
PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Reporte Técnico RT 11-02

An institution for UML 2.0 state
machines

 Daniel Calegari Nora Szasz

2011

An institution for UML 2.0 state machines
Calegari, Daniel; Szasz, Nora
ISSN 0797-6410
Reporte Técnico RT 11-02
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República
Montevideo, Uruguay, abril de 2011

Una Institución para Máquinas de Estado de UML 2.0

Daniel Calegari1 and Nora Szasz2

1 Facultad de Ingeniería, Universidad de la República
11300 Montevideo, Uruguay
dcalegar@fing.edu.uy

2 Facultad de Ingeniería, Universidad ORT Uruguay
11100 Montevideo, Uruguay
szasz@ort.edu.uy

Abstract. La teoría de instituciones provee un marco robusto y elegante para
la programación de alto nivel y en particular para la composicionalidad. Puede
ser utilizado para definir un ambiente heterogéneo para la especificación semán-
tica de UML, el cual consiste de una familia de formalismos que capturan varios
sublenguajes UML, y morfismos que representan las relaciones semánticas esper-
adas entre ellos. En este artículo se presenta una institución para el lenguaje de
Máquinas de Estado de UML 2.0, ideada para colaborar con la definición del am-
biente heterogéneo. La semántica detrás de la institución está basada en trabajos
previos. Dicha semántica considera el procesamiento de un evento de entrada en
el contexto de una transición de un paso. Adicionalmente extendemos la semán-
tica para manejar secuencias de eventos, y además para considerar corridas a
través de la máquina de estado.

Keywords: UML 2.0, Máquinas de Estado, Instituciones

An Institution for UML 2.0 State Machines ?

Daniel Calegari1 and Nora Szasz2

1 Facultad de Ingeniería, Universidad de la República
11300 Montevideo, Uruguay
dcalegar@fing.edu.uy

2 Facultad de Ingeniería, Universidad ORT Uruguay
11100 Montevideo, Uruguay
szasz@ort.edu.uy

Abstract. The theory of institutions provides an elegant and robust framework
for programming in the large and in particular for compositionality. It can be used
to define an heterogeneous environment for the semantic definition of UML, con-
sisting of a family of formalisms which capture various UML sublanguages, and
morphisms that represent the expected semantic relationships between them. In
this article we present an institution for UML 2.0 State Machines devised for
collaborating with the definition of such environment. The semantics behind the
institution is based on a previous work which deals with processing simple in-
put events within a transition step. We also extend this semantics for handling
sequences of events, and then for considering runs through the state machine.

Keywords: UML 2.0, State Machines, Institutions

1 Introduction

Quality in model-intensive approaches for software development relies on a precise def-
inition of the models used for describing the software system to be developed. Since the
Unified Modeling Language (UML [1]) is the most widely adopted software modeling
notation in use today, there are many efforts, often uncoordinated, to define its formal
semantics. In addition to the variety of sublanguages, perhaps the greatest complexity
lies in the fact that these languages are naturally described using heterogeneous seman-
tic domains that cannot be easily integrated. Indeed handling heterogeneity seems to
be the key challenge. In [2], an heterogeneous approach to the semantics of UML is
proposed which deals with the integration of the different formalisms. The proposal is
based on the definition of an heterogeneous institution environment consisting of a fam-
ily of institutions capturing various UML sublanguages, and morphisms that represent
the expected semantic relationships between them. This allows each sublanguage to be
described using its own semantic domains.

The concept of Institution [3] was originally introduced to formalise the notion
of logical system. Informally, an institution consists of a collection of signatures (vo-
cabularies for use in constructing sentences in a logical system), signature morphisms
? Technical Report / InCo-PEDECIBA / TR11-02 / ISSN 0797-6410 / April 2011

http://www.fing.edu.uy/inco/pedeciba/bibpm/field.php/Main/ReportesT%e9cnicos

(allowing many different vocabularies at once), a collection of sentences and models
for a given signature, and a satisfaction relation of sentences by models, such that when
signatures are changed (by a signature morphism), satisfaction of sentences by mod-
els changes consistently. The theory provides many interesting results, for example, it
states that any institution whose signatures can be glued together will also allow gluing
together theories (collections of sentences) to form larger specifications. This gives a
very rich and flexible framework that can be used in program specification [4].

To the best of our knowledge, the heterogeneous environment devised so far lacks an
institution for State Machines [1], which constitute a valuable notation for describing
behavioral aspects of a system. The contribution of this paper is the definition of an
institution for UML 2.0 State Machines.

There is a plethora of formal semantics for UML State Machines [5]. Most of them
either consider previous versions of the standard, or just consider a small subset of the
language. In [6] Fecher and Schönborn present a complete formal semantics of UML
2.0 State Machines. They give a sublanguage with fewer design features for which
a precise syntax and a formal semantics are defined. Then the semantics of a state
machine is given via a transformation into the sublanguage. We base our work on this
proposal since it is complete enough and it is presented within an algebraic approach
that is specially useful for our purpose. We also extend these semantic definitions for
dealing with sequences of events, inspired by [7]. In this work, von der Beeck proposes
a two-phase formal semantics for UML 1.4 State Machines introducing the idea of using
the output of one step as part of the input of the next step. Moreover, we study how the
semantics can be modified to define an institution which considers runs through the
state machine instead of a simple transition step.

The rest of the paper is organized as follows: Section 2 presents a few elementary
concepts about state machines and the main components of the semantics defined in [6].
In Section 3 we use those components to define the building blocks of our institution.
Then, in Section 4, we extend the semantics in [6] for defining the satisfaction relation
and finally constructing the institution. As a complement, we study in Section 5 how to
define an institution which considers runs through the state machine. Finally, in Section
6 we conclude and point out some issues for further work.

2 UML 2.0 State Machines

UML 2.0 state machines basically consist of states and transitions between them. The
main feature of state machines is that states may contain regions (containing other
states), defining a state hierarchy. A state may have entry and exit actions (executed
when the state is entered/left), and do actions ((partly) executed as long as the state is
active). The environment may send events to the state machine which are stored in the so
called input queue of events. State machines follow the run-to-completion assumption,
i.e., “an event occurrence can only be taken from the pool and dispatched if the pro-
cessing of the previous current occurrence is fully completed” [1]. A dispatched event
from the input queue that does not trigger transitions is either discarded or deferred.
A transition connects a source state to a target state. It includes (optionally) a guard, a
sequence of output actions, and it is triggered by an event. A transition not exiting any

state is called an internal transition. There are also some special kind of states called
pseudostates. Join and fork pseudostates are used to collect different transitions into a
compound transition. Exit and entry pseudostates are used to change the order of the ac-
tion execution. Junction pseudostates are a shorthand notation for the set of transitions
obtained by combining any incoming transition with any outgoing one. Finally, history
pseudostates activate those substates of the region that were active when the region was
the last time active.

In what follows we present the main components of the semantics defined in [6]. For
convenience, we adapt some definitions. Changes will be pointed out along the docu-
ment. For more details the reader is referred to the source.

The core language for state machines consists of composite and final states, regions,
choice, entry and exit pseudostates, internal/external transitions, do actions, and event
deferral. No interlevel transitions, i.e., transitions crossing a state border, are allowed,
instead additional exit, entry pseudostates are used. Default exit and entry must be ex-
plicitly modeled. There are three different kinds of exit pseudostates: a normal one, a
priority relevant one, and a completion relevant one, which is only ‘enabled’ if the do
actions of the corresponding state have terminated (but not necessarily its correspond-
ing regions). States are only allowed as sources and targets of internal transitions. The
construction of a core state machine is done by aplying a transformation from a UML
2.0 State Machines such that a precise semantics coincident with the UML standard is
obtained [6].

S denotes a set of states, partitioned into composite, final, exit, entry, and choice states,
denoted by Scom, Sfin, Sexit, Sentry, and Schoice, respectively. Furthermore, Sexit is par-
titioned into priority, non-priority, and completion exit states, denoted by Spr

exit, S
npr
exit,

and Scp
exit, respectively. Exit states belong to final states and not only to composite

states. The set S is defined together a set of regions R (a region is a set of states)
and a function parent. Function parent maps composite, final, and choice states
to regions (parent : (Scom ∪ Sfin ∪ Schoice) → R); maps regions (different from
the outermost region) and entry states to composite states (parent : R → Scom
and parent : Sentry → Scom); and maps exit states to composite or final states
(parent : Sexit → (Scom ∪ Sfin)). Furthemore, � denotes the containing relation
derived from parent, and � denotes the reflexive closure of �. Moreover, there are
functions stateOf : S → (Scom ∪ Sfin ∪ Schoice) and regOf : S → R that yield
the deepest composite, final, or choice state (respectively region) that contains the ar-
gument. The direct subregions of a composite state s ∈ Scom are given by the function
dsr : Scom → R.
E denotes the set of all events. The silent event is denoted by τ . G denotes a set of

boolean expressions, which depend on global information such as the attribute values
of the objects. Furthermore, the atomic predicates wla and nab are members of G, and
are used to model the history mechanism, such that wla indicates that the target state
of the transition having wla as guard was last active, and nab indicates that the region
of the target state of the transition having nab as guard was not active before.

An action is a sequence of atomic actions.A is the set of all actions and skip ∈ A
is used to denote the termination of a sequence of actions. B is the type of all sets
of action sequences. More precisely, B ∈ B encodes a set of sequences of actions;
between every action of such a sequence an interleaving point exists, i.e., another action
(of a transition fired in parallel) can be executed before the sequence continues. The
transitions of the state machines will be labeled with elements of B instead of A∗,
however, each transition contains only one sequence of actions (a singleton set).

Definition 1 (Transition). A transition is a tuple (s1, e, g, B, s2) such that:

– s1 ∈ S\Sfin is called its source state,
– s2 ∈ S is called its target state,
– e ∈ (E ∪ {τ}) is called its trigger event
– g ∈ G is called its guard, constraining the necessary condition for the enabling of

the transition, and
– B ∈ B is called its action encoding.

The projections of transitions to the corresponding components are denoted by πsor,
πtar, πev, πgua, and πact, respectively.

Given these definitions a core state machine can be defined as follows.

Definition 2 (Core State Machine). Given domains E , A and G, a core state machine
is a tuple ((S,R,parent),doAct,defer, T , sstart) where:

– S is a set of states defined together a set of regionsR and function parent,
– doAct : Scom → A assigns to each state the do action that can be executed when

the state is active,
– defer : E → 2Scom assigns to each event those states in which it will be deferred,
– T is a set of transitions, where Tint denotes the set of the singleton sets of internal

transitions, and
– sstart ∈ Scom is the initial state, belonging to the uppermost region and having no

subregions.

The set of compound transitions of a core state machine (denoted CoTr) is either a
set consisting of one internal transition (∈ Tint) or a collection of (non-internal) tran-
sitions such that a single outermost state is exited. Note that here, contrary to UML
state machines, only transitions outgoing exit pseudostates are collected in a compound
transition.

Definition 3 (Compound Transitions). Given a core state machine
K = ((S,R,parent),doAct,defer, T , sstart), the set of compound transitions is
defined as follows:

CoTrK = {{t}∪T | t ∈ T ∧πsor(t) ∈ Sexit∧πtar(t) /∈ Sexit∧T ∈ ΥK(πsor(t))}∪Tint

Function ΥK : Sexit → 22T
collects all sets of transitions ‘below’ s that can belong

to a compound transition that ‘includes’ s. Formally:

ΥK(s) = {
⋃

r∈dsr(s)

({f(r)} ∪ F (r)) | f : dsr(s)→ T ∧ F : dsr(s)→ 2T ∧

∀r ∈ dsr(s) : πtar(f(r)) = s ∧ regOf(πsor(f(r))) = r ∧ ΥK(πsor(t))}

A history is a function H : R → Scom ∪ Sfin ∪ {⊥} mapping a region r to its direct
substate that was active the last time r was left. If r was not active before (or a final
state was last active), r is mapped to the default value ⊥. The set of histories of a core
state machine is denotedH.

Definition 4 (History). The set of histories of a core state machine
((S,R,parent),doAct,defer, T , sstart) is defined as follows:

H = {H : R → Scom ∪ Sfin ∪ {⊥} | ∀r ∈ R : H(r) 6= ⊥ ⇒ r = regOf(H(r))}

A csm-configuration (or configuration) is a snapshot of a state machine execution. For
the sake of simplicity, the definition below allows configurations that cannot occur dur-
ing execution.

Definition 5 (CSM-Configuration). Given domains E , A and G, and a core state ma-
chine K = ((S,R,parent),doAct,defer, T , sstart), a configuration is a tuple
(S,do, H, α, s̈, β, T, T̈) where

– S ⊆ Scom ∪ Sfin, denotes which states are active,
– do : Scom → A, denotes the corresponding do action that remains to be executed,
– H ∈ H, denotes its current history information,
– α ∈ A, denotes the action that has to be executed next w.r.t. transition execution
– s̈ ∈ {∅} ∪ Sfin ∪ Sexit ∪ Sentry ∪ Schoice, denotes the state that has to be activated

after α is completed,
– β ⊆ B × ({∅} ∪ Sfin ∪ Sexit ∪ Sentry ∪ Schoice), denotes the currently executing

transitions (i.e. remaining actions and target states),
– T ∈ CoTrK ∪ {∅}, denotes the currently executing compound transition, and
– T̈ ⊆ CoTrK , denotes the transitions that are left to be executed in order to com-

plete the step.

Unlike [6], we omit the variable environment in both core state machines and configu-
ration definitions. We will explain the reason for this in the next section.

3 The Ingredients of the SM Institution

The formal definition of an institution relies on Category Theory [8]. As defined in [9],
an institution I 3 consists of:

1. a category SignI of signatures;
2. a functor SenI : SignI → Set, giving a set Sen(Σ) of Σ-sentences for each sig-

nature Σ ∈ |SignI | 4 and a function SenI(σ):SenI(Σ1)→ SenI(Σ2) translating
Σ1-sentences to Σ2-sentences for each signature morphism σ : Σ1 → Σ2;

3. a functor ModI : SignopI → Cat 5, giving a category Mod(Σ) ofΣ-models for each
signature Σ ∈ |SignI | and a functor ModI(σ):ModI(Σ2)→ ModI(Σ1)
translating Σ2-models to Σ1-models (and Σ2-morphisms to Σ1-morphisms) for
each signature morphism σ : Σ1 → Σ2;

4. for each signature Σ ∈ |SignI |, a satisfaction relation |=I,Σ ⊆ |ModI(Σ)| ×
SenI(Σ);

such that for any signature morphism σ : Σ1 → Σ2 the translation ModI(σ) of models
and SenI(σ) of sentences preserve the satisfaction relation, that is, for any ϕ ∈ SenI(Σ)
and M2 ∈ |ModI(Σ2)|:

M2 |=I,Σ2 SenI(σ)(ϕ) iff ModI(σ)(M2) |=I,Σ1 ϕ

We now introduce the basic definitions and properties to define the institution SM of
UML 2.0 state machines. As mentioned before, we use the syntax and semantics de-
fined in [6].

As in algebraic specifications, a signature defines the syntax of an algebra by charac-
terising the ways in which its components may legally be combined [9]. In our case, a
signature defines a core state machine along with the set of events, actions and guards.

Definition 6 (Signature). A state machine signature, or signature for short, is a tuple
(E ,A,G,K) where:

– E is a set of events,
– A a set of actions, where skip ∈ A,
– G a set of guards, where wla ∈ G and nab ∈ G, and
– K is a core state machine, w.r.t. the domains E , A and G.

A signature morphism allows modifications in the sets of events, actions and guards,
while keeping states unmodified.

3 We often omit the subscript I
4 |C| is the collection of objects of a category C
5 Signop is the opposite category of the category Sign

Definition 7 (Signature Morphism). Given signatures Σi = (Ei,Ai,Gi,Ki) with
Ki = ((S,R,parent),doActi,deferi, Ti, sstart) (i=1, 2), a signature morphism
σ:Σ1 → Σ2 is a tuple (σE , σA, σG) of functions, such that

– σE : E1 → E2 is a bijection
– σA : A1 → A2 is an injective function, and also σA(skip) = skip ∈ A2
– σG : G1 → G2, and also σG(wla) = wla ∈ G2, σG(nab) = nab ∈ G2
– σA(doAct1(s)) = doAct2(s) for each s ∈ Scom
– defer1(e) = defer2(σE(e)) for each e ∈ E1
– t1 = (s1, e, g, B, s2) ∈ T1 iff t2 = (s1, σE(e), σG(g), σA(B), s2) ∈ T2.

Also, t1 ∈ Tint1 iff t2 ∈ Tint2.

σA(B) is the extension of σA for processing sets of sequences of actions, defined
as follow: σA(B) = {σ̂A(b) | b ∈ B}. σ̂A(b) is the extension of σA for processing
sequences of actions, defined as follows: σ̂A(skip) = σA(skip), and σ̂A(ab) =
σA(a)σ̂A(b) with a ∈ A1, and b ∈ A1

∗. Moreover, the extension of σA for processing
set of actions is defined as follows: σA(A) = {σA(a) | a ∈ A}.

Lemma 1. Signatures and signature morphisms define a category SignSM. The points
of the category are the signatures, and its arrows are the signature morphisms.

Proof. Let Σi = (Ei,Ai,Gi,Ki) be signatures with
Ki = ((S,R,parent),doActi,deferi, Ti, sstart) (i=1..4), and let
σi : Σi → Σi+1 (i=1..3) be signature morphisms, then:

– signature morphisms can be composed. We define the composition σ2 ◦ σ1 as a
tuple (σ2E ◦σ1E , σ2A ◦σ1A, σ2G ◦σ1G) such that σ2E ◦σ1E(e) = σ2E(σ1E(e)) for
each e ∈ E1, σ2A ◦ σ1A(a) = σ2A(σ1A(a)) for each a ∈ A1, and σ2G ◦ σ1G(g) =
σ2G(σ1G(g)) for each g ∈ G1. We have to show that σ2◦σ1 is a signature morphism:
• e ∈ E1 implies (σ2E ◦ σ1E)(e) ∈ E3 since b = σ1E(e) ∈ E2 and σ2E(b) ∈ E3

by definition σ1E and σ2E , respectively. Also, σ2E ◦ σ1E is bijective, since the
composition of bijective functions is a bijective function.

• a ∈ A1 implies (σ2A ◦ σ1A)(a) ∈ A3 since b = σ1A(a) ∈ A2 and σ2A(b) ∈
A3 by definition σ1A and σ2A, respectively. Also, σ2A ◦ σ1A is injective,
since the composition of injective functions is an injective function. Moreover,
(σ2A ◦ σ1A)(skip) with skip ∈ A1 is equal to σ2A(σ1A(skip)) that is
equal to σ2A(skip) with skip ∈ A2, that is equal to skip ∈ A3.

• g ∈ G1 implies (σ2G ◦ σ1G)(g) ∈ G3 since b = σ1G(g) ∈ G2 and σ2G(b) ∈ G3
by definition σ1G and σ2G , respectively. Also, (σ2G ◦ σ1G)(wla) (resp. nab)
with wla ∈ G1 is equal to σ2G(σ1G(wla)) that is equal to σ2G(wla) with
wla ∈ G2, by definition of σ1G , and that is equal to wla ∈ G3 by definition of
σ2G .

• (σ2E ◦ σ1E)(doAct1(s)) = σ2A(σ1A(doAct1(s))) for each s ∈ Scom, by
definition of σ2E ◦ σ1E . Then σ2A(σ1A(doAct1(s))) = σ2A(doAct2(s))
by definition of σ1. Moreover, we have that σ2A(doAct2(s)) = doAct3(s)
by definition of σ2. Finally, we conclude that (σ2E ◦ σ1E)(doAct1(s)) =
doAct3(s) as expected.

• defer(e) = defer2(σ1E(e)) for each e ∈ E1 by definition of σ1E and
defer2(σ1E(e)) = defer3(σ2E(σ1E(e))) by definition of σ2E . Finally,
defer(e) = defer3((σ2E ◦ σ1E)(e)) by definition of σ2E ◦ σ1E .

• (s1, e, g, B, s2) ∈ T1 iff (s1, σ1E(e), σ1G(g), σ1A(B), s2) ∈ T2 by definition
of σ1, iff (s1, σ2E(σ1E(e)), σ2E(σ1G(g)), σ2E(σ1A(B)), s2) ∈ T3 by defini-
tion of σ2. Finally, that is equal to (s1, (σ2E ◦ σ1E)(e), (σ2G ◦ σ1G)(g), (σ2A ◦
σ1A)(B), s2) by definition of σ2 ◦ σ1. Also, t ∈ Tint1 iff (σ2 ◦ σ1)(t) ∈ Tint3
by definition of σ1, σ2, and σ2 ◦ σ1

– Composition of signature morphisms is associative, i.e. (σ3◦σ2)◦σ1 = σ3◦(σ2◦σ1):
• For each e ∈ E1, ((σ3E◦σ2E)◦σ1E)(e) = (σ3E◦σ2E)(σ1E(e)) = σ3E(σ2E(σ1E(e)))

= σ3E((σ2E ◦ σ1E)(e)) = (σ3E ◦ (σ2E ◦ σ1E))(e).
• The proof is the same in the case of σA and σG .

– There exists an identity signature morphism idΣ1 : Σ1 → Σ1 defined as a tuple
(idE , idA, idG) such that idE(e) = e for all e ∈ E1, idA(a) = a for all a ∈ A1,
and idG(g) = g for all g ∈ G1. This morphism satisfies the signature morphism
conditions:
• e ∈ E1 iff idE(e) ∈ E1
• a ∈ A1 implies idA(a) ∈ A1 (and it is inyective), and also idA(skip) =
skip ∈ A1

• g ∈ G1 implies idG(g) ∈ G1, and also idG(wla) = wla ∈ G1 and idG(nab) =
nab ∈ G1

• idA(doAct1(s)) = doAct1(s) for each s ∈ Scom
• defer(e) = defer(idE(e)) for each e ∈ E1
• (s1, e, g, B, s2) ∈ T1 iff (s1, idE(e), idG(g), idA(B), s2) ∈ T1 (there is a bi-

jection)
ut

Sentences are syntactic components within a given signature. A sentence represents
possible adjacent configurations of the core state machine w.r.t. a transition, together
with the input queue of events associated to each configuration.

Definition 8 (Σ-sentence). Given a signatureΣ = (E ,A,G,K), aΣ-sentence is a tuple
((C1, E1), (C2, E2)) where C1 and C2 are configurations w.r.t. domains E ,A, and G, and
core state machine K, and E1, E2 ∈ E∗ are sets of events (event queues).

Signature morphisms induce translations of sentences. In our case, a sentence morphism
allows modifications in the sets of events, actions and guards, while keeping states
unmodified.

Definition 9 (Sentence Morphism). The extension of a signature morphism to Σ-
sentences is defined as follows. Given a Σ1-sentence ψ1 = ((C1, E1), (C2, E2)) with
Ci = (Si,doi, Hi, αi, s̈i, βi, Ti, T̈i) (i=1, 2), σ(ψ1) is a Σ2-sentence

((σ(C1), σE(E1)), (σ(C2), σE(E2))) where σE(Ei)
def= {σE(e) | e ∈ Ei},

and σ(Ci) = (Si, σdo(doi), Hi, σA(αi), s̈i, σβ(βi), σT (Ti), σT (T̈i)) (i=1, 2) such that:

– σdo(doi)(s)
def= σA(doi(s)) for each s ∈ Scom

– σβ(βi)
def= {(σA(B), s) | (B, s) ∈ βi}

– σT (Ti)
def= (s1, σE(e), σG(g), σA(B), s2) for each Ti = (s1, e, g, B, s2) ∈ T

– σT (T̈i)
def= {σT (t) | t ∈ T̈i}

Signatures related by a signature morphism must respect the set of states and transi-
tions, while events, actions and guards can be modified. Additionally, bijective (and
sometimes inyective) functions are needed since the morphism is a renaming of some
elements. From a semantical point of view, this is needed to ensure that the satisfaction
of sentences by models changes consistently with changes in signatures.

Lemma 2. There is a functor SenSM giving a set of sentences ψ (object in the category
Set) for each signature Σ (object in the category SignSM), as shown in Definition 8,
and a function σ : SenSM(Σ1) → SenSM(Σ2) (arrow in the category Set) translating
sentences for each signature morphism σ : Σ1 → Σ2 (arrow in the category SignSM),
as shown in Definition 9.

Proof. We have to prove that SenSM is indeed a functor, i.e.: (a) domain and codomain
of the image of an arrow are the images of domain and codomain, respectively, of the
arrow, (b) composition is preserved, and (c) identities are preserved.

(a) By Definition 9, the image of an arrow σ : SenSM(Σ1) → SenSM(Σ2) in the
category Set is the arrow σ : Σ1 → Σ2 in the category SignSM. Also, by Definition 8,
the image of any object SenSM(Σ) in the category Set is a signature Σ in the category
SignSM. Thus, domain and codomain of the image of an arrow are the images of domain
and codomain, respectively, of the arrow.

(b) We have to prove that SenSM(σ2 ◦ σ1) = SenSM(σ2) ◦ SenSM(σ1).
Let Σi = (Ei,Ai,Gi,Ki) be signatures with
Ki = ((S,R,parent),doActi,deferi, Ti, sstart) (i=1..4), and let σi:Σi → Σi+1
(i=1, 2) be signature morphisms. By Definition 9, SenSM(σ2 ◦σ1) is a function σσ2◦ σ1

such that for any Σ1-sentence ψ1 = ((C1, E1), (C2, E2)) with
Ci = (Si,doi, Hi, αi, s̈i, βi, Ti, T̈i) (i=1, 2), σσ2◦ σ1(ψ1) is a Σ3-sentence
((σσ2◦ σ1(C1), σEσ2◦ σ1(E1)), (σσ2◦ σ1(C2), σEσ2◦ σ1(E2)))
with σEσ2◦ σ1(Ei) = {σEσ2◦ σ1(e)| e ∈ Ei} = {(σ2E ◦ σ1E)(e)| e ∈ Ei}
= (σ2E ◦ σ1E)(Ei), and σσ2◦ σ1(Ci) =
(Si, σσ2◦ σ1do(doi), Hi, σσ2◦ σ1A(αi), s̈i, σσ2◦ σ1β(βi), σσ2◦ σ1T (Ti), σσ2◦ σ1T (T̈i))
(i=1, 2) such that:

– σσ2◦ σ1do(doi)(s) = (σ2A ◦ σ1A)(doi(s)) = (σ2do ◦ σ1do)(doi)(s) for each
s ∈ Sicom.

– σσ2◦ σ1A(αi) = (σ2A ◦ σ1A)(αi) for each αi ∈ Ai
– σσ2◦ σ1β(βi) = {((σ2A ◦ σ1A)(B), s) | (B, s) ∈ βi} = (σ2β ◦ σ1β)(βi)
– σσ2◦ σ1T (Ti) = (s1, (σ2E ◦ σ1E)(e), (σ2G ◦ σ1G)(g), (σ2A ◦ σ1A)(B), s2) =

(σ2T ◦ σ1T)(Ti) for each Ti = (s1, e, g, B, s2) ∈ Ti
– σσ2◦ σ1T (T̈i) = {(σ2T ◦ σ1T)(t) | t ∈ T̈i} = (σ2T ◦ σ1T)(T̈i)

Finally, this means that σσ2◦ σ1 = σσ2 ◦ σσ1 and thus SenSM(σ2 ◦σ1) = SenSM(σ2)◦
SenSM(σ1).

(c) Let idΣ1 : Σ1 → Σ1 be an identity signature morphism (defined in Lemma 1).
By Definition 9, for any Σ1-sentence ψ1 = ((C1, E1), (C2, E2)) with
Ci = (Si,doi, Hi, αi, s̈i, βi, Ti, T̈i) (i=1, 2), idΣ1(ψ1) is a Σ1-sentence
((idΣ1(C1), idΣ1(E1)), (idΣ1(C2), idΣ1(E2))) with idΣ1(Ei) = {idE(e) | e ∈ Ei} =
Ei, and idΣ1(Ci) = (Si, iddo(doi), Hi, idA(αi), s̈i, idβ(βi), idT (Ti), idT (T̈i)) (i=1, 2)
such that:

– iddo(doi)(s)
def= idA(doi(s)) = doi(s) for each s ∈ Sicom.

– idβ(βi)
def= {(idA(B), s) | (B, s) ∈ βi} = {(B, s) | (B, s) ∈ βi} = βi

– idT (Ti)
def= (s1, idE(e), idG(g), idA(B), s2) = (s1, e, g, B, s2) = Ti for each

Ti ∈ Ti
– idT (T̈i)

def= {idT (t) | t ∈ T̈i} = {t | t ∈ T̈i} = T̈i

Finally, we conclude that identities are preserved. ut

As in algebraic specifications, a model assigns an interpretation to the elements in the
signature. In order to simplify the definitions and without loss of potential, the states in
S are not interpreted within a specific semantic domain. State are just used as progress
marks of the execution of the state machine.

Definition 10 (Σ-model). Given a signature Σ = (E ,A,G,K) with
K = ((S,R,parent),doAct,defer, T , sstart), a Σ-model is a tuple
M = (A, µ,eval,calc,E, η,sel,join, ,

√
) where:

– A and E are domains for actual actions and actual events, respectively
– µ : A → A and η : E → E are bijective interpretation functions for actions and

events, respectively
– calc : A → A × E∗ calculates the effect of action execution and returns the

remaining atomic actions to be executed and a set of output events
– eval :H× S → 2G evaluates guards returning those which are true
– sel : E∗ → E×E∗ separates the input event queue into an event and the remaining

event queue
– join : E∗ × E∗ → E∗ composes a set of output events and a set of events into a

new set of events
– : B × A × B is a relation determining when an action can be executed, i.e. if

(B1, a, B2) ∈ , written B1
α
 B2, then B1 is not empty and B2 is the result of

removing (i.e. executing) a from B1

–
√
⊆ B×A is a termination predicate, where (B, a) ∈

√
indicates that an execution

of a which leads to termination is possible

µ and η are also denoting the extension of µ and η to sets, respectively: µ(A) =
{µ(a) | a ∈ A}, and η(E) = {η(e) | e ∈ E}. We assume that there is an action
skip ∈ A such that µ(skip) = skip.

We assume that wla holds in eval(H, s) if s was the last active state of the corre-
sponding region, and nab holds in eval(H, s) if the region of swas not visited before,
or a final state was last active there.

We include here the functions sel and join from [7]. These functions must be
defined accordingly for a concrete scheduling strategy of the input event queue. As
pointed out in the previous section, we omit the variable environment from both core
state machines and configuration definitions, and also from the function calc. The
variable environment is omitted since we think of a model as the classifier for which
the state machine is defined (or as the system as a whole), containing not only global
variables but also its attributes and links to other classifiers. In this sense, the func-
tions defined in the model are the interface for “manipulating” the system including the
implicit variable environment.

In [6] calc returns a label representing the observable communications (e.g. the
sending of an output event). Since further observable communications other than the
generated events do not have impact in the semantics, we decide to modify the definition
and consider calc to return only those events generated. These events can be processed
by the state machine in a future step. In fact, an action execution could generate output
events which are not consumed by the state machine but by another one which can also
generate new events to be consumed by the first state machine. This processing is made
by the function join.

The relation and the predicate
√

were formerly presented as part of a transi-
tion system of actions. Since in the former semantics there is no difference between
syntactic and semantic actions, the transition system was a standalone component of
the semantics. In our case, we locate them within the model, since is the model the
one who allows the interpretation of the syntactic elements and determines the state
machine execution.

A set (a multiset indeed) of sequences (with possibly multiple occurrences of the
same action) of actions is needed in order to represent parallel action sequences. Con-
sider the example in Figure 1. Suppose the states State2 and State3 have the same
entry action act1 whereas the entry action of State4 is act4 and the entry action
of State5 is act5. When the first transition is taken, the only action to be performed
is {(skip)} and the target state is the choice state (this information is the field β of
the csm-configuration). After that, the state machine performs two transitions in par-
allel giving (through the relation) the following set of sequences {(act1,act4),
(act1,act5)} to be executed in any order, possibly interleaving actions from different
sequences, and targeting two different states (State4 and State5). The next step re-
quires to execute an action act1 from one of the sequences, leading to the set {(act4),
(act1,act5)}, but also to the set {(act1,act4),(act5)}.

Fig. 1. Sequences of Actions

The definition of a model allows interpreting syntactic components, as for example
the configurations, in the semantic domains.

Definition 11 (M-interpretations). LetsM = (A, µ,eval,calc,E, η,sel,join,
,
√

) be a model. The semantic interpretation of a configuration C = (S,do, H, α, s̈, β, T, T̈)
within the modelM, denoted by JCKM, is defined as follows.
J(S,do, H, α, s̈, β, T, T̈)KM = (S,doM, H, αM, s̈, βM, TM, T̈M), where:

– doM(s) = µ(do(s))
– αM = µ(α)
– βM = {(µ(B), s)| (B, s) ∈ β}, with µ(B) = {µ(A) | A ∈ B}
– TM = (s1, η(e), g, BM, s2) with T = (s1, e, g, B, s2)
– T̈M = {TM | T ∈ T̈}

The semantic interpretation of a set of events E within the modelM, denoted by
JEKM, is defined as follows: JEKM = η(E). Moreover, TM and TMint represents the
interpretation of the set of transition and internal transitions of a state machine, respec-
tively. Finally, the semantic interpretation could be trivially extended to actions, events,
and transitions.

When there is no risk of confusion we will omit the subscript M in the semantic
evaluation function JKM.

There are some interesting results about the invariance of interpretations with respect
to signature morphisms, which will be used later.

Lemma 3. Given signatures Σi = (Ei,Ai,Gi,Ki) (i=1, 2), with
Ki = ((S,R,parent),doActi,deferi, Ti, sstart) (i=1, 2), a signature morphism
σ : Σ1 → Σ2, a Σ1-configuration C = (S,do, H, α, s̈, β, T, T̈), and a Σ2-model
M = (A, µ,eval,calc,E, η,sel,join, ,

√
), the following properties hold:

1. αM|σ = σA(α)M for any α ∈ A1. This result is trivially extended to sets of actions
(α ∈ A∗1), and sets of sequences of actions (α ∈ B1).

Proof.

αM|σ = µ|σ (α) by definition ofM-interpretation
= µ(σA(α)) by definition of µ|σ
= σA(α)M by definition ofM-interpretation

2. tM|σ = σT (t)M for any t ∈ T1. This result is trivially extended to sets of transitions
(t ∈ T ∗1).

Proof. Given t = (s1, e, g, B, s2),

tM|σ = (s1, η|σ (e), g, BM|σ , s2) by definition ofM-interpretation
= (s1, η(σE(e)), g, σA(B)M, s2) by definition of µ|σ and last proof
= σT (t)M by definition ofM-interpretation

3. doM|σ = σdo(do)M

Proof.

doM|σ = µ|σ (do(s)) by definition ofM-interpretation
= µ(σA(do(s))) by definition of µ|σ
= µ(σdo(do(s))) by definition of σdo
= σdo(do)M by definition ofM-interpretation

4. JCKM|σ = Jσ(C)KM.

Proof.

JC1KM|σ = (S,doM|σ , H, αM|σ , s̈, βM|σ , TM|σ , T̈M|σ) byM-int.
= (S, σdo(do)M, H, σA(α)M, s̈, σβ(β)M, σT (T)M, σT (T̈)M) by 1, 2 and 3
= Jσ(C1)KM byM-int.

ut

The model allows determining when a transition is enable and fireable. As defined
in [6], a compound transition is enabled for an event if the sources of its transitions
are active, if the event is the trigger of all of its transitions, if the guards of its tran-
sitions evaluate to true, and if the do actions are terminated for its transitions having
elements from Scp

exit as its sources. Also, two compound transitions are in conflict if
their source states coincide. Moreover, a compound transition has priority over another
one if every priority relevant source state of the first transition is a substate of a priority
relevant source state of the second one. Finally, a set of compound transitions is fireable
if it is a non-empty maximal set of enabled and conflict free compound transitions such
that no enabled compound transition with higher priority exists.

Definition 12 (Enable and Fireable Transitions). Given a signatureΣ = (E ,A,G,K)
with K = ((S,R,parent),doAct,defer, T , sstart), a configuration
C = (S,do, H, α, s̈, β, T, T̈), and aΣ-modelM = (A, µ,eval,calc,E, η,sel,join,
,
√

), the set of enable transitions for trigger e ∈ E ∪ {τ} is defined as follows:

EnableK,C,M,e = {T ′ ∈ CoTrK | ∀t ∈ T ′ : stateOf(πsor(t)) ∈ S ∧
η(πev(t)) = e ∧ πgua(t) ∈ eval(H,πtar(t)) ∧
(πsor(t) ∈ Scp

exit ⇒ do(stateOf(πsor(t))) = skip)}

Two set of pairs of conflict transitions of a given core state machines is:

ConflictK = {(T1, T2) ∈ CoTrK × CoTrK |
⋃
t1∈T1

stateOf(πsor(t1)) ∩

⋃
t2∈T2

stateOf(πsor(t2)) 6= ∅}

The set of priorities between compound transitions is:

PriorityK = {(T1, T2) ∈ CoTrK × CoTrK | PrBelowK(T1, T2) ∧
PrStrBelowK(T1, T2)}

with

PrBelowK(T1, T2)⇔ (∀t1 ∈ T1 : πsor(t1) ∈ Spr
exit ∪ Scom ⇒ ∃t2 ∈ T2 :

πsor(t2) ∈ Spr
exit ∪ Scom∧

stateOf(πsor(t2)) � stateOf(πsor(t1)))

PrStrBelowK(T1, T2)⇔ (∃t2 ∈ T2 : πsor(t2) ∈ Spr
exit ∪ Scom ∧ ∀t1 ∈ T1 :

πsor(t1) ∈ Spr
exit ∪ Scom ⇒

¬(stateOf(πsor(t1)) � stateOf(πsor(t2))))
Finally, a set of fireable compound transitions for trigger e ∈ E ∪ {τ} is:

FireableK,JCK,M,e = {T ′′M | T ′′ ⊆ EnableK,C,M,e ∧ T ′′ 6= ∅ ∧
(∀T ′ ∈ EnableK,C,M,e \ T ′′ :
(∀T ∈ T ′′ : (T ′, T) /∈ PriorityK) ∧
(∃T ∈ T ′′ : (T, T ′) ∈ ConflictK)) ∧
∀T1, T2 ∈ T ′′ : (T1, T2) ∈ ConflictK ⇒ T1 = T2}

A homomorphism between models is a function between the domains A and E which
preserves the operations.

Definition 13 (Σ-homomorphism). Given a signature Σ = (E ,A,G,K) with
K = ((S,R,parent),doAct,defer, T , sstart), and Σ-models
Mi = (Ai, µi,evali,calci,Ei, ηi,seli,joini, i,

√
i) (i=1, 2), aΣ-homomorphism

h fromM1 toM2 consists of a mapping hA : A1 → A2 and a mapping hE : E1 → E2,
such that:

– hA(µ1(a)) def= µ2(a) for each a ∈ A
– hE(η1(e)) def= η2(e) for each e ∈ E
– hA(calc1(µ1(a))) def= calc2(µ2(a)) for each a, a′ ∈ A and E ∈ E∗, such that
calc1(µ1(a)) = (µ1(a′), η1(E)) and calc2(µ2(a)) = (µ2(a′), η2(E))

– hE(sel1(η1(E))) def= sel2(η2(E)) for each E ∈ E∗, such that
sel1(η1(E)) = (η1(e), η1(E2)) and sel2(η2(E)) = (η2(e), η2(E2))

– hE(join1(η1(E1), η1(E2))) def= join2(η2(E1), η2(E2))
for each Ei ∈ E∗.

– hA((µ1(B1), µ1(a), µ1(B2))) ∈ 1 iff (µ2(B1), µ2(a), µ2(B2)) ∈ 2
for each a ∈ A, Bi ∈ 2A

– hA((µ1(B), µ1(a))) ∈
√

1 iff (µ2(B), µ2(a)) ∈
√

2
for each a ∈ A, B ∈ 2A

Lemma 4. For any signatures, theΣ-models andΣ-homomorphisms define a category
Mod(Σ). The points of the category are the Σ-models, its arrows are the Σ-homo-
morphisms.

Proof. Let Σ = (E ,A,G,K) with K = ((S,R,parent),doAct,defer, T , sstart)
be a signature, letMi = (Ai, µi,evali,calci,Ei, ηi,seli,joini, i,

√
i) (i=1..4)

be Σ-models, and let hi :Mi →Mi+1 (i=1..3) be Σ-homomorphisms, then:

– Σ-homomorphisms can be composed. We define the composition h2 ◦h1 as a map-
ping h′A : A1 → A3 such that for each a ∈ A and Bi ∈ 2A:
• h′A(µ1(a)) = h2A(h1A(µ1(a)))
• h′A(calc1(a)) = h2A(h1A(calc1(a)))
• h′A((µ1(B1), µ1(a), µ1(B2))) ∈ 1 iff h2A(h1A((µ1(B1), µ1(a), µ1(B2)))) ∈
 1

• h′A((µ1(B), µ1(a))) ∈
√

1 iff h2A(h1A((µ1(B), µ1(a)))) ∈
√

1
and a mapping h′E : E1 → E3 such that for each e ∈ E and Ei ∈ E∗
• h′E(η1(e)) = h2E(h1E(η1(e)))
• h′E(sel1(E)) = h2E(h1E(sel1(E)))
• h′E(join1(E1, E2)) = h2E(h1E(join1(E1, E2)))

We have to prove that h2 ◦ h1 is a Σ-homomorphism, i.e.
• h′A(µ1(a)) = µ3(a)
• h′A(calc1(µ1(a))) = calc3(h′A(µ1(a)))
• h′E(η1(e)) = η3(e)
• h′E(sel1(η1(E))) = sel3(h′E(η1(E)))
• h′E(join1(η1(E1), η1(E2))) = join3(h′E(η1(E1)), h′E(η1(E2)))
• h′A((µ1(B1), µ1(a), µ1(B2))) ∈ 1 iff (µ3(B1), µ3(a), µ3(B2)) ∈ 3
• h′A((µ1(B), µ1(a))) ∈

√
1 iff (µ3(B), µ3(a)) ∈

√
3

h′A(µ1(a)) = h2A(h1A(µ1(a))) by definition of h′A
= h2A(µ2(a)) by definition of h1A

= µ3(a) by definition of h2A

h′A(calc1(µ1(a))) = h2A(h1A(calc1(µ1(a)))) by definition of h′A
= h2A(calc2(h1A(µ1(a)))) by definition of h1A

= calc3(h2A(h1A(µ1(a)))) by definition of h2A

= calc3(h′A(µ1(a))) by definition of h′A

h′E(η1(e)) = h2E(h1E(η1(e))) by definition of h′E
= h2E(η2(e)) by definition of h1E

= η3(e) by definition of h2E

h′E(sel1(η1(E))) = h2E(h1E(sel1(η1(E)))) by definition of h′E
= h2E(sel2(η2(E))) by definition of h1E

= sel3(η3(E)) by definition of h2E

= sel3(h′E(η1(E))) by definition of h′E

h′E(join1(η1(E1), η1(E2)))

= h2E(h1E(join1(η1(E1), η1(E2))) by definition of h′E
= h2E(join2(η2(E1), η2(E2))) by definition of h1E

= join3(η3(E1), η3(E2)) by definition of h2E

= join3(h′E(η1(E1)), h′E(η1(E2))) by definition of h′E

h′A((µ1(B1), µ1(a), µ1(B2))) ∈ 1

iff h2A(h1A((µ1(B1), µ1(a), µ1(B2)))) ∈ 1 by definition of h′A
iff h2A((µ2(B1), µ2(a), µ2(B2))) ∈ 2 by definition of h1A

iff (µ3(B1), µ3(a), µ3(B2)) ∈ 3 by definition of h2A

h′A((µ1(B), µ1(a))) ∈
√

1

iff h2A(h1A((µ1(B), µ1(a)))) ∈
√

1 by definition of h′A
iff h2A((µ2(B), µ2(a))) ∈

√
2 by definition of h1A

iff (µ3(B), µ3(a)) ∈
√

3 by definition of h2A

– Composition ofΣ-homomorphisms is associative, i.e., (h3◦h2)◦h1 = h3◦(h2◦h1).

Let h′def=h3 ◦ h2 such that:
• h′A(µ2(a)) = µ4(a) for each a ∈ A
• h′A(calc2(µ2(a))) = calc4(h′A(µ2(a))) for each a ∈ A
• h′E(η2(E)) = η4(e) for each e ∈ E
• h′E(sel2(η2(E))) = sel4(η4(E)) for each E ∈ E∗
• h′E(join2(η2(E1), η2(E2))) = join4(η4(E1), η4(E2)) for each Ei ∈ E∗.
• h′A((µ2(B1), µ2(a), µ2(B2))) ∈ 4 iff (µ4(B1), µ4(a), µ4(B2)) ∈ 4
• h′A((µ2(B), µ2(a))) ∈

√
4 iff (µ4(B), µ4(a)) ∈

√
4

Also, let h′′def=h2 ◦ h1 such that:
• h′′A(µ1(a)) = µ3(a) for each a ∈ A

• h′′A(calc1(µ1(a))) = calc3(h′′A(µ1(a))) for each a ∈ A
• h′′E(η1(E)) = η3(e) for each e ∈ E
• h′′E(sel1(η1(E))) = sel3(η3(E)) for each E ∈ E∗
• h′′E(join1(η1(E1), η1(E2))) = join3(η3(E1), η3(E2)) for each Ei ∈ E∗
• h′′A((µ1(B1), µ1(a), µ1(B2))) ∈ 3 iff (µ3(B1), µ3(a), µ3(B2)) ∈ 3 for

each a ∈ A, Bi ∈ 2A
• h′′A((µ1(B), µ1(a))) ∈

√
3 iff (µ3(B), µ3(a)) ∈

√
3 for each a ∈ A, B ∈ 2A

Then,

h′A(h1A(µ1(a))) = h′A(µ2(a)) by definition of h1A

= µ4(a) by definition of h′A
= h3A(µ3(a)) by definition of h3A

= h3A(h′′A(µ1(a))) by definition of h′′A

h′A(h1A(calc1(µ1(a)))) = h′A(calc2(h1A(µ1(a)))) by definition of h1A

= calc4(h′A(h1A(µ1(a)))) by definition of h′A
= calc4(h3A(h2A(h1A(µ1(a))))) by definition of h′A
= h3A(calc3(h2A(h1A(µ1(a))))) by definition of h3A

= h3A(calc3(h′′A(µ1(a)))) by definition of h′′A
= h3A(h′′A(calc1(µ1(a)))) by definition of h′′A

h′E(h1E(η1(e))) = h′E(η2(e)) by definition of h1E

= η4(e) by definition of h′E
= h3E(η3(e)) by definition of h3E

= h3E(h′′E(η1(e))) by definition of h′′E

h′E(h1E(sel1(η1(E)))) = h′E(sel2(η2(E))) by definition of h1E

= sel4(η4(E)) by definition of h′E
= h3E(sel3(η3(E))) by definition of h3E

= h3E(h′′E(sel1(η1(E)))) by definition of h′′E

h′E(h1E(join1(η1(E1), η1(E2))))

= h′E(join2(η2(E1), η2(E2))) by definition of h1E

= join4(η4(E1), η4(E2)) by definition of h′E
= h3E(join3(η3(E1), η3(E2))) by definition of h3E

= h3E(h′′E(join1(η1(E1), η1(E2)))) by definition of h′′E

h′A(h1A((µ1(B1), µ1(a), µ1(B2)))) ∈ 4

iff h′E((µ2(B1), µ2(a), µ2(B2))) ∈ 4 by definition of h1A

iff (µ4(B1), µ4(a), µ4(B2)) ∈ 4 by definition of h′A
iff h3A((µ3(B1), µ3(a), µ3(B2))) ∈ 4 by definition of h3A

iff h3A(h′′A((µ1(B1), µ1(a), µ1(B2)))) ∈ 4 by definition of h′′A

h′A(h1A((µ1(B), µ1(a)))) ∈
√

4

iff h′A((µ2(B), µ2(a))) ∈
√

4 by definition of h1A

iff (µ4(B), µ4(a)) ∈
√

4 by definition of h′A
iff h3A((µ3(B1), µ3(a))) ∈

√
4 by definition of h3A

iff h3A(h′′A((µ1(B1), µ1(a)))) ∈
√

4 by definition of h′′A

– There exist an identity Σ-homomorphism idM1 :M1 →M1 consisting of a map-
ping hidA : A1 → A1 and a mapping hidE : E1 → E1, such that:
• hidA(µ1(a)) = µ1(a) for each a ∈ A
• hidA(calc1(µ1(a))) = calc1(µ1(a)) for each a ∈ A
• hidE(η1(e)) = η1(e) for each e ∈ E
• hidE(sel1(η1(E))) = sel1(η1(E)) for each E ∈ E∗
• hidE(join1(η1(E1), η1(E2))) = join1(η1(E1), η1(E2)) for each Ei ∈ E∗
• hidA((µ1(B1), µ1(a), µ1(B2))) ∈ 1 iff (µ1(B1), µ1(a), µ1(B2)) ∈ 1 for

each a ∈ A, Bi ∈ 2A
• hidA((µ1(B), µ1(a))) ∈

√
1 iff (µ1(B), µ1(a)) ∈

√
1 for each a ∈ A, B ∈ 2A

It trivially holds that idM1 is a Σ-homomorphism.
ut

As the last ingredient, we define the notion of reduct. Any signature morphism σ :
Σ1 → Σ2 induces a mapping called the σ-reduct which allows using a Σ2-model (and
a Σ2-homomorphism) for assigning an interpretation to the elements in Σ1.

Definition 14 (σ-reduct). Let Σi = (Ei,Ai,Gi,Ki) (i=1, 2) be signatures, let σ :
Σ1 → Σ2 be a signature morphism, and letM = (A, µ,eval,calc,E, η,sel,join,
,
√

) be a Σ2-model.

(a) The reduct ofM along σ, writtenM|σ , is the Σ1-model (A, µ|σ,eval|σ,calc|σ
,E, η|σ,sel|σ,join|σ, |σ,

√
|σ) such that:

• µ|σ (a) def= µ(σA(a)) for each a ∈ A1

• eval|σ (H, s) def= {g | σG(g) ∈ eval(H, s)} for each H ∈ H and s ∈ S
• calc|σ (µ|σ (a)) def= calc(µ(σA(a))) for each a ∈ A1

• η|σ (e) def= η(σE(e)) for each e ∈ E1
• sel|σ (η|σ (E)) def= sel(η(σE(E))) for each E ∈ E∗1
• join|σ (η|σ (E1), η|σ (E2)) def=
join(η(σE(E1)), η(σE(E2))) for each Ei ∈ E∗1

• (µ|σ (B1), µ|σ (a), µ|σ (B2)) ∈ |σ
iff (µ(σA(B1), µ(σA(a)), µ(σA(B2))) ∈ for each a ∈ A1, Bi ∈ 2A1

• (µ|σ (B), µ|σ (a)) ∈
√
|σ iff (µ(σA(B), µ(σA(a))) ∈

√

for each a ∈ A1, B ∈ 2A1

(b) LetMi (i=1, 2) be Σ2-models, and h :M1 →M2 be a Σ2-homomorphism, the
reduct h|σ of h along σ is the Σ1-homomorphism fromM1|σ toM2|σ defined by
hA|σ= hA and hE|σ= hE.

(c) The reduct of the functions µ and η for sets is defined as follows:

µ|σ (A) def= µ(σA(A)) for each A ∈ A∗1
η|σ (E) def= η(σE(E)) for each E ∈ E∗1

Lemma 5. The reduct of Σ-models and Σ-homomorphisms is a functor ModSM(σ)
from Σ2-models to Σ1-models (and Σ2-homomorphisms to Σ1-homomorphisms) for
each signature morphism σ : Σ1 → Σ2.

Proof. By definition, domain and codomain of the reduct of an Σ-homomorphism are
the reduct of domain and codomain, respectively, of the Σ-homomorphism. We have
now to prove that: (a) the reduct of a composition of two Σ-homomorphisms is the
composition of the reducts of those Σ-homomorphisms, and (b) that the reduct of an
identity Σ-homomorphisms is likewise an identity.

Let Σ = (E ,A,G,K) with K = ((S,R,parent),doAct,defer, T , sstart) be a
signature, letMi = (Ai, µi,evali,calci,Ei, ηi,seli,joini, i,

√
i) (i=1..3) be

Σ-models, and let hi :Mi →Mi+1 (i=1, 2) be Σ-homomorphisms.

(a) (h2 ◦ h1)|σ = h2|σ ◦h1|σ

(h2 ◦ h1)A|σ (µ1(a)) = (h2 ◦ h1)A(µ1(a)) by definition of (h2 ◦ h1)|σ
= h2A(h1A(µ1(a))) by definition of (h2 ◦ h1)
= h2A|σ (h1A|σ (µ1(a))) by definition of h2|σ and h1|σ
= (h2A|σ ◦h1A|σ)(µ1(a)) by definition of h2|σ ◦ h1|σ

(h2 ◦ h1)A|σ (calc1(µ1(a)))

= (h2 ◦ h1)A(calc1(µ1(a))) by definition of (h2 ◦ h1)|σ
= h2A(h1A(calc1(µ1(a)))) by definition of (h2 ◦ h1)
= h2A|σ (h1A|σ (calc1(µ1(a)))) by definition of h2|σ and h1|σ
= (h2A|σ ◦h1A|σ)(calc1(µ1(a))) by definition of h2|σ ◦ h1|σ

(h2 ◦ h1)E|σ (η1(e)) = (h2 ◦ h1)E(η1(e)) by definition of (h2 ◦ h1)|σ
= h2E(h1E(η1(e))) by definition of (h2 ◦ h1)
= h2E|σ (h1E|σ (η1(e))) by definition of h2|σ and h1|σ
= (h2E|σ ◦h1E|σ)(η1(e)) by definition of h2|σ ◦ h1|σ

(h2 ◦ h1)E|σ (sel1(η1(E)))

= (h2 ◦ h1)E(sel1(η1(E))) by definition of (h2 ◦ h1)|σ
= h2E(h1E(sel1(η1(e)))) by definition of (h2 ◦ h1)
= h2E|σ (h1E|σ (sel1(η1(e)))) by definition of h2|σ and h1|σ
= (h2E|σ ◦h1E|σ)(sel1(η1(E))) by definition of h2|σ ◦ h1|σ

(h2 ◦ h1)E|σ (join1(η1(E1), η1(E2)))

= (h2 ◦ h1)E(join1(η1(E1), η1(E2))) by definition of (h2 ◦ h1)|σ
= h2E(h1E(join1(η1(E1), η1(E2)))) by definition of (h2 ◦ h1)
= h2E|σ (h1E|σ (join1(η1(E1), η1(E2)))) by definition of h2|σ and h1|σ
= (h2E|σ ◦h1E|σ)(join1(η1(E1), η1(E2))) by definition of h2|σ ◦ h1|σ

(h2 ◦ h1)A|σ ((B1, a, B2)) ∈ 3

iff (h2 ◦ h1)A((B1, a, B2)) ∈ 3 by definition of (h2 ◦ h1)|σ
iff h2A(h1A((B1, a, B2))) ∈ 3 by definition of (h2 ◦ h1)
iff h2A|σ (h1A|σ ((B1, a, B2))) ∈ 3 by definition of h2|σ and h1|σ
iff (h2A|σ ◦h1A|σ)((B1, a, B2)) ∈ 3 by definition of h2|σ ◦ h1|σ

(h2 ◦ h1)A|σ ((B, a)) ∈
√

3

iff (h2 ◦ h1)A((B, a)) ∈
√

3 by definition of (h2 ◦ h1)|σ
iff h2A(h1A((B, a))) ∈

√
3 by definition of (h2 ◦ h1)

iff h2A|σ (h1A|σ ((B, a))) ∈
√

3 by definition of h2|σ and h1|σ
iff (h2A|σ ◦h1A|σ)((B, a)) ∈

√
3 by definition of h2|σ ◦ h1|σ

(b) Let idM2 be an identity Σ2-homomorphism, then idM2 |σ is an identity Σ1-
homomorphism since idM2|σ = idM2 by definition of reduct of a homomorphism. ut

Lemma 6. There is a functor ModSM giving a category Mod(Σ) of Σ-models (object
in the category Cat) for each signature Σ (object in the category SignSM), as shown in
Lemma 4, and a functor ModSM(σ) (arrow in the category Cat) from Σ2-models to Σ1-
models (andΣ2-homomorphisms toΣ1-homomorphisms) for each signature morphism
σ : Σ1 → Σ2 (arrow in the category SignSM), as shown in Lemma 5.

Proof. We have to prove that ModSM is indeed a functor, i.e.: (a) domain and codomain
of the image of an arrow are the images of domain and codomain, respectively, of the
arrow, (b) composition is preserved, and (c) identities are preserved.

(a) By Lemma 5, the image of an arrow ModSM(σ) : ModSM(Σ2) → ModSM(Σ1)
in the category Cat is the arrow σ : Σ2 → Σ1 in the category SignopSM. Also, by Lemma
4, the image of any object Mod(Σ) in the category Cat is a signature Σ in the category
SignSM. Thus, domain and codomain of the image of an arrow are the images of domain
and codomain, respectively, of the arrow.

(b) We have to prove that ModSM(σ2 ◦ σ1) = ModSM(σ2) ◦ ModSM(σ1) for both,
models and homomorphisms. Let Σi = (Ei,Ai,Gi,Ki) be signatures with
Ki = ((S,R,parent),doActi,deferi, Ti, sstart) (i=1..3), let σi : Σi → Σi+1
(i=1, 2) be signature morphisms, let M = (A, µ,eval,calc,E, η,sel,join,
,
√

) be a Σ3-model, and let h be a Σ3-homomorphism. Then, we have to prove:

– M|σ2◦ σ1 = (M|σ2)|σ1 .
By Definition 14,M|σ2 is the Σ2-model
(A, µ|σ2,eval|σ2,calc|σ2,E, η|σ2,sel|σ2,join|σ2, |σ2,

√
|σ2) such that:

• µ|σ2 (a) = µ(σ2(a)) for each a ∈ A2
• eval|σ2 (H, s) = {g | σ2G(g) ∈ eval(H, s)}
• calc|σ2 (µ|σ2 (a)) = calc(µ(σ2A(a))) for each a ∈ A2
• η|σ2 (e) = η(σ2(e)) for each e ∈ E2
• sel|σ2 (η|σ2 (E)) = sel(η(σ2E(E))) for each E ∈ E∗2
• join |σ2 (η |σ2 (E1), η |σ2 (E2)) = join(η(σ2E(E1)), η(σ2E(E2))) for

each Ei ∈ E∗2
• (µ|σ2 (B1), µ|σ2 (a), µ|σ2 (B2)) ∈ |σ2

iff (µ(σ2A(B1)), µ(σ2A(a)), µ(σ2A(B2))) ∈ for each a ∈ A2, Bi ∈ 2A2

• (µ|σ2 (B), µ|σ2 (a)) ∈
√
|σ2 iff (µ(σ2A(B), µ(σ2A(a))) ∈

√

for each a ∈ A2, B ∈ 2A2

Then (M|σ2) |σ1 is the Σ1-model (A, (µ |σ2) |σ1 , (eval |σ2) |σ1 , (calc |σ2) |σ1

,E, (η|σ2)|σ1 , (sel|σ2)|σ1 , (join|σ2)|σ1 , (|σ2)|σ1 , (
√
|σ2)|σ1) such that:

• (µ|σ2)|σ1 (a) = µ((σ2 ◦ σ1)(a)) for each a ∈ A1
• (eval|σ2)|σ1 (H, s) = {g | (σ2G ◦ σ1G)(g) ∈ eval(H, s)}
• (calc|σ2)|σ1 ((µ|σ2)|σ1 (a)) = calc(µ((σ2A ◦ σ1A)(a))) for each a ∈ A1
• (η|σ2)|σ1 (e) = η((σ2 ◦ σ1)(e)) for each e ∈ E1
• (sel|σ2)|σ1 ((η|σ2)|σ1 (E)) = sel(η((σ2E ◦ σ1E)(E))) for each E ∈ E∗1
• (join|σ2)|σ1 ((η|σ2)|σ1 (E1), (η|σ2)|σ1 (E2)) =
join(η((σ2E ◦ σ1E)(E1)), η((σ2E ◦ σ1E)(E2))) for each Ei ∈ E∗1

• ((µ|σ2)|σ1 (B1), (µ|σ2)|σ1 (a), (µ|σ2)|σ1 (B2)) ∈ (|σ2)|σ1

iff (µ((σ2A ◦ σ1A)(B1)), µ((σ2A ◦ σ1A)(a)), µ((σ2A ◦ σ1A)(B2))) ∈ for
each a ∈ A1, Bi ∈ 2A1

• ((µ|σ2)|σ1 (B), (µ|σ2)|σ1 (a)) ∈ (
√
|σ2)|σ1 iff (µ((σ2A ◦ σ1A)(B)), µ((σ2A ◦

σ1A)(a))) ∈
√

for each a ∈ A1, B ∈ 2A1

and this is equal toM|σ2◦ σ1 .
– h|σ2◦ σ1 = (h|σ2)|σ1 .

By Definition 14, (h|σ2)|σ1 = h|σ2 = h(a) = h|σ2◦ σ1 .

(c) Let idσ : Σ → Σ be an identity signature morphism (defined in Lemma 1).
We have to prove that ModSM(idσ) is an identity functor, i.e., if it is composed by the
identity reduct of Σ-models and the identity reduct of Σ-homomorphisms.

– By Definition 14, for anyΣ-modelM = (A, µ,eval,calc,E1, η1,sel1,join1, 1
,
√

1), M|idσ is the Σ-model (A, µ |idσ ,eval |idσ ,calc |idσ ,E1, η |idσ ,sel |idσ
,join|idσ , |idσ ,

√
|idσ) such that:

• µ|idσ (a) = µ(idσ(a)) ∈ A for each a ∈ A
• eval|idσ (H, s) = {g | idσG(g) ∈ eval(H, s)}
• calc|idσ (µ|idσ (a)) = calc(µ(idσA(α))) for each a ∈ A
• η|idσ (e) = η(idσ(e)) ∈ E for each e ∈ E
• sel|idσ (η|idσ (E)) = sel(η(idσE(E))) for each E ∈ E∗
• join|idσ (η |idσ (E1), η |idσ (E2)) = join(η(idσE(E1), η(idσE(E2))) for

each Ei ∈ E∗
• (µ|idσ (B1), µ|idσ (a), µ|idσ (B2)) ∈ |idσ

iff (µ(idσA(B1)), µ(idσA(a)), µ(idσA(B2))) ∈ for each a ∈ A, Bi ∈ 2A

• (µ|idσ (B), µ|idσ (a)) ∈
√
|idσ iff (µ(idσA(B), µ(idσA(a))) ∈

√

for each a ∈ A, B ∈ 2A
Finally, by the definition of idσ ,M|idσ =M, thus _|idσ is the identity reduct of
Σ-models.

– By Definition 14, given aΣ-modelM1 = (A1, µ1,eval1,calc1,E1, η1,sel1,join1, 1
,
√

1), for any Σ-homomorphism h : M1 → M2, the reduct h|idσ is defined by
h |idσ = h. Now, since M|idσ = M, we have that _ |idσ is the identity reduct of
Σ-homomorphisms.

ut

At this point we have almost every component of our institution SM. The satisfaction
condition will be introduced in the next section.

4 An Institution for UML 2.0 State Machine

In order to define the satisfaction relation we proceed in the same way as in [7]. First,
we define an auxiliary satisfaction condition which deals with processing simple input
events. For this purpose we use the semantics of transitions between configurations
defined in [6].

Definition 15 (Auxiliary Semantics). Given a signature Σ, and a Σ-model M, the
semantics of transitions between configurations is given in terms of an event-labelled
transition system (JCKL,�Σ , s) where

– JCK is the set of states representing the possible interpreted configurations
– L = (E ∪ {τ} ∪ {defer(e) | e ∈ E})× A∗ is the set of labels
– �Σ,M ⊆ JCK × L× JCK is the transition relation
– s is the start state, i.e., an initial interpreted configuration

The transition relation is obtained by the derivation rules given in Table 1. In the
table, f [x 7→ v] denotes the function that is everywhere equal to f except on x (if it
is in its range) where it is equal to v. This notation is straightforwardly extended to

sequences (xi 7→ vi)i∈I . We write JC1K
l
� JC2K instead of (JC1K, l, JC2K) ∈�Σ,M.

As explained in [6]: Rule do-act describes an atomic action execution of a do action
of an active composite state. Rule cur-act describes the next atomic action execu-
tion of the atomic action sequence currently being executed. Rules next-tr-1 and
next-tr-2 selects from the transitions currently being fired a new atomic action se-
quence that will be executed next. In next-tr-2, contrary to next-tr-1, the target
of the transition has to be activated after the execution of the action sequence, since this
completes the firing of the transition. Rule next-com determines the next non-internal
compound transition which will be fired, that is only possible if the previous fired com-
pound transition is completed. Rule next-int determines the next internal transition
which will be fired, that is only possible if the previously fired compound transition is
finished. Rule next-completion determines the next trigger-free compound transi-
tion that will be fired. This is only possible if the previous set of compound transitions is
completely executed. Rule next-trigger determines the next compound transition
triggered by an event that will be fired. Rule defer describes the deferral of events.
Rule a-fin activates a final state directly contained in a region and resets the history
information of all its subregions. Rule a-ch activates a choice pseudostate, where it
is immediately determined which of its currently enabled outgoing transitions is fired.
Rule a-en activates an entry pseudostate. Finally, Rule acti-ex-1 and acti-ex-2
deal with the activation of exit pseudostates, that will not happen if there is a transition
with a source below the exit pseudostate, w.r.t. state hierarchy, which has not yet been
completely executed.

We can now define and prove the auxiliary satisfaction condition relating configurations
and signature morphisms.

Table 1. Auxiliary Semantics

do-act

s ∈ S ∩ Scom doM(s) 6= skip
calc(doM(s)) = (α′M, E) αM = skip⇒ s̈ = ∅

(S,doM, H, αM, s̈, βM, TM, T̈M)
τ/E
� (S,doM[s 7→ α′M], H, αM, s̈, βM, TM, T̈M)

cur-act
αM 6= skip calc(αM) = (α′M, E)

(S,doM, H, αM, s̈, βM, TM, T̈M)
τ/E
� (S,doM, H, α′M, s̈, βM, TM, T̈M)

next-tr-1
(B, s̈) ∈ βM B

αM
 B′ β′M = {(B′, s̈)} ∪ βM \ {(B, s̈)}

(S,doM, H,skip, ∅, βM, TM, T̈M)
τ/∅
� (S,doM, H, αM, ∅, β′M, TM, T̈M)

next-tr-2
(B, s̈) ∈ βM (B,αM) ∈

√
β′M = βM \ {(B, s̈)}

(S,doM, H,skip, ∅, βM, TM, T̈M)
τ/∅
� (S,doM, H, αM, s̈, β′M, TM, T̈M)

next-com

T ′M ∈ T̈M \ TM
int βM = {(skip, πsor(t) | t ∈ T ′M ∧ ∀t′ ∈ T ′M :

¬(stateOf(πsor(t)) � stateOf(πsor(t′)))}

(S,doM, H,skip, ∅, ∅, TM, T̈M)
τ/∅
� (S,doM, H,skip, ∅, βM, T ′M, T̈M \ {T ′M})

next-int
{t} ∈ T̈M ∩ TM

int βM = {(πact(t), ∅)}

(S,doM, H,skip, ∅, ∅, TM, T̈M)
τ/∅
� (S,doM, H,skip, ∅, βM, {t}, T̈M \ {{t}})

next-completion
T̈M ∈ FireableK,JC1K,M,τ T ′M ∈ T̈M

(S,doM, H,skip, ∅, ∅, TM, ∅)
τ/∅
� (S,doM, H,skip, ∅, ∅, TM, {T ′M})

next-trigger
FireableK,JC1K,M,τ = ∅ T̈M ∈ FireableK,JC1K,M,e

(S,doM, H,skip, ∅, ∅, TM, ∅)
e/∅
� (S,doM, H,skip, ∅, ∅, TM, T̈M)

defer
η(e1) = e defer(e1) ∩ S 6= ∅ FireableK,JC1K,M,e = ∅

(S,doM, H,skip, ∅, ∅, TM, ∅)
defer(e)/∅
� (S,doM, H,skip, ∅, ∅, TM, ∅)

a-fin
s̈ ∈ Sfin H ′ = (H[(r 7→ ⊥)r∈R∩↑{regOf(s̈)}])

(S,doM, H,skip, s̈, βM, TM, T̈M)
τ/∅
� (S ∪ {s̈},doM, H ′,skip, ∅, βM, TM, T̈M)

a-ch
s̈ ∈ Schoice t ∈ TM πsor(t) = s̈ πgua(t) ∈ eval(H,πtar(t))

(S,doM, H,skip, s̈, βM, TM, T̈M)
τ/∅
� (S,doM, H,skip, ∅, βM ∪ {(πact(t), πtar(t))}, TM, T̈M)

a-en

s̈ ∈ Sentry do′M = doM[stateOf(s̈) 7→ µ(doAct(stateOf(s̈)))]
f : dsr(stateOf(s̈))→ T β′ = β ∪

⋃
r∈dsr(stateOf(s̈))

{(πact(f(r)M), πtar(f(r)M))}

∀r ∈ dsr(stateOf(s̈)) : πsor(f(r)M) = s̈ ∧ πgua(f(r)M) ∈ eval(H,πtar(f(r)M))

(S,doM, H,skip, s̈, βM, TM, T̈M)
τ/∅
� (S ∪ {stateOf(s̈)},do′M, H,skip, ∅, β′M, TM, T̈M)

a-ex-1

s̈ ∈ Sexit ∀(B, s̈′) ∈ βM : s̈′ 6= s̈ ∀s ∈ S : ¬(stateOf(s̈) � s) t ∈ TM

πsor(t) = s̈ β′M = βM ∪ {(πact(t), πtar(t))} H ′ = H[regOf(s̈) 7→ stateOf(s̈)]

(S,doM, H,skip, s̈, βM, TM, T̈M)
τ/∅
� (S \ {stateOf(s̈)},doM, H ′,skip, ∅, β′M, TM, T̈M)

a-ex-2
s̈ ∈ Sexit ∃B : (B, s̈) ∈ βM ∨ ∃s ∈ S : stateOf(s̈) � s

(S,doM, H,skip, s̈, βM, TM, T̈M)
τ/∅
� (S,doM, H,skip, ∅, βM, TM, T̈M)

Theorem 1 (Auxiliary Satisfaction Condition). Given signatures Σ1 and Σ2, a sig-
nature morphism σ : Σ1 → Σ2, a Σ2-modelM, a pair of Σ1-configurations (C1, C2),
an event e ∈ E1 ∪ {τ} and a set of events E ∈ E∗1, the following satisfaction condition
holds.

JC1KM|σ
e/E
�Σ1,M|σ JC2KM|σ iff Jσ(C1)KM

e/E
�Σ2,M Jσ(C2)KM

Proof. Lets prove the satisfaction condition by cases on the derivation rules of Table 1.
First, let:

Σi = (Ei,Ai,Gi,Ki) (i=1, 2)

Ki = ((S,R,parent),doActi,deferi, Ti, sstart) (i=1, 2)

M = (A, µ,eval,calc,E, η,sel,join, ,
√

)

Case do-act.

JC1KM|σ
τ/E
� Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H, αM|σ , s̈, βM|σ , TM|σ , T̈M|σ)
and JC2KM|σ = (S,doM|σ [s 7→ α′M|σ], H, αM|σ , s̈, βM|σ , TM|σ , T̈M|σ)
and s ∈ S ∩ Scom
and doM|σ (s) 6= skip
and calc|σ (doM|σ (s)) = (α′M|σ , E)
and αM|σ = skip⇒ s̈ = ∅ by Table 1

iff Jσ(C1)KM =
(S, σdo(do)M, H, σA(α)M, s̈, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4
and Jσ(C2)KM =
(S, σdo(do)M[s 7→ σA(α′)M], H, σA(α)M, s̈, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4
and s ∈ S ∩ Scom
and σdo(do)M(s) 6= skip by lem. 3.3
and calc(σdo(do)M(s)) = (σA(α′)M, E) by (1)
and σA(α)M = skip⇒ s̈ = ∅ by lem. 3.1

iff Jσ(C1)KM
τ/E
� Σ2,M Jσ(C2)KM by Table 1

(1) First we have that calc|σ (µ|σ (do(s))) = calc(µ(σdo(do)(s))) by definition
of σ-reduct and definition of σdo. Then, we have that µ|σ (α′) = µ(σA(α′)) by
definition of σ-reduct. Thus, calc|σ (µ|σ (do(s))) = (µ|σ (α′), E) iff
calc(µ(σdo(do)(s))) = (µ(σA(α′), E). Finally, we conclude that
calc|σ (doM|σ (s)) = (α′M|σ , E) iff calc(σdo(do)M(s)) = (σA(α′)M, E).

Case cur-act.

JC1KM|σ
τ/E
� Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H, αM|σ , s̈, βM|σ , TM|σ , T̈M|σ)
and JC2KM|σ = (S,doM|σ , H, α′M|σ , s̈, βM|σ , TM|σ , T̈M|σ)
and αM|σ 6= skip
and calc|σ (αM|σ) = (α′M|σ , E) by Table 1

iff Jσ(C1)KM = (S, σdo(do)M, H, σA(α)M, s̈, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4
and Jσ(C2)KM =
(S, σdo(do)M, H, σA(α′)M, s̈, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4
and σA(α)M 6= skip by lem. 3.1
and calc(σA(α)M) = (σA(α′)M, E) by (1)

iff Jσ(C1)KM
τ/E
� Σ2,M Jσ(C2)KM by Table 1

(1) As proved in the case do-act.(2), it holds that
calc|σ (αM|σ) = (α′M|σ , E) iff calc(σA(α)M) = (σA(α′)M, E).

Case next-tr-1.

JC1KM|σ
τ/∅
�Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, ∅, βM|σ , TM|σ , T̈M|σ)
and JC2KM|σ = (S,doM|σ , H, αM|σ , ∅, β′M|σ , TM|σ , T̈M|σ)
and (BM|σ , s̈) ∈ βM|σ

and BM|σ
αM|σ

 |σ B′M|σ

and β′M|σ = {(B′M|σ , s̈)} ∪ βM|σ \ {(BM|σ , s̈)} by Table 1
iff Jσ(C1)KM = (S, σdo(do)M, H, σA(skip)M, ∅, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4

and Jσ(C2)KM = (S, σdo(do)M, H, σA(α)M, ∅, σβ(β′)M, σT (T)M, σT (T̈)M) by lem. 3.4
and (σA(B)M, s̈) ∈ σβ(β)M by lem. 3.1

and σA(B)M σA(α)M

 σA(B′)M by def. of
and σβ(β′)M = {(σA(B′)M, s̈)} ∪ σβ(β)M \ {(σA(B)M, s̈)} by lem. 3.1

iff Jσ(C1)KM
τ/∅
�Σ2,M Jσ(C2)KM by Table 1

Case next-tr-2.

JC1KM|σ
τ/∅
�Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, ∅, βM|σ , TM|σ , T̈M|σ)
and JC2KM|σ = (S,doM|σ , H, αM|σ , s̈, β′M|σ , TM|σ , T̈M|σ)
and (BM|σ , s̈) ∈ βM|σ
and (BM|σ , αM|σ) ∈

√
|σ

and β′M|σ = βM|σ \ {(BM|σ , s̈)} by Table 1
iff Jσ(C1)KM = (S, σdo(do)M, H,skip, ∅, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4

and Jσ(C2)KM = (S, σdo(do)M, H, σA(α)M, s̈, σβ(β′)M, σT (T)M, σT (T̈)M) by lem. 3.4
and (σA(B)M, s̈) ∈ σβ(β)M by lem. 3.1
and (σA(B)M, σA(α)M) ∈

√
by def. of

√
σ

and σβ(β′)M = σβ(β)M \ {(σA(B)M, s̈)} by lem. 3.1

iff Jσ(C1)KM
τ/∅
�Σ2,M Jσ(C2)KM by Table 1

Case next-com.

JC1KM|σ
τ/∅
�Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, ∅, ∅, TM|σ , T̈M|σ)
and JC2KM|σ = (S,doM|σ , H,skip, ∅, βM|σ , T ′M|σ , T̈M|σ\{T ′M|σ})
and T ′M|σ ∈ T̈M|σ \ TM|σint1

and βM|σ = {(skip, πsor(tM|σ) | tM|σ ∈ T ′M|σ ∧ ∀t′M|σ ∈ T ′M|σ :
¬(stateOf(πsor(tM|σ)) � stateOf(πsor(t′M|σ)))} by Table 1

iff Jσ(C1)KM = (S, σdo(do)M, H,skip, ∅, ∅, σT (T)M, σT (T̈)M) by lem. 3.4
and Jσ(C2)KM =
(S, σdo(do)M, H,skip, ∅, σβ(β)M, σT (T ′)M, σT (T̈)M\{σT (T ′)M}) by lem. 3.4
and σT (T ′)M ∈ σT (T̈)M \ TMint2

by lem. 3.2
and σβ(β)M = {(skip, πsor(σT (t)M)) |

σT (t)M ∈ σT (T ′)M ∧ ∀σT (t′)M ∈ σT (T ′)M :
¬(stateOf(πsor(σT (t)M)) � stateOf(πsor(σT (t′)M)))} by (1)

iff Jσ(C1)KM
τ/∅
�Σ2,M Jσ(C2)KM by Table 1

(1) As proved before, TM|σ = σT (T)M for any set of transitions T . It also holds
βM|σ = σβ(β)M. Finally, since states do not change after signature morphisms, we
conclude that the premise holds.

Case next-int.

JC1KM|σ
τ/∅
�Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, ∅, ∅, TM|σ , T̈M|σ)
and JC2KM|σ = (S,doM|σ , H,skip, ∅, βM|σ , {tM|σ}, T̈M|σ\{{tM|σ}})
and {tM|σ} ∈ T̈M|σ ∩ TM|σint1

and βM|σ = {(πact(tM|σ), ∅)} by Table 1
iff Jσ(C1)KM = (S, σdo(do)M, H,skip, ∅, ∅, σT (T)M, σT (T̈)M) by lem. 3.4

and Jσ(C2)KM =
(S, σdo(do)M, H,skip, ∅, σβ(β)M, {σT (t)M}, σT (T̈)M\{{σT (t)M}}) by lem. 3.4
and {σT (t)M} ∈ σT (T̈)M ∩ TMint2

by lem. 3.2
and σβ(β)M = {(πact(σT (t)M), ∅)} by lem. 3.1 and 3.2

iff Jσ(C1)KM
τ/∅
�Σ2,M Jσ(C2)KM by Table 1

Case next-completion.

JC1KM|σ
τ/∅
�Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, ∅, ∅, TM|σ , ∅)
and JC2KM|σ = (S,doM|σ , H,skip, ∅, ∅, TM|σ , {T ′M|σ})
and T̈M|σ ∈ FireableK1,JC1K,M|σ,τ
and T ′M|σ ∈ T̈M|σ by Table 1

iff Jσ(C1)KM = (S, σdo(do)M, H,skip, ∅, ∅, σT (T)M, ∅) by lem. 3.4
and Jσ(C2)KM = (S, σdo(do)M, H,skip, ∅, ∅, σT (T)M, {σT (T ′)M}) by lem. 3.4
and σT (T̈)M ∈ FireableK2,Jσ(C1)K,M,τ by Prop. 1
and σT (T ′)M ∈ σT (T̈)M by lem. 3.2

iff Jσ(C1)KM
τ/∅
�Σ2,M Jσ(C2)KM by Table 1

Case next-trigger.

JC1KM|σ
e/∅
�Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, ∅, ∅, TM|σ , ∅)
and JC2KM|σ = (S,doM|σ , H,skip, ∅, ∅, TM|σ , T̈M|σ)
and FireableK1,JC1K,M|σ,τ = ∅
and T̈M|σ ∈ FireableK1,JC1K,M|σ,e by Table 1

iff Jσ(C1)KM = (S, σdo(do)M, H,skip, ∅, ∅, σT (T)M, ∅) by lem. 3.4
and Jσ(C2)KM = (S, σdo(do)M, H,skip, ∅, ∅, σT (T)M, σT (T̈)M) by lem. 3.4
and FireableK2,Jσ(C1)K,M,τ = ∅ by Prop. 2
and σT (T̈)M ∈ FireableK2,Jσ(C1)K,M,e by Prop. 1

iff Jσ(C1)KM
e/∅
�Σ2,M Jσ(C2)KM by Table 1

Case defer.

JC1KM|σ
defer(e)/∅
� Σ1,M|σ JC2KM|σ

iff JCiKM|σ = (S,doM|σ , H,skip, ∅, ∅, TM|σ , ∅) {1 ≤ i ≤ 2}
and η|σ (e1) = e
and defer1(e1) ∩ S 6= ∅
and FireableK1,JC1K,M|σ,e = ∅ by Table 1

iff Jσ(Ci)KM = (S, σdo(do)M, H,skip, ∅, ∅, σT (T)M, ∅) {1 ≤ i ≤ 2} by lem. 3.4
and η(σE(e1)) = e by def. of η|σ
and defer2(σE(e1)) ∩ S 6= ∅ by def. of σ
and FireableK2,Jσ(C1)K,M,e = ∅ by Prop. 2

iff Jσ(C1)KM
defer(e)/∅
� Σ2,M Jσ(C2)KM by Table 1

Case a-fin.

JC1KM|σ
τ/∅
�Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, s̈, βM|σ , TM|σ , T̈M|σ)
and JC2KM|σ = (S ∪ {s̈},doM|σ , H ′,skip, ∅, βM|σ , TM|σ , T̈M|σ)
and s̈ ∈ Sfin
and H ′ = (H[(r 7→ ⊥)r∈R∩↑{regOf(s̈)}]) by Table 1

iff Jσ(C1)KM = (S, σdo(do)M, H,skip, s̈, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4
and Jσ(C2)KM = (S ∪ s̈, σdo(do)M, H ′,skip, ∅, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4
and s̈ ∈ Sfin
and H ′ = (H[(r 7→ ⊥)r∈R∩↑{regOf(s̈)}])

iff Jσ(C1)KM
τ/∅
�Σ2,M Jσ(C2)KM by Table 1

Case a-ch.

JC1KM|σ
τ/∅
�Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, s̈, βM|σ , TM|σ , T̈M|σ)
and JC2KM|σ = (S,doM|σ , H,skip, ∅, βM|σ∪
{(πact(tM|σ), πtar(tM|σ))}, TM|σ , T̈M|σ)

and s̈ ∈ Schoice

and tM|σ ∈ TM|σ1
and πsor(tM|σ) = s̈
and πgua(tM|σ) ∈ eval|σ (H,πtar(tM|σ)) by Table 1

iff Jσ(C1)KM = (S, σdo(do), H,skip, s̈, σβ(β), σT (T), σT (T̈)) by lem. 3.4
and Jσ(C2)KM = (S, σdo(do)M, H,skip, ∅, σβ(β)M ∪
{(πact(σT (t)M), πtar(σT (t)M))}, σT (T)M, σT (T̈)M) by lem. 3.4

and s̈ ∈ Schoice
and σT (t)M ∈ TM2 by lem. 3.2
and πsor(σT (t)M) = s̈ by lem. 3.2
and πgua(σT (t)M) ∈ eval(H,πtar(σT (t)M)) by (1)

iff Jσ(C1)KM
τ/∅
�Σ2,M Jσ(C2)KM by Table 1

(1) First, πtar(tM|σ) = πtar(σT (t)M) by lem. 3.2. Then, we have that g ∈ eval|σ
(H, s) iff σG(g) ∈ eval(H, s) by definition of σ-reduct. Finally, since πgua(σT (t)M) =
σG(πgua(tM|σ)) by definition of σT , we conclude that πgua(tM|σ) ∈ eval |σ
(H,πtar(tM|σ)) iff πgua(σT (t)M) ∈ eval(H,πtar(σT (t)M)).

Case a-en.

JC1KM|σ
τ/∅
�Σ1,M|σ JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, s̈, βM|σ , TM|σ , T̈M|σ)
and JC2KM|σ = (S ∪ {stateOf(s̈)},do′M|σ , H,skip, ∅, β′M|σ , TM|σ , T̈M|σ)
and s̈ ∈ Sentry
and do′M|σ = doM|σ [stateOf(s̈) 7→ µ|σ (doAct1(stateOf(s̈)))]
and f : dsr(stateOf(s̈))→ T1
and β′M|σ = βM|σ ∪

⋃
r∈dsr(stateOf(s̈))

{(πact(f(r)M|σ), πtar(f(r)M|σ))}

and ∀ r ∈ dsr(stateOf(s̈)) : πsor(f(r)M|σ) = s̈
∧ πgua(f(r)M|σ) ∈ eval|σ (H,πtar(f(r)M|σ)) by Table 1

iff Jσ(C1)KM = (S, σdo(do)M, H,skip, s̈, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4
and Jσ(C2)KM =
(S ∪ {stateOf(s̈)}, σdo(do′)M, H,skip, ∅, σβ(β′)M, σT (T)M, σT (T̈)M) by lem. 3.4
and s̈ ∈ Sentry
and σdo(do′)M = σdo(do)M[stateOf(s̈) 7→ µ(doAct2(stateOf(s̈)))] by lem. 3.3
and σT (f) : dsr(stateOf(s̈))→ T2 by (1)
and σβ(β′)M = σβ(β)M∪⋃

r∈dsr(stateOf(s̈))
{(πact(σT (f)(r)M), πtar(σT (f)(r)M))} by lem. 3.1 and 3.2

and ∀ r ∈ dsr(stateOf(s̈)) : πsor(σT (f)(r)M) = s̈
∧ πgua(σT (f)(r)M) ∈ eval(H,πtar(σT (f)(r)M)) by (2)

iff Jσ(C1)KM
τ/∅
�Σ2,M Jσ(C2)KM by Table 1

(1) If there is a function f : dsr(stateOf(s̈)) → T1 which returns a transition
from a region, the morphism σT (f) induced by the signature morphism, is the
same function where the morphism σT is applied to the outgoin transitions, i.e.
σT (f) : dsr(stateOf(s̈))→ T2.

(2) By lemma 3.2 we have that πsor(f(r)M|σ) = πsor(σT (f)(r)M), and the same
for πtar. Also, we have that πgua(f(r)M|σ) ∈ eval |σ (H,πtar(f(r)M|σ)) iff
πgua(σT (f)(r)M) ∈ eval(H,πtar(σT (f)(r)M)) as proved in the case a-ch.(1).
Finally, we conclude that the premise holds.

Case a-ex-1.

JC1KM|σ
τ/∅
�Σ1 JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, s̈, βM|σ , TM|σ , T̈M|σ)
and JC2KM|σ = (S\ {stateOf(s̈)},doM|σ , H ′,skip, ∅, β′M|σ , TM|σ , T̈M|σ)
and s̈ ∈ Sexit
and ∀ (BM|σ , s̈′) ∈ βM|σ : s̈′ 6= s̈
and ∀ s ∈ S : ¬(stateOf(s̈) � s)
and tM|σ ∈ TM|σ
and πsor(tM|σ) = s̈
and β′M|σ = βM|σ ∪ {(πact(tM|σ), πtar(tM|σ))}
and H ′ = H[regOf(s̈) 7→ stateOf(s̈)] by Table 1

iff Jσ(C1)KM = (S, σdo(do)M, H,skip, s̈, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4
and Jσ(C2)KM =
(S\ {stateOf(s̈)}, σdo(do)M, H ′,skip, ∅, σβ(β′)M, σT (T)M, σT (T̈)M) by lem. 3.4
and s̈ ∈ Sexit
and ∀ (σA(B)M, s̈′) ∈ σβ(β)M : s̈′ 6= s̈ by lem. 3.1
and ∀ s ∈ S : ¬(stateOf(s̈) � s)
and σT (t)M ∈ σT (T)M by lem. 3.2
and πsor(σT (t)M) = s̈ by lem. 3.2
and σβ(β′)M = σβ(β)M ∪ {(πact(σT (t)M), πtar(σT (t)M))} by lem. 3.1 and 3.2
and H ′ = H[regOf(s̈) 7→ stateOf(s̈)]

iff Jσ(C1)KM
τ/∅
�Σ2 Jσ(C2)KM by Table 1

Case a-ex-2.

JC1KM|σ
τ/∅
�Σ1 JC2KM|σ

iff JC1KM|σ = (S,doM|σ , H,skip, s̈, βM|σ , TM|σ , T̈M|σ)
and JC2KM|σ = (S,doM|σ , H,skip, ∅, βM|σ , TM|σ , T̈M|σ)
and s̈ ∈ Sexit
and ∃ BM|σ : (BM|σ , s̈) ∈ βM|σ ∨ ∃ s ∈ S : stateOf(s̈) � s by Table 1

iff Jσ(C1)KM = (S, σdo(do)M, H,skip, s̈, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4
and Jσ(C2)KM = (S, σdo(do)M, H,skip, ∅, σβ(β)M, σT (T)M, σT (T̈)M) by lem. 3.4
and s̈ ∈ Sexit
and ∃ σA(B)M : (σA(B)M, s̈) ∈ σβ(β)M ∨ ∃ s ∈ S : stateOf(s̈) � s by lem. 3.1

iff Jσ(C1)KM
τ/∅
�Σ2 Jσ(C2)KM by Table 1

ut

As a second step, we use the auxiliary satisfaction condition to define a small step
semantics dealing with processing sequences of input events. As stated in [7], the se-
mantics considers that in each step one event of the current sequence of input events is
consumed and therefore deleted from this sequence, and a sequence of events is gen-
erated which is added to the shortened sequence of input events resulting in a new
sequence of input events to be used in the following step.

Definition 16 (Small Step Semantics). Given a signature Σ, and a Σ-modelM, the
small step semantics of transitions between configurations is given in terms of the rela-
tion�Σ,M. Given a Σ-sentence ψ = ((C1, E1), (C2, E2)), the relation
(C1, E1)�Σ,M (C2, E2) holds if it holds any of the following cases:

(eve) JE1K 6= ∅ ∧ sel(JE1K) = (e, JE2K) ∧ JC1K
e/∅
�Σ,M JC2K

(def) JE1K 6= ∅ ∧ sel(JE1K) = (e, JE2K) ∧ JC1K
defer(e)/∅
� Σ,M JC2K

(int) join(E, JE1K) = JE2K ∧ JC1K
τ/E
� Σ,M JC2K

Rule eve corresponds to the consumption of an event where an event is selected from
the sequence of input events but no output events are generated. Rule def describes
the deferral of events where, as in the last rule, an event is selected but no output events
are generated (in fact no transition is triggered). Finally, Rule int corresponds to the
execution of an internal transition where no event is consumed but output events are
possibly generated (as in rule do-act of Table 1).

The satisfaction relation states the fact that there is a transition between two configura-
tions with the corresponding event queues.

Definition 17 (Satisfaction Relation). Given a signature Σ, a Σ-modelM, and a Σ-
sentence ψ = ((C1, E1), (C2, E2)), the satisfaction relation is expressed as follows:

M |=Σ ψ iff (C1, E1)�Σ,M (C2, E2)

Finally, we state the satisfaction condition for the institution.

Theorem 2 (Satisfaction Condition). Given signatures Σ1 and Σ2, a signature mor-
phism σ : Σ1 → Σ2, a Σ2-modelM, and a Σ1-sentence ψ, the following satisfaction
condition holds.

M|σ|=Σ1 ψ iff M |=Σ2 σ(ψ)

Proof. By cases on the satisfaction rules of the relation�Σ,M.

Case eve.

M|σ |=Σ1 ψ
iff (C1, E1)�Σ1,M|σ (C2, E2) by def. of |=
iff JE1KM|σ 6= ∅

and sel|σ (JE1KM|σ) = (e, JE2KM|σ)

and JC1KM|σ
e/∅
�Σ1,M|σ JC2KM|σ by satisfaction rule eve

iff JE1KM 6= ∅ by (1)
and sel(JσE(E1)KM) = (e, JσE(E2)KM) by (2)

and Jσ(C1)KM
e/∅
�Σ2,M Jσ(C2)KM by Theorem 1

iff (σ(C1), σE(E1))�Σ2,M (σ(C2), σE(E2)) by satisfaction rule eve
iffM |=Σ2 σ(ψ) by def. of |=

(1) By definition of JK, we have that JE1K 6= ∅ iff E1 6= ∅. Thus, it holds JE1KM 6= ∅
iff JE1KM|σ 6= ∅.

(2) We have that sel |σ (JE1KM|σ) = sel |σ (η |σ (E1)) = sel(η(σE(E1))) =
sel(JσE(E1)KM), by definition of JK and sel |σ . We also have that JσE(E)KM
= JEKM|σ , by definition of JK and η|σ . Finally, we have that sel|σ (JE1KM|σ) =
(e, JE2KM|σ) iff sel(JσE(E1)KM) = (e, JσE(E2)KM).

Case def.

M|σ|=Σ1 ψ
iff (C1, E1)�Σ1,M|σ (C2, E2) by def. of |=
iff JE1KM|σ 6= ∅

and sel|σ (JE1KM|σ) = (e, JE2KM|σ)

and JC1KM|σ
defer(e)/∅
� Σ1,M|σ JC2KM|σ by satisfaction rule def

iff JE1KM 6= ∅ by (1) in eve
and sel(JσE(E1)KM) = (e, JσE(E2)KM) by (2) in eve

and Jσ(C1)KM
defer(e)/∅
� Σ2,M Jσ(C2)KM by Theorem 1

iff (σ(C1), σE(E1))�Σ2,M (σ(C2), σE(E2)) by satisfaction rule def
iffM |=Σ2 σ(ψ) by def. of |=

Case int.

M|σ|=Σ1 ψ
iff (C1, E1)�Σ1,M|σ (C2, E2) by def. of |=
iff join|σ (E, JE1KM|σ) = JE2KM|σ

and JC1KM|σ
τ/E
� Σ1,M|σ JC2KM|σ by satisfaction rule int

iff
and join(E, JσE(E1)KM) = JσE(E2)KM by (1)

and Jσ(C1)KM
τ/E
� Σ2,M Jσ(C2)KM by Theorem 1

iff (σ(C1), σE(E1))�Σ2,M (σ(C2), σE(E2)) by satisfaction rule int
iffM |=Σ2 σ(ψ) by def. of |=

(1) We have that JσE(E)KM = JEKM|σ , by definition of JK and η|σ . Thus, we have that
join(E, JσE(E1)KM) = join|σ (E, JE1KM|σ), and JE2KM|σ = JσE(E2)KM. Fi-
nally, we have that join|σ (E, JE1KM|σ) = JE2KM|σ iff join(E, JσE(E1)KM) =
JσE(E2)KM.

ut

Given this result, signatures, sentences, models, reducts together with the satisfaction
relation, define an institution.

5 Runs as Sentences

In the last section we defined Σ-sentences to represent possible adjacent configurations
of a core state machine w.r.t. a transition. Now we change their meaning to represent the
initial and final configurations of a core state machine w.r.t. a run. Therefore, runs are
considered instead of transition steps, and in consequence we define a new institution
SMρ.

Lets denote a pair of a configuration and a set of events (C1, E1) as Ĉ1, and (σ(C1), σ(E1))
as σ(Ĉ1).

Definition 18 (Run). Given the relation �Σ,M used for the definition of the small
step semantics of transitions, we define a run through the state machine as a finite
path Ĉ1 �Σ,M Ĉ2 �Σ,M · · · �Σ,M Ĉn. We denote a run between Ĉ1 and Ĉn
as ρ(Ĉ1, Ĉn). The length of a run ρ, denoted by |ρ|, is its number of transitions. The
shortest run consists of one transition between two configurations (the minimum length
of a run is 1).

Now we modify the definition of the satifaction relation for this new interpretation of a
Σ-sentence.

Definition 19 (Satisfaction Relation for Runs). Given a signature Σ, a Σ-modelM,
and a Σ-sentence ψ = ((C1, E1), (C2, E2)), the satisfaction relation for runs is ex-
pressed as follows:

M |=ρ,Σ ψ iff ∃ ρ(Ĉ1, Ĉ2)

Now we have to adapt the satisfaction condition and prove that it still holds, which gives
rise to the following theorem.

Theorem 3 (Satisfaction Condition for Runs). Given signatures Σ1 and Σ2, a signa-
ture morphism σ : Σ1 → Σ2, aΣ2-modelM, and aΣ1-sentenceψ = ((C1, E1), (C2, E2)),
the following satisfaction condition holds:

M|σ |=ρ,Σ1 ψ iff M |=ρ,Σ2 σ(ψ)

Proof. By induction on the length of the run ρ(Ĉ1, Ĉ2).

Case
∣∣∣ρ(Ĉ1, Ĉ2)

∣∣∣ = 1.

M|σ|=ρ,Σ1 ψ

iff ∃ ρ(Ĉ1, Ĉ2) by definition of |=ρ

iff Ĉ1 �Σ1,M|σ Ĉ2 by definition of a run
iffM|σ|=Σ1 ψ by definition of |=
iffM |=Σ2 σ(ψ) by Theorem 2
iff σ(Ĉ1) �Σ2,M σ(Ĉ2) by definition of |=
iff ∃ ρ(σ(Ĉ1), σ(Ĉ2)) by definition of a run
iffM |=ρ,Σ2 σ(ψ) by definition of |=ρ

Case
∣∣∣ρ(Ĉ1, Ĉn−1)

∣∣∣ = n > 1.

M|σ|=ρ,Σ1 ψ

iff ∃ ρ(Ĉ1, Ĉn−1) by definition of |=ρ

iff ∃ ρ(Ĉ1, Ĉn−2) ∧ ∃ ρ(Ĉn−2, Ĉn−1) by definition of a run
iff ∃ ρ(Ĉ1, Ĉn−2) ∧ Ĉn−2 �Σ1,M|σ Ĉn−1 by definition of a run
iff ∃ ρ(Ĉ1, Ĉn−2) ∧ M|σ |=Σ1 (Ĉn−2, Ĉn−1) by Definition 17
iff ∃ ρ(Ĉ1, Ĉn−2) ∧ M |=Σ2 (σ(Ĉn−2), σ(Ĉn−1)) by Theorem 2
iff ∃ ρ(σ(Ĉ1), σ(Ĉn−2)) ∧ M |=Σ2 (σ(Ĉn−2), σ(Ĉn−1)) by inductive hypothesis
iff ∃ ρ(σ(Ĉ1), σ(Ĉn−2)) ∧ σ(Ĉn−2) �Σ2,M σ(Ĉn−1) by Definition 17
iff ∃ ρ(σ(Ĉ1), σ(Ĉn−2)) ∧ ∃ ρ(σ(Ĉn−2), σ(Ĉn−1)) by definition of a run
iff ∃ ρ(σ(Ĉ1), σ(Ĉn−1)) by definition of a run
iffM |=ρ,Σ2 σ(ψ) by definition of |=ρ

ut

Given that the satisfaction condition holds, and that the former institution constructs
remain unmodified, signatures, sentences, models, reducts together with the new satis-
faction relation define an institution SMρ.

6 Conclusions and Further Work

In this work we defined an institution for UML 2.0 State Machines. The institution
allows to describe the language using its own semantic domain. We based our work on
existing semantics. The semantics deals with processing sequences of input events such
that in each step one of these events is consumed and a sequence of events is generated
which can be used in the following step. As a complement we extended the semantics
for considering runs through the state machine instead of a simple transition step, and
defined a new institution based on this.

With this work we expect to contribute to the development of the heterogeneous in-
stitution environment for the semantic definition of UML in [2], which provides a rich
and flexible framework for program specification. The choice of UML State Machines
was not random. This decision was taken considering the impact of the inclusion of the
language within the heterogeneous environment since it constitutes a valuable notation
for describing behavioral aspects of a system. For the contribution to be complete we
need to relate this intitution with the others within the environment by means of institu-
tion morphisms. In particular, there is a close relationship between state machines and
interactions [10,11,12], which are already defined as an institution [13], which may help
in the definition of an institution morphism in a natural way. This is subject of further
work.

Finally, this work is part of a broad research agenda. We are concerned with the
relation between institution morphisms and model transformations in the context of
Model-Driven Engineering [14]. Model transformations are functions taking input mod-
els and producing output models such that both models conform to given metamodels
(possibly the same). Transformations allow defining not only syntactical relations be-
tween models but also complex semantical ones. Intuitively, there is some relationship
between model transformations and institution morphisms, which are transformations
preserving truth from one logical system to another. In this context we want to study
the mathematical properties of model transformations from the perspective given by
institution morphisms.

References

1. OMG: Unified Modeling Language: Superstructure. formal/2005-07-04 v2.0, Object Man-
agement Group (2005)

2. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach to UML
Semantics. In Degano, P., Nicola, R.D., Meseguer, J., eds.: Concurrency, Graphs and Models.
Volume 5065 of Lecture Notes in Computer Science., Springer (2008) 383–402

3. Goguen, J.A., Burstall, R.M.: Introducing Institutions. In Clarke, E.M., Kozen, D., eds.:
Logic of Programs. Volume 164 of Lecture Notes in Computer Science., Springer (1983)
221–256

4. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and
Programming. J. ACM 39 (1992) 95–146

5. Crane, M.L., Dingel, J.: On the Semantics of UML State Machines: Categorization and Com-
parison. Technical Report 2005-501, School of Computing, Queen’s University, Kingston,
Ontario, Canada (2005)

6. Fecher, H., Schönborn, J.: UML 2.0 State Machines: Complete Formal Semantics via Core
State Machines. In: Proceedings of the 11th international workshop, FMICS 2006 and 5th in-
ternational workshop, PDMC conference on Formal methods: Applications and technology.
FMICS’06/PDMC’06, Berlin, Heidelberg, Springer-Verlag (2007) 244–260

7. von der Beeck, M.: A Structured Operational Semantics for UML-Statecharts. Software and
Systems Modeling 1 (2002) 130–141

8. Lane, S.M.: Categories for the Working Mathematician. 2nd edn. Graduate Texts in Mathe-
matics. Springer (1998)

9. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software
Development. 1st edn. Monographs in Theoretical Computer Science. Springer (2011)

10. Grønmo, R., Møller-Pedersen, B.: From Sequence Diagrams to State Machines by Graph
Transformation. In: Theory and Practice of Model Transformations. Volume 6142 of LNCS.
Springer (2010) 93–107

11. Krüger, I.H.: Distributed System Design with Message Sequence Charts. PhD. Thesis,
Technischen Universität München (2000)

12. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. In: Proc. of the
22nd Intl. Conf. on Software Engineering, ACM (2000) 314–323

13. Cengarle, M.V., Knapp, A.: An Institution for UML 2.0 Interactions. Technical Report
TUM-I0808, Institut für Informatik, Technische Universität München (2008)

14. Kent, S.: Model-Driven Engineering. In: Proc. 3rd , Third Intl. Conf. on Integrated Formal
Methods. Volume 2335 of LNCS., Springer (2002) 286–298

A Auxiliary Properties

Proposition 1 (Invariance of Fireable Transitions). Given SM-signatures
Σi = (Ei,Ai,Gi,Ki) (i=1, 2) withKi = ((S,R,parent),doActi,deferi, Ti, sstart)
(i=1, 2), a SM-signature morphism σ : Σ1 → Σ2, a Σ2-model
M = (A, µ,eval,calc,E, η,sel,join, ,

√
), a configuration C = (S,do, H, α, s̈, β, T, T̈)

for Ki, and an event e ∈ E ∪ {τ},

TM|σ ∈ FireableK1,JCK,M|σ,e iff σT (T)M ∈ FireableK2,Jσ(C)K,M,e

Proof.

TM|σ ∈ FireableK1,JCK,M|σ,e
iff T ⊆ EnableK1,C,M|σ,e

and ∀T ′ ∈ EnableK1,C,M|σ,e \ T :
∀T1 ∈ T : (T ′, T1) /∈ PriorityK1

and ∀T ′ ∈ EnableK1,C,M|σ,e \ T :
∃T1 ∈ T : (T1, T

′) ∈ ConflictK1

and ∀T1, T2 ∈ T : (T1, T2) ∈ ConflictK1 ⇒ T1 = T2 by Def. 12
iff σT (T) ∈ EnableK2,σ(C),M,e by Prop. 3

and ∀σT (T ′) ∈ EnableK2,σ(C),M,e \ σT (T) :
∀σT (T1) ∈ σT (T) : (σT (T ′), σT (T1)) /∈ PriorityK2 by (1)
and ∀σT (T ′) ∈ EnableK2,σ(C),M,e \ σT (T) :
∃σT (T1) ∈ σT (T) : (σT (T1), σT (T ′)) ∈ ConflictK2 by Prop. 5
and ∀σT (T1), σT (T2) ∈ σT (T) :

(σT (T1), σT (T2)) ∈ ConflictK2 ⇒ σT (T1) = σT (T2) by (2)
iff σT (T)M ∈ FireableK2,Jσ(C)K,M,e by Def. 12

(1) It is a direct implication of Proposition 6.
(2) The implication (T1, T2) ∈ ConflictK1 ⇒ T1 = T2 can be written as

(T1, T2) /∈ ConflictK1∨T1 = T2.6 We also have that (T1, T2) /∈ ConflictK1

iff (σT (T1), σT (T ′)) /∈ ConflictK2 as a direct result of Proposition 5. More-
over, we have that T1 = T2 iff σT (T1) = σT (T2) by definition of σT . Finally,
we conclude that (T1, T2) /∈ ConflictK1 ∨ T1 = T2 iff (σT (T1), σT (T2)) /∈
ConflictK2 ∨ σT (T1) = σT (T2), by definition of ∨, and thus
(T1, T2) ∈ ConflictK1 ⇒ T1 = T2 iff (σT (T1), σT (T2)) ∈ ConflictK2 ⇒
σT (T1) = σT (T2).

ut

6 The implication A⇒ B is a shortcut of ¬A ∨B. Also, it negation is A ∧ ¬B

Proposition 2 (Invariance of No Fireable Transitions). Given SM-signatures
Σi = (Ei,Ai,Gi,Ki) (i=1, 2) withKi = ((S,R,parent),doActi,deferi, Ti, sstart)
(i=1, 2), a SM-signature morphism σ : Σ1 → Σ2, a Σ2-model
M = (A, µ,eval,calc,E, η,sel,join, ,

√
), a configuration C = (S,do, H, α, s̈, β, T, T̈)

for Ki, and an event e ∈ E ∪ {τ},

FireableK1,JCK,M|σ,e = ∅ iff FireableK2,Jσ(C)K,M,e = ∅

Proof.

FireableK1,JCK,M|σ,e = ∅
iff EnableK1,C,M|σ,e = ∅

or ∀ T ′ ∈ EnableK1,C,M|σ,e \ T :
∀ T1 ∈ T : (T ′, T1) ∈ PriorityK1

or ∀ T ′ ∈ EnableK1,C,M|σ,e \ T :
∃ T1 ∈ T : (T1, T

′) /∈ ConflictK1

or ∀ T1, T2 ∈ T : (T1, T2) ∈ ConflictK1 ∧ T1 6= T2 by Def. 12
iff EnableK2,σ(C),M,e = ∅ by Prop. 4

or ∀ σT (T ′) ∈ EnableK2,σ(C),M,e \ σT (T) :
∀ σT (T1) ∈ σT (T) : (σT (T ′), σT (T1)) ∈ PriorityK2 by Prop. 6

or ∀ σT (T ′) ∈ EnableK2,σ(C),M,e \ σT (T) :
∃ σT (T1) ∈ σT (T) : (σT (T1), σT (T ′)) /∈ ConflictK2 by (1)

or ∀ σT (T1), σT (T2) ∈ σT (T) :
(σT (T1), σT (T2)) ∈ ConflictK2

∧ σT (T1) 6= σT (T2) by (2)
iff FireableK2,Jσ(C)K,M,e = ∅ by Def. 12

(1) It is a direct implication of Proposition 5
(2) We have that (T1, T2) ∈ ConflictK1 iff (σT (T1), σT (T ′)) ∈ ConflictK2

by Proposition 5. Moreover, we have that T1 6= T2 iff σT (T1) 6= σT (T2) by def-
inition of σT . Finally, we conclude that (T1, T2) ∈ ConflictK1 ∧ T1 6= T2 iff
(σT (T1), σT (T2)) ∈ ConflictK2 ∧ σT (T1) 6= σT (T2), by definition of ∧.

ut

Proposition 3 (Invariance of Enable Transitions). Given SM-signatures
Σi = (Ei,Ai,Gi,Ki) (i=1, 2) withKi = ((S,R,parent),doActi,deferi, Ti, sstart)
(i=1, 2), a SM-signature morphism σ : Σ1 → Σ2, a Σ2-model
M = (A, µ,eval,calc,E, η,sel,join, ,

√
), a configuration C = (S,do, H, α, s̈, β, T, T̈)

for Ki, and an event e ∈ E ∪ {τ},

T ∈ EnableK1,C,M|σ,e iff σT (T) ∈ EnableK2,σ(C),M,e

Proof.

T ∈ EnableK1,C,M|σ,e
iff T ∈ CoTrK1

and ∀t ∈ T : stateOf(πsor(t)) ∈ S
and ∀t ∈ T : η|σ (πev(t)) = e
and ∀t ∈ T : πgua(t) ∈ eval|σ (H,πtar(t))
and ∀t ∈ T : πsor(t) ∈ Scp

exit
⇒ do(stateOf(πsor(t))) = skip by Def. 12

iff σT (T) ∈ CoTrK2 by Prop. 7
and ∀σT (t) ∈ σT (T) : stateOf(πsor(σT (t))) ∈ S by (1)
and ∀σT (t) ∈ σT (T) : η(πev(σT (t))) = e by (2)
and ∀σT (t) ∈ σT (T) : πgua(σT (t)) ∈ eval(H,πtar(σT (t))) by (3)
and ∀σT (t) ∈ σT (T) : πsor(σT (t)) ∈ Scp

exit
⇒ σdo(do)(stateOf(πsor(σT (t)))) = σA(skip) by (4)

iff σT (T) ∈ EnableK2,σ(C),M,e by Def. 12

(1) Since the states of a transition t do not change in σT (t), then πsor(t) = πsor(σT (t)),
and thus stateOf(πsor(t)) ∈ S iff stateOf(πsor(σT (t))) ∈ S.

(2) By definition of η|σ , we have that η|σ (πev(t)) = η(σ(πev(t))). Finally, by defini-
tion of σ we have that η(σ(πev(t))) = η(πev(σT (t))).

(3) First, πtar(t) = πtar(σT (t)) as explained in (1). Then, we have that g ∈ eval|σ
(H, s) iff σG(g) ∈ eval(H, s) by definition of σ-reduct. Finally, since
πgua(σT (t)) = σG(πgua(t)) by definition of σT , we conclude that πgua(t) ∈
eval|σ (H,πtar(t)) iff πgua(σT (t)) ∈ eval(H,πtar(σT (t))).

(4) The implication πsor(t) ∈ Scp
exit ⇒ do(stateOf(πsor(t))) = skip can be writ-

ten as πsor(t) /∈ Scp
exit ∨ do(stateOf(πsor(t))) = skip. Then, we have that

πsor(t) /∈ Scp
exit iff πsor(σT (t)) /∈ Scp

exit, as explained in (1). Moreover, since σA
is inyective, we have that α = skip iff σA(α) = σA(skip) for every α ∈ A1.
In this case, since do(stateOf(πsor(t))) ∈ A1 then do(stateOf(πsor(t))) =
skip iff σA(do(stateOf(πsor(t)))) = σA(skip), where
σA(do(stateOf(πsor(t)))) = σdo(do)(stateOf(πsor(t))) by definition of σdo.
Then, we have that πsor(t) = πsor(σT (t)), as explained in (1). Finally, we have that
πsor(t) /∈ Scp

exit ∨ do(stateOf(πsor(t))) = skip iff
σdo(do)(stateOf(πsor(σT (t)))) = σA(skip), by definition of ∨, and thus
πsor(t) ∈ Scp

exit ⇒ do(stateOf(πsor(t))) = skip iff πsor(σT (t)) ∈ Scp
exit ⇒

σdo(do)(stateOf(πsor(σT (t)))) = σA(skip)
ut

Proposition 4 (Invariance of Disable Transitions). Given SM-signatures
Σi = (Ei,Ai,Gi,Ki) (i=1, 2) withKi = ((S,R,parent),doActi,deferi, Ti, sstart)
(i=1, 2), a SM-signature morphism σ : Σ1 → Σ2, a Σ2-model
M = (A, µ,eval,calc,E, η,sel,join, ,

√
), a configuration C = (S,do, H, α, s̈, β, T, T̈)

for Ki, and an event e ∈ E ∪ {τ},

EnableK1,C,M|σ,e = ∅ iff EnableK2,σ(C),M,e = ∅

Proof.

EnableK1,C,M|σ,e = ∅
iff CoTrK1 = ∅

or T ∈ CoTrK1 ∧ ∀t ∈ T : stateOf(πsor(t)) /∈ S
or T ∈ CoTrK1 ∧ ∀t ∈ T : η|σ (πev(t)) 6= e
or T ∈ CoTrK1 ∧ ∀t ∈ T : πgua(t) /∈ eval|σ (H,πtar(t))
or T ∈ CoTrK1 ∧ ∀t ∈ T : πsor(t) ∈ Scp

exit
∧ do(stateOf(πsor(t))) 6= skip by Def. 12

iff CoTrK2 = ∅ by Prop. 8
or σT (T) ∈ CoTrK2

∧ ∀σT (t) ∈ σT (T) : stateOf(πsor(σT (t))) /∈ S by (1)
or σT (T) ∈ CoTrK2

∧ ∀σT (t) ∈ σT (T) : η(πev(σT (t))) 6= e by (2)
or σT (T) ∈ CoTrK2

∧ ∀σT (t) ∈ σT (T) : πgua(σT (t)) /∈ eval(H,πtar(σT (t))) by (3)
or σT (T) ∈ CoTrK2

∧ ∀σT (t) ∈ σT (T) : πsor(σT (t)) ∈ Scp
exit

∧ σdo(do)(stateOf(πsor(σT (t)))) 6= σA(skip) by (4)
iff EnableK2,σ(C),M,e = ∅ by Def. 12

(1) Since the states of a transition t do not change in σT (t), then πsor(t) = πsor(σT (t)),
and thus stateOf(πsor(t)) /∈ S iff stateOf(πsor(σT (t))) /∈ S. Also, T ∈
CoTrK1 iff σT (T) ∈ CoTrK2 , by Proposition 7.

(2) By definition of η|σ , we have that η|σ (πev(t)) = η(σ(πev(t))). Finally, by defini-
tion of σ we have that η(σ(πev(t))) = η(πev(σT (t))). Thus, η|σ (πev(t)) 6= e iff
η(πev(σT (t))) 6= e. Also, T ∈ CoTrK1 iff σT (T) ∈ CoTrK2 , by Proposition 7.

(3) First, πtar(t) = πtar(σT (t)) as explained in (1). Then, we have that g /∈ eval|σ
(H, s) iff σG(g) /∈ eval(H, s) by definition of σ-reduct. Finally, since
πgua(σT (t)) = σG(πgua(t)) by definition of σT , we conclude that πgua(t) /∈
eval|σ (H,πtar(t)) iff πgua(σT (t)) /∈ eval(H,πtar(σT (t))). Also, T ∈ CoTrK1

iff σT (T) ∈ CoTrK2 , by Proposition 7.
(4) First, we have that πsor(t) ∈ Scp

exit iff πsor(σT (t)) ∈ Scp
exit, as explained in (1).

Then, since σA is inyective, we have that α 6= skip iff σA(α) 6= σA(skip) for
every α ∈ A1. In this case, since do(stateOf(πsor(t))) ∈ A1 then
do(stateOf(πsor(t))) 6= skip iff σA(do(stateOf(πsor(t)))) 6= σA(skip),
where σA(do(stateOf(πsor(t)))) = σdo(do)(stateOf(πsor(t))) by definition
of σdo. Moreover, we have that πsor(t) = πsor(σT (t)), as explained in (1). Finally,
we have that πsor(t) ∈ Scp

exit ∧ do(stateOf(πsor(t))) 6= skip iff πsor(σT (t)) ∈

Scp
exit ∧ σdo(do)(stateOf(πsor(σT (t)))) 6= σA(skip), by definition of ∧. Also,
T ∈ CoTrK1 iff σT (T) ∈ CoTrK2 , by Proposition 7.

ut

Proposition 5 (Invariance of Conflict Transitions). Given SM-signatures
Σi = (Ei,Ai,Gi,Ki) (i=1, 2) withKi = ((S,R,parent),doActi,deferi, Ti, sstart)
(i=1, 2), and a SM-signature morphism σ : Σ1 → Σ2,

(T1, T2) ∈ ConflictK1 iff (σT (T1), σT (T2)) ∈ ConflictK2

Proof.

(T1, T2) ∈ ConflictK1

iff (T1, T2) ∈ CoTrK1 × CoTrK1

and
⋃

t1∈T1

stateOf(πsor(t1))

∩
⋃

t2∈T2

stateOf(πsor(t2)) 6= ∅ by Def. 12

iff (σT (T1), σT (T2)) ∈ CoTrK2 × CoTrK2 by (1)
and

⋃
σT (t1)∈σT (T1)

stateOf(πsor(σT (t1)))

∩
⋃

σT (t2)∈σT (T2)
stateOf(πsor(σT (t2))) 6= ∅ by (2)

iff (σT (T1), σT (T2)) ∈ ConflictK2 by Def. 12

(1) We have that T ∈ CoTrK1 iff σT (T) ∈ CoTrK2 , as proved in Proposition 7.
Finally, we conclude that (T1, T2) ∈ CoTrK1 × CoTrK1 iff (σT (T1), σT (T2)) ∈
CoTrK2 × CoTrK2 .

(2) Since the states of a transition t do not change in σT (t), then πsor(t) = πsor(σT (t)),
and thus stateOf(πsor(t)) = stateOf(πsor(σT (t))).
Then, we have that

⋃
t∈T

stateOf(πsor(t)) =
⋃

σT (t)∈σT (T)
stateOf(πsor(σT (t))),

since σT is a bijection. Finally, we conclude that⋃
t1∈T1

stateOf(πsor(t1)) ∩
⋃

t2∈T2

stateOf(πsor(t2)) 6= ∅ iff⋃
σT (t1)∈σT (T1)

stateOf(πsor(σT (t1)))∩
⋃

σT (t2)∈σT (T2)
stateOf(πsor(σT (t2))) 6=

∅.
ut

Proposition 6 (Invariance of Priority Transitions). Given SM-signatures
Σi = (Ei,Ai,Gi,Ki) (i=1, 2) withKi = ((S,R,parent),doActi,deferi, Ti, sstart)
(i=1, 2), and a SM-signature morphism σ : Σ1 → Σ2,

(T1, T2) ∈ PriorityK1 iff (σT (T1), σT (T2)) ∈ PriorityK2

Proof.

(T1, T2) ∈ PriorityK1

iff (T1, T2) ∈ CoTrK1 × CoTrK1

and PrBelowK1(T1, T2)
and PrStrBelowK1(T1, T2) by Def. 12

iff (σT (T1), σT (T2)) ∈ CoTrK2 × CoTrK2 by (1)
and PrBelowK2(σT (T1), σT (T2)) by (2)
and PrStrBelowK2(σT (T1), σT (T2)) by (3)

iff (σT (T1), σT (T2)) ∈ PriorityK2 by Def. 12

(1) We have that T ∈ CoTrK1 iff σT (T) ∈ CoTrK2 , as proved in Proposition 7.
Finally, we conclude that (T1, T2) ∈ CoTrK1 × CoTrK1 iff (σT (T1), σT (T2)) ∈
CoTrK2 × CoTrK2 .

(2) We have that PrBelowK1(T1, T2) iff (∀t1 ∈ T1 : πsor(t1) ∈ Spr
exit ∪ Scom ⇒

∃t2 ∈ T2 : πsor(t2) ∈ Spr
exit∪Scom∧stateOf(πsor(t2)) � stateOf(πsor(t1))).

Then, since the states of a transition t do not change in σT (t), we have that πsor(t) =
πsor(σT (t)), and thus, the proposition above holds iff (∀σT (t1) ∈ σT (T1) :
πsor(σT (t1)) ∈ Spr

exit ∪ Scom ⇒ ∃σT (t2) ∈ σT (T2) : πsor(σT (t2)) ∈ Spr
exit ∪

Scom ∧ stateOf(πsor(σT (t2))) � stateOf(πsor(σT (t1)))). Finally, we con-
clude that PrBelowK1(T1, T2) iff PrBelowK2(σT (T1), σT (T2)).

(3) In the same sense as (2), since the states of a transition t do not change in σT (t), we
conclude that PrStrBelowK1(T1, T2) iff PrStrBelowK2(σT (T1), σT (T2)).

ut

Proposition 7 (Invariance of Compound Transitions). Given SM-signatures
Σi = (Ei,Ai,Gi,Ki) (i=1, 2) withKi = ((S,R,parent),doActi,deferi, Ti, sstart)
(i=1, 2), and a SM-signature morphism σ : Σ1 → Σ2,

T ∈ CoTrK1 iff σT (T) ∈ CoTrK2

Proof.

T ∈ CoTrK1

iff T ∈ Tint1
or T ∈ {t} ∪ T

and t ∈ T1
and πsor(t) ∈ Sexit
and πtar(t) /∈ Sexit
and T ∈ ΥK1(πsor(t)) by Def. 12

iff σT (T) ∈ Tint2 by Def. 7
or σT (T) ∈ {σT (t)} ∪ σT (T) by Def. of σT

and σT (t) ∈ T2 by Def. of σT
and πsor(σT (t)) ∈ Sexit by (1)
and πtar(σT (t)) /∈ Sexit by (1)
and σT (T) ∈ ΥK2(πsor(σT (t))) by (2)

iff σT (T) ∈ CoTrK2 by Def. 12

(1) Since the states of a transition t do not change in σT (t), then πsor(t) = πsor(σT (t)),
and also that πtar(t) = πtar(σT (t)).

(2) If there is a function f : dsr(stateOf(s̈))→ T1 which returns a transition from
a region, the morphism σT (f) induced by the signature morphism, is the same
function where the morphism σT is applied to the outgoin transitions, i.e. σT (f) :
dsr(stateOf(s̈)) → T2. The same happens with the function F : dsr(s) →
2T , it means, σT (F) : dsr(s) → 2T2 . Then, it hols that ∀T ∈

⋃
r∈dsr(s)

({f(r)} ∪

F (r)) iff ∀σT (T) ∈
⋃

r∈dsr(s)
({σT (f)(r)} ∪ σT (F)(r)) with T ∈ 2T1 . Moreover,

we have that ∀r ∈ dsr(s) : πtar(f(r)) = s ∧ regOf(πsor(f(r))) = r iff ∀r ∈
dsr(s) : πtar(σT (f)(r)) = s ∧ regOf(πsor(σT (f)(r))) = r, since σT do not
modify the states of a transition, as explained in (1). Finally, by the same reason,
we have that ΥK(πsor(t)) iff ΥK(πsor(σT (t))). In conclusion, we have that T ∈
ΥK1(πsor(t)) iff σT (T) ∈ ΥK2(πsor(σT (t))).

ut

Proposition 8 (Invariance of No Compound Transitions). Given SM-signatures
Σi = (Ei,Ai,Gi,Ki) (i=1, 2) withKi = ((S,R,parent),doActi,deferi, Ti, sstart)
(i=1, 2), and a SM-signature morphism σ : Σ1 → Σ2,

CoTrK1 = ∅ iff CoTrK2 = ∅

Proof.

CoTrK1 = ∅
iff Tint1 = ∅

and ∀ t ∈ T1 : πsor(t) /∈ Sexit ∨ πtar(t) ∈ Sexit by Def. 12
iff Tint2 = ∅ by Def. 7

and ∀ σT (t) ∈ T2 : πsor(σT (t)) /∈ Sexit ∨ πtar(σT (t)) ∈ Sexit by (1)
iff CoTrK2 = ∅ by Def. 12

(1) Since the states of a transition t do not change in σT (t), then πsor(t) = πsor(σT (t)),
and also that πtar(t) = πtar(σT (t)). Also, we have that t ∈ T1 iff σT (t) ∈ T2, by
definition of σT . Finally, we conclude that ∀ t ∈ T1 : πsor(t) /∈ Sexit ∨ πtar(t) ∈
Sexit iff ∀ σT (t) ∈ T2 : πsor(σT (t)) /∈ Sexit ∨ πtar(σT (t)) ∈ Sexit.

ut

