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Fraud detection on power grids while transitioning to
smart meters by leveraging multi-resolution

consumption data
Pablo Massaferro, J. Matı́as Di Martino, and Alicia Fernández

Abstract—The technological upgrade of power utilities to smart
metering is a process that can take several years. Meanwhile,
smart meters coexist with previous generations of digital and
electromechanical power meters. While the smart meters provide
high-resolution power measurements, electromechanical meters are
typically read by an operator once a month. The coexistence of these
two technologies poses the challenge of monitoring non-technical
losses (NTL) and fraud where some customers’ consumption is
sampled every 15 minutes, while others are sampled once a month.
In addition, since companies already have years of monthly historical
consumption, it is natural to reflect how the past data can be
leveraged to predict and improve NTL on smart grids. This work
addresses both problems by proposing a multi-resolution deep learn-
ing architecture capable of simultaneously training and predicting
input consumption curves sampled 1 a month or every 15 minutes.
The proposed algorithms are tested on an extensive data set of users
with and without fraudulent behaviors collected from the Uruguayan
utility company UTE and on a public access data set with synthetic
fraud. Results show that the multi-resolution architecture performs
better than algorithms trained for a specific type of meters (i.e., for
a particular resolution).

Index Terms—Non-technical losses, electricity theft, automatic
fraud detection, deep learning, multi-resolution, smart meters.

I. INTRODUCTION

TECHNOLOGICAL updates are a big challenge for utility
companies. Migration to new technologies in the energy

area is a costly and time-consuming process, but it must be
done to ensure the efficiency and competitiveness of services.
In particular, migrating to an Advanced Metering Infrastructure
(AMI) is a process that can take several years. These changes
involve a large investment and a plan to replace the measure-
ment equipment throughout the distribution network. Given the
magnitude of this investment, companies make these changes
in stages. This implies that electricity consumption data from
different sources for different customers coexist in companies. For
example, while some clients report their monthly consumption,
others can be remotely monitored with readings every 15 minutes.
An additional challenge is that for those customers for whom the
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meter was recently updated, their historical consumption (e.g.,
the last three years) has a period of coarser resolution (before the
new meter was installed) and a period of higher resolution.

A classic problem in the analysis of electricity consumption
data is detecting non-technical losses (NTL), an issue of great
interest given the economic impact on energy distribution com-
panies [1], [2]. There are numerous proposals in the literature
to address this problem for smart meter infrastructures [3]–[6]
and the previous generations of meters [7]–[9]. However, to
the best of our knowledge, no solutions have been proposed to
address NTL in the context of infrastructures with coexisting
technologies (leading to a multi-resolution problem across and
within customers). The present work addresses this problem and
discusses a solution based on deep learning architectures to com-
bine power consumption data of different temporal resolutions
while leveraging historical and contemporary ground truth data.

II. RELATED WORKS

The emergence of smart meters created new opportunities for
data analysis in the electricity sector. Applications to load fore-
casting, management, and analysis have advanced tremendously,
powered by novel machine learning tools. A review of the use
of smart meter data in these topics was presented by Wang et
al. [10]. Within the analysis of electricity consumption, NTL
is a very challenging problem with a very active academic and
industry community. The exponential increase in data related to
AMI creates new challenges and opportunities. A detailed review
on the different approaches to the NTL problem up to 2018 was
presented by Messinis et al. [1] and divides the approaches into
three large groups: data-oriented, network topology-oriented, and
hybrids.

To control energy losses, companies carry out inspections of
the meters installed in customers’ residences. These activities
generate high-quality labeled data allowing the development of
detection strategies based on supervised learning. However, access
to this data is restricted, and therefore numerous studies limit their
analysis to fraud simulations [5], [11]–[14]. A public data set
with real fraud and daily consumption data was made available
by State Grid Corporation of China [3]. However, this data set
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does not have the inspection dates, so there is no way to segment
the valid data time intervals (those before inspections). Complex
deep learning architectures show excellent results on this data,
exceeding 90% precision [3], [6], [15]. This performance is over-
optimistic when we compare it with the performance reported
by distribution companies when novel inspections are performed
based on the prediction of classification algorithms, with preci-
sions ranging from 15% to 47% [16], [17]. This performance gap
illustrates how important it is to have access to real data and
proper segmentation (prior to the in-site inspections) to guide
algorithm training. When the inspection date is unavailable and
all the signal is fed into training, algorithms can learn changes
in behavior triggered by the company inspection instead of the
patterns of fraud we attempt to detect.

In [1] the classical supervised learning approach is described,
where expert features are extracted from data to train a clas-
sification algorithm. Within the classical approach, the use of
algorithms such as SVM, random forest (RF), extreme gradient
boosting (XGB), and neural networks stand out [2], [7], [18].
However, in recent years data-oriented approaches with the use of
deep learning have shown very good results. In [19] it is shown
how data-oriented feature extraction approaches perform better
than manual feature extraction for NTL. In recent years deep
learning architectures have been used showing promising results
on smart meter data. A variety of deep learning solutions have
been proposed based on convolutional neural networks (CNN),
[3], [20], long short-term memory (LSTM) layers, and recurrent
neural networks [16], [17], [21].

Performance metrics play a crucial role when designing, com-
paring, and evaluating machine learning models. The most used
performance measure to assess supervised classification methods
is the accuracy (Acc) or the error rate (1-Acc), which are adequate
when both classes have similar prevalence levels and the costs of
the errors are similar. In NTL, these hypotheses are not fulfilled;
there is a high imbalance, which must be considered when
selecting the models and in the final evaluation of the test sets.
Many works use Acc and detection rate (DR) without considering
the imbalance. Among works that consider the problem of classes
imbalance [2], [9], [22] measures such as the F1 score, the area
under the ROC, and the area under the precision-recall curve are
recognized as appropriate. However, there is no consensus on
which is the single optimal evaluation metric [22]. In [18] it is
proposed to use the economic return of the inspection activities
as a performance metric, which takes into account the imbalance
and the fact that the fraudulent samples can differently impact
the economic return. This work compares models designed with
a threshold that maximizes the F1 measure [9] and others that
maximize economic return. This last method requires available
information to estimate the return per sample.

Given the variability in the uses of electrical energy and the
possible forms of fraud, this is a problem of non-separable

classes. No matter how powerful an algorithm is, the information
from consumption curves has limited performance. There have
been several proposals to include more information in decision-
making. Recently Hu et al. proposed a recurrent neural network
architecture with three inputs: individual consumption, substation
consumption, and ambient temperature [16]. This method is
compared to a wide and deep network [3] showing superior
performance. While there are some approaches to including new
information in deep learning architectures [4], [17], [19], [23],
there have been no contributions to the NTL literature to use
multi-resolution measurements and address the periods where
measurement technologies coexist. These periods can last for
years; thus, the use of this information is of notorious practical
application to power distribution companies. A significant number
of publications use deep learning architectures to extract features
of daily resolution consumption curves either because it is the
resolution of their data [3], [15], [16] or to reduce the dimensions
of the input data [17]. Other works directly use the readings with
periods of one hour or 30 minutes [5], [12], [20], [24]. In this
work, we focus on the impact of using multi-resolution consumer
data for NTL detection. 15-minute resolution data from smart
meters and monthly readings prior to change of measurement
technology are used.

III. PROPOSED APPROACH

A. Multi resolution

In a stage of technological update of data systems, it is as
important to maintain historical records as it is to generate
added value with the new information available. In general, there
are several years of monthly energy consumption data prior
to the installation of smart meters (SM). With the new AMI,
it is possible to have energy consumption data every fifteen
minutes for the same clients since the installation of the SM.
The objective is to identify fraudulent behavior by analyzing
the clients’ consumption curves. For this, we propose to use a
convolutional neural network architecture with two inputs. The
time series of monthly data passes through a one-dimensional
convolutional network from which relevant features are extracted
[25]. In a second input, the energy consumption every 15 minutes
of the last three months is used to form a 90x96 image (see Fig. 1).
We tested experimentally including different time intervals, and
we empirically observed that there is a performance saturation
when 90 or more days of data are considered. For the network
input image, each of the 96 columns corresponds to the energy
consumption at one time of the day, and each row corresponds
to a different day. This image is fed into a two-dimensional
convolutional network.

Convolutional 2D networks have proven to be very powerful for
identifying patterns in images. In these networks, pattern detection
is translation invariant, which in our approach is equivalent to time
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Fig. 1: Example of fraudulent energy consumption in 2D. The
y-axis corresponds to the days and the x-axis to the time of day.
Time advances from top to bottom and from left to right.

invariance, which is desired in the context of NTL. In this way,
the algorithm learns to identify suspicious energy consumption
and can then find a similar pattern in another client in another
region of the image (another date).

In addition to translation invariance, convolutional networks
drastically reduce trainable parameters compared to fully con-
nected networks. This is based on the fact that images have
local structures (lines, shapes, colors, etc.) that can be captured
by a set of filters (kernels). The detection of small parts allows
coding more complex structures in a hierarchical way. Each filter
is equivalent to a neuron that has connections to only one region
of the image. The convolution operation allows each filter to
operate with all areas of the image, sharing the values of the
trainable parameters (kernel weights). Even though one could
use for both (the high-resolution and the low-resolution) inputs
1D convolutional layers, it has been proved that re-arranging the
high-resolution data into 2D images allows more efficient feature
extraction with kernels of more compact and narrow support [24]
Intuitively, since rows correspond to the consumption of each
day, by reshaping this 1D vector into the selected 2D matrix
(image), the consumption at the same time of the day between
two consecutive days becomes a neighbor pixel in the 2D domain,
allowing compact kernels to fit patterns associated with activities
that occur a specific times during the day.

For the case of a single channel image I the convolution
operation with a kernel K is presented in the following equation,

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n),

where m and n are the dimensions of the kernel, (i, j) the
coordinates of a pixel, and S the output layer of the convolution.
Each convolution layer consists of a filter bank characterized by
its length and height dimensions, in this work of size 3x3. The
depth is given by the dimension of the input data volume. In
the case of deep learning, several concatenated convolutions are
usually used. In this way, with the first layer of 64 3x3 filters,
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Fig. 2: CNN2D architecture for fraud detection with fifteen
minute active energy consumption data.

the data volume at the output will be depth 64. A 3x3 filter in
the second layer has depth 64, this is equivalent to 576 trainable
parameters in each filter. The activation of each neuron is given
by a non-linear function, in this case, we use rectified linear unit
(ReLU).

Convolution layers are the main building block of a CNN
classifier architecture. Other widely used layers in a CNN clas-
sifier are pooling, batch normalization, dense, and softmax (or
sigmoid for two classes). Pooling layers reduce the size of
the data while creating multi-scale feature representations. Max
pooling is used in the present work. Once features are extracted
from the data, an multi layer perceptron (MLP) classifier can
be trained by concatenating dense layers. To do this, the data
volume of the last convolution layer is flattened and used as input
of the first fully connected layer. The proposed NTL detector
architecture with CNN2D is presented in the Fig. 2, this is used
to process the high-resolution (2D) components of the input. We
used convolutional layers as they are one of the most standard
and efficient components in the state of the art deep network
architectures, however, the main ideas of the paper are agnostic
to this choice and could be implemented with other architectural
choices such as recurrent neural networks. In section IV we
compare the performance of different architectures classifying
high resolution energy consumption data.

Detecting fraud using only monthly energy consumption data
is a difficult task. In the past, we have tried to extract features
from time series. However, for NTL the use of raw data in a one-
dimensional convolution network, or machine learning algorithms
such as xgboost or random forest, have shown to have better
results [19]. Inspired by these previous findings, in this work, we
use one-dimensional convolutional network for feature extraction.
As with the 2D convolution network, adding dense layers at
the end, an output layer with a neuron and a sigmoid function
conclude the network architecture.

Finally, to merge the information from each branch (the
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Fig. 3: multi-resolution architecture for NTL detection. The upper
part represents the input of high resolution data in 90x96 image
format and its processing with four layers of 2D convolution.
The lower entry corresponds to the series of low frequency con-
sumption (monthly). This data passes through a 1D convolution
network. The values at the output of each branch are concatenated
to enter a series of fully connected neural network layers. The
output is a score given by a Sigmoid function.

low-resolution and the high-resolution energy measurments) we
combine the last convolution layer of each network described
before, feeding them into a MLP and simultaneously trains all
the parameters using a single loss function (Fig. 3).

B. Metrics

We use AUC PR as a metric for model comparison and
hyperparameter selection. We also use P@10% as the primary
performance metric in test runs, which is the precision obtained
when performing inspections by labeling 10 % of the samples as
positive. The set of solutions for which a fixed percentage of the
data is labeled as positive (i.e., a fixed number of inspections)
corresponds to a line in the precision-recall space as we show
next. Defining TP, TN, FP, and FN the number of true positive,
true negative, false positive, and false negatives, respectively,
the number samples labeled as positive can be computed as
Ni = TP + FP . Let NP denote the number of positives
(TP + FN ) and Ni the number of inspections to be carried
out, we can express Recall = TP/(TP + FN) = TP/NP

and Precision = TP/(TP + FP ) = TP/Ni. Combining both
equalities, we obtain

Precision =
NP

Ni
Recall,

which is a line that passes through the origin with slope NP /Ni.
We add the operating line at 10%(P@10%) in the model com-
parison graphs with PR curves.

IV. EXPERIMENTS

A. Data

1) UTE SM, data set with real fraud: Starting in 2019, the
Uruguayan power generation and distribution company (UTE)
began a campaign to update energy meters, shifting from elec-
tronic or electromechanical meters to smart meters. The data
set used in this work has data corresponding to 10,596 clients
with smart meters inspected by UTE technicians between January
2019 and December 2020. For each client, the energy consumed
every 15 minutes is available from the installation date to the
date of inspection. In addition, there is a monthly consumption
history for the last three years prior to the inspection date. Data is
labeled as a member of the positive class (label equal to 1) if an
irregularity was found and to the negative class otherwise (label
equal to 0). The database has 772 positive cases representing
7.3 % of the total. In the experiments, we used 90 days of
smart meters data per client. 90% of the records in the database
have at least 90 days of valid data. Zero padding was performed
for the 10% of the customers for which less than 90 days of
smart meter readings were available. Some examples of fraudulent
consumption profiles are shown in Fig. 4.

2) CER NTL data set): CER NTL is a synthetic fraud electri-
cal energy consumption data set. Fraudulent patterns are created
to simulate typical frauds on real consumption data from a public
access database. The CER dataset was created by the Energy
Regulatory Commission of Ireland to analyze customers’ behavior
on energy consumption [26]. The database contains, among other
information, the report of active energy consumed every half hour
in 6,435 homes for a period of 17 months.

UTE technicians’ expertise and other academic works were
taken into account for the fraud simulation [11]–[13]. Measure-
ment readings can be partially or totally affected. Cyber attacks
or meter modifications can affect the AMI permanently or for
periods of time. Using byPass on the meter terminal block or
in installations with a second connection without a meter may
have an activation switch that allows fraud by time windows.
The percentage of energy stolen depends on how the fraud is
carried out. Similar models have been presented in other works
[11], [13], [27]. In this work, we use a set of random variables
to model human behavior when fraud takes place.

• Fraud 1: Constant proportional decrease over time

p̂ti,n = νpti,n; ν ∈ [min,max]

where pti,n is the energy consumption value of the customer
n at the instant ti and p̂ the consumption modified with
fraud. For each customer n a fixed value of ν is assigned



5

(a) Illustration of a profile of a real fraud associated with the implementation of an electrical bridge in one of the phases of the meter’s terminal.

(b) Illustration of a profile of fraud associated with the implementation of an intermittent electrical bypass in the meter.

Fig. 4: Examples of actual fraudulent profiles from the UTE SM data set. From left to right: the complete 90-day time series, a
five-day series fragment of the period in which the fraud is active and representation of images of the smart meters’ data of 90 days.

with uniform distribution ν ∼ U [0.3, 0.7] and a random start
date of fraud tf,n within the 17 months of data.

• Fraud 2: Proportional decrease in daily time windows.

p̂ti,n = δtipti,n where δti =

{
α if tstart ≤ ti ≤ tstart + l

1 otherwise.

α models the forgetfulness in a few days of the fraud
triggering. [ν, 1] values with Bernoulli distribution. Let F ∼
Bernoulli(p)

α = (F − 1)ν + F.

Fraud is committed daily in a window of time tstart and l
model the noise at the start time and duration of the window.
tstart∼N(µs, σini), the mean start time value µs[n] is set
for each customer with uniform probability within an hourly
range µs∼U(tmin, tmax). The actuation duration is also a
random variable with Gaussian distribution l∼N(µd[i], σd).
The mean value µd[i] is fixed over the days and is assigned
to each customer using a uniform probability distribution
µd∼U(lmin, lmax)

• Fraud 3: Total decrease in time windows during peak demand
hours. This fraud models a zero consumption reading during
a time windows and is a particular case of fraud 2 when

α = 0

p̂ti,n = δtipti,n / δti =

{
0 if tstart ≤ ti ≤ tstart + l

1 otherwise

In this model, tmin = 5pm and tmax = 11pm, this time
interval is set as, usually, fraud occurs within the period of
maximum consumption. For most residences this time is in
the afternoon between 5 and 11 pm.

• Total decrease in energy reading in time windows without
time bands. This fraud is similar to the third type with the
difference that the fraud windows can be in at any time of
the day. In other words, µs has no time slot restrictions.
Likewise, each client has its own pattern of fraud.

Using the models of fraud described above, we generated the
dataset CER NTL, which contains 8% of positive (generated)
samples with: 4% fraud type 1 with a theft range between 30%
and 70 % ; 2% type 2 fraud with the same percentage decrease in
consumption in windows between 5 pm and 11 pm. The windows
last on average between 2hs and 6hs (µs ∼ U [2, 6]) with a
variance of 1 h for the starting time (σs = 1) and a variance in
the fraud duration of 1 h (σd = 1); 1% of the fraud corresponds
to the type 3 parameters as fraud 2; and finally, 1% of type 4
fraud with windows of longer duration and without taking into
account peak times. In this case, the daily duration of the fraud
can range from 4 hours to 12 hours with a variance of 1 hour both
in average and in duration for each client. The fraud generation
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(a) Type 1 (b) Type 2 (c) Type 3

Fig. 5: Examples of synthetic frauds generated from real consumption data. Five consecutive days of active energy consumption are
plotted for different consumption curves from CER data set. In orange the original consumption and in blue the modified (fraudulent)
sample.

model with the parameters in the previously described values is
made available in 1 to facilitate the experiment’s reproducibility.

B. Implementation details

1) Test data set : To assess the prediction capacity of new
fraud from the past data, we split our dataset into train and test
sets by sliting customers into two sets, those that were inspected
before a given date (train) and those inspected after it (test). This
model the conditions at deployment, where inspections (potential
new fraud) are planned based on prior data. The splitting date is
set to obtain 15% of the samples for testing and 85% for training.
The test data has a proportion of fraud of 8%. From the training
set, 20 % of the data is taken as a validation set.

2) Models: We experimentally evaluated five architectures
described next.

CNN1D: Time series classifier applied to monthly electricity
consumption data. We use the following layer structure:

• [Conv1D+BatchNormalization+ReLU +Conv1D+
BatchNormalization + ReLU + MaxPooloing +
Dropout] ∗N/2

• Flatten+[Dense+BatchNormalization+ReLU ]∗M+
Dropout

• Dense(1) + Sigmoid

where N is the number of convolution layers and M the number
of fully connected layers.

Wide&Deep: NTL detection architecture proposed in [3]. For
the sake of a fair comparison, our implementation takes as input

1https://github.com/pmassaferro/NTL SmartMeters

the high-resolution measurements of the smart meter instead of
the daily value of the original proposal. We use 90 days of
data prior to the inspection (90x96 for UTE SM and 90x48 for
CER NTL).

LSTM: Recurrent neural network for time series classification.
The architecture includes an LSTM layer and a fully connected
layer. The number of hidden units in the LSTM layer is included
in the model hyperparameters for fine-tuning. The input for each
time step is an array of full-day consumption measures. Like the
other models tested, we consider 90 days of data as the model
input.

CNN2D: Image classification algorithm applied to smart meter
data. The layer structure is exactly the same as CNN1D with
the difference that it uses convolutions in two dimensions and
therefore max-pooling in 2D.

CNN MR: This two-input architecture makes it possible to
identify non-technical losses in energy consumption by combining
historical monthly consumption data with smart meter readings.
The convolution layers for both data inputs are the same as those
used in the CNN1D and CNN2D models. Features extracted from
the SM images and from the monthly consumption data are con-
catenated to train an MLP (see Fig. 3). The initialization weights
of the convolution layers are those obtained by training CNN1D
and CNN2D. The hyperparameter search for this architecture is
only done in the MLP fully connected layers as shown in Table
I.

Normalization layers are added to avoid gradient vanishing
during training. Normalization is performed by computing the
mean and standard deviation of each mini batch of data after
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Hyperparameters CNN1D CNN2D CNN MR

layers CNN [2,4] [2,4] -
filters [32,64] [32,64] -

kernel size [3,5] [(3,3)] -
learning rate [10−2 : 10−4] [10−2 : 10−5] [10−3 : 10−5]

drop out [0, 0.3] [0,0.3,0.5] [0, 0.3]
layers FC [2,3] [2] [2,3,4]

neurons FC [32,64] [32,64,128] [32,64]

TABLE I: Range of values for hyperparameters´search according
to the selected architecture.

Data Set Precision Recall F1 AUC PR AUC ROC

Validation 0.15 0.23 0.18 0.16 0.70
Train 0.20 0.35 0.25 0.20 0.77

TABLE II: Results of the CNN MR model on the training and
validation data sets of UTE SM.

each layer. This normalization implies the inclusion of two more
training parameters for each activation layer. The implementation
used (Keras) also computes the statistics with sliding windows, to
then be used to normalize the test set, adding two more parameters
for each activation layer.

3) Fine tuning: Within the search for hyper parameters we
have included, in addition to the learning rate, variables that
determine the complexity of the network, such as the number of
hidden layers and the number of filters or neurons per layer. On
the other hand, we also included dropout layers as a regularization
agent to reduce overfitting. In order to cover a wide range of
options, a random search is used combined with early stopping.
During each training the AUC PR is monitored in the validation
data set. The unbalance of classes is taken into account during the
training assigning different weights to each class when computing
the loss function. The ranges of values for each hyper parameter
are presented in Table I.

C. Models training

The first stage of multi-resolution model training consists of
training the CNN2D and CNN1D models. The weights obtained
in the convolution layers of these models are then used to initialize
the CNN MR model. Then, the convolution layer weights are
fixed and the fully connected layers tuned. Figure 6 illustrates
the training and validation loss as a function of the number
of training epochs. Hyper-parameters (such as the number of
filters) are optimized considering the validation loss. The highest
performance model consists of four convolution layers and 64
filters, with a dropout rate of 30%. Table II presents the results
obtained for the multi-resolution model on the training and
validation datasets of UTE SM.

Fig. 6: Validation and training loss by epochs for CNN2D and
CNN MR models.

Model Precision Recall F1 AUC PR AUC ROC

CNN1D 0.10 0.12 0.11 0.11 0.56
Wide& Deep 0.15 0.17 0.16 0.11 0.55

LSTM 0.18 0.21 0.19 0.13 0.61
CNN2D 0.19 0.21 0.19 0.15 0.66

CNN MR 0.20 0.23 0.22 0.18 0.69

TABLE III: Results on the test data set of UTE SM. We con-
sidered 36 monthly consumption data as the low-resolution input
(in the CNN1D and CNN MR models) and 90 days of high-
resolution data (Wide&Deep, LSTM, CNN2D and CNN MR).

D. Results

The results obtained by the fraud detection models in both data
sets (CER NTL and UTE SM) are presented next. The results
tables include the overall evaluation metrics for the AUC PR and
AUC ROC algorithms. P@10% (Precision when a fixed 10% of
the customers are inspected), Recall, and F1 are also reported,
setting the decision threshold to predict 10% of the test data set
as positive.

1) Results on UTE SM database : The results obtained from
fraud detection in the UTE NTL data set show that the CNN2D
algorithm trained with three months of smart meter data achieves
better results than those obtained by CNN1D using 36 months
with low-frequency values. The CNN MR multi-resolution model
outperforms those models that leverage a single resolution despite
of their architectural components (CNNs or LSTMs). Table III
presents the results obtained on the UTE SM data set for models
studied. Observing the PR curves in Fig. 7 it can be seen that
CNN MR is not only optimal at the selected operation point
(black dotted line), it is better for all decision thresholds. In
addition, we observed that the type of layers selected to build
the model have a reduced impact on the final model performance,
suggesting that the idea of leveraging multi-resolution information
can be implemented in practice with a variety of architectural
choices.
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Fig. 7: Precision-Recall curves tested on UTE SM test dataset.

Model Precision Recall F1 AUC PR AUC ROC

CNN1D 0.34 0.38 0.36 0.28 0.76
Wide&Deep 0.36 0.40 0.38 0.36 0.79

LSTM 0.37 0.41 0.39 0.41 0.82
CNN2D 0.40 0.45 0.42 0.49 0.84

CNN MR 0.46 0.52 0.49 0.55 0.86

TABLE IV: Results on the CER NTL test data set. We considered
17 monthly consumption data as the low-resolution input (in the
CNN1D and CNN MR models) and 90 days of high-resolution
data (Wide&Deep, LSTM, CNN2D and CNN MR).

2) Results on CER NTL database: As in the previous exper-
iments, the multi-resolution algorithm achieves the best results
outperforming models that consider independently low resolution
(CNN1D) or high-resolution (Wide&Deep, LSTM and CNN2D)
data. Again, multi-resolution models outperform their single
resolution counterparts for any decision threshold (see Figs. 8
and 9). The CNN2D model achieves a P@10% of 40% while
CNN1D model obtained 34%. Considering that the data has a
proportion of 8% of fraudulent examples, the results more than
quadruple a random classification. Other architectures such as
LSTM and Wide&Deep taking three months of high-resolution
data as input achieve superior performances than those obtained
with three years of monthly data by CNN1D. The most relevant
of the results is that the proposed multi-resolution architecture
(CNN MR) exceeds the performance of all tested algorithms,
reaching a precision of 46% (see Table IV).

To analyze what each data source provides and understand
why the multi-resolution model achieves better performance
than the individual low-resolution (17months) and high-resolution
(3months) models, we present in the table V the performance
of P@10% for each of the four types of fraud included in the
data set. It can be seen that the CNN1D algorithm is superior at
detecting time-constant and proportional-decrease fraud (type 1),

Fig. 8: Precision-Recall curves tested on CER NTL test dataset.

Fig. 9: ROC curves based on CER NTL test dataset.

while CNN2D is much better at detecting fraud in time windows
within each day. The multi-resolution model has the best overall
performance and performs well in all four types of fraud. Type
2 fraud is the most difficult, coinciding with being the one that
introduces the fewest modifications on the original measurement
curve (see Fig. 5.) Type 3 fraud with a total decrease in the
reported energy consumption within peak hours is detected at
100%, and for type 4, it obtains 94% with the multi-resolution
model. CNN1D also achieves significant results detecting type
4 fraud since the windows are of long duration, significantly
affecting the monthly consumption.

V. DISCUSSION AND CONCLUSIONS

We present a multi-resolution convolutional neural networks
architecture for fraud detection on smart grids inspired by the
recent shift of the grid infrastructure, where the new generation of
smart meters is replacing older versions of digital and electrome-
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Model Fraud 1 Fraud 2 Fraud 3 Fraud 4 all

CNN1D 0.52 0.07 0.08 0.63 0.34
Wide&Deep 0.328 0.714 0.269 0.63 0.36

LSTM 0.34 0.86 0.19 0.63 0.37
CNN2D 0.22 1.00 0.35 0.94 0.40

CNN MR 0.36 1.00 0.31 1.00 0.46

TABLE V: Precision results (P@10%) by fraud type for the
CER NTL sample.

chanical meters. Our multi-resolution approach shows superior
performance to other NTL detection algorithms trained exclu-
sively on smart meter data (CNN2D, LSTM and Wide&Deep).
Experiments support our main hypothesis that multi-resolution
information can be leveraged during technological infrastructure
transitions to minimize NTL. Results are consistent both for
simulated experiments on a publicly available dataset and on real
data collected on the field by UTE company. Our results also sug-
gest that the architectural choices (i.e., the particular layers that
compose the network solution) are not critical and comparable
results can be obtained leveraging CNN or LSTM components.
One of the advantages of using convolutional architectures relies
on their ease of interpretation, as we illustrate in in Fig. 10 where
the activation layer associated with feature kernels is presented.

The relative performance of the models tested matches for
the experiments performed on real (UTE SM) and simulated
(CER NTL) fraud. Interestingly, despite of the relative coherence
among models, a significant performance gap can be observed
when detecting real fraudulent profiles compared with simulated
cases. Although the different types of simulated fraud have a
physical basis for their effect on consumption curves, and in that
regard, they accurately simulate different electrical configurations
associated with fraud, the lack of a model associated with
the human behavior and energy usage patterns of a fraudulent
customer could explain the performance mismatch.

We also observed that when compared independently, 3 months
of fine-resolution data has more predictive power than 36 months
of low-resolution data. This is great news for utility companies
since it provides quantitative proof that novel smart meters
improve the ability to detect and prevent NTL. Moreover, it shows
that even a few months of high-resolution data can outperform
more than a year of monthly readings, suggesting that companies
do not have to wait for too long after new meters are installed to
start detecting abnormal activities. Finally, our modular model can
leverage both datasets from previous and future infrastructures.
Our model’s high-resolution and low-resolution components can
potentially be fine-tuned and trained independently (freezing
portions of the network) to leverage heterogeneous datasets that
combine customers with a variety of meters.

Fig. 10: Top left: an example of the 2D image associated with the
high-resolution consumption profile of a fraudulent customer; the
remaining images illustrate examples of activation layers for this
test input for a random subset of kernels of the CNN2D model.
As we can observe (see e.g., the top right activation) some learned
features are associated with abrupt consumption shifts, suggesting
some kernels are associated with directional edge detection.
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