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Abstract 

A Data Warehouse (DW) is a database that stores information oriented to satisfy decision-

making requests. It is a database with some particular features concerning the data it contains 

and its utilisation .The features of DWs cause the DW design process and strategies to be 

different from the ones for OLTP Systems. We address the DW Design problem through a 

schema transformation approach. We propose a set of schema transformation primitives, which 

are high-level operations that transform relational sub-schemas into other relational sub-

schemas. We also provide some tools that can help in DW design process: (a) the design trace, 

(b) a set of DW schema invariants, (c) a set of rules that specify how to correct schema-

inconsistency situations that were generated by applications of primitives, and (d) some 

strategies for designing the DW through application of primitives. 
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1. Introduction 

A Data Warehouse (DW) is a Database that stores information oriented to satisfy decision-making 

requests. A very frequent problem in enterprises is the impossibility for accessing to corporate, complete 

and integrated information of the enterprise that can satisfy decision-making requests. A paradox occurs: 

data exists but information cannot be obtained. In general, a DW is constructed with the goal of storing 

and providing all the relevant information that is generated along the different databases of an enterprise. 

A DW is a database with some particular features. Concerning the data it contains, it is the result of 

transformations, quality improvement and integration of data that comes from operational bases. Besides, 

it includes indicators that are derived from operational data and give it additional value. Concerning its 

utilisation, it is supposed to support complex queries (summarisation, aggregates, crossing of data), while 

its maintenance does not suppose transactional load. In addition, in a DW environment end users make 

queries directly against the DW through user-friendly query tools, instead of accessing information 

through reports generated by specialists. 

In this work we concentrate in DW design. The data model considered in this work is the Relational 

Model, for both the DW and the source databases. 

The features of DWs cause the DW design process and strategies to be different from the ones for OLTP1 

Systems [Kim96-1]. For example, in DW design, the existence of redundancy in data is admitted for 

improving performance of complex queries and it does not imply problems like data update anomalies, 

since data is not updated on-line (DWs’ maintenance is performed by means of controlled batch loads). 

Another issue to be considered is that a DW design must take into account not only the DW requirements, 

but also the features and existing instances of the source databases.  

Existing knowledge related to this area is addressed in [Gut00]. 

The goal of this work is to provide a help tool that allows designing a DW starting from the source 

database and propagating source schema evolution to the DW. 

We address the DW Design problem through a schema transformation approach. We propose a set of 

schema transformation primitives, which are high-level operations that transform relational sub-schemas 

into other relational sub-schemas. The idea for the design process is that the designer, taking into account 

the DW requirements and his own design criteria, applies primitives to construct a DW schema from a 

source schema.  

We design the primitives considering the set of schema structures that are the most used in relational 

DWs and the possible existing source structures, so that there is one primitive for each one of these target 

and source structures.  

                                                           

1 OLTP: On Line Transaction Processing 
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Having the primitives as the core of the proposal for DW design, we also provide some tools that help in 

DW design process. The first is the design trace, which is generated when a DW schema is constructed 

through application of primitives. The second is a set of schema invariants. Schema invariants are 

properties useful to check DW schema consistency.  Having these invariants, we provide a set of rules 

that specify how to correct schema-inconsistency situations that were generated by applications of 

primitives. Finally, we provide some strategies for designing the DW through application of primitives. 

These strategies serve as guidelines for solving some common DW design problems. 

The main contribution of this work is the proposal of a set of DW schema design primitives. These 

primitives must be applied to the source schema. Together, with each primitive, this work provides the 

specification of the transformation that must be applied to the source schema instances in order to 

populate the generated DW.  

The main interest for the definition of design primitives is twofold. First, primitives materialise design 

criteria knowledge. Second, they provide a way for tracing the design. In addition, they increase 

designer’s productivity by behaving as design building blocks that can be composed for building the final 

schema.  

This paper consists of 8 sections. Section 2 presents the framework we propose for DW logical design, 

Section 3 presents a set of DW-schema Invariants, Section 4 presents the Schema Transformation 

Primitives. In Section 5 and 6 Consistency Rules and Design Strategies for application of the primitives 

are proposed, and in Section 7 the Design Trace is presented. Finally, Section 8 presents the conclusions 

and future work. 

2. Data Warehouse logical design framework 

One of the most important tasks in the construction of a DW is the logical design of its schema. This 

logical design has to be done considering the particularities a DW has with respect to the information it 

stores and the requirements it has to support (described in Chapter 1). The techniques that are used for 

designing a database of an OLTP system are not applicable for designing a DW [Kim96-1], due to the 

existing differences between these two kind of databases. 

We propose a tool that is intended to be of help at the time of designing a DW. Together with this tool we 

provide some guidelines for its utilisation. The tool is a set of schema transformation primitives that 

must be applied to a source schema in order to obtain a corresponding DW schema. The designer has to 

use his own design criteria to apply the primitives, although we give him some help through a set of rules 

and strategies he can use. 

The primitives work with one source schema; they are not useful for performing integration of several 

source schemas. In this work we assume that the design process starts from an integrated schema.  
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Figure 3.1 shows the basic architecture of the transformation of a source schema into a DW schema, 

through the application of primitives.  

Figure 3.1. Application of primitives 

 

In our approach, DW design is a process that starts with a source database schema, applies 

transformations to it, and ends with a resulting DW schema. The transformations are applied through the 

primitives to the source schema and to the intermediate sub-schemas2 that are generated during the 

process, i.e. primitives are composed to obtain the final schema. Therefore, all the elements that constitute 

the final schema, are results of primitives application to the source schema. 

The primitives are high-level transformations of Relational schemas. Roughly speaking, they take as input 

a sub-schema and their output is another sub-schema. Besides, they include an outline of the 

transformations that have to be applied to the source instance. We group some of the primitives into 

families because in some cases there are several alternatives for solving the same problem, or more than 

one style of design that can be applied. 

For ensuring schema consistency we provide: (i) a set of DW schema invariants, and (ii) a set of 

consistency rules for application of primitives. We consider a schema consistent if it satisfies the DW 

schema invariants we define. With (i) we can check the consistency of the DW schema. (ii) states the 

actions that must be done on application of certain primitives in certain situations, with the form of ECA 

(Event Condition Action) rules, in order to preserve schema consistency.  

                                                           

2 We consider a sub-schema as a set of relations that are part of a schema. 
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In addition, for assisting the designer during the design process, we provide strategies for solving typical 

problems that appear in DW design. These strategies should act as guidelines for the application of the 

primitives, covering many possible design alternatives for each considered design problem. Note that the 

primitives themselves do not lead to some specific strategy or methodology. Moreover, their application 

without well-defined design criteria, could lead to undesired results. For us, a good design should 

structure data so that the DW requirements can be satisfied efficiently. DW requirements, which usually 

consist on complex queries that imply large volumes of data, are the ones that determine the data 

structures that are the most convenient for the DW schema.  

In the following sub-section we present some basic definitions about the model we use for the 

specification of the primitives. 

In the Appendix we present an example of a complete design process through primitive applications. 

2.1. Basic definitions 

The underlying model for the proposed transformation primitives is the Relational Model. In addition, the 

relational elements (relations and attributes) are classified into different sets, according to their behaviour 

in a DW context. As a glance, some of the classified elements are: dimension relations, measure relations, 

descriptive attributes, measure attributes.  

This classification enables the primitives to perform a more refined treatment of the different situations in 

DW design. 

The following are the sets defined over the Relational Model: 

Relation3 sets: 

Rel   –  Set of all the relations (any kind of relation). 

RelD –  Set of “dimension” relations. These are the relations that represent descriptive information 

about real world subjects. 

RelC –  Set of “crossing” relations. These are the relations that represent relationships or combinations 

among the elements of a group of dimensions. Usually, they contain attributes that represent 

measures for the combinations. 

RelM –  Set of “measure” relations. These are the crossing relations that have at least one measure 

attribute.  

RelJ –  Set of “hierarchy” relations. These are the dimension relations that contain a set of attributes 

that constitute a hierarchy. The fact that there exists a hierarchy among a set of attributes, can 

only be determined having into account the semantics of them.  

RelH – Set of “historical” relations. These are the relations that have historical information that 

corresponds to information in other relation. 

                                                           

3 In this work, we use the word relation as a synonym of relation schema. 
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We define a function  fH : RelH  -> Rel , which, given a historical relation, returns the 

corresponding current relation. 

These sets verify the following properties: 

- RelM  ⊂  RelC 

- RelJ  ⊂  RelD 

- RelH ⊂ ( RelD ∪ RelC )  

 

Attribute sets: 

Att(R)   –  Set of all attributes of relation R. 

AttM(R) –  Set of measure attributes of relation R. 

AttD(R) –  Set of descriptive attributes of relation R. 

AttC(R) –  Set of derived (calculated) attributes of relation R. 

AttJ      –  Set of sets of attributes that represent a hierarchy. 

AttK(R) –  Set of sets of attributes that are key in relation R. 

AttFK(R) – Set of sets of attributes that are foreign key in relation R. 

AttFK(R1, R2) – Set of attributes that is a foreign key in relation R1 with respect to relation R2. 

These sets verify the following properties: 

- AttM(R)  ∪ AttD(R)  ∪ AttC(R) = Att(R) 

- ∀ X / X ∈ AttJ, X ⊂ ∪R∈Rel  AttD(R) 

- AttFK(R) = { e / e = AttFK(R, Ri) }, i=1..n, where n is the number of relations with respect to which 

R has a foreign key. 

- ∀ A / A ∈ X  and  X ∈ ( AttK(R) ∪ AttFK(R) ), A ∈ AttD(R) 

- If X ∈ AttK(R)  and  Y ∈ AttFK(R) , it may be: X ∩ Y ≠ ∅ 

 

The following are some definitions that are necessary for the specifications we present in the rest of the 

document. 

Rel_Name – Set of relation names. 

Att_Name – Set of attribute names. 

Primitive_Name – Set of primitive names. 

Fun_Name – Set of function names. 

subst (A, B, X) – function that substitutes attribute A by attribute B in the set of attributes X. 

conc (s1, s2) – function that concatenates two strings.  

name (A) – function that returns the name of an attribute. 
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3. DW schema Invariants 

Considering the classification we have defined for the elements of a DW schema, we can find some 

conditions that must be satisfied by the different types of elements, in order to maintain the consistency in 

the DW schema. 

In this section we propose a set of DW schema invariants. They are a set of properties that must be 

satisfied by a relational DW schema in order to be consistent. 

Invariants: 

1. Referential integrity : 

Each declared foreign key must have a corresponding primary key in the relations it references. 

Besides it must reference to all relations with this primary key. 

∀ X, R1, R2  / X = AttFK(R1, R2), it holds:   X ∈ AttK(R2)  ∧ ∀ R / X ∈ AttK(R),  X ∈ AttFK(R1, R)  

2. Hierarchies : 

Given a set of attributes X representing a hierarchy, a functional dependency must hold between 

each attribute of X and all attributes of X that identify higher levels in the hierarchy. 

Let X / X ∈ AttJ  ∧  X = {A1, ...., An} ∧  

     A1 < A2 < .... < An , where a<b means that b identifies a higher level in the hierarchy than “a” 

it holds  A1 → A2 

A2 → A3 

............ 

An-1 → An 

3. History relations : 

• A history relation that corresponds to a current data relation, must include a foreign key 

referencing to the corresponding current relation. 

Let RH / RH ∈ RelH(R),  it holds that ∃ X / X = AttFK(RH,R) 

4. Measure relations : 

• If a measure relation has an attribute from some dimension relation, then it must have a foreign 

key relative to this relation. 

Let RD, RM  /  RD ∈ RelD  ∧  RM ∈ RelM 

if  ∃ A / A ∈ Att(RD)  ∧ A ∈ Att(RM)  ⇒  ∃ X / X = AttFK(RM,RD)  

• Measure relations must have a functional dependency, whose left-hand side is the set of 

attributes that are foreign keys to dimensions and right-hand side are the rest of attributes. 

Let RM, X  / RM ∈ RelM  ∧ X = AttFK(RM),  it holds  X → (Att(RM) – X) 
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4. The Schema Transformation Primitives 

In this section we propose a set of schema transformation primitives. Our goal is to provide a set of high-

level transformations that can be combined to cover a wide spectrum of DW schema designs. The idea is 

that these transformations are applied to a schema in order to make it more suitable for the kind of queries 

that will be submitted to it. 

The kind of transformations involved by the primitives are: table partitions, table merges, attribute 

addings, attribute removes, and keys and foreign keys changes. 

Figure 3.2 shows a table containing the whole set of primitives proposed. In this table, the primitive 

names marked with a “*” symbol correspond to groups of primitives. 

       Primitive Description 

P1 Identity Given a relation, it generates another that is exactly the same as the source one. 

P2 Data Filter Given a source relation, it generates another one where only some attributes are 

preserved. Its goal is to eliminate purely operational attributes. 

P3 Temporalization It adds an element of time to the set of attributes of a relation. 

P4 Key Generalization * These primitives generalize the primary key of a dimension relation, so that 

more than one tuple of each element of the relation can be stored. 

P5 Foreign Key Update Through this primitive, a foreign key and its references can be changed in a 

relation. This is useful when primary keys are modified. 

P6 DD-Adding * The primitives of this group add to a relation,  an attribute that is derived from 

others. 

P7 Attribute Adding It adds attributes to a dimension relation. It should be useful for maintaining in 

the same tuple more than one version of an attribute. 

P8 Hierarchy Roll Up This primitive does the roll up by one of the attributes of a relation following a 

hierarchy. Besides, it can generate another hierarchy relation with the 

corresponding level of detail. 

P9 Aggregate Generation Given a measure relation, this primitive generates another measure relation, 

where data are resumed (or grouped) by a given set of attributes. 

P10 Data Array Creation Given a relation that contains a measure attribute and an attribute that represents 

a pre-determined set of values, this primitive generates a relation with a data 

array structure. 

P11 Partition by Stability * These primitives partition a relation, in order to organize its history data storage. 

Vertical Partition or Horizontal Partition can be applied, depending on the 

design criterion used. 

P12 Hierarchy Generation * This is a family of primitives that generate hierarchy relations, having as input, 

relations that include a hierarchy or a part of one. 

P13 Minidimension Break off This primitive eliminates a set of attributes from a dimension relation, 

constructing a new relation with them. 

P14 New Dimension Crossing This primitive allows to materialize a dimension crossing in a new relation.  

Figure 3.2. The set of primitives 
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As seen, the proposed schema transformation primitives do not intend to be “complete” in the sense of 

enable the design of any Relational schema, but they are intended to enable the design of DW. We find 

there is a trade-off between the level of expressiveness and the compactness of the set of primitives. 

The following sub-sections present: first the description of all primitives and second the specifications of 

them. 

4.1. Descriptions of primitives 

This section presents a description of each primitive. These descriptions are intended to show the 

usefulness of the primitives as well as their behaviour.  

Primitive 1. IDENTITY 

This primitive is useful when we want to generate in the DW, a relation that is exactly the same as 

another one. The original relation may be one existing in the source database or one that is an 

intermediate result (the result of the application of a primitive). 

It gives as result, a copy of the relation given as input. 

Primitive 2. DATA FILTER 

In operational databases, there are some attributes that are of interest for the DW system, but there 

are some others that correspond to data that is purely operational and that is not useful for the kind 

of analysis that is made with the DW. 

The goal of this primitive is to preserve only the useful attributes, removing the other ones. 

Primitive 3. TEMPORALIZATION 

Many relations in operational systems do not maintain a temporal notion. For example, stock 

relations use to have the current stock data, updating it with each product movement. 

In DWs, many relations need to include a temporal element, so that they can maintain historical 

information. 

This primitive adds an element of time to the set of attributes of a relation. 

Primitive 4. KEY GENERALIZATION 

The real world subjects represented in dimensions, usually evolve through time. For example, a 

client may change his address, a product may change its description or package_size. 

In some cases it is enough to maintain only the last value, but in other ones it is necessary to store all 

versions of the element, so that history is maintained.  
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The goal of this group of primitives is to generalize the primary key of a dimension relation, so that 

more than one tuple of each subject represented in the relation, can be stored.  

Two alternatives are provided to do this generalization, through the primitives: Version Digits and 

Key Extension. 

Primitive 4.1.     VERSION DIGITS 

To generalize the key, version digits are added to each value of the attribute. 

Primitive 4.2.      KEY EXTENSION 

The key is extended; new attributes of the relation are included in it. 

Primitive 5. FOREIGN KEY UPDATE 

When the key of a relation is changed, it is necessary to make the same changes in all the foreign 

keys that reference to it from other relations. For example, if an attribute is added to a key, it must 

be added also to the foreign keys of the referencing relations. 

This primitive is useful for updating a foreign key in a relation when its corresponding primary key 

is modified. 

Primitive 6. DD-ADDING  

In production systems, usually, data is calculated from other data at the moment of the queries, in 

spite of the complexity of some calculation functions, in order to prevent any kind of redundancy. 

For example, the product prices expressed in dollars are calculated from the product prices 

expressed in some other currency and a table containing the dollar values. 

In a DW system, sometimes it is convenient to maintain these kind of data calculated, for 

performance reasons. 

The primitives of this group add an attribute that is derived from others to a relation. They never 

cause changes to the grain of the relation. 

Primitive 6.1.       DD-ADDING 1-1 

In this case, the calculations are made over only one relation and one tuple. For example, the total 

import of a sale is calculated from the quantity sold and the unit-price, which are all in the same 

relation. 
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Primitive 6.2.       DD-ADDING N-1 

In this case two relations are used. A calculated attribute is added to one of the relations. This 

attribute is derived from some attributes from the same relation and others from the other relation. 

This is the case of the example mentioned for the group of primitives (product prices). 

The calculation function works over only one tuple of the relations. This tuple must be obtained 

uniquely through a join of the two relations. 

Primitive 6.3.       DD-ADDING N-N 

This is the more complex case. Two relations and n tuples are used for the attribute calculation. 

Consider the following example in a bank. There exists a relation with client data and another 

relation with account data. If we want to add to the former the total amount of all the accounts for 

each client, the amounts contained in the second relation must be summed for each client. 

The calculation function works over a set of tuples of one of the relations. These tuples must be 

obtained through a join of the two relations. 

Primitive 7. ATTRIBUTE ADDING 

The real world subjects represented in dimensions usually evolve through time. For example, a 

client may change his address, a product may change its description or package_size. 

Sometimes it is required to maintain the history of these changes in the DW. In some cases, only a 

fixed number of values of certain attribute should be stored. For example, it could be useful to 

maintain the current value of an attribute and the last one before it, or the current value of an 

attribute and the original one. 

In these cases, empty attributes are reserved in a dimension relation, for future changes. Suppose, for 

instance, that when a client changes his address we want to store the new and the old addresses. 

With this primitive an attribute is added to the relation, initially with a null value, to be filled in case 

the client moves out. 

Primitive 8. HIERARCHY ROLL UP 

In operational databases the information in the relations are stored at the highest level of detail that 

is possible. For example, the measure relations use to have all the movements. Usually, in these 

relations there is an attribute that has a hierarchy associated. 

Often, when these relations are used in a DW, they are summarised by an attribute following some 

hierarchy (doing a “roll-up”), for example, if data is in a daily level and monthly totals are required. 

In this case we are doing a roll-up in a hierarchy of time. 



     11

This primitive does the roll up by one of the attributes of a relation following a hierarchy. Besides, it 

can generate another hierarchy relation with the corresponding level of detail. 

Primitive 9. AGGREGATE GENERATION 

In operational systems data is managed as crossings of many dimensions. In general, many DW 

relations are constructed from these crossings, and data is grouped by some of the dimensions. Other 

dimensions are removed as a consequence of this information grouping. 

For example, for a salary system, may be of great importance which employee has made certain 

sale. However, for analysing the sales at a global level in the DW, it is required resumed data and 

not that information in particular. 

This primitive removes a set of attributes from a measure relation, summarising the measures. This 

operation has the effect of decreasing the number of tuples of the relation. 

Primitive 10. DATA ARRAY CREATION 

In a relation where measures are maintained on a month-by-month basis, it can be useful, instead of 

having an attribute for the month and another one for the measure, to have 12 attributes for the 

measures of the 12 months respectively. With this structure comparative reports can be done more 

easily and with better performance, since annual totals are calculated at a tuple level. Besides, the 

number of tuples decreases. 

This multiple attributes schema (data array) is useful not only for months, in fact it can be used for 

any attribute whose associated set of values is finite and known (so that an attribute can be assigned 

to each value).  

Given a relation that contains an attribute that represents a pre-determined set of values, this 

primitive generates a relation with a data array structure.  

Primitive 11. PARTITION BY STABILITY 

In some cases it is recommended to partition a relation, distributing its data into different relations. 

This can be useful, for example, for maintaining the most recent data more accessible than the rest 

of the data. It also allows organising data according to its propensity for change. 

These primitives partition a relation, in order to organise its data storage. The first (Vertical 

Partition) or the second primitive (Horizontal Partition) of this family, can be applied, depending on 

the design criterion used.  

Primitive 11.1.       VERTICAL PARTITION 

This primitive applies a vertical partition to a dimension relation, giving several relations as result. It 

distributes the attributes, so that they are grouped according to their propensity for change. 
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Primitive 11.2.       HORIZONTAL PARTITION 

Two relations, one for more current data and the other for historical information, are generated from 

an original one. Each resulting relation contains the same attributes as the source one. 

Primitive 12. HIERARCHY GENERATION 

This is a family of primitives that generate hierarchy relations, having as input relations that include 

a hierarchy or a part of one. 

In addition, they transform the original relations, so that they do not include the hierarchy any more. 

Instead of this, they reference the new hierarchy relation or relations, through a foreign key. 

The three primitives that compose this family implement three different design alternatives for the 

generated hierarchy. 

Primitive 12.1.       DE-NORMALISED 

This primitive generates only one relation for the hierarchy. 

Primitive 12.2.       SNOWFLAKE 

This primitive generates several relations for the hierarchy, representing it in a normalised form. 

Primitive 12.3.       FREE DECOMPOSITION 

This primitive generates several relations for the hierarchy. The form (distribution of attributes) of 

these relations is decided by the designer.  

Primitive 13. MINIDIMENSION BREAK OFF 

Often, in a dimension there is a set of attributes that have a limited number of possible values. 

The idea is to code the various combinations of values of these attributes (only the combinations that 

really occur) and store them in a separate relation, so that they can be referenced from other 

relations. Storage space is saved using this structure. 

This primitive generates two dimension relations. One is the result of eliminating a set of attributes 

from a dimension relation. The other is a relation that contains only this set of attributes. Besides, it 

defines a foreign key between the two relations. 
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Primitive 14. NEW DIMENSION CROSSING  

In many cases, we need to materialise a dimension crossing in a new relation. This can be done 

through a join of some relations. For example, there is a measure relation where the product 

dimension is crossed with other dimensions, and another relation where supplier is determined by 

product. The supplier dimension can be added to the measure relation and the product can be 

removed, obtaining a crossing between supplier and the other dimensions existing in the measure 

relation. 

 

4.2. Specifications of primitives 

The following specifications present four sections. The Description specifies a natural language 

description about the primitive behaviour. The Input specifies the source schema and other arguments 

that are necessary for the application of the primitive. The Resulting schema is the specification of the 

schema that is generated by the primitive. The Generated instance is a sketch of the transformation that 

has to be applied to the instance of the source schema in order to populate the generated schema. 

 

Primitive 1. IDENTITY 

Description: 

Given a relation, it generates another that is exactly the same as the source one. 

Input: 

� source schema : R ∈ Rel  
� source instance : r 

Resulting schema: 

� R’ ∈ Rel  /  R’ = R 

Generated instance: 

� r’ =     select * 
            from R 

 



     14

Primitive 2. DATA FILTER 

Description: 

Given a source relation, it generates another one where only some attributes are 
preserved. Its goal is to eliminate purely operational attributes. 

Input: 

� source schema : R ( A1, ...., An ) ∈ Rel 
� X ⊂ { A1, ...., An } ∧ X ⊂ AttD(R) 
� source instance : r 

Resulting schema: 

� R’ ( A’1, ...., A’m ) ∈ Rel  / { A’1, ...., A’m } = { A1, ...., An } – X 

Generated instance: 

� r’ =     select A’1, ...., A’m 
            from R 

 

Primitive 3. TEMPORALIZATION 

Description: 

It adds an element of time to the set of attributes of a relation. 

Input: 

� source schema :  R ( A1, ...., An )  /  ∃ X ⊂ { A1, ...., An } ∧ X ∈ AttK(R) 
� T time attribute  /  DOM(T) = { t0, ...., tk } set of time measures  ∨ 

    DOM(T) = { c / c ⊆ { t0, ...., tk } set of time measures }. 
� Key, Boolean argument. It tells if T will be part of R’s key or not. 
� source instance : r 

Resulting schema: 

� R’ ( A1, ...., An, T ) / T ∈ AttD  ∧ if key then  XT ∈ AttK(R) 

Generated instance: 

� r’ =  select A1, ...., An, V(t) 
         from R 

where V(t) is a user-function. It gives, for example, the snapshot time or snapshot 
date. 
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Primitive 4. GROUP:   KEY GENERALIZATION 

Description: 

These primitives generalise the primary key of a dimension relation, so that more 
than one tuple of each subject represented in the relation can be stored. 

 

Primitive 4.1.           VERSION DIGITS 

Description: 

To generalise the key, version digits are added to each value of the attribute. 

Input: 

� source schema :  R ( A1, ...., An ) ∈ RelD  / A1 ∈ AttK(R) 
� source instance : r 

Resulting schema: 

� R’ ∈ RelD  / Att(R’) = subst (A1, B, Att(R) ) ,   
where name(B) = conc ( ‘GR’, name(A1) ) 

Generated instance: 

� r’ =  select concat(num_gen, A1), ...., An 
         from R 

        where num_gen is a user-function that must generate series of numbers.  

 

Primitive 4.2.           KEY EXTENSION 

Description: 

The key is extended; new attributes of the relation are included in it. 

Input: 

� source schema :  R ( A1, ...., An ) ∈ RelD  /  ∃ X ⊂ { A1, ...., An } ∧ X ∈ AttK(R) 
� Y ⊂  ( { A1, ...., An } – X ) ,  attributes to be added to the key 
� source instance : r 

Resulting schema: 

� R’ ( A1, ...., An ) ∈ RelD  /  XY ∈ AttK(R’)   

Generated instance: 

� r’ =  r 
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Primitive 5. FOREIGN KEY UPDATE 

Description: 

Through this primitive, a foreign key and its reference can be changed in a 
relation.  

Input: 

� source schema : R ( A1, ...., An ) ∈ Rel  /  X ∈ AttFK(R) 
� X, set of attributes to be eliminated  
� Y, set of attributes which will substitute X 
� { R1, ...., Rm }  set of relations with respect to which Y will be a foreign key 
� S ∈ Rel  /  Att(S) = X ∪ Y ,  auxiliary relation that contains the correspondence 

between the old key and the new key 
� Source instance : r, s 

Resulting schema: 

� R’ ∈ Rel  /  Att(R’) = Y U ({ A1, ...., An } – X)  ∧  Y = AttFK(R’,R1)  ∧  ....   
∧ Y = AttFK(R’,Rm) 

Generated instance: 

� r’ =  select Y ∪ ({A1, ...., An} – X) 
           from R S  

  where R.X = S.X 

 

Primitive 6. GROUP:   DD-ADDING 

Description: 

The primitives of this group add to a relation an attribute that is derived from 
others. 

 

In this kind of problem, four different cases can be distinguished taking into account the number of 

relations and the number of tuples that participate in the calculation. 

     

 1 n 

1 P 4.1 P 8 

n P 4.2 P 4.3 

 

In this group of primitives three primitives are proposed, which solve the cases of: 

1 relation, 1 tuple 

n relations, 1 tuple 

n relations, n tuples 

In these cases the derived attribute has the same grain as the other attributes of the relation. 

r
e
l
s 

t u p l e s 
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The case of: 1 relation, n tuples, is in essence different from the other ones because in the resulting 

relation the original grain is changed, eliminating some attributes and adding others. The goal in this 

case is to group information by certain attributes, which is different form the goal in the other cases. 

There are two separate primitives that treat this case: Primitive 8 – Hierarchy Roll Up and 

Primitive 9 – Aggregate Generation. 

 

Primitive 6.1.           DD-ADDING 1-1 

Description: 

Given a relation, this primitive adds an attribute that is derived from others of the 
same relation. 

Input: 

� source schema : R ( A1, ...., An ) ∈ Rel  
� f (Ai1, ...., Aim ) / { Ai1, ...., Aim } ⊆ { A1, ...., An } , where f is a user-defined 

function 
� source instance : r 

Resulting schema: 

� R’ ( A1, ...., An, An+1 ) ∈ Rel  / An+1 represents f (Ai1, ...., Aim )   

Generated instance: 

� r’ =  select A1, ...., An, f (Ai1, ...., Aim) 
           from R   

 

Example: 
DETAIL 

ART. NUM. QUANTITY UNIT_PRICE 

100 20 200 

105 7 115 

108 32 40 

 
We want to have the total price calculated and materialised in the relation. 
Primitive 6.1 is applied, where the input is: 

� R = DETAIL 
� f = QUANTITY x UNIT_PRICE 
� r = tuples of DETAIL 

Result:                                             

                                                            DETAIL 

ART. NUM QUANTITY UNIT_PRICE TOTAL_PRICE 

100 20 200 4000 

105 7 115 805 

108 32 40 1280 

♦ 
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Primitive 6.2.           DD-ADDING N-1 

Description: 

This primitive adds to a relation an attribute that is derived from some attributes 
from the same relation and others from the other relation. In this case the 
calculation function works over only one tuple of the relations. This tuple must be 
uniquely obtained through a join operation. Besides, the derived attribute can be 
defined as a foreign key to another relation. 

Note: This primitive works with only two relations. If participation of more than 
two relations is required, additional steps must be applied. 

Input: 

� source schema : R1 ( A1, ...., An ), R2 ( B1, ...., Bm ) ∈ Rel 
� f ( C1, ...., Ck ) / { C1, ...., Ck } ⊆ { A1, ...., An }∪{ B1, ...., Bm }, where f is a user-

defined function 
� A / A ∈ { A1, ...., An }  ∧  A ∈ { B1, ...., Bm } ,  join attribute 
� is_fk ,  Boolean argument (declare An+1 as a foreign key or not) 
� R3 ∈ Rel ,  relation to which An+1 is a foreign key (optional) 
� source instance : r1, r2 

Resulting schema: 

� R’1 ( A1, ...., An, An+1 ) ∈ Rel  / An+1 represents f (C1, ...., Ck )  ∧ 

              if  is_fk then An+1 = AttFK(R’1, R3)   

Generated instance: 

� r’1 =  select A1, ...., An, f (C1, ...., Ck)  
           from R1 R2 

          where R1.A = R2.A   

 

Example: 

PRODUCTS 

PROD_COD PROD_NAM PRICE SUPP_COD 

C1 Clavos 5 P1 

C2 Tornillos 3 P1 

C3 Sillas 200 P14 

 

SUPPLIERS 

SUPP_COD SUPP_NAM ADDRESS PHONE 

P1 T&F B. Artigas 444 121212 

P14 Muebles Garcia G. Flores 2255 545454 

 

We want to have the supplier name in the PRODUCTS relation. 
Primitive 6.2 is applied, where the input is: 

� R1 = PRODUCTS,  R2 = SUPPLIERS 
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� f  = SUPPLIERS.SUPP_NAM 
� A =  SUPP_COD 
� is_fk = FALSE 
� r1 = tuples of PRODUCTS,  r2 = tuples of SUPPLIERS 

Result: 

PRODUCTS 

PROD_COD PROD_NAM PRICE SUPP_COD SUPP_NAM 

C1 Clavos 5 P1 T&F 

C2 Tornillos 3 P1 T&F 

C3 Sillas 200 P14 Muebles Garcia 

 

Note: For totally de-normalising, apply successively this primitive in the same fashion, adding the 
rest of the attributes of the relation SUPPLIERS. 

♦ 

 

Primitive 6.3.           DD-ADDING N-N 

Description: 

This primitive adds to a relation an attribute that is derived from an attribute of 
another relation. In this case the calculation function works over a set of tuples of 
the other relation. This set is obtained through a join operation between the two 
relations. 

Note: This primitive works with only two relations. If participation of more than 
two relations is required, additional steps must be applied. 

Input: 

� source schema : R1 ( A1, ...., An ), R2 ( B1, ...., Bm ) ∈ Rel 
� e(B)  /  B ∈ { B1, ...., Bm } ,  where e(B) is an aggregate expression over the 

attribute B 
� X / X ⊂ AttD(R2) ,  attributes by which we want to group 
� A / A ∈ { A1, ...., An }  ∧  A ∈ { B1, ...., Bm } ,  join attribute 
� source instance : r1, r2 

Resulting schema: 

� R’1 ( A1, ...., An, An+1 ) ∈ Rel  / An+1 represents e(B) in R2 

Generated instance: 

� r’1 =  select A1, ...., An, e(B)  
          from R1 R2 
          where R1.A = R2.A 
                    group by A1, ...., An, X   
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Example: 

          CUSTOMERS 

SSN NAME ADDRESS PHONE CS 

2760527 Juan Perez B. Artigas 444 121212 S 

5321532 Maria Lopez G. Flores 2255 545454 C 

 

     ACCOUNTS 

SSN ACCOUNT_NUM AMOUNT 

2760527 15382130 5000 

2760527 30010011 200 

2760527 10001000 30000 

5321532 15482122 12000 

5321532 10001001 700 

 

We want to have the total amount of money that each customer has in the bank. 
Primitive 6.3 is applied, where the input is: 

� R1 = CUSTOMERS, R2 = ACCOUNTS 
� e(B) =  SUM(AMOUNT)  
� X = { SSN } 
� A = SSN 
� r1 = tuples of CUSTOMERS,  r2 = tuples of ACCOUNTS 

 

Result: 

 CUSTOMERS 

SSN NAME ADDRESS PHONE CS AMOUNT 

2760527 Juan Perez B. Artigas 444 121212 S 35200 

5321532 Maria Lopez G. Flores 2255 545454 C 12700 

 

♦ 
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Primitive 7. ATTRIBUTE ADDING 

Description: 

Given a dimension relation, this primitive adds one or more attributes to it. 

Input: 

� source schema : R ( A1, ...., An ) ∈ RelD 
� { B1, ...., Bm },  attribute set  
� source instance : r 

Resulting schema: 

� R’ ( A1, ...., An, B1, ...., Bm ) ∈ RelD  

Generated instance: 

� r’ =  select A1, ...., An, ‘NULL’, ...., ‘NULL’ 
                   from R  
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Primitive 8. HIERARCHY ROLL UP 

Description: 

Given a measure relation R1 and a hierarchy relation R2, this primitive does a roll 
up to R1 by one of its attributes following the hierarchy in R2 (by a foreign key 
that must exist from R1 to R2). Besides, it can generate another hierarchy relation 
with the corresponding grain. 

Input: 

� source schema :  
- R1 ( A1, ...., An ) ∈ RelM  / ∃ A ∈ { A1, ...., An }  ∧  {A} = AttFK(R1, R2) 
- R2 ( B1, ...., Bn ) ∈ RelJ   / A ∈ { B1, ...., Bn }  ∧  { A } ∈ AttK(R2) 

� Z set of attributes / card(Z) = k  (measures) 
� B / B ∈ { B1, ...., Bn }  ∧  B ∈ AttD(R2)   (chosen hierarchy level) 
� { e1, ...., ek } , aggregate expressions 
� X / X ⊂ { A1, ...., An }  ∧  X ⊂ (AttD(R1) ∪ AttM(R1))  (they have a lower grain) 
� Y / Y ⊂ { B1, ...., Bn }  ∧  Y ⊂ AttD(R2)   (they have a lower grain) 
� agg_h  , Boolean argument (generate a new hierarchy or not) 
� source instance : r1, r2 

Resulting schema: 

� R’1 ( A’1, ...., A’m ) ∈ RelM  / { A’1, ...., A’m } = sust [ A, B, { A1, ...., An } – X ]  
∧  AttFK(R’1) = AttFK(R1) - AttFK(R1, R2) 

� If agg_h then  
  R’2 ( B’1, ...., B’m ) ∈ RelJ  / { B’1, ...., B’m } = { B1, ...., Bn } – Y  ∧   
                                                                    { B } ∈ AttK(R’2)  ∧ 
                                                                    AttFK(R’1, R’2) = { B } 

� Note: Note that the original hierarchy relation is not part of the resulting schema      
in any case of application of this primitive.  

Generated instance: 

� r’1 =  select ( { A’1, ...., A’m }- Z ) ∪ { e1, …., ek } 
         from R1 R2 

          where R1.A = R2.A 
          group by { A’1, ...., A’m } – Z 

� r’2 =  select distinct B’1, ...., B’m  
                     from R2 
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Example: 
SALES 

CUSTOMER SALESMAN DATE PROD CITY QUANTITY 

Juan Pedro 1/1/98 25 Montevideo 2 

Juan Pedro 5/1/98 25 Montevideo 3 

Juan Pedro 8/1/98 7 Colonia 7 

Juan Maria 7/2/98 4 Montevideo 1 

Juan Laura 1/2/98 4 Maldonado 5 

Luis Pedro 3/1/98 100 Montevideo 2 

Luis Laura 5/1/98 100 Montevideo 6 

Luis Laura 8/4/98 100 Canelones 3 

 

          TIME 

DATE WEEK MONTH TRIMESTER YEAR 

1/1/98 1/98 1/98 1/98 1998 

3/1/98 1/98 1/98 1/98 1998 

5/1/98 2/98 1/98 1/98 1998 

8/1/98 2/98 1/98 1/98 1998 

1/2/98 6/98 2/98 1/98 1998 

7/2/98 6/98 2/98 1/98 1998 

8/4/98 14/98 4/98 2/98 1998 

 

We want to have the sales’ information grouped by month instead of by date. We scale two levels in 
the hierarchy of time. 
Primitive 8 is applied, where the input is: 

� R1 = SALES,   A = DATE, foreign key 
� R2 = TIME,   A = DATE, relation key 
� Z = { QUANTITY }, card(Z) = k = 1,  measure attribute 
� B = MONTH 
� { e1, ...., ek } = { sum(QUANTITY) } 
� X = ∅ 
� Y = { DATE, WEEK } 
� agg_h = true 
� r1 = tuples of SALES, r2 = tuples of TIME 

Result:  

MONTH_SALES 

CUSTOMER SALESMAN MONTH PROD CITY QUANTITY 

Juan Pedro 1/98 25 Montevideo 5 

Juan Pedro 1/98 7 Colonia 7 

Juan Maria 2/98 4 Montevideo 1 

Juan Laura 2/98 4 Maldonado 5 

Luis Pedro 1/98 100 Montevideo 2 

Luis Laura 1/98 100 Montevideo 6 

Luis Laura 4/98 100 Canelones 3 
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          TIME_MONTH 

MONTH TRIMESTER YEAR 

1/98 1/98 1998 

2/98 1/98 1998 

4/98 2/98 1998 

♦ 

Primitive 9. AGGREGATE GENERATION 

Description: 

Given a measure relation, this primitive generates another measure relation, where 
data is resumed (or grouped) by a given set of attributes. 

Input: 

� source schema :  R ( A1, ...., An ) ∈ RelM  
� Z , set of attributes / card(Z) = k  (measures) 
� { e1, ...., ek } , aggregate expressions 
� Y / Y ⊂ { A1, ...., An } ∧ Y ⊂ (AttD(R) ∪ AttM(R)) , attributes to be removed 
� source instance : r 

Resulting schema: 

� R’ ( A’1, ...., A’m ) ∈ RelM  /  { A’1, ...., A’m } = { A1, ...., An } – Y ∪ Z  

Generated instance: 

� r’1 =  select ( { A’1, ...., A’m }- Z ) ∪ { e1, …., ek } 
            from R  

                    group by { A’1, ...., A’m } – Z 

 

Example: 

We have a relation with the quantities sold by customer, salesman, month, product and city. 

MONTH_SALES 

CUSTOMER SALESMAN MONTH PROD CITY QUANTITY 

Juan Pedro 1/98 25 Montevideo 5 

Juan Pedro 1/98 7 Colonia 7 

Juan Maria 2/98 4 Montevideo 1 

Juan Laura 2/98 4 Maldonado 5 

Luis Pedro 1/98 100 Montevideo 2 

Luis Laura 1/98 100 Montevideo 6 

Luis Laura 4/98 100 Canelones 3 

 

Now we want to store the quantities that were sold by each customer on each month and of each 
product. Therefore we will group by CUSTOMER, MONTH, PRODUCT. 
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We apply primitive P9, where the input is: 

� R = MONTH_SALES 
� Z = { QUANTITY }, card(Z) = k = 1, the measure we want to appear 
� { e1, ...., ek } = { sum(QUANTITY) } 
� Y = { SALESMAN, CITY } 
� r = tuples of MONTH_SALES 

Result: 

     CUST_MON_PROD_SALES 

CUSTOMER MONTH PROD QUANTITY 

Juan 1/98 25 5 

Juan 1/98 7 7 

Juan 2/98 4 6 

Luis 1/98 100 8 

Luis 4/98 100 3 

 

♦ 
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Primitive 10. DATA ARRAY CREATION 

Description: 

The source schema considered by this primitive is a relation that includes an 
attribute representing a set of predetermined values (e.g., month). The primitive 
generates a relation that includes an attribute for each predetermined value. 

Input: 

� source schema :  R ( A1, ...., An ) ∈ Rel  /  ∃ B ∈ { A1, ...., An } ∧ 
                                                                      B represents a set of predefined values 
� A ∈ Att(R) 
� { V1, ...., Vk }  set of attributes corresponding to each value of B 
� source instance : r 

Resulting schema: 

� R’ ( A’1, ...., A’m ) ∈ Rel  /  

                             { A’1, ...., A’m } = { A1, ...., An } – { A, B } ∪ { V1, ...., Vk } 

Generated instance: 

� r’ = 
       host variables: X, A, B   

 X = Att(R) – {A, B} 
 next (R, cursor) 
 while not end(cursor) do 
  quant_v = corresp_att (:B) 
                    if empty ( select * 
                                     from R’ 
                                     where X = :X)  then 
                        insert into R’ (X, quant_v) values (:X, :A) 
                    else     
      update R’ set quant_v = :A where X = :X  
  next (R, cursor) 
 end. 

where corresp_att is a user-defined function that given a value of attribute B, gives 
the name of the corresponding attribute in R’. 
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Example: 

SALES 

SALESMAN CITY QUANTITY_

SOLD 

YEAR 

Ana Montevideo 20 1997 

Ana Canelones 3 1997 

Ana Rivera 7 1997 

Pedro Montevideo 44 1997 

Pedro Canelones 62 1997 

Pedro Rivera 9 1997 

Pedro Salto 40 1997 

Ana Montevideo 50 1998 

Ana Canelones 32 1998 

Ana Rivera 10 1998 

Ana Salto 15 1998 

Pedro Montevideo 112 1998 

Pedro Canelones 20 1998 

Pedro Rivera 9 1998 

Pedro Salto 20 1998 

 

Primitive 10 is applied, where the input is: 

� R = SALES,   A = QUANTITY_SOLD,  B = CITY 
� { V1, ...., Vk } = { MON_QUAN, CAN_QUAN, RIV_QUAN, SAL_QUAN } 
� r = tuples of SALES 

Result: 

SALES_BY_CITY 

SALESMAN YEAR MON_QUAN CAN_QUAN RIV_QUAN SAL_QUAN 

Ana 1997 20 3 7 0 

Ana 1998 50 32 10 15 

Pedro 1997 44 62 9 40 

Pedro 1998 112 20 9 20 

♦ 
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Primitive 11. GROUP:   PARTITION BY STABILITY 

Description: 

These primitives partition a relation, in order to organise its history data storage. 
The first (Vertical Partition) or the second primitive (Horizontal Partition) of this 
family, can be applied, depending on the design criterion used. 

Source schema: 

� R ( A1, ...., An ) ∈ RelD  / X ∈ AttK(R) 

 

Primitive 11.1. VERTICAL PARTITION 

Description: 

This primitive applies a vertical partition to a dimension relation, giving several 
relations as result. It should distribute the attributes, so that they are grouped 
according to their propensity for change. 

Input: 

� source schema : the source schema defined for the group 
� Y ⊆ { A1, ...., An } , attributes which values never change 
� Z ⊆ { A1, ...., An } , attributes which values sometimes change 
� W ⊆ { A1, ...., An } , attributes which values change very frequently 

W ∩ Y ∩ Z = ∅ 
� source instance : r 

Resulting schema: 

� if Y ≠ ∅ then   R1 ( XY ) ∈ RelD  / X ∈ AttK(R1) 
� if Z ≠ ∅ then   R2 ( XZ ) ∈ RelD  / X ∈ AttK(R2) 
� if W ≠ ∅ then  R3 ( XW ) ∈ RelD  / X ∈ AttK(R3) 

Generated instance: 

� r1 =  ΠXY r 
� r2 = ΠXZ r 
� r2 = ΠXZ r 
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Primitive 11.2. HORIZONTAL PARTITION 

Description: 

Two relations, one for more current data, and the other for historical information, 
are generated from an original one. Each new relation contains the same attributes 
as the source one. One relation is defined as historical with respect to the other. 

Input: 

� source schema : the source schema defined for the group 
� source instance : r 

Resulting schema: 

� RCur = R  / X ∈ AttK(RCur) 
� RHis = R  / X ∈ AttK(RHis)  ∧  RHis ∈ RelH(RCur) 

Note: The primitive assigns to RHis the same key as to RCur. However, this should 
be changed when one of the primitives suitable for the problem of versioning (P3 
or P4) are applied to RHis. 

Generated instance: 

�  rCur = r 
� rHis = ∅ 

         

          

Primitive 12. GROUP:   HIERARCHY GENERATION 

Description: 

These primitives generate hierarchy relations, having as source relations that 
include a hierarchy or a part of one. In addition, they transform the original 
relations, so that they do not include the hierarchy any more. Instead of this, they 
reference the new hierarchy relation or relations, through a foreign key. 

The three primitives that compose this family implement three different design 
alternatives for the generated hierarchy. The alternatives are: de-normalized, 
totally normalized (snowflake), or partitioned in a form that is given by the 
designer. 

Source schema: 

� R1, ...., Rn  /   ∃ A / A ∈ AttD(Ri) ,  i = 1...n  ∧ A is the lowest level of a hierarchy 
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Primitive 12.1. DE-NORMALIZED HIERARCHY GENERATION 

Description: 

This primitive generates only one relation for the hierarchy. 

Input: 

� Source schema : the source schema defined for the group 
� { J1, ...., Jm }, set of attributes that constitutes a hierarchy /  

A ∈ { J1, ...., Jm }  ∧  A is the lowest level 
� K  /  K ∈ { J1, ...., Jm } key for the hierarchy 
� Source instance : r1, ...., rn 

Resulting schema: 

� R’ ( J1, ...., Jm ) ∈ RelJ  /  { K } ∈ AttK(R’) 
� R’i  / Att(R’i) = { K } ∪ ( Att(Ri) - { J1, ...., Jm } ) ∧ {K} = AttFK(R’i, R’),  i: 1..n 

Generated instance: 

�  r’ =     for each i: 1..n do 
       si = select Att(Ri) ∩ {J1, ...., Jm} 
                     from Ri 

         s = Integrate ( s1, ...., sn ) 
         Insert s into R’ 

                       For each i:1..m / ∀ j:1..n, Ji ∉ Att(Rj) do  
Fill values of Ji in R’ 

� r’i =     for each tuple t of ri do 
      if K = A then 

   t’.Att(R’i) = t.Att(R’i) 
       else 
   t’.{Att(R’i) – K} = t.{Att(R’i) – K} 
   t’.K = select K 
              from R’ 
              where R’.A = t.A 
                                             add t’ to r’i 

 

Example: 

EMPLOYEES 

SSN EMP_NAM POSITION ADDRESS REGION CITY 

2190882 R. Mendez C1 Bvar. Artiga P. Rodo Montevideo 

2233553 S. Nunez C1 J. Herrera y Centro Montevideo 

7657657 L. Lopez C1 18 de Julio Centro Montevideo 

3476434 M. Kiuyd C2 21 de Setie Pocitos Montevideo 

4567326 S. Sanchez C2 Gral. Flores Centro Montevideo 

4678893 W. Yan C3 Gonzalo Ra P. Rodo Montevideo 

4888640 B. Pitt C3 Bvar. Españ Pocitos Montevideo 
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BRANCHES 

BRAN_CODE BRAN_NAME ADDRESS REGION CITY COUNTRY 

C1 A Bvar. Artiga P. Rodo Montevideo Uruguay 

C2 B J. Herrera y Centro Montevideo Uruguay 

C3 C 19 de Junio  Centro Bs. As. Argentina 

C4 D Calle A 334 Palermo Bs. As. Argentina 

 

We want to have the geographic hierarchy in only one table, which can be referenced from 
dimensions. This hierarchy will be extracted from the relations EMPLOYEES and BRANCHES. 
We apply primitive P12.1, where the input is: 

� R1 = EMPLOYEES,  Rn = BRANCHES,  A = REGION 
� { J1, ...., Jm } = { GEO_COD, REGION, CITY, COUNTRY } 
� K = GEO_COD 
� r1 = tuples of EMPLOYEES, r2 = tuples of BRANCHES 

Result: 

GEOGRAPHICS 

GEO_COD REGION CITY COUNTRY 

G01 P. Rodo Montevideo Uruguay 

G02 Centro Montevideo Uruguay 

G03 Pocitos Montevideo Uruguay 

G04 Centro Bs. As. Argentina 

G05 Palermo Bs. As. Argentina 

 

 

EMPLOYEES 

NSS EMP_NAM POSITION ADDRESS GEO_COD 

2190882 R. Mendez C1 Bvar. Artiga G01 

2233553 S. Nunez C1 J. Herrera y G02 

7657657 L. Lopez C1 18 de Julio G02 

3476434 M. Kiuyd C2 21 de Setie G03 

4567326 S. Sanchez C2 Gral. Flores G02 

4678893 W. Yan C3 Gonzalo Ra G01 

4888640 B. Pitt C3 Bvar. Españ G03 

 

      BRANCHES 

BRAN_CODE BRAN_NAME ADDRESS GEO_COD 

C1 A Bvar. Artiga G01 

C2 B J. Herrera y G02 

C3 C 19 de Junio  G04 

C4 D Calle A 334 G05 

♦ 
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Primitive 12.2. SNOWFLAKE HIERARCHY GENERATION 

Description: 

This primitive generates several relations for the hierarchy, representing it in a 
normalised form. 

Input: 

� source schema : the source schema defined for the group 
� J1, ...., Jm , sorted list of attributes that constitutes a hierarchy / 

A ∈ { J1, J2 }  ∧  A is the lowest level 

� K  /  K = J1 , key for the hierarchy  
� source instance : r1, ...., rn 

Resulting schema: 

� RJi ( Ji, Ji+1 ) ∈ RelJ   ∧  Ji ∈ AttK(RJi)  ∧  Ji+1 = AttFK(RJi, RJi+1),  i: 1..m-1 

� R’i  / Att(R’i) = { K } ∪ ( Att(Ri) - { J1, ...., Jm } ) ∧ {K} = AttFK(R’i, RJ1),  i: 1..n 

Generated instance: 

�  rJ1, ...., rJm =  
 for each i :1..n do 

       si = select Att(Ri) ∩ {J1, ...., Jm} 
                 from Ri 

         s = Integrate ( s1, ...., sn ) 
         Insert in snowflake mode, s into RJ1, RJ2, ...., RJm-1 

                       for each i:1..m / ∀ j:1..n, Ji ∉ Att(Rj) do  
Fill values of Ji in RJ1, RJ2, ...., RJm-1 

� r’i = for each tuple t of ri do 
      if K = A then 

   t’.Att(R’i) = t.Att(R’i) 
       else 
   t’.{Att(R’i) – K} = t.{Att(R’i) – K} 
   t’.K = select K 
              from RJ1 

              where RJ1.A = t.A 
              add t’ to r’i 
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Primitive 12.3. FREE DECOMPOSITION - HIERARCHY GENERATION 

Description: 

This primitive generates several relations for the hierarchy. The form (distribution 
of attributes) of these relations is decided by the designer. 

Input: 

� source schema : the source schema defined for the group 
� J1, ...., Jm , set of attributes that constitutes a hierarchy / 

A ∈ { J1, ...., Jm }  ∧  A is the lowest level 

� K  / K ∈ { J1, ...., Jm },  key for the hierarchy  
� { RJ1, ...., RJh },   set of relations where the attributes of the hierarchy 
                              are distributed / K ∈ Att(RJ1)  ∧  A ∈ Att(RJ1) ) 
� source instance : r1, ...., rn 

Resulting schema: 

� RJ1 ∈ RelJ   ∧  {K} ∈ AttK(RJ1) 
� ……………….. 
� RJh ∈ RelJ 
� R’i  / Att(R’i) = { K } ∪ ( Att(Ri) - { J1, ...., Jm } )  ∧  {K} = AttFK(R’i, RJ1),   i: 1..n 

Generated instance: 

�  rJ1, ...., rJm =  
 for each i :1..n do 

       si = select Att(Ri) ∩ {J1, ...., Jm} 
                 from Ri 

         s = Integrate ( s1, ...., sn ) 
         Insert as corresponds, s into RJ1, RJ2, ...., RJh 

                       for each i:1..m / ∀ j:1..n, Ji ∉ Att(Rj) do  
Fill values of Ji in RJ1, RJ2, ...., RJh 

� r’i = for each tuple t of ri do 
      if K = A then 

   t’.Att(R’i) = t.Att(R’i) 
       else 
   t’.{Att(R’i) – K} = t.{Att(R’i) – K} 
   t’.K = select K 
              from RJ1 

              where RJ1.A = t.A 
              add t’ to r’i 
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Primitive 13. MINIDIMENSION BREAK OFF 

Description: 

This primitive generates two dimension relations. One is the result of eliminating a 
set of attributes from a dimension relation. The other is a relation that contains 
only this set of attributes. Besides, it defines a foreign key between the two 
relations. 

Input: 

� source schema : R ( A1, ...., An ) ∈ RelD 
� K, key for the new dimension 
� X ⊂ { A1, ...., An } ,  set of attributes of the minidimension 
� source instance : r 

Resulting schema: 

� R1 (A’1, ...., A’n) ∈ RelD  /  { A’1, ...., A’n } = { A1, ...., An } – X ∪ { K } 
� R2 / Att(R2) = { K } ∪ X 

Generated instance: 

Note: For continuously valued attributes such as age or income level, 
the instance must be pre-processed so that the distinct values of the 
attributes are grouped into bands.  

� r2 =  select key-gen, X 
          from R 

� r1 =  select R2.K, R.A’1, ...., R.A’n 
          from R, R2 
          where R.X = R2.X 

where key-gen is a user-function that must provide the keys for the tuples of R2. 

 

Example: 

CUSTOMERS 

NAME AGE INCOME_LEVEL ADDRESS SEX CITY CS 

R. Mendez 20 10000 Bvar. Artigas 3 F Mont. S 

S. Nunez 30 15000 J. Herrera y Ob M Mont. C 

M. Garcia 20 10000 Garzon 2125  F Salto S 

L. Lopez 50 5000 18 de Julio 643 M Colonia C 

 

Primitive 13 is applied, where the input is: 

� R = CUSTOMERS 
� K = DEM_COD 
� X = {AGE, INCOME_LEVEL, SEX, CE} 
� r = tuples of CUSTOMERS 

Result: 
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       DEMOGRAPHICS 

DEM_COD AGE INCOME_LEVEL SEX CE 

100 20 10000 F S 

200 30 15000 M C 

300 50 5000 M C 

 

CUSTOMERS 

NAME ADDRESS CITY DEM_COD 

R. Mendez Bvar. Artiga Mont. 100 

S. Núñez J. Herrera y Mont. 200 

M. Garcia Garzon 2125  Salto 100 

L. Lopez 18 de Julio Colonia 300 

 

♦ 
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Primitive 14. NEW DIMENSION CROSSING 

Description: 

The source schema is composed of two relations of any type (dimension 
or crossing), which have an attribute in common. Only one of the 
relations can contain measure attributes. This primitive generates a 
crossing relation whose attributes are the union of attribute subsets of 
the source relations. 

Note: If one of the source relations is a measure relation, its relationship with the 
other source relation must be N:1. 

Input: 

� source schema : R1, R2  /  (R1, R2 ∈ ( RelD ∪ RelC )  ∨   
                                            (R1 ∈ RelM  ∧ R2 ∈ ( RelD ∪ RelC )))  ∧ 

                AttK(R1) = X1  ∧  AttK(R2) = X2  ∧ 
                R1 ∩ R2 = Z  

� Y1, Y2,  sets of attributes to be excluded from the resulting relation 
� N:N, Boolean argument (the relationship between the relations is N:N or not) 
� source instance : r1, r2 

Resulting schema: 

� R ∈ RelC  /  Att(R) = {Att(R1) – Y1} ∪ {Att(R2) – Y2}  ∧ 
if N:N then 

if  R1, R2 ∈ RelD  then 
AttK(R) = (X1 ∪ X2)  ∧ 
AttFK(R, R1) = X1  ∧  AttFK(R, R2) = X2 

else if  R1, R2 ∈ RelC  then 
 AttK(R) =  ∪ A /  ( A ∈ (X1 ∪ X2) ∧ A ∈ R ) 

AttFK(R) = { W / W ∈ (AttFK(R1) ∪ AttFK(R2)) ∧ W ⊆ R } 
else if  R1 ∈ RelC   ∧ R2 ∈ RelD  then 
 AttK(R) =  ( ∪ A /  ( A ∈ X1 ∧ A ∈ R ) )  ∪ X2 

AttFK(R) = X2 ∪ { W / W ∈ AttFK(R1)  ∧ W ⊆ R } 
else   // N:1 

AttK(R) = X1  ∧   
if  R1, R2 ∈ RelD  then 

AttFK(R, R1) = X1  ∧  AttFK(R, R2) = X2 

else if  R1, R2 ∈ RelC  then 
 AttFK(R) = { W / W ∈ (AttFK(R1) ∪ AttFK(R2)) ∧ W ⊆ R } 
else if  R1 ∈ RelC   ∧ R2 ∈ RelD  then 

              AttFK(R) = X2 ∪ { W / W ∈ AttFK(R1)  ∧ W ⊆ R } 

Generated instance: 

� r =   select  distinct {Att(R1) – Y1} ∪ {Att(R2) – Y2} 
                 from  R1 R2 

          where  R1.A1 = R2.A1 
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Example: 

ACTIVITIES 
STUDENT COURSE 

S1 C1 
S1 C2 
S1 C3 
S2 C1 
S2 C2 
S3 C1 
S3 C2 
S3 C3 

 

 
INSTRUCTORS  

COURSE INSTRUCTOR 

C1 I1 
C2 I1 
C2 I2 
C3 I2 

 

 

 

Primitive 14 is applied, where the input is: 

� R1 = ACTIVITIES,  R2 = INSTRUCTORS 
� Y1 = {COURSE},  Y2 = {COURSE} 
� N:N = TRUE 
� r1 = tuples of ACTIVITIES,  r2 = tuples of INSTRUCTORS 

Result: 

            STUDENT-INSTRUCTOR 
STUDENT INSTRUCTOR 

S1 I1 
S1 I2 
S2 I1 
S2 I2 
S3 I1 
S3 I2 

♦ 

 

5. Consistency Rules 

These are some rules that should be applied always, when a DW schema is constructed through 

application of the primitives. The goal of these rules is to assure that the obtained DW schema is 

consistent. We consider a DW schema consistent when it satisfies the DW schema invariants (defined in 

Section 3). 

The rules consider the different cases of inconsistencies that can be generated by application of primitives 

and state the actions that must be performed to correct them.  

R1, R2 and R3 correspond to the case of invariants I1, I4 and I3 violation, respectively. 
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R1 – Foreign key updates 

R1.1 –   

ON APPLICATION OF: Temporalization (adding the time attribute to the key) or Key 

Generalization to R, where X = old key and Y = new key 

APPLY: Foreign Key Update to all Ri / AttFK(Ri,R) = X, obtaining AttFK(Ri,R) = Y 

R1.2 – 

ON APPLICATION OF: Vertical Partition to R with key X, obtaining R1, R2, R3, with key 

X for each case 

APPLY: Foreign Key Update to all Ri / AttFK(Ri,R) = X, obtaining AttFK(Ri,R1) = X, 

AttFK(Ri,R2) = X, AttFK(Ri,R3) = X  

R2 – Measure relations correction 

ON APPLICATION OF: Data Filter or Aggregate Generation to R ∈ RelM, removing A ∈ AttD(R), 

obtaining relation R’ 

WHEN: ∃ S ∈ RelD / AttFK(R’, S) = ∅  ∧ ∃ B / B ∈ Att(R’) ∧ B ∈ Att(S) 

APPLY: Data Filter to R’ removing attribute B 

R3 – History relations update  

R3.1 –   

ON APPLICATION OF: Data Filter to R1 ∈ RelH(R), removing A ∈ AttFK(R1,R), obtaining 

R2 

APPLY: Foreign Key Update to R2, obtaining R3, where A ∈ Att(R3)  ∧  A ∈ AttFK(R3, R) 

R3.24 – 

ON APPLICATION OF: DD-Adding, Attribute Adding, Hierarchy Generation, Aggregate 

Generation or Data Array Creation to R, adding A / A ∈ 

Att(R) 

WHEN: ∃ R’ / R’ ∈ RelH(R) 

APPLY: Attribute Adding to R’, obtaining A ∈ Att(R’) 

 

                                                           

4 This rule is optional. The user chooses if the rule is active or not. 
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6. Design Strategies 

Strategies for application of primitives are designed taking into account some typical problems of Data 

Warehousing and should be useful to solve them.  

The strategies proposed address design problems relative to: dimension versioning, versioning of N:1 

relationships between dimensions, data summarisation and data crossing, hierarchies’ management, and 

derived data. We select these problems basing on the literature [Kim96-1][Kim96-3][Sil97] and on our 

own experience. 

1. DIMENSION VERSIONING 

Real-world subjects represented in dimensions, usually evolve through time. For example, a customer 

may change his address, a product may change its description or package_size. Sometimes it is required 

to maintain the history of these changes in the DW. In some of these cases it is necessary to store all 

versions of the element so that the whole history is maintained. In other cases, only a fixed number of 

values of certain attributes should be stored. For example, it could be useful to maintain the current value 

of an attribute and the last one before it, or the current value and the original one. 

A usual problem DW designers have to face is how to manage dimension versioning. This refers to how 

dimension information must be structured when its history needs to be maintained. The idea is to maintain 

versions of each real-world subject information. 

Several alternatives are provided. In all of them, a new dimension relation is generated, where historical 

data about the subjects can be maintained. 

The following are the possible strategies to apply: 

S1) Apply Temporalization primitive (P3), such that the time attribute belongs to the key of the 

relation. 

S2) Generalise the key of the dimension relation through one of the primitives of Key Generalization 

family (P4). The two options are: 

2.1) Apply Version Digits primitive (P4.1), so that version digits are added to the key. 

2.2) Apply Key Extension primitive (P4.2). In this case new attributes of the relation are included 

in the key. 

S3) Add new attributes, so that a small number of versions of certain data can be maintained. Do this, 

applying the primitive Attribute Adding (P7). 

S4) Generalise the key of the relation following alternatives 2.1 or 2.2, and add an attribute of time that 

does not belong to the key (P4.1, P3 or P4.2, P3). 

S5) Partition the relation according to its stability through one of the primitives of Partition by 

Stability family (P11). Here the alternatives are: 
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5.1) Vertically partition the relation, according to attribute values stability, through Vertical 

Partition primitive (P11.1). 

5.2) Horizontally partition the relation, generating a relation for current data and another one for 

historical data, through Horizontal Partition primitive (P11.2). Immediately apply 

alternatives S1, S2 or S4 to the history relation generated. 

 

 

Example:  

      CUSTOMERS 

SSN NAME AGE INCOME ADDRESS SEX CITY CS 

276052 R. Mendez 20 10000 Bvar. Artigas 3 F Montevideo S 

342587 S. Nunez 30 15000 J. Herrera y Ob M Montevideo C 

431222 M. Garcia 20 10000 Garzon 2125  F Salto S 

213438 L. Lopez 50 5000 18 de Julio 643 M Colonia C 

 

 

 

 

   CUSTOMERS_1 

GR_SSN NAME ................. 

01276052 R. Mendez ................. 

01342587 S. Nunez ................. 

01431222 M. Garcia ................. 

01213438 L. Lopez ................. 

 

       CUSTOMERS_2  

SSN DATE NAME .............. 

276052 1/1/93 R. Mendez ............... 

342587 23/4/97 S. Nunez ............... 

431222 5/2/98 M. Garcia ............... 

213438 3/3/99 L. Lopez ............... 

 

♦ 

2. VERSIONING OF N:1 RELATIONSHIPS BETWEEN DIMENSIONS 

Frequently, it is necessary to maintain the history about the relationships between the elements of two 

dimensions. In particular, we will treat the case where originally we have a dimension relation that has a 

N:1 relationship with another dimension relation, and is referenced from a measure relation. They are 

connected through foreign keys. In order to be able to maintain the history of the dimensions’ 

relationship, some transformations in the schema has to be applied. 

First of all, the designer has to make some decisions: 

a) Which is the history he really wants to maintain and how he wants to do it 

1- Maintain the history only in the dimension. 

2 different 

options 
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In this case the complete history of the relationship with the other dimension will be 

maintained, and it will be accessible from the dimension. 

2- Maintain the history through the data recorded in the measure relation that references the 

dimension. 

Here, it may happen that some states of the relationship between the dimensions are not 

recorded. Besides, the way to obtain information about the history of the relationships of 

a dimension’s subject, is not direct. 

b) Which is the desired design style 

1- Normalised 

2- De-normalised 

Here we propose four different strategies that can be followed to obtain the desired design. There is a 

suitable strategy for each of the possible decisions made by the designer. In the following table we show 

the strategy that must be applied for each combination of type of history and type of design chosen. 

      

 a-1 a-2 

b-1 S 1 S 2 

b-2 S 3 S 4 

 

Possible strategies: 

 

 

 

 

 

 

Given a measure relation R1 and two dimension relations R2 and R3, where there is a N:1 relationship 

between R1 and R2 and a N:1 relationship between R2 and R3, which slowly changes5, the possible 

applicable strategies are the following: 

S1) Do a versioning of relation R2. Due to the consistency rule R1, it also will be necessary to update 

relation R1 so that it references to R2.  

                                                           

5 “slowly change” is an expression used by R. Kimball [Kim96-1] referring to data that evolve slowly. 

d

e

s

i

g

n

h i s t o r y 

R1 

 A 

R2 

 B 

R3 

 A  B 
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The obtained schema will allow storing several tuples corresponding to the same element of 

relation R2, so that each one can reference to a different element of R3. 

 

 

 

 

 

 

Steps: 

1) Apply to R2 alternatives S1), S2) or S4) of the Versioning strategies presented earlier. 

2) Apply R1 consistency rule. 

 

S2)  Modify the measure relation R1 so that, in addition to referencing relation R2, it references relation 

R3. 

With the obtained schema, each movement of the measure relation will reference to an element of 

R2 and to an element of R3, and each element of R2 will reference to only one of R3. The idea is 

that the elements of R2 reference only to the current corresponding element of R3. 

 

 

 

 

 

 

 

Steps: 

1) Apply to R1 Primitive DD-Adding n-1 (P6.2), adding to R1 the attribute that is key of R3. 

Derive this attribute from R2 and declare it as foreign key to R3. 

 

S3) Do a versioning of relation R2. Due to the consistency rule R1, it also will be necessary to update 

relation R1 so that it references to R2. Afterwards, include the attributes of R3 in R2 (de-

normalising). 

R’1 

A modif 

R’2 

 B 

R’3 

 B A modif 

R’1 

 A 

R’2 

 B 

R’3 
 A 

 B 

 B 
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The obtained schema will allow storing several tuples corresponding to the same element of 

relation R2, but containing different data obtained from relation R3. 

 

 

 

 

 

 

Steps: 

1) Apply to R2 the alternatives S1), S2) or S4) of the Versioning strategies presented earlier. 

2) Apply R1 consistency rule. 

3) Apply to R2 Primitive DD-Adding n-1 (P6.2), successively, adding the desired attributes of 

R3. Derive these attributes from R3.  

 

S4) Include the attributes of relation R3 in relation R1 and in relation R2 (de-normalising). 

With the obtained schema, each movement of the measure relation will reference to an element of 

R2 and will contain the corresponding data of R3, and each element of R2 will contain the data of 

only one of R3. The idea is that the elements of R2 contain only the data of the current 

corresponding element of R3. 

 

 

 

 

 

 

 

 

Steps: 

1) Apply to R2 Primitive DD-Adding n-1 (P6.2), successively, adding the desired attributes of 

R3. Derive these attributes from R3. 

2) Apply to R1 Primitive DD-Adding n-1 (P6.2), successively, adding the desired attributes of 

R3. Derive these attributes from R2. 

R’1 

A modif 

R’2 

 B 
R3 

A modif 

R’1 

     A 

R’2 

 B 
R3 

  A 

 B 

R3 
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3. AGGREGATES AND DATA CROSSINGS 

As a consequence of the type of requirements that in general exist over a DW, there is a large number of 

different data crossings and different level of summarisations that should be materialised in the DW. 

Therefore, measure and crossing relations are the most common type of relations that are constructed 

during a DW design. 

The new crossing relations are constructed from existing relations that use to be dimension, hierarchy and 

crossing relations. 

The following are some general cases that may appear in this context, and the existing alternatives for 

constructing the new relations through application of the primitives. 

S1) There is a measure relation where one of the attributes is part of a hierarchy that exists in another 

relation. It is required to increase the level of this attribute in the measure relation, following the 

hierarchy. 

 Two options exist for the generated sub-schema: 

1.2) A new measure relation equal to the original one, except for one of its attributes, which 

corresponds to a higher level in the hierarchy. The data will be at the same or higher 

summarisation level. 

1.3) The same measure relation as in 1.2) and in addition, a new hierarchy relation where the 

lower level is the same as the level chosen for the attribute of the measure relation. 

For obtaining any of these two results, apply Primitive Hierarchy Roll Up (P8), specifying in the 

input if a new hierarchy relation is wanted or not. 

S2) Given a measure relation, the designer wants to group information by some of the attributes of the 

relation. 

In this case a new measure relation is constructed. In this relation data will be grouped by some of 

the attributes of the original relation. The attributes included in the new relation are only the ones 

that correspond to the new grain. For obtaining this result apply Primitive Aggregate Generation 

(P9). 

S3) It is required to obtain new data combinations structured in crossing relations, starting from 

different types of relations.  

The relations to be combined may be of dimension or crossing type, and only one of them can be a 

measure relation. These relations must have some attributes in common so that they can be joined. 

The new crossing relation will have attributes of the two original relations, filtering the attributes 

of no interest for the new crossing. For obtaining this result apply Primitive New Dimension 

Crossing (P14). 
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S4) Combinations of the cases above. 

Compose Primitives Hierarchy Roll Up, Aggregate Generation and New Dimension Crossing 

(P8, P9 and P14). 

 

Examples: 

 

a) We want to construct a crossing relation combining data from a measure and a crossing relation. 

Then we want to group by some attributes of the new relation. 

 

 

PROD-MONTH 
PRODUCT MONTH QUANTITY 

P1 5 100 
P1 6 120 
P2 5 50 
P3 5 300 
 

 
    
 
 
 
 
 PROD-SUP-MONTH 

PROD-SUP  
PRODUCT SUPPLIER 

P1 PR1 
P2 PR1 
P3 PR3 
P4 PR4 
 
 
 
 
 
 
 

PRODUCT SUPPLIER MONTH QUANTITY 

P1 PR1 5 100 
P1 PR1 6 120 
P2 PR1 5 50 
P3 PR3 5 30 

 
 
 
 
  

 
    SUP-MONTH 

SUPPLIER MONTH QUANTITY 

PR1 5 150 
PR1 6 120 
PR3 5 30 

 

♦ 

 

Crossing 

Group by Supplier and Month 
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b) We want to construct a measure relation that combines data from two crossing relations. In this case 

a new measure attribute is generated. 

 
 

ACTIVITIES 
STUDENT COURSE 

E1 C1 
E1 C2 
E1 C3 
E2 C1 
E2 C2 
E3 C1 
E3 C2 
E3 C3 
 

 
    
 
 

 
 
 

       INSTRUCTOR  
COURSE INSTRUCTOR 

C1 D1 
C2 D1 
C3 D2 
 
 
 
 
 
 
 

STUDENT COURSE INSTRUCTOR 

E1 C1 D1 
E1 C2 D1 
E1 C3 D2 
E2 C1 D1 
E2 C2 D1 
E3 C1 D1 
E3 C2 D1 
E3 C3 D2 

 
 
 
 
 
  

 
INSTRUCTOR STUD_QUANT 

D1 5 
D2 2 

 

♦ 

 

Crossing 

Group by Instructor 
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4. IDENTIFICATION AND SEPARATION OF HIERARCHIES 

Frequently, in operational databases we can find embedded in relations sets of attributes where exists a 

hierarchy relation between the attributes. Besides, in cases where the database is obtained from several 

different sources, it may happen that the same hierarchy is repeated in different representations.  

In general, with respect to a relation that “includes” a hierarchy we can find two different situations: 

1) All the attributes of the hierarchy belong to the relation. 

2) The relation has an attribute of the hierarchy that references to the rest of the hierarchy, which can be 

distributed in several relations. 

A reasonable possibility in a DW schema is that a set of attributes that semantically constitute a hierarchy 

exists in the schema only once and is reused by all the relations that need to reference to it. This also 

allows that relations that contain a subset of the considered hierarchy, can reference the whole hierarchy 

and therefore can make new groupings of its data. 

In order to perform a reorganisation and cleaning of all relative to the hierarchies in a schema, we propose 

to follow these steps: 

1) Select all the relations of the schema that include a hierarchy or part of one. 

2) With the selected relations, form groups of relations that correspond to the same hierarchy. 

3) For each group do: 

a) For each relation that references a hierarchy that is in other relations (situation 2) ) do: 

Apply Primitive New Dimension Crossing (P14) to all involved relations, obtaining only 

one relation. 

b) Determine the attributes of the hierarchy to be constructed and its key. 

c) Apply Primitive Hierarchy Generation (P12) to all relations of the group. In this step there 

are three possible design alternatives with respect to the hierarchy to be constructed: 

i) De-normalised. All the attributes of the hierarchy belongs to the same relation. (P12.1) 

ii) Normalised. The attributes of the hierarchy are distributed in several relations, each one 

containing two attributes. (P12.2) 

iii) Distributed in several relations according to some designer’s criteria. (P12.3) 

 

Example: 

Suppose we have already done steps 1) and 2), and one of the groups of relations we obtained is 

composed by relations Branches, Customers, Suppliers and Supp-Location. 
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BRANCHES 

BRAN_CODE BRAN_NAME ADDRESS MANAGER CITY COUNTRY 

C1 A Bvar. Artiga Juan Perez Montevideo Uruguay 

C2 B J. Herrera y Pepe Diaz Montevideo Uruguay 

C3 C 19 de Junio  Maria Suarez Bs. As. Argentina 

C4 D Calle A 334 Jose Sanchez Bs. As. Argentina 

 

CUSTOMERS 

CUST_CODE CUST_NAME ADDRESS CITY REGION COUNTRY 

C1 Empresa ABC 18 de Julio 1 Montevideo Montevideo Uruguay 

C2 Ramirez Hnos. Rambla Arm Montevideo Montevideo Uruguay 

C3 Daniel Kual 19 de Junio  Bs. As. Bs. As. Argentina 

C4 Nuvoses Calle de los  La Plata Bs. As. Argentina 

 

SUPPLIERS  (CITY foreign key to SUPP-LOCATION) 

SUPP_CODE SUPP_NAME ADDRESS CITY 

S1 AAAA Bvar. Artiga Montevideo 

S2 BBBB J. Herrera y Montevideo 

S3 CCCC 19 de Junio  Bs. As. 

S4 DDDD Calle A 334 La Plata 

 

SUPP-LOCATION 

CITY REGION COUNTRY 

Montevideo Montevideo Uruguay 

Bs. As. Bs. As. Argentina  

La Plata Bs. As. Argentina 

 

Now we will perform step 3). First we apply a) to relations Suppliers and Supp-Location and we obtain a 

new relation Suppliers. 

 

SUPPLIERS  

SUPP_CODE SUPP_NAME ADDRESS CITY REGION COUNTRY 

S1 AAAA Bvar. Artiga Montevideo Montevideo Uruguay 

S2 BBBB J. Herrera y Montevideo Montevideo Uruguay 

S3 CCCC 19 de Junio  Bs. As. Bs. As. Argentina 

S4 DDDD Calle A 334 La Plata Bs. As. Argentina 
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According to b) we have to determine the hierarchy we want to construct. 

Hierarchy’s attributes: city, region, country  Key: geo_cod 

Following step c), we apply Primitive 12.1 generating new Branch, Customers and Suppliers relations 

and a de-normalised hierarchy Geography. 

 

BRANCHES 

BRAN_CODE BRAN_NAME ADDRESS MANAGER GEO_COD 

C1 A Bvar. Artiga Juan Perez G01 

C2 B J. Herrera y Pepe Diaz G01 

C3 C 19 de Junio  Maria Suarez G02 

C4 D Calle A 334 Jose Sanchez G02 

 

CUSTOMERS 

CUST_CODE CUST_NAME ADDRESS GEO_COD 

C1 Empresa ABC 18 de Julio 1 G01 

C2 Ramirez Hnos. Rambla Arm G01 

C3 Daniel Kual 19 de Junio  G02 

C4 Nuvoses Calle de los  G03 

 

SUPPLIERS   

SUPP_CODE SUPP_NAME ADDRESS GEO_COD 

S1 AAAA Bvar. Artiga G01 

S2 BBBB J. Herrera y G01 

S3 CCCC 19 de Junio  G02 

S4 DDDD Calle A 334 G03 

 

GEOGRAPHY 

GEO_COD CITY REGION COUNTRY 

G01 Montevideo Montevideo Uruguay 

G02 Bs. As. Bs. As. Argentina  

G03 La Plata Bs. As. Argentina 

 

♦ 
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5. DERIVED DATA 

In general, in a DW is useful to have attributes whose value is derived from others, which can be stored in 

other relations, in order to simplify and accelerate queries. 

When it is necessary to add to a relation R1 an attribute that is calculated from other relations R2, ..., Rn, 

one of the following situations may happen: 

S1) Each value of the attribute is calculated from values of attributes that belong to only one tuple 

obtained from the R2, ..., Rn join. 

 

 

 

 

 

 

 
The steps to follow in order to generate the derived attribute in R1 are the following: 

a) If n>2 then 

Apply Primitive New Dimension Crossing (P14) to relations R2, ..., Rn, obtaining R’. 

b) If n=2 then 

Apply Primitive DD-Adding n-1 (P6.2) to R1 and R2. 

Else if n>2 then 

 Apply Primitive DD-Adding n-1 (P6.2) to R1 and R’. 

Example: 

CUSTOMERS 
SSN NAME ADDRESS PHON

E 
PLAN QUOTE CURR_ 

QUOTE 
 

2760527 Juan Perez B. Artigas 444 121212 100 2 490 
5321532 Maria Lopez G. Flores 2255 545454 101 1 315 

 
 
   PLANS 

PLAN QUOTE QUOTE_ 
VALUE 

100 1 500 
100 2 495 
100 3 490 
101 1 350 

 

DISCOUNTS  
PLAN DISC% 

100 1 
101 10 
102 7 
103 3 

 
♦ 

R1 

R2 

 B 

R3 

 A  B 

 A 

 DD 
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S2) Each value of the attribute is calculated from the composition of the aggregations of values of the 

attributes belonging to the relations R2, ..., Rn. 

 

 

 

 

 

 

 
The steps to follow in order to generate the derived attribute in R1 are the following: 

a) If n=2 then 

Apply Primitive DD-Adding n-n (P6.3) to relations R1 and R2. 

Else if n>2 then 

Compose applications of Primitive DD-Adding n-n, starting from the two relations with 

highest grain and then applying the primitive successively to the last result and the 

following highest grain relation.   

 

Example: 

 

   INVESTMENTS 
YEAR CITY AMOUNT 

1999 Montevideo 126000 
1999 Canelones 57000 

 
 
 
   CUSTOMERS 
SSN NAME CITY PACK

_COD 
AMOUNT 

2760527 Juan Perez Montevideo P1 57000 
343566 Jorge Martin Montevideo P1 57000 
4568899 Luisa Kun Montevideo P2 12000 
5321532 Maria Lopez Canelones P1 57000 

 
 
 
 
 

 
    PACKAGES 

PACK
_COD 

INV_
COD 

AMOUNT 

P1 I1 5000 
P1 I2 12000 
P1 I3 40000 
P2 I2 12000 

♦ 

 
 
 

R1 

R2 

 B 

R3 

 A  B 

 C 

 A 

 DD 
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7. Transformation trace 

In this section we present how we manage and specify the trace of the transformation that was applied to 

a source database schema in order to obtain a DW schema. 

In our proposal DW design is a subsequent application of primitives in a composition mode. The result of 

this application is a schema where each relation is obtained by application of primitives. 

In most cases a final sub-schema is not obtained through application of one primitive to a sub-schema of 

the source schema, but it is obtained through composition of several primitives. We call this process a 

sequence of primitive applications. 

The subsequent primitive application generates a trace of the transformation made. Therefore, for each 

element of the final schema there is a trace that can be seen as the path that was followed for obtaining 

this element starting from a source element. This trace provides the information about the sequences of 

primitives that were applied to the source element. 

In the following section we give a way to represent and specify the trace of a schema design. 

7.1.1. Trace specification 

We specify the trace of a schema design using a set of expressions with the form of function applications. 

By means of this specification we can use the trace starting from elements of the final schema in order to 

know their origin. We obtain a mapping that is necessary for the construction of the processes for loading 

data from the source database to the constructed DW. 

At the same time this specification allows us to use the trace starting from elements of the source schema. 

This perspective is necessary for propagating changes that these elements have suffered to the DW 

schema. 

Definition:  Transformation Trace T 

Given a set of relations, a set of attributes, a set of functions and a set of primitives, the 

Transformation Trace is represented by the following grammar: 

T ::=  <exp_set> 

<exp_set> ::=  <rel_set> ‘=’ <prim_app> | <rel_set> ‘=’ <prim_app> ‘;’ <exp_set> 

<rel_set> ::=  ‘{’ <relations> ‘}’ | <relation> 

<relations> ::=  <relation> | <relation> ‘,’ <relations> 

<relation> ::=  Rel_Name 

<prim_app> ::=  <primitive> ‘(’ <rel_set> ‘,’ <arg_list> ‘)’ | 

<primitive> ‘(’ <prim_app> ‘,’ <arg_list> ‘)’ 

<primitive> ::=  Primitive_Name 

<arg_list> ::=  <argument> | <argument> ‘,’ <arg_list> 

<argument> ::=  <rel_set> | <att_set> | <function_set> | Boolean | ∅ 

<att_set> ::= ‘{’ <attributes> ‘}’ | <attribute> 
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<attributes> ::=  <attribute> | <attribute> ‘,’ <attributes> 

<attribute> ::=  Att_Name 

<function_set> ::= ‘{’ <functions> ‘}’ | <function> 

<functions> ::=  <function> | <function> ‘,’ <functions> 

<function> ::=  Fun_Name 

Note that this grammar does not control the validity of the arguments (quantity and types) passed to each 

primitive. We complement it with the following restriction expressed in natural language: 

The <prim_app> expression must respect the format of the input of the primitive, which is stated in 

the specification of the primitive. 

In a concrete application these expressions are complemented with the specifications of the relations. 

♦ 

Example:  The representation of part of a schema design trace. 

 

{TIME_MONTH, MONTH_SALES} =  P8 ( {SALES, TIME}, {quantity}, month, 

{sum(quantity)}, ∅, {date, week}, true ) 

CMP_SALES =  P9 ( MONTH_SALES, {quantity_m}, {sum(quantity_m)}, {salesman, city} ) 

{CUSTOMERS_1, DEMOGRAPHICS} =  P13 ( CUSTOMERS, dem_code, {age, income_level, 

sex, ce} ) 

CUSTOMERS_DW =  P3 ( CUSTOMERS_1, date, true ) 

Relation schemas: 

SALES (customer, salesman, date, prod, city, quantity) 
TIME (date, week, month, trimester, year) 
CUSTOMERS (name, age, income_level, address, sex, city, cs) 
MONTH_SALES (customer, salesman, month, prod, city, quantity_m) 
CUSTOMERS_1 (name, address, city, dem_code) 
CMP_SALES (customer, month, prod, quantity_cmp) 
TIME_MONTH (month, trimester, year) 
CUSTOMERS_DW (name, date, address, city, dem_code) 
DEMOGRAPHICS (dem_cod, age, income_level, ce) 

 

♦ 

In addition we use a graphic representation, a directed acyclic graph G(T), which main goal is to show a 

global perspective of the process. This representation facilitates the comprehension and localisation of the 

trace of a certain element. 

We complement this graph with textual representation of: (i) the structure of the relations, and (ii) the 

input arguments of each primitive application. We do not include these specifications in the graph for 

readability reasons. 
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Definition: Graph G(T). 

G(T) is a directed acyclic graph composed by the following: 

Nodes: Three types of nodes. 

1) - Represents the application of a primitive. 

2) - Represents a relation. 

3) - Represents a list of external arguments for a primitive. 

Edges: 

-  Each edge joins : (a) a relation with a primitive, (b) two primitives, (c) a primitive with a relation, or (d) a list 

of arguments with a primitive. The representations in each case are the following: in (a) the relation is part of 

the input of the primitive, in (b) part of the output of one primitive is the input of the other one, in (c) the 

relation is part of the output of the primitive, and in (d) the arguments are part of the input of the primitive. 

- The edges are labelled when necessary. (Edges need to be labelled only when they are joining two 

primitives). The label of an edge is the name of a relation 

♦ 

Example: Figure 3.3 shows the graph corresponding to the trace specified in the previous example. 

SALES

TIME

P 8 P 9 CMP_SALES

TIME_MONTH

MONTH_SALES

CUSTOMERS P 13 P 3
CUSTOMERS_DW

DEMOGRAPHICS

CUSTOMERS_1

param1

SALES (customer, salesman, date, prod, city, quantity)
TIME (date, week, month, trimester, year)
CUSTOMERS (name, age, income_level, address, sex, city, cs)

MONTH_SALES (customer, salesman, month, prod, city, quantity)
CUSTOMERS_1 (name, address, city, dem_code)

CMP_SALES (customer, month, prod, quantity)
TIME_MONTH (month, trimester, year)
CUSTOMERS_DW (name, date, address, city, dem_code)
DEMOGRAPHICS (dem_cod, age, income_level, ce)

param1 = 
{quantity}, month, {sum(quantity)}, ∅, {date, week}, true

param2 = {quantity}, {sum(quantity)}, {salesman, city}

param3 = dem_code, {age, income_level, sex, ce}

param4 = date, true

param2

param3 param4

 
Figure 3.3 Graph representing a trace 

♦ 
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8. Conclusion 

This paper addresses the problem of DW design, presenting a framework for designing DWs by 

application of schema transformations 

We present a help tool for DW design, which is a set of schema transformation primitives complemented 

with some strategies and rules for their practical application. These transformation primitives enable to 

design a relational DW from a source relational schema, acting as design building blocks that have DW 

design knowledge embedded in their semantics. In addition, the application of these primitives provides a 

trace, which will be the trace of the design. Utilisation of design building-blocks improves quality and 

productivity in the design. On the other hand, the design trace is an important tool for documentation and 

design process management, and it is essential for performing DW maintenance. In particular, it enables 

to perform the repercussion of source schema evolution to the DW. 

In our proposal schema consistency is managed through DW schema invariants and rules. While 

invariants specify the consistency conditions the DW schemas must satisfy, the rules state additional 

schema transformations to maintain the DW schema in a consistent state. 

Concerning the scope of the proposed primitives, the presented design strategies show how a wide 

spectrum of DW design problems can be solved through application of primitives. 

A proposal about the automatic application of the primitives, starting from the conceptual model (high 

level vision about the information requirements) and the correspondences with the source schemas, is 

being developed as part of a master thesis [Per00]. 

We are also working on the problem of propagating source schema evolution to the DW taking advantage 

of the trace generated during the design. 

In the future the following additional issues could be addressed: 

• experimentation with the primitives in different applications and generation of new versions of the 

set of primitives 

We believe that the set of primitives can be improved in some ways. Experimentation with it shows 

that correcting some parameters of some of the primitives, their application would be more flexible 

and simpler.  

• inclusion of schema integration facilities to the primitives 

We consider that this is a problem itself, which involves specific aspects like concept 

correspondence specification, conflict resolution, schema merging, etc. Nevertheless we believe that 

the primitives should enable to perform schema integration in some way. 

• completeness of the primitives 

Primitive completeness could be informally shown by testing them in a wide gamma of scenarios, 

applying different techniques, in different application areas, etc. 
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Another way to show it, is trying to apply the different design proposals that can be found in the 

bibliography, through the primitives. 

• data loading and maintenance 

Together with each primitive, we provide an outline of the transformation that should be done to the 

existing data for populating the generated sub-schema. For solving the problem of data loading and 

maintenance much more work must be done in this direction.  

• application to real cases of the proposed mechanism for managing evolution 

It would be interesting to apply the proposed mechanism for source schema evolution to real cases, 

as we did with the primitives. 

• evolution generated by changes in DW requirements 

We are working on a solution for DW schema evolution that was generated by evolution of the 

source schemas. DW schema evolution generated by changes in DW requirements is an important 

problem, which we have not addressed yet. 
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Appendix – An Application Example 

This is a case of a product distribution company who wants to construct a DW. The most important 

requirements are related to: (i) sales evolution by product families and geographic regions, (ii) product 

cost analysis, (iii) market analysis (types of clients), and (iv) geographic distribution of the sales. 

The source database schema is shown in Figure 7, which is a representation of the relational schema, 

where the lines represent the links between the tables through the foreign keys. 

Figure 7: The source database schema 

 

We suppose that, following one of the existing DW design methodologies [Kim96-1][Kor99][Bal98], we 

arrived to the design presented in Figure 8. It is a star schema6, where the dimensions are Time, 

Customers_DW, Products_DW, and Geography, and the fact table is Sales_DW, where sale_amount, 

sale_cost and sale_qty are the measures. 

                                                           

6 Star Schema is defined in [Kim96-1] 

sale_date
customer_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES

presentation_id
presentation_name
product_id
size

PRESENTATIONS

product_id
product_name
family
expiration

PRODUCTS

customer_id
customer_name
customer_address
subtype_id
city_id

CUSTOMERS

subtype_id
subtype_name
type_id

SUBTYPES

type_id
type_name

TYPES

city_id
city_name
region_id

CITY

region_id
region_name

REGION
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Figure 8: The target logical DW schema 

 

Now, we apply the transformation primitives to the source schema in order to generate the desired DW 

schema. 

First, we de-normalise the relations that correspond to the dimensions, generating a new relation for each 

dimension of the desired schema. We use primitive P6.2 DD-Adding 1-N for adding the attributes from 

one relation to the other relation. 

Products_DW: We apply P6.2 to relations Presentations and Products, obtaining: 

PRODUCTS_DW (presentation_id, presentation_name, product_id, product_name, 
size, family, expiration) 

Customers_DW: We apply P6.2 to relations Customers, Subtypes and Types, obtaining: 

CUSTOMERS_DW_01 (customer_id, customer_name, customer_address, subtype_id, 
city_id, subtype_name, type_id, type_name) 

Geography: We apply P6.2 to relations City and Region, obtaining: 

GEOGRAPHY (city_id, city_name, region_id, region_name) 

CUSTOMERS_DW_01 has some attributes that are not relevant for this case. We apply primitive P2 

Data Filter for eliminating them. 

Customers_DW: We apply P2 to relation Customers_DW_01, obtaining: 

CUSTOMERS_DW_02 (customer_id, subtype_id, subtype_name, type_id, type_name) 

For the Time dimension we obtain the date attribute from the Sales relation. We do this through the 

primitive P12.1 De-Normalized Hierarchy Generation, which generates a hierarchy relation from 

relations that contain a whole hierarchy or a part of one. Then we calculate the attributes month and year 

from the date, using primitive P6.1 DD_Adding 1-1.  

sale_month
subtype_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES_DW

presentation_id
presentation_name
product_id
product_name
size
family
expiration

PRODUCTS_DW

subtype_id
subtype_name
type_id
type_name

CUSTOMERS_DW

month
year

TIME

city_id
city_name
region_id
region_name

GEOGRAPHY
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Time: We apply P12.1 to Sales, obtaining: 

TIME_01 (date) 

and we apply twice P6.1 to TIME_01 for adding attributes month and year: 

TIME_02 (date, month) 

TIME_03 (date, month, year) 

For generating the fact table (measure relation) Sales with the desired granularity, which is subtype for 

Customer dimension and month for Time dimension, we apply the primitive P8 Hierarchy Roll-Up. This 

primitive also changes the level of detail of the dimensions. The summarisation function for each measure 

must be specified to the primitive. In this case it is the sum function. 

Sales_DW: We apply P8 to Sales and Customers_DW_02, obtaining: 

SALES_DW_01 (sale_date, subtype_id, presentation_id, city_id, sale_amount, sale_cost, 
sale_qty) 

and 

CUSTOMERS_DW (subtype_id, subtype_name, type_id, type_name) 

We apply P8 to Sales_DW_01 and Time_03, obtaining: 

SALES_DW (sale_month, subtype_id, presentation_id, city_id, sale_amount, sale_cost, 
sale_qty) 

and 

TIME (month, year) 

Through the applied primitives we generated the desired schema, showed in Figure 8. 

Now we will refine the design. Suppose we detect that the Product dimension has some attributes (size, 

family) that change their values through time. According to definitions in [Kim96][Kim97] it is a slowly 

changing dimension. We decide that, for query performance reasons, we will maintain this history data in 

a separate relation. For this, we follow two steps. First, we apply P11.2 Horizontal Partition to 

Products_DW relation for generating a new relation for the history data. Second, we apply P3 

Temporalization to the history relation adding the time attribute to the key of the relation. 

Products_DW_His: We apply P11.2 to Products_DW, obtaining: 

PRODUCTS_DW_HIS_01 (presentation_id, presentation_name, product_id, 
product_name, size, family, expiration) 

We apply T3 to Products_DW_His_01, obtaining: 

PRODUCTS_DW_HIS (presentation_id, change_date, presentation_name, 
product_id, product_name, size, family, expiration) 

Finally, also for performance reasons, we want to add to Geography relation a calculated attribute 

cust_qty, which represents the quantity of customers that belongs to each city. We do this through the 

application of the primitive P6.3 DD_Adding N-N, which adds to a relation an attribute that is calculated 

from the summarisation of many tuples of other relation. 

Geography_Cust: We apply T6.3 to Geography and Customers, obtaining: 

GEOGRAPHY_CUST (city_id, city_name, region_id, region_name, cust_qty) 
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The final DW schema is shown in Figure 9. 

Figure 9: The obtained DW schema 

 

The applied primitives generate a trace of the design, which is shown in Figure 10. 

Figure 10: The generated trace 

 

 

sale_month
subtype_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES_DW

presentation_id
presentation_name
product_id
product_name
size
family
expiration

PRODUCTS_DW

subtype_id
subtype_name
type_id
type_name

CUSTOMERS_DW

month
year

TIME

city_id
city_name
region_id
region_name
cust_qty

GEOGRAPHY_CUST

presentation_id
change_date
presentation_name
product_id
product_name
size
family
expiration

PRODUCTS_DW_HIS

TYPES

SUBTYPES

CUSTOMERS

REGION

CITY

SALES

PRESENTATIONS

PRODUCTS

CUSTOMERS_DW

SALES_DW

TIME

PRODUCTS_DW

PRODUCTS_DW_
HIS

GEOGRAPHY_
CUST

6.2

6.2

6.2

6.2

6.2

6.2

6.2 2

12.1 6.16.1

8

8

11.2

3

6.3


