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Eduardo Canale, Héctor Cancela, Franco Robledo, Pablo Sartor

Instituto de Computación, Facultad de Ingenierı́a, Universidad de la República

Julio Herrera y Reissig 565 - Código Postal 11.300 - Montevideo, Uruguay

Tel. (+598) 2711 4244 - Fax (+598) 2711 0469

Email: {canale,cancela,frobledo,psartor}@fing.edu.uy

Abstract

Consider a communication network composed by sites that never fail and links between them

that fail independently from one another. In any instant, every link (xy) is operational or failed

according to certain known probabilities p(xy) and 1− p(xy). Let d be any positive integer. Com-

puting the probability that a fixed subset K of sites remains connected by paths whose lengths

do not exceed d (considering only non-failing links) is known as the d-DCKR (d-diameter con-

strained K-reliability) problem. Its general case is known to belong to the NP-hard complexity

class; there are a number of particular cases whose complexity remains undetermined. In this

paper we show that the computational complexity of the d-DCKR is linear in the number of sites

of the network when d = 2 and |K| is fixed (i.e. when |K| is not a free input for the complexity

analysis, but a fixed parameter of the problem).

Keywords: Network reliability, survivability, fault tolerance, diameter constraints,

combinatorial problems, computational complexity.

1. Introduction

Consider a communication network with a set of sites and a set of links between them. Sup-

pose that the sites are perfect but the links can fail independently from one another. Suppose

also that at any given instant t, every link xy is operational or failed with probabilities denoted

by p(xy) and 1 − p(xy) respectively. Therefore, there is an “operational subnetwork” composed

by all the sites and only those links that are operational. Computing the network reliability, i.e.

the probability that a given subset K of “distinguished” sites is connected on the operational

network yielded at a certain moment is known as the K-reliability problem and has been widely

studied [1]. When additionaly requiring that the operational network be d-K-connected (i.e. that

the distance between any pair of sites of K be bounded by a positive integer d) the problem is

known as d-diameter-constrained K-reliability (d-DCKR). In this case the reliability is denoted

by RK(G, d). First introduced in [2], this problem has recently gained relevance because it can

model situations where limits exist on the acceptable delay times to propagate traffic (like in

voice applications over IP networks) or in the amount of hops that packets can undergo (peer-to-

peer networks). The general version is known to belong to the NP-hard complexity class [3]. In
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this paper we prove that the computational complexity of the 2-DCKR is linear in the number of

sites, whenever |K| is a fixed parameter of the problem (and regardless its value).

2. Definitions and Notation

Let us model the network by a simple, undirected and complete graph G = (V, E), with

n = |V | and E = {{x, y} : x ∈ V ∧ y ∈ V ∧ x , y}. The nodes V correspond to the sites of the

network. Each edge xy ∈ E has a label p(xy) ∈ [0, 1]. If there is a link connecting the sites to

which x and y correspond then p(xy) is the probability that it is operational; otherwise we define1

p(xy) = 0. We denote the probability of any event z as Pr(z). Additionally:

• given K ⊆ E, a 2-path is any E′ ⊆ E such that the partial graph (V, E′) is 2-K-connected;

• we denote by n′ the number of nodes not in K, that is, n′ = n − |K|;

• we denote by O2
K

(E) the set of 2-paths determined by E and K (following the notation of

[4]);

• we denote by X{m} the set of all subsets of a certain set X that have m different elements,

that is, X{m} = {Y ⊆ X : |Y | = m};

• we denote by X(m) the set of all m-tuples built with different elements of a certain set X,

that is, X(m)
= {Y ∈ Xm : i , j→ Yi , Y j};

• we denote by ⊗ the binary operator defined as:

(a1, a2, . . . , an) ⊗ (b1, b2, . . . , bn) = {(a1, b1), (a2, b2), . . . , (an, bn)};

• we call requirement to any set of two nodes {x, y} ⊆ K{2} and denote it by xy. We say that

a requirement is satisfied if there is a path of length below three, formed only by operating

edges, that connects the two nodes that define the requirement;

• we denote by P(A) the powerset of a certain set A.

3. Demonstration

3.1. Demonstration Plan

We start by finding an analytical expression for computing RK(G, 2). To do so, we partition

O2
K

(E) in disjoint components whose probabilities are then computed and totaled. We build a

function f : O2
K

(E) → A (with a certain discrete codomain A conveniently chosen) and then

compute the probability of the domain by totaling the probabilities of all preimages of A:

RK(G, 2) = Pr(O2
K(E)) =

∑

a∈A

Pr( f −1(a)) (1)

The set A is defined as

A =

n′
⋃

ℓ=0

(

(V \ K)(ℓ) ⊗ P(K)(ℓ)
)

.

1In other words we see the network as a complete graph where non-existent links correspond to edges with probability

of operation equal to zero.
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Each element of A is a set of pairs (t,C), where t is a node of V \ K and C is a subset of K. We

see each such element of A as a collection of sets of edges between nodes of V \ K and K that

belong to a 2-path (besides edges between nodes of K). Observe that any edge linking two nodes

of V \K is irrelevant for the 2-K-connectivity, since they can not be part of a path of lenght one or

two connecting two nodes of K. The function f is defined in Eq. (3). We first show that A can be

built such that totaling the probabilities Pr( f −1(a)) involves a number of elementary operations

that is polynomial in n; finally, we show that it is indeed linear in n.

3.2. Partitioning O2
K

(E)

We assume that there is a certain strict ordering within V . We say that a family C ⊆ P(K)

covers (or is a cover of) K for F ⊆ K{2}, and denote it by C ⊐F K, if and only if for every

requeriment xy at least one of the following applies: (i) xy ∈ F; (ii) ∃z ∈ K : {xz, zy} ⊆ F; (iii)

∃C ∈ C : {x, y} ⊆ C.

a b

c d

C1

C2

C3

K = {a, b, c, d}

F = {ab, ac, cd}

C = {{a, c}, {a, d}, {b, c, d}}

Figure 1: Example of cover set

Figure 1 illustrates the concept of covers. The thick lines represent the elements of F. The

nodes connected by thin lines to the square nodes represent each element of C = {C1,C2,C3}.

Condition (i) applies for the pairs ab, ac and cd. Condition (ii) applies for bc and ad. Condition

(iii) applies for ac, ad, bc, bd and cd. Thus all pairs satisfy at least one of (i), (ii), (iii) and then

C ⊐F K.

Observe that if E′ ∈ O2
K

(E) then the family CE′ defined as the set

CE′ = {CE′ (t) : t ∈ V \ K} being CE′ (t) = {x ∈ K : xt ∈ E′}, (2)

covers K for F = E′ ∩ K{2}, and we say that E′ generates CE′ . Conversely, given a cover C of K

for F, if |C| ≤ n − |K| then there is some E′ that generates C; for example E′ = {xy ∈ E : xy ∈

F ∨ (∃C ∈ C : {x, y} ⊆ C)} is a 2-path. The preceding definitons relate with the operational states

of the network in the following way. Assume that the elements of F correspond exactly to the

edges linking nodes of K that operate at a certain moment. Assume also that each element C ∈ C

represents a node in V \ K whose neighbors, ignoring failing edges, are exactly the elements of

C (e.g. C1,C2,C3 in Figure 1). Then, C ⊐F K implies that every requirement is satisfied at that

moment.

The powerset P(K) has 2|K| elements (i.e. there are 2|K| different subsets of K). Its powerset

P(P(K)) has 2(2|K|) elements that are sets of subsets of K. So, for the number of families C for

which C ⊐F K, there is an upper bound 2(2|K|) that depends only on |K|. Now, observe that when

considering a family CE′ , if there are two nodes t , t′ < K with CE′ (t) = CE′ (t
′), one of t and t′

can be removed from the graph G, yet obtaining the same family CE′ . For example, in Figure 1,

the addition of a node C4 with exactly a and c as neighbors in K, would make no difference

when producing CE′ , due to the existence of a node C1 with exactly the same neighbours in K.
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In general, given a path E′ and one element C of the cover CE′ there are one or more t ∈ V \ K

such that CE′ (t) = C. Let us define tE′ (C) as the minimum of them according to the ordering of

V , that is

tE′ (C) = min{t ∈ V \ K : CE′ (t) = C}.

Then, for every 2-path E′, there is exactly one set {t1, t2, . . . , tℓ} and one coverCE′ = {C1,C2, . . . ,Cℓ}

for F = E′ ∩ K{2}, such that ti = tE′ (Ci) ∀i = 1, . . . , ℓ. Now we can define our function f as fol-

lows:

f (E′) = {(t1,C1), (t2,C2), . . . , (tℓ,Cℓ)}. (3)

3.3. Computing the probabilities

Given x ∈ V \ K and C ⊆ K, let us denote as P(x,C) the event where the set of neighbors of

node x that belong to K and are connected by working links is exactly C. Its probability, denoted

as p(x,C), is:

p(x,C) =
∏

y∈C

p(xy)
∏

y∈K\C

(1 − p(xy)).

Now, given C1, . . . ,Cℓ ⊆ K and t1, . . . , tℓ ∈ V \ K such that ti < ti+1∀i = 1, . . . , l − 1, let us

define the event P(t1, . . . , tℓ,C1, . . . ,Cℓ) as the event where:

• the nodes t1, . . . , tℓ are connected exactly to C1, . . . ,Cℓ in K respectively; and

• every node t ∈ V \ K has no neighbors in K or is connected exactly in K to some Ci with

ti < t.

This is the event where all the following statements hold true (we denote its probability as

p(t1, . . . , tℓ,C1, . . . ,Cℓ)):

• the nodes t1, . . . , tℓ are connected exactly to C1, . . . ,Cℓ in K respectively;

• the nodes t with t < t1 have no neighbors in K;

• the nodes t with t1 < t < t2 have no neighbors in K or have exactly as neighbors the nodes

C1;

• the nodes t with t2 < t < t3 have no neighbors in K or have exactly as neighbors one of C1

and C2. . . ;

• the nodes t with tℓ < t have no neighbors in K or have exactly as neighbors one of

C1, . . . ,Cℓ.

So whe have that

p(t1, . . . , tℓ,C1, . . . ,Cℓ) =

















∏

t<t1

p(t, ∅)

















p(t1,C1)

















∏

t1<t<t2

[p(t, ∅) + p(t,C1)]

















p(t2,C2)

















∏

t2<t<t3

[p(t, ∅) + p(t,C1) + p(t,C2)]

















p(t3,C3) . . .

















∏

tℓ−1<t<tℓ

[p(t, ∅) + p(t,C1) + · · · + p(t,Cℓ−1)]

















p(tℓ,Cℓ)

















∏

tℓ<t

[p(t, ∅) + p(t,C1) + · · · + p(t,Cℓ)]
















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To build a compact expression, let us define t0 and tℓ+1 as “virtual nodes” such that t0 < t1 and

tℓ < tℓ+1; and C0 = ∅. Then we have that:

p(t1, . . . , tℓ,C1, . . . ,Cℓ) =

















ℓ
∏

i=1

p(ti,Ci)

































ℓ
∏

i=0

∏

ti<t<ti+1

i
∑

j=0

p(t,C j)

















. (4)

Note that the terms in the addition p(t, ∅) + p(t,C1) + · · · + p(t,C j) correspond to the prob-

abilities of events that are pairwise disjoint due to the “is exactly” statement in the definition

of P(x,C). Therefore, this addition results in the probability of the union event. It follows that

the probability that a 2-path E′ generates the cover {C1,C2, . . . ,Cℓ} and the ℓ-tuple (t1, t2, . . . , tℓ)

with tE′ (Ci) = ti∀i ∈ 1, . . . , ℓ is:

p({E′ : CE′ = {C1, . . . ,Cℓ} : tE′ (Ci) = ti}) = p(t1, . . . , tℓ,C1, . . . ,Cℓ). (5)

Finally, from Eq. (1) and 5 we have that:

RK(G, 2) =
∑

F⊂K{2}

















∏

f∈F

p( f )



































∏

f∈K{2}\F

(1 − p( f ))



















∑

(C1,...,Cℓ)∈P(K)(ℓ):
{C1,...,Cℓ}⊐F K

∑

(t1,...,tℓ)∈(V\K)(ℓ):
ti<ti+1,i=1,...,l−1

p(t1, . . . , tℓ,C1, . . . ,Cℓ). (6)

3.4. Computational complexity

The first summation in Eq. (6) has 2(|K|2 ) terms. The second summation has no more than

2(2|K|)(ℓ!) terms with ℓ ≤ 2(2|K|). The third summation has
(

n′

ℓ

)

terms. The product operands involve
(

|K|

2

)

products. Computing p(t1, · · · , tℓ,C1, · · · ,Cℓ) involves n products and a number of additions

bounded by (ℓ+1)n since, denoting as τi the position of t′
i

within the ordering of V\K, the number

of additions is equal to 2(τ2 − τ1 − 1) + 3(τ3 − τ2 − 1) + · · · + ℓ(τℓ − τℓ−1 − 1) + (ℓ + 1)(n − τℓ) =

−2 − 3 − · · · − ℓ − 2τ1 − τ2 − τ3 − · · · − τℓ + (ℓ + 1)n < (ℓ + 1)n. Hence the number of elemental

operations (additions and products) needed to compute RK(G, 2) has order

2(|K|2 )
(

|K|

2

)

2(2|K|)2(2|K|)!(n′)2(2|K| )

n(2(2|K|)
+ 2) (7)

which is a polynomial in n of degree 2(2|K|)
+1, thus proving that the complexity is polynomial.

It is easy to see that an enumeration of the sets P(K(2)), {C ⊐F K} and (V \ K)(ℓ) can be done

in a number of steps linear in their cardinality; then the computational complexity order of the

three summations is the number of terms involved. Now let us see that the complexity is, indeed,

linear in n. To do so, it is enough to show that the following summation can be computed in a

time linear in n,

∑

(t1,...,tℓ)∈(V\K)(ℓ):
ti<ti+1,i=1,...,l−1

p(t1, . . . , tℓ,C1, . . . ,Cℓ),=
∑

(t1,...,tℓ)∈(V\K)(ℓ):
ti<ti+1,i=1,...,l−1

ℓ
∏

i=1

p(ti,Ci)

ℓ
∏

i=0

∏

t′
i
<t<t′

i+1

i
∑

j=0

p(t,C j), (8)

since the remaining summations and product operators in Eq. (6) multiply the order by factors

that only depend on |K|, thus being constant with regard to n. For simplicity of notation let us
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assume that V \ K = {1, · · · , n′}. Following Eq. (4), the summation of Eq. (8) coincides with the

summation of all products that have the form

p(1,Ca1
)p(2,Ca2

) . . . p(n′,Can′
)

where at ∈ {0, 1, . . . , ℓ} (recall that C0 = ∅) and there are ℓ integers ti with 0 < t1 < · · · < tℓ ≤ n′

such that:

• ati = i ∀i ∈ {1, . . . , n′},

• if t < t1 then at = 0,

• if t1 < t < t2, then at ∈ {0, 1},

• if t2 < t < t3, then at ∈ {0, 1, 2}, . . . ,

• if tℓ−1 < t < tℓ, then at ∈ {0, 1, . . . , ℓ − 1},

• if t > tℓ, then at is any integer between 0 and ℓ.

These products can be associated to directed paths in the directed graph defined by:

~G = ({1, . . . , n′} × {0, . . . , ℓ}2, ~E)

~E = {((t, a, b), (t + 1, a′, b′)) : t ≤ n′ − ℓ, t ≤ b + 1, 0 ≤ a′ ≤ b + 1, b′ = max(a′, b)} ∪

{((t, a, b), (t + 1, a′, b′)) : n′ − ℓ ≤ t ≤ n′ − ℓ + b, ℓ − (n′ − t) < a′ ≤ b + 1, b′ = max(a′, b)}

that go from vertex (1, 0, 0) to (n′, ℓ, ℓ). Each vertex (t, a, b) is associated to the probability

p(t,Ca). Figure 2 shows, as an example, the progression of pairs (t, b) visited when n′ = 5 and

ℓ = 2 (it can be seen as a projection of the graph in the plane t, b). The variable b cumulates

the number of nodes of t1, . . . , tn already visited when t moves from t = 1 to t = n′; while a

represents the possible sets involved in the events p(t,Ca). Computing the summation of Eq. (8)

can be done by dynamic programming, proceeding from the vertices with the form (n′, a, b)

downwards to reach (1, 0, 0). In each step, a value s(t, a, b) is assigned to the vertex (t, a, b)

satisfying

s(t, a, b) =















1 t = n′,

p(t,Ca′ )
∑

(t,a,b) (t+1,a′,b′) s(t + 1, a′, b′) t < n′.

Hence the number of operations for computing the summation of Eq. (8) will not exceed the

number of edges of the graph ~G, which is bounded by (n′ + 1)ℓ2 times the maximum possible

degree ℓ2, that is (n′ + 1)ℓ4, linear in n, which completes the proof.

4. Conclusions and Ongoing Work

This paper introduces a contribution regarding the complexity analysis of the d-DCKR prob-

lem; it is proved that computing the 2-DCKR is of polynomial complexity in n, the number of

nodes of the network, provided that n is the only input of the problem (being |K| ≤ n any fixed

parameter). Moreover, it is proved that the complexity order is indeed linear in n, according to

the explicit formula given for computing the 2-DCKR. Recall that it was already known that for

d > 2 the problem is NP-hard.
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5, 0 5, 1 5, 2

4, 0 4, 1 4, 2

3, 0 3, 1 3, 2

2, 0 2, 1 2, 2

1, 0 1, 1 1, 2

Figure 2: (t,b)-projection of the auxiliary graph for computing p(t1, . . . , t5,C0, . . . ,C2)

The case where |K| is also considered as an input for the complexity analysis seems to be also

an NP-hard problem; although this has not yet been demonstrated. Observe that the problem P1

of computing the 2-DCKR with K = V and all edge reliabilities equal to 0.5 is equivalent to the

problem P2 of counting all the partial graphs (V, E′ ⊆ E) of G with diameter two. This is due

to the fact that under such hypothesis every partial graph has the same probability of occurrence

(2−n) and each partial graph is 2− V−connected if and only if it has diameter two; it follows that

RV (G, 2) equals the number of such partial graphs divided by 2n. Then, proving that the problem

P2 is NP-hard would suffice to prove that the 2-DCKR with K = V is NP-hard too; since P2 is

a special case of the latter (where all edges are assigned reliabilities equal to 0.5). Furthermore,

it would follow that the 2-DCKR with K as a free input for the complexity would be NP-hard,

since so it is its particular case 2-DCKR with K = V . Currently our efforts head toward proving

that P1 is an NP-hard problem.
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