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Abstract. In the Model-Driven Engineering (MDE) paradigm, software quality strongly depends on a (semi)automatic

construction process driven by models and model transformations, which must be reliable and robust, since the tiniest

error may grow and negatively impact in subsequent steps.

To cope with verification issues, a separation of duties between software developers is usually proposed. In general

terms, MDE experts define models and transformations, while formal verification experts conduct the verification pro-

cess. This view is often aided by (semi)automatic translations form the MDE elements to their formal representation

in the semantic domain used by the verification experts. From a formal perspective, this requires semantic-preserving

translations between the MDE elements and the chosen semantic domain.

The aim of this paper is to present formal semantics for the MetaObject Facility and the Query/View/Transformation

Relations languages which are standard languages for defining metamodels and model transformation, respectively.

The semantics are based on the Theory of Institutions and reflect the conformance relation between models and meta-

models, and the satisfaction of transformation rules between pairs of models. The theory assists in the definition of

semantic-preserving translations between institutions, specially between our institutions and other logics (first-order

logic, rewriting logic, modal logic, etc.) which will be used for verification.
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Abstract. En el paradigma de Ingeniería Dirigida por Modelos (Model-Driven Engineering, MDE), la calidad del

software depende fuertemente de un proceso de construcción (semi)automático guiado por modelos y transforma-

ciones de modelos, que debe ser confiable y robusto, dado que el menor error puede crecer e impactar negativamente

en pasos subsecuentes.

Para lidiar con aspectos de verificación, una separación de responsabilidades entre desarrolladores es usualmente

propuesta. En términos generales, los expertos en MDE definen modelos y transformaciones, en tanto expertos en

verificación formal conducen el proceso de verificación. Esta visión es generalmente asistida por traducciones (semi)

automáticas de los elementos de MDE a la correspondiente representación formal en el dominio semántico utilizado

por los expertos en verificación. Desde una perspectiva formal, esto requiere de de traducciones que preserven la

semántica entre los elementos de MDE y el dominio semántico elegido.

El objetivo de este artículo es presentar una semántica formal para los lenguajes MetaObject Facility y

Query/View/Transformation Relations que son lenguajes estándar para definir metamodelos y transformaciones de

modelos, respectivamente. La semántica está basadas en la Teoría de Instituciones y refleja la relación de conformidad

entre modelos y metamodelos, y la satisfacción de reglas de transformación entre pares de modelos. La teoría asiste

en la definición de traducciones que preservan la semántica entre instituciones, especialmente entre nuestras institu-

ciones y otras lógicas (lógica de primer orden, lógica de reescritura, lógica modal, etc.) que serán utilizadas para la

verificación.

Palabras clave: MOF, QVT-Relations, semántica formal, Teoría de Instituciones, verificación formal



1 Introduction

The Model-Driven Engineering paradigm (MDE, [Ken02,Sch06]) envisions a software development life-cycle driven

by models representing different views of the system to be constructed. Its feasibility is based on the existence of a

(semi)automatic construction process driven by model transformations, starting from abstract models of the system

and transforming them until an executable model is generated. The Object Management Group (OMG, [OMG]) has

conducted a standardization process of languages for MDE. They defined the MetaObject Facility (MOF, [OMG03])

as the language for metamodeling as well as three transformation languages with different transformation approaches.

In particular, the Query/View/Transformation Relations (QVT-Relations, [OMG09]) language follows a relational ap-

proach which consists on defining transformation rules as mathematical relations between source and target elements.

Since the quality of the whole development process strongly depends on the quality of the models and model trans-

formations, verification is a must, and in some cases formal methods arise as a tool for strengthening verification

results. To cope with this situation, a separation of duties between software developers is usually proposed. On the

one side there are those experts in the MDE domain, and on the other, those in formal verification. This gives rise to

different technological spaces [KBA02], i.e. working contexts with a set of associated concepts, body of knowledge,

tools, required skills, and possibilities. In general terms, MDE experts define models and transformations, while formal

verification experts conduct the verification process, often aided by some (semi)automatic generation process which

translates the MDE elements to their formal representation in the semantic domain used for verification purposes.

We are exploring a comprehensive formal environment enabling this scheme. This environment requires semantic-

preserving translations between the MDE elements and the chosen semantic domain. Moreover, different logics (e.g.

modal logic, rewriting logic, predicate logic) can be used by verification experts. In this context, the biggest problem is

perhaps the maintenance of multiple formal representations of the same MDE elements and the complexity of linking

different semantic domains to perform a comprehensive verification using multiple semantic domains.

The aim of this paper is to present formal semantics for the MOF and the QVT-Relations languages in a flexible

way to solve the problems described before. We base our proposal on the heterogeneous specification approach

[CKTW08,Mos05], which consists in having different mathematical formalisms for expressing different parts of the

overall problem and defining semantic-preserving mappings in order to allow “communication” between the for-

malisms. This approach uses as a basis the Theory of Institutions [GB84]. Using this theory we define institutions

to represent the conformance relation between MOF models and metamodels and the satisfaction of QVT-Relations

transformation rules between pairs of models. The theory also assists in the definition of semantic-preserving transla-

tions between our institutions and other logics (first-order logic, rewriting logic, modal logic, etc.) which will be used

for verification.

Related Work There are many works defining the semantics of MOF and the conformance relation between models

and metamodels, e.g. [BM09,CLST10,Fav09,SZ09]. These works usually define the semantics in terms of a shallow

embedding of the language by providing a syntactic translation into another one (e.g. into first-order logic [SZ09]

or rewriting logics [BM09]). We, on the contrary, do not want to depend on a general logic but to define a generic

and minimal infrastructure allowing translations to other logics as needed. There are also some works with an al-

gebraic/institutional approach. In [OW09] the authors propose an algebraic representation of metamodels based on

many-sorted algebras, without an explicit representation of models within formulas. Moreover, in [BKMW08] the

authors propose to define concrete institutions for any specific metamodel involved in a transformation. Unlike this

work, we prefer to define a generic institution in order to specify transformations for any possible metamodel. Finally,

in [CK08,JKMR13] the authors define institutions for simple and stereotyped UML Class Diagrams. We adapt those

works for the purpose of defining the institution for the conformance relation.

With respect to QVT-Relations, there are also works (e.g. [ABK07,BHM09,LR11,SMR11]) defining the semantics of

QVT-Relations in terms of a shallow embedding of the language by providing a syntactic translation into another one.

As said before we do not follow this approach. In [BKMW08] transformations are represented as institution comor-

phisms, which is somehow restrictive since it assumes a semantic relation between metamodels. Finally, in [GdL12]

the authors present a formal semantics for the QVT-Relations check-only scenario based on algebraic specification
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and category theory. The definition of the institution is much more complex than ours and the work does not envision

a scenario in which the elements of the transformation are translated to other logics for verification.

Organization The remainder of the paper is structured as follows. In Section 2 we introduce the elements involved

in the MDE technical space which will be part of this work and we introduce a running example. Then, in Section 3

we summarize the general schema we follow for defining formal semantics based on the Theory of Institutions. In

Section 4 we formally define an institution for MOF, and in Section 5 we define the institution for QVT-Relations.

Then, in Section 6 we present an alternative definition of both institutions simplifying some of the definitions. Finally,

in Section 7 we present some conclusions and guidelines for future work.
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2 An Introduction to the MDE Technical Space

In MDE everything is a model, i.e. an abstraction of the system or its environment. Every model conforms to a

metamodel, i.e. a model which introduces the syntax and semantics of certain kind of models. In the same way, a

metamodel conforms to some metametamodel. A metametamodel is usually self-defined, which means that it can be

specified by means of its own semantics. Model transformations (or just transformations from now on) can also be

considered as models conforming to a transformation metamodel. A transformation basically takes as input a model

conforming to certain metamodel and produces as output another model conforming to another metamodel (possibly

the same). This very simple transformation schema is summarized in Figure 1, and can be extended to consider

bidirectional transformations or to take more than one source model as input and/or produce multiple target models as

output, among other extensions, as studied in [CH06].

Fig. 1: An overview of a model transformation

The MetaObject Facility (MOF, [OMG03]) is a standard language for metamodeling, which has a close relation with

UML Class Diagrams [OMG05]. In few words, a metamodel defines classes which can belong to a hierarchical struc-

ture and some of them must be defined as abstract (there are no instances of them). Any class has properties which

can be attributes (named elements with an associated type which can be a primitive type or another class) and associa-

tions (relations between classes in which each class plays a role within the relation). Every property has a multiplicity

constraining the number of elements that can be related through the property.

Besides a metamodel usually defines a modeling language which has a concrete syntax, it is possible to represent a

model using the same languages as for metamodels. Moreover, for representing models (which are a kind of “instance”

of a metamodel) and instances of models, there is the graphical representation provided by UML Object Diagrams

[OMG05]. In some cases, there are conditions (called invariants) that cannot be captured by the structural rules of

these languages, in which case modeling languages are supplemented with another logical language, e.g. the Object

Constraint Language (OCL, [OMG10]).

Let us consider the following example which is a simplified version of the well-known Class to Relational transforma-

tion [OMG09]. The metamodel on the left side of Figure 2 defines UML class diagrams, where classifiers (classes and

primitive types as string, boolean, integer, etc.) are contained in packages. Classes can contain one or more attributes

and may be declared as persistent, whilst attributes have a type that is a primitive type. On the other side, relational

models conform to the metamodel on the right side of Figure 2. Every schema contains a number of tables and each ta-

ble has a number of columns. Each column has a name and a kind, which can be the primary keys of the corresponding

table.

With respect to model transformations, the OMG defines three languages with different transformation approaches.

In particular, the Query/View/Transformation Relations (QVT-Relations, [OMG09]) follows a relational approach

which consists on defining transformation rules as mathematical relations between source and target elements. A

transformation can be viewed as a set of interconnected relations which are of two kinds: top-level and non-top-level.

Top-level relations must hold in any transformation execution whilst non-top-level ones are required to hold only when
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Fig. 2: Source and target metamodels of the example

they are referred from another relation. For the purpose of this work we can view a relation as having the following

abstract structure [OMG09]:

[top] relation R

{

<R_var_set> <R_par_set>

Domain

{

<domain_k_var_set>

<domain_k_pat>

} //k = 1,2

[when <when_var_set> <when_cond>]

[where <where_cond>]

}

where:

– <R_var_set> is the set of variables occurring in the relation.

– <domain_k_var_set> ⊆ <R_var_set> is the set of variables occurring in domain k (k = 1,2).

– <when_var_set> ⊆ <R_var_set> is the set of variables occurring in the when clause.

– <R_par_set> ⊆ <R_var_set> is the set of variables taken as parameters

– <domain_k_pat> is the pattern to be checked in domain the k (k = 1,2)

– <when_cond> and <where_cond> represent the when and where clauses

Although transformations can be defined between multiple metamodels at the same time, in this work we will only

consider a source and a target metamodel. We neither considered:

– black-box operations (there is an advanced feature not commonly used in practice)

– rule and transformation overriding (there are advanced features not commonly used in practice)

– auxiliary functions and queries (there is syntactic sugar)

– keys definition (there are used for object creation not within the checking semantics)

6



A pattern is used to find matching sub-graphs in a model and can be viewed as a graph, where typed pattern elements

are the nodes of the graph and pattern links are the edges, together with a predicate which is a boolean expression.

The predicate may refer to variables other than the pattern elements (those in <domain_k_var_set>); these are

the free variables of a pattern. A pattern can be represented as follows.

Pattern =

{

e1: <classname1>, e2: <classname2> ... en:<classnameN>

l1 : <assoc1> (ei, ej) ... lm:<assocM>(eu, ew)

where <predicate>

}

We simplfy the pattern structure by not considering:

– opposite roles in object templates (they can be expressed as conditions within a template)

– collection templates (they are advanced features not commonly used in practice)

A when clause specifies the conditions under which the relationship needs to hold, whilst the where clause specifies

the condition that must be satisfied by all model elements participating in the relation, and it may constrain any of the

variables in the relation and its domains. The when and where clauses, as well as the <predicate> of a pattern,

may contain arbitrary boolean OCL expressions in addition to the relation invocation expressions.

Finally, any relation can define a set of primitive domains which are data types used to parameterize the relation. In

this sense, top-level relations can be parametric when called from a when clause, whereas non-top-level relations are

always parametric since they are called for given source and target domains elements.

We customize the standard checking semantics and take the first and second patterns as the source and target patterns,

respectively. Thus, a rule holds if for each valid binding of variables of the when clause and variables of domains

other than the target domain, that satisfy the when condition and source domain patterns and conditions, there must

exist a valid binding of the remaining unbound variables of the target domain that satisfies the target domain pattern

and where condition. More formally, using |<var_set>| as a binding of variables of the set <var_set>, and

<exc_domain_k_var_set> as the variables of domain k that do neither occur in the other domain nor the when

clause, the rule holds if:

∀ |< when_var_set >|,

( < when_cond > →

∀ |< R_var_set >\(< when_var_set > ∪ < exc_domain_2_var_set >)|,

( < domain_1_pat > →

∃ |< exc_domain_2_var_set >|,

( < domain_2_pat > ∧ < where_cond >)))

The example transformation basically describes how persistent classes within a package are transformed into tables

within a schema. Attributes of a class are transformed into columns of the corresponding table, and the primary key is

defined by default. Below we show the transformation specification defined in QVT-Relations.
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transformation umlToRdbms(uml:SimpleUML, rdbms:SimpleRDBMS)

{

top relation PackageToSchema {

pn: String;

domain uml p:Package {name=pn};

domain rdbms s:Schema {name=pn};

}

top relation ClassToTable {

cn, prefix: String;

domain uml c:Class {namespace=p:Package {},

kind=’Persistent’, name=cn};

domain rdbms t:Table {schema=s:Schema {}, name=cn,

column=cl:Column {name=cn+’_tid’, type=’NUMBER’},

key=k:Key {name=cn+’_pk’, column=cl}};

when {

PackageToSchema(p, s);

}

where {

prefix = ’’;

AttributeToColumn(c, t, prefix);

}

}

relation AttributeToColumn {

an, pn, sqltype: String;

domain uml c:Class {attribute=a:Attribute {name=an,

type=p:PrimitiveDataType {name=pn}}};

domain rdbms t:Table {column=cl:Column {name=cn,

type=sqltype}};

primitive domain prefix:String;

where {

cn = if (prefix = ’’) then an else prefix+’_’+an endif;

sqltype = if (pn=’INTEGER’)

then ’NUMBER’

else if (pn=’BOOLEAN’)

then ’BOOLEAN’ else ’VARCHAR’

endif

endif;

}

}

}

In Figure 3 there is an example of a source model and its corresponding target model. The source model is composed

by a persistent class of name ID within a package of name Package. The class has an attribute of name value and

type String which is a primitive type. The forward execution of the transformation gives the target model which

contains a schema of name Package with a table of name ID, which corresponds to the package and class in the

source model. The table has two columns, one of name value and type VARCHAR corresponding to the string attribute

in the source class, and another which is a default primary key without any correspondence in the source model.
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Fig. 3: Source and target models for the example

3 An Environment for Verification

We are exploring a comprehensive formal environment for the formal verification of different aspects of a model

transformation using heterogeneous verification approaches [CS13]. The environment is based on representing models

(from now on SW-models), metamodels, the conformance relation, transformations and verification properties in some

consistent and interdependent way following the heterogeneous specification approach [CKTW08,Mos05].

This approach is based on providing Institutions for the languages which are part of the environment. The concept of

Institution [GB84] was originally introduced to formalize the notion of logical system. In fact, many different logics as

first-order, higher-order, modal, rewriting, among others have been shown to be institutions. Informally, an institution

consists of a collection of signatures (vocabularies for constructing sentences in a logical system), signature morphisms

(allowing many different vocabularies at once), a collection of sentences and models (providing semantics) for a given

signature, and a satisfaction relation of sentences by models, such that when signatures are changed (by a signature

morphism), satisfaction of sentences by models changes consistently.

The formal definition of an institution relies on Category Theory [Lan98]. As defined in [ST12], an institution consists

of:

1. a category Sign of signatures;

2. a functor Sen : Sign → Set, giving a set Sen(Σ) of Σ-formulas for each signature Σ ∈ |Sign| 3 and a function

Sen(σ):Sen(Σ1)→ Sen(Σ2) translating Σ1-formulas to Σ2-formulas for each signature morphism σ : Σ1 → Σ2;

3. a functor Mod : Sign → Catop, giving a category Mod(Σ) of Σ-models for each signature Σ ∈ |Sign| and a func-

tor Mod(σ):Mod(Σ2)→ Mod(Σ1) translating Σ2-models to Σ1-models (and Σ2-morphisms to Σ1-morphisms)

for each signature morphism σ : Σ1 → Σ2;

4. for each signature Σ ∈ |Sign|, a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ);

such that for any signature morphism σ : Σ1 → Σ2 the translation Mod(σ) of models and Sen(σ) of formulas preserve

the satisfaction relation, that is, for any ϕ ∈ Sen(Σ) and M2 ∈ |Mod(Σ2)|:

M2 |=Σ2 Sen(σ)(ϕ) iff Mod(σ)(M2) |=Σ1 ϕ

In Figure 4 there is a graphical representation of these elements and their relations. In the left side there is a representa-

tion of the categories defined for signatures (Sign), formulas (Set) and models (Catop) and the functors relating them,

as well as the satisfaction relation which relates formulas and models. In the right side there is a signature morphism

σ allowing a change of notation between signatures Σ and Σ′. Sentences translate in the same direction as the change

of notation, whereas models translate in the opposite direction. Because reversing the direction of morphisms gives

a contravariant functor, the definition below uses Catop, the opposite of the category of categories. The satisfaction

condition states that truth is invariant under change of notation [GB92].

3 |C| is the collection of objects of a category C
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(b) The satisfaction condition

Fig. 4: Graphical view of an institution

The notion of an institution can be used to represent any specification language since it provides ways of representing

the syntax and semantics of the language, as well as the relation between them by means of a satisfaction relation

between them, as in [CKTW08]. In this work we provide an institution for QVT-Relations check-only unidirectional

transformations. This kind of transformations only checks if a target model is the result of transforming the source SW-

model according to the transformation rules. This institution needs a representation of SW-models and metamodels,

therefore we first define an institution for MOF for expressing the conformance relation between them.

In order to use our institutions for verification purposes, there are two alternatives. The first one is to extend the

institutions from a proof-theoretic point of view by defining a logic. A logic LOG = (Sign, Sen, Mod, |=, ⊢) is an

institution (Sign, Sen, Mod, |=) equipped with an entailment system ⊢ that is, a relation ⊢Σ⊆ P (Sen(Σ)) × Sen(Σ)
for each Σ ∈ Sign, such that some properties are satisfied. Particularily, the entailment system must be sound, i.e.

Ψ ⊢Σ ϕ implies Ψ |=Σ ϕ. In some cases the entailment system can also be complete, i.e. Ψ |=Σ ϕ implies Ψ ⊢Σ ϕ.

The second alternative is to formally translate our institutions into another logic. This can be done through institution

comorphisms [GR02], which capture how a weaker and poorer institution can be represented in a stronger and richer

one. The importance of comorphisms is such that it is possible (in some cases) to re-use (borrow) the entailment

systems of an institution in order to prove properties. As pointed out in [Mos05], “if we have a sound proof calculus

for entailment in J , and if we have an institution comorphism ρ : I → J admitting borrowing of entailment for I,

we can use the proof calculus also for proving entailment concerning I-specifications in J : we just have to translate

our proof goals.”

We will take the second alternative by defining comorphisms from our institutions to a host logic and supplement

this information with properties specified in the host logic. In particular, we are in the process of defining a comor-

phism to the Common Algebraic Specification Language (CASL, [MHST03]), a general-purpose specification lan-

guage. The institution underlying CASL is the sub-sorted partial first-order logic with equality and constraints on sets

SubPCFOL=, a combination of first-order logic and induction with subsorts and partial functions. The importance

of CASL is that it is the main language within the Heterogenous Tool Set (Hets, [Mos05]), which is a tool meant to

support heterogeneous multi-logic specifications. Hets allows defining the institutions and comorphisms, and also pro-

vides proof management capabilities for monitoring the overall correctness of a heterogeneous specification whereas

different parts of it are verified using (possibly different) proof systems. Hets already supports several interconnected

logics which is shown in Figure 5.

To the best of our knowledge, Hets does not support the MDE paradigm, i.e. it does not have specific languages for the

specification of MDE elements. We plan to include our institutions as logics in Hets, in such a way that a developer can

import a transformation, use Hets to specify additional verification properties which must be addressed, and perform

the verification assisted by the tool. We can use CASL together with some of the other logics in the graph of logics

currently supported by Hets.
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Fig. 5: Basic graph of logics and logic translations within Hets

3.1 Defining the Institutions

In Section 4 we define the institution for the conformance relation for a generic metamodeling language equivalent

to MOF, basing our proposal on the institution defined for UML class diagrams in [CK08,JKMR13]. We adapt the

definitions with the purpose of representing metamodels. Unlike [CK08], in our definition:

– there are no derived relations (not used in transformations),

– the signature has an explicit representation of abstract classes,

– the signature has an explicit representation of datatypes,

– there are only 2-ary properties (associations and attributes),

Moreover, unlike MOF, we do not consider aggregation, uniqueness and ordering properties within a property end,

operations on classes, or packages. Properties and operations are not commonly used within transformations, whereas

packages are just used for organizing metamodel elements. We also use an explicit syntactic representation of SW-

models following the schema introduced in [SZ09], which is shown in Figure 6. This allows using concrete SW-models

information for verification purposes, as we will see later.

Fig. 6: The conformance relation as an institution
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From any metamodel we can derive a signature with a representation of types and properties (attributes and associa-

tions), and a set of axioms stating invariants which must hold on every conforming SW-model. Up to now we have

considered multiplicity constraints. However, it will be possible to add other kind of constraints through comorphisms

as will be explained later on. Formulas are composed by these axioms and a representation of a potentially conforming

SW-model. In few words, any formula represents a SW-model structurally conforming to the metamodel and the set

of constraints that must apply in order to achieve full conformance.

Any institution model (from now on just model) is a semantic representation of a potentially conforming SW-model.

The model is composed by objects and relations between them. However, we want to prove conformance with respect

to the formula representing the SW-model. In this sense, we can reduce the model with respect to the formula such

that elements and properties in such model are those with a corresponding element in the formula.

This allows us to define the satisfaction relation answering the question: does the SW-model conform to the meta-

model?. The model satisfies the corresponding formula if: (a) the SW-model has a correspondence with the model

(isomorphic with respect to the reduced model), and (b) the reduced model satisfies the multiplicity constraints.

In Section 5 we also define an institution for QVT-Relations check-only unidirectional transformations. Any transfor-

mation can be viewed as a set of interconnected relations which must hold. For the definition of this institution we

follow the schema shown in Figure 7.

Fig. 7: A model transfromation as an institution

The institution takes the institutional representation of the source and target elements and supplements the formulas

with a representation of the transformation rules. In this case, the satisfaction relation also answers the question: is the

target SW-model the result of transforming the source SW-model according to the transformation rules? For defining

the satisfaction relation we use the standard checking semantics defined in [OMG09].

Finally, in Section 6 we present an alternative approach to the definition of both institutions. We basically change

the definition of signatures in the MOF institution in close relation with the ideas presented in [JKMR13], in which

instances (class objects and type values) are represented within the signature instead of within the formulas. This

change simplifies several definition.
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The Object Constraint Language As mentioned before, the when and where clauses, as well as the <predicate>

of a pattern, may contain arbitrary boolean OCL expressions. From a formal perspective we would rather have an in-

stitution for OCL which would allow us to use the language not only for constraining the transformation rules, but also

for expressing general constraints on metamodels and transformations. Unfortunately there is no institution for OCL,

and defining one is not an easy task, so is left for future work.

In our examples we consider an institution for first-order logic with equality (FOL=) as defined in [ST12]. With this

decision we are not losing expressive power (there are works [BKS02] with the aim of expressing OCL into first-

order logic). In FOL=, signatures are many-sorted algebraic signatures enriched with predicate symbols of the form

(S, Ω, Π) where S is a set (of sort names), Ω = (Ωw,s)w∈S∗,s∈S is a family of sets (of operation names with their

arities and result sorts indicated just as in algebraic signatures) and Π = (Πw)w∈S∗ is a family of sets (of predicate

or relation names with their arities indicated). Signature morphisms are as usual between elements in the signatures.

Moreover, sentences are first-order formulae built out from atomic formulas using the standard propositional connec-

tives (∧,∨,⇒,⇔,¬) and quantifiers (∀, ∃). The atomic formulae are equalities of the form t = t′, where t and t′ are

(S,Ω)-terms (possibly with variables) of the same sort, atomic predicate formulae of the form p(t1, ..., tn), where

p ∈ Πs1...sn
and t1, ..., tn are terms (possibly with variables) of sorts s1, ..., sn, respectively, and the logical constants

true and false. Models are many-sorted first-order structures, i.e. consisting of a carrier set |D|s for each sort name

s ∈ S, a function fD for each operation name f ∈ Ω, and a relation pD for each p ∈ Π . Finally, the satisfaction rela-

tion is the usual satisfaction of a first-order sentence in a first-order structure. The formulas can also include variables

Xs = (Xs)s ∈S , so for the satisfaction relation we consider variable assignments µs : Xs → |D|s for each s ∈ S.

Recursive Model Transformations We need to forbid cycles of rule invocations to avoid infinite recursion. Notice

that when and where clauses conform a potentially cyclic graph of dependencies between transformation rules.

Cycles are however not problematic unless the satisfaction of a rule involving a set of SW-model elements depends

recursively on its own satisfaction. In this case we have infinite recursion which cannot be handled by our proposal.

We thus assume that recursion is well-founded, i.e. no rule will be called twice in the same chain of dependencies for

the same set of elements. This constraint ensures well-foundness since we always have a finite set of element in any

SW-model. Another alternative evaluated in [GdL12] is to forbid cycles of dependencies to avoid infinite recursion.

However, this alternative is too restrictive in practice.
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4 An Institution for MOF

In this section we present the formal definition of an institution IC for the conformance relation for a generic meta-

modeling language equivalent to MOF. As said before, this definition is based on the institution for UML class dia-

grams defined in [CK08], but adapted for representing metamodels. Along the definition we will illustrate the concepts

introduced with the example presented in Section 2.

4.1 Signatures and Formulas

A class hierarchy is a partial order C = (C, ≤C) where C is a set of class names, and ≤C ⊆ C × C is the subclass

(inheritance) relation. By T(C) we denote the type extension of C by primitive types and type constructors. T(C) is

likewise a class hierarchy (T (C), ≤T (C)) with C ⊆ T (C) and ≤C ⊆ ≤T (C). As in [JKMR13], in order to provide

generic access to primitive types, like Boolean, and String, we treat these as built-ins with a standard meaning (they

must defined within T (C)). All other classes are assumed to be inhabited, i.e., to contain at least one object. However,

unlike [JKMR13] in which is assumed the existence of an object null, we impose that if c ∈ C |abstract then there

exists another c′ ∈ T (C) in the hierarchy such that c′ ≤T (C) ... ≤T (C) c and c′ /∈ C |abstract having at least one

object.

As we mentioned before, from a metamodel we can derive a signature Σ = (T, P) declaring:

– a type extension of a finite class hierarchy T = (T (C), ≤T (C), C|abstract) extended with a subset C|abstract ⊆ C
denoting abstract classes, and

– a properties declaration (attributes and associations) P = (R, P ) where R is a finite set of role names and P is a

finite set (pw)w∈(R×T (C))×(R×T (C)) of property names indexed over pairs of a role name and a class (or type)

name, such that for any class or type name c ∈ C, the role names of the properties in which any c′ ≤T (C) c is

involved are all different4. If pw ∈ P with w = ((r1, c1)(r2, c2)), we write p(r1 : c1, r2 : c2) ∈ P .

Example

From the class metamodel in Figure 2 we can derive a signature (T, P) such that T is a type extension based on a

class hierarchy trivially derived from the classes and hierarchical relations within the metamodel, and extended

with the built-in type String.

T (C) = {UMLModelElement, Package, ..., String}
≤T (C) = {Package ≤T (C) UMLModelElement, ...}

C|abstract= {UMLModelElement}

P = (R, P ) where

R = {namespace, elements, type, typeOpposite, ...}

P = {contains(namespace : Package, elements : Classifier),
name(UMLModelElement : UMLModelElement, name : String),
typeOf(typeOpposite : Attribute, type : PrimitiveDataType), ...}

4 Formally, if p(r1 : c1, r2 : c2) and q(s1 : d1, s2 : d2) are properties in P and ck = dl ∈ T (C), then ri Ó= sj for any i Ó= k and

for any j Ó= l (1 ≤ i ≤ 2, 1 ≤ j ≤ 2)
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From a metamodel, it is also possible to derive a set of formulas constraining the set of SW-models conforming to

it. Unlike [CK08], the set of formulas is complemented with the representation of a SW-model. In few words, any

formula represents a SW-model structurally conforming to the metamodel and the set of constraints that must apply in

order to achieve full conformance. Formally, given a signature as defined before, and variables (Xc)c∈T (C) verifying

Xc1 ⊆ Xc2 , if c1 ≤T (C) c2 (i.e. in accordance with the inheritance relation), the set Φ of Σ-formulas is defined by

Φ ::= (Obj∗, Rel∗, φ∗)
Obj ::= ze

Rel ::= rel(pw, xc, yd)
φ ::= #Π = n | n ≤ #Π | #Π ≤ n

Π ::= R • P

where c, d, e ∈ T (C), xc, yd ∈ Obj∗, xc ∈ Xc, yd ∈ Xd, ze ∈ Xe, pw ∈ P , w = (r1, c)(r2, d), n ∈ N. We use • as

the select/partition operator in Π representing the selection of the elements in the opposite side of role R in property P .

A SW-model is represented by a set Obj∗ of variables indexed by class and type names which are a syntactic rep-

resentation of object and values, together with a set of relations connecting these elements. A relation of the form

rel(pw, xc, yd) is well-typed and states that the elements xc and yd are related through the property pw. Up to now

we have only considered multiplicity constraints. However, it is possible to add other kind of constraints through

comorphisms, as explained before.

Example

The formula ϕ = (Obj, Rel, φ) corresponding to the axioms extracted from the metamodel plus the SW-model

in Figure 3 is defined by

– Obj = {p, c, a, pdt, Package, Persistent, String, ID, value, NULL} with each of these elements indexed

by its corresponding class and type names

– Rel = {rel(contains, p, c), rel(contains, p, pdt), rel(has, c, a), rel(type, a, pdt), rel(name, p, Package),
rel(kind, c, Persistent), rel(name, pdt, String), ...}

– φ = {#(UMLModelElement • name) = 1, #(UMLModelElement • kind) = 1,
#(elements • contains) = 1, #(attribute • has) = 1, ...}.

Let Σi = (Ti, Pi) (i = 1, 2) with Ti = (T (Ci), ≤T (Ci), Ci |abstract) and Pi = (Ri, Pi). A signature morphism

σ : Σ1 → Σ2 is a triple of maps 〈σT , σR, σP 〉 between class names, role names, and property names, such that the

following conditions hold:

– a ∈ C1 implies σT (a) ∈ C2,

– a ∈ T (C1)\C1 implies σT (a) ∈ T (C2)\C2,

– a, b ∈ T (C1) with a≤T (C1)b implies σT (a)≤T (C2)σT (b),

– a ∈ C1|abstract implies σT (a) ∈ C2|abstract,

– pw ∈ P1 implies σP (p)σ(w) ∈ P2, where σ is the canonical extension of σT and σR to words in (R × T (C))(R ×
T (C)).

Given a set of variables X2 = (Xc2
2 )c2∈T (C2), we define a set X2 |σ= X1 = (Xc1

1 )c1∈T (C1) by Xc1
1 = X

σ(c1)
2 .

Signature morphisms extend to formulas over Σ1 and X2|σ as follows. Given a Σ1-formula ϕ = (Obj, Rel, Φ), σ(ϕ)
is the canonical application of the signature morphism to every element in the sets Obj, Rel and Φ such that:

– σ(xc) = xσ(c)

– σ(rel(pw, xc, yd)) = rel(σP (p)σ(w), xσ(c), yσ(d))
– σ(r • p) = σR(r) • σP (p)
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As stated in [CK08], it is easy to show that the composition of signature morphisms is a signature morphism, that

composition is associative, and identities are signature morphisms. Thus, signatures and signature morphisms define

a category. Moreover, there is a functor Sen giving a set of formulas for each signature and a function translating

sentences for each signature morphism. Proofs of these results can be found in Appendix A.

4.2 Models

Given a class hierarchy C = (C, ≤C), a C-object domain O is a family (Oc)c∈C of sets of object identifiers verifying

Oc1
⊆ Oc2

if c1 ≤C c2. Given moreover a type extension T, the value extension of a C-object domain O = (Oc)c∈C by

primitive values and value constructions, which is denoted by V
T

C
(O), is a T(C)-object domain (Vc)c∈T (C) such that

Vc = Oc for all c ∈ C. We consider disjoint sets of objects within the same hierarchical level, in particular, if c1 ≤C c
and c2 ≤C c, then Oc1 ∩ Oc2 = ∅.

From now on, let us consider a fixed signature Σ = (T, P) with T = (T (C), ≤T (C), C|abstract) and P = (R, P ).

A Σ-interpretation I consists of a pair (V
T

C
(O), A) where

– V
T

C
(O) = (Vc)c∈T (C) is a T(C)-object domain such that c2 ∈ C|abstract implies Oc2

=
⋃

c1≤C c2
Oc1

, and

– A contains a relation pI ⊆ Vc1
× Vc2

for each relation name p(r1 : c1, r2 : c2) ∈ P with c1, c2 ∈ T (C)

Example

An interpretation I can be defined as follows:

– A T(C)-object domain consisting of

VClass = {c1, c2}
VPrimitiveDataType = {pdt1, pdt2}

VClassifier = VClass ∪ VPrimitiveDataType

VPackage = {p1}
VAttribute = {a1, a2, a3}

VUMLModelElement = VClassifier ∪ VPackage ∪ VAttribute

VString = {Pac, Str, Per, nul, ID, val}

– A set A consisting of relations:

containsI = {(p1, c1), (p1, c2)(p1, pdt1), (p1, pdt2)}
nameI = {(p1, Pac), (c1, ID), (c2, nul), (a1, val), ...

kindI = {(p1, nul), (c1, P er), (c2, P er), ...
typeI = {(a1, pdt1), (a2, c2), (a3, pdt1)}

...

Given variables X = (Xc)c∈T (C), a valuation β = (βc)c ∈T (C) assigns values to variables, i.e., βc : Xc → V c for

every c ∈ T (C) such that:

– for every xc ∈ Xc with c ∈ C, βc(x) ∈ Oc

– for every xc ∈ Xc with c ∈ T (C)\C, βc(x) ∈ V c\Oc

– for every xc, yc ∈ Xc, βc(x) Ó= βc(y)

We can extend the valuation for sets, i.e. given a set S ⊆
⋃

c∈T (C) Xc, β(S) = {βc(x) | x ∈ S}.
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Example

We can define a valuation βc such that:

βPackage(p) = p1
βClass(c) = c

βAttribute(a) = a
βPrimitiveDataType(pdt) = pdt

βString(Package) = Pac
βString(ID) = ID

βString(Persistent) = Per
βString(String) = Str
βString(value) = val

βString(NULL) = nul

Given a Σ-interpretation I = (V
T

C
(O), A), the interpretation evaluates relations as follows: if p(r1 : c1, r2 : c2) then

(ri • p)I = {{t ∈ pI | πi(t) = o} | o ∈ Vci
} (i = 1, 2). The evaluation (ri • p)I gives a set of sets of pairs of semantic

elements connected through property p, grouped by the semantic elements having role ri. Note that this set can be

empty if the element with role ri is not connected with any one.

Example

The property contains(namespace : Package, elements : Classifier) represents that a package contains classi-

fiers. The interpretation I has the following interpretation of this property:

containsI = {(p1, c1), (p1, c2)(p1, pdt1), (p1, pdt2)}, such that there is only one package object p1, and it con-

tains two classes (c1 and c2) and two primitive datatype objects (pdt1 and pdt2). This interpretation evaluates

(namespace • contains)I as the set {{(p1, c1), (p1, c2), (p1, pdt1), (p1, pdt2)}} since there is only one object

with role namespace which is the package object p1, and those elements in the opposite side of the property are

those in containsI .

Given a Σ-formula ϕ = (Obj, Rel, Φ), a Σ-interpretation I = (V
T

C
(O), A), and a valuation β, we can reduce an

interpretation with respect to a formula by defining an interpretation I |(ϕ,β) = (V
T

C
(O

′), A
′) such that elements and

properties in such interpretation are those with a corresponding element in the formula, i.e.

– V
T

C
(O

′) = (Vc)c∈T (C) ⊆ V
T

C
(O) with

⋃
c(Vc)c∈T (C) = β(Obj)

– A
′ = {pI(βc(x), βd(y)) ∈ A | rel(p, xc, yd) ∈ Rel}

In other words, since a model can be ’bigger’ than the SW-model represented within the formula, it is reduced to

coincide with the interpretation of the formula. We need this reduced model to prove whether the formula conforms to

the metamodel. This is because we will only use the information within the model to state whether the constraints hold

or not. In this sense, if the model provides more elements than those used for interpreting the SW-model represented

within the formula, we can have the case in which the model satisfies the formula, but the SW-model does not conform

with the metamodel. As an example of this, consider a SW-model with two elements of classes A and B and a link

between them, and a multiplicity constraint of cardinality 1-2 between A and B. We can see that the SW-model does

not conform to the metamodel, since we have only one element of class B linked to the element of class A. However,

if we consider a model with an interpretation of those elements, plus one object of class B with a relation to the object

of class A, this model does conform to the metamodel.
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Example

The reduction of the interpretation with respect to the formula is as follows. We filter some elements, e.g. class

c2, since they do not have a syntactic representation within the formula.

– A T(C)-object domain consisting of

VClass = {c1}
VPrimitiveDataType = {pdt1}

VClassifier = VClass ∪ VPrimitiveDataType

VPackage = {p1}
VAttribute = {a1}

VUMLModelElement = VClassifier ∪ VPackage ∪ VAttribute

VString = {Pac, Str, ID, Per, val, nul}

– A set A consisting of relations:

containsI = {(p1, c1), (p1, pdt1)}
nameI = {(p1, Pac), (c1, ID), (a1, val), (pdt1, Str)}

kindI = {(c1, P er), (pdt1, nul), (p, nul), (a, nul)}
typeOfI = {(a1, pdt1)}

hasI = {(c1, a1)}

Given Σ-interpretations I = (V
T

C
(O), A) and I ′ = (V

T

C
(O)′, A

′), a Σ-homomorphism h : I → I ′ is a family of maps

(hc)c∈T (C) with hc : Vc → V ′
c such that

– hc(v) ∈ O′
c forall v ∈ Oc

– hc(v) ∈ V ′
c \O′

c forall v ∈ Vc\Oc

– (v1, v2) ∈ pI iff (hc1
(v1), hc2

(v2)) ∈ pI′

for any vi ∈ Vc (i=1,2) for any p(r1 : c1, r2 : c2) ∈ P .

As stated in [CK08], we can show that Σ-homomorphisms can be composed, and that the composition of Σ-homomorphisms

is associative. There also exists identity Σ-homomorphisms. Thus, Σ-interpretations and Σ-homomorphisms define a

category (see Appendix A).

4.3 Satisfaction Relation

Given a signature Σ, a multiplicity constraint ϕ, and a Σ-interpretation I, the interpretation satisfies ϕ, written I |= ϕ,

if one of the following conditions holds:

– ϕ is #(r • p) = n and |S| = n for all S ∈ (r • p)I

– ϕ is n ≤ #(r • p) and n ≤ |S| for all S ∈ (r • p)I

– ϕ is #(r • p) ≤ n and |S| ≤ n for all S ∈ (r • p)I

This means that the number of elements related through a property p with any element with role r in such property,

satisfy the multiplicity constraints.

Finally, given a signature Σ, a Σ-formula ϕ and a Σ-interpretation I we need to state the satisfaction relation. As

the reader can notice, SW-models are well-typed by construction but may not satisfy the constraints. In this sense, the

interpretation satisfies the formula if: (a) the SW-model has a correspondence with the interpretation I (isomorphic

with respect to the reduced interpretation), and (b) the reduced interpretation satisfies the multiplicity constraints.

Formally, given a signature Σ = (T, P) with T = (T (C), ≤T (C), C |abstract) and P = (R, P ), a Σ-formula ϕ =
(Obj, Rel, Φ) with variables X = (Xc)c∈T (C), a valuation β = (βc)c∈T (C), and a Σ-interpretation I = (V

T

C
(O), A),

the satisfaction relation I, β |=Σ ϕ holds if:
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– ∀ rel(p, xc, yd) ∈ Rel, ∃ pI(βc(x), βd(y)) ∈ A

– ∀ ϕ ∈ Φ. I|(ϕ,β)|= ϕ

Example

Now, we can check that I, β |=Σ ϕ since:

– for all rel(p, xc, yd) ∈ Rel, there exists pI(βc(x), βd(y)) ∈ A

for rel(contains, p, c), (p1, c1) = (β(p), β(c)) ∈ containsI

for rel(contains, p, pdt), (p1, pdt1) = (β(p), β(pdt)) ∈ containsI

for rel(has, c, a), (c1, a1) = (β(c), β(a)) ∈ hasI

for rel(typeOf, a, pdt), (a1, pdt1) = (β(a), β(pdt)) ∈ typeOfI

for rel(name, p, Package), (p1, Pac) = (β(p), β(Package)) ∈ nameI

for rel(name, c, ID), (c1, ID) = (β(c), β(ID)) ∈ nameI

for rel(kind, c, Persistent), (c1, P er) = (β(c), β(Persistent)) ∈ kindI

for rel(name, a, value), exists (a1, val) = (β(a), β(value)) ∈ nameI

for rel(name, pdt, String), exists (pdt1, Str) = (β(pdt), β(String)) ∈ nameI

– I|(ϕ,β)|= ϕ for all ϕ ∈ Φ
• #(UMLModelElement • name) = 1 and |S| = 1

for all S ∈ (UMLModelElement • name)I = {{(p1, Pac)}, {(c1, ID)}, {(a1, val)}, {(pdt1, Str)}}

• #(UMLModelElement • kind) = 1 and |S| = 1
for all S ∈ (UMLModelElement • kind)I = {{(c1, P er)}, {(pdt1, nul)}, {(a, nul)}, {(p, nul)}}

• #(elements • contains) = 1 and |S| = 1
for all S ∈ (elements • contains)I = {{(p1, c1)}, {(p1, pdt1)}}

• #(attribute • has) = 1 and |S| = 1
for all S ∈ (attribute • has)I = {{(c1, a1)}}

• #(typeOpposite • typeOf) = 1 and |S| = 1
for all S ∈ (typeOpposite • typeOf)I = {{(a1, pdt1)}}

Given signatures Σi = (Ti, Pi) (i = 1, 2), a signature morphism σ : Σ1 → Σ2, and a Σ2-interpretation I =

(V
T

C
(O), A), the reduct I|σ of I along σ is the Σ1-interpretation I1 = (V

T

C
(O|σ), A|σ) with

– V
T

C
(O|σ) = (Vσ(c))c∈T (C1)

– A|σ = {σp(p)I | p ∈ P1}

Moreover, given Σ2-interpretations I2 = (V
T

C
(O2), A2) and I ′

2 = (V
T

C
(O2)′, A

′
2), I1 denoting I2 |σ and I ′

1 denoting

I ′
2|σ , and a Σ2-homomorphism h2 : I2 → I ′

2, the reduct h2|σ of h2 along σ is the Σ1-homomorphism h1 : I1 → I ′
1

defined by h1c
(v) = h2σ(c)

(v) for any c ∈ T (C1), for any v ∈ Vc. It is possible to check that h1 is indeed a Σ1-

homomorphism, since h2 is a homomorphism and h2|σ is defined for elements in T (C1).

As stated in [CK08], we can show that the reduct defines a functor (Lemma 4), and thus there is a functor Mod giving

a category of interpretations for each signature and a functor defined by the reduct (Lemma 5).

Given variables X = (Xc)c∈T (C) and given a valuation β for X in I , the reduct of β along σ is a valuation for X|σ

(as defined before) in I|σ defined by (β|σ)c(xc)
def
= βσ(c)(xσ(c)).

19



Finally, given signatures Σi, a signature morphism σ : Σ1 → Σ2, a Σ2-interpretation I, a Σ2-valuation β, and a

Σ1-formula ψ, the following satisfaction condition holds (see Appendix A).

I|σ, β|σ|=Σ1
ψ iff I, β |=Σ2

σ(ψ)

Given that the satisfaction condition holds we can state that IC consisting of signatures, morphisms, formulas, inter-

pretations, reducts, and the satisfaction relation, defines an institution.
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5 An Institution for QVT-Relations

We finally introduce an institution IQVT for QVT-Relations check-only unidirectional transformations, and then we

continue illustrating the concepts introduced with the example presented in Section 2.

5.1 Signatures and Formulas

A signature in IQVT is a triple 〈ΣC
1 , ΣC

2 , ΣFOL〉 with IC-signatures ΣC
i = (Ti, Pi) (i = 1, 2) such that Ti =

(T (Ci), ≤T (Ci), Ci|abstract) and Pi = (Ri, Pi), representing the source and target metamodels of the transformation,

and a FOL= signature ΣFOL such that there are sorts for every type (
⋃

i T (Ci) ⊆ S) and there is a predicate for each

property declaration (
⋃

i Pi ⊆ Π). We assume that there are no name clashes (types, roles and properties) between

source and target metamodels. In fact, if a transformation has the same source and target metamodels, we can use a

prefix to identify elements on each side. A signature morphism is defined as a triple of morphisms of the corresponding

institutions 〈σC
1 , σC

2 , σFOL〉.

Example

The signature Σ = 〈ΣC
1 , ΣC

2 , ΣFOL〉 contains the signature ΣC
1 of the source metamodel, which is the one

presented in the last subsection, the signature ΣC
2 of the target metamodel, which is not shown here but can be

derived in the same way, and a FOL= signature ΣFOL with at least one sort for each type name in
⋃

i T (Ci)
and a predicate for each property in

⋃
i Pi.

A Σ-formula is of the form 〈ϕC
1 , ϕC

2 , ϕrules〉 such that ϕC
i is a ΣC

i -formula and ϕrules is a formula representing the

transformation specification.

Given a signature as defined before, and variables Xs = (Xs)s ∈S , a formula ϕrules is a tuple 〈Rules, top〉 such that

Rules is the set of transformation rules, and top ⊆ Rules the set of top rules of the transformation.

A rule Rule ∈ Rules is a tuple of the form 〈VarSet, Patterni (i = 1, 2), when, where〉 such that VarSet ⊆ Xs

is the set of variables of the rule, Patterni (i = 1, 2) are the source and target patterns, and when/where are the

when/where clauses of the rule, respectively. We will denote by k_VarSet the variables used in pattern k that do

neither occur in the other domain nor in the when clause.

A pattern Patterni (i = 1, 2) is a tuple 〈Ei, Ai, P ri〉 such that Ei ⊆ (Xc)c ∈Ci
is set of class-indexed variables,

Ai is a set of elements representing associations of the form rel(p, x, y) with p ∈ Pi and x, y ∈ Ei, and Pri is a

FOL=-formula.

A when clause is a pair 〈whenc, whenr〉 such that whenc is a FOL=-formula with variables in VarSet, and whenr

is a set of pairs of transformation rules and set of variables which are the parameters used for the invocation of each

rule. We will denote by WhenVarSet the set of variables ocurring in the when clause. Finally, a where clause is a

pair 〈wherec, wherer〉 such that wherec is a FOL=-formula with variables in VarSet, and wherer is a set of pairs of

transformation rules and set of variables (parameters used for the invocation of each rule). Only variables used in a

where clause (as prefix in the example) are contained in 2_VarSet.

Given a set of variables X2 = (Xs
2)s ∈S2

, we define a set X2 |σ= X1 = (Xs1
1 )s1∈S1

by Xs1
1 = X

σ(s1)
2 . Signature

morphisms extend to formulas over Σ1 and X2 |σ as follows. Given a Σ1-formula ϕ = 〈ϕC
1 , ϕC

2 , ϕrules〉, σ(ϕ) is

the canonical application of the signature morphism to every element in ϕ such that σ(ϕrules) is the componentwise

application of the FOL= and IC formula morphisms to every element in the rule.

We can show that the composition of signature morphisms is a signature morphism, that composition is associative,

and identities are signature morphisms. Thus, signatures and signature morphisms define a category. Moreover, there

is a functor Sen giving a set of formulas for each signature and a function translating sentences for each signature

morphism. Proofs of these results can be found in Appendix B.
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Example

A transformation between two SW-models is represented as a formula ϕ of the form 〈ϕC
1 , ϕC

2 , ϕrules〉 such that,

for example, ϕC
1 is the formula introduced in the last subsection, which represents the source SW-model in

Figure 3, ϕC
2 is another formula representing the target SW-model (not shown here), and ϕrules = 〈Rules, top〉

is the formula representing the transformation specification which is defined next.

The formula has three relations named PackageToSchema ∈ top,

ClassToTable ∈ top and AttributeToColumn.

PackageToSchema = 〈VarSet, Patterni (i = 1, 2), when, where〉 such that

– VarSet = {pn, p, s} with pn ∈ XString , p ∈ XP ackage, and s ∈ XSchema.

– Pattern1 = 〈E1, A1, P r1〉 with E1 = {p}, A1 = ∅, and Pr1 = Class::name(p,pn).

Remember that name(p, pn) is a property in the source metamodel, and thus a predicate in the FOL=

signature. Also observe that we use the class name as a prefix in order to avoid name clashing with those

names in the target metamodel.

– Pattern2 = 〈E2, A2, P r2〉 with E2 = {s}, A2 = ∅, and Pr2 = Relational::name(s,pn).

– when = 〈∅, ∅〉.

– where = 〈∅, ∅〉.

ClassToTable = 〈VarSet, Patterni (i = 1, 2), when, where〉 such that

– VarSet = {cn, prefix, c, p, Persistent, t, s, cl, NUMBER,
cn +′ _tid′, k, cn +′ _pk′} with c ∈ XClass, p ∈ XP ackage, t ∈ XT able, s ∈ XSchema, cl ∈ XColumn,

k ∈ XKey , and the others ∈ XString .

– Pattern1 = 〈E1, A1, P r1〉 with E1 = {c, p},

A1 = {rel(Class :: contains, p, c)}, and

Pr1 = Class::name(c,cn) AND Class::kind(c,Persistent).

– Pattern2 = 〈E2, A2, P r2〉 with E2 = {t, s, cl, k},

A2 = {rel(Relational :: contains, s, t), rel(Relational :: has, t, cl),
rel(Relational :: is, cl, k), rel(Relational :: has, t, k)}, and

Pr2 =

Relational::name(t,cn) AND

Relational::name(cl,cn+’\_tid’) AND

Relational::type(cl,NUMBER) AND

Relational::name(k,cn+’\_pk’)

.

– when = 〈∅, {(PackageToSchema, {p, s})}〉.

– where = 〈∅, {(AttributeToColumn, {c, t, prefix})}〉.
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Example

AttributeToColumn = 〈VarSet, Patterni (i = 1, 2), when, where〉 such that

– VarSet = {an, pn, cn, sqltype, c, a, p, t, cl, prefix, EMPTY, INTEGER,
NUMBER, BOOLEAN, VARCHAR, prefix +′ _′ + an} with

an, pn, cn, sqltype, prefix, EMPTY, INTEGER, NUMBER, BOOLEAN,
VARCHAR, prefix +′ _′ + an ∈ XString , c ∈ XClass, a ∈ XAttribute,

p ∈ XP rimitiveDataT ype, t ∈ XT able, and cl ∈ XColumn.

– Pattern1 = 〈E1, A1, P r1〉 with E1 = {c, a, p},

A1 = {rel(Class :: has, c, a), rel(Class :: typeOf, a, p)}, and

Pr1 = Attribute::name(a,an) AND Class::name(p,pn).

– Pattern2 = 〈E2, A2, P r2〉 with E2 = {t, cl},

A2 = {rel(Relational :: has, t, cl)}, and Pr2 =
Relational::name(cl,cn) AND Relational::type(cl,sqltype)

– when = 〈∅, ∅〉.

– where = 〈wherec, ∅〉 with wherec =

(((prefix = EMPTY) AND (cn = an)) OR

(not (prefix = EMPTY) AND (cn = prefix+’\_’+an))) AND

(((pn = INTEGER) AND (sqltype = NUMBER)) OR

((pn = BOOLEAN) AND (sqltype = BOOLEAN)) OR

(((not (pn = INTEGER) AND (not (pn = BOOLEAN))

AND (sqltype = VARCHAR)))

5.2 Models

A Σ-model is a triple 〈MC
1 , MC

2 , MFOL〉 of SignC
i (i = 1, 2) models, and a SignFOL first-order structure, such

that the interpretation of elements in SignC
i must be the same in MC

i and MFOL. This means that |D|t = Vt. ∀t ∈⋃
i T (Ci), and pD = pI . ∀p ∈

⋃
i Pi. In the case of t ∈ T (C)\C (primitive types) we have that Vt ⊆ |D|t since

MFOL can have more elements than those in the source and target institutions, as type constants (e.g. the empty string)

and elements created using type constructors from other elements (e.g. new strings using type constructor ++).

Given variables Xs = (Xs)s ∈S , the binding of a variable xc ∈ Xc, denoted by |xc|, is the set of any possible interpre-

tation of such variable which corresponds to the carrier set of the corresponding sort, i.e. |xc| = |D|c. Moreover, the

binding of a set of variables (x1, ..., xn), denoted by |(x1, ..., xn)|, is defined as {(y1, ..., yn) | yi ∈ |xi| (i = 1..n)}.

We can also view |(x1, ..., xn)| as a set of variable assignments. We denote by µ[x1, ..., xn] the function with an as-

signment for variables x1, ..., xn. We also denote by µ1 ∪ µ2 an assignment unifying the former ones, assuming that if

there is variable clash, the assignment takes for those variables the values in µ2.

Example

Binding of variables depends on the type of elements. If the variable is of a class, we have that the set of possible

values coincides with the set of elements within the MOF institutions, i.e. |D|t = Vt. For example, we have that

|p| = VPackage = {p1}. However, if the variable is of a primitive type, we have than Vt ⊆ |D|t since transforma-

tion rules can use other elements besides those in the MOF institutions, for example those strings created using

the type constructor ++. In the example, we have that |pn| = {Pac, Str, ID, Per, val, nul, pk, tid, numb, varch, ..., ID
+tid, ID + +numb, ...}
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Given signatures Σi = 〈ΣC
1 i, ΣC

2 i, ΣFOL
i〉 (i = 1, 2), a signature morphism σ : Σ1 → Σ2, and Σ2-models M =

〈MC
1 , MC

2 , MFOL〉 and M2 = 〈MC
1 2, MC

2 2, MFOL
2〉, homomorphisms and reducts are defined componentwise. A

Σ2-homomorphism h : M → M2 is defined as a triple of homomorphisms 〈hC
1 , hC

2 , hFOL〉 of the corresponding in-

stitutions. The reduct M|σ of M along σ is the Σ1-interpretation 〈MC
1 |σ, MC

2 |σ, MFOL|σ〉. Moreover, the reduct h|σ
of h along σ is the Σ1-homomorphism 〈hC

1 |σ, hC
2 |σ, hFOL|σ 〉. Notice that not every triple of reducts/homomorphisms

is valid, it must ensure the above property on models.

We can show that Σ-homomorphisms can be composed, and that the composition of Σ-homomorphisms is associative.

There also exist identity Σ-homomorphisms. Thus, Σ-models and Σ-homomorphisms define a category. We can also

show that the reduct defines a functor, and thus there is a functor Mod giving a category of models for each signature

and a functor defined by the reduct. Proofs of these results can be found in Appendix B.

Example

Assume that we have a model M = 〈MC
1 , MC

2 , MFOL〉 such that MC
1 = (I, β) as defined in the last subsec-

tion, MC
2 = (I ′, β′) is a model with direct correspondence with the SW-model in the right side of Figure 3, and

MFOL is a first-order structure.

5.3 Satisfaction Relation

A when clause 〈whenc, whenr〉 is satisfied with respect to a first-order structure MFOL and a variable assignment µ,

denoted by MFOL, µ |= 〈whenc, whenr〉 if

MFOL, µ |=FOL whenc ∧ (∀(r, v) ∈ whenr. MFOL, µ[v] |= r)

such that |=FOL is the satisfaction relation in FOL=, and the later is the satisfaction of the parametric transformation

rule r using the variable assignment µ[v] as a parameter. The satisfaction of a where clause is defined in the same

way.

A pattern Pattern = 〈E, A, Pr〉 is satisfied with respect to a first-order structure MFOL and a variable assignment

µ (which must include a valuation for the elements in E), denoted by MFOL, µ |= Pattern if there is a matching

subgraph and the predicate holds, i.e.

– ∀ rel(p, x, y) ∈ A. pD(µ(x), µ(y)) ∈ MFOL

– MFOL, µ |=FOL Pr

such that |=FOL is the satisfaction relation in FOL=.

A rule Rule = 〈VarSet, Patterni (i = 1, 2), when, where〉 is satisfied with respect to a first-order structure MFOL

and a variable assignment µ, denoted by MFOL, µ |= Rule if

1. If WhenVarSet = ∅

∀ µ1[x1, ..., xn] ∈ |VarSet\2_VarSet|,

( MFOL, (µ1[x1, ..., xn] ∪ µ) |= Pattern1 →

∃ µ2[y1, ..., ym] ∈ |2_VarSet|,

( MFOL, (µ1 ∪ µ2 ∪ µ) |= Pattern2 ∧

MFOL, (µ1 ∪ µ2 ∪ µ) |= where))

24



2. If WhenVarSet Ó= ∅

∀ µw[z1, ..., zo] ∈ |WhenVarSet|,

( MFOL, (µw[z1, ..., zo] ∪ µ) |= when →

∀ µ1[x1, ..., xn] ∈ |VarSet\(WhenVarSet ∪ 2_VarSet)|,

( MFOL, (µ1 ∪ µw ∪ µ) |= Pattern1 →

∃ µ2[y1, ..., ym] ∈ |2_VarSet|,

( MFOL, (µ1 ∪ µ2 ∪ µw ∪ µ) |= Pattern2 ∧

MFOL, (µ1 ∪ µ2 ∪ µw ∪ µ) |= where)))

As with the institution for the conformance relation, we can reduce the model with respect to a formula. Given a

formula ϕ = 〈ϕC
1 , ϕC

2 , ϕrules〉, and a model

M = 〈MC
1 , MC

2 , MFOL〉, we can define a model M|ϕ= 〈MC
1 |ϕ, MC

2 |ϕ, MFOL|ϕ〉 such that:

– MC
i |ϕ (i = 1, 2) is the reduction of MC

i = (Ii, βi) with respect to the formula ϕC
i , which is (Ii|(ϕC

i
,βi), βi), as

defined for the institution for the conformance relation.

– MFOL|ϕ is the structure such that |D|t = Vt. ∀t ∈
⋃

i T (Ci) with Vt ∈
⋃

i V
T

C
(Oi), and pD = p

I|
(ϕC

i
,βi) .

∀p ∈
⋃

i Pi, with Ii|(ϕi,βi) = (V
T

C
(Oi), Ai).

Example

The reduction MFOL |ϕ is the structure such that the carrier sets corresponding to the interpretation of type

names, and predicates, are those in Ii|(ϕi,βi) (i = 1, 2). This means that the model only has an interpretation

for those elements in the source and target SW-models, which is the same interpretation in the reduced source

and target models of the institutions.

The satisfaction relation is defined such that a model M satisfies ϕ, written M |=Σ ϕ, if MC
i |=C

ΣC
i

ϕC
i (i = 1, 2)

and M|ϕ |=Σ ϕrules. In other words, a model satisfies a formula if the SW-models conform to the corresponding

metamodels, and they fulfill the top transformation rules. In this case we reduce the model in order to only consider

elements with a representation within the formula. The satisfaction relation M |=Σ ϕrules is defined to hold if for all

Rulei ∈ top. MFOL, ∅ |= Rulei. We take ∅ as the empty variable assignment, since for rules it will be used only in

the case of non top and explicit called rules.

Example

We have that M |=Σ ϕ, if MC
i |=C

ΣC
i

ϕC
i (i = 1, 2) and M|ϕ |=Σ ϕrules. We already showed that MC

1 |=C
ΣC

1

ϕC
1 , and we can prove in the same way that MC

2 |=C
ΣC

2
ϕC

2 . Thus, we need to prove that M|ϕ |=Σ ϕrules, and

this holds if MFOL|ϕ, ∅ |= ClassToTable, and MFOL|ϕ, ∅ |= PackageToSchema.

We first prove that MFOL|ϕ ∅ |= PackageToSchema. We know that |pn| = {Pac, Str, ID, Per, val, nul, pk, tid, numb, varch, ...
and |p| = VPackage = {p1}, so |{pn, p}| is {(Pac, p1), (Str, p1), (ID, p1), (Per, p1), (val, p1), ...}. We also
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have that |s| = VSchema = {s1}. Thus, MFOL|ϕ, ∅ |= PackageToSchema if

∀ µ1[pn, p] ∈ {(Pac, p1), (Str, p1), (ID, p1), (Per, p1), (val, p1), (nul, p1), ...},

( MFOL|ϕ, µ1 |= Pattern1 →

∃ µ2[s] ∈ {s1},

( MFOL|ϕ, (µ1 ∪ µ2) |= Pattern2 ∧

MFOL|ϕ, (µ1 ∪ µ2) |= where))

For every µ1[pn, p] different from (Pac, p1) we have that Pattern1 does not hold, since it depends on the

predicate Class::name(p,pn). Thus, in these cases the rest of the implication holds. Now, in the case of

(Pac, p1), we have that Pattern1 holds, and that the only possible value for s is s1. In this case, we also have

that MFOL |ϕ, (µ1 ∪ µ2) |= Pattern2 since the predicate Relational::name(s,pn) holds. Note in the

left side of Figure 3 that the schema has the same name as the package, which is semantically represented as

Pac. Moreover, since the where clause is empty, MFOL |ϕ, (µ1 ∪ µ2) |= where trivially holds. Finally, we

conclude that MFOL|ϕ |= PackageToSchema indeed.

We now prove that MFOL|ϕ, ∅ |= ClassToTable. Proceeding in the same way, we have to prove that:

∀ µw[p, s] ∈ {(p1, s1)},

( MFOL, µw[p, s] |= when →

∀ µ1 ∈ |(cn, c, Persistent)|,

( MFOL, (µ1 ∪ µw) |= Pattern1 →

∃ µ2 ∈ |(prefix, t, cl, NUMBER, cn +′ _tid′, k, cn +′ _pk′)|,

( MFOL, (µ1 ∪ µ2 ∪ µw) |= Pattern2 ∧

MFOL, (µ1 ∪ µ2 ∪ µw) |= where)))

In this case we have a when clause which is the invocation of the relation

PackageToSchema with a concrete variable assignment for domain variables p and s. We proved above that

with this assignment MFOL |ϕ, µw[p, s] |= PackageToSchema holds. For proving MFOL, (µ1 ∪ µw) |=
Pattern1 we need to prove that Class :: containsD(µ(p), µ(c)) ∈ MFOL

since rel(Class :: contains, p, c) ∈ A, and also that MFOL, (µ1 ∪ µw) |=FOL

Class::name(c,cn) AND Class::kind(c,Persistent). This only holds with the variable as-

signment µ1[c, cn, Persistent] = (c1, ID, Per) and µw[p] = p1. In any other case, Pattern1 does not hold

and thus the rest of the expression holds.

Now, for proving MFOL, (µ1 ∪ µ2) |= Pattern2 we need to prove that

– Relational :: containsD(µ(s), µ(t)) ∈ MFOL

since rel(Relational :: contains, s, t) ∈ A,

– Relational :: hasD(µ(t), µ(cl)) ∈ MFOL

since rel(Relational :: has, t, cl) ∈ A,

– Relational :: isD(µ(cl), µ(k)) ∈ MFOL

since rel(Relational :: is, cl, k) ∈ A,

– Relational :: hasD(µ(t), µ(k)) ∈ MFOL

since rel(Relational :: has, t, k) ∈ A,

and also that MFOL, (µ1 ∪ µ2) |=FOL Pr2, with

Pr2 =
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Relational::name(t,cn) AND

Relational::name(cl,cn+’\_tid’) AND

Relational::type(cl,NUMBER) AND

Relational::name(k,cn+’\_pk’)

These hold with µ2[prefix, t, cl, NUMBER, cn +′ _tid′, k, cn +′ _pk′]
= (nul, t1, cl1, num, ID++_tid, k1, ID++_pk). Finally, with the variable assignment we have at the moment

(µ1 ∪ µ2 ∪ µw)[cn, c, p, Persistent, prefix, t, s, cl, NUMBER, cn +′ _tid′, k, cn +′ _pk′] =

(ID, c1, p1, P er, nul, t1, s1, cl1, num, ID + +_tid, k1, ID + +_pk) we can prove

MFOL, µ[c, t, prefix] |= AttributeToColumn.

As before, we have to prove that:

∀ µ1[...] ∈ |c, a, p, an, pn|,

( MFOL, (µ1[c, a, p, an, pn] ∪ µ[c, t, prefix]) |= Pattern1 →

∃ µ2[...] ∈ |cn, sqltype, t, cl, prefix, EMPTY, INTEGER,

NUMBER, BOOLEAN, VARCHAR, prefix +′ _′ + an|,

( MFOL, (µ1 ∪ µ2 ∪ µ) |= Pattern2 ∧

MFOL, (µ1 ∪ µ2 ∪ µ) |= where))

For every µ1[c, a, p, an, pn] different from (c1, a1, pdt1, val, Str) we have that Pattern1 does not hold, since

it depends on the predicate

Attribute::name(a,an) AND Class::name(p,pn). Thus, in these cases the rest of the expression

holds. Now, in the case of (c1, a1, pdt1, val, Str), we have that Pattern1 holds. In this case, there exists a vari-

able assignment

µ2[cn, sqltype, t, cl, prefix, EMPTY, INTEGER, NUMBER, BOOLEAN, VARCHAR, prefix +′ _′ + an] =

(val, varch, t1, cl2, nul, nul, int, numb, BOOL, V ARC, NUL_val) such that

MFOL|ϕ, (µ1 ∪ µ2 ∪ µ) |= Pattern2. This can be viewed in the left side of Figure 3, where the table t (semanti-

cally represented as t1) has a column c2 (semantically represented as cl2) with column name value (semantically

represented as val) and type VARCHAR (semantically represented as V ARC) which satisfies the predicate

Relational::name(cl,cn) AND Relational::type(cl,sqltype). Finally, the same variable

assignment satisfies the where clause since

(prefix = EMPTY) AND (cn = an), and also

(not (pn = INTEGER) AND (not (pn = BOOLEAN))) AND (sqltype = VARCHAR).

Finally, given signatures Σi, a signature morphism σ : Σ1 → Σ2, a Σ2-model M, a set of variables X2, and a

Σ1-formula ψ with variables in X2|σ , the following satisfaction condition holds (see Appendix B).

M|σ|=Σ1 ψ iff M |=Σ2 σ(ψ)

Given that the satisfaction condition holds we can state that IQVT consisting of signatures, morphisms, formulas,

interpretation, reducts, and the satisfaction relation, defines an institution.
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6 Alternative Institutions for MOF and QVT

In this section we present an alternative approach to the formal definition of the institutions IC and IQVT for the

conformance relation and QVT-Relations check-only unidirectional transformations, respectively. We basically change

the definition of IC signatures in close relation with the ideas presented in [JKMR13] in which instances (class objects

and type values) are represented within the signature instead of within the formulas, as defined in Figure 8. However, in

[JKMR13] there is no representation of links within the signature. This change simplifies several definition, e.g avoids

the need of reducing the interpretation with respect to the elements in the formula to prove the satisfaction relation.

Fig. 8: An alternative approach to the conformance relation as an institution

Along the definition we will illustrate the concepts introduced with the example presented in Section 2.

6.1 An Alternative Institution for MOF

In what follows we only present those definitions that change from the former ones.

A signature Σ = (T, P, M) declares:

– a type extension of a finite class hierarchy T = (T (C), ≤T (C), C|abstract) extended with a subset C|abstract ⊆ C
denoting abstract classes;

– a properties declaration (attributes and associations) P = (R, P ) where R is a finite set of role names and P is a

finite set (pw)w∈(R×T (C))×(R×T (C)) of property names indexed over pairs of a role name and a class (or type)

name, such that for any class or type name c ∈ C, the role names of the properties in which any c′ ≤T (C) c is

involved are all different; and

– a SW-model declaration (instances and links) M = (I, L) where I is a finite set of instances of the form o : c with

c ∈ T (C); and L is a finite set of links between instances of the form pw(x, y) with pw ∈ P , w = ((r1, c)(r2, d)),

x : c, y : d ∈ I .
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Example

From the class metamodel in Figure 2 and the SW-model in Figure 3 we can derive the signature (T, P, M) such

that:

T (C) = {UMLModelElement, Package, ..., String}
≤T (C) = {Package ≤T (C) UMLModelElement, ...}

C|abstract= {UMLModelElement}

P = (R, P ) where

R = {namespace, elements, type, typeOpposite, ...}

P = {contains(namespace : Package, elements : Classifier),
name(UMLModelElement : UMLModelElement, name : String),
typeOf(typeOpposite : Attribute, type : PrimitiveDataType), ...}

I = {p : Package, c : Class, a : Attribute, ..., String : String, NULL : String}
L = {contains(p, c), contains(p, pdt), has(c, a), type(a, pdt), name(p, Package),

kind(c, Persistent), name(pdt, String), ...}

Since the SW-model is now represented within the signature, the formulas only represent multiplicity constraints.

Thus, given a signature as defined before, any Σ-formula is defined by:

Φ ::= #Π = n | n ≤ #Π | #Π ≤ n
Π ::= R • P

where n ∈ N. The #-expressions return the number of links in a property when some roles are fixed. For this, we

use • as the select/partition operator in Π representing the selection of the elements in the opposite side of role R in

property P .

Example

The set of formulas ϕ corresponding to the metamodel in Figure 2 is defined by:

ϕ = {#(UMLModelElement • name) = 1, #(UMLModelElement • kind) = 1,
#(elements • contains) = 1, #(attribute • has) = 1, ...}.

Let Σi = (Ti, Pi, Mi) (i = 1, 2) with Ti = (T (Ci), ≤T (Ci), Ci|abstract), Pi = (Ri, Pi), and Mi = (Ii, Li). A signature

morphism σ : Σ1 → Σ2 is a tuple of maps 〈σT , σR, σP , σI〉 between class names, role names, property names, and

instances, such that the following conditions hold:

– a ∈ C1 implies σT (a) ∈ C2,

– a ∈ T (C1)\C1 implies σT (a) ∈ T (C2)\C2,

– a, b ∈ T (C1) with a≤T (C1)b implies σT (a)≤T (C2)σT (b),

– a ∈ C1|abstract implies σT (a) ∈ C2|abstract,

– pw ∈ P1 implies σP (p)σ(w) ∈ P2, where σ is the canonical extension of σT and σR to words in (R × T (C))(R ×
T (C)).

– o : c ∈ I1 implies σI(o) : σT (c) ∈ I2

– pw(x, y) ∈ L1 implies σP (p)σ(w)(σI(x), σI(y)) ∈ L2
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Signature morphisms extend to formulas over Σ1 as follows. Given a Σ1-formula ϕ, σ(ϕ) is the canonical application

of the signature morphism to every role and property in the formula such that σ(r • p) = σR(r) • σP (p).

We adapt the definition of a Σ-interpretation in order to ’reduce’ the interpretation to those elements and relations in

M, i.e. there is an isomorphism between these elements and those in the interpretation. A Σ-interpretation I consists

of a tuple (V
T

C
(O), A, KI) where

– V
T

C
(O) = (Vc)c∈T (C) is a T(C)-object domain

– A contains a relation pI ⊆ Vc1 × Vc2 for each relation name p(r1 : c1, r2 : c2) ∈ P with c1, c2 ∈ T (C)
– KI maps each o : c ∈ I to an element of Vc

– c2 ∈ C|abstract implies Oc2
=

⋃
c1≤Cc2

Oc1

– KI(o1 : c) Ó= KI(o2 : d) iff o1 : c Ó= o2 : d
– Vc =

⋃
c KI(o : c) with o : c ∈ I , for all c ∈ T (C)

– pI = {(KI(x : c), KI(y : d)) | pw(x, y) ∈ L, x : c, y : d ∈ I}

Example

An interpretation I can be as follows, in which each element has a correspondence with one in the signature:

– A T(C)-object domain consisting of

VClass = {c1}
VPrimitiveDataType = {pdt1}

VClassifier = VClass ∪ VPrimitiveDataType

VPackage = {p1}
VAttribute = {a1}

VUMLModelElement = VClassifier ∪ VPackage ∪ VAttribute

VString = {Pac, Str, Per, nul, ID, val}

– A set A consisting of relations:

containsI = {(p1, c1), (p1, pdt1)}
nameI = {(p1, Pac), (c1, ID), (c2, nul), (a1, val)}

kindI = {(p1, nul), (c1, P er), (a1, nul), (pdt1, nul)}
typeI = {(a1, pdt1)}

...

Given Σ-interpretations I = (V
T

C
(O), A, KI) and I ′ = (V

T

C
(O)′, A

′, KI′
), a Σ-homomorphism h : I → I ′ is a family

of maps (hc)c∈T (C) with hc : Vc → V ′
c such that

– hc(v) ∈ O′
c forall v ∈ Oc

– hc(v) ∈ V ′
c \O′

c forall v ∈ Vc\Oc

– (v1, v2) ∈ pI iff (hc1(v1), hc2(v2)) ∈ pI′

for any vi ∈ Vc (i=1,2), p(r1 : c1, r2 : c2) ∈ P .

– hc(KI(o1 : c)) Ó= hc(KI(o2 : d)) iff KI(o1 : c) Ó= KI(o2 : d)

Given a signature Σ, a formula ϕ, and a Σ-interpretation I, the interpretation satisfies ϕ, written I |=Σ ϕ, if one of

the following conditions holds:

– ϕ is #(r • p) = n and |S| = n for all S ∈ (r • p)I

– ϕ is n ≤ #(r • p) and n ≤ |S| for all S ∈ (r • p)I

– ϕ is #(r • p) ≤ n and |S| ≤ n for all S ∈ (r • p)I

This means that the number of elements related through a property p with any element with role r in such property,

satisfy the multiplicity constraints. This definition can be trivially extended for a set of formulas Φ, as follows: I |=Σ Φ
iff I |=Σ ϕ. ∀ϕ ∈ Φ.
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Example

Now, we can check that I, β |=Σ ϕ for every formula ϕ defined before.

– #(UMLModelElement • name) = 1 and |S| = 1
for all S ∈ (UMLModelElement • name)I = {{(p1, Pac)}, {(c1, ID)}, {(a1, val)}, {(pdt1, Str)}}

– #(UMLModelElement • kind) = 1 and |S| = 1
for all S ∈ (UMLModelElement • kind)I = {{(c1, P er)}, {(pdt1, nul)}, {(a, nul)}, {(p, nul)}}

– #(elements • contains) = 1 and |S| = 1
for all S ∈ (elements • contains)I = {{(p1, c1)}, {(p1, pdt1)}}

– #(attribute • has) = 1 and |S| = 1
for all S ∈ (attribute • has)I = {{(c1, a1)}}

– #(typeOpposite • typeOf) = 1 and |S| = 1
for all S ∈ (typeOpposite • typeOf)I = {{(a1, pdt1)}}

Given signatures Σi = (Ti, Pi, Mi) (i = 1, 2), a signature morphism σ : Σ1 → Σ2, and a Σ2-interpretation I =

(V
T

C
(O), A, KI), the reduct I|σ of I along σ is the Σ1-interpretation I1 = (V

T

C
(O|σ), A|σ, KI|σ) with

– V
T

C
(O|σ) = (Vσ(c))c∈T (C1)

– A|σ = {σp(p)I | p ∈ P1}
– KI|σ (o : c) = KI(σI(o) : σT (c)) for all o : c ∈ I1

Finally, the satisfaction condition holds for given signatures Σi (i = 1, 2), a signature morphism σ : Σ1 → Σ2, a

Σ2-interpretation I, and a Σ1-formula ψ (it can be trivially extended to a set of formulas):

I|σ, |=Σ1
ψ iff I |=Σ2

σ(ψ)

Categorical and functorial properties of the institution, as well as the satisfaction condition are proved in Appendix

C. Given that the satisfaction condition holds we can state that IC consisting of signatures, morphisms, formulas,

interpretation, reducts, and the satisfaction relation, defines an institution.

6.2 An Alternative Institution for QVT-Relations

We define a second institution IQVT for QVT-Relations check-only unidirectional transformations based on the alter-

native definition of the institution IC for the conformance relation.

The only difference here is that since the SW-model is represented within the signature, we do not need to reduce the

model. This means that a model M satisfies ϕ, written M |=Σ ϕ, if MC
i |=C

ΣC
i

ϕC
i (i = 1, 2) and M |=Σ ϕrules.

Proof of the satisfaction condition is in Appendix C. Given that the satisfaction condition holds we can state that

IQVT consisting of signatures, morphisms, formulas, interpretations, reducts, and the satisfaction relation, defines an

institution.
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7 Conclusions and Future Work

In this paper we have defined institutions to represent the conformance relation between MOF models and metamod-

els, and the satisfaction of QVT-Relations check-only unidirectional transformations between pairs of models. These

definitions neither depend on a shallow embedding of the languages by providing a syntactic translation into other

logics, nor on the definition of specific institutions for each metamodel or model transformation. On the contrary,

we defined a generic and minimal infrastructure within a theory which allows the definition of semantic-preserving

translations from the MDE elements to potentially any logic defined as an institution, with the advantage that there is

no need of maintain multiple formal representations of the same MDE elements.

Unlike MOF, we do not consider derived relations, n-ary properties, aggregation, uniqueness and ordering properties

within a property end, operations on classes, or packages, since they are elements not commonly used within transfor-

mations. We neither consider black-box operations or rule and transformation overriding within transformations since

there are advanced features not commonly used in practice, nor keys definition since there are used for object creation

not within the checking semantics. However, an inclusion of these elements within our institutions will strengthen the

formal environment for MDE.

Our institutions contribute to the definition of a comprehensive formal environment for the verification of model trans-

formations. We plan to define comorphisms from our institutions to a host logic and supplement this information with

properties specified in the host logic. In particular, we are setting up an appropriate comorphism to CASL, the main

language within Hets. This tool provides proof management capabilities for monitoring the overall correctness of a

heterogeneous specification whereas different parts of it are verified using (possibly different) proof systems. More-

over, the graph of logics already defined within Hets, reduces the complexity of linking different semantic domains to

perform a comprehensive verification using multiple semantic domains.

Our medium-term goals are the development of a first functional prototype and its validation. Although we are for

now focusing on MOF and QVT-Relations, we envision in the long-term to extend the environment to support other

transformation approaches.
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A Proofs :: Institution for the Conformance Relation

Lemma 1. Signatures and signature morphisms define a category Sign. The points of the category are the signatures

and it arrows are the signature morphisms.

Proof. Let Σi = (Ti, Pi) (i = 1..4) with Ti = (T (Ci), ≤T (Ci), Ci|abstract) and Pi = (Ri, Pi) be signatures, and let

σi : Σi → Σi+1 (i=1..3) be signature morphisms, then:

– Signature morphisms can be composed. We define the composition σ2 ◦ σ1 as the tuple 〈σT , σR, σP 〉 such that

σT (c) = σT2
(σT1

(c)), σR(c) = σR2
(σR1

(c)), and σP (c) = σP2
(σP1

(c)). We have to show that σ2◦σ1 is a signature

morphism:

• For all a ∈ C1 we have that σT (a) = σT2
(σT1

(c)) by definition of σT , and that σT1
(c) ∈ C2 by definition of

σT1
. Moreover, σT2

(σT1
(c)) ∈ C3 by definition of σT2

. In consequence, a ∈ C1 implies σT (a) ∈ C3.

• In the same way as before, we conclude that a ∈ T (C1)\C1 implies σT (a) ∈ T (C3)\C3.

• For all a, b ∈ T (C1) with a≤T (C1)b we have that σT1
(a)≤T (C2)σT1

(b) by definition of σT1
. Moreover, we

have that σT1
(a), σT1

(b) ∈ T (C2) and thus σT2
(σT1

(a))≤T (C3)σT2
(σT1

(b)) by definition of σT2
. Finally, we

conclude that a, b ∈ T (C1) with a≤T (C1)b implies σT (a)≤T (C3)σT (b) by definition of σT .

• For all a ∈ C1|abstract we have that σT1(a) ∈ C2|abstract by definition of σT1 and also that σT2(σT1(a)) ∈
C3|abstract by definition of σT2

. Finally, a ∈ C1|abstract implies σT (a) ∈ C3|abstract by definition of σT .

• For all pw ∈ P1 we have that σP1
(p)σ1(w) ∈ P2 by definition of σP1

and also that σP2
(σP1

(p))σ2(σ1(w)) ∈ P3

by definition of σP2
. Finally, pw ∈ P1 implies σP (p)σ(w) ∈ P3 by definition of σP .

– Composition of signature morphisms is associative, i.e. (σ3 ◦ σ2) ◦ σ1 = σ3 ◦ (σ2 ◦ σ1):

• For each a ∈ C1 we have that σT2 ◦σT1(a) = σT2(σT1(a)) and thus σT3 ◦ (σT2 ◦σT1)(a) = σT3(σT2(σT1(a)))
by the definition of composition. Finally, this last result is equals to σT3 ◦ σT2(σT1(a)) which is equals to

(σT3
◦ σT2

) ◦ σT1
(c).

• The proof is the same in the case of σR and σP .

– There exists an identity signature morphism idΣ1
: Σ1 → Σ1 defined as a tuple 〈idT , idR, idP 〉 such that

idT (c) = c, idR(c) = c, and idP (c) = c. This morphism satisfies the signature morphism conditions:

• a ∈ C1 implies idT (a) ∈ C1,

• a ∈ T (C1)\C1 implies idT (a) ∈ T (C1)\C1,

• a, b ∈ T (C1) with a≤T (C1)b implies idT (a)≤T (C1)idT (b),

• a ∈ C1|abstract implies idT (a) ∈ C1|abstract,

• pw ∈ P1 implies idP (p)id(w) ∈ P1,

Finally, signatures and signature morphisms define a category. ⊓⊔

Lemma 2. There is a functor Sen giving a set of formulas ψ (object in the category Set) for each signature Σ (object

in the category Sign), as shown in the definition of a formula, and a function σ : Sen(Σ1) → Sen(Σ2) (arrow in the

category Set) translating formulas for each signature morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown

in the extension of the signature morphism to formulas.

Proof. We have to prove that Sen is indeed a functor, i.e.: (a) domain and codomain of the image of an arrow are

the images of domain and codomain, respectively, of the arrow, (b) composition is preserved, and (c) identities are

preserved.

(a) By the extension of the signature morphism to formulas, the image of an arrow σ : Σ1 → Σ2 in the category Sign

is an arrow σ : Sen(Σ1) → Sen(Σ2) in the category SetȦlso, by the definition of formulas, the image of a signature

Σ in the category Sign is an object Sen(Σ) in the category SetṪhus, domain and codomain of the image of an arrow

are the images of domain and codomain, respectively, of the arrow.

(b) We have to prove that Sen(σ2 ◦ σ1) = Sen(σ2) ◦ Sen(σ1).

Let Σi (i=1..4) be signatures, and let σi:Σi → Σi+1 (i=1, 2) be signature morphisms. Sen(σ2) ◦ Sen(σ1) is the
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canonical application of the signature morphism σ1 to the elements in ψ1, composed with the canonical application of

the signature morphism σ2 (by definition of signature morphism extend to formulas). Since signature morphisms can

be composed (as defined in Lemma 1), this is the same as the canonical application of the composition of the signature

morphism to ψ1, i.e. Sen(σ2 ◦ σ1).

(c) Let idΣ1 : Σ1 → Σ1 be an identity signature morphism (defined in Lemma 1). We can see that identities are

preserved since, by definition, for any Σ1-formula ψ1, idΣ1
(ψ1) is a Σ1-formula such that:

– id(xc) = xid(c) = xc

– id(rel(pw, xc, yd)) = rel(idP (p)id(w), xid(c), yid(d)) = rel(pw, xc, yd)
– id(r • p) = idR(r) • idP (p) = r • p

Finally, the functor Sen is defined. ⊓⊔

Lemma 3. For any signatures, the Σ-interpretations and Σ-homomorphisms define a category Mod(Σ). The points

of the category are the Σ-interpretations, its arrows are the Σ-homomorphisms.

Proof. Let Σ = (T, P) with T = (T (C), ≤T (C), C |abstract) and P = (R, P ) be a signature, let Ii = (V
T

C
(Oi), Ai)

(i=1..4) be Σ-interpretations, and let hi : Ii → Ii+1 (i=1..3) be Σ-homomorphisms, then:

– Σ-homomorphisms can be composed. We define the composition h2 ◦ h1 as a a family of maps (hc)c∈T (C) with

hc : Vc1 → Vc3 such that: hc(v) = hc2(hc1(v)), v ∈ Oc1 . We have to prove that h2 ◦ h1 is a Σ-homomorphism,

i.e.

• hc(v) ∈ Oc3 forall v ∈ Oc1 . By definition of homomorphism, we have that for each v ∈ Oc1 , hc1(v) ∈ Oc2

and that for each w ∈ Oc2
hc2

(w) ∈ Oc3
, thus hc2

(hc1
(v)) = hc(v) ∈ Oc3

.

• hc(v) ∈ Vc3
\Oc3

forall v ∈ Vc1
\Oc1

. Proceeding in the same way as before, we have that for each v ∈
Vc1\Oc1 , hc2(hc1(v)) = hc(v) ∈ Vc3\Oc3 .

• (v1, v2) ∈ pI
1 iff (hc(v1), hc(v2)) ∈ pI3 for any vi ∈ Vc1

(i = 1, 2) and p(r1 : c1, r2 : c2) ∈ P . By definition

of homomorphism, we have that for any vi ∈ Vc1
(i = 1, 2) and p(r1 : c1, r2 : c2) ∈ P , (v1, v2) ∈ pI

1 iff

(hc1
(v1), hc2

(v2)) ∈ pI2 , and also for any wi ∈ Vc2
(i = 1, 2) and p(r1 : c1, r2 : c2) ∈ P , (w1, w2) ∈ pI

2

iff (hc2(w1), hc2(w2)) ∈ pI2 . Thus, for any vi ∈ Vc1 (i = 1, 2) and p(r1 : c1, r2 : c2) ∈ P , (v1, v2) ∈ pI
1 iff

(hc2(hc1(v1)), hc2(hc1(v2))) = (hc(v1), hc(v2)) ∈ pI3 .

– Composition of Σ-homomorphisms is associative, i.e., (h3 ◦h2)◦h1 = h3 ◦ (h2 ◦h1). By definition of composition

of homomorphisms, for each v ∈ Oc1 we have that (h3 ◦ h2) ◦ h1(v) = (h3 ◦ h2)(hc1(v)) = hc3(hc2(hc1(v))) =
h3 ◦ hc2

(hc1
(v)) = h3 ◦ (h2 ◦ h1).

– There exist an identity Σ-homomorphism idI1 : I1 → I1 consisting of a family of maps (idc)c∈T (C) with idc :
Vc1 → Vc1 such that: idc(v) = v, v ∈ Oc1 . It trivially holds that idI1 is a Σ-homomorphism since:

• idc(v) = v ∈ Oc1 forall v ∈ Oc1 .

• idc(v) = v ∈ Vc1
\Oc1

forall v ∈ Vc1
\Oc1

.

• (v1, v2) ∈ pI
1 iff (idc(v1), idc(v2)) = (v1, v2) ∈ pI1 for any vi ∈ Vc1

(i = 1, 2) and p(r1 : c1, r2 : c2) ∈ P .

Finally, Σ-interpretations and Σ-homomorphisms define a category. ⊓⊔

Lemma 4. The reduct of Σ-interpretations and Σ-homomorphisms is a functor Mod(σ) from Σ2-interpretations to

Σ1-interpretations (and Σ2-homomorphisms to Σ1-homomorphisms) for each signature morphism σ : Σ1 → Σ2.

Proof. By definition, domain and codomain of the reduct of an Σ-homomorphism are the reduct of domain and

codomain, respectively, of the Σ-homomorphism. We have now to prove that: (a) the reduct of a composition of two

Σ-homomorphisms is the composition of the reducts of those Σ-homomorphisms, and (b) that the reduct of an identity

Σ-homomorphisms is likewise an identity.
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Let Σ = (T, P) with T = (T (C), ≤T (C), C |abstract) and P = (R, P ) be a signature, let Ii = (V
T

C
(Oi), Ai) (i=1..3)

be Σ-interpretations, and let hi : Ii → Ii+1 (i=1, 2) be Σ-homomorphisms.

(a) (h2 ◦ h1)|σ = h2 |σ ◦h1 |σ . By definition of reduct of homomorphisms, we have that for any c ∈ T (C), for any

v ∈ Vc, (h2 ◦ h1)|σ is defined by (h2 ◦ h1)σ(c)(v). By definition of composition of homomorphisms, this is equals to

(h2)σ(c)((h1)σ(c)(v)). Thus, by definition of composition of homomorphisms, this is equals to ((h2)σ(c) ◦ (h1)σ(c))(v)
which is the definition of h2|σ ◦h1|σ .

(b) Let idI2 be an identity Σ2-homomorphism, then idI2 |σ is an identity Σ1-homomorphism, since by definition of

reduct of a homomorphism idI2|σ is the Σ1-homomorphism h1 defined by h1c
(v) = idI2σ(c)

(v) = v for any c ∈ T (C),

for any v ∈ Vc.

Finally, the reduct of Σ-interpretations and Σ-homomorphisms is a functor. ⊓⊔

Lemma 5. There is a functor Mod giving a category Mod(Σ) of Σ-interpretations (object in the category Cat) for

each signature Σ (object in the category Sign), as shown in Lemma 3, and a functor Mod(σ) (arrow in the cate-

gory Cat) from Σ2-interpretations to Σ1-interpretations (and Σ2-homomorphisms to Σ1-homomorphisms) for each

signature morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown in Lemma 4.

Proof. We have to prove that Mod is indeed a functor, i.e.: (a) domain and codomain of the image of an arrow are

the images of domain and codomain, respectively, of the arrow, (b) composition is preserved, and (c) identities are

preserved.

(a) By Lemma 4, the image of an arrow σ : Σ2 → Σ1 in the category Signop is an arrow Mod(σ) : Mod(Σ2) →
Mod(Σ1) in the category Cat. Also, by Lemma 3, the image of a signature Σ in the category Sign is an object Mod(Σ)

in the category Cat. Thus, domain and codomain of the image of an arrow are the images of domain and codomain,

respectively, of the arrow.

(b) We have to prove that Mod(σ2 ◦ σ1) = Mod(σ2) ◦ Mod(σ1) for both, interpretations and homomorphisms. Let

Σi (i=1..3) be signatures, let σi : Σi → Σi+1 (i=1, 2) be signature morphisms, let I = (V
T

C
(O), A) be a Σ3-

interpretation, and let h be a Σ3-homomorphism. Then, we have to prove:

– I|σ2◦ σ1
= (I|σ2

)|σ1
.

By definition of reduct, I|σ2
is the Σ2-interpretation (V

T

C
(O|σ2

), A|σ2
) such that:

• V
T

C
(O|σ2

) = (Vσ2(c))c∈T (C2)

• A|σ2
= {σ2p(p)I | p ∈ P2}

Then (I|σ2)|σ1 is the Σ1-interpretation (V
T

C
((O|σ2)|σ1), (A|σ2)|σ1) such that:

• V
T

C
((O|σ2

)|σ1
) = (Vσ2(σ1(c)))c∈T (C1)

• (A|σ2
)|σ1

= {σ2p(σ1p(p))I | p ∈ P1}
and this is equal to I|σ2◦ σ1

.

– h|σ2◦ σ1
= (h|σ2

)|σ1
.

By definition of reduct, h|σ2
is defined by h|σ2 c (v) = hσ2(c)(v) for any c ∈ T (C2), for any v ∈ Vc, and thus

(h|σ2
)|σ1

is defined by (h|σ2
)|σ1 c (v) = hσ2(σ1(c))(v) = hσ2◦σ1(c)(v) for any c ∈ T (C1), for any v ∈ Vc, which

is equals to h|σ2◦ σ1
.

(c) Let idσ : Σ → Σ be an identity signature morphism (defined in Lemma 1). We have to prove that Mod(idσ)
is an identity functor, i.e., it is composed by the identity reduct of Σ-interpretations and the identity reduct of Σ-

homomorphisms.

– By definition of reduct, for any Σ-interpretation I = (V
T

C
(O), A), I|idσ

is the Σ-interpretation (V
T

C
(O|idσ

), A|idσ
)

such that:
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• V
T

C
(O|idσ

) = (Vidσ(c))c∈T (C)

• A|idσ
= {idσp(p)I | p ∈ P}

Finally, by the definition of idσ , I|idσ
= I, thus _|idσ

is the identity reduct of Σ-interpretations.

– By definition of reduct, given a Σ-interpretation I1 = (V
T

C
(O1), A1), for any Σ-homomorphism h : I1 → I2, the

reduct h|idσ
is defined by h|idσ c (v) = hidσ(c)(v) = hc(v) for any c ∈ T (C), for any v ∈ Vc. Now, since I|idσ

=

I, we have that _|idσ
is the identity reduct of Σ-homomorphisms.

Finally, the functor Mod is defined. ⊓⊔

Theorem 1 (Satisfaction Condition). Given signatures Σi = (Ti, Pi) (i = 1, 2) with Ti = (T (Ci), ≤T (Ci), Ci|abstract

) and Pi = (Ri, Pi), a signature morphism σ : Σ1 → Σ2, a Σ2-interpretation I = (V
T

C
(O), A), a Σ2-valuation β =

(βc)c∈T (C2), and a Σ1-formula ψ = (Obj, Rel, Φ) with variables X = (Xc)c∈T (C1), the following satisfaction con-

dition holds.

I|σ, β|σ|=Σ1
ψ iff I, β |=Σ2

σ(ψ)

Proof. By definition of the satisfaction relation, we need to prove that:

∀ rel(p, xc, yd) ∈ Rel, ∃ pI|σ ((β|σ)c(xc), (β|σ)d(yd)) ∈ A|σ(1)

⇔ ∀ rel(σP (p), xσ(c), yσ(d)) ∈ σ(Rel), ∃ σP (p)I(βσ(c)(xσ(c)), βσ(d)(yσ(d))) ∈ A

In the one side we have that rel(p, xc, yd) ∈ Rel ⇔ rel(σP (p), xσ(c), yσ(d)) ∈ σ(Rel) by definition of σ. In

the other side we have that pI|σ ((β |σ)c(xc), (β |σ)d(yd)) ∈ A|σ ⇔ σP (p)I(βσ(c)(xσ(c)), βσ(d)(yσ(d))) ∈ A, since

pI|σ = σP (p)I ∀p ∈ P1 by definition of|σ , and (β |σ)c(xc) = βσ(c)(xσ(c)) and (β |σ)d(yd) = βσ(d)(yσ(d)) by

definition of β|σ . Finally, using both results we can conclude that (1) holds.

(2) ∀ ϕ ∈ Φ. I|σ|(ϕ,β|σ) |=Σ1
ϕ ⇔ ∀ σ(ϕ) ∈ σ(Φ). I|(ϕ,β) |=Σ2

σ(ϕ)

We know that pI|σ = σP (p)I ∀p(r1 : c, r2 : d) ∈ P1 by definition of|σ . Also, if pI|σ is the corresponding interpre-

tation of a formula rel(p, xc, yd), we have that pI|σ |(ϕ,β|σ) = σP (p)I|(σ(ϕ),β) . With this result we can deduce that

(r • p)I|σ |(ϕ,β|σ) = (σR(r), σP (p))I|(σ(ϕ),β) . Moreover, for all ϕ of the form #(r • p) = n, we have that σ(ϕ) is

#(σR(r) • σP (p)) = n, by definition of σ. Finally, using both results we have that ϕ is #(r • p) = n and |S| = n
∀ S ∈ (r • p)I|σ |(ϕ,β|σ) ⇔ σ(ϕ) is #(σR(r) • σP (p)) = n and |S| = n ∀ S ∈ (σR(r), σP (p))I|(σ(ϕ),β) . Thus,

I|σ|(ϕ,β|σ) |=Σ1
ϕ ⇔ I|(ϕ,β) |=Σ2

σ(ϕ). We can proceed exactly in the same way for proving the other two cases of

ϕ.

Finally, with (1) and (2) we conclude that the satisfaction condition holds. ⊓⊔
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B Proofs :: Institution for Model Transformations

Lemma 6. Signatures and signature morphisms define a category Sign. The points of the category are the signatures

and it arrows are the signature morphisms.

Proof. A signature morphisms defined as a triple of morphisms of the corresponding institutions 〈σC
1 , σC

2 , σFOL〉. In

those institutions, morphisms are composable, the composition is associative, and there exists an identity signature

morphism. We define the composition σ2 ◦ σ1 as the componentwise composition of morphisms, as well as the identity

signature morphism as the triple with the identity signature morphisms of the corresponding institutions. Using these

facts, it is straightforward to conclude that: signature morphisms can be composed, composition of signature mor-

phisms is associative, and there exists an identity signature morphism. Finally, signatures and signature morphisms

define a category. ⊓⊔

Lemma 7. There is a functor Sen giving a set of formulas ψ (object in the category Set) for each signature Σ (object

in the category Sign), as shown in the definition of a formula, and a function σ : Sen(Σ1) → Sen(Σ2) (arrow in the

category Set) translating formulas for each signature morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown

in the extension of the signature morphism to formulas.

Proof. We have to prove that Sen is indeed a functor, i.e.: (a) domain and codomain of the image of an arrow are

the images of domain and codomain, respectively, of the arrow, (b) composition is preserved, and (c) identities are

preserved.

(a) By the extension of the signature morphism to formulas, the image of an arrow σ : Σ1 → Σ2 in the category Sign

is an arrow σ : Sen(Σ1) → Sen(Σ2) in the category SetȦlso, by the definition of formulas, the image of a signature

Σ in the category Sign is an object Sen(Σ) in the category SetṪhus, domain and codomain of the image of an arrow

are the images of domain and codomain, respectively, of the arrow.

(b) We have to prove that Sen(σ2 ◦ σ1) = Sen(σ2) ◦ Sen(σ1).

Let Σi (i=1..4) be signatures, and let σi:Σi → Σi+1 (i=1, 2) be signature morphisms. Sen(σ2) ◦ Sen(σ1) is the

canonical application of the signature morphism σ1 to the elements in ψ1, composed with the canonical application of

the signature morphism σ2 (by definition of signature morphism extend to formulas). Since signature morphisms can

be composed (as defined in Lemma 6), this is the same as the canonical application of the composition of the signature

morphism to ψ1, i.e. Sen(σ2 ◦ σ1).

(c) Let idΣ1
: Σ1 → Σ1 be an identity signature morphism (defined in Lemma 6). We can see that identities are

preserved since is the componentwise application of the identity signature morphisms to every element in the formula,

which already preserve the identities.

Finally, the functor Sen is defined. ⊓⊔

Lemma 8. For any signatures, the Σ-models and Σ-homomorphisms define a category Mod(Σ). The points of the

category are the Σ-interpretations, its arrows are the Σ-homomorphisms.

Proof. A Σ-model is defined as a triple of Σ-models of the corresponding institutions 〈MC
1 , MC

2 , MFOL〉, as well as

homomorphisms are defined componentwise 〈hC
1 , hC

2 , hFOL〉. In the corresponding institutions, homomorphisms are

composable, the composition is associative, and there exists an identity homomorphism. We define the composition of

homomorphisms as the componentwise composition of homomorphisms, as well as the identity homomorphism as the

triple with the identity homomorphisms of the corresponding institutions. Using these facts, it is straightforward to

conclude that: homomorphisms can be composed, composition of homomorphisms is associative, and there exists an

identity homomorphism. Finally, Σ-interpretations and Σ-homomorphisms define a category. ⊓⊔

Lemma 9. The reduct of Σ-models and Σ-homomorphisms is a functor Mod(σ) from Σ2-models to Σ1-models (and

Σ2-homomorphisms to Σ1-homomorphisms) for each signature morphism σ : Σ1 → Σ2.
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Proof. A Σ-model is defined as a triple of Σ-models of the corresponding institutions 〈MC
1 , MC

2 , MFOL〉, as well

as reducts are defined componentwise 〈MC
1 |σ, MC

2 |σ, MFOL |σ〉. In the corresponding institutions, the reduct of

models and homomorphisms is a functor. From this we can conclude straightforward that domain and codomain of

the reduct of an Σ-homomorphism are the reduct of domain and codomain, respectively, the reduct of a composition

of two Σ-homomorphisms is the composition of the reducts of those Σ-homomorphisms, and the reduct of an identity

Σ-homomorphisms is likewise an identity. Finally, the reduct of Σ-interpretations and Σ-homomorphisms is a functor.

⊓⊔

Lemma 10. There is a functor Mod giving a category Mod(Σ) of Σ-models (object in the category Cat) for each

signature Σ (object in the category Sign), as shown in Lemma 8, and a functor Mod(σ) (arrow in the category

Cat) from Σ2-models to Σ1-models (and Σ2-homomorphisms to Σ1-homomorphisms) for each signature morphism

σ : Σ1 → Σ2 (arrow in the category Sign), as shown in Lemma 9.

Proof. We have to prove that Mod is indeed a functor, i.e.: (a) domain and codomain of the image of an arrow are

the images of domain and codomain, respectively, of the arrow, (b) composition is preserved, and (c) identities are

preserved.

(a) By Lemma 9, the image of an arrow σ : Σ2 → Σ1 in the category Signop is an arrow Mod(σ) : Mod(Σ2) →
Mod(Σ1) in the category Cat. Also, by Lemma 8, the image of a signature Σ in the category Sign is an object Mod(Σ)

in the category Cat. Thus, domain and codomain of the image of an arrow are the images of domain and codomain,

respectively, of the arrow.

(b) We have to prove that Mod(σ2 ◦ σ1) = Mod(σ2) ◦ Mod(σ1) for both, models and homomorphisms. A reduct or

homomorphism is defined as a triple of reducts or homomorphisms, respectively, of the corresponding institutions

which are applied to each component in the model. Since the property holds in isolation for each component, we can

directly conclude that this also holds for the triple.

(c) Let idσ : Σ → Σ be an identity signature morphism (defined in Lemma 1). We have to prove that Mod(idσ) is an

identity functor, i.e., it is composed by the identity reduct of Σ-models and the identity reduct of Σ-homomorphisms.

Since reducts and homomorphisms are defined componentwise and this property holds in isolation for each compo-

nent, we can directly conclude that this also holds for the triple.

Finally, the functor Mod is defined. ⊓⊔

Theorem 2 (Satisfaction Condition). Given signatures Σi = 〈ΣCi

1 , ΣCi

2 , ΣFOLi〉(i = 1, 2), a signature morphism

σ : Σ1 → Σ2, a Σ2-model M = 〈MC2
1 , MC2

2 , MFOL2〉, a set of variables X2 = (Xs
2)s ∈S2

, a M-variable as-

signments µ, and a Σ1-formula ϕ = 〈ϕC1
1 , ϕC1

2 , ϕrules〉 with variables in X2 |σ , the following satisfaction condition

holds.

M|σ|=Σ1
ϕ iff M |=Σ2

σ(ϕ)

Proof. We will first prove some preliminary results:

1. Given FOL= signatures Σi (i = 1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-first-order structure M, a

set of variables X2 = (Xs
2)s ∈S2 , a M-variable assignments µ, and a Σ1-formula ϕ with variables in X2|σ , the

following condition holds by definition of the FOL= institution: M|σ, µ|σ |=Σ1
ϕ iff M, µ |=Σ2

σ(ϕ)

2. Given signatures Σi(i = 1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-model M with a Σ2-first-order

structure MFOL, and a Σ1-formula ϕ, the following condition holds: MFOL|σ|ϕ = MFOL|σ(ϕ)|σ

Proof. In one side, MFOL|σ|ϕ is a Σ2-structure which is taken for interpreting element in Σ1 and then restricted

for those elements in ϕ. In the other side, MFOL |σ(ϕ)|σ is the same structure with an interpretation for those
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elements in σ(ϕ) (which are the same as ϕ up to the signature morphism σ) and then taken to interpret elements

in Σ1 (as in the first case). In conclusion, both Σ1-structures have the minimal semantic element needed for

interpreting syntactic elements in ϕ, thus there are equal.

3. Given signatures Σi(i = 1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-model M with a Σ2-first-order

structure MFOL, a set of variables X2 = (Xs
2)s ∈S2

, a M-variable assignments µ, a Σ1-formula ϕ with variables

in X2|σ , and a pattern Pattern = 〈E, A, Pr〉 which is part of ϕ, the following condition holds:

MFOL|σ(ϕ), µ |= σ(Pattern) iff MFOL|σ|ϕ, µ|σ |= Pattern

Proof.

MFOL|σ(ϕ), µ |= σ(Pattern)
iff σ(p)D(µ(σ(x)), µ(σ(y))) ∈ MFOL|σ(ϕ) . ∀ rel(σ(p), σ(x), σ(y)) ∈ σ(A)

and MFOL|σ(ϕ), µ |=FOL σ(Pr) by def. of pattern satisf.

iff pD(µ|σ (x), µ|σ (y)) ∈ MFOL|σ|ϕ . ∀ rel(p, x, y) ∈ A by def. of MFOL|σ(ϕ) and σ
and MFOL|σ|ϕ, µ|σ |=FOL Pr by result 1 and result 2

Finally, by definition of satisfaction of a pattern, we conclude that MFOL|σ|ϕ, µ|σ |= Pattern also holds.

4. Given signatures Σi(i = 1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-model M with a Σ2-first-order

structure MFOL, a set of variables X2 = (Xs
2)s ∈S2

, a M-variable assignments µ, a Σ1-formula ϕ with variables

in X2|σ , and a when clause when = 〈whenc, whenr〉 which is part of ϕ, the following condition holds:

MFOL|σ(ϕ), µ |= σ(when) iff MFOL|σ|ϕ, µ|σ |= when

Proof.

MFOL|σ(ϕ), µ |= σ(when)
iff MFOL|σ(ϕ), µ |=FOL σ(whenc)

and MFOL|σ(ϕ), µ[σ(v)] |= σ(r). ∀(σ(r), σ(v)) ∈ σ(whenr) by def. of satisfaction of a when clause

We also know that MFOL |σ(ϕ), µ |=FOL σ(whenc) iff MFOL |σ|ϕ, µ|σ |=FOL whenc by result 1 and result 2.

Thus, we have to prove that:

MFOL|σ(ϕ), µ[σ(v)] |= σ(r). ∀(σ(r), σ(v)) ∈ σ(whenr) iff MFOL|σ|ϕ, µ|σ [v] |= r. ∀(r, v) ∈ whenr

This can be proved by induction on the length of the chain of dependencies of when and where clauses which is

assumed to be finite as we discussed before. This means that the base case is whenr = ∅ in which the condition

trivially holds, since also σ(whenr) = ∅. The inductive hypothesis is such that ∀(σ(r), σ(v)) ∈ σ(whenr) we

have that MFOL |σ(ϕ), µ[σ(v)] |= σ(r). iff MFOL |σ|ϕ, µ|σ [v] |= r (and the same ∀(r, v) ∈ whenr. Thus, the

inductive thesis trivially holds from these hypothesis.

Finally, by definition of satisfaction of a when clause, we conclude that MFOL|σ|ϕ, µ|σ |= when also holds.

5. Given signatures Σi(i = 1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-model M with a Σ2-first-order

structure MFOL, a set of variables X2 = (Xs
2)s ∈S2

, a M-variable assignments µ, a Σ1-formula ϕ with variables

in X2|σ , and a where clause where = 〈wherec, wherer〉 which is part of ϕ, the following condition holds:

MFOL|σ(ϕ), µ |= σ(where) iff MFOL|σ|ϕ, µ|σ |= where

Proof. The proof is similar to the case of a when clause.

Now, we can prove the satisfaction condition as follows:

M|σ|=Σ1
ϕ

iff MC2
i |σ|=C

Σ
C1
i

ϕC1
i (i = 1, 2)

and M|σ|ϕ |=Σ1
ϕrules by def. of satisfaction relation

iff MC2
i |=C

Σ
C2
i

σ(ϕC1
i ) (i = 1, 2) by def. of IC

and M|σ(ϕ) |=Σ2
σ(ϕrules) as proved next

iff M |=Σ2 σ(ϕ) by def. of satisfaction relation

We need to prove that M |σ |ϕ |=Σ1
ϕrules iff M |σ(ϕ) |=Σ2

σ(ϕrules), which assuming that ϕrules is of the form

〈Rules, top〉, it is the same to prove that
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∀ Rulei ∈ top. MFOL2|σ|ϕ, ∅ |= Rulei iff ∀ σ(Rulei) ∈ σ(top). MFOL2|σ(ϕ), ∅ |= σ(Rulei)

For any rule Rule = 〈VarSet, Patterni (i = 1, 2), when, where〉, we have two cases:

1. If WhenVarSet = ∅, MFOL2|σ|ϕ, ∅ |= Rule if

∀ µ1|σ [x1, ..., xn] ∈ |VarSet\2_VarSet|,

( MFOL2|σ|ϕ, µ1|σ [x1, ..., xn] |= Pattern1 →

∃ µ2|σ [y1, ..., ym] ∈ |2_VarSet|,

( MFOL2|σ|ϕ, µ1|σ ∪ µ2|σ|= Pattern2 ∧

MFOL2|σ|ϕ, µ1|σ ∪ µ2|σ|= where))

2. If WhenVarSet Ó= ∅, MFOL2|σ|ϕ, ∅ |= Rule if

∀ µw|σ [z1, ..., zo] ∈ |WhenVarSet|,

( MFOL2|σ|ϕ, µw|σ [z1, ..., zo] |= when →

∀ µ1|σ [x1, ..., xn] ∈ |VarSet\(WhenVarSet ∪ 2_VarSet)|,

( MFOL2|σ|ϕ, µ1|σ ∪ µw|σ|= Pattern1 →

∃ µ2|σ [y1, ..., ym] ∈ |2_VarSet|,

( MFOL2|σ|ϕ, µ1|σ ∪ µ2|σ ∪ µw|σ|= Pattern2 ∧

MFOL2|σ|ϕ, µ1|σ ∪ µ2|σ ∪ µw|σ|= where)))

In both cases we can directly use the preliminar results, plus the definition of µ|σ , to conclude that the following cases

also hold:

1. If σ(WhenVarSet) = ∅

∀ µ1[x1, ..., xn] ∈ |VarSet\2_VarSet|,

( MFOL2|σ(ϕ), µ1[x1, ..., xn] |= σ(Pattern1) →

∃ µ2[y1, ..., ym] ∈ |2_VarSet|,

( MFOL2|σ(ϕ), µ1 ∪ µ2 |= σ(Pattern2) ∧

MFOL2|σ(ϕ), µ1 ∪ µ2 |= σ(where)))

2. If σ(WhenVarSet) Ó= ∅

∀ µw[z1, ..., zo] ∈ |WhenVarSet|,

( MFOL2|σ(ϕ), µw[z1, ..., zo] |= σ(when) →

∀ µ1[x1, ..., xn] ∈ |VarSet\(WhenVarSet ∪ 2_VarSet)|,

( MFOL2|σ(ϕ), µ1 ∪ µw |= σ(Pattern1) →

∃ µ2[y1, ..., ym] ∈ |2_VarSet|,

( MFOL2|σ(ϕ), µ1 ∪ µ2 ∪ µw |= σ(Pattern2) ∧

MFOL2|σ(ϕ), µ1 ∪ µ2 ∪ µw |= σ(where))))

Finally, we conclude that ∀ σ(Rulei) ∈ σ(top). MFOL2|σ(ϕ), ∅ |= σ(Rulei). Note that we can also read this demon-

stration downside up, thus the satisfaction condition holds. ⊓⊔

41



C Proofs :: Alternative Institution for MOF and QVT

Lemma 11. Signatures and signature morphisms define a category Sign. The points of the category are the signatures

and it arrows are the signature morphisms.

Proof. Let Σi = (Ti, Pi, Mi) (i = 1..4) with Ti = (T (Ci), ≤T (Ci), Ci|abstract), Pi = (Ri, Pi), and Mi = (Ii, Li) be

signatures, and let σi : Σi → Σi+1 (i=1..3) be signature morphisms, then:

– Signature morphisms can be composed. We define the composition σ2 ◦ σ1 as the tuple 〈σT , σR, σP , σI〉 such that

σT (c) = σT2
(σT1

(c)), σR(c) = σR2
(σR1

(c)), σP (c) = σP2
(σP1

(c)), and σI(c) = σI2
(σI1

(c)). We have to show

that σ2 ◦ σ1 is a signature morphism:

• For all a ∈ C1 we have that σT (a) = σT2
(σT1

(c)) by definition of σT , and that σT1
(c) ∈ C2 by definition of

σT1 . Moreover, σT2(σT1(c)) ∈ C3 by definition of σT2 . In consequence, a ∈ C1 implies σT (a) ∈ C3.

• In the same way as before, we conclude that a ∈ T (C1)\C1 implies σT (a) ∈ T (C3)\C3.

• For all a, b ∈ T (C1) with a≤T (C1)b we have that σT1
(a)≤T (C2)σT1

(b) by definition of σT1
. Moreover, we

have that σT1(a), σT1(b) ∈ T (C2) and thus σT2(σT1(a))≤T (C3)σT2(σT1(b)) by definition of σT2 . Finally, we

conclude that a, b ∈ T (C1) with a≤T (C1)b implies σT (a)≤T (C3)σT (b) by definition of σT .

• For all a ∈ C1|abstract we have that σT1
(a) ∈ C2|abstract by definition of σT1

and also that σT2
(σT1

(a)) ∈
C3|abstract by definition of σT2

. Finally, a ∈ C1|abstract implies σT (a) ∈ C3|abstract by definition of σT .

• For all pw ∈ P1 we have that σP1
(p)σ1(w) ∈ P2 by definition of σP1

and also that σP2
(σP1

(p))σ2(σ1(w)) ∈ P3

by definition of σP2
. Finally, pw ∈ P1 implies σP (p)σ(w) ∈ P3 by definition of σP .

• For all o : c ∈ I1 we have that σI1(o) : σT1(c) ∈ I2 by definition of σI1 and also that σI2(σI1(o)) :
σT2(σT1(c)) ∈ I3 by definition of σI2 . In consequence, o : c ∈ I1 implies σI(o : c) ∈ I3.

• For all pw(x, y) ∈ L1 we have that σP1
(p)σ1(w)(σI1

(x), σI1
(y)) ∈ L2 by definition of σI1

and σP1
, and also

that σP2
(σP1

(p))σ2(σ1(w))(σI2
(σI1

(x)), σI2
(σI1

(y))) ∈ L3 by definition of σI2
and σP2

. In consequence,

pw(x, y) ∈ L1 implies σP (p)σ(w)(σI(x), σI(y)) ∈ L3.

– Composition of signature morphisms is associative, i.e. (σ3 ◦ σ2) ◦ σ1 = σ3 ◦ (σ2 ◦ σ1):

• For each a ∈ C1 we have that σT2
◦σT1

(a) = σT2
(σT1

(a)) and thus σT3
◦ (σT2

◦σT1
)(a) = σT3

(σT2
(σT1

(a)))
by the definition of composition. Finally, this last result is equals to σT3 ◦ σT2(σT1(a)) which is equals to

(σT3 ◦ σT2) ◦ σT1(c).

• The proof is the same in the case of σR, σP , and σI .

– There exists an identity signature morphism idΣ1
: Σ1 → Σ1 defined as a tuple 〈idT , idR, idP , idI〉 such that

idT (c) = c, idR(c) = c, idP (c) = c, and idI(c) = c. This morphism satisfies the signature morphism conditions:

• a ∈ C1 implies idT (a) ∈ C1,

• a ∈ T (C1)\C1 implies idT (a) ∈ T (C1)\C1,

• a, b ∈ T (C1) with a≤T (C1)b implies idT (a)≤T (C1)idT (b),

• a ∈ C1|abstract implies idT (a) ∈ C1|abstract,

• pw ∈ P1 implies idP (p)id(w) ∈ P1,

• o : c ∈ I1 implies idI(o) : idT (c) ∈ I1

• pw(x, y) ∈ L1 implies idP (p)id(w)(idI(x), idI(y)) ∈ L1

Finally, signatures and signature morphisms define a category. ⊓⊔

Lemma 12. There is a functor Sen giving a set of formulas ψ (object in the category Set) for each signature Σ (object

in the category Sign), as shown in the definition of a formula, and a function σ : Sen(Σ1) → Sen(Σ2) (arrow in the

category Set) translating formulas for each signature morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown

in the extension of the signature morphism to formulas.

Proof. We have to prove that Sen is indeed a functor, i.e.: (a) domain and codomain of the image of an arrow are

the images of domain and codomain, respectively, of the arrow, (b) composition is preserved, and (c) identities are

preserved.
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(a) By the extension of the signature morphism to formulas, the image of an arrow σ : Σ1 → Σ2 in the category Sign

is an arrow σ : Sen(Σ1) → Sen(Σ2) in the category SetȦlso, by the definition of formulas, the image of a signature

Σ in the category Sign is an object Sen(Σ) in the category SetṪhus, domain and codomain of the image of an arrow

are the images of domain and codomain, respectively, of the arrow.

(b) We have to prove that Sen(σ2 ◦ σ1) = Sen(σ2) ◦ Sen(σ1).

Let Σi (i=1..4) be signatures, and let σi:Σi → Σi+1 (i=1, 2) be signature morphisms. Sen(σ2) ◦ Sen(σ1) is the

canonical application of the signature morphism σ1 to the elements in ψ1, composed with the canonical application of

the signature morphism σ2 (by definition of signature morphism extend to formulas). Since signature morphisms can

be composed (as defined in Lemma 1), this is the same as the canonical application of the composition of the signature

morphism to ψ1, i.e. Sen(σ2 ◦ σ1).

(c) Let idΣ1
: Σ1 → Σ1 be an identity signature morphism (defined in Lemma 1). We can see that identities are

preserved since, by definition, for any Σ1-formula ψ1, idΣ1
(ψ1) is a Σ1-formula such that id(r • p) = idR(r) •

idP (p) = r • p.

Finally, the functor Sen is defined. ⊓⊔

Lemma 13. For any signatures, the Σ-interpretations and Σ-homomorphisms define a category Mod(Σ). The points

of the category are the Σ-interpretations, its arrows are the Σ-homomorphisms.

Proof. Let Σ = (T, P, M) with T = (T (C), ≤T (C), C|abstract), P = (R, P ), and M = (I, L) be a signature, let Ii =

(V
T

C
(Oi), Ai, KI

i ) (i=1..4) be Σ-interpretations, and let hi : Ii → Ii+1 (i=1..3) be Σ-homomorphisms, then:

– Σ-homomorphisms can be composed. We define the composition h2 ◦ h1 as a a family of maps (hc)c∈T (C) with

hc : Vc1
→ Vc3

such that: hc(v) = hc2
(hc1

(v)), v ∈ Oc1
. We have to prove that h2 ◦ h1 is a Σ-homomorphism,

i.e.

• hc(v) ∈ Oc3
forall v ∈ Oc1

. By definition of homomorphism, we have that for each v ∈ Oc1
, hc1

(v) ∈ Oc2

and that for each w ∈ Oc2
hc2

(w) ∈ Oc3
, thus hc2

(hc1
(v)) = hc(v) ∈ Oc3

.

• hc(v) ∈ Vc3\Oc3 forall v ∈ Vc1\Oc1 . Proceeding in the same way as before, we have that for each v ∈
Vc1

\Oc1
, hc2

(hc1
(v)) = hc(v) ∈ Vc3

\Oc3
.

• (v1, v2) ∈ pI
1 iff (hc(v1), hc(v2)) ∈ pI3 for any vi ∈ Vc1

(i = 1, 2) and p(r1 : c1, r2 : c2) ∈ P . By definition

of homomorphism, we have that for any vi ∈ Vc1 (i = 1, 2) and p(r1 : c1, r2 : c2) ∈ P , (v1, v2) ∈ pI
1 iff

(hc1(v1), hc2(v2)) ∈ pI2 , and also for any wi ∈ Vc2 (i = 1, 2) and p(r1 : c1, r2 : c2) ∈ P , (w1, w2) ∈ pI
2

iff (hc2
(w1), hc2

(w2)) ∈ pI2 . Thus, for any vi ∈ Vc1
(i = 1, 2) and p(r1 : c1, r2 : c2) ∈ P , (v1, v2) ∈ pI

1 iff

(hc2
(hc1

(v1)), hc2
(hc1

(v2))) = (hc(v1), hc(v2)) ∈ pI3 .

• KI(o1 : c) Ó= KI(o2 : d) iff hc1(KI(o1 : c)) Ó= hc1(KI(o2 : d)) iff hc2(hc1(KI(o1 : c))) Ó= hc2(hc1(KI(o2 :
d))), thus hc(KI(o1 : c)) Ó= hc(KI(o2 : d)).

– Composition of Σ-homomorphisms is associative, i.e., (h3 ◦h2)◦h1 = h3 ◦ (h2 ◦h1). By definition of composition

of homomorphisms, for each v ∈ Oc1
we have that (h3 ◦ h2) ◦ h1(v) = (h3 ◦ h2)(hc1

(v)) = hc3
(hc2

(hc1
(v))) =

h3 ◦ hc2
(hc1

(v)) = h3 ◦ (h2 ◦ h1).

– There exist an identity Σ-homomorphism idI1 : I1 → I1 consisting of a family of maps (idc)c∈T (C) with idc :
Vc1

→ Vc1
such that: idc(v) = v, v ∈ Oc1

. It trivially holds that idI1
is a Σ-homomorphism since:

• idc(v) = v ∈ Oc1
forall v ∈ Oc1

.

• idc(v) = v ∈ Vc1
\Oc1

forall v ∈ Vc1
\Oc1

.

• (v1, v2) ∈ pI
1 iff (idc(v1), idc(v2)) = (v1, v2) ∈ pI1 for any vi ∈ Vc1 (i = 1, 2) and p(r1 : c1, r2 : c2) ∈ P .

• we have that idc(KI(o : c)) = KI(o : c), thus idc(KI(o1 : c)) Ó= idc(KI(o2 : d)) iff KI(o1 : c) Ó=
KI(o2 : d).

Finally, Σ-interpretations and Σ-homomorphisms define a category. ⊓⊔
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Lemma 14. The reduct of Σ-interpretations and Σ-homomorphisms is a functor Mod(σ) from Σ2-interpretations to

Σ1-interpretations (and Σ2-homomorphisms to Σ1-homomorphisms) for each signature morphism σ : Σ1 → Σ2.

Proof. By definition, domain and codomain of the reduct of an Σ-homomorphism are the reduct of domain and

codomain, respectively, of the Σ-homomorphism. We have now to prove that: (a) the reduct of a composition of two

Σ-homomorphisms is the composition of the reducts of those Σ-homomorphisms, and (b) that the reduct of an identity

Σ-homomorphisms is likewise an identity.

Let Σ = (T, P, M) with T = (T (C), ≤T (C), C |abstract), P = (R, P ), and M = (I, L) be a signature, let Ii =

(V
T

C
(Oi), Ai, KI

i ) (i=1..3) be Σ-interpretations, and let hi : Ii → Ii+1 (i=1, 2) be Σ-homomorphisms.

(a) (h2 ◦ h1)|σ = h2 |σ ◦h1 |σ . By definition of reduct of homomorphisms, we have that for any c ∈ T (C), for any

v ∈ Vc, (h2 ◦ h1)|σ is defined by (h2 ◦ h1)σ(c)(v). By definition of composition of homomorphisms, this is equals to

(h2)σ(c)((h1)σ(c)(v)). Thus, by definition of composition of homomorphisms, this is equals to ((h2)σ(c) ◦ (h1)σ(c))(v)
which is the definition of h2|σ ◦h1|σ .

(b) Let idI2 be an identity Σ2-homomorphism, then idI2 |σ is an identity Σ1-homomorphism, since by definition of

reduct of a homomorphism idI2|σ is the Σ1-homomorphism h1 defined by h1c
(v) = idI2σ(c)

(v) = v for any c ∈ T (C),

for any v ∈ Vc.

Finally, the reduct of Σ-interpretations and Σ-homomorphisms is a functor. ⊓⊔

Lemma 15. There is a functor Mod giving a category Mod(Σ) of Σ-interpretations (object in the category Cat)

for each signature Σ (object in the category Sign), as shown in Lemma 3, and a functor Mod(σ) (arrow in the

category Cat) from Σ2-interpretations to Σ1-interpretations (and Σ2-homomorphisms to Σ1-homomorphisms) for

each signature morphism σ : Σ1 → Σ2 (arrow in the category Sign), as shown in Lemma 4.

Proof. We have to prove that Mod is indeed a functor, i.e.: (a) domain and codomain of the image of an arrow are

the images of domain and codomain, respectively, of the arrow, (b) composition is preserved, and (c) identities are

preserved.

(a) By Lemma 4, the image of an arrow σ : Σ2 → Σ1 in the category Signop is an arrow Mod(σ) : Mod(Σ2) →
Mod(Σ1) in the category Cat. Also, by Lemma 3, the image of a signature Σ in the category Sign is an object Mod(Σ)

in the category Cat. Thus, domain and codomain of the image of an arrow are the images of domain and codomain,

respectively, of the arrow.

(b) We have to prove that Mod(σ2 ◦ σ1) = Mod(σ2) ◦ Mod(σ1) for both, interpretations and homomorphisms. Let

Σi (i=1..3) be signatures, let σi : Σi → Σi+1 (i=1, 2) be signature morphisms, let I = (V
T

C
(O), A, KI) be a

Σ3-interpretation, and let h be a Σ3-homomorphism. Then, we have to prove:

– I|σ2◦ σ1
= (I|σ2

)|σ1
.

By definition of reduct, I|σ2
is the Σ2-interpretation (V

T

C
(O|σ2

), A|σ2
, KI|σ2

) such that:

• V
T

C
(O|σ2

) = (Vσ2(c))c∈T (C2)

• A|σ2
= {σ2p(p)I | p ∈ P2}

• KI|σ2
(o : c) = KI(σ2I(o) : σ2T (c)) for all o : c ∈ I2

Then (I|σ2)|σ1 is the Σ1-interpretation (V
T

C
((O|σ2)|σ1), (A|σ2)|σ1 , (KI|σ2)|σ1) such that:

• V
T

C
((O|σ2

)|σ1
) = (Vσ2(σ1(c)))c∈T (C1)

• (A|σ2
)|σ1

= {σ2p(σ1p(p))I | p ∈ P1}
• (KI|σ2

)|σ1
maps each o : c ∈ I1 to an element of Vσ2(σ1(c))

and this is equal to I|σ2◦ σ1
.
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– h|σ2◦ σ1 = (h|σ2)|σ1 .

By definition of reduct, h|σ2 is defined by h|σ2 c (v) = hσ2(c)(v) for any c ∈ T (C2), for any v ∈ Vc, and thus

(h|σ2
)|σ1

is defined by (h|σ2
)|σ1 c (v) = hσ2(σ1(c))(v) = hσ2◦σ1(c)(v) for any c ∈ T (C1), for any v ∈ Vc, which

is equals to h|σ2◦ σ1
.

(c) Let idσ : Σ → Σ be an identity signature morphism (defined in Lemma 1). We have to prove that Mod(idσ)
is an identity functor, i.e., it is composed by the identity reduct of Σ-interpretations and the identity reduct of Σ-

homomorphisms.

– By definition of reduct, for any Σ-interpretation I = (V
T

C
(O), A, KI), I|idσ

is the Σ-interpretation

(V
T

C
(O|idσ

), A|idσ
, KI|idσ

) such that:

• V
T

C
(O|idσ

) = (Vidσ(c))c∈T (C)

• A|idσ
= {idσp(p)I | p ∈ P}

• KI|idσ
(o : c) = KI(idσI(o) : idσT (c)) for all o : c ∈ I

Finally, by the definition of idσ , I|idσ
= I, thus _|idσ

is the identity reduct of Σ-interpretations.

– By definition of reduct, given a Σ-interpretation I1 = (V
T

C
(O1), A1, KI

1 ), for any Σ-homomorphism h : I1 → I2,

the reduct h|idσ
is defined by h|idσ c (v) = hidσ(c)(v) = hc(v) for any c ∈ T (C), for any v ∈ Vc. Now, since I|idσ

= I, we have that _|idσ
is the identity reduct of Σ-homomorphisms.

Finally, the functor Mod is defined. ⊓⊔

Theorem 3 (Satisfaction Condition for MOF). Given signatures Σi = (Ti, Pi, Mi) (i = 1, 2) with

Ti = (T (Ci), ≤T (Ci), Ci |abstract), Pi = (Ri, Pi), and Mi = (Ii, Li) a signature morphism σ : Σ1 → Σ2, a Σ2-

interpretation I = (V
T

C
(O), A, KI), and a Σ1-formula ψ, the following satisfaction condition holds.

I|σ|=Σ1 ψ iff I |=Σ2 σ(ψ)

Proof. We know that pI|σ = σP (p)I ∀p(r1 : c, r2 : d) ∈ P1 by definition of |σ . With this result we can de-

duce that (r • p)I|σ = (σR(r), σP (p))I . Moreover, for all ϕ of the form #(r • p) = n, we have that σ(ϕ) is

#(σR(r) • σP (p)) = n, by definition of σ. Finally, using both results we have that ϕ is #(r • p) = n and

|S| = n ∀ S ∈ (r • p)I|σ ⇔ σ(ϕ) is #(σR(r) • σP (p)) = n and |S| = n ∀ S ∈ (σR(r), σP (p))I . Thus,

I|σ |=Σ1
ϕ ⇔ I |=Σ2

σ(ϕ). We can proceed exactly in the same way for proving the other two cases of ϕ.

Finally, the satisfaction condition holds. ⊓⊔

Theorem 4 (Satisfaction Condition for QVT). Given signatures Σi = 〈ΣCi

1 , ΣCi

2 , ΣFOLi〉(i = 1, 2), a signature

morphism σ : Σ1 → Σ2, a Σ2-model M = 〈MC2
1 , MC2

2 , MFOL2〉, a set of variables X2 = (Xs
2)s ∈S2

, a M-variable

assignments µ, and a Σ1-formula ϕ = 〈ϕC1
1 , ϕC1

2 , ϕrules〉 with variables in X2|σ , the following satisfaction condition

holds.

M|σ|=Σ1
ϕ iff M |=Σ2

σ(ϕ)

Proof. We will first prove some preliminary results:

1. Given FOL= signatures Σi (i = 1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-first-order structure M, a

set of variables X2 = (Xs
2)s ∈S2

, a M-variable assignments µ, and a Σ1-formula ϕ with variables in X2|σ , the

following condition holds by definition of the FOL= institution: M|σ, µ|σ |=Σ1 ϕ iff M, µ |=Σ2 σ(ϕ)

2. Given signatures Σi(i = 1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-model M with a Σ2-first-order

structure MFOL, a M-variable assignments µ, and a pattern Pattern = 〈E, A, Pr〉, the following condition

holds: MFOL, µ |= σ(Pattern) iff MFOL|σ, µ|σ |= Pattern
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Proof.

MFOL, µ |= σ(Pattern)
iff σ(p)D(µ(σ(x)), µ(σ(y))) ∈ MFOL. ∀ rel(σ(p), σ(x), σ(y)) ∈ σ(A)

and MFOL, µ |=FOL σ(Pr) by def. of pattern satisf.

iff pD(µ|σ (x), µ|σ (y)) ∈ MFOL|σ . ∀ rel(p, x, y) ∈ A by def. of MFOL|σ and σ
and MFOL|σ, µ|σ |=FOL Pr by result 1

Finally, by definition of satisfaction of a pattern, we conclude that MFOL|σ, µ|σ |= Pattern also holds.

3. Given signatures Σi(i = 1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-model M with a Σ2-first-order

structure MFOL, a M-variable assignments µ, and a when clause when = 〈whenc, whenr〉 which is part of ϕ,

the following condition holds: MFOL, µ |= σ(when) iff MFOL|σ, µ|σ |= when

Proof.

MFOL, µ |= σ(when)
iff MFOL, µ |=FOL σ(whenc)

and MFOL, µ[σ(v)] |= σ(r). ∀(σ(r), σ(v)) ∈ σ(whenr) by def. of satisfaction of a when clause

We also know that MFOL, µ |=FOL σ(whenc) iff MFOL|σ, µ|σ |=FOL whenc by result 1. Thus, we have to prove

that:

MFOL, µ[σ(v)] |= σ(r). ∀(σ(r), σ(v)) ∈ σ(whenr) iff MFOL|σ, µ|σ [v] |= r. ∀(r, v) ∈ whenr

This can be proved by induction on the length of the chain of dependencies of when and where clauses which is

assumed to be finite as we discussed before. This means that the base case is whenr = ∅ in which the condition

trivially holds, since also σ(whenr) = ∅. The inductive hypothesis is such that ∀(σ(r), σ(v)) ∈ σ(whenr) we

have that MFOL, µ[σ(v)] |= σ(r). iff MFOL|σ, µ|σ [v] |= r (and the same ∀(r, v) ∈ whenr. Thus, the inductive

thesis trivially holds from these hypothesis.

Finally, by definition of satisfaction of a when clause, we conclude that MFOL|σ, µ|σ |= when also holds.

4. Given signatures Σi(i = 1, 2), a signature morphism σ : Σ1 → Σ2, a Σ2-model M with a Σ2-first-order

structure MFOL, a M-variable assignments µ, and a where clause where = 〈wherec, wherer〉 which is part of

ϕ, the following condition holds: MFOL, µ |= σ(where) iff MFOL|σ, µ|σ |= where

Proof. The proof is similar to the case of a when clause.

Now, we can prove the satisfaction condition as follows:

M|σ|=Σ1
ϕ

iff MC2
i |σ|=C

Σ
C1
i

ϕC1
i (i = 1, 2)

and M|σ |=Σ1
ϕrules by def. of satisfaction relation

iff MC2
i |=C

Σ
C2
i

σ(ϕC1
i ) (i = 1, 2) by def. of IC

and M |=Σ2 σ(ϕrules) as proved next

iff M |=Σ2 σ(ϕ) by def. of satisfaction relation

We need to prove that M|σ |=Σ1 ϕrules iff M |=Σ2 σ(ϕrules), which assuming that ϕrules is of the form 〈Rules, top〉,

it is the same to prove that

∀ Rulei ∈ top. MFOL2|σ, ∅ |= Rulei iff ∀ σ(Rulei) ∈ σ(top). MFOL2 , ∅ |= σ(Rulei)

For any rule Rule = 〈VarSet, Patterni (i = 1, 2), when, where〉, we have two cases:
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1. If WhenVarSet = ∅, MFOL2|σ, ∅ |= Rule if

∀ µ1|σ [x1, ..., xn] ∈ |VarSet\2_VarSet|,

( MFOL2|σ, µ1|σ [x1, ..., xn] |= Pattern1 →

∃ µ2|σ [y1, ..., ym] ∈ |2_VarSet|,

( MFOL2|σ, µ1|σ ∪ µ2|σ|= Pattern2 ∧

MFOL2|σ, µ1|σ ∪ µ2|σ|= where))

2. If WhenVarSet Ó= ∅, MFOL2|σ, ∅ |= Rule if

∀ µw|σ [z1, ..., zo] ∈ |WhenVarSet|,

( MFOL2|σ, µw|σ [z1, ..., zo] |= when →

∀ µ1|σ [x1, ..., xn] ∈ |VarSet\(WhenVarSet ∪ 2_VarSet)|,

( MFOL2|σ, µ1|σ ∪ µw|σ|= Pattern1 →

∃ µ2|σ [y1, ..., ym] ∈ |2_VarSet|,

( MFOL2|σ, µ1|σ ∪ µ2|σ ∪ µw|σ|= Pattern2 ∧

MFOL2|σ, µ1|σ ∪ µ2|σ ∪ µw|σ|= where)))

In both cases we can directly use the preliminar results, plus the definition of µ|σ , to conclude that the following cases

also hold:

1. If σ(WhenVarSet) = ∅

∀ µ1[x1, ..., xn] ∈ |VarSet\2_VarSet|,

( MFOL2 , µ1[x1, ..., xn] |= σ(Pattern1) →

∃ µ2[y1, ..., ym] ∈ |2_VarSet|,

( MFOL2 , µ1 ∪ µ2 |= σ(Pattern2) ∧

MFOL2 , µ1 ∪ µ2 |= σ(where)))

2. If σ(WhenVarSet) Ó= ∅

∀ µw[z1, ..., zo] ∈ |WhenVarSet|,

( MFOL2 , µw[z1, ..., zo] |= σ(when) →

∀ µ1[x1, ..., xn] ∈ |VarSet\(WhenVarSet ∪ 2_VarSet)|,

( MFOL2 , µ1 ∪ µw |= σ(Pattern1) →

∃ µ2[y1, ..., ym] ∈ |2_VarSet|,

( MFOL2 , µ1 ∪ µ2 ∪ µw |= σ(Pattern2) ∧

MFOL2 , µ1 ∪ µ2 ∪ µw |= σ(where))))

Finally, we conclude that ∀ σ(Rulei) ∈ σ(top). MFOL2 , ∅ |= σ(Rulei). Note that we can also read this demonstration

downside up, thus the satisfaction condition holds. ⊓⊔
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