
PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Reporte Técnico RT 09-01

Lavinia: a collaborative NLP platform

Cecilia Techera Diego Garat Guillermo Moncecchi

2009

Lavinia: a collaborative NLP platform
Techera, Cecilia; Garat,Diego; Monchecci, Guillermo
ISSN 0797-6410
Reporte Técnico RT 09-01
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República

Montevideo, Uruguay, Febrero de 2009

Lavinia: a collaborative NLP platform

Cecilia Techera, Diego Garat, Guillermo Moncecchi

Instituto de Computación
Facultad de Ingenieŕıa

Universidad de la República
Herrera y Reissig 565

Montevideo
Uruguay

{ctechera,dgarat,gmonce}@fing.edu.uy

February 22, 2009

Abstract

In this article we present Lavinia, a UIMA-based, collaborative web
platform for Natural Language Processing, were both NLP software de-
velopers and linguistic analysts can test, use and share different NLP
components in a straightforward way. Lavinia allows users to execute
UIMA components using a web browser: they can create and configure
pipelines of tasks, and view their execution results, without installing any
extra-software. We believe that this approach can help people with little
computational or programming background to get closer to NLP tools,
and NLP component developers to easily share their work.

Keywords: NLP, UIMA, collaborative platform, Web 2.0

1

1 Introduction

It is well known that Natural Language Processing (NLP) applications are
usually implemented as a set of smaller tasks, executed as a pipeline: the
output of a task is the input of the next one. In addition, many of these
tasks are repeatedly found in every NLP application: sentence and word
splitters, part-of-speech taggers, etc. An important part of the effort in
the construction of an NLP application relies not in the implementation
of the required modules –most of them can be found implemented as open
source–, but in their integration, that is, making the output of one task
compatible with the input of the next.

Being aware of this problem, the NLP community has been working
on approaches to increase the re-usability of well known solutions by eas-
ing their integration. This included the definition of standards for the
representation of the object of the analysis (text, voice, etc.), the analysis
process outputs, and the configuration of the different tasks as a unique
pipeline.

The TIPSTER architecture [7] –the result of an ARPA-sponsored pro-
gram in the US– was a major step in this process: its referential approach,
where information about the subject of analysis (for example, for written
language, a source text) is stored in a separate database, has been the
predominant approach in NLP platforms. It also defined the concept of
annotations: attributed labels to represent the analysis results, that are
associated with spans of the text. The work of Bird and Liberman for the
Atlas Framework [2, 1] defined the formal concept of annotation graph, a
representation of text analysis as annotations over time spans, and its gen-
eralization to n-dimensional cases, called annotation sets. Most modern
platforms adhere to these specifications.

Many of the most important present NLP architectures, as for exam-
ple GATE [4], UIMA [5] or LinguaStream [8], use these definitions as a
basis for the representation of their subjects of analysis. They also define
mechanisms for the integration of NLP modules developed in different
languages and their execution in a pipeline. Using this architectures, the
modules have standardized access to external resources (lexicons, n-gram
files, etc.) and visualization of analysis results.

But faced to the process of developing a new application, the researcher
should install and configure not only the selected architecture, but also
the different tools required for each task of his desired pipeline. Our work
tries to aid in this process: we implemented a collaborative NLP platform
for text processing, based on UIMA compliant modules. The platform,
called Lavinia, offers a web interface to manage the modules, create an
application as a pipeline of tasks, execute the application over a collection
of texts, and see the analysis results. The user is not compelled to install
any extra software but a web browser.

2

Figure 1: Lavinia architecture overview

2 Lavinia

We started our work with several objectives in mind:

• First, we wanted a general-purpose NLP platform to aid in the study
of linguistic phenomena on text corpora, integrating our existing
statistical and rule-based tools for the analysis of written texts.

• Second, the platform should act as a resource repository, allowing
an easy incorporation of new or preexisting analysis modules, and
their execution in a pipeline. After being added to the repository,
each new module should be available immediately to every platform
user.

• Third, we wanted an homogeneous and clear visualization of analysis
results. This included the display of overlapping annotations, and
the possibility to dynamically select the annotation set to be shown
in a particular text.

• Finally, we wanted to put a focus on ease of use and minimal in-
stallation requirements, provided some of the modules users are not
software experts.

After studying the state-of-the-art in NLP architectures, we decided
that building a new NLP platform from scratch would not be necessary,
provided that many solutions (as the ones mentioned above) already ex-
isted. Instead, we choose to focus on extending the existing tools capabil-
ities by constructing a collaborative environment in which developers and
users could share and use their NLP modules in a straightforward way.

3

In conclusion, our new platform, born as Lavinia, acts as a wrapper
of an existing NLP platform, adding the new collaborative functionali-
ties. The mission of Lavinia is to improve the user experience, being the
latter a linguistic analyst or a component programmer. Lavinia core is
open-source –the UIMA platform–, and, build upon it, our solution adds
mechanisms to help on its use: it allows to dynamically generate pipelines
with configurable components, to save and retrieve their configuration, to
export the intermediate or final analysis results to a file, and, finally, to
see the analysis results displayed accordingly to the user’s choice. All of
these functionalities are exposed as a Web application, with a web browser
as the only requirement, for the final user.

A general scheme of the architecture of Lavinia is depicted in Figure
1; in the following sections we present the application in more detail.

2.1 UIMA, the processing core

The architecture we selected as Lavinia processing core was UIMA (Un-
structured Information Management Architecture) [5], an open platform
for the creation, integration and deployment of large scale unstructured
information management (UIM) applications, originated at IBM, and now
an incubating project at the Apache Software Foundation. Its main goal
is to provide a common foundation for different developers worldwide to
collaborate in the creation and exchange of natural language processing
(NLP), information retrieval and machine learning solutions working on
unstructured information. UIMA works on different kinds of information
sources; as Lavinia is intended to work only on electronic written texts,
in this section we will assume such kind of input.

UIMA makes focus on the analysis phase of information processing.
There, unstructured information is analyzed, and structured information,
representing analysis results, is created and associated with the input in-
formation in a predefined format. Every UIMA component (called anal-
ysis engines) must behave that way, independently of the specific task it
does or the approach it takes. For example, a Part-Of-Speech tagger com-
ponent associates POS information to words as a result of a more o less
complex analysis of the source document. UIMA allows the aggregation
of processing modules to create complex natural language processing ap-
plications, isolating the language processing algorithms from systems ser-
vices such as component communication, information exchange, resource
access, etc. (see figure 2)

For any NLP platform, the representation of documents and ’associ-
ated meta-data representing analysis results is a critical aspect. Following
the TIPSTER guidelines, UIMA uses a referential approach, storing meta-
data in the form of separated annotations, which refer to (but are not part
of) all or part of the original document [6]. This annotations associate
typed labels to spans of text, identified by the start and end positions. Ev-
ery information UIMA analysis engines shares are in this format, called
Common Analysis System (CAS), and the architecture provides a con-
tainer object which provides the API for their manipulation and mod-
ification. Labels are typed, with a user-defined type system, and take
the form of feature structures, which each component makes accessible to

4

Figure 2: UIMA document processing

5

other components putting them on an index. CAS are also general infor-
mation representation schema, and can hold any information relevant to
a particular UIMA application.

The presented approach for natural language platforms (a common
information representation and mechanisms for module composition and
aggregation) is not new in language engineering. Architectures as GATE
or Atlas also allow this type of organization. We selected UIMA because
its data manipulation layer and type system are more appealing than
GATE’s. As we were thinking of an environment where the user could
choose on demand which modules to use, and then which information to
show, we found a clear and hierarchical representation of label types a
must have for the system.

Summarizing, as a processing core, UIMA supports many aspects of
Lavinia:

• Lavinia uses UIMA analysis engines as their processing components,
and it uses UIMA infrastructure for grouping and deploying them.

• Every information Lavinia uses and generates is stored in a CAS.

• Lavinia component flow control is managed by UIMA.

• The type system that Lavinia uses for its parameters inherits from
UIMA’s Annotation type.

As a final remark, we want to state that, although it seems that Lavinia
is highly coupled with UIMA, it is designed and implemented in a way
that the processing core can be changed in the future without affecting
the subsequent levels of the platform.

2.2 A front-end for better user experience

Having UIMA as a solid core for giving access to the meta-data represent-
ing analysis results, we decided to put the focus on the user experience.

As our first goal, we tried to build a solution that allowed any user, just
by accessing a web page, to select different text analysis modules, build
with them the desired analysis flow, and setting up the needed module
parameters and resources. The platform would then verify the pipeline
coherence: any component could be part of a flow if the output of the
previous modules in the chain generate the meta-data needed for its own
analysis.

For example, a component for a syntactic parser, which required a text
tagged with part-of-speech tags, would necessarily appear after a POS-
tagging module that generates them. Figure 3 shows a possible analysis
flow, built on a tokenizer, a sentence splitter and a POS-tagger. Lavinia
implements these controls using the type system provided by UIMA. Each
UIMA component must specify what types it uses for the input and out-
put. These types can be organized in a hierarchy and have attributes [6].
When a component is introduced into a pipe, Lavinia shows up its asso-
ciated input and output types, and checks, at design time, if the pipeline
is well-built.

Usually, NLP components are parameterizable; for instance, the Freel-
ing POS tagger [3] can be configured to process texts for more than one

6

Figure 3: Flow Selection

7

Figure 4: Parameter Configuration

8

language. Thus, components parameters are exposed by Lavinia to allow
the user to customize the analysis pipe. As an example, figure 4 shows
the Lavinia’s window for configuring a POS-Tagger that will be used as a
part of the analysis pipe.

From the component designer perspective, Lavinia allows the quick
integration of new analysis modules: it is only necessary to build a UIMA-
complaint module, upload it using the web interface, and declare its sys-
tem types, the parameters to expose in the platform, and the required
external resources (dictionaries, configuration files, etc.) For this moment
on, the module will be available to all Lavinia users, who will be able to
use it in their analysis pipes.

For the design of the web interface, we decided to put a strong empha-
sis in two characteristics of what is called the Web 2.0: the collaborative
aspect of the implemented solution, and the use of dynamic web inter-
faces, based on asynchronous communications and light clients, using the
Ajax technology. Because we believe this kind of interfaces helps in the
usability by non specialized software people, choosing this technology was
a fundamental decision in the construction of our platform. One pending
point in our work is to measure how much this decision has effectively
contributed to fulfill its intended goal.

In the next section, we present another aspect that we found very
appealing of Lavinia: the graphical display of annotations in a uniform
and dynamic way.

2.3 Showing the analysis results

As an architecture, UIMA does not provides mechanisms for visualizing
the results obtained from text analysis. Their motto is ”we give the mech-
anisms to generate and read the analysis results, and the application built
up over UIMA shows it to the final user”. Instead, Lavinia tries to be an
application to collaborate and, above all, to be friendly to non program-
mer users. Thus, we decided to include a unified and clear view of the
input text and the results of the analysis performed with it.

As it is mentioned in previous sections, the analysis results are anno-
tations over the text associated with begin and end offsets of the marked
span, and a series of attributes that can even refer to another annota-
tions in the text. In a similar way as we did with flow construction, we
worked with the following idea in mind: it is the user, and not the plat-
form, the one who decides which and in what way the annotations will be
displayed. In addition, we decided to allow the user to change this view
without having to execute the analysis all over again.

Solving the problem of how to show the results of several kind of
analysis in a uniform way –that is, a way that does not depend on the
components involved in the analysis pipe– was not a simple task. Although
several ways of displaying analysis results can be found in the literature –
as far as we know–, neither of them can fulfill the requirements we imposed
to our platform, that is:

• The user should have the possibility of choosing easily which linguis-
tic phenomena to mark on the text.

9

For each annotation type ti, in priority order

For each annotation aj of type ti

For each cell between aj.start and aj.end

If the cell has background color

If the cell has border

Assign border to aj.start and aj.end

else

Assign borders

else

Assign background color

End

End

End

Figure 5: Pseudo-code for the visualization algorithm

• Annotations should be clearly highlighted, and the different type of
annotations should be recognizable at a first glance.

• The extra-information of a given annotation –for example, the lemma
of a verb, its tense, etc.– should be in some way accesible.

• The overlapping annotations should be managed by the visualization
module in a way that all of them are clearly displayed to the user.

• The platform should provide a way to see cross-references between
annotations.

Therefore, we developed a mechanism for visualizing the annotations,
which was deployed into Lavinia under the ”visualization module” name.
This mechanism is based on priority layers of annotations, in a similar
way that traditional Geographic Information Systems do. Each type of
annotation generated by an analysis pipe is viewed as a layer, and the
user can chose its preference order, if it should be highlighted or not, and,
if so, the associated background and font colors.

The visualization module displays the layers by their priority order,
painting the marked span of text accordingly to the layer’s colors. When
an annotation overlaps a segment that is already painted –in other words,
part of the annotation span is already painted because of the existence
of an annotation with greater priority–, the visualization module only
paints a box around the corresponding span, without filling it. Thus, if
two annotations overlap, the one with greater priority will be displayed
over the other one. In case there are already two overlapping spans –that
is, the overlapping segment already has a background color, given by the
first annotation, and a color border, given by a second one–, the third
layer is only marked by a pair of brackets at the beginning and the end
of the span. The pseudo-code of the painting algorithm is shown in figure
2.3.

One point to remark is that all of the layer attributes –font and back-
ground colors, its priority level, and if it should be displayed or not– can
be modified dynamically and after doing the analysis; the display win-
dow will be modified accordingly without requiring to run the analysis

10

again. In this way, the user can quickly see the results in several different
ways –for example, changing the order of the layer or making it visible or
invisible– in order to see different linguistic phenomena. In addition, the
user can click over any portion of the text, and Lavinia will show all the
attributes associated with the annotations that include the clicked part
of the text.

Figures 6 and 7 show how the global vision of a pipe output can be
drastically modified: they show the same analysis results over the same
input text, but displayed in two different ways. In both figures, at the
left, it can be found the color configuration, which annotations should be
displayed, and with which priority (upper annotations have higher priority
than lower ones.)

Going back to the points stated as our goals, this solution does not
resolve the problem of linked annotations, as it is, for example, the case
of anaphora. Another unresolved problem is the displaying of hierarchy
annotations, such as syntactic parser trees. We believe that both problems
are related, and we expect to solve it for the next version of our platform.

11

Figure 6: Analysis Results

12

Figure 7: Analysis Results, another view

13

3 Conclusions

Lavinia is a collaborative NLP platform that allows to share NLP modules
in a web based environment. The objective of Lavinia is to help people
interested in natural language analysis to get closer to NLP tools, even if
they do not have an extensive computational background.

In addition, Lavinia adds a new perspective for NLP developers: they
no longer need to install and configure the platform or the tools they
require; instead, they simple can play with the modules in a browser and
test the results. Thus, the web platform can aid for prototyping a more
complex application.

Lavinia also offers a place to publish new components implemented
in a well-recognized standard (UIMA). The process is easy and, in the
same way as with the analysis, all can be done through the web interface.
Existing components can be adapted to this platform, by implementing
a UIMA-proxy. This was the case of a rule-based engine, the contextual-
rules analyzer [9], originally developed in Prolog, and encapsulated in
a UIMA-analyzer, or the Freeling tools, developed in C++, that were
adapted in the same way.

Lavinia started with a small set of modules to offer: a tokenizer, a
part-of-speech tagger and a shallow parser (based on Freeling), and a text
marker based in the Contextual Rules engine. Nevertheless, the platform
has being successfully used for tasks such as semantic and orthographical
disambiguation and time expression recognition, within a curse of natural
language processing.

The expected next steps in the development of Lavinia are: (a) the
development of new components to the platform for common NLP tasks,
possibly based on already existing solutions adapted for the platform; (b)
the addition of new visualization components and capabilities, to provide,
for instance, ways of displaying hierarchy results and annotation links; (c)
the addition of semantic search capabilities over analyzed text and (d)
the ordered evaluation of our platform by a group of final users, and its
improvement, in the constant effort for making it easier and more intuitive

14

References

[1] Bird, S., Day, D., Garofolo, J. S., Henderson, J., Laprun, C.,
and Liberman, M. Atlas: A flexible and extensible architecture for
linguistic annotation. CoRR cs.CL/0007022 (2000).

[2] Bird, S., and Liberman, M. A formal framework for linguistic
annotation. Tech. Rep. MS-CIS-99-01, University of Pennsylvania,
Philadelphia, Pennsylvania, 1999.

[3] Carreras, X., Chao, I., Padró, L., and Padró, M. FreeLing: An
Open-Source Suite of Language Analyzers. In 4th International Con-
ference on Language Resources and Evaluation (LREC’04) (Lisbon,
Portugal, 2004).

[4] Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,
V. GATE: A framework and graphical development environment for
robust NLP tools and applications. In Proceedings of the 40th An-
niversary Meeting of the Association for Computational Linguistics
(2002).

[5] Ferrucci, D., and Lally, A. UIMA: An Architectural Approach
to Unstructured Information Processing in the Corporate Research
Environment. Natural Language Engineering (2004).

[6] Götz, T., and Suhre, O. Design and implementation of the uima
common analysis system. IBM Syst. J. 43, 3 (2004), 476–489.

[7] Grishman, R. Tipster text architecture design version 3.1. Tech. rep.,
New York University, Philadelphia, Pennsylvania, 1998.

[8] Widlöcher, A., and Bilhaut, F. La plate-forme LinguaStream: un
environnement intégré pour l’expérimentation en TAL. In TALN 2006
(Leuven, Belgique, avril 2006). Présentation orale et démonstration
sans acte.

[9] Wonsever, D., and Minel, J.-L. Contextual rules for text analysis.
In CICLing ’01: Proceedings of the Second International Conference
on Computational Linguistics and Intelligent Text Processing (Lon-
don, UK, 2001), Springer-Verlag, pp. 509–523.

15

