
PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Reporte Técnico RT 10-13

Behavioral Refinements of UML-
Statecharts

Nora Szasz Pedro Vilanova

2010

Behavioral Refinements of UML-Statecharts
Szasz, Nora; Vilanova, Pedro
ISSN 0797-6410
Reporte Técnico RT 10-13
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República
Montevideo, Uruguay, 2010

Behavioral Refinements of UML-Statecharts

Nora Szasz
Universidad ORT Uruguay

szasz@ort.edu.uy

Pedro Vilanova
KAUST, AMCS, Saudi Arabia
pedro.guerra@kaust.edu.sa

September 2010

Abstract

In [SV08] we have proposed a formalism for specifying the behavior of software product
lines using UML-statecharts. Using an order relation among statecharts which represents
when a statechart has a more complex structure than another one, we define how to combine
diferent extensions of the same statechart into an integral new one. In this paper, we prove
that the proposed extension constitutes a behavioral refinement. That is, whenever we
allow the possibility of extending a given statechart, the old behaviour is preserved and
new behavior may be added.

Resumen

En [SV08] proponemos un formalismo para especificar el comportamiento de lneas de
productos de software utilizando UML-statecharts. Mediante una relación de orden en-
tre statecharts que representa cuando un statechart tiene una estructura ms compleja que
otro, se define la forma de combinar diferentes extensiones de un mismo statechart en uno
nuevo. En este trabajo probamos que la extensión propuesta constituye un refinamiento de
comportamiento. Es decir, cada vez que se extiende un statechart, se preserva el compor-
tamiento anterior, con la posibilidad de a;adir nuevo comportamiento.

Keywords: Statecharts, UML, Formal semantics, Software product lines, Variability,
Behavioral refinement.

1

Contents

1 Introduction 3

2 Feature Diagrams and UML-Statecharts Syntax 4
2.1 Feature Diagrams . 4
2.2 States and Transitions . 4
2.3 Statechart Configurations . 5

3 Statecharts with Variabilities 6
3.1 Extension Relation . 6
3.2 Intersection . 6
3.3 Statecharts with Variabilities . 7

4 UML-Statecharts Semantics 8
4.1 Computing the Next State . 8
4.2 Structured Operational Semantics . 9

5 Behavioral Refinements 10
5.1 Extension Relation and Configurations . 10
5.2 Monotonicity of next Function . 12
5.3 Extension Relation as a Behavioral Refinement 15

6 Statechart Actions 18

7 Conclusions and Further Work 22

2

1 Introduction

The complexity of software systems has generated the need of founding developments on abstract
models. Modeling allows, among other things, to verify the systems before their construction
and to guide their development by means of techniques such as automatic code generation.
In particular, UML-statecharts and interactions are specially meant for software design. State-
charts, originally introduced by Harel [Har87], are used to specify the behavior of class instances
(intra-component behaviour). They are compact, expressive and allow describing from simple
systems to complex reactive ones.
On the other hand, software reusability has become a major challenge for the software industry.
Reusable artifacts increase the productivity by reducing development time. The development of
products that vary in more or less peripheral aspects has given rise to the concept of software
product lines. A software product line consists of a family of systems that share functionalities
and satisfy, in general, the needs of a particular market segment [Gom05, CN02].
In [SV08] we propose a way for specifying the behavior of software product lines using UML-
statecharts (statecharts from now on). We use feature diagrams to represent the common and
variant functionalities of a family of products, presenting a formal syntax for feature diagrams
and configurations based on Czarnecki’s work [Cza98, CHE05]. Then, based on von der Beeck’s
[vdB02] statecharts abstract syntax, we define an order relation for statecharts that represents
when a statechart has a more complex structure than another one. Then, we define how to
combine different extensions of the same statechart into an integral new statechart. With these
notions, given the description of a product line as a feature diagram, we define a statechart
with variabilities for the line as a function that associates each feature of the feature diagram
with a statechart. The mapping must comply with the hierarchical structure and the feature
restrictions, i.e., the more features a product has, the richer the statechart that models it must
be. In this way, we can describe the effect that each feature has on the products in which it is
present.This definition provides a very simple way to obtain the specification of the behavior of
any configuration of the product line as the combination of the statecharts that implement all
the features present in the product.
Continuing with that work, in this paper we prove that the structured operational semantics
proposed in [vdB02] can be extended using our extension relation without loosing any behaviour.
That is, when a statechart is extended, it is still possible to perform the same semantic transitions
on it as before. Then, the extension relation can be considered as a behavioral refinement, in
the sense that it preserves the same behaviour as before, but adding some new functionality.
Although there exist several extensions of UML models for specification of variability (among
other works, [CGW05, Gom05, ZHJ04]), we have not found any formal specification of variabil-
ities for statecharts, with the exception of [GL10]. In that work, the authors define functions
that associate statechart components (not statecharts, as our case) to functionalities of a feature
diagram. Then, the behavior of a product line is obtained basically by a selection process, and
not a combination of statecharts, as in our proposal.
The rest of the article is structured as follows: In section 2 we present the main concepts and
definitions for UML-statecharts syntax, following [vdB02]. In section 3 we define an extension
relation between statecharts to enrich their structure, and we show how to combine diferent
extensions into an integral new statechart. In section 4 we present the formal semantics of
statecharts. In section 5 we prove the main result of this paper: the extension relation can be
considered as a refinement, in the sense that it preserves the transitions defined in the semantics.
Finally, in section 6 we also take into account the actions generated by the transitions, and prove
that these actions are preserved by the refinement. We conclude and discuss further work in
section 7.

3

2 Feature Diagrams and UML-Statecharts Syntax

In this section we present the main concepts and definitions for statecharts and feature diagrams,
which we will use in the rest of this paper.

2.1 Feature Diagrams

Feature diagrams are used to document features. A feature is a property of a system that
directly affects end users. Czarnecki [Cza98, CHE05] proposes three types of features, namely
mandatory, optional and alternative. Additionally, a set of constraints over features can be
defined. A constraint is a proposition over the set of features. Formally, given F a set of feature
names, we define a feature diagram as a 6-tuple Υ = 〈L,N,NC,RM,RO,RA〉, where: L ∈ F , is the
product line name (the root of the tree); N ⊆ F is the set of features, (L 6∈ N); NC ⊆ C is the
set of constraints over features, where C are the propositional calculus formulas with variables
fi ∈ F and connectives ∧, ∨ and ¬; RM,RO ⊆ {L}∪N × N, are the mandatory and optional
consists of relations respectively; and RA ⊆ {L}∪N×P(N) is the alternative consists of relation.
In addition, the union of the relations RM, RO and RA must constitute a tree with nodes in F and
root L. The feature diagram must satisfy that there are no cycles.

In order to obtain specific products of a line defined by a feature diagram Υ, we define the
possible configurations of Υ as the instances of the tree that are consistent with the relations
amongst its features and the constraints of Υ. Formally, given a set of feature names F , a
configuration is a 3-tuple Φ = 〈P,Y,R〉, where: P ∈ F , is the product name (the root of the
tree); Y ⊆ F , is the set of features of the product (P 6∈ Y); and R ⊆ {P}∪Y×Y is the consists
of relation. Additionally, configurations must be trees under the relation R, with root P.

2.2 States and Transitions

In this section we present the main concepts and definitions for statecharts, following [vdB02],
which we will use in the rest of this paper.
Let S, T , A, E be countable sets of state names, transition names, actions and events respectively
with E ⊆ A. We denote events and actions by a, b, c, .. and sequences of events as well as actions
by α, β, γ, Then the set SC of statecharts is inductively defined by the rules in figure 1,
together with the functions name: SC→ S 1, that is, the name of the statechart, and the predicate
wf-tran (defined below), which decides if a transition is well formed with respect to a set of states.
The rules are explained as follows:

Basic Statecharts: s = [ŝ,(en,ex)] is a basic statechart with name ŝ, entry sequence of actions
en, exit sequence of actions ex and type(s) = basic.

And-Statecharts: s = [ŝ,(s1,..,sn),(en,ex)] is an and-statechart with name ŝ, parallel sub-
states s1, .., sn, n > 0, entry sequence of actions en, exit sequence of actions ex and
type(s) = and.

Or-Statecharts: s = [ŝ,(s1,..,sn),l,T ,(en,ex)] is an or-statechart with name ŝ, parallel sub-
states s1, .., sn, n > 0, entry sequence of actions en, exit sequence of actions ex, l ∈ ρ,
ρ = {1, .., n} is the index of the current active substate of s, T is the set of transitions
between its substates, s1 is the default state of s, type(s)=or. The set of transitions T is
included in T := T ×ρ × P(S)×E×A∗×P(S)×ρ×HT, where HT = {none, shallow, deep} are
the history types.

1Abusing the notation, we will abbreviate name(s) with ŝ. The same applies to transitions.

4

ŝ ∈ S en, ex ∈ A∗

[ŝ,(en,ex)] ∈ SC
Basic

s1, .., sn ∈ SC, ŝi 6= ŝj ∀i 6=j
ŝ ∈ S, ŝ 6= ŝi ∀i=1..n

en, ex ∈ A∗

[ŝ,(s1,..,sn),(en,ex)] ∈ SC
And

s1, .., sn ∈ SC, ŝi 6= ŝj ∀i 6=j
ŝ ∈ S, ŝ 6= ŝi ∀i=1..n

T ⊆ T, wf-tran({s1, .., sn}, t) ∀t∈T
l ∈ {1, .., n}
en, ex ∈ A∗

[ŝ,(s1,..,sn),l,T ,(en,ex)] ∈ SC
Or

Figure 1: Syntax of Statecharts

We further define:
SCB={s∈SC | type(s)=basic}, SCA={s∈SC | type(s)=and}, SCO = {s∈SC | type(s)=or}.
Given t = 〈t̂,i,Sr,e,α,Td,j,ht〉 ∈ T, the following are defined: name(t) := t̂, is the name of the
transition t, sou(t) := si, tar(t) := sj , are the source and target states of t respectively, sou-r(t) :=
Sr, is the source restriction set, ev(t) := e, is the triggering event of t, act(t) := α, is the action
associated to t, tar-d(t) := Td, is the target determinator set, historyType(t) := ht, is the history
type of t. We say a transition t uses the history mechanism, if historyType(t) ∈ {deep, shallow}
(see [vdB02] for more details).
Moreover, we define the predicate wf-tran: P(SC)× T which decides if a transition t is well formed
with respect to a set of states s1, .., sn as wf-tran({s1..sn}, t) = (sou(t), tar(t) ∈ {s1.., sn}) ∧
(sou-r(t) ∈ conf-all(sou(t))) ∧ (tar-d(t) ∈ conf-all(tar(t))).
Note that the definition of SC implies that, within a statechart, each substate can be uniquely
referred to by its name. This is an important fact regarding configurations, which is the topic of
the next section. From now on, when there is no risk of ambiguity, when we denote a state we
only show the syntactic elements that are relevant in each case. Moreover, we will abbreviate
s1, s2, .., sk with s1..k.

2.3 Statechart Configurations

The function conf: SC→ P(S) gives the current configuration of a statechart s, i.e. the set of
the names of all currently active substates within s (also including ŝ):

conf([ŝ]) := {ŝ}
conf([ŝ, (s1..n), l, T]) := {ŝ} ∪ conf(sl)
conf([ŝ, (s1..n)]) := {ŝ} ∪

⋃
i=1..n conf(si)

The function conf-all: SC→ P(P(S)) computes the set of all potential configurations of a state-
chart s (complete or incomplete). By potential we mean that we consider not only the current
active substate of an or-substate, but all possibilities for choosing such a substate. Note the
difference with the definition of conf. The term incomplete denotes a configuration which results
from an application of conf-all where the recursion terminates before the basic states are reached.
This definition is crucial to handle inter-level transitions just like normal transitions on the level

5

of the uppermost states that the inter-level transition exits and enters (see [vdB02] for more
details).

conf-all([ŝ]) := {{ŝ}}
conf-all([ŝ, (s1..n), T]) := {{ŝ} ∪ c|∃i ∈ {1..n}.c ∈ conf-all(si)} ∪ {{ŝ}}
conf-all([ŝ, (s1..n)]) := {{ŝ} ∪

⋃
i=1..n ci|ci ∈ conf-all(si)} ∪ {{ŝ}}

Incomplete configurations are realized in the second and third cases of the definition by the
union with the term {{ŝ}}. Note that ∀s ∈ SC : conf(s) ∈ conf-all(s).

3 Statecharts with Variabilities

In [SV08] we propose a way for specifying the behavior of software product lines using stat-
echarts, feature diagrams and an order relation between statecharts that represents when a
statechart has a more complex structure than another one. We then define how to combine
different extensions of the same statechart into an integral new statechart, and use these no-
tions to obtain the specification of the behavior of any configuration of a product line as the
combination of the statecharts that implement all the features present in the product.
In this section we summarize the main ideas and results of [SV08]

3.1 Extension Relation

In [SV08] we define a relation � between statecharts, such that s1 � s2 (read “s2 extends s1”)
if s2 enriches states or transitions of s1 with more complex structures. Basically, we can extend
a statechart by either adding a parallel or sequential statechart to it, adding a new transition
between two existing states, or adding actions in transitions or entry and exit actions. For this
last extension we define the relation . between sequences of actions as the ordinary subsequence
relation between elements of A∗. In this case α . α′ means that α is a subsequence of α′. Here
we reformulate de definition of the extension relation by defining first the one-step extension
relation �1 in figure 2, and then defining � as its reflexo-transitive closure in figure 3. In the
definitions we assume that the well-formedness conditions of the definitions given in section 2
hold whenever we build a statechart. Furthermore, we use the substitution notation as follows:
If t is a term, then t[a/b] is the term which results from replacing all occurences of a in t by b.
In particular, note that (s1..k, s̃)[st/s′t]

= (s1..k[st/s′t]
, s̃) if t ∈ {1..k} and s1..k, s̃ ∈ SC.

3.2 Intersection

Given a statechart, it can be refined in several ways. The question is whether there is a way to
combine different extensions into an integral new statechart. Formally, given r1, r2 ∈ SC such
that ∃s∈SC. s � r1 ∧ s � r2 we want to define a new statechart r1∩r2 such that r1 � r1∩r2 and
r2 � r1∩r2.
The definition of ∩ is simple but quite extensive, and it basically consists of carrying out both
extensions on the original statechart, whenever this is possible. For further details, the reader
is referred to [SV08].

The following properties of the intersection hold:
1) For all s, r1, r2 ∈ SC such that s � r1 and s � r2, r1 � r1∩r2 and r2 � r1∩r2.
2) For all s, r1, r2, r3 ∈ SC such that s � r1 and s � r2, if (r1 � r3 ∧ r2 � r3), then r1∩r2 � r3.
3) For all s, r1, r2, r3 ∈ SC such that s � r1, s � r2 and s � r3, (r1∩r2)∩r3 = r1∩(r2∩r3).

6

Parallel components

s1, .., sn ∈ SCB, ŝi 6= ŝj ∀i6=j , ŝ 6= ŝi ∀i
[ŝ]�1 [ŝ, (s1, .., sn)]

ext-and

si�1s
′
i, ŝ′i 6= ŝj ∀j=1..i−1,i+1..n

[ŝ, (s1, .., sn)]�1 [ŝ, (s1, .., sn)[si/s′i]
]

inside-and

Sequential components

s′ ∈ SCB, ŝ′ 6= ŝ

[ŝ]�1 [ŝ, (s′), 1, ∅]
ext-or1

s′ ∈ SCB, ŝi 6= ŝ′ ∀i, ŝ′ 6= ŝ

[ŝ, (s1,..,sn), T]�1 [ŝ, (s1,..,sn, s′), T]
ext-or2

si�1s
′
i, ŝ′i 6= ŝj ∀j=1..i−1,i+1,..n

[ŝ, (s1, .., sn), l, T]�1 [ŝ, (s1, .., sn)[si/s′i]
, l, T]

inside-or

Transitions

t ∈ T, wf-tran({s1, .., sn}, t)
[ŝ, (s1, ..., sn), l, T]�1 [ŝ, (s1, ..., sn), l, T ∪ {t}]

add-trans

Actions

α . α̃, t = 〈t̂,i,Sr,e,α,Td,j,ht〉 ∈ T, t′ ∈ T

[ŝ, (s1,..,sn), T]�1 [ŝ, (s1,..,sn), T[t/t′]]
ext-act-trans

where t′ = 〈t̂,i,Sr,e,α̃,Td,j,ht〉

en . ẽn
[ŝ, (en, ex)]�1 [ŝ, (ẽn, ex)]

ext-act-en
ex . ẽx

[ŝ, (en, ex)]�1 [ŝ, (en, ẽx)]
ext-act-ex

Figure 2: One-Step Extension Relation �1

s�1s
′

s � s′
one-step s ∈ SC

s � s reflexivity
s � s′, s′ � s′′ s, s′, s′′ ∈ SC

s � s′′
transitivity

Figure 3: Extension Relation �

3.3 Statecharts with Variabilities

Finally, in order to define the behavior of a whole product line, we must describe the effect that
each feature has on the products in which it is present. For this, we introduced the set SC* of
statecharts with variabilities:
Given a feature diagram Υ = 〈L,N,NC,RM,RO,RA〉∈FD, a SC* for Υ is a function Ψ: N∪{L} → SC

that associates each feature of Υ with a statechart. The mapping must comply with the hier-

7

archical structure and the feature restrictions, i.e., the more features a product has, the richer
the statechart that models it must be. Then, given a configuration C = 〈P,Y,R〉 of Υ, in order
to obtain the statechart that implements all the features present in Y, we must just take the
intersection of all the statecharts in the image of Y under Ψ (i.e., Ψ(Y)).

4 UML-Statecharts Semantics

In this section we present the formal semantics of the UML statecharts. Then, we prove three
important lemmas associated with the extension relation which are fundamental for the main
result of this paper.

4.1 Computing the Next State

In [vdB02], the function next is defined, which computes the next state after a UML state-
chart transition t is executed. Given a UML statechart transition t, with target s, history type
ht=historyType(t) and target determinator N=tarDet(t) the function next: HT× P(S)× SC→ SC

computes the UML statechart term s′=next(ht,N, s) which results after the execution of tran-
sition t.

next(ht,N, [ŝ]) := [ŝ]

next(ht,N, [ŝ, (s1..n), l, T]) :=

[ŝ, (s1..n)[sj/next(ht,N,sj)], j, T]

if (∃ν ∈ N, j ∈ {1..n}).ν = ŝj
next-stop(ht, [ŝ, (s1..n), l, T]) otherwise

next(ht,N, [ŝ, (s1..n)]) := [ŝ, (next(ht,N, s1), .., next(ht,N, sn))]

The terms s and s′ have identical static structure, only the currently active substate information
may change. Here it becomes clear why we need the naming convention: If N contains one of
the state names of the substates s1, ..., sn then the active state index l is replaced with j and
the function is recursively applied to sj . Then the target determinator information is exploited
when zooming into the state hierarchy. Otherwise, function next-stop is called which uses the
history type information to determine currently active substates of a state:

next-stop(ht, [ŝ, (s1..n), l, T]) :=

[ŝ, (s1..n), l, T] if ht = deep

[ŝ, (s1..n)[s1/def(s1)], 1, T] if ht = none

[ŝ, (s1..n)[sl/def(sl)]
, l, T] if ht = shallow

The function next-stop uses the function def: SC→ SC which defines for an s ∈ SCO that its
currently active substate is given by its default substate:

def([ŝ]) := [ŝ]
def([ŝ, (s1..n), l, T]) := [ŝ, (s1..n)[s1/def(s1)], 1, T]
def([ŝ, (s1..n)]) := [ŝ, (def(s1), ..., def(sn))]

When a UML statechart transition t is taken, a set of actions is executed. In general, if a
transition from state si to sj with action part α is taken, then the sequence of actions ex :: α :: en
is executed, with ex ∈ exit(si), en ∈ exit(sj), where the infix operator :: concatenates sequences
of actions.

exit([ŝ, (en, ex)]) := {ex}
exit([ŝ, (s1..k), l, T, (en, ex)]) := {ex′::ex | ex′ ∈ exit(sl)}
exit([ŝ, (s1..k), (en, ex)]) := {m1::..::mk::ex | ∃ bijection p:{1..k}→{1..k}.mi ∈ exit(sp(i))∀i}

8

entry([ŝ, (en, ex)]) := {en}
entry([ŝ, (s1..k), l, T, (en, ex)]) := {en::en′ | en′ ∈ entry(sl)}
entry([ŝ, (s1..k), (en, ex)]) := {en::m1::..::mk | ∃ bijection p:{1..k}→{1..k}.mi ∈ entry(sp(i))∀i}

4.2 Structured Operational Semantics

Given s ∈ SC, its structured operational semantics (SO semantics) [[s]]aux is given by a Labelled
Transition System (C,L,−→, conf(s)) where C is a set of state label sets (configurations), L ⊆
E × A∗ × {0, 1} is the set of labels, −→⊆ C×L×C is the transition relation, and conf(s) is the
start configuration.
We define C := conf-all(s), where L and −→ are defined by the rules in figure 4, where c e−→

f

α c
′

means (c, (e, α, f), c′) ∈ −→, and c 6 e−→
f

means 6 ∃c′, α.c e−→α c
′.

Idle

[ŝ] e−→
0

〈〉 [ŝ]
BAS

Progress

〈t̂,l,Sr,e,α,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e−→

1

[ŝ, (s1..k), l, T] e−→
1

ex::α::en [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]
OR-1

where ex ∈ exit(ss) and en ∈ entry(next(ht, Td, st))

Propagation of progress

sl
e−→

1

α s
′
l

[ŝ, (s1..k), l, T] e−→
1

α [ŝ, (s1..k)[sl/s′l]
, l, T]

OR-2

Propagation of stuttering

[ŝ, (s1..k), l, T] 6 e−→
1
, sl

e−→
0

〈〉 sl

[ŝ, (s1..k), l, T] e−→
0

〈〉 [ŝ, (s1..k), l, T]
OR-3

Composition

∀j∈{1,...,k}.sj
e−→
fj

αj
s′j

[ŝ, (s1..k)] e−→
∨k

j=1fj

α [ŝ, (s′1..k)]
AND

(
α ∈ perm(α(i))

)

Figure 4: Rules of the SO semantics

The stuttering flag f is used to reflect the priority mechanism for statecharts transitions. It
also allows the semantics to fullfill the maximality condition of UML statecharts, that is, a

9

maximal number of non conflicting statechart transitions is taken when a semantic transition
is performed. The stuttering flag f can take the values 0 or 1. If f=0, then no statechart
transition is taken, only the event e is consumed. If f=1 a statechart transition is taken. The
flag is needed to assure that idle steps can only occur if no non-idle step is possible. A key role
is played by the stuttering step (f = 0), since when no UML statechart transition can be taken,
a stuttering step (loop) can be done.
Let us explain the OR rules:
OR-1: This rule models a semantic transition from a statechart transition. If we have a statechart
transition of an OR state with trigger e then that state can perform a semantic transition with
positive flag and trigger e, given that, the source restriction is a complete current configuration
of the currently active substate sl (Sr ⊆ conf(sl)) and sl cannot perform a semantic transition
with input e and positive flag.
OR-2: This rule propagates the progress of rule OR-1. If the current active substate can perform a
semantic transition with positive flag, then the OR state may perform a transition with positive
flag.
OR-3: This rule propagates the negative flag. That is, if the current active substate can perform a
semantic transition with negative flag, and if the OR state cannot perform a semantic transition
with positive flag, then the OR state can perform a semantic transition to itself with positive
flag.

5 Behavioral Refinements

5.1 Extension Relation and Configurations

In this section we prove that the extension relation preserves the set of all possible configurations,
which is a key part of the main result of this work.

Lemma 1 If s�1 s̃ then conf(s) ⊆ conf(s̃)

Proof. By induction on s�1 s̃.

• ext-and. Assume s = [ŝ]. Then, we have that [ŝ]�1 [ŝ, (s1, .., sk)], where s1, .., sk ∈ SCB.
Then, conf([ŝ]) = {ŝ} ⊆ conf([ŝ, (s1, .., sk)]) = {ŝ, ŝ1, ..ŝk}.

• inside-and. Assume s = [ŝ, (s1..k)]. Then, we have that [ŝ, (s1..k)]�1 [ŝ, (s1..k)[si/s̃i]], where
si�1 s̃i. Here we use the inductive hypothesis, that is, conf(si) ⊆ conf(s̃i), since si�1 s̃i.
We have,

conf([ŝ, (s1..k)]) = {ŝ} ∪
⋃

j=1..i−1,i+1..k

conf(sj) ∪ conf(si)

conf([ŝ, (s1..k)[si/s̃i]]) = {ŝ} ∪
⋃

j=1..i−1,i+1..k

conf(sj) ∪ conf(s̃i)

then conf([ŝ, (s1..k)]) ⊆ conf([ŝ, (s1..k)[si/s̃i]]).

• ext-or1. Assume s = [ŝ]. Then, we have that [ŝ]�1 [ŝ, (s′), 1, ∅] , where s′ ∈ SCB. Then,
conf([ŝ]) ⊆ conf([ŝ, (s′), 1, ∅]).

• ext-or2. Assume s = [ŝ, (s1..k), l, T]. Then, we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k, s′), l, T],
where s′ ∈ SCB. Then,

conf([ŝ, (s1..k), l, T]) = {ŝ} ∪ conf(sl)
= conf([ŝ, (s1..k, s′), l, T])

10

• inside-or. Assume s = [ŝ, (s1..k), l, T]. Then, we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k)[si/s̃i]
, l, T],

where si�1 s̃i. Here we use the inductive hypothesis, that is, conf(si) ⊆ conf(s̃i), since
si�1 s̃i. We have two subcases,

1. When i = l,

conf([ŝ, (s1..k), l, T]) = {ŝ, conf(si)}
conf([ŝ, (s1..k)[si/s̃i]

, l, T]) = {ŝ, conf(s̃i)}

then conf([ŝ, (s1..k), l, T]) ⊆ conf([ŝ, (s1..k)[si/s̃i]
, l, T]).

2. When i 6= l,

conf([ŝ, (s1..k), l, T]) = {ŝ, conf(sl)}
= conf([ŝ, (s1..k)[si/s̃i]

, l, T])

The cases add-trans, ext-act-en, ext-act-ex and ext-act-trans are trivial because the state struc-
ture is not modified, so the current configuration is preserved.

Lemma 2 If s�1 s̃ then conf-all(s) ⊆ conf-all(s̃)

Proof. By induction on s�1 s̃.

• ext-and. Assume s = [ŝ]. Then, we have that [ŝ]�1 [ŝ, (s1, .., sk)], where s1, .., sk ∈ SCB.
Then,

conf-all([ŝ]) = {{ŝ}}

conf-all([ŝ, (s1, .., sk)]) = {{ŝ} ∪
⋃

i=1..k

ci|ci ∈ conf-all(si)} ∪ {{ŝ}}

• inside-and. Assume s = [ŝ, (s1..k)]. Then, we have that [ŝ, (s1..k)]�1 [ŝ, (s1..k)[si/s̃i]], where
si�1 s̃i. Here we use the inductive hypothesis, that is, conf-all(si) ⊆ conf-all(s̃i), since
si�1 s̃i. We have,

conf-all([ŝ, (s1..k)]) = {{ŝ} ∪
⋃

j=1..k

cj |cj ∈ conf-all(sj)} ∪ {{ŝ}}

conf-all([ŝ, (s1..k)[si/s̃i]]) = {{ŝ} ∪
⋃

j=1..k

cj |cj ∈ conf-all(s̃j)} ∪ {{ŝ}}

= {{ŝ} ∪
⋃

j=1..i−1,i+1..k

cj ∪ c|cj ∈ conf-all(sj), c ∈ conf-all(si)}

∪ {{ŝ}∪
⋃

j=1..i−1,i+1..k

cj ∪ c′|cj∈conf-all(sj), c′∈conf-all(s̃i)− conf-all(si)}

∪ {{ŝ}}

then conf-all([ŝ, (s1..k)]) ⊆ conf-all([ŝ, (s1..k)[si/s̃i]]). Because the first term in the union of
the last equality is equal to conf-all([ŝ, (s1..k)]).

• ext-or1. Assume s = [ŝ]. Then, we have that [ŝ]�1 [ŝ, (s′), 1, ∅] , where s′ ∈ SCB. Then,

conf-all([ŝ]) = {{ŝ}}
conf-all([ŝ, (s′), 1, ∅]) = {{ŝ, ŝ′}, {ŝ}}, since conf-all(s′) = {{ŝ′}}

11

• ext-or2. Assume s = [ŝ, (s1..k), l, T]. Then, we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k, s′), l, T],
where s′ ∈ SCB. Then,

conf-all([ŝ, (s1..k), l, T]) = {{ŝ} ∪ c|∃i ∈ {1..k}.c ∈ conf-all(si)} ∪ {{ŝ}}
= {{ŝ} ∪ c|c ∈ conf-all(s1)} ∪ . . . ∪ {{ŝ} ∪ c|c ∈ conf-all(sk)} ∪ {{ŝ}}

conf-all([ŝ, (s1..k, s′), l, T]) = {{ŝ} ∪ c|∃i ∈ {1..k}.c ∈ conf-all(si) ∨ c ∈ conf-all(s′)} ∪ {{ŝ}}
now using the fact that conf-all(s′) = {{ŝ′}},
= {{ŝ} ∪ c|c ∈ conf-all(s1)} ∪ . . . ∪ {{ŝ} ∪ c|c ∈ conf-all(sk)}
∪ {{ŝ, ŝ′}} ∪ {{ŝ}}

so conf-all([ŝ, (s1..k), l, T]) ⊆ conf-all([ŝ, (s1..k, s′), l, T]).

• inside-or. Assume s = [ŝ, (s1..k), l, T]. Then, we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k)[si/s̃i]
, l, T],

where si�1 s̃i. Here we use the inductive hypothesis, that is, conf-all(si) ⊆ conf-all(s̃i), since
si�1 s̃i. We have,

conf-all([ŝ, (s1..k), l, T]) = {{ŝ} ∪ c|c ∈ conf-all(s1)} ∪ . . . ∪ {{ŝ} ∪ c|c ∈ conf-all(si)}
∪ . . . ∪ {{ŝ} ∪ c|c ∈ conf-all(sk)} ∪ {{ŝ}}

conf-all([ŝ, (s1..k)[si/s̃i]
, l, T]) = {{ŝ} ∪ c|c ∈ conf-all(s1)} ∪ . . . ∪ {{ŝ} ∪ c|c ∈ conf-all(s̃i)}

∪ . . . ∪ {{ŝ} ∪ c|c ∈ conf-all(sk)} ∪ {{ŝ}}

then conf-all([ŝ, (s1..k), l, T]) ⊆ conf-all([ŝ, (s1..k)[si/s̃i]
, l, T]).

The cases add-trans, ext-act-en, ext-act-ex and ext-act-trans are trivial because the state struc-
ture is not modified, so the set of possible configurations is preserved.

5.2 Monotonicity of next Function

In this section we prove that the function next applied to a extended state computes a state which
indeed is an extension of the next state computed before the extension, that is, the function next

is monotone with respect to the extension relation.
This result is proven in lemma 5. Before, we need two additional lemmas showing that functions
def and next-stop are also monotone w.r.t. the extension relation (lemmas 3 and 4 respectively).

Lemma 3 If s�1 s̃ then def(s)�1def(s̃)

Proof. By induction on s�1 s̃.

• ext-and. Assume s = [ŝ]. Then, we have that [ŝ]�1 [ŝ, (s1, .., sk)], where s1, .., sk ∈ SCB.
We have that def([ŝ, (s1, .., sk)]) = [ŝ, (def(s1), .., def(sk))] = [ŝ, (s1, .., sk)], since s1, .., sk ∈
SCB, which indeed is a one step refinement through ext-and of def([ŝ]) = [ŝ].

• inside-and. Assume s = [ŝ, (s1..k)]. Then, we have that [ŝ, (s1..k)]�1 [ŝ, (s1..k)[si/s̃i]], where
si�1 s̃i. Here we use the inductive hypothesis, that is, def(si)�1def(s̃i), since si�1 s̃i.
Then, def([ŝ, (s1..k)[si/s̃i]]) = [ŝ, (def(s1), .., def(s̃i), ..def(sk))], which indeed is a one step
refinement through inside-and of def([ŝ, (s1..k)]) = [ŝ, (def(s1), .., def(si), .., def(sk))] by the
inductive hypothesis.

• ext-or1. Assume s = [ŝ]. Then, we have that [ŝ]�1 [ŝ, (s′), 1, ∅] , where s′ ∈ SCB. We have
that def([ŝ, (s′), 1, ∅]) = [ŝ, (s′)[s′/def(s′)], 1, ∅] = [ŝ, (s′), 1, ∅] since s′ ∈ SCB, which indeed
is a one step refinement of def([ŝ]) = [ŝ] through ext-or1.

12

• ext-or2. Assume s = [ŝ, (s1..k), l, T]. Then, we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k, s′), l, T],
where s′ ∈ SCB. We have that def([ŝ, (s1..k, s′), l, T]) = [ŝ, (s1..k, s′)[s1/def(s1)], 1, T], which
indeed is a one step refinement of def([ŝ, (s1..k), l, T]) = [ŝ, (s1..k)[s1/def(s1)], 1, T].

• inside-or. Assume s = [ŝ, (s1..k), l, T]. Then, we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k)[si/s̃i]
, l, T],

where si�1 s̃i. Here we use the inductive hypothesis, that is, def(si)�1def(s̃i), since si�1 s̃i.
We have two cases:

1. If i 6= 1, then def([ŝ, (s1..k)[si/s̃i]
, l, T]) = [ŝ, (s1..k)[si/s̃i][s1/def(s1)], 1, T]

= [ŝ, (s1..k)[s1/def(s1)][si/s̃i]
, 1, T], which indeed is a one step refinement of def([ŝ, (s1..k), l, T]) =

[ŝ, (s1..k)[s1/def(s1)], 1, T]

2. If i = 1, then def([ŝ, (s1..k)[si/s̃i]
, l, T]) = [ŝ, (s1..k)[s1/s̃1][s̃1/def(s̃1)], 1, T] = [ŝ, (s1..k)[s1/def(s̃1)], 1, T],

which indeed is a one step refinement of def([ŝ, (s1..k)[s1/def(s1)], 1, T]) by the inductive
hypothesis.

Extensions add-trans, ext-act-en, ext-act-ex and ext-act-trans are trivial because def does not
depend on the set of transitions T nor exit nor entry actions.

Lemma 4 If s�1 s̃ then next-stop(ht, s)�1next-stop(ht, s̃), ht ∈ HT

Proof. By induction on s�1 s̃. First, note that s̃ ∈ SCO, because s ∈ SCO by hypothesis. Then
only OR rules applies,

• ext-or2. Assume s = [ŝ, (s1..k), l, T]. Then, we have [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k, s′), l, T], where
s′ ∈ SCB. We show that, in each case, next-stop(ht, s̃) is indeed a one step refinement of
next-stop(ht, s), through rule ext-or2.

next-stop(ht, [ŝ, (s1..k, s′), l, T]) =

[ŝ, (s1..k, s′), l, T] if ht = deep

[ŝ, (s1..k, s′)[s1/def(s1)], 1, T] if ht = none

[ŝ, (s1..k, s′)[sl/def(sl)]
, l, T] if ht = shallow, l ∈ {1..k}

inside-or. Assume s = [ŝ, (s1..k), l, T]. Then, we have [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k)[si/s̃i]
, l, T],

where si�1 s̃i. We show that, in each case, next-stop(ht, s̃) is indeed a one step refinement,
through rule inside-or.

next-stop(ht, [ŝ, (s1..k)[si/s̃i]
, l, T]) =

[ŝ, (s1..k)[si/s̃i]

, l, T] if ht = deep

[ŝ, (s1..k)[si/s̃i][s1/def(s1)], 1, T] if ht = none

[ŝ, (s1..k)[si/s̃i][sl/def(sl)]
, l, T] if ht = shallow

The second and third cases require some explanation: In the second one, we need to take
into account two subcases:

• i 6= 1. It is easy to see that [ŝ, (s1..k)[si/s̃i][s1/def(s1)], 1, T] = [ŝ, (s1..k)[s1/def(s1)][si/s̃i]
, 1, T],

then [ŝ, (s1..k)[s1/def(s1)], 1, T]�1 [ŝ, (s1..k)[s1/def(s1)][si/s̃i]
, 1, T] through rule inside-or.

• i = 1. We can see that [ŝ, (s1..k)[si/s̃i][s̃1/def(s̃1)], 1, T] = [ŝ, (s1..k)[s1/s̃1][s̃1/def(s̃1)], 1, T] =
[ŝ, (s1..k)[s1/def(s̃1)], 1, T].

Now, by lemma 3 we conclude that [ŝ, (s1..k)[s1/def(s1)], 1, T]�1 [ŝ, (s1..k)[s1/def(s̃1)], 1, T]
through rule inside-or.

13

In the third case, we need to take into account two subcases:

• i 6= l. It is easy to see that [ŝ, (s1..k)[si/s̃i][sl/def(sl)]
, l, T] = [ŝ, (s1..k)[sl/def(sl)][si/s̃i]

, l, T],
then [ŝ, (s1..k)[sl/def(sl)]

, l, T]�1 [ŝ, (s1..k)[sl/def(sl)][si/s̃i]
, l, T] through rule inside-or.

• i = l. We can see that [ŝ, (s1..k)[si/s̃i][sl/def(sl)]
, l, T] = [ŝ, (s1..k)[sl/s̃l][sl/def(sl)]

, l, T] =
[ŝ, (s1..k)[sl/def(s̃l)]

, l, T].

Now, by lemma 3 we conclude that [ŝ, (s1..k)[sl/def(sl)]
, l, T]�1 [ŝ, (s1..k)[sl/def(s̃l)]

, l, T]
through rule inside-or.

• add-trans. Assume s = [ŝ, (s1..k), l, T]. Then, we have [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k), l, T ∪ {t∗}],
where t∗ ∈ T. This case is analogous to ext-or2 case, but the refinement is through rule
add-trans.

• Extensions ext-act-en, ext-act-ex and ext-act-trans are trivial because next-stop does not depend
on the set of transitions T nor exit nor entry actions.

Lemma 5 If s�1 s̃ then next(ht, Td, s)�1next(ht, Td, s̃), Td∈conf-all(s), ht∈HT

Proof. First note that Td ∈ conf-all(s)⇒ Td ∈ conf-all(s̃) by lemma 2. Now we use induction on
s�1 s̃.

• ext-and. Assume s = [ŝ]. Then, we have that [ŝ]�1 [ŝ, (s1, .., sk)], where s1, .., sk ∈ SCB.
Then, next(ht, Td, [ŝ, (s1, .., sk)]) = [ŝ, (next(ht, Td, s1), .., next(ht, Td, sk))] = [ŝ, (s1, .., sk)]
because s1, .., sk ∈ SCB, which indeed is a one step refinement of s through ext-and.

• inside-and. Assume s = [ŝ, (s1..k)]. Then, we have that [ŝ, (s1..k)]�1 [ŝ, (s1..k)[si/s̃i]], where
si�1 s̃i. Here we use the inductive hypothesis, that is, next(ht, Td, si)�1next(ht, Td, s̃i), since
si�1 s̃i and lemma 2. Then, [ŝ, (next(ht, Td, s1), .., next(ht, Td, si), .., next(ht, Td, sk))] �1

[ŝ, (next(ht, Td, s1), .., next(ht, Td, s̃i), .., next(ht, Td, sk))] through inside-and.

• ext-or1. Assume s = [ŝ]. Then, we have that [ŝ]�1 [ŝ, (s′), 1, ∅] , where s′ ∈ SCB. We have
two subcases,

1. If ∃ν ∈ Td.ν = ŝ′, then next(ht, Td, [ŝ, (s′), 1, ∅]) = [ŝ, (s′)[s′/next(ht,Td,s′)], 1, ∅] =
[ŝ, (s′), 1, ∅], because s′ ∈ SCB, which indeed is a one step refinement of s through
ext-or1.

2. Otherwise, next(ht, Td, [ŝ]) = next-stop(ht, [ŝ]). Then, by lemma 4, next(ht, Td, [ŝ]) �1

next(ht, Td, [ŝ, (s′), 1, ∅]).

• ext-or2. Assume s = [ŝ, (s1..k), l, T]. Then, we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k, s′), l, T],
where s′ ∈ SCB. We have two cases,

1. If ∃ν ∈ Td.ν = ŝj , then next(ht, Td, [ŝ, (s1..k, s′), l, T]) = [ŝ, (s1..k, s′)[sj/next(ht,Td,sj)], j, T],
and since j ∈ {1..k}, it is a one step refinement of [ŝ, (s1..k)[sj/next(ht,Td,sj)], j, T]
through ext-or2.

2. Otherwise, next(ht, Td, [ŝ, (s1..k), l, T]) = next-stop(ht, [ŝ, (s1..k), l, T]). Then, by lemma
4, next(ht, Td, [ŝ, (s1..k), l, T])�1next(ht, Td, [ŝ, (s1..k, s′), l, T]).

• inside-or. Assume s = [ŝ, (s1..k), l, T]. Then, we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k)[si/s̃i]
, l, T],

where si�1 s̃i. Here we use the inductive hypothesis, that is, next(ht, Td, si)�1next(ht, Td, s̃i),
since si�1 s̃i. We have two cases,

14

1. If ∃ν ∈ Td.ν = ŝj , then we need to take account of two subcases:
1. If i 6= j, then next(ht, Td, [ŝ, (s1..k)[si/s̃i]

, l, T]) = [ŝ, (s1..k)[si/s̃i][sj/next(ht,Td,sj)]
, j, T] =

[ŝ, (s1..k)[sj/next(ht,Td,sj)][si/s̃i]
, j, T], which is a one step refinement of

[ŝ, (s1..k)[sj/next(ht,Td,sj)]
, j, T] through inside-or.

2. If i = j, then next(ht, Td, [ŝ, (s1..k)[si/s̃i]
, l, T]) = [ŝ, (s1..k)[si/s̃i][sj/next(ht,Td,sj)]

, j, T] =
[ŝ, (s1..k)[sj/s̃j][s̃j/next(ht,Td,s̃j)]

, j, T] = [ŝ, (s1..k)[sj/next(ht,Td,s̃j)]
, j, T]. Then, by

inductive hypothesis, [ŝ, (s1..k)[sj/next(ht,Td,s̃j)]
, j, T] is a one step refinement of

[ŝ, (s1..k)[sj/next(ht,Td,sj)]
, j, T].

2. Otherwise, next(ht, Td, [ŝ, (s1..k), l, T]) = next-stop(ht, [ŝ, (s1..k), l, T]). Then, by lemma
4, next(ht, Td, [ŝ, (s1..k), l, T])�1next(ht, Td, [ŝ, (s1..k)[si/s̃i]

, l, T]).

Extensions add-trans, ext-act-en, ext-act-ex and ext-act-trans are trivial because next does not
depend on the set of transitions T nor exit nor entry actions.

5.3 Extension Relation as a Behavioral Refinement

In this section we prove the main result of this paper, that is, the extension relation can be
considered as a refinement, in the sense that it preserves the transitions defined in the SO
semantics.
Due to the priority mechanism for transitions specified by UML, we cannot expect that any
extension preserves the semantics. The conflict arises when an inner transition with the same
triggering event as an existing outer transition is added to a statechart. As the inner transition
has priority over the outer one, the semantics is not preserved, since the outer transition will not
take place in the extended statechart. We define an extension to be safe if no inner transitions
are added with the same event as an existing outer transition. Formally:

Definition 1 Let s = [ŝ, (s1..k), l, T], s̃ = [ŝ, (s1..k)[si/s̃i], l, T], si�1 s̃i. We say that s�1 s̃ is a
safe extension iff

∀e ∈ E : (∃s′∈SC. (s e−→
1
s′ ∧ si 6

e−→
1

)⇒ s̃i 6
e−→

1
)

From now on, we require all extensions to be safe. We now present the main result of this paper:

Theorem 1 ∀s, s′, t ∈ SC,∀e ∈ E, if s e−→
1
s′ and s�1t, then ∃t′ such that t e−→

1
t′ and s′�1t

′.

This theorem states that the extension relation is indeed a behavioral refinement, since the
extended statechart preserves all the reachable states of the original one. Graphically,

s
e−−−→

1
s′

�
1

�
1

t
e−−−→

1
∃ t′

Note that the theorem assumes that the stuttering flag is equal to 1. Since a statechart transi-
tion takes place when the stuttering flag is equal to 1, we are not interesed in idle steps (f=0).
As mentioned previously, the stuttering flag is needed to assure that idle steps can only occur if
no non-idle step is possible. Basically, it allows the semantics to fullfill the maximality condition
of statecharts, since when no statechart transition can be taken, a stuttering step (loop) can be
done. It is important to remark again that statechart transitions are different from semantic
transitions.

Proof of theorem 1. By induction on s�1t.

15

• ext-and. Let [ŝ]�1 [ŝ, (s1, .., sk)], where s1, .., sk ∈ SCB. Then [ˆ̃si]
e−→

0
[ˆ̃si] ∀i=1..k because the

only rule that can be applied to a BASIC state is BAS. The hypothesis of the theorem does
not hold, because we have a transition with flag 0.

• inside-and. Let [ŝ, (s1..k)]�1 [ŝ, (s1..k)[si/s̃i]], where si�1 s̃i. Let [ŝ, (s1..k)] e−→
f

[ŝ, (s′1..k)]=s′

with sj
e−→

fj
s′j ∀j=1, .., k. By inductive hypothesis: if si

e−→
1
s′i and si�1 s̃i then ∃s̃′i such

that s̃i
e−→

1
s̃′i and s′i�1 s̃

′
i. Then we have that:

∀j=1..i−1,i+1..k.sj
e−→
fj
s′j ,

si
e−→

1
s′i, si�1 s̃i

s̃i
e−→

1
s̃′i

I.H.

t = [ŝ, (s1..k)[si/s̃i]]
e−→

1
[ŝ, (s′1..k)[s′i/s̃′i]] = t′

AND

And [ŝ, (s′1..k)]�1 [ŝ, (s′1..k)[s′i/s̃′i]] by inside-and.

• ext-or1. Let [ŝ]�1 [ŝ, (s̃), 1, ∅] , where s̃ ∈ SCB. Then [ˆ̃s] e−→
0
[ˆ̃s] because the only rule that can

be applied to a BASIC state is BAS. The hypothesis of the theorem does not hold.

• ext-or2. Let [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k, s̃), l, T], where s̃∈SCB. We can apply three rules in
this case:

OR-1 rule: Let [ŝ, (s1..k), l, T] e−→
1
[ŝ, (s1..k)[sp/next(ht,Td,sp)], p, T]=s′ by OR-1 rule, where 〈t̂,l, ,e, ,Td,p,ht〉

∈ T . Since the extension adds a new state, it cannot be the current active one. Then we
choose t′ = [ŝ, (s1..k[sp/next(ht,Td,sp)], s̃), t, T]. By rule OR-1, we can reach the state t′ from
t = [ŝ, (s1..k, s̃), l, T]. That is,

〈t̂,l,Sr,e,α,Td,p,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e−→

1

t = [ŝ, (s1..k, s̃), l, T] e−→
1

[ŝ, (s1..k[sp/next(ht,Td,sp)], s̃), p, T] = t′
OR-1

And [ŝ, (s1..k)[sp/next(ht,Td,sp)], p, T]�1 [ŝ, (s1..k[sp/next(ht,Td,sp)], s̃), p, T] by ext-or2.

OR-2 rule: Let [ŝ, (s1..k), l, T] e−→
1
[ŝ, (s1..k)[sl/s′l]

, l, T]=s′, when sl
e−→

1
s′l. Then,

sl
e−→

1
s′l

t = [ŝ, (s1..k, s̃), l, T] e−→
1

[ŝ, (s1..k[sl/s′l]
, s̃), l, T] = t′

OR-2

And we have that [ŝ, (s1..k)[sl/s′l]
, l, T]�1 [ŝ, (s1..k[sl/s′l]

, s̃), l, T] by ext-or2.

OR-3 rule: Let [ŝ, (s1..k), l, T] e−→
0
[ŝ, (s1..k), l, T], when [ŝ, (s1..k), l, T] 6 e−→

1
. The hypothesis of

the theorem does not hold.

• add-trans. Let [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k), l, T ∪ {t∗}], where t∗∈T. Again, three rules can be
applied:

OR-1 rule: Let [ŝ, (s1..k), l, T] e−→
1
[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]=s′ by OR-1 rule, where

〈t̂,l, ,e, ,Td,m,ht〉 6= t∗∈T . Then,

〈t̂,l,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e−→

1

t = [ŝ, (s1..k), l, T ∪ {t∗}] e−→
1

[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ∪ {t∗}] = t′
OR-1

16

We have that [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]�1 [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T∪{t∗}] by
add-trans.

OR-2 rule: Let [ŝ, (s1..k), l, T] e−→
1
[ŝ, (s1..k)[sl/s′l]

, l, T]=s′, when sl
e−→

1
s′l. Then,

sl
e−→

1
s′l

t = [ŝ, (s1..k), l, T ∪ {t∗}] e−→
1

[ŝ, (s1..k)[sl/s′l]
, l, T ∪ {t∗}] = t′

OR-2

Here [ŝ, (s1..k)[sl/s′l]
, l, T]�1 [ŝ, (s1..k)[sl/s′l]

, l, T ∪ {t∗}] by add-trans.

OR-3 rule: Let [ŝ, (s1..k), l, T] e−→
0
[ŝ, (s1..k), l, T], when [ŝ, (s1..k), l, T] 6 e−→

1
. The hypothesis

of the theorem does not hold.

• inside-or. Here we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k)[si/s̃i]
, l, T ′], where si�1 s̃i. For the sake

of clarity, we split the proof in two cases:

1. When i 6= l.

OR-1 rule: Let [ŝ, (s1..k), l, T] e−→
1
[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]=s′, where 〈t̂,l, , , ,Td,m,ht〉 ∈

T . Here we have two sub cases:

(a) When i 6= m.

〈t̂,l,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e−→

1

t = [ŝ, (s1..k)[si/s̃i]
, l, T] e−→

1
[ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T] = t′

OR-1

Here [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]�1 [ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T] by inside-or.

(b) When i = m.

〈t̂,l,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e−→

1

t = [ŝ, (s1..k)[si/s̃i]
, l, T] e−→

1
[ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T] = t′

OR-1

Here [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]�1 [ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T] by inside-or,
since next(ht, Td, sm)�1next(ht, Td, s̃m), by lemma 5.

OR-2 rule: Let [ŝ, (s1..k), l, T] e−→
1
[ŝ, (s1..k)[sl/s′l]

, l, T]=s′, when sl
e−→

1
s′l. Then,

sl
e−→

1
s′l

t = [ŝ, (s1..k)[si/s̃i], l, T] e−→
1

[ŝ, (s1..k)[si/s̃i][sl/s′l]
, l, T] = t′

OR-2

Since i6=l, [ŝ, (s1..k)[sl/s′l]
, l, T]�1 [ŝ, (s1..k)[si/s̃i][sl/s′l]

, l, T] by inside-or.

OR-3 rule: The hypothesis of the theorem does not hold.

2. When i = l. Note that if si 6
e−→

1
then s̃i 6

e−→
1

, because we are dealing with safe
refinements. Three OR rules applies:

OR-1 rule: Let [ŝ, (s1..k), i, T] e−→
1
[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]=s′, where 〈t̂,i,Sr,e, ,Td,m,ht〉 ∈

T . Here we have two sub cases: (a) When i 6= m.

〈t̂,i,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(s̃i), s̃i 6
e−→

1

t = [ŝ, (s1..k)[si/s̃i]
, i, T] e−→

1
[ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T] = t′

OR-1

17

And [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]�1 [ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T] by inside-or.
Note that Sr ⊆ conf(si)⇒ Sr ⊆ conf(s̃i) holds by lemma 1.

(b) When i = m.

〈t̂,i,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(s̃i), s̃i 6
e−→

1

t = [ŝ, (s1..k)[si/s̃i]
, i, T] e−→

1
[ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T] = t′

OR-1

And [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]�1 [ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T] by inside-or,
since next(ht, Td, sm)�1next(ht, Td, s̃m) by lemma 5.

OR-2 rule: Let [ŝ, (s1..k), i, T] e−→
1
[ŝ, (s1..k)[si/s′i]

, i, T]=s′, when sl
e−→

1
s′l. Then,

si
e−→

1
s′i, si�1 s̃i

s̃i
e−→

1
s̃′i

I.H.

t = [ŝ, (s1..k)[si/s̃i], i, T] e−→
1

[ŝ, (s1..k)[si/s̃i][s̃i/s̃′i]
, i, T] = t′

OR-2

Here [ŝ, (s1..k)[si/s′i]
, i, T]�1 [ŝ, (s1..k)[si/s̃i][s̃i/s̃′i]

, i, T] by inside-or.

OR-3 rule: The hypothesis of the theorem does not hold.

ext-act-en, ext-act-ex and ext-act-trans are trivial: In those cases, we apply to s′ the same
refinement applied to s in order to obtain t′.

6 Statechart Actions

In theorem 1 we proved that the extension relation preserves the transitions defined in the SO
semantics, and thus we can consider it as a refinement. The next step is to assure that the set of
traces generated by a statechart is preserved in an extended statechart (here informally, we call
trace of a statechart the set of actions generated in response of an external event). The study
of traces is beyond the scope of this work, but in this section we state a theorem, together with
two auxiliary lemmas, which take into account the actions generated by the SO semantics. We
show that the possible actions generated by a statechart are preserved by the refinement.

Lemma 6 If s�1 s̃ then (∀α ∈ exit(s), ∀α̃ ∈ exit(s̃)) . α . α̃

Proof. By induction on s�1 s̃.

• ext-and. Assume s = [ŝ]. Then, we have that [ŝ]�1 [ŝ, (s1, .., sk)], where s1, .., sk ∈ SCB.
Then, exit(s) = {ex} and exit(s̃) = {m1::..::mk::ex | ∃ bijection p:{1..k}→{1..k}.mi ∈
exit(sp(i))∀i}. Since s1, .., sk ∈ SCB, each exit(si) has only one element ∀i. Now, for each
permutation mp1 ::..::mpk

::ex ∈ exit(s̃) the thesis clearly holds.

• inside-and. Assume s = [ŝ, (s1..k)]. Then, we have that [ŝ, (s1..k)]�1 [ŝ, (s1..k)[si/s̃i]], where
si�1 s̃i. Then, exit(s) = {m1::..::mk::ex | ∃ bijection p:{1..k}→{1..k}.mi ∈ exit(sp(i))∀i}.
Now, fix one bijection (permutation). We get exit(s) = {m1::..::mk::ex | mj ∈ exit(spj)∀j}.
Now, exit(s) is the set of all possible combinations of mj ∈ exit(spj). Take i = pj and use
the inductive hypothesis, that is, (∀mi ∈ exit(si), ∀m̃i ∈ exit(s̃i)) . mi . m̃i. Now, the
string m1::..::mi::..::mk .m1::..::m̃i::..::mk because it is a subsequence. Since the reasoning
is valid for any permutation, the thesis holds.

18

• ext-or1. Assume s = [ŝ]. Then, we have that [ŝ]�1 [ŝ, (s′), 1, ∅] , where s′ ∈ SCB. Then,
exit(s) = {ex} and exit(s̃) = {ex′::ex | ex′ ∈ exit(s′)} = {ex′::ex} because s′ ∈ SCB.

• ext-or2. Assume s = [ŝ, (s1..k), l, T]. Then, we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k, s′), l, T],
where s′ ∈ SCB. Then, exit(s) = {ex′::ex | ex′ ∈ exit(sl)} = exit(s̃), because l ∈ {1..k}.

• inside-or. Assume s = [ŝ, (s1..k), l, T]. Then, we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k)[si/s̃i]
, l, T],

where si�1 s̃i. We distinguish two cases:

1. If i 6= l. Then, exit(s) = {ex′::ex | ex′ ∈ exit(sl)} = exit(s̃).

2. If i = l. Then, use the inductive hypothesis, that is, (∀mi ∈ exit(sl), ∀m̃l ∈ exit(s̃l)) .
ml . m̃l. Then, the string m1::..::ml::..::mk . m1::..::m̃l::..::mk because it is a subse-
quence.

Here we use the inductive hypothesis, that is, next(ht, Td, si)�1next(ht, Td, s̃i), since si�1 s̃i.

• ext-act-ex. We have three cases:

1. Assume s = [ŝ, (en, ex)]. Then, we have that [ŝ, (en, ex)]�1 [ŝ, (en, ẽx)], where ex.ẽx.
Then, exit(s) = {ex} and exit(s̃) = {ẽx}.

2. Assume s = [ŝ, (s1..k), l, T, (en, ex)]. Then, we have that [ŝ, (s1..k), l, T, (en, ex)] �1

[ŝ, (s1..k), l, T, (en, ẽx)], where ex . ẽx. Then, exit(s) = exit(s) = {ex′::ex | ex′ ∈
exit(sl)} and exit(s̃) = exit(s) = {ex′::ẽx | ex′ ∈ exit(sl)}.

3. Assume s = [ŝ, (s1..k), (en, ex)]. Then, we have that [ŝ, (s1..k), (en, ex)]�1 [ŝ, (s1..k), (en, ẽx)],
where ex . ẽx. Then, exit(s) = {m1::..::mk::ex | ∃ bijection p:{1..k}→{1..k}.mi ∈
exit(sp(i))∀i} and exit(s̃) = {m1::..::mk::ẽx | ∃ bijection p:{1..k}→{1..k}.mi ∈ exit(sp(i))∀i}.

Extension add-trans, ext-act-en and ext-act-trans are trivial because exit does not depend on the
set of transitions T nor entry actions.

Lemma 7 If s�1 s̃ then (∀α ∈ entry(si), ∀α̃ ∈ entry(s̃′i)) . α . α̃

Proof. By induction on s�1 s̃. Analogous to lemma 6.

Theorem 2 Let s, s′, t, t′ ∈ SC where theorem 1 holds and s→α s
′, t→α′ t′ then α . α′.

Proof. By induction on s�1t.

• ext-and. Let [ŝ]�1 [ŝ, (s1, .., sk)], where s1, .., sk ∈ SCB. The only rule that can be applied is
BAS, then the hypothesis of the theorem does not hold.

• inside-and. Let [ŝ, (s1..k)]�1 [ŝ, (s1..k)[si/s̃i]], where si�1 s̃i. Let [ŝ, (s1..k)] e−→
f

α[ŝ, (s′1..k)]=s′

with sj
e−→

fj

αj
s′j ∀j=1, .., k. By inductive hypothesis: if si

e−→
1

αi
s′i and si�1 s̃i then ∃s̃′i such

that s̃i
e−→

1

α′
i
s̃′i and s′i�1 s̃

′
i where αi . α′i. Then we have that:

∀j=1..i−1,i+1..k.sj
e−→
fj

αj
s′j ,

si
e−→

1

αi
s′i, si�1 s̃i

s̃i
e−→

1

α′
i
s̃′i

I.H.

t = [ŝ, (s1..k)[si/s̃i]]
e−→

1

α′ [ŝ, (s′1..k)[s′i/s̃′i]] = t′
AND

Fix a permutation, then we have α = αp1 ::..::αpj
::..::αpk

. Take pj = i, then α1::..::αi::..::αk.
α1::..::α′i::..::αk = α′. Since the reasoning is valid for all permutations, the thesis holds.

19

• ext-or1. Let [ŝ]�1 [ŝ, (s̃), 1, ∅] , where s̃ ∈ SCB. The only rule that can be applied is BAS. The
hypothesis of the theorem does not hold.

• ext-or2. Let [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k, s̃), l, T], where s̃∈SCB. We can apply three rules in
this case:

OR-1 rule: Let [ŝ, (s1..k), l, T] e−→
1

ex::γ::en[ŝ, (s1..k)[sp/next(ht,Td,sp)], p, T]=s′ by OR-1 rule, where
〈t̂,l, ,e,γ,Td,p,ht〉 ∈ T , ex ∈ exit(sl) and en ∈ entry(next(ht, Td, sp)). Since the extension
adds a new state, it cannot be the current active one. We have,

〈t̂,l,Sr,e,γ,Td,p,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e−→

1

t = [ŝ, (s1..k, s̃), l, T] e−→
1

ex::γ::en [ŝ, (s1..k[sp/next(ht,Td,sp)], s̃), p, T] = t′
OR-1

then the output actions are unchanged.

OR-2 rule: Let [ŝ, (s1..k), l, T] e−→
1

α[ŝ, (s1..k)[sl/s′l]
, l, T]=s′, when sl

e−→
1

αs
′
l. Then,

sl
e−→

1

α s
′
l

t = [ŝ, (s1..k, s̃), l, T] e−→
1

α [ŝ, (s1..k[sl/s′l]
, s̃), l, T] = t′

OR-2

then the output actions are unchanged.

OR-3 rule: Let [ŝ, (s1..k), l, T] e−→
0
[ŝ, (s1..k), l, T], when [ŝ, (s1..k), l, T] 6 e−→

1
. The hypothesis of

the theorem does not hold.

• add-trans. Let [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k), l, T ∪ {t∗}], where t∗∈T. Again, three rules can be
applied:

OR-1 rule: Let [ŝ, (s1..k), l, T] e−→
1

ex::γ::en[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]=s′ by OR-1 rule,
where 〈t̂,l, ,e,γ,Td,m,ht〉 6= t∗∈T , ex ∈ exit(sl) and en ∈ entry(next(ht, Td, sm)). Then,

〈t̂,l,Sr,e,γ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e−→

1

t = [ŝ, (s1..k), l, T ∪ {t∗}] e−→
1

ex::γ::en [ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T ∪ {t∗}] = t′
OR-1

then the output actions are unchanged.

OR-2 rule: Let [ŝ, (s1..k), l, T] e−→
1

α[ŝ, (s1..k)[sl/s′l]
, l, T]=s′, when sl

e−→
1

αs
′
l. Then,

sl
e−→

1

α s
′
l

t = [ŝ, (s1..k), l, T ∪ {t∗}] e−→
1

α [ŝ, (s1..k)[sl/s′l]
, l, T ∪ {t∗}] = t′

OR-2

then the output actions are unchanged.

OR-3 rule: Let [ŝ, (s1..k), l, T] e−→
0
[ŝ, (s1..k), l, T], when [ŝ, (s1..k), l, T] 6 e−→

1
. The hypothesis

of the theorem does not hold.

• inside-or. Here we have that [ŝ, (s1..k), l, T]�1 [ŝ, (s1..k)[si/s̃i]
, l, T ′], where si�1 s̃i. For the sake

of clarity, we split the proof in two cases:

1. When i 6= l.

20

OR-1 rule: Let [ŝ, (s1..k), l, T] e−→
1

ex::γ::en[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]=s′, where
〈t̂,l, , ,γ,Td,m,ht〉 ∈ T , ex ∈ exit(sl) and en ∈ entry(next(ht, Td, sm)). Here we have two
sub cases:

(a) When i 6= m.

〈t̂,l,Sr,e,γ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e−→

1

t = [ŝ, (s1..k)[si/s̃i]
, l, T] e−→

1

ex::γ::en [ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T] = t′
OR-1

then the output actions are unchanged.

(b) When i = m.

〈t̂,l,Sr,e,γ,Td,m,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e−→

1

t = [ŝ, (s1..k)[si/s̃i]
, l, T] e−→

1

ex::γ::en′ [ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T] = t′
OR-1

By lemma 7, en.en′ since next(ht, Td, sm)�1next(ht, Td, s̃m), by lemma 5. Then ex::γ::en.
ex::γ::en′.

OR-2 rule: Let [ŝ, (s1..k), l, T] e−→
1

α[ŝ, (s1..k)[sl/s′l]
, l, T]=s′, when sl

e−→
1

αs
′
l. Then,

sl
e−→

1

α s
′
l

t = [ŝ, (s1..k)[si/s̃i], l, T] e−→
1

α [ŝ, (s1..k)[si/s̃i][sl/s′l]
, l, T] = t′

OR-2

then the output actions are unchanged.

OR-3 rule: The hypothesis of the theorem does not hold.

2. When i = l. Note that if si 6
e−→

1
then s̃i 6

e−→
1

, because we are dealing with safe
refinements. Three OR rules applies:

OR-1 rule: Let [ŝ, (s1..k), i, T] e−→
1

ex::γ::en[ŝ, (s1..k)[sm/next(ht,Td,sm)],m, T]=s′, where
〈t̂,i,Sr,e,γ,Td,m,ht〉 ∈ T , ex ∈ exit(sl) and en ∈ entry(next(ht, Td, sm)). Here we have two
sub cases:

(a) When i 6= m.

〈t̂,i,Sr,e,γ,Td,m,ht〉 ∈ T, Sr ⊆ conf(s̃i), s̃i 6
e−→

1

t = [ŝ, (s1..k)[si/s̃i]
, i, T] e−→

1

ex′::γ::en [ŝ, (s1..k)[si/s̃i][sm/next(ht,Td,sm)],m, T] = t′
OR-1

By lemma 6, ex . ex′. Then ex::γ::en . ex′::γ::en. Note that Sr ⊆ conf(si)⇒ Sr ⊆ conf(s̃i)
holds by lemma 1.

(b) When i = m.

〈t̂,i,Sr,e, ,Td,m,ht〉 ∈ T, Sr ⊆ conf(s̃i), s̃i 6
e−→

1

t = [ŝ, (s1..k)[si/s̃i]
, i, T] e−→

1

ex′::γ::en′ [ŝ, (s1..k)[si/s̃i][s̃m/next(ht,Td,s̃m)],m, T] = t′
OR-1

By lemma 6, ex . ex′. By lemma 7, en . en′ since next(ht, Td, sm)�1next(ht, Td, s̃m), by
lemma 5. Then ex::γ::en . ex′::γ::en′.

21

OR-2 rule: Let [ŝ, (s1..k), i, T] e−→
1

α[ŝ, (s1..k)[si/s′i]
, i, T]=s′, when si

e−→
1

αi
s′i. We use the induc-

tive hypothesis,

si
e−→

1

αi
s′i, si�1 s̃i

s̃i
e−→

1

α′
i
s̃′i

I.H.

t = [ŝ, (s1..k)[si/s̃i], i, T] e−→
1

α′ [ŝ, (s1..k)[si/s̃i][s̃i/s̃′i]
, i, T] = t′

OR-2

Since αi . α′i by IH, we have α . α′.

OR-3 rule: The hypothesis of the theorem does not hold.

• ext-act-trans. Let [ŝ, (s1,..,sn), T]�1 [ŝ, (s1,..,sn), T[r/r′]], where r = 〈t̂,l,Sr,e,γ,Td,p,ht〉 ∈ T ,
r′ = 〈t̂,l,Sr,e,γ̃,Td,p,ht〉 and γ . γ̃. We can apply three rules in this case:

OR-1 rule: Let [ŝ, (s1..k), l, T] e−→
1

ex::γ::en[ŝ, (s1..k)[sp/next(ht,Td,sp)], p, T]=s′ by OR-1 rule, where
〈t̂,l, ,e,γ,Td,p,ht〉 ∈ T , ex ∈ exit(sl) and en ∈ entry(next(ht, Td, sp)). We have,

〈t̂,l,Sr,e,γ̃,Td,p,ht〉 ∈ T, Sr ⊆ conf(sl), sl 6
e−→

1

t = [ŝ, (s1..k, s̃), l, T] e−→
1

ex::γ̃::en [ŝ, (s1,..,sn), T[r/r′]] = t′
OR-1

then ex::γ::en . ex::γ̃::en.

OR-2 rule: Let [ŝ, (s1..k), l, T] e−→
1

α[ŝ, (s1..k)[sl/s′l]
, l, T]=s′, when sl

e−→
1

αs
′
l. The output actions

are unchanged.

OR-3 rule: Let [ŝ, (s1..k), l, T] e−→
0
[ŝ, (s1..k), l, T], when [ŝ, (s1..k), l, T] 6 e−→

1
. The hypothesis of

the theorem does not hold.

• ext-act-en and ext-act-ex. These are trivial, because entry and exit actions of the superstate
does not take part in the SOS rules.

7 Conclusions and Further Work

We proved that the structured operational semantics for UML Statecharts presented by [vdB02]
can be extended using our extension relation without loosing any behaviour. Then, we can state
that when a statechart is extended it is still possible to perform the same semantic transitions
on it as before. As a consequence of this fact, the extension relation can be considered as a
behavioral refinement, thus allowing us to represent the common and variant functionalities of
a family of products in conjunction with feature diagrams as an incremetal process of statechart
structure enrichment.
As for further work, we are now investigating the possibility of a relaxed definition of conf-all, in
order to include incomplete parallel configurations, that is, a configuration in which is known
the state of some of the parallel components, and not all of them. That is,

econf-all([ŝ]) := {{ŝ}}
econf-all([ŝ, (s1..n), T]) := {{ŝ} ∪ c|∃i ∈ {1..n}.c ∈ econf-all(si)} ∪ {{ŝ}}
econf-all[ŝ, (s1..n)] :=

⋃n
k=1{{ŝ} ∪

⋃
i=1..k ci|ci ∈ econf-all(si)} ∪ {{ŝ}}

The first two definitions are analogous to conf-all. The third one, allows as a valid configuration
a parallel incomplete one, that is, the union of the configurations of the first k parallel states, for

22

k = 1, 2, .., n. The advantage of this relaxation is that we can obtain a finer extension relation,
that is, we can substitute the rule

s1, .., sn ∈ SCB, ŝi 6= ŝj ∀i 6=j , ŝ 6= ŝi ∀i
[ŝ]�1 [ŝ, (s1, .., sn)]

ext-and

by these two:

s′ ∈ SCB

[ŝ]�1 [ŝ, (s′)]
ext-and1

s′ ∈ SCB ŝ′ 6= ŝi ∀i
[ŝ, (s1,..,sn)]�1 [ŝ, (s1,..,sn, s′)]

ext-and2

We conjecture that, with this extension, the main theorems of this paper can be proved without
changing the hypothesis. Note that, from the modeling point of view, we can obtain the same
statecharts as before.
Moreover, we are working with additional features of UML-statecharts, for example, do actions,
transition guards, initial and final states, join/fork pseudostates, junction pseudostate, choice
pseudostate and entry/exit pseudostates. We already proved that the semantics of some of them
can be equivalently modeled with standard components (for example entry and exit states).

23

References

[CGW05] M. Cengarle, P. Graubmann, and S. Wagner. Semantics of uml 2.0 interactions with
variabilities. In International Workshop on Formal Aspects of Component Software
(FACS05), 2005.

[CHE05] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing cardinality-based fea-
ture models and their specialization. Software Process: Improvement and Practice,
10(1):7–29, 2005.

[CN02] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Ad-
dison Wesley, 2002.

[Cza98] K. Czarnecki. Generative Programming: Principles and Techniques of Software Engi-
neering Based on Automated Configuration and Fragment-Based Component Models.
PhD thesis, Technical University of Ilmenau, 1998.

[GL10] A. Gonzalez and C. Luna. Specification of products and product lines. CoRR,
abs/1001.4436, 2010.

[Gom05] H. Gomaa. Designing Software Product Lines with UML. Addison Wesley, 2005.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. North-Holland, 1987.

[SV08] N. Szasz and P. Vilanova. Statecharts and variabilities. In P. Heymans, K. C. Kang,
A. Metzger, and K. Pohl, editors, VaMoS, ICB Research Report, pages 131–140, 2008.

[vdB02] M. von der Beeck. A structured operational semantics for uml-statecharts. Software
and Systems Modeling, 1(2):130–141, December 2002.

[ZHJ04] T. Ziadi, L. Helouet, and J. Jezequel. Behaviors generation from product lines re-
quirements. In UML2004 Workshop on Software Architecture Description and UML,
2004.

24

