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Abstract

The d-diameter-constrained K-reliability (DCR) problem in networks is an extension of the classical problem of com-
puting the K-reliability (CLR) where the subnetwork resulting from the failure of some edges is operational if and only
if all nodes in a set of “terminal nodes” K have pairwise distances not greater than a certain integer d. Computing the
CLR is NP-hard which has motivated the development of simulation schemes, among which a family of Monte Carlo
sampling plans that make use of upper and lower bounds to reduce the variance attained after drawing a given number
of samples. The DCR is receiving increasing attention in contexts like video-conferencing and peer-to-peer networks;
since it is an extension of the CLR it is also NP-hard. This paper presents Monte Carlo sampling plans based on bounds
adapted to the DCR. These plans are described in detail focusing on their requirements and limitations. Test cases
are presented evidencing how the diameter constraint and the terminal nodes set size affect the efficiency as well as the
higher performance improvements attained by the best-performing methods in the context of DCR when compared to
CLR.

Keywords: Monte Carlo, Rare Events, Variance Reduction, Network Reliability, Diameter Constraints.

1. Introduction

In several contexts a communication network can be
modelled as an undirected graph G = (V,E) where the
nodes V represent entities to interconnect and the edges E
represent the existing links among them. Random failures
affecting nodes and edges can be modelled through differ-
ent probabilistic schemes. The most employed one assumes
that each component w has a certain probability pw of be-
ing operational (with probability 1 − pw of being failed)
and the network has also one of two possible states (opera-
tional or failed) depending on the states of all components.
Component’s behaviours are also typically assumed to be
independent of each other. One possible way to define
the network operational state is by specifying a subset of
distinguished nodes K (named “terminals”) and requiring
that they belong to the same connected component af-
ter discarding the failing edges (we will work with models
where nodes never fail). The network’s state is then a bi-
nary random variable and the classical K-reliability prob-
lem (CLR) deals with computing the probability R(G,K)
that the network is operational according to this defini-
tion; there is a vast literature on it. Petingi and Rodriguez
[1] introduced the problem of computing the d-diameter-
constrained K-reliability (DCR) by adding the additional
requirement for the network to be operational that the
distance among all pairs of nodes of K be at most the
integer d after discarding all failing edges. For the DCR
we denote the probability that the network is operational
as R(G,K, d). It has received increasing attention during

recent years because it models situations where limits ex-
ist on the acceptable delay times to propagate traffic (like
in voice applications over IP networks) or in the amount
of hops that packets can undergo (peer-to-peer networks)
and previous results for CLR were extended to DCR [2],
[3], [4], [5]. The DCR is a superset of CLR since any in-
stance of the latter can be transformed into an instance
of the former by adding a constraint d ≥ |E| − 1. Both
problems are known to be NP-hard [6] [7] in the general
cases and so exact computation is only feasible for limited-
size or particular topologies. This has motivated intense
research on developing bounds and simulation techniques
to estimate the reliability with precision goals set by each
specific application. In [8] and [9] a survey on the CLR
is presented as well as in [10] for the DCR. A survey on
simulation schemes that have been devised for estimating
R(G,K) can be found in [11]. In real applications it is
often the case that the edge reliabilities are very high and
so sampling a network in the failed state is a rare event. In
such a situation it is highly desirable to lower the amount
of samples needed to reach certain confidence level/interval
goals by using variance reduction techniques. Van Slyke
and Frank [12] and Kumamoto, Tanaka and Inoue [13]
suggest sampling plans that make use of previous knowl-
edge of the topology of the problem under study to bound
the sampling space attaining variance reductions. Fish-
man includes in [14] those previous works under a gen-
eral framework of bounded Monte Carlo sampling plans
and in [15] compares them to other sampling plans for
K = {s, t} evidencing the advantages of this approach.
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In this work we describe how the mentioned Monte Carlo
sampling plans can be adapted to DCR context by focus-
ing on the differences introduced respect to CLR. Section 2
introduces the needed definitions and notation. Section 3
presents the general framework and discusses the conse-
quences of switching to DCR context. Section 4 briefly
describes each sampling plan. Section 5 presents numeri-
cal test results and compares the performance of the plans
among themselves and respect to the CLR. Finally Sec-
tion 6 summarises conclusions.

2. Definitions and Notation

An instance of the CLR is defined by an undirected
graph G = (V,E) with n = |V |,m = |E|, E = {e1...em}, a
set of terminal nodes K∈V with k = |K| and given proba-
bilities of operation for each edge. Recall that edges states
are assumed to be independent of each other. The addition
of a diameter constraint d defines an instance of the DCR
which we denote by d-DCR. For each e∈E, let Xe be a ran-
dom binary variable whose value is 1 if e operates and 0
otherwise and let pe be the reliability of e (the probability
that it is operational). We call network configuration or
state vector any m-tuple X = (X1...Xm) ∈ {0, 1}m encod-
ing the states of all edges. Let X be the set of the 2m possi-
ble configurations and denote by π(x) the probability that
the random configuration is x, that is, π(x) = Pr(X = x).
The structure function maps each configuration x ∈ X
into 1 or 0 according to the fact that the network operates
or fails when the components are in the states encoded in
x. As a consequence, Φ(X) is the random network’s state
and R(G,K, d) = Pr(Φ(X) = 1).

3. Bounded Monte Carlo simulation

The d-DCR for a graph G with terminal set K can
be computed as R = R(G,K, d) =

∑

x∈X Φ(x)π(x). By

sampling s configurations {X(1)...X(s)} according to the
probability distribution given by π(x) (crude Monte Carlo
sampling plan) we can build an unbiased estimator R̄s =
∑

i=1...s Φ(X
(i))/s for R with variance σ2

s = R(1 − R)/s.
Suppose we partition X into three pairwise disjoint sets U
(set of configurations known to fail i.e. for which Φ = 0), L
(set of configurations known to be operational i.e. Φ = 1)
and Γ (set of configurations for which we do not know
the state of the network), as shown in Figure 1. Then,
defining RL = π(L) =

∑

x∈L π(x) and RU = 1 − π(U) =
1 −

∑

x∈U π(x) we have that RL ≤ R ≤ RU (RL and RU

are lower and upper bounds for the DCR) and that

R = RL + Pr(X ∈ Γ ∧Φ(X) = 1)

= RL + (RU −RL) Pr(Φ(X) = 1 |X ∈ Γ).

So, if RL, RU are known and if we can sample the compo-
nents’ states from the conditional probabilities Pr(Xe =
1 | X ∈ Γ), one can draw s configurations from Γ accord-
ing to that conditional probability and build an unbiased

L UΓ

Operational configs Failing configs

0 RL
RU 1g=R(G,K,d)

(a pathset operates) (a cutset fails)

Figure 1: Bounded Monte Carlo sampling

Procedure Simulate(G,K, d, π, s)

1: Precomputing: Prop ← (properties of the graph, subsets,
auxiliary tables, etc.)

2: Bounding: RL, RU ← compute-bounds(G,K, d, π, Prop)
3: Z ← 0
4: for all iter ∈ {1...s} do
5: Sampling: x← sample-a-configuration(π, Prop)
6: Checking: if connected(x,K, d) then Z←Z + 1
7: end for

8: R̂ ← RL + (RU − RL)Z/s; σ̂2 ← ((RU − RL)
2(1 −

Z/s)Z/s)/(s− 1)
9: return R̂, σ̂2

Figure 2: Generic bounded Monte Carlo simulation pseudo-code

estimator R̂s = RL + (RU − RL)
∑

i=1..s Φ(X
(i))/s for R

whose variance can be shown to be (RU − R)(R − RL)/s
and thus unbiasedly estimated as σ̂2

s = (RU − R̂s)(R̂s −
RL)/(s − 1), achieving a variance reduction against the
crude sampling plan if RL > 0 or RU < 1. This is pre-
sented in [14] together with bounds on the amount of sam-
ples needed to achieve desired confidence level and interval
width goals for the absolute and relative errors. The meth-
ods here discussed differ in the way they define the sets U
and L and the way to implement a configuration sampling
coherent with Pr( . | X ∈ Γ). Unless otherwise specified
we will assume that the edge states are independent. A
generic pseudo-code for these simulations is shown in Fig-
ure 2. There are three basic steps for which we next discuss
the differences introduced when working in DCR context
respect to CLR.

3.1. Gathering information about the topology of the net-

work useful for bounding the configurations space

The following discussion applies to the steps “Precom-
puting” and “Bounding” of Figure 2. The most common
topological structures used for computing, bounding and
estimating network reliability are the concepts of pathset
and cutset. A pathset is any set of edges such that if they
all operate, the network operates, regardless the state of
edges not in the pathset. A cutset is any set of edges such
that if they all fail, the network fails as well, regardless
the state of edges not in the cutset. These definitions are
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valid both for CLR and DCR contexts. A pathset is said
to fail when at least one of its edges fails (otherwise the
pathset is “operational”); whereas a cutset is said to fail
when all of its edges fail (otherwise it is “operational”).
Both pathsets and cutsets are said to be minimal if there
is no edge whose suppression still yields a pathset or cutset,
respectively. Some sampling plans discussed here require
determining the cardinalities M and N of the smallest
cardinality pathsets and cutsets respectively. In the CLR
context, determining M takes O(n2/3m) time and deter-
mining N takes O(m) time for k ∈ {2, n} and O(kmn) in
general. Other plans take advantage of knowing as many
edge-disjoint pathsets and cutsets as possible. Building N
pathsets and M cutsets (useful for the plans of Subsec-
tion 4.3) takes O(Mm) and O(m) times respectively (see
[14] for the above results). All these are more complex
tasks when working with diameter constraints. Golovach
and Thilikos [16] summarise the complexity of the decision
problems asking for the existence of edge-disjoint pathsets
and cutsets with a given cardinality κ for a given con-
straint d; these problems are NP-hard when one or both
of κ and d are considered as inputs and belong to the FTP
complexity class1 when both are parameters. Note that
a certain edge set that is a pathset under diameter d is
not necessarily a pathset under diameter d′ < d; whilst all
pathsets under diameter d′ are also pathsets under diam-
eter d. The opposite happens regarding cutsets. In other
words, for the same topology, as the required diameter
decreases there are less pathsets and more cutsets, which
shifts the [lower bound, upper bound] intervals computed
through pathsets and cutsets suggested in Subsection 4.3.
This is reasonable since the DCR decreases monotonously
when d decreases (the constraint being more demanding).
We will assume that M , N and/or a set of pathsets and
cutsets are given a priori though finding them can be a dif-
ficult task (particularly for the DCR as seen). It is useful
to treat these precomputing tasks as problems separated
from the simulation itself; once solved for a given topology
and set K they can be used multiple times for estimating
reliabilities with different values of (pe)e∈E , for instance to
perform a sensitivity analysis, or for optimising purposes.

3.2. Sampling configurations

As discussed in Section 4 in this step a configuration
must be randomly chosen from the configurations subspace
yielded after dropping off the ones for which the network
state is known due to the bounding method applied. The
selection must be made with probabilities proportional to
the ones in the original configurations space. As we will
see, regarding the algorithms applied in this step in the
sampling plans here discussed, no differences arise when
moving from CLR to DCR context.

1The class of complexity of the parameterized problems taking
time O(f(p)g(i)) where f is any function on the parameters p and g

is any polynomial on the inputs i

3.3. Determining the network state for a sampled config-

uration

After sampling a configuration x it must be determined
whether it corresponds to an operational or to a failed
network state (by computing the number Φ(x)). This can
be done in O(m) time for the CLR running a breadth-
first-search (BFS) starting at any node of K. Under DCR
the time required is in general O(km) (BFS with depth
bounded by d starting at each node of K). The values of
d and k determine whether this step takes more or less
time in DCR than in CLR. With low values of d each BFS
might execute faster in DCR than in CLR since it reaches
a depth of at most d. On the contrary high values of k will
force to run several BFS in DCR instead of one in CLR
thus increasing the checking time in DCR. The effect of
both parameters is made evident in Section 5, where we
show their impact on the relative efficiency (RE) of the
methods against crude Monte Carlo attained in CLR and
DCR.

4. Description of the methods

4.1. SIM1: Crude Monte Carlo

As seen above when applying crude Monte Carlo the
sets U and L are empty (no information about failing
or operational configurations is used when sampling) and
thus RL = 0, RU = 1 and σ2

s = R(1 − R)/s. The steps
“Precomputing” and “Bounding” are trivial (nothing to
compute). The step “Sampling” is O(m) since it involves
running m Bernoulli trials, one for each edge e with suc-
cess probability Pr(Xe = 1) if failures are independent,
or taking into account already sampled edges to compute
Pr(Xe = 1 | “state of already sampled edges”) if there
are dependencies. The step “Checking” is identical for
all methods and was discussed in Subsection 3.3.

4.2. SIM2: Bounds based on minimal cardinality pathsets

and cutsets

Van Slyke and Frank [12] suggest the following way to
build U and L. Let M be the cardinality of the pathset
with the lowest cardinality (for a given instance G,K, d)
and let N be the cardinality of the cutset with the low-
est cardinality. It is clear that any configuration with less
than M operational edges leads to a failing network. At
the same time, any configuration with more than m − N
operational edges leads to an operational system. So we
can define U as the set of all configurations having more
than m−N operational edges and L as the set of all con-
figurations having less than M operational edges. The
step “Precomputing” implies determining M and N (refer
to Subsection 3.1) which can be more difficult for DCR
than CLR; in large instances it can be easier to bound M
and N by certain integers M ′ ≤ M and N ′ ≥ N though
getting potentially less tight bounds. Determining RL in-
volves adding the occurrence probabilities of all configu-
rations with less than M operational edges. Note that
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when working with uniform probabilities p (pe = p for all
edge e) any configuration with j operational states has
an occurrence probability equal to pj(1 − p)m−j . Then,
defining Fi(n, p) =

∑

j=0..i

(

n
j

)

pj(1− p)n−j we have that

RL = FM−1(m, p) and RU = 1−Fm−N (m, p) computable
in O(M) and O(m−C+1) times respectively. When prob-
abilities are not uniform algorithms known in the literature
as of the “k-out-of-n” type must be used [17], [18], [19].
Computing a table with all values for F can be seen as
part of “Precomputing”. Then, “Sampling” implies that
a random configuration must be drawn with at least M
but less than m−N operational edges according to their
probabilities of occurrence. To do so with uniform proba-
bilities involves two steps. First, one determines the num-
ber Q of edges by cutting a table of cumulative Fi(m, p)
values through a uniformly distributed random cutpoint.
Second, a configuration with such number of operational
edges is randomly built by generating an uniformly dis-
tributed random integer in [0,

(

m
Q

)

) and “translating it”
into a unique set of Q operational edges through a bijective
function (in [14] the k-canonical representation of integers
of Kruskal-Katona is suggested). Both can be executed in
O(m) time provided that tables with the values of F and
precomputed needed combinations exist. Note that the
absence or presence (and value) of a diameter constraint d
has no explicit impact on the algorithm used for sampling
edges, though it has an indirect impact through the values
of M and N , since the minimum-cardinality pathsets and
cutsets depend on the constraint d.

4.3. SIM3, SIM4, SIM5: Bounds based on precomputed

pathsets and cutsets

Kumamoto, Tanaka and Inoue [13] suggested a method
that takes advantage of more information about the topol-
ogy of the problem instance than just knowing M and C,
namely knowing a set of I pathsets P = P1...PI and a set
of J cutsets C = C1...CJ ; this method is presented under
a more comprehensive framework in [14]. The set U (as
defined in Section 4 together with L) will be exactly the
set of all configurations where at least one of C1...CJ fails
(thus making the network fail). The set L will be exactly
the set of all configurations where at least one of P1...PI

is operational (thus guaranteing that the network is oper-
ational). So the set Γ from which samples must be drawn
contains all configurations for which we do not have evi-
dence of their state when only considering the information
given by P and C.

Let us first address the general case where the ele-
ments of P are not required to be pairwise disjoint nor
are the elements of C and call this plan SIM3. “Precom-
puting” in this context involves generating the sets P and
C which (not having to be edge-disjoint) can be easily done
through DFS algorithms for P (both for CLR and DCR)
and drop-and-test algorithms for C (observe that we are
not constrained to generate all pathsets or cutsets; this
is just a matter of trade-off among precomputing effort

and bounds tightness). “Bounding” (computing RL and
RU ) can be exponentially complex if the elements in P
and/or C are numerous and highly overlap (though trivial
if they are disjoint, by factoring probabilities). Regarding
“Sampling” let Ω be the set of all edges in P1...PI and
C1...CJ . Sampling edges in E \ Ω involves just m − |Ω|
Bernoulli trials. Edges in Ω can be sequentially sampled
in O(|Ω|(

∑

h=1..I |Ph|+
∑

h=1..J |Ch|). In [14] formulae are
presented for general pathsets and cutsets (i.e. not neces-
sarily disjoint) that are not valid for non-disjoint pathsets
and cutsets. In Appendix A we concisely derive the valid
ones both for non-disjoint and disjoint contexts. A variant
presented in [14] that we call SIM4 implies precomputing
the probability of the occurrence of each of the 2|Ω| pos-
sible sub-configurations that exist when only considering
the edges of Ω, in O(2|Ω|) time. Then sampling involves
just choosing any of them through a random cutpoint ac-
cess on a table accumulating the precomputed probabil-
ities (thus in O(m) time). This variant is feasible only
for limited-sized sets Ω and thus limited-sized problem in-
stances (because the bounds loosen asm grows with a fixed
|Ω|). A third variant that we call SIM5 makes use only of
pairwise disjoint pathsets P1...PI and cutsets C1...CJ . Dis-
jointness allows an easy factorized computation of RL and
RU in O(

∑

h=1..I |Ph|) and O(
∑

h=1..J |Ch|) steps respec-
tively, and sampling of all edges in O(m); the algorithm,
presented in [14] with mistyped formulae as noted in [20],
is included together with its proof in Appendix A. It is im-
portant to note that the previous discussions about SIM3,
SIM4 and SIM5 are valid for non-uniform probabilities.
Again, note that for SIM3, SIM4 and SIM5 the absence
or presence (and value) of a diameter constraint d has no
explicit impact on the sequential computation of the prob-
abilities for sampling the edges of Ω. There is an indirect
impact when building the sets P and C (their elements are
pathsets and cutsets for a given value of d). Once in the
sampling phase their elements intrinsecally carry the con-
straint within their topology but the sampling algorithm
keeps identical (and independent of d) in CLR and DCR.

4.4. Comparison of sampling plans

Table 1 compares the requirements on uniformity of
probabilities, previous-to-simulation knowledge needed and
times order for precomputing, bounding and sampling; in
the table exp(P,C) means “potentially exponential in the
edges of P and C”. As the tests show there are significant
differences in time even in cases with identical order.

5. Experimental results

5.1. Test instances

In order to study the performance of the methods pre-
sented in the previous sections, we provide computational
results obtained over three test cases. Tests I and II are
based on the “dodecaedron” network, a common topology
in reliability literature, shown in Figure 3. Test I compares
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. SIM1 SIM2 SIM3 SIM4 SIM5

pe∈E Any Uniform Any Any Any

Pre-knowledge - min.sizes M,N P,C general P,C general P, C disjoint

Precomputing - m (for table F ) - 2|Ω| -

Bounding - M +m−N exp(P,C) exp(P,C)
∑
|Pi|+

∑
|Ci|

Sampling m m
∑
|Pi|+

∑
|Ci| m m

Table 1: Comparison of sampling plans for DCR.

the performance of all methods with different d values for
a terminal set K = {s, t}. Test II compares SIM5 and
crude Monte Carlo when specifying a larger set K and di-
ameter d. Test III is based on the countrywide transport
network topology of ANTEL, the largest telecommunica-
tions provider in Uruguay, shown in Figure 4. It also il-
lustrates the effect of specifying different d values as well
as two different cases of link reliabilities. In all cases a
comparison against CLR is also done. In particular it is
interesting to analyse how the RE of the variance reduc-
tion methods changes when moving from CLR to DCR
context; this is strongly related to the following. Let τsI
and τsII be respectively the times consumed to generate a
sample configuration under two sampling plans I and II
(e.g. crude Monte Carlo and a variance reduction plan)
and let τΦ be the time consumed for evaluating the corre-
sponding Φ. Then the RE among both plans is given by
the ratios among the times and the variances obtained σ2

I

and σ2
II being RE = (τsI + τΦ)/(τsII + τΦ) × σ2

I/σ
2
II . We

see that a growth in τΦ softens the effect of the difference
between τsI and τsII increasing the impact over RE of the
difference between σ2

I and σ2
II . All methods were imple-

mented in C++ and the tests were run on an Intel Core2
Duo T5450 machine with 2 GB of RAM; reported times
are expressed in seconds.
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Figure 3: Network for test cases I and II

5.1.1. Test I

In this test we set K = {1, 9}, pe = 0.95 for all e∈E,
and we estimated R(G,K, d) running all the discussed

methods with a sample size s = 218 and diameter con-
straints d = 2, 3, 4, 5, 6, 7 plus CLR (d = ∞). The bounds
(M,N) for SIM2 are (2, 1) for d = 2, (2, 2) for d = 3, 4
and (2, 3) for d = 5, 6, 7,∞. The disjoint sets P contain
{3, 9} for d = 2, {3, 9}, {8, 2, 0} for d = 3, 4, 5 and {3, 9},
{8, 2, 0}, {17, 26, 18, 19, 11, 4} for d = 6, 7,∞. The disjoint
sets C contain {3}, {9} for d = 2, {0, 3}, {8, 9} for d = 3, 4,
{0, 3, 4}, {8, 9, 17} for d = 5, 6, 7,∞. For SIM3 and SIM4
larger (non-disjoint) sets P,C are used for most values of d
as follows. P contains {3, 9}, {9, 10, 19, 11, 4}, {8, 2, 0} for
d = 5, {3, 9}, {8, 2, 0}, {17, 26, 18, 19, 11, 4}, {17, 26, 18, 10, 3},
{8, 7, 15, 6, 1, 0} for d = 6 and {3, 9}, {8, 2, 0}, {17, 26, 18, 19,
11, 4}, {17, 26, 18, 10, 3}, {8, 7, 15, 6, 1, 0}, {17, 25, 16, 7, 2, 0}
for d = 7,∞. C contains {0, 3}, {8, 9}, {2, 9}, {3, 8} for
d = 3, 4, {0, 3, 4}, {8, 9, 17}, {3, 8, 19}, {3, 8, 9} for d = 5
and {0, 3, 4}, {8, 9, 17}, {8, 9, 25, 26}, {0, 3, 11, 12} for d =
6, 7,∞. Table 2 presents the results. Simulation times
are reported as tsim. REsim(z) stands for the relative ef-
ficiency of SIM(z) when compared to SIM1. First, note
that the estimated reliability grows when d goes from 2 to
7 and then ∞ as expected due to the progressive loosen-
ing of the diameter constraint. Second, observe that the
variance is zero for SIM3,4,5 and d = 2, 3, 4 due to the fact
that the set Γ is empty in those cases (the used pathsets
and cutsets easily determined by visual inspection capture
all information about R). Third, note that execution times
tend to grow when d grows, due to the deeper BFS per-
formed when checking each sample. Fourth, with regard
to relative efficiency (RE), SIM2 outperform crude Monte
Carlo for all d ≥ 5 and SIM3, 4, 5 for all d. SIM4 has by
far the largest RE ratios though one has to take into ac-
count the limitations already discussed in Subsection 4.3
(e.g. in this case building the precomputed tables took
a time equivalent to that consumed by the simulation it-
self and would exponentially grow for larger topologies).
SIM3 does not require precomputing the table but it does
require a significant effort to find a minimal-size polyno-
mial to compute the probabilities for sampling edges in Ω;
and with highly overlapping sets P,C (as is for d = 5, 6, 7)
the computation time growths outweigh the gains in bound
tightness delivering a poorer performance when compared
to SIM5. Fifth, in this case (k = 2) the time needed for
sample checking is equal or lower for DCR than for CLR
(one single BFS in both cases, potentially deeper for CLR)
and thus the RE in CLR outperform those in DCR; this
changes in tests II and III as we see next.
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Diameter (d) ∞ 2 3 4 5 6 7

R̂ 0.999702 0.902943 0.986343 0.986263 0.997276 0.999355 0.999577

σ̂2
sim1 1.13E-09 3.34E-07 5.14E-08 5.17E-08 1.04E-08 2.46E-09 1.61E-09

tsim1 2.68 3.29 3.62 3.62 3.64 3.65 3.67

σ̂2
sim2 2.10E-10 2.54E-07 2.30E-08 2.30E-08 2.04E-09 4.49E-10 3.18E-10

tsim2 9.41 10.12 10.33 10.19 10.36 10.39 10.45

REsim2 1.54 0.43 0.78 0.80 1.78 1.92 1.78

σ̂2
sim3 1.71E-13 0.00E+00 0.00E+00 0.00E+00 4.83E-11 2.20E-12 6.96E-13

tsim3 46.74 11.47 17.39 17.26 34.37 51.84 59.92

REsim3 381.08 ∞ ∞ ∞ 22.67 78.71 141.89

σ̂2
sim4 1.71E-13 0.00E+00 0.00E+00 0.00E+00 4.83E-11 2.20E-12 6.96E-13

tsim4 6.12 2.92 5.21 4.25 6.66 7.80 8.06

REsim4 2908.92 ∞ ∞ ∞ 117.07 523.03 1054.48

σ̂2
sim5 5.40E-13 0.00E+00 0.00E+00 0.00E+00 1.10E-10 4.65E-12 2.57E-12

tsim5 5.80 2.89 4.56 4.73 7.77 8.57 8.69

REsim5 971.93 ∞ ∞ ∞ 44.06 225.00 265.34

Bounds

RL(sim2) 0.812179 0.214639 0.553542 0.553542 0.812179 0.812179 0.812179

RU (sim2) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

RL(sim3, 4) 0.998447 0.902500 0.986094 0.986094 0.991612 0.997850 0.998447

RU (sim3, 4) 0.999738 0.902500 0.990381 0.990381 0.999513 0.999738 0.999738

RL(sim5) 0.996316 0.902500 0.986094 0.986094 0.986094 0.996316 0.996316

RU (sim5) 0.999750 0.902500 0.995006 0.995006 0.999750 0.999750 0.999750

Table 2: Results for Test I

5.1.2. Test II

In this test we set K = {7, 9, 11, 12, 18, 19}, pe = 0.95
for all e∈E, and we estimated R(G,K, 9) and R(G,K)
comparing crude Monte Carlo with SIM5. Two disjoint
pathsets are employed, {19, 10, 9, 17, 26, 27, 29, 23, 14, 22}
and {28, 20, 11, 4, 0, 2, 7, 8, 16, 24, 21, 13, 5, 6, 15}, as well as
five disjoint cutsets, {27, 28, 29}, {8, 9, 17}, {11, 19, 20},
{6, 14, 15} and {13, 21, 22}. Table 3 presents the results.
As expected the estimated reliability is slightly higher for
CLR than for DCR (operational configurations with di-
ameters higher than nine exist although they represent a
small fraction of the total). Due to higher values of k and
d than in Test I, the ratio of SIM5 time respect to SIM1 is
significantly lower in DCR than that for CLR which yields
a higher RE for DCR than for CLR (16.59 vs 12.89). RL is
less close to R than RU due to the fact that the employed
pathsets are less (and larger) than the cutsets; disjointness
is often a very tough requirement, particularly for sparse
topologies. When relaxed by allowing to share some edges
many more pathsets can be taken into account getting
tighter lower bounds though at the expense of more costly
computation of probabilities when building samples.

5.1.3. Test III

The network for this case has 121 edges and 109 nodes
among which 22 are terminal (squares in Figure 4). SIM1
and SIM5 were run with s = 220 samples, uniform proba-
bilities p = 0.99 and p = 0.999 and diameters d = 25, 30, 35
plus∞ (CLR). The set P consists of a sigle pathset P1 with

the following edges: 18, 21, 22, 19, 20, 11, 12, 49, 50, 51,
52, 53, 54, 43, 42, 41, 40, 39, 38, 55, 56, 66, 65, 64, 63, 62,
61, 60, 59, 58, 75, 76, 96, 102, 95, 94, 105, 106, 113, 85 and
84. The set C consists of fifteen disjoint cutsets, easily gen-
erated by grouping the edges incident to fifteen terminal
nodes, namely nodes 59, 0, 67, 52, 46, 7, 97, 3, 91, 35, 105,
31, 50, 33 and 12. The results are shown in Table 4. First
observe that for this topology and set K the constraint
d = 25 is very demanding (e.g. the distance between ter-
minals 52 and 105 is 24) hence the reliability drop obtained
for d = 25 when compared to the other values of d. This
happens particularly for p = 0.99 because with lower edge
reliabilities many failed configurations are sampled when
working with d values close to 24. Second, observe that
the RE (SIM5 vs SIM1) is higher for d = 25, 30, 35 than
for CLR. One reason is that the time spent in checking
d-connectedness is much higher than that spent for sim-
ple connectedness (as a consequence of high values of k
and d) which dilutes the lower sampling time implied by a
simpler computation of samples for SIM1. Another reason
(particularly visible for d = 25 but also for d = 30) is that
execution times are indeed lower for SIM5 than for SIM1.
This is due to the fact that forcing P1 to fail (in order to
sample within Γ) often leads to sampling failed configura-
tions, quickly identified as such when being checked, thus
cutting down average iteration times in SIM5.
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. R̂ σ̂2 tsim RL RU RE

sim1 (CLR) 0.999138 3.49E-09 4.63 0.000000 1.000000

sim5 (CLR) 0.999130 2.00E-10 6.26 0.784639 0.999375 12.89

sim1 (d=9) 0.999081 3.72E-09 19.44 0.000000 1.000000

sim5 (d=9) 0.999105 2.05E-10 21.26 0.784639 0.999375 16.59

Table 3: Results for Test II

. R̂ σ̂2
sim1 σ̂2

sim5 tsim1 tsim5 RE

p=0.99

CLR 0.990734 8.65E-09 2.90E-09 95.77 108.94 2.62

d=35 0.984802 1.41E-08 4.67E-09 1596.03 1583.41 3.05

d=30 0.953564 4.21E-08 1.29E-08 1547.34 1469.22 3.44

d=25 0.788949 1.59E-07 2.55E-08 1335.24 817.93 10.17

p=0.999

CLR 0.999916 7.64E-11 3.20E-12 95.49 108.64 21.00

d=35 0.999866 1.27E-10 5.13E-12 1628.81 1641.85 24.62

d=30 0.998572 1.38E-09 5.28E-11 1613.50 1598.75 26.46

d=25 0.977157 2.13E-08 3.78E-10 1590.04 945.27 94.84

Table 4: Results for Test III

6. Conclusions

We have shown how bounded Monte Carlo sampling
plans can be applied to estimate the DCR. We briefly
presented methods which make use of previously-known
topological information and discussed the consequences of
working in the DCR context. Then we illustrated them
with three tests based on a case usually employed in the
literature and a real network topology. These tests show
that the methods based on precomputing pathsets and
cutsets have the best relative efficiencies when compared
to crude Monte Carlo. When the pathsets and cutsets
involve a limited amount of edges precomputing tables
(SIM4) can be the best option (Test II) particularly if a
large number of samples are to be generated due to high
significance goals for the estimators. Otherwise, disjoints
pathsets and cutsets (SIM5) are recommended due to low
sampling times, although it is often the case that allowing
a small number of overlapping edges significantly tight-
ens the bounds (leading to variance reductions) without
adding major complexity to the sampling computations;
further research has to be conducted regarding this trade-
off. We also have discussed and illustrated the important
fact that two features present in most real cases (large
sets K and diameters d) yield higher relative efficiencies
for DCR than for CLR (Tests II and III) which makes the
research on high variance reduction methods for DCR even
more appealing than for CLR.

Appendix A. Sequential sampling for pathset/cutset
based bounding

Let P , C and Ω be defined as in Subsection 4.3. Let the
edges of Ω be arbitrarily ordered with h = |Ω|, (z1, ..., zh) ∈

{0, 1}h an h-tuple encoding the sampled states for the
edges of Ω and ρ1, ..., ρh their (unconditioned) probabil-
ities of operation. Suppose that the sampling procedure
has achieved a certain point where r < h edges from Ω
have been sampled. Then, in order to sample a value for
zr+1 (corresponding to an edge that we will denote e) we
need to compute the probability p that the (r+1)-th edge
of Ω is operational provided that the configuration under
construction belongs to Γ (we denote that event as EΓ)
and the first r edges have already received certain sam-
pled values (we denote that event as Er). In the context
of this sampling method, belonging to Γ means that the
event Encf =“no cutset of C fails” must be met while
at the same time the event Eomp =“one or more paths
of P are operational” must not. It is easy to see that
Eomp → Encf . For convenience we will denote the proba-
bility of event A conditioned to event B both as Pr(A|B)
and Pr |B(A). Using this notation,

p = Pr(zr+1 = 1 | EΓ ∧Er) =
Pr(zr+1 = 1 ∧ EΓ ∧ Er)

Pr(EΓ ∧Er)
=

Pr |Er
(zr+1 = 1 ∧ EΓ) Pr(Er)

Pr|Er
(EΓ) Pr(Er)

=

Pr |Er
(zr+1 = 1)

Pr |Er
(EΓ | zr+1 = 1)

Pr |Er
(EΓ)

Since the failures are independent we have that Pr |Er
(zr+1 =

1) = Pr(zr+1 = 1) = ρr+1; and since Eomp → Encf then
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p = ρr+1
Pr |Er

(Encf | zr+1 = 1)− Pr |Er
(Eomp | zr+1 = 1)

Pr |Er
(Encf )− Pr |Er

(Eomp)
=

(A.1)

ρr+1
Pr(Encf | Er ∧ zr+1 = 1)− Pr(Eomp | Er ∧ zr+1 = 1)

Pr(Encf ∧Er)− Pr(Eomp ∧ Er)
(A.2)

Let ω(ρ1, ..., ρn) and λ(ρ1, ..., ρn) be the polynomials
that respectively compute p(Encf ) and p(Eomp). Then
Eq. A.1 translates into

p=ρr+1
ω(z1, ..., zr, 1, ρr+2, ..., ρh)−λ(z1, ..., zr, 1, ρr+2, ..., ρh)

ω(z1, ..., zr, ρr+1, ..., ρh)−λ(z1, ..., zr, ρr+1, ..., ρh)
(A.3)

Finding the polynomials ω and λ can be a quite com-
plex task if the pathsets and cutsets are numerous and
highly overlap. Only if they are pairwise disjoint they can
be easily computed as

ω(ρ1, ..., ρh) =
∏

j∈{1..J}



1−
∏

i∈Cj

ρΩ(i)



 (A.4)

λ(ρ1, ..., ρh) = 1−
∏

j∈{1..I}



1−
∏

i∈Pj

ρΩ(i)



 (A.5)

where Ω(i) denotes the index of edge i in the ordering
used for the edges of Ω. In this case the probability for
sampling each edge of Ω can be computed in O(|Ω|) time
as next section shows.

Appendix A.1. Sequential sampling for SIM5

Let λj =
∏

i∈Pj
pi for j = 1, ..., I be the probabil-

ity that pathset Pj is operational and ωj =
∏

i∈Cj
qi for

j = 1, ..., J the probability that cutset Cj fails (with qi =

1 − pi). Then let us denote λ = 1 −
∏I

j=1(1 − λj) the

probability of the event Eomp and ω =
∏J

j=1(1 − ωj) the
probability of the event Encf . For convenience let us also
define λ0 = ω0 = 0 and the following pointers ji (pathset
to which edge Ω(i) belongs) and ki (cutset to which edge
Ω(i) belongs):

ji =

{

j if eΩ(i) ∈ Pj j = 1...I

0 if eΩ(i) /∈
⋃

k=1...I Pk,

ki =

{

j if eΩ(i) ∈ Cj j = 1...J

0 if eΩ(i) /∈
⋃

k=1...J Ck.

From Eq. A.1 the failure probability to sample the first
edge of Ω will be

q =
Pr(z1 = 0 ∧ Encf )− Pr(z1 = 0 ∧Eomp)

ω − λ
(A.6)

The event z1 = 0 ∧ Encf will be met whenever the
edge eΩ(1) fails and all cutsets C (among which one could
eventually include this edge) have at least one operating
edge, so

Pr(z1 = 0∧Encf ) = qΩ(1)

J
∏

j=1,j 6=k1

(1−ωj)(1−
∏

i∈Ck1
\{h}

qΩ(1))

and thanks to the definition of ω0 this yields the com-
pact form

Pr(z1 = 0 ∧ Encf ) = qΩ(1)
ω

1− ωk1

(

1−
ωk1

qΩ(1)

)

(A.7)

At the same time, the event z1 = 0∧Eomp will be met
whenever the edge eΩ(1) fails and not every pathset in P
fails (note that an eventual pathset including this edge will
be failed), so

Pr(z1 = 0 ∧ Eomp) = qΩ(1)



1−

I
∏

j=1,j 6=j1

(1− λj)





that, thanks to the convenient definition of λ0 yields

Pr(z1 = 0 ∧ Eomp) = qΩ(1)
λ− λj1

1− λj1

(A.8)

Once the probability of failure for edge eΩ(1) has been
computed through Eq. A.7, A.8 A.6, z1 is sampled and its
resulting state must be taken into account when comput-
ing the probability of failure for sampling the remaining
edges of Ω. First of all, the probability ωk1 that the cutset
that includes eΩ(1) fails (provided it exists) will be zero if
the edge operates but exclude the factor (1−pΩ(1)) from its
definition if it fails. Similarly, the probability λj1 that the
pathset that includes that edge operates (provided it ex-
ists) will be zero if it fails but exclude the factor pΩ(1) from
its definition if it operates, so before sampling next edges
in Ω both must be adjusted the following way (apostrophes
mean new values to take before addressing next edge):

ω′
k1

=
(1− z1)ωk1

qh
λ′
j1 =

λj1z1
pΩ(1)

Finally ω and λ must also be updated to reflect the
changes in ωk1 and λj1 :

ω′ =
ω

1− ωk1

(1− ω′
k1
) λ′ = 1−

1− λ

1− λj1

(1− λ′
j1)

By repeating the preceding steps for z2, ..., zh the re-
maining edges of Ω get sampled. This is summarized in
the pseudo-code of Figure A.5.
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Procedure SampleOmega(E,Ω, pi, I, J, λ, ω, {λi}, {ωi}, {ji, ki})
Returns: Set of edges in Ω sampled as operating

1: Sample the state of each edge e in E \ Ω as Binomial(pe)
2: S ← ∅
3: for all h = 1, ..., |Ω| do
4: α← ω

1−ωkh

(1−
ωkh

qΩ(h)
)

5: β ←
λ−λjh

1−λjh

6: q ← qΩ(h)
α−β

ω−λ

7: Sample zh as Binomial(1 − q)
8: if zh = 1 then

9: S ← S ∪ {eΩ(h)}
10: end if

11: ω′
kh
←

(1−xh)ωkh

qΩ(h)

12: λ′
jh
←

λjh
xh

pΩ(h)

13: ω′ ← ω
1−ωkh

(1− ω′
kh

)

14: λ′ ← 1− 1−λ
1−λjh

(1− λ′
jh
)

15: ωkh
← ω′

kh
;λjh ← λ′

jh
;ω ← ω′;λ← λ′

16: end for

17: return S

Figure A.5: Pseudo-code for sampling edges in SIM5
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Figure 4: Network topology for Test III
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