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Abstract: Massive scale data centers (MSDC) have become a key component of current content-
centric Internet architecture. With scales of up to hundreds of thousands servers, conveying traffic
inside these infrastructures requires much greater connectivity resources than traditional broadband
Internet transit networks. MSDCs use Fat-Tree type topologies, which ensure multipath connectivity
and constant bisection bandwidth between servers. To properly use the potential advantages of
these topologies, specific routing protocols are needed, with multipath support and low control
messaging load. These infrastructures are enormously expensive, and therefore it is not possible to
use them to experiment with new protocols; that is why scalable and realistic emulation/simulation
environments are needed. Based on previous experiences, in this paper we present extensions to
the ns-3 network simulator that allow executing the Free Range Routing (FRR) protocol suite, which
support some of the specific MSDC routing protocols. Focused on the Border Gateway Protocol
(BGP), we run a comprehensive set of control plane experiments over Fat-Tree topologies, achieving
competitive scalability running on a single-host environment, which demonstrates that the modified
ns-3 simulator can be effectively used for experimenting in the MSDC. Moreover, the validation was
complemented with a theoretical analysis of BGP behavior over selected scenarios. The whole project
is available to the community and fully reproducible.

Keywords: ns-3; routing; data center

1. Introduction

Content-centric, cloud-based networking is the dominant model in the current Internet,
with the pervasive presence of content providers with data center infrastructures deployed
throughout the whole world. Content delivery networks (CDNs) replicate content in
locations close to users, in order to improve their quality of experience, while over the
top (OTT) providers behave in a similar way, consolidating the Internet distributed data
center model. Moreover, resource virtualization is making its contribution to the Internet
architecture shift as well, since the usual way to deploy online applications is to use cloud
computing providers, which, not surprisingly, also base their operations on data centers
with ubiquitous connectivity.

Both content and computing business are based in huge data centers with similar
basic functions such as compute, store, and replicate data using message exchange among
servers, taking advantage of supporting communication infrastructure. These data centers,
which may comprise hundreds of thousands of servers, are called massive scale data centers
(MSDC).

The traffic between users and applications running in the data center is called north–
south traffic, while on the other hand, east–west traffic is the one exchanged by servers
within the data center; the latter represents 85% of the total [1].

The traffic demand in MSDC, much higher than the traditional internet, requires
specific solutions at the forwarding, routing and transport levels, taking advantage of
the topological possibilities offered by Fat-Trees, inspired by Clos networks [2]. These
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networks, originally conceived to build non-blocking switching matrices for telephone
networks, are made up of multiple levels of switches, where each switch of one level is
connected to all those of the next level, obtaining a high path diversity as a result.

In a previous work [3], we experimented with data center routing protocols in em-
ulated environments such as Kathara [4,5], Megalos [6], CORE [7] or Mininet [8], com-
plementing the work presented in [9], where the Sibyl framework is used for evaluating
implementation of routing protocols in fat-trees, including the Border Gateway Protocol
(BGP) in the data center [10], Openfabric (IS-IS with flooding reduction) [11], and Routing
in Fat Trees (RIFT) [12,13]. This framework presents wall-clock independent metrics, which
permits us to normalize the results disregarding the underlying execution environment.

These previous works are based on the routing protocols from the Free Range Routing
(FRR) suite, an open source implementation of BGP, OSPF, RIP, IS-IS, and other protocols,
inheriting the code base of the Quagga project [14].

As mentioned in the previous work, emulated devices run exactly the same firmware
of hardware devices, therefore implementing identical functionality. Moreover, emulated
devices are exposed to real-life software errors, which permits us to not only evaluate
functionality, but also resilience. On the other hand, re-implementation of network proto-
cols and applications is needed for discrete event simulation, weakening the chances of
testing real use cases. Nevertheless, a simulator provides an environment for replicable
experiments always guaranteeing the same conditions and provides fine management of
the timing issues.

With these considerations in mind, in this paper we present a port of FRR, to the
Direct Code Execution (DCE) [15] mode of the ns-3 Network Simulator [16]. ns-3 is a
discrete event network simulator for Internet systems, widely supported in the networking
community. ns-3 has a mode of execution called DCE [17], which allows using native
code (properly compiled) in the simulations. In this way, it is possible to execute existing
implementations of network protocols or applications within ns-3. Therefore, it is possible
to reconcile the virtues of discrete event simulators with emulation, which preserves the
real implementation of protocols and applications. Moreover, this approach permits us to
run a fair comparison among different experimentation frameworks which run FRR.

Thus, we seek to perform the necessary implementations so that ns-3 can support FRR,
in order to develop simulations in ns-3 DCE that use FRR code. While FRR implements a
set of network protocols, the scope of this work is to support the implementation provided
for BGP. For the implementation of the simulations, we will focus on the fat tree CLOS
topology, which is widely used in massive data centers. The aim is to study the behavior of
the BGP protocol in this context.

The main contribution of our work consists of a simulation platform to test and
analyze routing protocols in the context of MSDCs. This platform provides the ability to
simulate the FRR suite and in particular the MSDC routing algorithms. To achieve this,
our work includes: (i) an extension of DCE to support the FRR suite, (ii) a FRRHelper class,
which facilitates the instantiation and usage of FRR in a simulation script, (iii) an extension
of the fat-tree topology generator VFTGen [18] to produce ns-3 simulation scripts, (iv) a
comparison and validation between emulation and simulation-based approaches for BGP
in data center, and (v) a comparison and validation between the experimental results and a
theoretical analysis of BGP behavior over selected scenarios.

The remainder of this paper is organized as follows: Section 2 provides the background
and presents the Sibyl framework as related work. Section 3 describes the process of porting
FRR to ns-3, using the DCE module. Section 4 exposes the validation of the port and the
experimental results generated. Consequently, a basic functional evaluation is described.
Secondly, a comparison against the Sibyl framework is carried out. Finally, a validation
against a theoretical analysis of BGP behavior over two selected scenarios is performed. In
Section 5, a performance analysis is exposed. It evaluates the scalability, memory usage
and execution times for different network sizes. Additionally, two features to improve the
performance of the port are described; and a comparison between the execution times in
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the simulated and emulated environment is exhibited. Finally, in Section 6, we discuss the
most relevant aspects and conclusions of this work.

2. Background and Related Work

There are different approaches to network control plane debugging, namely model-
based verification, and testing over emulation or simulation environments. In this work, we
concentrate on testing tools. Regarding emulation tools, we have been working with scal-
able environments such as CORE, Mininet, Kathará and Megalos, where an actual protocol
implementation can be tested in a controlled environment. Moreover, the Sibyl framework,
which works over Kathará and Megalos, assembles different tools for protocol evaluation
over fat-trees.

In the case of simulations, re-implementation is often needed. This presents a major
drawback for protocol debugging, and therefore it is not the most usual path to follow.
Some previous works have attempted to offer real code execution over a simulator but, to
the best of our knowledge, only DCE has a working environment tested with many real
world implementations. In Section 3, we present in more detail the characteristics of ns-3
and DCE, and the FRR port effort.

2.1. The Sibyl Framework

In this section, we will briefly describe the Sibyl framework that we will use as a
baseline for comparison and validation of our proposal, given the public availability of a
complete data-set of experiments [19]

Kathará is a network emulation system that accurately reproduces the behavior of
a real system, using Docker containers [20] to implement devices, which represents a
lightweight alternative to standard virtualization solutions, allowing devices to use dif-
ferent images in the same network scenario (for example, different implementations of a
given network protocol).

Kathará supports different virtualization managers, and in order to support horizontal
scalability, it uses Kubernetes [21], adopting the name Megalos. Since it runs distributed in
a cluster of servers, the low level connectivity of emulated devices is implemented using a
Virtual Extensible LAN (VXLAN) data plane with an EVPN BGP control plane.

The Sibyl framework integrates the aforementioned environments, tailored to perform
a large number of experiments on parametric fat-tree topology configurations. During
each experiment, Sibyl performs a series of steps, starting by generating a topology, deploy
nodes running specific containers and network links, start the experiment and capture
relevant PDUs, shutting down and analyzing the results (for further details, see [9]).

We used the results gathered following these steps as a baseline for comparison with
other experimentation environments, in particular with the FRR port to ns-3 presented in
this paper.

2.1.1. Sibyl Fat-Tree Experimentation Tools

In this section, we describe the tools included in the Sibyl framework, as follows:

• VFTGen [18] automatically generates and configures fat-tree topologies for Sibyl. It
takes as input the parameters of a fat-tree.

• Sibyl RT Calculator is a tool for generating the expected forwarding tables of the
network nodes of a fat-tree, taking into account the routing protocol (e.g., BGP) and
the type of test (e.g., Node Failure).

• Sibyl Analyzer is a tool to analyze the results of the experiments using the packets
exchanged by the nodes during an experiment.

2.1.2. The Timing Issue

Sibyl implements a wall-clock independent metric, which permits us to normalize the
results disregarding the underlying execution environment.
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This is necessary for emulated environments, where underlying hardware resources
cannot be taken for granted. On the other hand, execution time is completely under control
in discrete event simulations, permitting us to measure performance parameters with
certainty. This is the main reason to attempt the FRR port to ns-3, along with the fact that
DCE permits us to execute native code.

2.2. Fat Tree Networks

Fat-tree networks are topologically partially ordered graphs, and “level” denotes the
set of nodes at the same height in such a network, where the nodes of level zero (the lowest)
are called Leaves, those of level one are Spines, and the ones of level two are Top of Fabric
(ToF) or Cores. The subset of Leaf and Spine nodes that are fully interconnected is called a
Point of Delivery (PoD). Level two is called the aggregation level and has the responsibility
of connecting different PoDs.

Following the notation described in [12], a fat-tree topology can be specified by three
parameters: KLEAF, KTOP and R. KLEAF and KTOP describe the number of ports pointing
north or south for the leaf and spine nodes, respectively. Finally, the number of links from a
ToF to a PoD are denoted by R and called “redundancy factor”. As an example, the Figure 1
shows a fat-tree with KLEAF = 2, KTOP = 2 and R = 1. For simplicity, from now on we
assume KLEAF = KTOP = K.

Figure 1. A fat-tree multi-plane topology with K = 2, R = 1 and N = 2 planes.

Observe that there are two types of fat trees: single-plane and multi-plane. In a single-
plane topology, each ToF is connected to all the Top of PoD (ToP). This topology has the
maximum value of redundancy factor, with R = K. In these topologies, the number of
ports for each ToF is at least P × K, which might be unfeasible if P and/or K are too large.

On the other hand, in a multi-plane topology, ToFs are partitioned into planes:
N = K/R sets, each with the same number of nodes. All the ToFs of the same plane
are connected to the same set of spines of each PoD. The topology shown in the Figure 1
can be described as a multi-plane fat-tree with K = 2 and R = 1 and N = K/R = 2 ToF
planes. It is worth noting that in this configuration, redundancy is sacrificed to increase the
number of PoDs.

3. FRR Port to ns-3 DCE

In this section, we detail the process of porting FRR to ns-3, using the DCE module.
The process involved: (i) changes to DCE to be able to execute the FRR code, which implied
re-implementing some functions from the C library (glibc) that are used by FRR, also fixing
some bugs found in existing DCE code; (ii) minor changes to the code of FRR, in order
to solve some problems that were difficult to find another solution to; (iii) implementing
a class FrrHelper in a way that makes it easy to write scripts that use the port, and (iv)
carrying out tests in order to evaluate and validate the port, which we will see in Sections 4
and 5. The aforementioned port is open source and is available at [22].
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3.1. Background on ns-3 and DCE

ns-3 [16] is a discrete-event network simulator used mainly in research and education.
It is open-source and free, licensed under the GNU GPLv2 license.

Both ns-3 core and models are implemented in C++. It is built as a library that can be
linked both statically and dynamically by a main C++ program, which defines the network
topology and starts the simulation [23]. Typically, to run a simulation in ns-3, a C++ program
is created (script in the ns-3 nomenclature) that defines the topology and configuration
for the simulation. This program includes at the end a call to the Run() function of the
Simulator class that will start the simulation.

Regarding Direct Code Execution (DCE) [15], it is a framework for ns-3 that allows
us to execute existing implementations of network applications or protocols within ns-3
without any changes to the source code. This permits us to execute existing real applications
such as the ping application or even more, the entire Linux networking stack within an
ns-3 simulation.

Thus, in a ns-3 simulation which uses DCE, the network topology as well as channel
configurations will be done in ns-3, while applications running on nodes can use DCE,
including Linux native applications or actual implementations of network protocols, such
as Linux’s TCP, as shown in Figure 2.

Figure 2. DCE is used for running Linux applications without code changes. On top of that, it
enables the use of the Linux network protocol stack in ns-3 simulations. Net devices (and channel)
are simulated only with ns-3, while applications and network protocols can use DCE.

There are two ways to run DCE: basic mode and advanced mode. Basic mode uses the
ns-3 networking stack, while advanced mode uses the Linux networking stack. The latter
is done using the Linux kernel as a library.

The design of DCE takes its idea from the library operating system (LibOS [24]). DCE is
structured around three components: Core, Kernel and POSIX, as shown in Figure 3. First,
at the bottom level is the Core module that handles memory virtualization: stack, heap and
global variables. Above that is the Kernel layer that takes advantage of these services to
provide an execution environment for the Linux network stack within the simulator. For
Advanced Mode, DCE uses the Linux kernel implementation of layer 3 and 4 protocols and
Layers 1 and 2 are simulated with ns-3. DCE takes care of synchronization, making the
Linux kernel see ns-3 network devices as if they were real devices. Finally, the POSIX layer
builds on top of the Core and Kernel layers to re-implement the standard socket API for
use by simulated applications.
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Figure 3. Architecture of DCE. The application layer is where our programs will be executed using
DCE to connect to the core of the network simulator (ns-3). [Prepared by the authors on the basis of
an image obtained from [25]].

DCE runs each simulated process on the same host process. This model makes it
possible to synchronize and schedule each simulated process without having to use inter-
process synchronization mechanisms. What’s more, it allows the user to track the behavior
of the experiment by different processes without having to use a distributed debugger,
which tends to be more complex. The threads in each simulated process are managed by
a task handler, implemented in DCE, synchronized with the simulated host and isolated
from the other simulated hosts.

Since the loader of the host system aims to ensure that each process does not contain
more than one instance of each global variable, DCE provides its own implementation of
the loader with a specific loading mechanism to instantiate each global variable, once per
simulated instance.

The POSIX implementation in DCE replaces the use of the traditional glibc library.
Thus, when an application running on top of DCE makes a call to glibc, DCE intercepts
the call and executes the re-implemented function. Most of these functions are simply
a handshake to the corresponding function in the host’s glibc library. However, calls
that involve system resources must be re-implemented. These include calls involving
network resources, the system clock, or memory management. DCE classifies the functions
of the library glibc using the macros DCE or NATIVE. The former are functions that are
re-implemented by DCE, while the latter are passed to the operating system’s own library.

3.2. Previous Work: Quagga Port

Quagga is a routing software suite, providing implementations of OSPFv2, OSPFv3,
RIP v1 and v2, RIPng and BGP-4 for Unix platforms. FRR is a fork of Quagga, which has
been embraced by both industry and the community, replacing Quagga as the suite of
choice for open source routing projects. FRR incorporates implementations of protocols
used in data centers such as OpenFabric [26], and allows the necessary modifications to be
incorporated into BGP for routing in large-scale data centers.
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Quagga has been ported to DCE in 2008 [27]. The Quagga module in DCE allows
using Quagga routing protocols implementation as models in the network simulation. To
date, the Quagga DCE project is no longer actively maintained, being its last update in
2012. Despite this, the project is still functional and can be executed with DCE without
major problems. Quagga support in DCE is not complete.

To make it easier to use Quagga in simulations, the project provides a QuaggaHelper
class. This class provides methods that can be used from the simulation scripts to install
a protocol on a node and configure it. During the port of FRR, we drew heavily on this
class to develop a FrrHelper to provide similar facilities. Additionally, the fact that not all
features work with the ns-3 stack (Basic Mode) motivated us to focus on the Linux stack
(Advanced Mode) for the FRR port.

3.3. DCE Extensions to Support FRR

As previously mentioned, DCE does not support all existing glibc functions; therefore,
when porting a new application to DCE, it is possible that multiple errors appear due to
unrecognized function symbols, since they were not declared in DCE. Therefore, the process
of adding support for a new application is very cumbersome, and it is mostly based on trial
and error until all needed functions are detected and correctly implemented in DCE.

During the process of porting FRR to DCE, we found several (10) functions that were
not declared in the POSIX layer of DCE. For seven of them, it was necessary to implement
their functionality inside DCE because they are related to memory allocation, timing, file
operations, disk allocation and threading. The other three are functions where their by
FRR does not involve system resources, therefore, it is enough to indicate DCE to use the
original glibc implementation (use the NATIVE macro). These extensions can be found in
our public repository [22].

In addition to these added functions, we detected two bugs in memory management in
functions already implemented under the DCE macro. Two Pull Requests were performed
in the ns-3 DCE project due to the correction of these bugs [28,29]. In addition, another Pull
Request was made with the necessary functions to execute the code of FRR. At the time of
writing this paper, the Pull Requests are pending review.

3.4. FRR Extensions to Run over DCE

In addition to the extensions to DCE mentioned in the previous section, changes were
made in FRR in order to run FRR over DCE. These changes were made for practicality
reasons, due to the difficulty of adapting DCE to run FRR in its original form. The changes
took two forms: changes in the method of compiling and changes in the source code.

In general, in order for an application to run in DCE, it needs to relocate the executable
binary into memory. In turn, these executable files need to be built with specific options
for the compilation and linking stages as explained in the ns-3 DCE manual. For the case
of FRR, which is a framework optimized for several different platforms and also for real
networking hardware, we need to tune the compiling process.

Compiler optimizations often use function symbols that DCE does not implement.
For example, when compiling FRR with the default compiling configuration, the obtained
binary uses symbols such as __strndup or pthread_condattr_setclock. Therefore, we
opt to disable some compiler optimization so as to reduce the number of new functions to
implement in DCE.

Regarding source code changes to FRR, we perform some minimal modifications to
avoid the usage of some unimplemented glibc’s function symbols in DCE. The changes
are related to the log buffering of FRR, which does not have impact on the functionality of
the application. The compiling and source code changes are summarized in a compilation
script available in [30].
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3.5. Helper Class for Running FRR over DCE

To assist in the creation of simulations using the FRR port, we created a ns-3-dce-frr
module within the ns-3 DCE project. This is based on the existing ns-3-dce-quagga module
of the ns-3-dce-quagga port.

The ns-3-dce-frr module includes, among other things, simulation examples and the
FrrHelper. The latter contributes to the configuration of the environment required for the
deployment of simulations and assists on the instantiation of the selected daemons of FRR
where indicated (one or multiple simulated nodes), with zebra being installed implicitly.

Moreover, the FrrHelper creates the necessary directories, configuration files and
loads the programs to be executed by the nodes. In addition, the FrrHelper also includes
methods for the configuration of the ported daemons: zebra, BGP and OSPF. Further-
more, a frr-utils class has been implemented that provides useful functions for both the
FrrHelper and the simulations.

3.6. Fat Tree Generator for ns-3 DCE

In order to be able to execute multiple test cases on different configurations of fat-trees,
without the need to implement them each time, we develop a fat-tree generator for ns-3
DCE inspired in the Kathará analogous VFTGen [18].

This makes it easy to automate, create, and reproduce test cases. To create this
generator, the utilities vftgen-utils and vftgen-classes were implemented, which are
responsible for building the topology. That is, according to the indicated parameters, they
create the appropriate number of ns-3 nodes, connect them according to the corresponding
fat-tree and assign them appropriate IP addresses.

4. Validation and Experimental Results

Our implementation has been evaluated using three different approaches: (i) a simple
functional evaluation, (ii) a comparison against the Siybl framework, and (iii) a theoreti-
cal analysis.

4.1. Functional Evaluation

Several test cases has been developed along the process of implementing changes
and additions to ns-3 DCE to allow the execution of FRR, following an iterative and
incremental approach.

The core of FRR architecture is the zebra daemon, which manages IP routing by
updating the operating system’s kernel routing tables. It also permits to discover interfaces
and redistribute routes among the different routing protocols running on the host [31].

Thus, in order to verify the correct functionality of the implementation, it is necessary
to run zebra and routing protocols’ implementations together; in this case, we focus on BGP.
Under normal operation, BGP will learn prefixes and install entries in the kernel routing
tables via zebra, allowing the node data plane to forward IP packets. Note that BGP may
run without zebra, if we only want to verify the control plane operation (without packet
forwarding).

Therefore, for any given scenario, the verification method consists in checking routing
table updates. Likewise, connectivity tests can also be performed using, for example, the
ping command.

For this evaluation, we selected three scenarios and validate the correct execution:

1. Running zebra and BGP in a single node: This scenario allows us to test that FRR with
zebra and the chosen routing protocol can be loaded and executed in a node.

2. Running zebra and BGP in a network: We implemented some scenarios based on
Kathará project labs [32], such as BGP Simple Peering and BGP Prefix Filtering, which
permit us to test BGP update propagation and filtering among peers, and BGP Multi-
homed Stub, which is a more complex scenario.

3. Running other routing protocols: Although our focus is on BGP, all the FRR daemons
should run on ns-3 DCE. Therefore, we evaluate running OSPF in the same networks
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from the previous scenario. It is worth mentioning that no particular change was
necessary in the OSPF case, and consequently, we expect that other protocols will also
work correctly without the need to make further modifications to the implementation;
this is reasonable since, by the architecture of FRR, most of the complexity is contained
in the zebra daemon.

After the correct execution of these scenarios, and having verified that the routing
tables are correctly updated, we can conclude that zebra and BGP are running correctly in
ns-3 DCE, validating our extension.

4.2. Comparison against Sibyl Framework

Given that our focus is on evaluating routing protocols over Clos networks, we
decided to validate our implementation running several experiments over the same network
topologies used by the Sibyl framework [9]. Using these same scenarios in ns-3 DCE gave
us the opportunity to compare the results, since Sibyl framework defines various fat-tree
based scenarios.

4.2.1. Experimental Setup

The experiments consist on recording the number of Protocol Data Units (PDUs)
exchanged among nodes until convergence of the routing protocol. In our case of study
(the BGP protocol), this is equivalent to the number of BGP UPDATE messages. It worth
noting that each experiment consider the propagation of a single network prefix for each
leaf node in the topology, without losing generality in the results.

When a simulation starts and the BGP protocol begins to execute, the nodes start
exchanging UPDATE messages, until convergence is reached and the UPDATE messages
cease to be exchanged. Convergence occurs when all topology information has been
distributed (i.e., multi-path connectivity has been reached for every network prefix). Any
change in the topology, or in the routing table of a node, generates a new exchange of
UPDATE messages until convergence is reached again.

A scenario comprises a certain fat-tree topology (determined by the parameters k_leaf,
k_top and redundancy) and five different situations (test cases) that are described below:

• Bootstrap: The objective is to study the standard behavior of the protocol in the
topology when it is started, without any failure.

• Node Failure: This test case is used both to verify that BGP converges after a switch
failure, and also to count the number of PDUs that the protocol exchanged for that
purpose. The fault can be introduced in any type of switch in the topology, that is,
Leaf, Spine or Tof. It is done by shutting down the BGP daemon on the given switch.

• Node Recovery: In this test case, the objective is to count the number of PDUs ex-
changed by the switches, after one of them fails and is replaced by a new one. Like
the previous case, this case can be run on a Leaf, Spine, or Tof. We implement this case
by raising the topology without running BGP on the node in question, we wait for it
to converge and then we start BGP. This is equivalent to crashing the node and then
starting it again.

• Link Failure: This case also has two goals. On the one hand, to verify BGP convergence
after a link failure, and on the other hand, to count the number of PDUs for this
purpose. The test can be run for both the Leaf–Spine link case and the Spine–Tof link
case, simply by pulling down a given interface.

• Link Recovery: This case counts the number of PDUs after a failed link is replaced.
That is, the simulation is started and the protocol is expected to converge. Link failure
is then caused and the protocol is again expected to converge. Finally, the link is
recovered and the new convergence is expected. The number of PDUs that are taken
into account are those exchanged in this last phase.
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Each scenario is named using the following criterion: x_y_z_case-level, where:

• x is the k_leaf parameter.
• y is the k_top parameter.
• z is the redundancy parameter.
• case represents the test case, which can be link-failure, link-recovery, node-failure,

or node-recovery.
• level depends on the case:

- If the case is link-failure or link-recovery, level can be leaf-spine or spine-tof,
referencing the level where link failure or recovery occurred.
- If the case is node-failure or node-recovery, level can be leaf, spine or tof,
referencing the level where the failure or recovery of the node occurred.

The different scenarios where configured using the same values for k_leaf and k_top
parameters so as to have homogeneous switches at the different levels of the fat-trees. On
the other hand, for a given value of k_leaf and k_top, we variate the redundancy parameter,
always considering that it divides the k_top value. Moreover, during the different execu-
tions of the test cases, we vary the level where the failure is produced so as to cover all
the possibilities.

4.2.2. Execution Environment

All the experiments presented were executed on a server machine running Ubuntu
16.04 with 30 CPUs AMD Opteron 63xx class and with 244 GB of RAM memory.

We configure the simulation duration so as to allow convergence while minimizing it.
For this, we studied several simulations to find the best values for each scenario. The final
configurations for the simulation duration (in simulated time) for each scenario are:

• Bootstrap: 10 s.
• Node-failure and link-failure: 20 s. This time allows for the bootstrap to finish and

converge, produce the failure in the node or link and then wait again for convergence.
• Node-recovery and link-recovery: 30 s. In this case, after the failure and the conver-

gence, the node or link is recovered and we have to wait again for convergence.

The simulations are configured to generate traffic capture files (.pcap) for every
interface of each node simulated. This files are then processed so as to count the number of
BGP’s UPDATE messages exchanged.

4.2.3. Results

The results of all the experiments executions are shown in Appendix A. As can be
seen from Table A1, the number of PDUs (BGP UPDATES) obtained with our simulations
in ns-3 DCE exactly match the number obtained with the Sibyl emulations for most of the
scenarios. This exact match between the results in ns-3 DCE and the emulation platform
strongly validates the accuracy of our simulation platform. In particular, this shows that
with the proposed platform, we can execute the exact same BGP algorithm that runs in the
Sibyl emulation approach.

Regarding the scenarios where there are differences, we should note that there are
some Sibyl scenarios that present more than one result. This is due to the fact that the
emulations are not deterministic, and depend, for example, on the host machine resource
usage. For the cases where we have more than one result from Sibyl, the results obtained
in our simulations are between these values or very close to them. These differences also
demonstrate one of the main advantages of the simulation against the emulation given that
in the simulation the results are deterministic and reproducible. The exact same result can
be obtained independently of the underlying hardware or software where it is run.

In Table 1, we select some specific results. In particular, we show two cases with
a significant difference between our experiments and the Sibyl framework results. If
we consider the couple of scenarios painted in blue in Table 1, the result in scenario
10_10_1_node-failure-spine for Sibyl is roughly half the result obtained in ns-3 DCE;
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we argue that this is an outlier in Sibyl, as we will further show in Section 4.3.1. Regarding
12_12_1_node-failure-leaf scenario, note that the result for Sibyl is smaller, but in the
same order than the one of ns-3 DCE; here, we argue that the vector-distance nature of BGP
and its well known characteristic of “path hunting” is responsible for this difference, as we
further explain in Section 4.3.2.

Table 1. Representative results for comparison against Sibyl.

Scenario Number PDUs PDUs PDUs
of nodes ns-3 ns-3 Sibyl

w/o zebra w zebra
2_2_1_node-failure-leaf 20 60 60 60
2_2_2_node-failure-leaf 10 28 28 28
4_4_1_node-failure-leaf 80 504 504 504
4_4_2_node-failure-leaf 40 248 248 248
4_4_4_node-failure-leaf 20 120 120 120
6_6_1_link-failure-leaf-spine 180 996 996 996
6_6_1_link-recovery-spine-tof 180 1796 1796 1657, 1796
10_10_1_node-failure-spine 500 37,480 37,480 18,390
12_12_1_node-failure-leaf 720 17,244 - 13,800

Note that we can also compare the results of the simulations with and without the
zebra daemon running. As explained in Section 5, we executed the experiments disabling
zebra in order to reduce the resource consumption of the simulation. In most of the
scenarios considered, this change does not affect the number of BGP updates exchanged
in the experiment. Nevertheless, in some cases there exists a small difference (actually, in
8 out of 250 experiments, 3.2%). Most of the misalignment in the results are experienced
in node-failure-leaf scenarios, due to the very reason we mentioned above: the path-
vector nature of BGP may cause extra UPDATE messages to be exchanged, as explained in
Section 4.3.2.

In the following section, we also compare the obtained results against a theoretical
model of the behavior of BGP.

4.3. Theoretical Analysis of BGP Behavior over Selected Scenarios

In this section, we will analyze the BGP behavior over the scenarios presented before,
taking advantage of the regularity of the fat-trees multi-plane with R = 1, which can be
described by a single parameter k [33]. In effect, in a fat-tree topology of k PoDs, there are k
switches (each with k ports) in each PoD, arranged in two levels (Leafs and Spines) of k/2
switches each. Each Leaf is connected to the k/2 Spines and vice versa. There are (k/2)2

Core switches, each of which connects to k PoDs.
The aim of this theoretical analysis is to find an expression in function of k that

describes the number of packets exchanged in two scenarios: the fail of a leaf, and the fail
of a spine. These scenarios were intentionally selected after the differences in results shown
in Table 1.

Remember that the experiments propagate one prefix per leaf, i.e., in a fat-tree of k
PoDs there are a total of k2/2 prefixes, or equivalently, leaf nodes.

4.3.1. Case Spine Node Failure

To analyze the behavior of BGP when a spine node fails, we divided the problem into
three sub-problems: (1) the PoD of the failure, (2) the PoD with no failures and (3) the
spine–core links. Since the goal is to find an expression that models the total number of
packets exchanged after the failure, dividing the problem into sub-problems is equivalent
to dividing the expression into sums.
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1. First note that each leaf needs connectivity information for k2/2 prefixes; while
k2/2 − 1 prefixes are “foreign”, the remaining one is directly connected. When the
fails occurs, in the PoD of the fail there are k/2 leaf nodes aware of the failure. The
BGP process of each leaf node will recalculate the routes and will notice that for every
known prefix, one possible next-hop is missing. Consequently, it will send, for each
known prefix, a BGP update with the next-hop attribute updated. Thus, we have k/2
leafs sending k2/2 − 1 packets (the total number of prefixes in the fabric which have
lost a next-hop) through their k/2 − 1 links. Consequently, the total amount of BGP
packets in the PoD of the failure equals k/2 × (k/2 − 1)× (k2/2 − 1).

2. The rest of the PoDs learn about the failure through the spine connected to the
same plane as the faulty spine, through the corresponding core switch. This spine
sends a BGP withdraw containing all the prefixes no longer reachable through the
corresponding core switch (all the prefixes inside the PoD with the failure) to all its
neighbors (k/2 leaves in this PoD). After that, each leaf recalculate its routes and notice
that each prefix received in the withdraw are no longer reachable through one of its
next hops. Consequently, it will send, for each of these k/2 prefixes, a BGP update to
all its neighbors (k/2 spines). Consequently, the total amount of BGP packets in each
PoD without a failure equals (k/2) + (k/2)× (k/2)× (k/2).

3. The faulty spine was connected to k/2 core switches. Because the topology considered
is multi-plane with R = 1, these core nodes have exactly one link with each PoD.
After the failure, each core connected with the faulty spine have no longer reachability
to the prefixes of the corresponding PoD, and it must send a BGP withdraw for the
prefixes of such PoD to all its neighbors (k − 1 spines). After that, when a spine
connected to these cores receives the withdraw from all of them, it will notice that
it no longer has reachability to the prefixes of the given PoD, and it will send the
correspondent withdraw upstream to the cores; therefore, a total of two BGP packets
traverse every core–spine link. In effect, we have k/2 cores, which send and receive
one BGP withdraw through all their “live” interfaces (k − 1). Consequently, the total
amount of BGP packets in the core–spine links equals 2 × (k − 1)× k/2 = (k − 1)× k
packets.

Put together, and multiplying the expression for the PoDs without a failure times the
amount of such PoDs (k − 1), we arrive at a total BGP packets of k/2 × (k/2 − 1)× (k2/2 −
1) + (k − 1)× ((k/2) + (k/2)× (k/2)× (k/2)) + (k − 1)× k. Simplifying, we obtain the
polynomial

k4

4
− 3k3

8
+

5k2

4
− k

Figure 4 compares packet growth as a function of the number of nodes for the results of
ns-3, Sibyl and the polynomial expression. Notice that the results of ns-3 fits the polynomial
exactly. On the other hand, Sibyl results shows a deviation from the polynomial, and there
are far less results for this particular case. In fact, the Sibyl results for k = 20 double those
expected following the theoretical expression. If we look closely at the presented analysis
(step 1), the Sibyl packet count for this case barely exceeds the number of packets needed
to update the routes within the PoD of the failure. Therefore, our assumption that the
difference for the scenario 10_10_1_node-failure-spine shown in Table 1 is an outlier
is confirmed.
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Figure 4. Evolution of the results of ns-3 and Sibyl for the Spine failure scenario, in comparison with
the evolution of the polynomial k4
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4.3.2. Case Leaf Node Failure

To analyze this case, let us consider what happens at the routing level when a leaf fails;
this is analogous to a prefix that is no longer reachable, and k/2 links down in the PoD of
the failure. When a leaf is no longer reachable, its neighbors (k/2 spines of the given PoD)
will notify the fact with a BGP withdrawn that will spread throughout the fabric. In terms
of packet count, this implies that each node in the fabric will send a BGP withdrawn out all
of its interfaces. Similarly, two packets must be observed on each fabric link.

The total number of links of a fat-tree multi-plane with R = 1 are k3/2 (before the leaf
failure). As mentioned, k/2 links go down after the failure, and consequently, if each link
carries two packets, the total amount of BGP packets for a leaf failure is 2 × (k3/2 − k/2)
or equivalently

k3 − k (1)

Note that this is a lower bound due to the following. When a Leaf node receives
from a Spine the aforementioned withdrawal, its routing table still holds the reachability
information for the given prefix using the rest of the spines, and therefore the leaf “thinks”
it can still reach the prefix. This race condition can cause the leafs to send an BGP Update
announcing the (now inexistent) routes to its corresponding spines in the PoD. Every
announced route contains in its AS-PATH the ASN of the spine that receives it, and
therefore is discarded by it. Thanks to the specific numbering of ASNs in the fat-tree, the
inexisting route is no longer propagated, and the “path hunting” is stopped early. A simple
way to find an expression that models that behavior is by adding one more packet for every
spine–leaf link to the above expression (1). To determine the number of links, first we count
the number of links inside a normal PoD, i.e., k/2 × k/2 and multiply this by the amount of
normal PoDs (k − 1). Then, the number of links in the PoD of the failure is k/2 × (k/2 − 1).
Consequently, the total amount of BGP packets that model this behavior is

5k3

4
− 3k

2
(2)

Figure 5 compares packet growth as a function of k for the results of ns-3, Sibyl and the
polynomials expressions for the Leaf Node failure scenario. Note that while Sibyl results
follow polynomial 1, ns-3 DCE results follow both 1 and 2 alternatively. Regardless, the
results are correct since both behavior may occur due to the nature of BGP and timing of
control plane packets.
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Figure 5. Evolution of the results of ns-3 and Sibyl for the Leaf failure scenario, in comparison with
the evolution of the polynomials P1 = k3 − k and P2 = 5k3
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5. Performance Analysis

Given the possible massive size of a network (in number of nodes and links) in
MSDCs, it is important to study how the simulator performs and scales with different
network’s sizes.

Specifically, we decided to evaluate the scalability in two aspects, memory usage and
simulation runtime for different network sizes.

Even more, while developing and testing our implementation, we notice that the
performance regarding memory usage and simulation time was a limiting factor to obtain
results with big networks. Therefore, we decided to incorporate two features to improve
the performance: disable the zebra daemon and disable IPv6 support.

Regarding the first one, our implementation allows us to run a simulation without
running the zebra daemon. In fact, a routing protocol in FRR does not need zebra to execute,
therefore it can be tested correctly without using zebra. On the other hand, when disabling
zebra, we lost the data plane functionality, and the kernel routing tables are not updated.
This means that the nodes will exchange routing information following the routing protocol
algorithm, but the routes will not be saved. As a consequence, there will not be connectivity
between nodes.

Nevertheless, as our objective is to study the behavior of the control plane only, in
particular the convergence of BGP under different situations, the previous drawbacks do
not affect our results.

So as to be able to run a routing protocol (and BGP in particular) without zebra,
some modifications and extensions are needed. For example, it is not possible to discover
neighbor interfaces. For the case of BGP, this implies that in the configuration it is not
possible to refer to the BPG peers in a generic form using the interface. Instead, we must
use the IP address. In our code, we provide all the configurations and modifications of the
FrrHelper to run simulations with the zebra daemon disabled.

Regarding IPv6, we notice a high load of IPv6 control packets such as ICMPv6 Router
Solicitation and ICMPv6 Router Advertisement in our simulations. This was due to the use
of the Linux kernel in DCE, which includes IPv6 in all interfaces by default. Therefore,
our solution allows us to easily disable the use of IPv6 in all interfaces by executing a
single command.

Additionally, in the results we also show the execution time of each scenario. It can
be seen that the experiments without zebra can run faster, taking approximately half of
the time to execute in comparison with the experiments with zebra. Even more, when
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running without zebra, the simulations use much less RAM memory, which allows us to
experiment with bigger scenarios. Without zebra, we were able to run a scenario with 1125
nodes (15_15_1_*) while when using zebra, the biggest scenario was one with 320 nodes
(8_8_1_*).

In summary, if the objective of a given use case is only to test the control plane of
a routing algorithm, it is recommended to disable the zebra daemon, as it has shown to
improve the simulations performance in execution time and consumed memory.

In order to illustrate the performance improvement that the above changes produced,
the example 6_6_6_link-failure-spine-tof was run. In it, the changes will be applied
independently, and then all together. Table 2 illustrates the results of execution time,
memory used and improvement percentage for the introduced change.

Table 2. Results of execute the scenario 6_6_6_link-failure-spine-tof after applying performance
improvements.

Proposed feature Execution time Memory
consumption

Execution time
improvement

None 2:50.140 705 MB -
Disable IPv6 1:44.284 705 MB +38.71%
Reduce simu time 2:18.452 705 MB +18.62%
Without zebra 1:29.786 403 MB +47.23%
All together 1:18.833 403 MB +53.67%

This improved version allows us to scale the experiments and perform the same
scenarios performed with Sibyl in the work of reference [9]. Despite both experimentation
environments managing the internal time differently, we can still compare the execution
times and the resource consumption of each environment. These comparisons, for scenarios
implementing the densest fat-tree topologies, are shown in Table 3. The resources available
for the ns-3 environment are the presented in Section 4.2.2, i.e., 30 CPUs and 244 GB of
RAM. On the other hand, the scenarios 2_2_1 to 8_8_1 from Sibyl were executed on a cluster
of 22 VMs, each with 2-core vCPUs and 8 GB of vRAM, while the scenarios 10_10_1 to
16_16_1 were executed on a cluster composed of 160 VMs, each with 4-core vCPUs and
8 GB vRAM.

It is worth noting that our environment use a single CPU, this is due to the nature of
the ns-3 simulator with DCE. Additionally, in addition to the information provided in the
table, we observed a RAM saturation in the largest scenario performed. This can explain
the gap between the execution time presented in the last of the simulated scenarios in ns-3.

Table 3. Comparison of execution times between the environment in ns-3 and the sibyl framework
for the failure of a leaf node in fat-trees multi-plane.

Scenario Number
of nodes

Execution time
in ns-3

Execution time
in Sibyl

2_2_1_node-failure-leaf 20 0:59 2:2
4_4_1_node-failure-leaf 80 4:12 3:4
6_6_1_node-failure-leaf 180 10:41 6:25
8_8_1_node-failure-leaf 320 21:16 20:49
10_10_1_node-failure-leaf 500 36:31 14:18
12_12_1_node-failure-leaf 720 1:22:40 37:3
14_14_1_node-failure-leaf 980 2:41:23 1:5:31
15_15_1_node-failure-leaf 1125 7:21:43 -
16_16_1_node-failure-leaf 1280 - 1:44:58

6. Discussion and Conclusions

As a general result, we can conclude that the FRR port to ns-3 DCE is functionally
correct and promisingly scalable. In fact, running control plane-only experiments (i.e., with-
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out the zebra daemon) on a single server, we were able to achieve competitive results as
Sibyl running on a cluster of computing nodes.

In terms of execution times, the results were very satisfactory. ns-3 DCE shows a
performance almost close to the Sibyl-emulated environment for scenarios up to 320 nodes,
which were run on infrastructures with similar resources. On the other hand, for scenarios
with more than 320 nodes, ns-3 DCE shows an average time 2.4 times higher than Sibyl,
but with a cumulative vRAM ratio of 5.2 times lower.

The port validation included a theoretical analysis of the behavior of BGP for the
datacenter on multi-plane fat-tree topologies. This analysis exposes how to find a formal
expression that describes the growth of control packets injected into the network after a
failure scenario. Although this analysis validated the results obtained, it is worth noting
that the implementations of the routing protocols may be subject to race conditions or
limited by the available resources that slightly vary the behavior based on optimizations of
the implementations.

In this paper, we focused on BGP in the datacenter, and briefly commented about the
execution of other routing daemons of the FRR suite. In this regard, another straightforward
line of future work is to undertake a thoroughly testing of other routing daemons, in
principle in the MSDC scope. To this end, Openfabric (IS-IS with flooding reduction) is
already implemented and ready to run.

Overall, to the best of our knowledge, in this work we provide a functionally correct
and scalable FRR port to ns-3 DCE, ready to use by researchers and practitioners alike. For
the time being, we only focused on the control plane of Fat-Tree network routing protocols,
reaching competitive results with less resource consumption. A foreseeable line of research
shall include the forwarding plane, enabling research on traffic behavior in MSDC and/or
other topologies.
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Table A1. Comparison of execution time and number of PDUs exchanged between the proposed ns-3 simulation platform and Sibyl for all the scenarios.

Scenario Number Execution PDUs Execution PDUs PDUs
of nodes time ns-3 time ns-3 Sibyl

w/o zebra w/o zebra w zebra w zebra

2_2_1_link-failure-leaf-spine 20 1:07.19 44 1:18.73 44 -
2_2_1_link-failure-spine-tof 20 0:53.28 45 1:30.77 45 -
2_2_1_link-recovery-leaf-spine 20 0:54.39 69 1:20.07 69 -
2_2_1_link-recovery-spine-tof 20 1:04.59 72 1:40.31 72 -
2_2_1_node-failure-leaf 20 0:59.59 60 1:24.61 60 60
2_2_1_node-failure-spine 20 1:01.74 56 1:40.42 56 -
2_2_1_node-failure-tof 20 1:02.40 72 1:21.33 72 -
2_2_1_node-recovery-leaf 20 0:52.62 96 1:03.42 96 -
2_2_1_node-recovery-spine 20 0:58.33 160 1:50.73 160 -
2_2_1_node-recovery-tof 20 0:55.88 168 1:19.57 168 -

2_2_2_link-failure-leaf-spine 10 0:37.19 16 0:46.51 16 -
2_2_2_link-failure-spine-tof 10 0:30.20 12 0:52.36 12 -
2_2_2_link-recovery-leaf-spine 10 0:33.69 29 0:32.79 29 -
2_2_2_link-recovery-spine-tof 10 0:32.03 26 0:32.48 24 -
2_2_2_node-failure-leaf 10 0:34.74 28 0:50.99 28 28
2_2_2_node-failure-spine 10 0:32.22 18 0:36.68 18 -
2_2_2_node-failure-tof 10 0:34.83 24 0:50.47 24 -
2_2_2_node-recovery-leaf 10 0:32.05 48 0:48.94 48 -
2_2_2_node-recovery-spine 10 0:34.10 68 0:47.40 68 -
2_2_2_node-recovery-tof 10 0:35.70 72 0:32.06 72 -

4_4_1_link-failure-leaf-spine 80 4:15.53 312 5:23.27 312 -
4_4_1_link-failure-spine-tof 80 4:15.09 427 5:10.87 427 -
4_4_1_link-recovery-leaf-spine 80 4:37.03 409 5:49.97 409 -
4_4_1_link-recovery-spine-tof 80 4:23.28 542 5:33.42 542 -
4_4_1_node-failure-leaf 80 4:12.73 504 5:17.12 504 504
4_4_1_node-failure-spine 80 4:28.11 1128 5:57.28 904 -
4_4_1_node-failure-tof 80 4:14.70 1568 5:39.91 1568 -
4_4_1_node-recovery-leaf 80 4:31.55 768 6:09.64 768 -
4_4_1_node-recovery-spine 80 4:13.09 1808 6:00.58 1808 -
4_4_1_node-recovery-tof 80 4:16.72 2320 6:11.65 2320 -
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Table A1. Cont.

Scenario Number Execution PDUs Execution PDUs PDUs
of nodes time ns-3 time ns-3 Sibyl

w/o zebra w/o zebra w zebra w zebra

4_4_2_link-failure-leaf-spine 40 2:11.22 96 3:03.51 96 -
4_4_2_link-failure-spine-tof 40 2:07.43 112 3:15.35 112 -
4_4_2_link-recovery-leaf-spine 40 2:20.26 145 3:29.08 145 -
4_4_2_link-recovery-spine-tof 40 2:07.44 162 3:10.86 162 -
4_4_2_node-failure-leaf 40 2:10.24 248 3:08.23 248 248
4_4_2_node-failure-spine 40 2:13.89 292 3:00.28 292 -
4_4_2_node-failure-tof 40 2:06.92 672 2:59.16 672 -
4_4_2_node-recovery-leaf 40 2:09.55 384 3:11.17 384 -
4_4_2_node-recovery-spine 40 2:11.83 640 3:11.03 640 -
4_4_2_node-recovery-tof 40 2:00.63 1040 3:22.35 1040 -

4_4_4_link-failure-leaf-spine 20 1:05.64 72 1:16.44 72 -
4_4_4_link-failure-spine-tof 20 1:03.96 56 1:31.83 56 -
4_4_4_link-recovery-leaf-spine 20 1:12.47 97 1:19.03 97 -
4_4_4_link-recovery-spine-tof 20 1:10.85 78 1:32.06 78 -
4_4_4_node-failure-leaf 20 0:58.07 120 1:44.26 120 120
4_4_4_node-failure-spine 20 1:08.24 196 0:59.93 196 -
4_4_4_node-failure-tof 20 1:07.31 224 1:30.04 224 -
4_4_4_node-recovery-leaf 20 1:03.67 192 1:15.28 192 -
4_4_4_node-recovery-spine 20 1:09.48 384 1:49.51 384 -
4_4_4_node-recovery-tof 20 1:06.60 400 0:59.46 400 -

6_6_1_link-failure-leaf-spine 180 10:42.61 996 14:40.34 996 996
6_6_1_link-failure-spine-tof 180 10:27.84 1529 14:17.19 1529 1529, 1577
6_6_1_link-recovery-leaf-spine 180 11:11.31 1213 15:53.67 1213 1069, 1238
6_6_1_link-recovery-spine-tof 180 10:55.97 1796 16:14.04 1796 1657, 1796
6_6_1_node-failure-leaf 180 10:41.58 1716 13:52.94 1716 1716, 1734
6_6_1_node-failure-spine 180 10:12.82 4704 15:13.56 4704 4704, 4726
6_6_1_node-failure-tof 180 10:19.49 8712 14:31.77 8712 8712, 8808
6_6_1_node-recovery-leaf 180 10:38.73 2592 14:44.55 2592 2592, 3444
6_6_1_node-recovery-spine 180 10:23.92 7872 15:32.47 7872 8686, 9362
6_6_1_node-recovery-tof 180 9:56.09 11256 14:51.07 11256 11190, 11316



Future Internet 2022, 14, 292 19 of 28

Table A1. Cont.

Scenario Number Execution PDUs Execution PDUs PDUs
of nodes time ns-3 time ns-3 Sibyl

w/o zebra w/o zebra w zebra w zebra

6_6_2_link-failure-leaf-spine 90 5:08.22 288 7:25.55 288 288, 358
6_6_2_link-failure-spine-tof 90 5:03.01 396 7:19.56 396 396, 456
6_6_2_link-recovery-leaf-spine 90 5:26.72 397 7:34.14 397 325, 397
6_6_2_link-recovery-spine-tof 90 5:26.11 500 7:43.13 500 439, 506
6_6_2_node-failure-leaf 90 5:16.17 852 7:12.16 852 852, 858
6_6_2_node-failure-spine 90 5:09.56 1446 8:01.95 1446 1446
6_6_2_node-failure-tof 90 5:05.01 3960 7:21.65 3960 3960
6_6_2_node-recovery-leaf 90 4:49.43 1296 7:27.46 1296 1296, 1926
6_6_2_node-recovery-spine 90 5:09.29 2580 7:21.40 2580 2916, 3247
6_6_2_node-recovery-tof 90 5:13.78 5208 7:29.28 5208 5208, 5310

6_6_3_link-failure-leaf-spine 60 3:13.01 228 5:07.65 228 228
6_6_3_link-failure-spine-tof 60 3:32.99 264 4:34.69 264 264
6_6_3_link-recovery-leaf-spine 60 3:31.02 301 5:07.55 301 253, 301
6_6_3_link-recovery-spine-tof 60 3:46.15 332 5:25.22 332 295, 338
6_6_3_node-failure-leaf 60 3:28.60 564 5:30.40 564 562, 564
6_6_3_node-failure-spine 60 3:27.40 1086 4:29.95 1086 1086
6_6_3_node-failure-tof 60 3:32.06 2376 4:37.03 2376 2376, 2942
6_6_3_node-recovery-leaf 60 3:26.27 864 4:54.17 864 864, 1002
6_6_3_node-recovery-spine 60 3:24.86 1860 5:41.32 1860 1836, 2413
6_6_3_node-recovery-tof 60 3:25.22 3192 5:08.39 3192 3354, 3450

6_6_6_link-failure-leaf-spine 30 1:46.37 168 2:14.63 168 168, 541
6_6_6_link-failure-spine-tof 30 1:44.24 132 2:37.48 132 132
6_6_6_link-recovery-leaf-spine 30 1:48.37 205 2:29.47 205 181, 205
6_6_6_link-recovery-spine-tof 30 1:47.56 164 2:32.80 164 151, 170
6_6_6_node-failure-leaf 30 1:43.67 276 2:26.95 276 276
6_6_6_node-failure-spine 30 1:47.86 726 2:39.75 726 726
6_6_6_node-failure-tof 30 1:44.04 792 2:29.69 792 792
6_6_6_node-recovery-leaf 30 1:42.01 432 3:08.22 432 432
6_6_6_node-recovery-spine 30 1:46.04 1140 2:28.39 1140 1104, 1182
6_6_6_node-recovery-tof 30 1:45.79 1176 2:28.30 1176 1176
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of nodes time ns-3 time ns-3 Sibyl

w/o zebra w/o zebra w zebra w zebra

8_8_1_link-failure-leaf-spine 320 21:56.54 2288 29:13.19 2288 2288
8_8_1_link-failure-spine-tof 320 20:06.32 3735 29:26.26 3735 3743
8_8_1_link-recovery-leaf-spine 320 22:56.82 2673 35:14.27 2673 2417
8_8_1_link-recovery-spine-tof 320 22:28.77 4218 34:43.00 4218 4218
8_8_1_node-failure-leaf 320 21:16.01 4080 30:44.58 4080 4076, 4080, 4088
8_8_1_node-failure-spine 320 21:12.30 15152 30:26.00 15152 15152, 15197
8_8_1_node-failure-tof 320 20:56.05 28800 28:37.21 28800 28958, 29058
8_8_1_node-recovery-leaf 320 21:26.21 6144 33:47.08 6144 8172, 10228
8_8_1_node-recovery-spine 320 21:09.10 22816 31:55.63 22816 22848
8_8_1_node-recovery-tof 320 21:26.99 34848 30:46.45 34848 34622, 35076

8_8_2_link-failure-leaf-spine 160 9:51.76 640 15:02.54 640 640
8_8_2_link-failure-spine-tof 160 9:52.78 960 14:14.68 960 960
8_8_2_link-recovery-leaf-spine 160 10:59.49 833 16:07.96 833 705, 855
8_8_2_link-recovery-spine-tof 160 10:33.65 1146 14:20.73 1146 1033, 1154
8_8_2_node-failure-leaf 160 10:28.93 2032 14:30.95 2032 2028, 2032
8_8_2_node-failure-spine 160 9:56.79 4488 14:38.23 4488 4488, 4510
8_8_2_node-failure-tof 160 10:18.38 13440 14:32.53 13440 13440, 13680
8_8_2_node-recovery-leaf 160 10:15.41 3072 15:36.29 3072 4584
8_8_2_node-recovery-spine 160 10:05.70 7136 14:24.24 7136 7104, 10439
8_8_2_node-recovery-tof 160 9:38.98 16416 13:43.01 16416 16599, 16832

8_8_4_link-failure-leaf-spine 80 4:53.83 416 7:01.98 416 416, 447
8_8_4_link-failure-spine-tof 80 4:51.56 480 7:02.12 480 480
8_8_4_link-recovery-leaf-spine 80 5:18.90 513 7:16.01 513 449, 513
8_8_4_link-recovery-spine-tof 80 5:14.52 570 7:09.06 570 521, 578
8_8_4_node-failure-leaf 80 5:06.75 1008 6:52.72 1008 1008, 1024
8_8_4_node-failure-spine 80 5:02.55 2696 6:27.52 2696 2696
8_8_4_node-failure-tof 80 4:59.97 5760 6:39.84 5760 5760
8_8_4_node-recovery-leaf 80 4:57.09 1536 6:42.37 1536 1784, 2278
8_8_4_node-recovery-spine 80 4:52.50 4064 7:18.56 4064 4400, 4802
8_8_4_node-recovery-tof 80 5:04.17 7200 6:54.38 7200 7200
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of nodes time ns-3 time ns-3 Sibyl

w/o zebra w/o zebra w zebra w zebra

8_8_8_link-failure-leaf-spine 40 2:31.42 304 3:19.37 304 304
8_8_8_link-failure-spine-tof 40 2:02.31 240 3:03.47 240 240
8_8_8_link-recovery-leaf-spine 40 2:04.05 353 3:59.65 353 321, 353
8_8_8_link-recovery-spine-tof 40 1:54.87 282 3:36.25 282 265, 290
8_8_8_node-failure-leaf 40 2:05.69 496 3:45.87 496 496
8_8_8_node-failure-spine 40 1:56.52 1800 3:30.05 1800 1800
8_8_8_node-failure-tof 40 2:16.27 1920 3:16.83 1920 1920
8_8_8_node-recovery-leaf 40 2:07.44 768 3:48.72 768 768, 888
8_8_8_node-recovery-spine 40 2:21.66 2528 3:23.44 2528 2613, 2856
8_8_8_node-recovery-tof 40 2:09.00 2592 3:43.65 2592 2592, 2960

10_10_1_link-failure-leaf-spine 500 43:21.57 4380 53:33.93 4380 -
10_10_1_link-failure-spine-tof 500 35:48.74 7429 52:05.10 7429 -
10_10_1_link-recovery-leaf-spine 500 40:25.85 4981 1:03:15 4981 -
10_10_1_link-recovery-spine-tof 500 38:10.10 8192 59:07.93 8192 -
10_10_1_node-failure-leaf 500 36:31.21 7980 54:41.84 7980 7980
10_10_1_node-failure-spine 500 37:16.85 37480 53:23.76 37480 18390
10_10_1_node-failure-tof 500 35:52.55 72200 55:32.04 72200 36072
10_10_1_node-recovery-leaf 500 40:15.09 12000 55:27.11 12000 -
10_10_1_node-recovery-spine 500 36:11.80 52640 58:46.43 52640 -
10_10_1_node-recovery-tof 500 37:35.48 84040 54:39.94 84040 -

10_10_2_link-failure-leaf-spine 250 16:59.57 1200 23:04.10 1200 1200
10_10_2_link-failure-spine-tof 250 17:04.08 1900 26:00.38 1900 1900
10_10_2_link-recovery-leaf-spine 250 18:30.72 1501 26:21.99 1501 1301, 1501
10_10_2_link-recovery-spine-tof 250 18:25.44 2192 27:09.12 2192 2011, 2202
10_10_2_node-failure-leaf 250 17:31.08 3980 24:08.59 3980 3980, 3996
10_10_2_node-failure-spine 250 16:21.09 10810 23:40.49 10810 10810, 10833
10_10_2_node-failure-tof 250 16:44.71 34200 23:44.88 34200 34527, 34788
10_10_2_node-recovery-leaf 250 17:46.35 6000 25:01.38 6000 6000, 7976
10_10_2_node-recovery-spine 250 16:41.62 15940 24:22.66 15940 15661, 19401
10_10_2_node-recovery-tof 250 17:13.10 40040 24:49.72 40040 41188, 41667
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w/o zebra w/o zebra w zebra w zebra

10_10_5_link-failure-leaf-spine 100 6:22.98 660 8:42.60 660 660
10_10_5_link-failure-spine-tof 100 6:14.27 760 8:32.91 760 760, 820
10_10_5_link-recovery-leaf-spine 100 6:52.48 781 9:46.89 781 701, 781
10_10_5_link-recovery-spine-tof 100 6:52.53 872 10:36.91 872 811, 882
10_10_5_node-failure-leaf 100 6:43.43 1580 8:57.90 1580 1580
10_10_5_node-failure-spine 100 6:41.49 5410 8:41.55 5410 5410
10_10_5_node-failure-tof 100 6:34.09 11400 8:57.93 11400 11544, 11550
10_10_5_node-recovery-leaf 100 6:31.91 2400 9:57.73 2400 3180, 2790
10_10_5_node-recovery-spine 100 6:39.00 7540 9:25.65 7540 7510, 7490
10_10_5_node-recovery-tof 100 6:38.31 13640 9:25.54 13640 14798, 15178

10_10_10_link-failure-leaf-spine 50 3:09.21 480 4:35.08 480 480
10_10_10_link-failure-spine-tof 50 3:14.54 380 4:21.50 380 380
10_10_10_link-recovery-leaf-spine 50 3:31.83 541 5:10.14 541 501, 541
10_10_10_link-recovery-spine-tof 50 3:15.08 432 4:37.93 432 411, 442
10_10_10_node-failure-leaf 50 3:13.24 780 4:22.19 780 780
10_10_10_node-failure-spine 50 3:11.36 3610 4:14.41 3610 3610
10_10_10_node-failure-tof 50 3:12.86 3800 4:25.57 3800 3800
10_10_10_node-recovery-leaf 50 3:11.31 1200 4:31.73 1200 1580, 1582
10_10_10_node-recovery-spine 50 3:02.23 4740 5:03.15 4740 4670, 4710
10_10_10_node-recovery-tof 50 3:08.48 4840 4:46.55 4840 4840, 5540

12_12_1_link-failure-leaf-spine 720 1:37:58 7464 not enough vRAM -
12_12_1_link-failure-spine-tof 720 1:19:03 12995 not enough vRAM -
12_12_1_link-recovery-leaf-spine 720 1:28:55 8329 not enough vRAM -
12_12_1_link-recovery-spine-tof 720 1:24:22 14102 not enough vRAM -
12_12_1_node-failure-leaf 720 1:22:40 17244 not enough vRAM 13800
12_12_1_node-failure-spine 720 1:19:23 78456 not enough vRAM -
12_12_1_node-failure-tof 720 1:19:27 152352 not enough vRAM -
12_12_1_node-recovery-leaf 720 1:20:34 20736 not enough vRAM -
12_12_1_node-recovery-spine 720 1:20:01 104880 not enough vRAM -
12_12_1_node-recovery-tof 720 1:21:15 172848 not enough vRAM -
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w/o zebra w/o zebra w zebra w zebra

12_12_3_link-failure-leaf-spine 240 19:05.59 1488 25:35.76 1488 1488
12_12_3_link-failure-spine-tof 240 19:54.03 2208 25:56.47 2208 2208
12_12_3_link-recovery-leaf-spine 240 21:26.32 1777 29:01.01 1777 1585, 1777
12_12_3_link-recovery-spine-tof 240 20:56.25 2486 28:28.63 2486 2317, 2498
12_12_3_node-failure-leaf 240 19:53.39 5724 28:19.25 4584 4580, 4584, 4628
12_12_3_node-failure-spine 240 19:28.09 15852 26:19.43 15852 15929, 16002
12_12_3_node-failure-tof 240 19:12.64 46368 26:11.43 46368 47227, 57292
12_12_3_node-recovery-leaf 240 19:48.84 6912 26:56.88 6912 8052, 11514
12_12_3_node-recovery-spine 240 19:21.35 21792 28:02.68 21792 21797, 23710, 29768
12_12_3_node-recovery-tof 240 19:31.33 53040 26:09.66 53040 53926, 54024

12_12_4_link-failure-leaf-spine 180 14:05.84 1224 18:58.75 1224 1224
12_12_4_link-failure-spine-tof 180 13:44.66 1656 18:52.29 1656 1656, 1680
12_12_4_link-recovery-leaf-spine 180 14:55.32 1441 21:11.28 1441 1297, 1441
12_12_4_link-recovery-spine-tof 180 15:11.86 1862 21:08.28 1862 1741, 1874
12_12_4_node-failure-leaf 180 14:28.07 3852 19:42.57 3432 3430, 3432
12_12_4_node-failure-spine 180 14:28.08 12684 19:42.68 12684 12763, 12775
12_12_4_node-failure-tof 180 13:56.64 33120 19:12.50 33120 33930, 34800
12_12_4_node-recovery-leaf 180 14:16.45 5184 19:31.86 5184 5184
12_12_4_node-recovery-spine 180 13:50.67 17184 20:41.04 17184 -
12_12_4_node-recovery-tof 180 14:33.37 38064 19:19.03 38064 38979, 39312

12_12_6_link-failure-leaf-spine 120 9:39.02 960 12:19.99 960 960, 983
12_12_6_link-failure-spine-tof 120 8:50.37 1104 12:47.93 1104 1104
12_12_6_link-recovery-leaf-spine 120 10:03.56 1105 14:16.49 1105 1009, 1105
12_12_6_link-recovery-spine-tof 120 10:04.93 1238 13:47.75 1238 1165, 1250
12_12_6_node-failure-leaf 120 9:44.62 2700 12:41.80 2280 2278, 2280, 2292
12_12_6_node-failure-spine 120 9:32.30 9516 12:41.86 9516 9516, 9589
12_12_6_node-failure-tof 120 9:35.47 19872 12:30.12 19872 20580, 20712
12_12_6_node-recovery-leaf 120 9:15.39 3456 12:37.12 3456 3456, 5146
12_12_6_node-recovery-spine 120 9:27.34 12576 13:25.55 12576 12514, 15936
12_12_6_node-recovery-tof 120 9:09.30 23088 12:53.84 23088 23352, 23625
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w/o zebra w/o zebra w zebra w zebra

12_12_12_link-failure-leaf-spine 60 4:14.67 696 5:56.28 696 696
12_12_12_link-failure-spine-tof 60 4:04.78 552 6:10.82 552 552
12_12_12_link-recovery-leaf-spine 60 4:41.71 769 6:56.05 769 721, 769
12_12_12_link-recovery-spine-tof 60 4:38.93 614 6:57.11 614 589, 626
12_12_12_node-failure-leaf 60 4:25.29 1548 6:18.81 1128 1128
12_12_12_node-failure-spine 60 4:12.53 6348 6:08.16 6348 6348
12_12_12_node-failure-tof 60 4:11.17 6624 6:25.72 6624 6624
12_12_12_node-recovery-leaf 60 4:22.37 1728 6:15.41 1728 1728
12_12_12_node-recovery-spine 60 4:24.15 7968 6:31.74 7968 8162, 9469
12_12_12_node-recovery-tof 60 4:23.12 8112 6:25.38 8112 8112, 8676

14_14_1_link-failure-leaf-spine 980 2:42:23 11732 not enough vRAM -
14_14_1_link-failure-spine-tof 980 2:32:38 20817 not enough vRAM -
14_14_1_link-recovery-leaf-spine 980 2:40:38 12909 not enough vRAM -
14_14_1_link-recovery-spine-tof 980 2:39:26 22332 not enough vRAM -
14_14_1_node-failure-leaf 980 2:41:23 27398 not enough vRAM 21924
14_14_1_node-failure-spine 980 2:40:11 146384 not enough vRAM -
14_14_1_node-failure-tof 980 2:32:28 285768 not enough vRAM -
14_14_1_node-recovery-leaf 980 2:40:42 32928 not enough vRAM -
14_14_1_node-recovery-spine 980 2:42:50 188608 not enough vRAM -
14_14_1_node-recovery-tof 980 2:36:31 318360 not enough vRAM -

14_14_2_link-failure-leaf-spine 490 54:43.59 3136 59:22.85 3136 -
14_14_2_link-failure-spine-tof 490 52:49.34 5292 58:15.27 5292 -
14_14_2_link-recovery-leaf-spine 490 56:43.90 3725 1:02:30 3725 -
14_14_2_link-recovery-spine-tof 490 56:29.84 5882 1:00:44 5882 -
14_14_2_node-failure-leaf 490 54:45.50 14070 1:01:33 14070 10948
14_14_2_node-failure-spine 490 52:58.71 40782 57:15.31 40782 -
14_14_2_node-failure-tof 490 53:31.63 137592 57:16.83 137592 -
14_14_2_node-recovery-leaf 490 53:24.08 16464 57:33.53 16464 -
14_14_2_node-recovery-spine 490 53:23.65 54740 59:57.35 54740 -
14_14_2_node-recovery-tof 490 54:33.18 153720 58:34.59 153720 -
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w/o zebra w/o zebra w zebra w zebra

14_14_7_link-failure-leaf-spine 140 12:01.43 1316 19:57.69 1316 1336
14_14_7_link-failure-spine-tof 140 11:36.53 1512 18:12.65 1512 1512, 1635
14_14_7_link-recovery-leaf-spine 140 12:29.71 1485 21:14.82 1485 1373, 1485
14_14_7_link-recovery-spine-tof 140 12:07.47 1668 20:51.26 1668 1583, 1682
14_14_7_node-failure-leaf 140 12:13.42 3878 19:14.01 3108 3108, 3150
14_14_7_node-failure-spine 140 12:02.30 15302 19:24.98 15302 15374
14_14_7_node-failure-tof 140 11:36.70 31752 20:30.41 31752 32988, 32990
14_14_7_node-recovery-leaf 140 11:37.59 4704 20:36.14 4704 5470, 7014
14_14_7_node-recovery-spine 140 11:53.92 19460 19:59.21 19460 21484, 24662
14_14_7_node-recovery-tof 140 11:45.48 36120 19:06.72 36120 37967, 39645

14_14_14_link-failure-leaf-spine 70 5:20.93 952 9:06.52 952 952
14_14_14_link-failure-spine-tof 70 5:16.32 756 9:00.30 756 756
14_14_14_link-recovery-leaf-spine 70 5:50.10 1037 10:22.86 1037 981, 1037
14_14_14_link-recovery-spine-tof 70 5:44.78 828 10:41.18 828 799, 842
14_14_14_node-failure-leaf 70 5:30.51 2114 9:50.42 1540 1540, 1552, 1554
14_14_14_node-failure-spine 70 5:39.92 10206 10:21.86 10206 10206, 10308, 10350
14_14_14_node-failure-tof 70 5:32.21 10584 9:21.20 10584 10570, 10584
14_14_14_node-recovery-leaf 70 5:19.37 2352 10:15.21 2352 2730
14_14_14_node-recovery-spine 70 5:32.34 12404 10:15.31 12404 12580, 13024
14_14_14_node-recovery-tof 70 5:50.77 12600 9:44.88 12600 14406, 14574

15_15_1_link-failure-leaf-spine 1125 6:49:52 14370 not enough vRAM -
15_15_1_link-failure-spine-tof 1125 5:10:04 25694 not enough vRAM -
15_15_1_link-recovery-leaf-spine 1125 7:16:43 15721 not enough vRAM -
15_15_1_link-recovery-spine-tof 1125 7:38:04 27437 not enough vRAM -
15_15_1_node-failure-leaf 1125 7:21:43 33705 not enough vRAM -
15_15_1_node-failure-spine 1125 6:57:28 193470 not enough vRAM -
15_15_1_node-failure-tof 1125 7:28:52 378450 not enough vRAM -
15_15_1_node-recovery-leaf 1125 7:14:26 40500 not enough vRAM -
15_15_1_node-recovery-spine 1125 7:06:44 245535 not enough vRAM -
15_15_1_node-recovery-tof 1125 7:06:41 418560 not enough vRAM -
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w/o zebra w/o zebra w zebra w zebra

16_16_1_link-failure-leaf-spine 1280 not enough vRAM not enough vRAM -
16_16_1_link-failure-spine-tof 1280 not enough vRAM not enough vRAM -
16_16_1_link-recovery-leaf-spine 1280 not enough vRAM not enough vRAM -
16_16_1_link-recovery-spine-tof 1280 not enough vRAM not enough vRAM -
16_16_1_node-failure-leaf 1280 not enough vRAM not enough vRAM 32736
16_16_1_node-failure-spine 1280 not enough vRAM not enough vRAM -
16_16_1_node-failure-tof 1280 not enough vRAM not enough vRAM -
16_16_1_node-recovery-leaf 1280 not enough vRAM not enough vRAM -
16_16_1_node-recovery-spine 1280 not enough vRAM not enough vRAM -
16_16_1_node-recovery-tof 1280 not enough vRAM not enough vRAM -

16_16_8_link-failure-leaf-spine 160 16:09.07 1728 27:12.65 1728 1728
16_16_8_link-failure-spine-tof 160 15:58.80 1984 23:39.03 1984 1984
16_16_8_link-recovery-leaf-spine 160 17:09.07 1921 27:48.62 1921 1793, 1991
16_16_8_link-recovery-spine-tof 160 16:58.23 2162 26:25.27 2162 2065, 2178
16_16_8_node-failure-leaf 160 16:24.14 5584 24:45.55 4064 4062, 4064
16_16_8_node-failure-spine 160 16:31.02 23056 23:16.42 23056 23262
16_16_8_node-failure-tof 160 16:35.37 47616 23:58.30 47616 48543, 48807
16_16_8_node-recovery-leaf 160 15:59.40 6144 24:17.76 6144 8230, 10174
16_16_8_node-recovery-spine 160 16:20.55 28480 25:01.35 28480 29729, 30013
16_16_8_node-recovery-tof 160 16:54.93 53312 24:16.86 53312 54467, 56962

16_16_16_link-failure-leaf-spine 80 7:09.04 1248 12:02.83 1248 1248, 1310
16_16_16_link-failure-spine-tof 80 7:16.87 992 11:04.84 992 992
16_16_16_link-recovery-leaf-spine 80 7:42.15 1345 13:31.50 1345 1281, 1345
16_16_16_link-recovery-spine-tof 80 7:44.84 1074 13:39.60 1074 1041, 1090
16_16_16_node-failure-leaf 80 7:32.59 2768 12:06.73 2016 2016
16_16_16_node-failure-spine 80 7:27.18 15376 11:50.89 15376 15582, 15596, 15599
16_16_16_node-failure-tof 80 7:38.51 15872 12:19.22 15872 15376, 15840, 15872
16_16_16_node-recovery-leaf 80 7:29.09 3072 12:13.98 3072 3070, 4064
16_16_16_node-recovery-spine 80 7:21.55 18240 13:44.53 18240 18016, 19074
16_16_16_node-recovery-tof 80 7:21.64 18496 12:05.75 18496 19328, 19776



Future Internet 2022, 14, 292 27 of 28

References
1. Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021; White Paper; 2018; Cisco; USA.
2. Clos, C. A study of non-blocking switching networks. Bell Syst. Tech. J. 1953, 32, 406–424. https://doi.org/10.1002/j.1538-

7305.1953.tb01433.x.
3. Alberro, L.; Castro, A.; Grampin, E. Experimentation Environments for Data Center Routing Protocols: A Comprehensive Review.

Future Internet 2022, 14, 29. https://doi.org/10.3390/fi14010029.
4. Bonofiglio, G.; Iovinella, V.; Lospoto, G.; Di Battista, G. Kathará: A container-based framework for implementing network

function virtualization and software defined networks. In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations
and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–9. https://doi.org/10.1109/NOMS.2018.8406267.

5. Scazzariello, M.; Ariemma, L.; Caiazzi, T. Kathará: A Lightweight Network Emulation System. In Proceedings of the NOMS
2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–2.
https://doi.org/10.1109/NOMS47738.2020.9110351.

6. Scazzariello, M.; Ariemma, L.; Battista, G.D.; Patrignani, M. Megalos: A Scalable Architecture for the Virtualization of Network
Scenarios. In Proceedings of the NOMS 2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest,
Hungary, 20–24 April 2020; pp. 1–7. https://doi.org/10.1109/NOMS47738.2020.9110288.

7. Ahrenholz, J. Comparison of CORE network emulation platforms. In Proceedings of the 2010—MILCOM 2010 Military Communi-
cations Conference, San Jose, CA, USA, 31 October–3 November 2010; pp. 166–171. https://doi.org/10.1109/MILCOM.2010.5680218.

8. Lantz, B.; Heller, B.; McKeown, N. A Network in a Laptop: Rapid Prototyping for Software-Defined Networks. In Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Monterey, CA, USA, 20–21 October 2010; Association for
Computing Machinery: New York, NY, USA, 2010; Hotnets-IX. https://doi.org/10.1145/1868447.1868466.

9. Caiazzi, T.; Scazzariello, M.; Alberro, L.; Ariemma, L.; Castro, A.; Grampin, E.; Battista, G.D. Sibyl: A Framework for Evaluat-
ing the Implementation of Routing Protocols in Fat-Trees. In Proceedings of the NOMS 2022—2022 IEEE/IFIP Network Operations
and Management Symposium,Budapest, Hungary, 25–29 April 2022; pp. 1–7. https://doi.org/10.1109/NOMS54207.2022.9789876.

10. Lapukhov, P.; Premji, A.; Mitchell, J. Use of BGP for Routing in Large-Scale Data Centers; RFC 7938, RFC Editor; 2016; IETF. Available
online: https://datatracker.ietf.org/doc/rfc7938/ (accessed on 12 October).

11. White, R.; Hegde, S.; Zandi, S. IS-IS Optimal Distributed Flooding for Dense Topologies. Internet-Draft Draft-White-Distoptflood-
03, IETF Secretariat, 2020. Available online: https://datatracker.ietf.org/doc/html/draft-white-distoptflood-03 (accessed on 12
October).

12. Przygienda, T.; Sharma, A.; Thubert, P.; Rijsman, B.; Afanasiev, D.; Head, J. RIFT: Routing in Fat Trees. Internet-Draft Draft-
ietf-rift-rift-16, IETF Secretariat, 2022. Available online: https://datatracker.ietf.org/doc/draft-ietf-rift-rift/ (accessed on 12
October).

13. Aelmans, M.; Vandezande, O.; Rijsman, B.; Head, J.; Graf, C.; Alberro, L.; Mali, H.; Steudler, O. Day One: Routing in Fat Trees
(RIFT); Juniper Networks Books: 2020.USA.

14. Quagga. Available online: https://www.quagga.net/ (accessed on 1 August 2022).
15. Tazaki, H.; Uarbani, F.; Mancini, E.; Lacage, M.; Camara, D.; Turletti, T.; Dabbous, W. Direct code execution: Revisiting library os

architecture for reproducible network experiments. In Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies, 2013; Santa Barbara, CA, 9-12 December 2013. pp. 217–228.

16. ns-3 Network Simulator. Available online: https://www.nsnam.org (accessed on 30 September 2022).
17. ns-3 Direct Code Execution. Available online: https://www.nsnam.org/about/projects/direct-code-execution (accessed on 30

September 2022).
18. Caiazzi, T.; Scazzariello, M.; Ariemma, L. VFTGen: A Tool to Perform Experiments in Virtual Fat Tree Topologies. In Proceedings

of the IM 2021—2021 IFIP/IEEE International Symposium on Integrated Network Management, Virtual, 17–21 May 2021.
19. Sibyl results. Available online: https://gitlab.com/uniroma3/compunet/networks/sibyl-framework/sibyl-results (accessed on

30 September 2022).
20. Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2.
21. Kubernetes. Kubernetes. 2021. Available online: https://kubernetes.io/ (accessed on 30 September 2022).
22. Azpiroz, S.Y.; Velázquez, F. FRR ns-3 DCE. 2021. Available online: https://gitlab.com/fing-mina/datacenters/frr-ns3 (accessed

on 30 September 2022).
23. ns-3 Manual. Available online: https://www.nsnam.org/docs/release/3.34/manual/singlehtml/index.html (accessed on 30

September 2022).
24. Kaashoek, M.F.; Engler, D.R.; Ganger, G.R.; Briceño, H.M.; Hunt, R.; Mazières, D.; Pinckney, T.; Grimm, R.; Jannotti, J.; Mackenzie,

K. Application Performance and Flexibility on Exokernel Systems. In Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles, Saint Malo, France, 5–8 October 1997; Association for Computing Machinery: New York, NY, USA,
1997; SOSP ’97; pp. 52–65. https://doi.org/10.1145/268998.266644.

25. ns-3 Direct Code Execution (DCE) Documentation. 2021. Available online: https://ns-3-dce.readthedocs.io/en/latest/intro.html
(accessed on 30 September 2022).

26. White, R.; Zandi, S. IS-IS Support for Openfabric. Internet-Draft Draft-White-Openfabric-07, IETF Secretariat, 2018. Available
online: https://datatracker.ietf.org/doc/html/draft-white-openfabric-07 (accessed on 12 October).

https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.3390/fi14010029
https://doi.org/10.1109/NOMS.2018.8406267
https://doi.org/10.1109/NOMS47738.2020.9110351
https://doi.org/10.1109/NOMS47738.2020.9110288
https://doi.org/10.1109/MILCOM.2010.5680218
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/NOMS54207.2022.9789876
https://datatracker.ietf.org/doc/rfc7938/
https://datatracker.ietf.org/doc/html/draft-white-distoptflood-03
https://datatracker.ietf.org/doc/draft-ietf-rift-rift/
https://www.quagga.net/
https://www.nsnam.org
https://www.nsnam.org/about/projects/direct-code-execution
https://gitlab.com/uniroma3/compunet/networks/sibyl-framework/sibyl-results
https://kubernetes.io/
https://gitlab.com/fing-mina/datacenters/frr-ns3
https://www.nsnam.org/docs/release/3.34/manual/singlehtml/index.html
https://doi.org/10.1145/268998.266644
https://ns-3-dce.readthedocs.io/en/latest/intro.html
https://datatracker.ietf.org/doc/html/draft-white-openfabric-07


Future Internet 2022, 14, 292 28 of 28

27. DCE Quagga. Available online: https://www.nsnam.org/docs/dce/manual-quagga/html/getting-started.html (accessed on 30
September 2022).

28. Fix bug in dce vasprintf. Available online: https://github.com/direct-code-execution/ns-3-dce/pull/132 (accessed on 30
September 2022).

29. Fix bug in dce internalClosedir. Available online: https://github.com/direct-code-execution/ns-3-dce/pull/133 (accessed on 30
September 2022).

30. Azpiroz, S.Y.; Velázquez, F. FRR Compilation and Installation Script for ns-3 DCE. 2021. Available online: https://gitlab.fing.edu.
uy/proyecto-2021/scripts/-/blob/master/04-install-frr-SUDO (accessed on 30 September 2022).

31. Free Range Routing. Available online: https://frrouting.org (accessed on 30 September 2022).
32. Kathara-Labs. Available online: https://github.com/KatharaFramework/Kathara-Labs (accessed on 30 September 2022).
33. Medhi, D.; Ramasamy, K. Network Routing, Second Edition: Algorithms, Protocols, and Architectures, 2nd ed.; Morgan Kaufmann

Publishers Inc.: San Francisco, CA, USA, 2017.

https://www.nsnam.org/docs/dce/manual-quagga/html/getting-started.html
https://github.com/direct-code-execution/ns-3-dce/pull/132
https://github.com/direct-code-execution/ns-3-dce/pull/133
https://gitlab.fing.edu.uy/proyecto-2021/scripts/-/blob/master/04-install-frr-SUDO
https://gitlab.fing.edu.uy/proyecto-2021/scripts/-/blob/master/04-install-frr-SUDO
https://frrouting.org
https://github.com/KatharaFramework/Kathara-Labs

	Introduction
	Background and Related Work
	The Sibyl Framework
	Sibyl Fat-Tree Experimentation Tools
	The Timing Issue

	Fat Tree Networks

	FRR Port to ns-3 DCE
	Background on ns-3 and DCE
	Previous Work: Quagga Port
	DCE Extensions to Support FRR
	FRR Extensions to Run over DCE
	Helper Class for Running FRR over DCE
	Fat Tree Generator for ns-3 DCE

	Validation and Experimental Results
	Functional Evaluation
	Comparison against Sibyl Framework
	Experimental Setup
	Execution Environment
	Results

	Theoretical Analysis of BGP Behavior over Selected Scenarios
	Case Spine Node Failure
	Case Leaf Node Failure


	Performance Analysis
	Discussion and Conclusions
	Appendix A
	References

