

PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Reporte Técnico RT 13-05

Systematic literatue review

of PSP adaptations

2013

Optimal design o fan IP/NPLS over
DWDM Network.
E. Canale, C. Risso, F. Robledo
ISSN 0797-6410
Reporte Técnico RT 13-03
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República
Montevideo, Uruguay, 2013

Systematic Literature

Review of

PSP Adaptations

Silvana Moreno
Álvaro Tasistro
Diego Vallespir

Reporte Técnico InCo/Pedeciba-2013 TR:XXXXX
Junio, 2013

Systematic Literature Review of PSP Adaptations

Resumen Este reporte técnico presenta una revisión sistemática
de la literatura existente sobre las adaptaciones al Personal Software
Process. En particular, estamos interesados en conocer las adapta-
ciones al PSP que proponen incorporar el uso de métodos formales.
La sección 1 presenta conceptos generales acerca de las revisiones
sistemáticas y la sección 2 presenta la revisión sistemática específica
realizada.

Palabras claves: Systematic Review, Personal Software Process, For-
mal Methods

Instituto de Computación | iii

Abstract

In this report we present a systematic review of existing literature
about PSP adaptations. In particular, we are interested in getting
to know those adaptations that propose to incorporate the use of
Formal Methods. Section 1 presents general concepts about sys-
tematic reviews. Section 2 presents the specific systematic review
carried out.

iv | InCo/Pedeciba-2013 TR:xxxx

Contents

Contents v
1 Systematic Reviews . 1
2 Systematic Review of Adaptations of the Personal Soft-

ware Process . 2
3 Conclusiones . 12

Bibliography 13

Instituto de Computación | v

1 Systematic Reviews

A systematic review of the literature is a means of identification, evalu-
ation and interpretation of all available information about a research
question, subject area or phenomenon of interest [3]. Several reasons
may justify the realization of a systematic review. It may be necessary
to summarize the existing investigations on a certain subject or technol-
ogy in order to get to know the latter’s benefits and limitations. It could
also be directed towards identifying shortcomings of current research,
so as to suggest further investigations of to provide a frame wherein
to position new research activities. Generally, research projects begin
with a literature review of some kind. However, this is often not carried
out in an exhaustive way, which impoverishes its scientific value. This is
the main reason for carrying out systematic reviews. There are normally
three phases to a systematic review: planning, conduction and report.
We follow guides proposed in [3].

1.1 Planning

During the planning phase the reasons for carrying out the review are
identified, the research questions are specified, and the review proto-
col is defined and evaluated. To state clearly the reasons for performing
the review fulfills the important end of confirming its actual need. The
research questions determine the goals of the review. It is convenient
that these are formulated in terms of one or several questions to be an-
swered during the systematic review. Finally, the protocol of the review
specifies the methods to be used during its realization. It is necessary
to count on a predefined protocol in order to reduce the possibility of
bias on part of the researcher. For instance, in absence of a protocol,
the selection of the case studies or their analysis could be influenced
by the researcher’s expectations. In general, the review protocols are
submitted to pair evaluation. The components of a protocol are:

• The reasons for performing the review

• The research questions

• The strategy for the search of articles

• The quality controls

• The strategy for data extraction and synthesis

• The publication strategy

We now clarify the last four points above. The strategy for the search
of articles is directed towards generating an adequate search chain
and selecting the resources wherein to conduct the search. The search
chain is generated by combining in several ways search terms that are
derived from the research questions. One general approach consists
in decomposing the questions into parts, adding synonyms, abbrevi-
ations or alternative expressions for each part, and finally connect the

Instituto de Computación | 1

parts using AND, OR. The resources wherein the search chain is normally
applied are digital libraries, as well as repositories of specific journals
or conference proceedings. The selection criteria are properties re-
quired for an article to be included into the systematic review. The pro-
cedures of selection describe how the selection criteria are applied.
This is necessary, for instance, to determine how each article is to be
evaluated, and disagreements resolved, in the presence of several re-
viewers. Quality control is normally performed using check lists. These
contain the features that the researchers must observe on each arti-
cle in order to ascertain its quality. In article selection, each feature
is ranked, and the sum total of these ranks must overstep a predefined
minimal value for the article to be included into the review. The strategy
of data extraction determines how to obtain the required information
from each study. The strategy of data synthesis determines how the
information obtained is to be synthesized. Finally, the publication strat-
egy determines the ways in which the systematic review is to be made
generally available, i.e. through journal, brochure, poster, web page,
report, etc. Once the protocol is set up, it must be evaluated. The
way this is done depends largely on the available budget. Students
will generally submit their protocols to their supervisors’ judgement. The
assessment of the protocol must confirm that the search chain is ade-
quately derived from the research questions and that the procedure of
data analysis is suitable for answering such questions.

1.2 Conduction

In the phase of conduction the articles are selected, their quality is se-
cured, and data extraction and synthesis are carried out according to
the protocol.

1.3 Report

The final phase of a systematic review consists in writing down their re-
sults and making them available generally or to the stakeholders.

2 Systematic Review of Adaptations of the Personal
Software Process

In this section we present a systematic review of existing adaptations
of the PSP. The division into subsections corresponds to the manner of
presenting systematic reviews introduced by Kitchenham [3].

2.1 Reason for the review

The production of software has become a process focused on quality.
PSP is a disciplined and individual process directed towards producing
quality software. One of its principles consists in finding and correcting
software defects at early stages of the development. Our proposal,

2 | InCo/Pedeciba-2013 TR:xxxx

PSPV DC is an adaptation of the PSP that incorporates the use of For-
mal Methods. The objective of this proposal is to improve quality by
reducing the number of defects that arrive at the stage of Unit Testing.

The description of the PSP can be found in “PSP: A Self-Improvement
Process for Software Engineers” [2]. The description of the PSPV DC can
be found in “PSPV DC : An Adaptation of the PSP that Incorporates Ver-
ified Design by Contract” [4].

The goal of the present review is to know whether there exist other
proposals of adaptation of the PSP that aim at improving the quality of
the software produced. In particular, we are interested in adaptations
that incorporate the use of Formal Methods.

2.2 Research questions

The research questions are the following:

1. Do there exist proposals of adaptations to the PSP?

2. Do they incorporate use of Formal Methods?

2.3 Search strategy

The digital libraries employed in the search have been: SCOPUS,
Springer, IEEE Xplore and EBSCO. These search engines comprise the
main collections of journals and conference proceedings in the area
of Software Engineering. Besides, a manual search was conducted on
“A Bibliography of the Personal Software Process (PSP) and the Team
Software Process (TSP)”, as well as on the collection of proceedings
of the TSP Symposium carried out between 2006 and 2012. The first
work cited above is a document edited by the SEI that contains ref-
erences to books, chapters, sections and other types of publications
concerned with the PSP and the TSP. In order to encompass a larger
number of articles, we also performed a crossed search. That is, we
searched for articles that cited any of those articles found by means of
our initial search strategy. In this second search we employed the same
libraries as in the original search. The search chain employed consists
of three parts. The first part is related to the manners of referring to the
PSP. The second part considers synonyms of “adaptation”, i.e. different
manners of referring to changes of the PSP. Finally, the third part refers
to “use of Formal Methods”. The first part is thus mandatory, whereas
the second and third parts are both admissible. Therefore we arrive at
the following: (PSP or “personal software process”) and ((adapting or
extending or over or incorporating) or (“formal methods” or “design by
contract”)) In applying the search chain on the search engines, we dis-
covered that the acronym PSP is used within a large variety of subjects,
which makes the search return very many irrelevant results. Therefore
we decided to eliminate the option “PSP”, on the basis of the consid-
eration that “personal software process” is likely to appear either in the
title or in the abstract of the articles we aimed at. Therefore the search
chain finally used is the following:

Instituto de Computación | 3

(“personal software process”) and ((adapting or extending or over
or incorporating) or (“formal methods"’ or “design by contract”))

2.4 Criteria of inclusion and exclusion

The author of the present review evaluated each of the articles re-
trieved by both the automatic and manual search. In evaluating an
article, we considered its title, keywords and abstract. Those articles
for which at least one of the following conditions is verified are to be
excluded:

• The article does not focus on the Personal Software Process.

• It is a book or book chapter.

• It is a duplicate of one coming from a different source.

• It is not written in English.

2.5 Quality Control

We expect to find a very low number of articles satisfying the criteria of
inclusion, and so we decide not to perform a quality check on them.
Nevertheless, in a hypothetical quality check list we should include:

• That the adaptations proposed are presented in a clear and com-
plete manner.

• That the article is published in a pertinent journal or conference.

• That the article has been cited.

2.6 Data Extraction and Synthesis

The data to be extracted from the selected articles are the following:

• Title

• Kind of publication (journal, magazine, conference, workshop)

• Year of publication

• Abstract

• Results/Conclusions

The data synthesis will consist in classifying the articles on the basis
of our research questions, i.e. in: articles adapting PSP by incorporat-
ing Formal Methods, articles adapting PSP in any other respect, and
articles using Formal Methods together with PSP without making any
adaptation of the latter. The results will be studied as related work of
the present thesis.

4 | InCo/Pedeciba-2013 TR:xxxx

2.7 Results

During the conduct of the systematic review we identified studies. We
use the search string on the selected search engines on 07/03/2013. On
the IEEE repository, after eliminating contents of types Books & eBooks,
31 results are obtained. On EBSCO results are filtered so as to avoid
those contained in CAB Abstracts 1990-Present, Dentistry & Oral Sci-
ences Source, MEDLINE and Ovid Journals. Then 34 results are ob-
tained. Using SCOPUS the items belonging to the areas Life Sciences
and Health Sciences are excluded, getting 20 results. Finally, on the
Springer repository, by including only Computer Science and English
articles, 20 results are obtained. In “A Bibliography of the Personal Soft-
ware Process (PSP) and the Team Software Process (TSP)” one article
is found that proposes to adapt PSP incorporating the use of Formal
Methods. This article was also found on EBSCO and IEEE. In the TSP
Symposium one article was found that did not appear in the searches
conducted on the other sources, and an oral presentation. Eliminating
duplicates, the overall results of the primary search are as follows:

• EBSCO 34 articles

• Springer 19 articles

• Scopus 18 articles

• IEEE 29 articles

• TSP Symposium 1 article, 1 oral presentation

After applying the criteria of inclusion and exclusion, there remained
2 articles from the Scopus base, 1 from IEEE, and 1 article and 1 oral
presentation from TSP Symposium. Next, the data corresponding to the
4 articles found are presented. They all propose adaptations to the
PSP; three of them propose adaptations that incorporate the use of
formal methods. We also present the information related to the oral
presentation in TSP Symposium that proposes to incorporate to the PSP
integration techniques based on models. We got in touch with the
authors via email in order to obtain some additional written material
on the proposal, but it was not available.

Title: Integrating pair programming into a software development
process

Authors: Williams, L.
Type of article: Conference
Year: 2001
Abstract: Anecdotal and statistical evidence indicates that pair pro-

grammers - two programmers working side-by-side at one computer,
collaborating on the same design, algorithm, code or test - outperform
individual programmers. One of the programmers, the driver, has con-
trol of the keyboard/mouse and actively implements the program. The
other programmer, the observer, continuously observes the work of the
driver to identify tactical (syntactic, spelling, etc.) defects, and also
thinks strategically about the direction of the work. On demand, the

Instituto de Computación | 5

two programmers can brainstorm any challenging problem. Because
the two programmers periodically switch roles, they work together as
equals to develop software. This practice of pair programming can be
integrated into any software development process. As an example, this
paper describes the changes that were made to the Personal Software
Process (PSP) to leverage the power of two programmers working to-
gether, thereby formulating the Collaborative Software Process (CSP).
The paper also discusses the expected results of incorporating pair pro-
gramming into a software development process in which traditional,
individual programming is currently used [7].

Conclusions: They described the changes made to the PSP to yield
the CSP. These changes involved: 1) updating process scripts to docu-
ment the role of the driver and the observer; 2) adapting data collec-
tion forms and analysis reports and 3) altering design and code review
procedures. Making these explicit changes to the process cause sev-
eral implicit, but beneficial, changes to the development environment.

Title: A Combination of a Formal Method and PSP for Improving Soft-
ware Process: An Initial Report

Authors: Kusakabe, S., Omori, Y. and Araki K.
Type of article: Symposium TSP
Year: 2012
Abstract: Software process is important for producing high-quality

software and for its effective and efficient development. The Personal
Software Process (PSP) provides a method for learning a concept of
personal software process and for realizing an effective and efficient
process by measuring, controlling, managing, and improving the way
we develop software. PSP also serves as a vehicle to integrate ad-
vanced software engineering techniques, including formal methods,
into one’s own software development process. While formal methods
are useful in reducing defects injected into a system, by mathemati-
cally describing and reasoning about the system, engineers may have
difficulties integrating formal methods into their own software develop-
ment processes. We propose an approach in which engineers use PSP
to introduce formal methods into their software processes. As our initial
trial, we followed one of our graduate students as he tried to improve
his personal process with this approach. He measured and analyzed his
own process data from PSP for Engineers-I, and proposed and experi-
mented with an improved software process with a formal method, the
Vienna Development Method (VDM). The experimental results indicate
he could effectively reduce defects by using VDM.

Conclusions: Kusakabe, Omori, and Araki proposed an approach
in which developers use PSP as a framework of software process im-
provement to introduce formal methods into their software process for
realizing effective and efficient development of high-quality software.
They reported one initial trial of the introduction of formal methods into
personal process based on PSP. According to the process data in the
trial, the developer spent more time in Design and less time in Test. He
successfully reduced the number of defects he had focused on without
decreasing his productivity.

6 | InCo/Pedeciba-2013 TR:xxxx

Title: Adapting the Personal Software Process (PSP) to formal meth-
ods.

Authors: Babar, A. , Potter, J.
Type of article: Conference
Year: 2005
Abstract: The goal of good software engineering practice is to de-

liver reliable, high-quality software on-time and on-budget. In this pa-
per we advocate the combination of two modern approaches to-
wards achieving this goal. On the one hand, with an eye to soft-
ware quality, we consider adopting a state-based formal development
method, the B-method. In terms of tool support and industry adoption,
this is the most advanced such method. On the other, aimed at im-
proving the development practices of individual developers, we con-
sider the adoption of the Personal Software Process (PSP). To our knowl-
edge this combination of formal methods and PSP has not been con-
sidered before; we term our special version of the combination B-PSP.
We present a re-design of the PSP data collection and analysis tasks
specifically geared towards the B-Method. Although we support the
general framework of PSP, we also believe that developers do not en-
joy having their creative and thinking process being interrupted by the
need to regularly log activities. With this in mind, we present the PSP
tasks in a style which should be acceptable to B developers. We view
the results of this paper as a specification for some of the data logging
and analysis requirements of a B-PSP-based development [1].

Conclusions: Babar and Potter combine Abrial’s B Method with PSP
into B-PSP. They add the phases of Specification, Auto Prover, Anima-
tion, and Proof. A new set of defect types is added and logs are mod-
ified so as to incorporate data extracted from the B machine’s struc-
ture. The goal of this work is to provide the individual B developers with
a paradigm of measurement and evaluation that promotes reflection
on the practice of the B method, inculcating the habit of recognizing
causes of defects injected so as to be able to avoid these in the future.
We have had no notice about further results of this research. In com-
parison to B, our chosen formal method is significantly lighter and so,
we expect, easier to incorporate into actual industrial practice.

Title: VDM over PSP: A Pilot Course for VDM Beginners to Confirm its
Suitability for Their Development

Authors: Suzumori, H., Kaiya, H., Kaijiri, K.
Type of article: Conference
Year: 2003
Abstract: Although formal methods seem to be useful, these is no

clear way for beginners to know whether the methods are suited for
them and for their problem domain, before using the methods in prac-
tice. We propose a method to confirm the suitability of a formal
method. The method is realized as a pilot course based on the PSP. A
course mentioned in this paper is designed for a typical formal method,
VDM. Our course also helps beginners of VDM to learn VDM gradually
and naturally. During the course, they can confirm its suitability as fol-
lows; First, they practice several exercises for software development,
while techniques of VDM are introduced gradually. Second, process

Instituto de Computación | 7

data and product data of software development are recorded in each
exercise. Third, by evaluating these data by several metrics, they can
confirm the suitability of VDM for their work [6].

Conclusions: They propose the combination of VDM and PSP. The
Design phase is modified incorporating the formal specification in the
VDM-SL language. Besides, the phases of VDM-SL Review, Syntax
Check, Type Check and Validation are added. A prototype course is
proposed in which each student is to carry out nine exercises applying
VDM on the PSP. Data thereby collected shows that about 90% of the
defects are eliminated before the Code Review phase. A conclusion
is then that the use of VDM contributes to eliminate defect injection
during design. After this work was concluded, the research was discon-
tinued for reasons internal to the organization.

Title: Integrating Model-Driven Engineering Techniques in the Per-
sonal Software Process

Authors: Pascoal, J.
Type of article: Symposium TSP
Year: 2012
Abstract: The authors propose an approach based on MDE (Model-

Driven Engineering) for generating code from models with the objec-
tive of checking the quality of the models. The approach consists in
developing structural models MDD (for instance, class skeletons) and
developing models of partial behavior MBT that are sufficient for gen-
erating tests. The PSP is modified to incorporate the construction of the
models and the generation of model based tests [5].

Conclusions: The authors conclude that theirs is a “PSP friendly" pro-
posal, which promotes the realization of precise and easily revisable
designs at a low cost in terms of script modifications. It is designed to
bring short term productivity and quality benefits

Finally, we performed the crossed search on EBSCO, Springer, Sco-
pus e IEEE, for the articles citing any of the 4 found in the original search,
which did not add any article to the search results. Using Scopus we
found that the articles incorporating the formal method B and VDM
into PSP are not mentioned in any other article. Using Springer and EB-
SCO those two articles are not found. Finally using IEEE we found that
the VDM article is quoted in the one using the B formal method in PSP,
whereas the latter is not mentioned in any article. The article “A Com-
bination of a Formal Method and PSP for Improving Software Process:
An Initial Report” TSP Symposium, is not found by any sources Springer /
EBSCO / IEEE / Scopus. Therefore is not possible to know if it was cited.
Finally, using Scopus and Springer we found that the article incorpo-
rating pair programming to PSP is cited by the articles “Contemporary
peer review in action: Lessons from open source development” and “A
Repository of Agile Method Fragments” respectively. However these ar-
ticles do not focus on PSP. Using IEEE we found that the article is cited
by other two articles: “A multiple case study on the impact of pair pro-
gramming on product quality” and “Heterogeneous and homogenous
pairs in pair programming: an empirical analysis”, which also focus on
the PSP. When searching on EBSCO the article that incorporating pair
programming to PSP is not found.

8 | InCo/Pedeciba-2013 TR:xxxx

2.8 Discussion

We summarize the main conclusions arising from the systematic review.
The goal of the review was getting to know the adaptations to the PSP
that have been proposed and, in particular, finding out whether any of
them proposed to incorporate the use of formal methods. One of the
works found proposes to modify the PSP to carry out pair programming
in the software development process. The new process is called Col-
laborative Software Process (CSP). The authors explain how the scripts,
templates and forms of the PSP are adjusted to incorporate pair pro-
gramming. In particular, they describe the modifications that are re-
quired to distinguish the tasks corresponding to each role (developer
and observer) and the times at which role switch has to be accom-
plished. Another modification is the use of two design check lists and
two code check lists, one for each role. The oral presentation at the TSP
Symposium proposes an adaptation to integrating Model-Driven Engi-
neering Techniques in the PSP. The proposed process modifies the de-
sign phase for including the development of a design model that de-
scribes the external structure of the system and its behavior. This model
is to be subsequently refined for describing the internal structure of the
system and its behavior. The phase of Design Review incorporates the
checking of the model by using a static analysis tool. Finally, the phases
of Code and Unit Test incorporate partial generation of code from the
models as well as model based test generation. The other articles pro-
pose adaptations to the PSP that incorporate the use of Formal meth-
ods. Babar and Potter propose a new process called B-PSP that in-
corporates the B formal method. The proposal by Suzumori, Kaiya y
Kaijiri, as well as that by Kusakabe, Omori and Araki, propose the use
of VDM within the PSP. All the proposals found modify scripts, templates
and forms in order to give support to the new processes. CSP maintains
the same development phases of the PSP, incorporating to them the
roles of observer and developer. The proposal that integrating model-
driven engineering techniques also maintains the same phases of the
PSP, modifying several of them to incorporate code and test genera-
tion as well as model checking. The proposal VDM over PSP (VDM-PSP)
both adds and modifies phases of the development process. This is
the same as in our proposal, PSPV DC . VDM-PSP modifies the Design
phase to incorporate formal specification in the VDM-SL language. Af-
ter formal specification, the phase of Design Review of the PSP is car-
ried out. After that, new phases are to be performed: syntax review,
syntax check, type check and validation. During syntax review, the
user checks the specifications for syntax defects. Besides, a Tool box
automatically carries out syntax review, type checking and validation.
In this proposal they do not apply proof techniques because VDM-PSP
is intended to be carried out by inexperienced students. As different
from VDM-PSP, in PSPV DC we decided to add a new phase aimed at
formal specification. This makes it possible to obtain information of time
spent, defects injected and removed only as a consequence of formal
specification. The VDM-SL syntax review phase in VDM-PSP is similar to
that of formal specification review in PSPV DC . Both have as goal to

Instituto de Computación | 9

remove the defects injected during the formal specification. The syn-
tax review and type checking phases, as performed automatically by
a tool, could be considered similar to the formal specification compile
phase of PSPV DC . The validation phase is not clearly presented by the
authors. We understand that in this phase the specification is checked
with respect to the user’s requirements, using a convenient support tool.
This phase can be considered similar to the review of the formal spec-
ification of PSPV DC . PSPV DC also includes Test case construct and
Pseudo code phases which the VDM proposal does not specify. Figure
1 shows the phases of each process. The colors and arrows indicate
how PSPV DC phases can be mapped on those of VDM over PSP.

Figure 1: Phases of proposals PSPV DC and VDM over PSP

The proposal by Kusakabe, Omori and Araki incorporates the for-
mal method VDM with its various formal specification languages and a
toolkit that enables syntax checking, type checking, the use of an inter-
preter and the generation of test obligations. The proposal maintains
the same phases that PSP, modifying:

• the design phase to incorporate formal specification using any of
the specification languages (eg VDM + +) and

• design review phase, to incorporate the use of the VDM toolkit.

As mentioned earlier, this differs from PSPV DC , where we decided to
perform the specification and the specification review in new phases.
It is not clear in their proposal in which phase the proof obligations are
generated. In PSPV DC this is done during the Proof phase. We be-
lieve their proposal is incomplete, which makes comparison difficult. We

10 | InCo/Pedeciba-2013 TR:xxxx

contacted the authors via email for more information but have got no
response. Figure 2 presents the phases of each process. Colors and ar-
rows indicate how PSPV DC phases can be mapped onto those of the
proposal by Kusakabe, Omori and Araki.

Figure 2: Phases of proposals Kusakabe, Omori and Araki, and PSPV DC

The B-PSP proposal incorporates Specification, Auto Prover, Anima-
tion and Auto Proof phases. During the specification the B-machines
are specified using the B formal language. Later, Auto Prover and An-
imation phases are performed with the assistance of the B toolkit. The
basic syntax checking and dependency between machines is con-
trolled, generating proof obligations and providing animation. During
the Auto Proof an interactive proof of correctness is carried out, using
the B toolkit. B-PSP also proposes generating code automatically, but
does not explain how that phase is performed. The proposal eliminates
the design, design review, code, code review, compile and unit test
phases, but does not clarify whether the activities undertaken during
these are made in some of the new phases. When comparing B-PSP
with PSPV DC , we note that the specification activity is proposed in both
cases as a new phase, allowing to collect information about cost and
specific defects of that phase. We note that no specification review
is performed in B-PSP. PSPV DC , on the other hand, proposes a formal
specification review that allows to detect early injected defects. The

Instituto de Computación | 11

syntax control activity performed during the Auto Prover and the Ani-
mation phase in B-PSP are carried out in the formal specification review
and formal specification compilation phases in PSPV DC . Finally, the
Auto Proof phase in B-PSP is analogous to the PSPV DC Proof phase,
seeking to generate the proof with the assistance of tools. The figure 3
illustrates the correspondence between the phases of both proposals.

Figure 3: of proposals B-PSP and PSPV DC

3 Conclusiones

We present a systematic review of the literature that attempts to sum-
marize the existing information on the adjustments made to the PSP
and particularly those incorporating formal methods. Only 5 articles are
found that propose adaptations of the PSP. 3 of them are adaptations
of the PSP for the use of formal methods; the other two adapt the PSP to
the use of pair programming techniques and integrating model-driven
engineering techniques respectively. Unfortunately, the three papers
that incorporate formal methods have not presented the full proposed
process and do not refer to any technical report doing so to which

12 | InCo/Pedeciba-2013 TR:xxxx

we can access. Because of that, it is not possible to make a thorough
comparison between these processes and PSPV DC . Nevertheless, we
have compared the various phases of the corresponding processes. As
detailed in the preceding section, some of the adaptations to the PSP
bear similarities to our proposal, while others do not. Different adapta-
tions allow different degrees of granularity of the data collected. The
two proposals that incorporate the VDM to the PSP are very different
in the way they perform the adaptation. One adds several phases to
the process to incorporate the specification and use of tools, while the
other has the same phases of the original PSP, incorporating further ac-
tivity to these. Our proposal PSPV DC is one possible way of adapting
PSP by incorporating design by contract. There may be several other
proposals for the same purpose. To determine whether PSPV DC pro-
duces improvements in individual development process remains now
for us to investigate.

Bibliography

[1] A. Babar and J. Potter. Adapting the personal software process (psp) to for-
mal methods. In Australian Software Engineering Conference (ASWEC’05),
2005. 2.7

[2] W. S. Humphrey. PSP: A Self-Improvement Process for Software Engineers.
Addison-Wesley Professional, 2005. 2.1

[3] B. Kitchenham. Guidelines for performing systematic literature reviews in
software engineering. In EBSE Technical Report EBSE-2007-01, 2007. 1, 2

[4] S. Moreno, A. Tasistro, D. Vallespir, and W. Nichols. Pspvdc: An adaptation of
the psp that incorporates verified design by contract. In TECHNICAL REPORT

CMU/SEI-2013-TR-005 ESC-TR-2013-005, 2013. 2.1
[5] J. Pascoal. Integrating model-driven engineering techniques in the per-

sonal software process. In TSP Symposium 2012, St. Petersburg, FL, 2012. 2.7
[6] H. Suzumori, H. Kaiya, and K. Kaijiri. Vdm over psp: A pilot course for vdm

beginners to confirm its suitability for their development. In 27th Annual

International Computer Software and Applications Conference, 2003. 2.7
[7] L. Williams. Integrating pair programming into a software development pro-

cess. In Software Engineering Education Conference, 2001. 2.7

Instituto de Computación | 13

