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Instituto de Computación, Facultad de Ingenieŕıa
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Abstract In this paper, we present an infrastructure for securing dis-
tributed computations between hosts, using a novel technique called Proof
Carrying Results. This technique is based on Necula’s proof carrying
code. Basically, the result of some computation comes equipped with a
certificate, or witness, showing that the computation was made correctly.
This witness can be used to verify that the value was generated in a good
way. We will show how to add the PCR technique and its supporting
infrastructure to a distributed programming language. This will make
the language more robust against active adversaries, when the returned
values of a computation are of abstract types. Finally, to check the values
and associated witnesses produced by some host, we use the COQ proof
checker for a precise and reliable verification.

1 Introduction

There are plenty of networks that work in a cooperative way and form what we
know as grids of computers. These grids serve a lot of purposes, and they are used
with good results for intensive calculation, because the joined computing power
aids in solving any kind of complex functions. To cope with these new requirements
and facilities, programming languages had to evolve into new paradigms, including
facilities to do distributed computing in a straightforward way. These are known
as distributed programming languages. Using this approach, how the network is
accessed and where processes are located should be avoided as a concern for the
programmer.

Type-safety is a property concerned with how much a programming language
protects its own abstractions. It is usually viewed as two properties of the
semantics of the programming language: progress and (type-) preservation. Not
every programming language has this property, and in the ones that are distributed
it is more difficult to conceive.If the programming language semantics and the
type system guarantee that the encapsulation provided by type abstraction can
never be breached, then the language is called abstraction safe. On a single
computer it is usually guaranteed by the compiler.

However, this changes radically when we begin to transmit data over the
network. Data can be modified, lost, or attacked. After the creation and utilisation



of such languages, an aspect remaining to be introduced is the security properties
of these computations. The security properties of languages that execute on a
single host are hard to maintain. We must take increased precautions when dealing
with lots of hosts and complex networks.When dealing with remote computations,
receiving the correct values for our computations is a must: if not, we are wasting
time and effort. The correctness of the received values is independent of its type,
such if it is concrete or abstract. For values of concrete types, we could have its
representation available for checking that the value received is of that type. This
is not the case for abstract types: its representation even could be not available
at all. Therefore, how can values of abstract types be secured, in the context of a
distributed programming language?

We propose the use of a novel technique, called Proof Carrying Results
[BP06] (PCR). Basically, the result of some computation comes equipped with a
certificate, or witness, that can be used to check the correctness of these values
of abstract types. There are many ways for a host to check the correctness of
this value, by using the associated witness. On one hand, it can be verified using
a custom made checker for the particular abstract type. This way is prone to
errors, in the creation of a correct checker for these values. On the other hand, a
proof checker can be used as a reliable tool for checking correctness.

Throughout this work, we will use a language called Acute [SLW+04]. Its
main features are a large part of what is needed to produce a typeful distributed
programming, and involve type-safe marshalling of arbitrary values by using
two primitives, marshal and unmarshal. In this work we show how to add the
PCR technique to the Acute distributed programming language. The supporting
infrastructure for the technique is introduced along with it. For checking the
values and associated witnesses produced by some host, we use a proof checker
for a precise and reliable verification.

Therefore, our contribution is threefold:

– an infrastructure has been defined and implemented for supporting the
technique of proof carrying results,

– the Acute distributed programming language has been extended, with a
mechanism that permits the exchange of abstract values in a certified way,
and

– for doing the verification of the results, this infrastructure has been connected
with the COQ proof checker.

This paper summarises part of the work that has been developed in our
Master thesis [Zip08b]. The document is organised in this way: section 2 has a
description of the general problem and the particular case we focused on. We
continue with the introduction of the Proof Carrying Results technique in section
3, and how this technique can be used to help us solve the problem presented.
In section 4 we show the infrastructure that was developed to support PCR in
Acute. Finally, we detail related work, and some concluding remarks and further
work.



2 (Un)Trusted remote computations

In this section we present the problem of remote computations between untrusted
hosts. Figure 1 shows a basic interaction between hosts. There, some host sends
a value a to an untrusted part. It asks for the computation of a function f with
the value sent.

Figure 1. Remote computation problem

Afterwards, the untrusted part obtains b as the result of applying the function
f to a. Then b is returned to the initial host. The question now is: how can this
host be sure that b is effectively the result of applying function f to a?. For
this to work we must require that the result b comes along with an additional
information that shows that the computation was made correctly. A solution is
proposed in section 3.

In particular, the language Acute has a problem related to this one. Acute
has powerful properties: type and abstraction safety are guaranteed along the
distributed system. The language has documented security problems when un-
marshaling values of abstract types. If the value marshalled is of an abstract
type, the representation could not be available at unmarshal time. Therefore, in
this case: how can it be assured that this value was generated by a well-behaved
Acute run-time?

What happens when there are entities that can tamper with data transmitted
between hosts? The presence of active adversaries in the networks changes the
scenario. If this situation occurs, safety can be no longer guaranteed. In this case,
an additional check is that the marshalled value is a well-formed representation
of something of that type. Nevertheless, the implementation of that type could
be used for checking types at unmarshal time. But this implementation is not
available, and especially in the case of abstract types. This limits the language
to a simple decision to handle this case: to work only in a trusted scenario, or to
marshal only values of concrete types. For a complete and detailed presentation
of this we refer the interested reader to [Zip08b].

We will extend the language to support marshalling of abstract types in a
non-trusted scenario. For this purpose, we will introduce the PCR technique into
the language, and a supporting infrastructure for it that will end increasing the



properties of safety in a distributed context. The next section summarises the
contributions of this work.

3 Proof Carrying Results

This technique was introduced in [BP06]. The authors propose that some of
the concepts introduced by [NL96] in proof carrying code (PCC) be reused.
In that work, Necula put formal mechanisms to solve the problem of remote
code execution in a behaviour-controlled way. As in PCC, there are two parts
exchanging information, but here the exchange is applied in a different scenario.
Instead of a code consumer, we have a results consumer: some host consumes a
remote function, and the host that makes the computation sends its results with
additional information that allows the consumer to validate this result.

Figure 2. Basic PCR approach

The approach is that a consumer host sends an untrusted part some compu-
tation to be done remotely. The untrusted part then returns the result of this
computation, with a certificate that the computation has been done in a correct
way. Then this certificate can be used to verify if the result was computed the
correct way.

Certificates provide additional data to check the correctness of computations.
They can contain witnesses, which are generated in the process of computing,
and proofs, that state properties about the result. These witnesses are like a trace
of the computation made, and are closely related to the final result returned.
Proofs, which can be part of the additional data carried, can be there to establish
properties about the result itself, or about the witnesses.

Formalisation

We have a function f and we want to delegate its computation, using a as
argument:

– f(a) is delegated to an untrusted party, f ∈ A→ B, a ∈ A
– b ∈ B is the expected value



To verify that this value is the value we sent to compute, we must have some
function check:

checkf ∈ A×B → bool | ∀(a, b) ∈ A×B, checkf (a, b) = true⇒ b = f(a)

In general, PCR allows the untrusted part to provide additional data H intended
to ease the checking process. Thus, one may have a checker function checkR ∈
A×B×H → bool such that checkR(a, b, h)⇒ R(a, b). In this way, the functional
specification f is generalised to an input-output specification R.

This technique challenges the traditional algorithms, because more information
could be needed from them, not only their result. In the next section we introduce
a new kind of algorithm that is the foundation of this approach. This kind
of algorithms are called Certifying Algorithms. The term was introduced in
[KMMS03], and a more general approach was given in [MEK+05]. For a complete
and detailed presentation of this we refer the interested reader to [Zip08b]. An
algorithm or program is certifying when, along with the result it was supposed
to give, it returns a certificate or proof that this result is indeed the correct for
the given input. This is a pragmatic approach to program correctness.

4 Infrastructure for PCR in Acute

In this section we present a generic infrastructure for doing Proof Carrying
Results. To this aim, we begin introducing primitives that describe flows in
distributed computations. We show how the infrastructure is implemented in
the Acute language, for certified result communication. Furthermore, it will be
used for verifying the witnesses of the computations. Finally, we show how the
certificate checking process is made, connecting the Acute language with the
COQ proof checker.

4.1 Primitives for distributed computation

The primitives introduced here are operations, or a sequence of operations, that
describe different ways of obtaining a certified result. Each primitive will then be
shown as an interaction flow between entities.

In this case, these entities will be 3 hosts interacting with each other, which
are called Alice, Bob and Trent.

The first flow is from Bob to Alice. Bob sends Alice a value v of type T . In
this case, Alice did not directly ask for this value. There is no guarantee that
Alice may ever receive or process the value sent by Bob. Thereafter, we could
say that this value has been pushed from Bob to Alice.



Figure 3. First flow

The second flow is from Alice to Bob. Now Alice asks Bob for some value of
type T . Then Bob returns that value of type T .

Figure 4. Second flow

The last flow happens between Alice and Trent. Alice has a value v and asks
Trent for a proof that v is of type T . If Trent can construct such proof x, it
returns −→x to Alice. When some exception happens, for example, if no proof can
be found at all, an error is returned.

Figure 5. Asking for a proof

These primitives can be combined to increase the types and complexity of
flows in the system. We will be interested in the particular flows (or sub-flows)
that include proofs of the value sent along the wire. In the next subsection we
show how these primitives, combined, are used as a PCR infrastructure model.



4.2 Infrastructure model

Using the primitives and flows previously described, we will model an infrastruc-
ture for performing result certification. The infrastructure is modelled by the
interaction of the 3 hosts shown in Figure 6.

Figure 6. Infrastructure model

A simplification of this infrastructure is that Alice ≡ Trent. The full infras-
tructure considers all the flows and primitives presented. In our implementation,
we will focus on the primitive v : T, w.

4.3 Implementing the infrastructure in Acute

Now that we have introduced a general infrastructure for using in distributed
computations, we show how it is applied to the Acute language for obtaining
certified result communication.

We extend the way that we use the marshal primitive by adding a witness,
obtaining a new syntax for it

marshal e1 e2:T witness

which may now include the information that can be used by the receiver to
check an invariant. The use of witnesses for certification is optional: if there are
no witnesses the primitive will behave as the old one. In the case that certificates
are required by the receiver, the sender cannot choose: the value must be sent
with a witness or it will not be used by the receiver, and an exception will be
raised.



Figure 7. Adversary can not modify values only

The semantic of the primitive is changed accordingly. With this extension,
our system is more robust against active adversaries. It is important to note that
the adversary could modify the value and recalculate the witnesses for this new
value. This case does not directly affect the problem we are trying to solve. This
happens because, even when the original value has been modified, it complies
with the invariants the new value must have. The witnesses will be used to check
this compliance, and all we should care about is that the witnesses are well
generated to certify the value. A trivial example is that we ask a remote host for
a prime number, and the remote host sends us some number. In the middle of
this transaction, an adversary changes this number. As long as the new number
is also prime and it is sent with a proof, things will keep working and abstraction
safety is kept.

Verifying witnesses

To complete the process of result certification, the receiver must perform some
actions when receiving the value. We suggest the use of the received witness to
check that the invariant holds for the value received. Adding up, the primitive
for unmarshal

unmarshal e:T’

will be changed to reflect the new extension. The new primitive

unmarshal e:T’ witness

will support the use of witnesses. In the unmarshal process we will check that
the invariant holds for the module by using that witness. Therefore, our main
contribution is to add functionality to Acute that allow us to send values of an
abstract type along with a certificate that proves that the value complies with
the type invariant. Enforcing the check of witnesses must be supported, because



for some types we want to receive certified values for continuing our computation.
The unmarshal, as in the marshal case, alters its semantics in a similar fashion
to include the witness.

4.4 Certificate checking

After receiving the values, with extended information about its computation,
the infrastructure uses the certificate to check the value just received. For the
process of checking the certificate we decided to use the COQ proof assistant
[dt08]. Even thought COQ has many impressive functionalities, in this case it is
used only as a proof checker for the received certificate.

In general, to interact with COQ, the user has a command-line interface.
This is because it is commonly used interactively. We have that a simple proof
contains definitions, declarations, and the actual proof. This proof is surrounded
by the “Proof” and “Qed” words. At first sight, we did not have the prerequisites
of interaction, we just needed to have certain proof approved or not. To use it in
this way, the value and its certificate, along with other pre-defined constants and
COQ commands, were written into a file. After that, we call the COQ compiler
passing this file to be compiled. This was easy to implement, and we could obtain
basic results with it: the compiler returned a value 0 if the proof was successful or
6= 0 if it wasn’t. This solution requires forking a new process, the COQ compiler.
Figure 8 shows the architecture of the connection with COQ.

Figure 8. Architecture of the connection with COQ

When writing the file to be sent to COQ we had to take several things into
account. First of all, a valid proof had to be constructed with the assertions and
proofs that were present in our certificate, including the received value. In the
end, this procedure resulted in a concatenation of strings in the file, ordered by
some criteria. Following the Figure 9 we provide a description of the process.



Figure 9. Full proof sequence

In this Figure there are three different parts represented:

– the Acute run-time, responsible of executing Acute source code,
– the Acute internals, and
– COQ.

We describe the process using eight steps. Bob generates some value v with a
witness C of that computation, and sends this value to Alice using the marshal
primitive. In step (1), there is sample code that Bob uses to create the correspond-
ing value v, and its certificate. Next (2), the Acute internal run-time adds the
certificate to the value to be marshalled. After that (3), the marshal is transmitted
over some network medium (e.g. TCP/IP). Alice, at (4), expects this value after
invoking the unmarshal primitive. After the low-level network transport has
delivered the message, the Acute internal run-time uses the values received to
construct a valid proof sequence to be sent to COQ. This is represented in step
(5). Here, a new Unix process forks and the COQ compiler is executed with the
specified parameters, the value and its certificate (step (6)). After this fork, the
system waits until a response is generated by COQ. When we have a successful
compilation of the proof sequence, COQ ends returning a value of 0 (no error), as
usual in Unix systems. If any kind of error occurs, the COQ process will returns
a value different from 0, and some string output is shown at the standard output
of the process (step (7)). We catch this string output, and return it to the Acute
run-time, to be used by the language Acute if needed, for example, to raise an
exception. This is shown in step (8).



For a complete and detailed presentation of this we refer the interested reader
to [Zip08b].

5 Related Works

There are two basic types of work related to ours. First, there are distributed
languages with properties similar to the ones in the language we worked with,
Acute, that try to solve similar kinds of problems. We will not be exhaustive
with programming languages that support typed distributed communications.

In the context of object oriented languages, Java [AG96] boosted the dis-
tributed programming paradigm, permitting the execution on lots of hosts by
using its virtual machine as a basis. Primitives for doing distributed computa-
tions included the notion of marshalling (serialisation). This facility included
version identifiers with the class definitions of serialised objects, as we can see in
the Remote Method Invocation facility [WRW96]. The main problem for Java
programs is that classes are only identified by their (syntactic) name and class
loader. This introduces problems when trying to use two classes with the same
name but different methods.

For the Microsoft .NET framework, we have languages that rely on the virtual
machine that are functional or object oriented. An example of a functional
language for .NET is F# [Res07]. This language is like a porting of OCaml for
the .NET framework, with some additions. F# was developed as a pragmatically-
oriented variant of ML that shares a core language with OCaml. Unlike many
type-inferred, statically-typed languages it also supports many dynamic language
techniques, such as property discovery and reflection where needed. F# includes
extensions for working across languages and for object-oriented programming,
and it works seamlessly with other .NET programming languages and tools.

Second, there is work on other techniques, which are probabilistic instead
of being a verification technique like the one presented in this work. In this
document we used one technique for verification of distributed computations to
make them more secure. There are other techniques that introduce the utilisation
of probabilistic methodology for detecting possible alterations (or cheating) in
the context of grid computations. The work by Wenliang Du et. al [DJMM04]
on grid computing and on distributed computations by Phillipe Golle and Ilya
Mironov [GM01] are examples of these other techniques. The main approaches
are different, and even when they have very low probabilistic numbers of not
being caught cheating with the results, they are not one hundred percent reliable.
This is, of course, dependent on what kind of adversaries you have, and the threat
analysis you made for your system. Following the strategy of checking the results
of computations, Grid result checking [GRMR05] focuses on statistical checking.

6 Conclusions and further work

In this section we present our conclusions, together with lines of further work.



We have defined and implemented an infrastructure for result certification.
This infrastructure can be used in other places where there is a need for using
the proof carrying results technique and not only in this particular case. It is
independent from the language, and also, with little or no effort, from the proof
assistant used.

There is a successful implementation, for the Acute language, of a solution for
the detected problem. This solution uses the infrastructure defined here, and its
implementation is available for further testing [Zip08a]. In order to achieve this,
we used the technique of proof carrying results, where values transmitted to other
hosts carry a witness that proves the computation has been done in a correct way.
For the process of verifying that the witness certifies these transmitted values, we
used the COQ proof assistant. The proofs are made over these values of abstract
types and their properties, carried in a certificate.

An important aspect of the definition of the infrastructure, is that it can be
used in other places where there is a need for using the proof carrying results
technique and not only in this particular case. It should not be difficult to
extend the framework to any other programming language which suffers from
similar problems. This means that if we can run a COQ proof assistant, and
either 1) we have access to the source code of the programming, or 2) the
programming language has an API for interfacing in a similar way with the
system; then it should be a reasonable amount of work to add this mechanism to
the language/system.

The proof checker is used as a reliable tool to prove that the certificates can
be verified correctly. In this step we used the COQ proof assistant, but without
interacting with it; only as a verification tool. Any other trustworthy proof checker
can be considered. The proofs are made over these values of abstract types and
their properties, carried in a certificate. Working with a proof assistant is a good
way of delegating the checking process. It is important to use a well-designed,
well proven tool for doing this step.

Proof Carrying Results is a promising new approach. The progress on this
subject is directly bound to the progress on Certifying Algorithms. This happens
because it is difficult to find an algorithm that works for a general case. Despite
this consideration, there are many applications of this technique in a number
of places, given that we do not trust other hosts. In particular, in global grids
where we could have many distributed computations, this technique can obtain
good results. Finally, we have made a proof of concept that implementations
can be carried to extend systems in a successful way. The source code of the
Acute language with support for PCR can be found in [Zip08a]. There are many
improvements that can be made that complement the work done up to now, and
these are presented in the next section.

There are a number of lines that can be followed starting from this point.
Throughout this work we have opened many possible interesting lines of research.
We will try to summarise them here:

– Proof Carrying Results can be implemented in other distributed languages,
with the same problems that we introduced in Acute. If we have few resources



for performing computations (e.g. Java cards, cellular phones, etc.) it is an
ideal place to be used. This is because computations can be performed in
a server with lots of computing resources, and just checked by the client
application, given a clear API for doing result certification.

– For the COQ proof assistant, it could be interesting to have a Proof service:
this should be a server, that listens in a TCP/IP port and forwards the terms
and lemmas received to an executing COQ process.
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