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Abstract—We present discussions on how to apply a type-
theoretic framework –composed out by the Calculus of In-
ductive Constructions and its associated tool the Coq proof
assistant– to the formal treatment of model transformations in
the context of Model-Driven Engineering. We start by studying
how to represent models and metamodels in the mentioned
theory, which leads us to a formalization in which a metamodel
is a collection of mutually defined inductive types representing
its various classes and associations. This representation has
been put into use for carrying out and verifying on machine
the well-known case study of the Class to Relational model
transformation. We finally end up discussing ways in which
the framework can be used to obtain provably correct model
transformations.

Keywords-model-driven engineering, model transformations,
correctness, constructive type theory

I. INTRODUCTION

This paper reports ongoing work on the application of a
type-theoretic framework to the formal treatment of model
transformations in the context of Model-Driven Engineering
(MDE) [1]. Model transformations take as input models
conforming to a given source metamodel and produce output
models conforming to a given target metamodel. That is,
metamodels specify collections of models and can thus
be equated to model languages. In turn, they conform to
metametamodels, which can be understood as specifying
model languages and usually conform just to themselves.

We explore the idea of using the Calculus of Inductive
Constructions (CIC) [2], [3] as a technical space for repre-
senting and dealing with the schema above and obtaining
provably correct model transformations. The choice of the
CIC is dictated by its very considerable expressive power
as well as by the fact that it is supported by tools of
industrial strength, e.g. the Coq proof assistant [3], [4].
More specifically, the CIC is a type theory with dependent
types which allows to write logical formulæ of higher order
about objects of inductive and functional types as well as
about potentially infinite structures of co-inductive types.
Within this framework, metamodels are represented as types,
whilst model transformation can be specified for example
by means of logical formulæ of ∀∃ form, i.e. assertions that
for every input model conforming to a given metamodel

(type) and satisfying a certain (pre-)condition, an output
model exists which conforms to a given metamodel and
which stands in a certain relation with the input model.
Proofs of such propositions in the CIC are constructive and
therefore it is possible to automatically extract from each
of them a provably correct (functional) program computing
the output model from any appropriate input. Alternatively,
one can specify the transformation by asserting and proving
directly the existence of such a function. These are thus two
ways in which it is possible to obtain certified zero-fault
transformations.

The aim of this paper is to discuss how to represent
models and metamodels in the CIC. This leads to the
consideration of entities (e.g. classes) that mutually reference
each other (e.g. through associations) and their possible
representation by means of co-inductive or, alternatively,
mutually inductive types, which is the approach that we
eventually favor. This is done in section III below, after
having provided a brief outlook on the CIC in Section II.
We have carried out our method on the well-known Class
to Relational model transformation [5], which we have fully
developed in Coq. The corresponding code is available at [6].
Finally, in section IV, besides exposing some conclusions,
we discuss several ways in which the type-theoretic frame-
work can be used either for the development of provably
correct transformations or for the verification of pre-existing
ones, which leads to the formulation of further work.

The idea of using type theory in the context of MDE has
been formulated before by Poernomo in [7], [8]. Poernomo
formulates a type theory of his own –a variant of Martin-
Löf’s constructive type theory– and outlines the methods
for representing MOF [10] models as types as well as
specifications of transformations as ∀∃ formulæ. However,
he requires the use of co-inductive types to treat cyclic
references within metamodels, which we here avoid. An-
other difference from Poernomo’s work is that we have fully
implemented a significant case study on machine, thanks to
the choice of the CIC and the Coq tool.

Other works that propose type systems of their own
for object models are [11], [12], but they are oriented
towards defining executable transformation languages and



not towards reasoning about models and transformations. In
contrast, [13], [14] explore the use of Maude (an executable
rewriting logic language) as a formal notation for describing
models and metamodels, and proving certain properties
about them. In these works references are represented by
means of object identifiers, thus introducing a level of
indirection. Our representation, which consists of the mutual
definition of inductive types, allows for the use of induction
and recursion for the purpose of navigation. Also, an im-
portant difference with these works is that our framework
is oriented towards the specification and formal verification
of model transformations, whereas this is not considered in
the former works.

II. THE CALCULUS OF INDUCTIVE CONSTRUCTIONS

The Calculus of Inductive Constructions is a type theory,
i.e. in brief, a higher order logic in which the individuals
are classified into a hierarchy of types. The types work
very much as in strongly typed functional programming
languages which means that, to begin with, there are basic
elementary types, recursive types defined by induction like
lists and trees (called inductive types) and function types.
An example of inductive type is given by the following
definition of the lists of elements of (parametric) type A,
which we give in Coq notation (data types are called “Sets”
in CIC):

Inductive list : Set :=
| nil : list
| cons : A -> list -> list.

The type is defined by its constructors, in this case
nil: list A and cons : A -> list A -> list A

and it is understood that its elements are obtained as finite
combinations of the constructors. Well-founded recursion for
these types is available via the Fixpoint operator.

A (dependent) record type is a non-recursive inductive
type with a single constructor and projection functions for
each field of the type.

When the requirement of finiteness is removed we obtain
the possibility of defining infinite structures, as in

CoInductive Stream : Set :=
Cons : A -> Stream -> Stream.

The possibly infinite elements of coinductive types are
evaluated on demand, i.e. employing lazy evaluation. This
means that only those finite parts of the structure that
are required by functions operating on it are effectively
computed. In this case the recursion needs not be well-
founded, and is available with the CoFixpoint operator.

On top of this, a higher-order logic is available which
serves to predicate on the various data types. The interpre-
tation of the propositions is constructive, i.e. a proposition is
defined by specifying what a proof of it is and a proposition
is true if and only if a proof of it has been constructed.
As a consequence, elementary predicates are also defined as

inductive types, by giving the corresponding proof construc-
tors. The type of propositions is called Prop. The logical
constants are defined accordingly, which means in particu-
lar that each universally quantified proposition ∀x:A.P (x)
is a type of functions taking objects a of type A into
proofs of P (a), whereas existentially quantified propositions
∃x:A.P (x) are types of pairs formed by objects a of type
A and proofs of P (a). In view of the latter, a formula of ∀∃
form, i.e. ∀x:A|P (x) ∃y:B|Q(x, y) is proven by a function
that maps input objects of type A satisfying precondition P
to output of type B which stands in the relation Q with the
input, together with the proof that this latter condition holds.
Then such formulæ constitute a natural way of expressing
program specifications. From each proof of one such formula
it is possible to mechanically extract a function in the
sense of ordinary functional programming languages which
operates only on the input and output data and leaves the
proof of the condition Q aside. The resulting program, say
f , remains provably correct with respect to the original
specification, i.e. for all a:A satisfying P , Q(a, f(a)) holds.

III. FORMALIZATION OF METAMODELS AND MODELS

This section introduces the method used to describe meta-
models and models within the CIC. Although the approach
does not tie itself to a specific metamodel specification
language, we use, for the sake of presentation, a simplified
version of the MOF [10] equivalent to the Kernel MetaMeta-
Model (KM3) [15]. As to the CIC, we use the syntax of the
Coq proof assistant [4].

We use the well-known Class to Relational model trans-
formation [5] as an example, actually in the simplified
version found in the QVT Specification [16]. The transfor-
mation describes how persistent classes of a simple UML
class diagram are mapped to tables of a RDBMS model.
Here we shall focus on the representation of metamodels
and their models rather than on the transformation itself.
Nevertheless, one version of the complete transformation
developed following our approach can be found at [6].

In Figure 1 we show a metamodel of UML class diagrams.
Classes can contain one or more attributes and can belong
to a class hierarchy. Each attribute has a type that can
be another class or a primitive datatype (string, boolean,
integer, etc.). Associations are defined between classes with
a direction from source to destination. We shall refer to this
metamodel as “the example” from here on.

In what follows we try to achieve the greatest clarity in a
minimum of space, given the restrictions. As a consequence
our explanations will often be essentially intuitive, although
clearly formalizable.

A. Formalizing Metamodels

The representation of metamodels in the CIC requires to
devise methods for formalizing the constructs characteristic
of the object paradigm, e.g. object identity, model subtyping



Figure 1. UML Class Metamodel

and model-type inference. As the reader will notice in the
next subsections, the construction of the representation here
described can in a large measure be automatized for a given
metamodeling language.

Data Types and Enumerations: Coq supports primitive
data types like strings, booleans and natural numbers, among
others, via libraries equipped with many useful functions. It
is also possible to define enumeration types and use them to
define class attributes. Enumeration types are directly repre-
sented in Coq as inductive types. In the example, suppose we
want to represent the kind of a UMLModelElement with an
enumeration type ModelType instead of using a string as
in the diagram. The enumeration type can be represented
as an inductive type with constructors Persistent and
Non-Persistent, as follows.

Inductive ModelType : Set :=
| Persistent : ModelType
| Non_Persistent : ModelType.

Classes, Attributes and References: A class consists of
attributes and references. An attribute has a name, a multi-
plicity and a type. A reference has a name, a multiplicity and
a type (of the element been referenced), and it may have an
opposite reference (bidirectional references). We represent
associated classes together using mutually inductive types.
For each class its attributes and references are represented as
components of the corresponding type by means of a con-
structor which has its attributes and references as parameters.
In the example, the classes and their corresponding attributes
as well as the associations can be defined as follows.

Inductive UMLModelElement : Set :=
| Build_UMLModelElement (name : string)

(kind : string)
with Package : Set :=

| Build_Package (oid : nat)
(elements : list PackageElement)

with PackageElement : Set :=
| Build_PackageElement

with Classifier : Set :=
| Build_Classifier

with Class : Set :=
| Build_Class (oid : nat)

(general : list Class)
(attribute : list Attribute)

with PrimitiveDataType : Set :=
| Build_PrimitiveDataType (oid : nat)

with Association : Set :=
| Build_Association (oid : nat)

(source : Class)
(destination : Class)

with Attribute : Set :=
| Build_Attribute (oid : nat)

(type : Classifier).

In order to manipulate the components of the classes we
define projections for each attribute and reference. They
are trivially defined using pattern matching. As an example
we show just the projection of the attribute name of the
UMLModelElement class.

Definition UMLModelElement_name
(o : UMLModelElement) : string :=

match o with
| (Build_UMLModelElement n _ _ _ _) => n

end.

Notice the presence of the components named oid in
the representation of each class. This provides a means for
identifying the actual objects that are to be instances of
the various classes, i.e. the oids implement object identity,
beyond the constructor identity provided by CIC. We can
thus tell whether two objects are the same by using a boolean
function associated to their class.

Now, if for given class and reference an opposite reference
exists, the elements of the source class must form part of
those of the target class and viceversa, i.e. the objects of
both classes are not well-founded. In general, this situation
might arise whenever several classes are mutually related
through cycling associations and we can characterize it as
the admissibility of circularity in the actual construction of
(thereby infinite) objects. In these cases we seem to need
co-inductive types, as pointed out in [7], [9]. However,
taking such an approach forces us in the general case to
introduce all the mutually connected classes as mutually
defined co-inductive types. And then some disadvantages
arise, concerning both the correctness of the representation
and its ease of use.

The main problem is that there will in general be cycles
of references of classes of the model for which no actual
cycle at the level of object formation is intended to occur,
even when some other reference cycles in the same model
allow the circularity of object formation. Hence, we have in
general that some of the classes involved in the represented
metamodel will not be intended to actually contain infinite
structures, namely those participating in references in which



no actual cycle at the level of objects is admissible. But
even in such cases, the definition of the classes as co-
inductive allows them to contain infinite structures. This
compromises the correctness of the representation in at least
two respects: first, circularity at the level of objects cannot be
prevented at syntax (type) level and secondly, the termination
of functions on these types cannot be enforced. Although
these restrictions could be imposed on the co-inductive
definition of the model, that would lead to a representation
too awkward to manage in practice.

We therefore decide to use only inductive types. This is
enough for the cases in which no circularity at the level
of objects is to be allowed, since the well-foundedness
of the latter is imposed by construction. More precisely,
we represent directly only unidirectional references, using
mutually inductive types whenever circularity at the level
of the objects is not allowed in the metamodel. If, on the
contrary, we should have to allow for such circularity then
we ”cut” the association cycle at a convenient point and
represent the now loose references directly as pairs of source
and target instances in a separate structure. This procedure
has as a particular case that of the bi-directional associations.

In the example, we assume that the attributes of a class
cannot have that same class as type. Should this be not
assumed (e.g. in the case of allowing for classes representing
recursive types), circularity in the formation of the instances
of Class would be allowed. In such case we could resolve
this problem, by ”cutting” the reference from Attribute

to Classifier (i.e. erasing the second argument, named
type, of the constructor of the type Attribute) and adding
the corresponding information as explicit ordered pairs of
the following type:

Inductive AttrClass : Set :=
| Build_AttrClass (src : Attribute)

(dest : Classifier)

Deciding which references to cut may be in general non-
trivial and depend on the transformation to be written. This
is a point in which, although possible in principle, the
automatization of the representation of the metamodel might
not be desirable.

Multiplicities: Attributes and references have multiplici-
ties. Each multiplicity has a lower and an upper value and
multiplicity 1 is assumed if none is declared. Multiplicity 1 is
represented with a given type. Multiplicity 0..1 is represented
with the option type constructor, which has constructors
None representing no element and Some x for elements x

in the original type. Finally, if the upper multiplicity value is
greater than 1, the multiplicity is represented with a (possibly
ordered) list type. In the example we have the following
attribute definitions.

[1-1] -- name : string
[0-1] -- subAttribute : option Attribute
[0-*] -- elements : list PackageElement

Generalization and Abstract Classes: Classes may be ab-
stract, i.e. have no objects. If needed, this can be represented
by adding a fixed boolean component to the corresponding
type.

It is also possible to define generalization relations be-
tween classes as references between the supertype and the
subtypes. Each supertype has an optional reference to each
of its subtypes, but to avoid bidirectional references subtypes
do not have a reference to the supertype. This impacts on
the definition of the inductive types defined before. We
add parameters to the constructors of each type to repre-
sent the generalization relation. For example, to represent
the generalization between Classifier and Class and
PrimitiveDataType we need to modify the definition of
Classifier as follows.

...
Classifier : Set :=

| Build_Classifier (subClass : option Class)
(subPrimitiveDataType :

option PrimitiveDataType)
...

We can now define functions to infer the concrete type of
an instance in a hierarchy and downcast that instance to the
corresponding type.

Definition isTypeOfClass (c : Classifier)
: bool := match (Classifier_subClass c) with

| None => false
| Some a => true

end.

Definition asTypeClass (c : Classifier)
: option Class := Classifier_subClass c.

Since we do not have bidirectionality, we cannot directly
navigate from a subclass to a property of its superclass. We
need in this case to search for the corresponding instance in
the collection of all instances of the supertype. As a result
we have partial functions, as the one presented next to upcast
an Attribute as an instance of a Classifier. Partiality
is achieved by use of the option type former in the result
type of the function.

Fixpoint Attribute_super
(l : list UMLModelElement)
(a : Attribute) : option UMLModelElement :=
match l with
| nil => None
| cons m l2 =>

match (UMLModelElement_subAttribute m)
with
| None => Attribute_super l2 a
| Some a2 =>

match (beq_Attribute a a2) with
| true => Some m
| false => Attribute_super l2 a

end
end

end.



B. Formalizing Models

We represent a model that conforms to a metamodel as a
record that contains a collection (represented as a list) with
all the instances of each class (represented as an inductive
type) defined in the metamodel. In the example a model
conforming to the source metamodel SimpleUML would be
a record of the following type:

Record SimpleUML : Set :=
mkSimpleUML {umlModelElementAllInstances

: list UMLModelElement;
packageAllInstances
: list Package;

packageElementAllInstances
: list PackageElement;

classifierAllInstances
: list Classifier;

classAllInstances
: list Class;

primitiveDataTypeAllInstances
: list PrimitiveDataType;

associationAllInstances
: list Association;

attributeAllInstances
: list Attribute }.

In the case discussed above in which the attributes of a
class were allowed to have that same class as type, giving
rise to circularity in the formation of instances of Class

and to the subsequent introduction of the type AttrClass

to cut such circularity, we should add a field to the former
record containing a list of pairs of that type.

Additional constraints can be defined as Coq predicates
that must be satisfied by any model conforming to the
metamodel. We must consider two kinds of constraints,
namely the structural constraints and the invariants.

The structural constraints are those satisfied in the original
formulation of the metamodel, due to the structural rules of
the modeling language, but not in the CIC representation. In
the example, a structural constraint is that any Classifier

must be either a Class or a PrimitiveDataType but not
both. This constraint can be expressed in Coq as follows:

Definition sc_SubClassifier (m : SimpleUML)
: Prop :=
forall c:Classifier,

(In c (classifierAllInstances m)) ->
Xor ((isTypeOfClass c) = true)

((isTypeOfPrimitiveDataType c) = true).

Invariants, on the other hand, are conditions that must
be satisfied by every model but cannot be captured by
the structural rules of the modeling language. In this case
the modeling language must be supplemented by another
language, e.g. OCL. Invariants can be non-structural con-
straints (like uniqueness and domain of attributes, referential
integrity, etc) and business rules (general domain properties
that must be satisfied). An invariant of the example is that
the name of an attribute is unique within a Class. In OCL:

context Class inv:
self.attribute->isUnique(name)

This constraint can be expressed in Coq as follows:

Definition nsc_AttributeUniqueness
(m : SimpleUML) : Prop :=
forall o:Class,
(In o (classAllInstances m)) ->
let names := map Attribute_name

(Class_attribute o)
in

forall name:string,
(In name names) ->
(unique string string_eq_bool

names name) = true.

All the constraints, be they structural or invariants, are
added as fields to the records representing the models.

IV. CONCLUSIONS AND FURTHER WORK

We have explored methods for representing metamodels
and the models conforming to them in a type-theoretic
framework given by the Calculus of Inductive Constructions.
We have thereby arrived at the conclusion that it is ade-
quate and convenient to formalize metamodels as collections
of mutually defined inductive types. Each of these types
represents a class of the metamodel in question and its
elements contain in general elements of other classes of the
model, namely those to which the class being represented
bears an association. We have shown how to deal within
this framework with those cases in which circularity in the
formation of objects is allowed, as for instance with bidirec-
tional associations. In general, this is solved by breaking the
problematic association cycles at some point and adding a
representation of the thereby vanishing association explicitly
as a type of pairs. Constraints of any kind can also be dealt
with without difficulty.

The main benefit of representing models and metamodels
within the CIC is that we use the same formalism to deal
with both model elements and constraints (structural and
invariants). In particular, to build a model that conforms to
certain metamodel it is necessary to provide not only the
set of model elements but also a proof that those elements
satisfy the constraints. Therefore, in this formalism model
conformance is equivalent to type checking. The Coq system
is used as an editor for the CIC and provides assistance
for the construction of well-typed elements in a unified
environment. Besides, we can go further an prove general
properties about metamodels and models. These will be
expressed as propositions in the CIC and proved using the
Coq proof assistant.

Within this context, model transformations can be nat-
urally defined as functions from a source to a target meta-
model. They can be specified by logical formulæ of ∀∃ form,
i.e. assertions that for every source model conforming to a
certain metamodel and satisfying a certain (pre-)condition,



another target model exists which conforms to a certain
metamodel and which stands in a certain relation with the
source model. A correct transformation is then a function
from the source metamodel to the target metamodel that
satisfies the specification, i.e. that can be used to obtain
an output that satisfies the condition under ∃ for any input
that conforms to the source metamodel and satisfies the pre-
condition.

One possible approach to build such a transformation
is to use the Coq extraction mechanism. Since proofs of
propositions in the CIC are constructive, it is possible to
automatically extract functional programs from proofs of ∀∃
formulæ. These functions are provably correct with respect
to the given specification [17]. The extraction mechanism in
Coq allows generation of such functions in several functional
languages, like Haskell, Scheme and OCaml.

Another approach is to directly write the function that
transforms the source model into the target model and
prove it correct. This case can be adapted for providing
verification of pre-existing transformations: take namely a
transformation specified in some transformation language
(QVT or ATL [18], among others), encode it into Coq’s
functional language and then prove the result correct. This
is actually the approach explored in [9] where we experiment
on how to encode ATL constructs, and also the one taken
for the development of the Class to Relational QVT model
transformation case study [6]. The fact that we have actually
completed these cases shows the feasibility of the general
approach. We have omitted in this paper details of this aspect
of our work for reasons of space.

Of course the fully formal way to accomplish the latter
approach requires to employ formally founded (and desir-
ably automatic) translation from the source transformation
language into the CIC. This amounts to developing a deno-
tational semantics of at least a significant fragment of the
source language in type theory. One first step in this direction
is to automatize a translation into Coq of metamodels written
in a given metamodeling language. This must be subject of
further work. We hope also to apply either of the approaches
just considered to still more significant case studies, i.e. of
transformations and properties of greater generality.
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