field value is returned. Using this pattern, the only possibility to get an instance is
by this operation, and at most one instance will be created. Notice also that as the getInstance
operation is static, the Certificate instance will be created in the client’s context. When the client
applet creates the certificate, the latter registers the client applet’s AID. Future authentication
requests will be allowed only from the client applet context, as the Certificate instance preserves
the original AID.

A package with the Certificate class is sold to the client’s developer. This class is final, so
no subclasses can be made of this class, and also it does not implement the Shareable interface.
Because of that, only the client applet will be able to use this instance as it will be created in its
own context.

The client’s developer can resell or make publish this package, but only one of them (the seller
or the buyer) will be allowed to use the certificate within a JavaCard?®.

Using this approach, the authentication mechanism is different to the one used in the Method-
ological approach. First of all, the client applet creates an instance of the certificate by invoking
the getInstance static operation of the Certificate class. At registration time, the client applet
just requests the certificate to authenticate to the server. The certificate is responsible for the
whole authentication procedure, usually a challenge/response sequence with the server. Figure
4.1 shows the authentication procedure when using this approach. Later, the client applet can get
the desired services as it is already registered.

The security mechanism in the server applet is still needed so as to prevent any developer from
developing fake certificates.

Remarks. The challenge/response solution is still vulnerable. The possibility of inspecting a
class or cap file makes it possible for the client developer to extract the shared secret used by the
server and the certificate. The proposed solution can be reformulated in order to sell to the client
only a package with interfaces. In this case, the class file would not contain the secret, so it would
be useless to inspect its internal structure. This package will be then linked to another package
provided and managed by the server’s developer. Future work is to reformulate the solution taking
into consideration the difficulty mentioned above.

5 SOS Development Kit

The Secure Object Sharing Development Kit for the JavaCard platform provides the developer a
set of tools for using a Secure Object Sharing mechanism in his/her JavaCard applications. The

3Note that it is possible, in this scenario, that in one JavaCard a client applet uses this certificate package and
in another JavaCard a different client uses it.

S08Framework
JavaCard
[S08Devkit
— 505Toal
] Winrkstation
—]

Figure 5.1: SOS Development Kit

main goal of the Kit is to lighten the developer’s work by providing an Object Sharing mechanism
in which the security concerns are already handled.

The SOS Development Kit consists basically of a framework for Object Sharing in JavaCard,
and a set of tools which statically checks desired properties of the developer’s applets. Figure 5.1
shows the overall structure of the Kit, and the intended use for each of the subcomponents.

Subsection 5.1 introduces the Secure Object Sharing Framework, while the set of tools is
presented in Subsection 5.2.

5.1 SOS Framework

The Secure Object Sharing Framework is a software component which resides in a JavaCard (see
Figure 5.1). It is based on the Methodological approach and its main goal of the framework is
to take care of all security concerns when an applet needs (wants) to export some services. It
addresses the problems found in the Methodological approach as the SOS Framework needs to be
loaded only once in the JavaCard, and the developer’s applet will be linked with it inside the card.

Figure 5.2 shows the internal design of the Secure Object Sharing Framework software com-
ponent. A new applet class called S0SApplet is the most important class within the component.
This class manages the security information in its AuthorizationManager and provides services to
the subapplets? by the ISIOResource interface and to other loaded applets in the card by the
ServerAdminSI interface.

4The term subapplet is used here to refer to the classes which extends the SOSApplet class.

Applet
interface Serverfdmin SOSApplet
ServerAdminS!
interface AuthorizationManager interface
Shareahle or ISiOResource

0.

interface
SecureS!

Figure 5.2: Secure Object Sharing Framework Internal Design

10

public final Shareable getShareableInterfaceObject(AID clientAID, byte parameter) {
if (parameter == 0) {
return lvServerAdminm;
i
else {
if (1vAM.canBeProvided(parameter)) {
if (!1vAM.isBlocked(clientAID)) {
if (1vAM.isAvailable(parameter)) {
if (1vAM.isRegistered(parameter, clientAID)) {
lvServerAdmin.setRejectionReason(ServerAdmin.NOT_REJECTED) ;
return 1vAM.getSIO(parameter);
}
else {
leerverAdmin.setRejectionReason(ServerAdmin.CLIENT_NDT_REGISTERED_TO_SID);
return 1vAM.getSecureSI(parameter, clientAID);
}
}
else {
leerverAdmin.setRejectionReason(ServerAdmin.SIG_IS_UNAVAILABLE);
return null;
}
}
else {
leerverAdmin.setRejectionReason(ServerAdmin.CLIENT_IS_BLDCKED);
return null;
}
¥
else {
leerverAdmin.setRejectionReason(ServerAdmin.SIO_NDT_PROVIDED);
return null;
}
¥
}

Figure 5.3: getShareableInterfaceObject method of SOSApplet class

The framework can be understood as a redefinition of the Shareable Interface Object mecha-
nism. Notice however, that what is redefined is the way a server applet manages incoming requests
for Shareable Interface Objects (SIOs), not the way a client applet requests them.

The following provides a detailed account of each member of the Secure Object Sharing Frame-
work.

5.1.1 SOSApplet base class

The S0SApplet class is a new base class for JavaCard applet development. It extends the javacard-
.framework.Applet class and enriches the Shareable Interface Object mechanism.

Figure 5.2 shows the internal design of the Secure Object Sharing Framework. The S0SApplet
maintains an instance of the AuthorizationManager class to record client authentication, and an
instance of the ServerAdmin class to provide services to other applets in the card.

This base applet class redefines (overrides) the getShareableInterfaceObject operation of the
Applet class. This method is declared as final so subapplets will not be allowed to override it.
Figure 5.3 shows the source code of the getShareableInterfaceObject method of the SOSApplet
class.

Each time a client applet asks for a specific SIO, the S0SApplet checks first if the requested
SIO is the administrative one, and in this case returns the corresponding instance. If not, i.e. the
parameter is not 0, it checks if the SIO is provided by the underlying applet (subapplet). We will
show later how the subapplet registers all the SIOs when it is constructed. Then it is checked
whether the client has been previously blocked, and if the corresponding SIO is available at this
moment. Finally, it is checked if the client has already registered for the SIO; if so, the instance
is returned, if not, the corresponding security mechanism for this SIO is returned. Note that in
all cases, the rejection reason is set in the ServerAdmin instance. It is useful for the client applet
to know why the SIO it requested was not returned.

11

public interface ServerAdminSI extends Shareable {
public boolean canRegisterNewClient();
public void unregister(byte pSIOID);

public byte getRejectionReason();

Figure 5.4: Server Administrator Shareable Interface

5.1.2 Authorization Manager

The AuthorizationManager class is in charge of recording client authentication and administrative
information. It registers all the SIOs exported by the underlying applet, as well as the security
mechanism that must be used for each of them. It also holds the information about which client
is registered to which SIO, as well as the list of blocked clients.

The list of registered clients is stored in an AID array, and when the instance is constructed,
this array is built up in persistent memory or in transient memory, depending on the CleanUpMode
parameter received by the constructor. This flexibility allows the subapplet to preserve the reg-
istration information by using the SOSApplet.CLEARNEVER clean up mode. This mode may be
useful in some specific applications where the environment is quite secure. However using the
S0SApplet.CLEAR_ON_DESELECT or the SOSApplet.CLEAR_ON RESET clean up mode is highly recom-
mended.

5.1.3 Administrative Information Services

The S0SApplet provides a Shareable interface in which administrative information can be requested
by client applets. These services are specified in the ServerAdminSI interface, and are implemented
by the ServerAdmin class.

Figure 5.4 shows the declaration of the ServerAdminSI interface, which provides three operations
(services). Recall that the AuthorizationManager uses an array to hold the information of the
registered clients, and that it is built in the constructor. The canRegisterNewClient operation
allows a client to know beforehand is there is space for registering itself to the server applet. The
unregister operation is provided to unregister a client to a specific SIO, so as to free space in
the registration array. This operation receives just the SIO because the client AID is obtained by
the JCSystem.getPreviousContextAID, so as to prevent a client from unregistering another client.
Lastly, the getRejectionReason is provided so as to let a client know the status of the last request
for a SIO.

5.1.4 Services provided to the subapplets

All the services provided by the S0SApplet class to the underlying applet are declared in an
interface called ISIOResource. In the current implementation the AuthorizationManager class is
the only class which implements this interface. In spite of that, exporting these services through a
public interface is better as it allows extra flexibility for the framework implementation, i.e. future
versions of the framework may use another class to implement this interface, while the applets
based on the current version will remain unchanged.

The S0SApplet class provides the getSIOResource() operation, which returns the Authoriza-
tionManager instance of the s0SApplet. The functionality provided by the ISIOResource interface
is shown in Figure 5.5.

The services provided to the underlying applet can be categorized in five groups. The provideSI0
group is used to register SIO instances and an associated security mechanism to the SOSApplet.
The second group is to deal with the availability of SIOs. The subapplet can make unavailable a

12

public interface ISIOResource {

public void provideSIO(byte pSIOID, Shareable pSIO, SecureSI pSecureMechanism);
public void provideSIO(byte pSIOID, Shareable pSIO, SecureSI pSecureMechanism,
boolean pAvailability);

public void makeAvailable(byte pSIOID);
public void makeUnavailable(byte pSIOID);
public boolean isAvailable(byte pSIOID);

public boolean isAuthorized(byte pSIOID);
public boolean isAuthorized(byte pSIOID, AID pClient);

public void block();
public void block(AID pAID);
public boolean isBlocked(AID pAID);

public void register();

public void register(byte pSIOID, AID pClient);
public boolean isRegistered(byte pSIOID, AID pClient);

Figure 5.5: ISIOResource interface

SIO and then make it available again. This feature is very important when an event mechanism is
used. For example, when the server applet triggers an event, it can first stop some services (make
SIO(s) unavailable) and after the event is finished, resume them (make SIO(s) available). The
third group allows the subapplet to know if a client is authorized to use a specific service. The
usage of this service is mandatory for the implementation of a SIO, as it allows the subapplet to
check dynamically if the client requesting the SIO can use it at the moment of the request. The
dynamic check is needed to solve one of the problems present in the Methodological approach:
even if the client applet preserves a reference to the SIO, the server applet has the means to
prevent this client from using the service, for example by blocking the client, unregistering it, or
making the SIO unavailable. The last two groups of services make it possible to block and check
if a client is blocked, and to register and check if a client is registered.

5.1.5 Open Security Mechanism

The framework provides a tagging interface SecureSI intended for Security Mechanisms. For all
SIOs provided by the subapplet it must be indicated which security mechanism will be used. Recall
that the provideSIO operation in the ISIOResource interface (see Figure 5.5) receives the SIO iden-
tifier, the SIO instance, and an instance of a class which implements a Security Mechanism. The
framework provides three simple Security Mechanisms, namely SecureSIFree intended for free ser-
vices, SecureSIByShort which authenticates using a short number, and SecureSIByByteArray which
allows longer challenges and responses. In addition, the developer can create new authentica-
tion mechanisms just by defining an interface which extends the SecureSI tagging interface, and
implementing it in a class.

Figure 5.6 presents the UML Class Diagram for the Security Mechanism interfaces within the
framework.

5.1.6 Subapplet implementation

The implementation of a subapplet of the S0SApplet base class is like that of normal applets.
However, it has to extend the S0SApplet and invokes the S0SApplet constructor in its constructor.
The constructor of the S0SApplet is shown in Figure 5.7. It receives four byte arguments. The
first three arguments deal with the maximum capacity of the arrays which will hold administrative
information: the maximum amount of provided SIOs, the maximum amount of client registrations
and the maximum amount of blocked clients. The last argument refers to the type of array to hold

13

interface interface
SecureS! Shareahle

]

interface interface interface
SecureSiFree SecureSiByShort SecureSiByBylefuray

+registervoicd +getChallenge:shor +prafarredBited rayvoid
+issueResponsevoid | | +preferecCftsetvoid
+geliChaliange:byteff
+getChailengeOffset bite
+geiChallengeLength:byie
+issueResponse ol

Figure 5.6: Security Mechanism Class Diagram

client registration; as it was explained before, the AuthorizationManager decides on this parameter
if the array will be placed in persistent or transient memory, and in the latter case when the array
must be cleaned up.

After invoking super in the subapplet’s constructor, the subapplet should indicate which SIOs
it is going to provide. This is simply done by invoking getSIOResource and using the provideSIO
operation of this object. The subapplet should call this operation for each SIO it wants to provide.

Furthermore, the subapplet must not implement the getShareableInterfaceObject operation,
because it would lead to a compile time error as this operation is declared as final in the SOSApplet
class.

5.1.7 Exported Services implementation

The developer must be particularly careful when developing the SIO classes. Each SIO should be
implemented in a separate class, as it is recommended in the remarks made for the Inappropriate
Casting problem. The framework relies on dynamic checks for providing services. Each service
provided by a SIO should first check whether it is possible to provide the service to the client who
places the request. This is simply done by using the isAuthorized operation of the ISIOResource
interface, providing the correct SIO identifier. This operation checks if the client is not blocked,
if the SIO is available and also if the client has previously registered to the SIO.

5.2 Tool-Kit

The Tool component is supposed to be used on a workstation, not in a JavaCard (see Figure 5.1).
It is made of two different tools: one of them checks statically if a class implements more than one
Shareable interface, and the other checks statically if each SIO implementation does the necessary
dynamic check of a client’s authorization to use services.

The Tools of the SOS Development Kit are work in progress. In the following we present the
general idea of their possible implementation. Future work will suggest the complete development
of such tools.

public SOSApplet(byte pMaxAvailableSIOs, byte pMaxRegistratioms,
byte pMaxBlocks, byte pCleanUpMode)

Figure 5.7: SOSApplet’s Constructor signature

14

5.2.1 Description of the Tools

Inappropriate Casting. When using the Secure Object Sharing Framework, by implementing
correctly the SIO classes the Inappropriate Casting can be avoided. At each service request
the SIO class must check if the client is authorized to use a specific SIO by providing the SIO
identifier. Even if the client casts a reference to another, each method of the SIO class checks for
the corresponding SIO identifier. So, the client must be registered for each SIO for which the class
can be used.

Nevertheless, this tool is provided for those developers who prefer to develop their own secure
object sharing mechanism, or want to use the Methodological approach.

The tool checks each class in the package, looking for the super classes (transitively) and for the
interfaces that it and its superclasses implement. If there are two different paths from the class to
the Shareable interface, the implementation is not secure in the sense that it allows Inappropriate
Casting.

Dynamic Checks. The framework relies on dynamic checks when a client requests a service
from a SIO. As the service request is placed directly to the SIO instance, which is implemented
by the subapplet’s developer, there is no possibility for the framework to check by itself if the
client is authorized or not to use the service. To overcome this problem, the developer must
consult the S0SApplet whether the client is authorized or not, as was explained in the previous
Subsection. This tool checks the SIOs (all classes which implements a Shareable interface) to see
if the corresponding dynamic check is done as soon as the method is requested.

It is also possible to centralize service requests in an operation doService, which first checks if
the client is authorized to request it or not. In case it is authorized, the service is requested to
the underlying class. This job can be done in a class within the framework. It can act as a proxy
for services, and how services are identified and how different kinds of parameters are going to be
passed from the client to the proxy, and from the proxy to the underlying class (subclass), must be
taken into consideration. This mechanism is not present in the current framework implementation
since it would lead to a larger cap file, and to a non-intuitive service usage by clients.

6 Conclusions

The framework provides a new mechanism for Secure Object Sharing in JavaCard. It is based
on the Methodological approach, and improves it by providing extra services, such as: allowing
the server applet to block clients and to change the availability of SIOs, by automatically block-
ing clients that do an incomplete authentication procedure, and provides an extensible security
mechanism by the SecureSI interface. It solves the problems that the Methodological approach
presents by using dynamic checks at every service request. This check just requires asking the
AuthorizationManager, not going through the authentication procedure again as in the Delegate
Object approach.

The current implementation of the framework contains all classes and interfaces shown in
Figure 5.2. The cap file size is 4 KB, hence, it fits very well in current JavaCard hardware. Recall
that the framework has to be loaded just once in a card, as it is implemented in a separate package
rather than in all server applets. However, extra memory will be needed when each subapplet is
instantiated.

The Tools make important and necessary checks on the developer’s JavaCard applications.
They should be used only by the developer in a new JavaCard Application package before making
it public or commercially available.

We introduce the problem of the challenge/response mechanism for commercial JavaCard ap-
plications. An approach to overcome this flaw is also presented. It constitutes an interesting
alternative, still vulnerable, but perfectible. This approach allows the server applet’s developer to
sell services to untrusted clients. Additionally, the authentication mechanism is simpler for the
client, as it is already implemented in the Certificate class.

15

Furthermore, the proposed approach to solve the challenge/response problem can also be used
with the Secure Object Sharing Development Kit, where the combination of both improves the
Object Sharing in JavaCard.

Future work. Future work includes the development of both tools proposed in the Secure Object
Sharing Development Kit. The tool for Inappropriate casting can use the introspection capability
of Java, and seems not to be a difficult task. On the other hand, developing the tool for checking
Dynamic Checks might result in a very tedious job.

Another interesting issue is to implement a Case Study based on the Secure Object Shar-
ing Development Kit. The Electronic Purse JavaCard implementation proposed in [1] can take
advantage of the capabilities of the Kit for solving the problem it faces.

The challenge/response solution is still vulnerable. The possibility of inspecting a class or cap
file makes it possible for the a developer to extract the shared secret used by the server and the
certificate. Future work is to analyze the alternative solution of providing a set of two packages.
One of them contains interfaces and is sold to the client. The other is provided and managed by
the server’s developer. The combination of both packages represents the solution proposed in this

paper.

References

[1] P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J.-L. Lanet. Electronic purse applet
certification: extended abstract. In S. Schneider and P. Ryan, editors, Proceedings of the
Workshop on Secure Architectures and Information Flow, volume 32 of FElectronic Notes in
Theoretical Computer Science. Elsevier Publishing, 2000.

[2] Z. Chen. Java Card Technology for Smart Cards: Architecture and Programmer’s guide. The
Java Series. Addison-Wesley, Reading, MA, June 2000.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[4] P. Girard. Which security policy for multiapplication smart cards? In Workshop on Smartcard
Technology (Smartcard ’99), USENIX, Chicago, USA, May 1999.

[5] H. Gomaa. Designing Concurrent, Distributed, and Real-Time Applications with UML. Ad-
dison-Wesley, Reading, MA, January 2000.

[6] M. Montgomery and K. Krishna. Secure object sharing in java card. In Workshop on Smart-
card Technology (Smartcard '99), USENIX, Chicago, USA, May 1999.

[7] Object Management Group. OMG Unified Modeling Language Specification, March 2000.
http://www.omg.org/uml.

[8] D. Perovich, L. Rodriguez, and M. Varela. A simple methodology for secure object sharing.
In Proceedings of the Gemplus Developer Conference 2001 (GDC 2001), CNIT Conference
Center, Paris, France, June 2001. Gemplus.

[9] Rational Software Corporation. UML Notation Guide, September 1997.
http://www.rational.com/uml.

[10] Sun Microsystems, Inc., Palo Alto/CA, USA. Java Card 2.1.1 API Specification, 2000.
http://www.javasoft.com/products/javacard.

[11] Sun Microsystems, Inc., Palo Alto/CA, USA. Java Card 2.1.1 Runtime Environment Speci-
fication, 2000. http://www.javasoft.com/products/javacard.

[12] Sun Microsystems, Inc., Palo Alto/CA, USA. Java Card 2.1.1 Virtual Machine Specification,
2000. http://www. javasoft.com/products/javacard.

16

