
Steps Towards Continual Learning in Multivariate Time-Series
Anomaly Detection using Variational Autoencoders

Gastón García González
Universidad de la República

Uruguay

gastong@fing.edu.uy

Pedro Casas
Austrian Institute of Technology

Austria

pedro.casas@ait.ac.at

A. Fernández, G. Gómez
Universidad de la República

Uruguay

alicia/ggomez@fing.edu.uy

ABSTRACT

We present DC-VAE, an approach to network anomaly detection in

multivariate time-series (MTS), using Variational Auto Encoders

(VAEs) and Dilated Convolutional Neural Networks (CNN). DC-VAE

detects anomalies in MTS data through a single model, exploiting

temporal and spatial MTS information. We showcase DC-VAE in

different MTS datasets, and portray its future application in a con-

tinual learning framework, exploiting the generative properties of

the underlying generative model to deal with continuously evolving

data, avoiding catastrophic forgetting.We showcase the functioning

of DC-VAE in the event of concept drifts, and propose the applica-

tion of a novel approach to generative-driven continual learning,

introducing the Deep Generative Replay model.

CCS CONCEPTS

•Mathematics of computing → Time series analysis; • Net-

works → Network monitoring.
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1 INTRODUCTION TO DC-VAE

Network monitoring data often consists of hundreds or thousands

of variables periodically measured and analyzed in the form of time-

series, resulting in a complex-to-analyze multivariate time-series

(MTS) process. In this paper we introduce DC-VAE, a deep-learning

based approach to anomaly detection in multivariate time-series,

based on popular Variational Auto-Encoders (VAEs) [1, 2, 5]. VAEs

are a generative version of classical auto-encoders, with the partic-

ularity of having, by conception, a probabilistic manner to describe

an observation in the latent space. Thus, rather than training an

encoder which outputs a single value describing each latent state
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Figure 1: Example of time-series analysis through DC-VAE.

Normal-operation is defined by -x and 2x .

(a) Example of real anomalies in TS2.

(b) Example of real anomalies in TS4.

Figure 2: Examples of real anomalies present in the analyzed

dataset, and their identification by DC-VAE.

attribute, the encoder is formulated to describe a probability distri-

bution for each latent attribute. For a given input, VAEs produce as

output prediction not only an expected value, but also the associated

standard deviation, corresponding to the distribution the model

understands (i.e., has learned) generated the corresponding input.

This automatically defines a normality region for each independent

time-series, which can then be easily exploited for detecting devia-

tions beyond this region. To exploit the temporal dependencies and

characteristics of time-series data in a fast and efficient manner,

we take a Dilated Convolutional (DC) Neural Network (NN) as

the VAE’s encoder and decoder architecture. Compared to normal

convolutions, dilated convolutions improve time-series modeling

by increasing the receptive field of the neural network, reducing

computational and memory requirements, and most importantly,

enabling training – and detection – on longer-in-the-past temporal

sequences.

2 DC-VAE AND CONCEPT DRIFT

Figs. 1 and 2 present the main ideas behind the usage of DC-VAE

for time-series anomaly detection, in this case portraying the re-

sults obtained in the analysis of the TELCO dataset, a proprietary

MTS dataset, corresponding to real measurements collected at an
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Figure 3: DC-VAE response to univariate concept-drift: a gradual linear fall of the values during the day.

(a) DC-VAE under strong concept drift.

(b) Empirical distributions of subsets (2015−# , (2015−� , and (2017.

Figure 4: Strong subset changes requires re-training.

operation mobile ISP – we are in the process of publicly releasing

this dataset to the community. In a nutshell, if the VAE model was

trained (mainly) with data describing the normal behavior of the

monitored system, then the output for a non-anomalous input x

would not deviate from the mean -G more than a specific integer

" (calibrated with ground-truth data) times the standard deviation

2G . One of the main challenges faced by learning-driven anomaly

detection system is their ability to cope with Concept Drift (CD) in

the analyzed data – i.e., modifications of the underlying distribu-

tion. CD can manifest itself as a shift in the mean, an increase or

decrease in the variance, or even as complete data modifications.

These CD changes may be related to important trends in the data,

requiring proper detection and re-training. Fig. 3 shows an exam-

ple of DC-VAE operation under a CD, where a gradual change in

the interval indicated as the CD zone is simulated in TS5. DC-VAE

is not capable to track this individual CD, given its multivariate

nature. Fig. 4 shows DC-VAE under a more drastic CD, in this case

considering data from different years (2015 and 2017) from the open

SWaT dataset [4] – commonly used for detection of cyber-attacks.

Fig. 4(a) shows the tracking of DC-VAE in (top) the 2015 normal

operation dataset used for training, (middle) the 2015 attack dataset

used for testing, and (bottom) the 2017 dataset. DC-VAE totally fails

to capture the SWaT dataset in 2017, as the underlying distributions

of the corresponding data are significantly different, as evidenced

in Fig. 4(b).

3 CONTINUAL LEARNING FOR DC-VAE

We therefore explore different approaches to cope with the de-

scribed CDs, in particular exploiting the generative nature of the

DC-VAEmodel for continual learning. In a continual learning frame-

work, we assume a continuously evolving stream of data, repre-

sented as a sequence of subsets (8 , each characterized by a different

underlying distribution.We define a sequence of _ subsets (1, . . . , (_
sequentially arriving, and assume access to only the data in current

subset (C . We are currently exploring different approaches to tackle

this problem, considering two recent models referred to as Deep

Generative Replay (DGR) [6] and BooVAE [3]. Given its simplicity

and model elegance, we have decided to take DGR as the starting

approach to extend DC-VAE to the continual learning setup.

The DGR approach uses a teacher generative model to generate

synthetic data �1→(C−1) that mimics former training examples in

(1, . . . , (C−1. Then, the new student model is trained on joint syn-

thetic data � and new data (C . This approach is conceptually simple,

model-agnostic and overcomes catastrophic forgetting, but requires

retraining the model while generating the dataset from all previous

subsets.
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