

Data Quality Maintenance
in Data Integration Systems

Adriana Marotta

PhD Thesis

Thesis Advisor: Professor Raul Ruggia

Universidad de la República – Uruguay

March, 2008

Data Quality Maintenance in Data Integration Systems

2

Adriana Marotta

3

AAABBBSSSTTTRRRAAACCCTTT

A Data Integration System (DIS) is an information system that integrates data from a set of
heterogeneous and autonomous information sources and provides it to users. Quality in these
systems consists of various factors that are measured in data. Some of the usually considered ones
are completeness, accuracy, accessibility, freshness, availability. In a DIS, quality factors are
associated to the sources, to the extracted and transformed information, and to the information
provided by the DIS to the user. At the same time, the user has the possibility of posing quality
requirements associated to his data requirements. DIS Quality is considered as better, the nearer it is
to the user quality requirements.

DIS quality depends on data sources quality, on data transformations and on quality required by
users. Therefore, DIS quality is a property that varies in function of the variations of these three
other properties.

The general goal of this thesis is to provide mechanisms for maintaining DIS quality at a level that
satisfies the user quality requirements, minimizing the modifications to the system that are
generated by quality changes.

The proposal of this thesis allows constructing and maintaining a DIS that is tolerant to quality
changes. This means that the DIS is constructed taking into account previsions of quality behavior,
such that if changes occur according to these previsions the system is not affected at all by them.
These previsions are provided by models of quality behavior of DIS data, which must be maintained
up to date. With this strategy, the DIS is affected only when quality behavior models change,
instead of being affected each time there is a quality variation in the system.

The thesis has a probabilistic approach, which allows modeling the behavior of the quality factors at
the sources and at the DIS, allows the users to state flexible quality requirements (using
probabilities), and provides tools, such as certainty, mathematical expectation, etc., that help to
decide which quality changes are relevant to the DIS quality. The probabilistic models are
monitored in order to detect source quality changes, strategy that allows detecting changes on
quality behavior and not only punctual quality changes. We propose to monitor also other DIS
properties that affect its quality, and for each of these changes decide if they affect the behavior of
DIS quality, taking into account DIS quality models.

Finally, the probabilistic approach is also applied at the moment of determining actions to take in
order to improve DIS quality. For the interpretation of DIS situation we propose to use statistics,
which include, in particular, the history of the quality models.

Data Quality Maintenance in Data Integration Systems

4

Adriana Marotta

5

CCCOOONNNTTTEEENNNTTT

CHAPTER 1. INTRODUCTION ... 9

1. Context ... 9

2. Motivation.. 10

3. Problem Statement .. 11

4. Goal of the thesis ... 12

5. Approach of the thesis ... 12

6. Contributions ... 13

7. Document Organization .. 14

CHAPTER 2. EXISTING KNOWLEDGE ... 15

1. Introduction ... 15

2. Data Quality .. 15
2.1 Data Quality Evaluation in DIS .. 17
2.2 Data Quality Improvement ... 20

2.2.1 Practices-Oriented Improvement ... 21
2.2.2 Data-Processing-Oriented Improvement .. 23
2.2.3 Specific Quality Improvement Techniques .. 28
2.2.4 Summary of Data Quality Improvement .. 29

3. Source Schema Evolution in DIS .. 31

4. Applications of Probabilistic Techniques to Data Management 33

5. How this Work Positions ... 34

6. Summary ... 35

CHAPTER 3. MAINTAINING QUALITY.. 37

1. Introduction ... 37

2. Basic Definitions .. 38
2.1 Data Integration System and Quality Management System ... 38
2.2 Freshness and Accuracy ... 39
2.3 Quality Evaluation ... 40

2.3.1 DIS Quality Evaluation through Estimations ... 40
2.3.2 Quality Evaluation Framework .. 41

2.4 Specific Scenarios for Managing Freshness .. 42

Data Quality Maintenance in Data Integration Systems

6

3. Mechanism for Maintaining Quality .. 43
3.1 Mechanism overview ... 44
3.2 Quality Management Framework ... 46
3.3 Quality Requirements .. 48

4. Summary ... 50

CHAPTER 4. QUALITY BEHAVIOR MODELS .. 51

1. Introduction ... 51

2. Probabilistic Techniques Application ... 51
2.1 Some Probabilistic Concepts .. 51
2.2 Application to our problem .. 55

3. Probabilistic Modeling of Sources Quality ... 55
3.1 Models Construction .. 56

3.1.1 Freshness .. 56
3.1.2 Accuracy... 62

3.2 Models Specification.. 63

4. Probabilistic Modeling of System Quality .. 63
4.1 Accepted Configurations .. 64
4.2 Satisfaction of Probabilistic User Quality Requirements ... 70

4.2.1 Probabilistic Modeling of Accepted Configurations Satisfaction 70
4.2.2 DIS Quality Certainty ... 73

4.3 Satisfaction of non-probabilistic user quality requirements ... 79
4.4 Probability Distribution of DIS Quality .. 81
4.5 Models Specification.. 84

5. Quality Behaviour through Time .. 85

6. Summary ... 85

CHAPTER 5. QUALITY CHANGES DETECTION .. 87

1. Introduction ... 87

2. Complete DIS-Quality Verification .. 88

3. Changes Taxonomy ... 90

4. Events... 93
4.1 Events that come from sources ... 93
4.2 Events that are internal to the QMS .. 94
4.3 Generation and capture of QMS events .. 98

5. Identification of Relevant Changes ... 99
5.1 Change Detection Rules ... 99
5.2 Specification of Change Detection Rules ... 103

Adriana Marotta

7

6. Example .. 104
6.1 The DIS .. 104
6.2 Sources’ Models ... 105
6.3 User quality requirements ... 108
6.4 Initial DIS Quality Verification ... 108
6.5 Detection of First Change.. 110
6.6 Detection of Second Change ... 114
6.7 Example Conclusion ... 117

7. Summary .. 118

CHAPTER 6. DIS QUALITY REPAIR ... 121

1. Introduction .. 121

2. Quality Repairing Actions .. 122
2.1 Inspiration in Previously Studied Problem ... 122
2.2 Repairing Actions Classification ... 127
2.3 Quality Tuning .. 128

2.3.1 Freshness ... 128
2.3.2 Accuracy.. 134
2.3.3 Freshness vs. Accuracy .. 134

3. Quality Repair in the QMS .. 135
3.1 Analysis of DIS Situation .. 136
3.2 Determination of Recommended Actions .. 140

4. Example .. 144
4.1 First Change ... 144
4.2 Second Change ... 146

5. Summary .. 147

CHAPTER 7. EXPERIMENTATION .. 149

1. Introduction .. 149

2. Study Case .. 149
2.1 Sources ... 150

2.1.1 Source1 – Fogojogo ... 150
2.1.2 Source2 – GamesRatings.. 152

2.2 Data Targets ... 152
2.3 Quality Management ... 153

3. Quality Models Manager – The Prototype .. 156
3.1 Prototype Architecture and Implementation ... 156
3.2 Tool Functionalities .. 158

3.2.1 Source Models Calculation ... 158
3.2.2 DIS Quality Evaluation .. 160
3.2.3 DIS Models Calculation ... 160

Data Quality Maintenance in Data Integration Systems

8

4. Experiment Execution and Results .. 161

5. Experimentation Conclusions .. 165
5.1 Results Analysis.. 165
5.2 Conclusions .. 166

6. Summary .. 166

CHAPTER 8. CONCLUSIONS .. 169

1. Summary .. 169

2. Contributions .. 170

3. Concluding Remarks .. 170

4. Limitations .. 172

5. Future Work ... 172

BIBLIOGRAPHY ... 175

APPENDIX I .. 181

Preliminary Analysis of the Problem of DIS Quality Changes .. 181
Characterization of the phenomenon .. 181
Source quality changes vs. source schema evolution .. 182

APPENDIX II ... 185

Quality Management Framework - Complete specification .. 185

APPENDIX III .. 191

Change Detection Rules - Complete specification .. 191
Events ... 191
Change Detection Rules .. 192

Adriana Marotta

9

CCCHHHAAAPPPTTTEEERRR 111... IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

1. Context

A Data Integration System (DIS) is an information system that integrates data from a set of
heterogeneous and autonomous information sources and provides it to users. It is an integration
system that follows the GAV (global as view, [Chawathe-04]) approach, and basically consists of a
set of data sources, a transformation process that is applied to data extracted from sources, and a
global data view, which is the data access provided to users. We consider the transformation
process as a workflow in which the workflow activities perform the different tasks that extract,
integrate and transform data such that it satisfies end-users information needs. We consider that the
DIS may have different degrees of data materialization, falling in one of three categories: (i)
Virtual, where all the information extraction, integration and transformation is done at the moment
of the user query, (ii) Materialized, where there exists an integrated schema whose information is
materialized, and (iii) Hybrid, where there is an integrated schema where some of its parts are
materialized and other ones are virtual.

The user, who retrieves information from the DIS, is usually far from its generation and ignores
how and when it was published at the sources as well as what transformations it suffered. This
situation worsens as sources are more external and out of user control. Therefore, the user may not
feel fully confident about the retrieved information. This is always undesired and becomes critical
when the user is going to make decisions based on the obtained information.

For this reason, the management of data quality in this kind of systems becomes an essential issue.
Quality in these systems consists of various factors that may be somehow measured in the data.
Some of the usually considered ones are completeness, accuracy, accessibility, freshness,
availability. In a DIS, quality factors are associated to the sources, to the extracted and transformed
information, and to the information provided by the DIS to the user. At the same time, the user has
the possibility of posing quality requirements associated to his data requirements. Considering that
we have, on one hand the quality offered by the DIS, and on the other hand, the quality required by
the user, we assume the quality of the DIS as better, the nearer it is to the user quality requirements
(this consideration is shared by other authors, e.g. [Strong+97]).

Quality factors are measured at the data sources, and then they can be calculated for the data
provided by the DIS to the user. Quality at data sources may be measured by the owners of the
sources or by the DIS administrator, once he has extracted it or basing in certain information that
allows him to deduce the quality values. We consider quality factors whose state can be represented
by numerical values. For example, we associate to the quality factor freshness, numerical values
that represent the oldness of the data since certain moment.

The values of the quality factors provided by the DIS can be evaluated, taking as input data sources
quality values. There are many works that focus on this problem, such as
[Naumann+99][Mecella+03][Peralta+04].

Considering the concepts expressed above, it is clear that DIS quality depends on data sources
quality, on data transformations and on quality required by users. Therefore, DIS quality is a
property that varies in function of the variations of these three other properties.

This work is closely related to a previous one, the thesis work of Verónika Peralta [Peralta-06],
which is situated in the same context. It mainly addresses the problems of quality factors definitions
and quality evaluation in DIS. Our work is based on many of its results and can be seen as a
continuation of it. It is for this reason that many references to the mentioned work of Peralta can be
found throughout this thesis.

Introduction

10

2. Motivation

We use an example for supporting the motivation of our work.

Consider a system that integrates information from several hospitals of a country, which is used by
an epidemiology department of the government in order to make decisions concerning the country
inhabitants. The system is called HealthDIS. The freshness of the information obtained from the
system is very important, since the decisions may be quite different according, for example, to the
number of cases of a disease appeared the last day. One of the users, called Peter, stated for certain
query about diseases cases, query1, a required freshness ≤ 10 hs. The DIS was designed so that all
users’ freshness requirements were satisfied. However, the freshness of the information obtained by
Peter changes very frequently, since different conditions of HealthDIS are continuously changing.
At a certain moment one of the sources starts being updated with a lower frequency than before.
Peter is probably making wrong decisions because he is using data that is not fresh enough. Which
is even worse, he trusts on this data and thinks it has a freshness that it does not really have.
Analogous situations are generated with respect to accuracy of the obtained information. Figure 1.1
shows the DIS.

A1
A2 A3

A5 A4

A6 A7
A8

Hospital1

query1
req freshness ≤≤≤≤ 10HealthDIS

Peter

Mary

Hospital2 Hospital3 Hospital4

Figure 1.1: Example: HealthDIS

The DIS must have as an objective the maintenance of the satisfaction of the user quality
requirements. On the other hand, it is absolutely necessary that the DIS guarantee Peter that he will
always be aware of the quality of the obtained information. It cannot happen that the user thinks that
the DIS is satisfying his quality requirements when this is not true. To achieve this, the system must
be prepared to endure or detect and manage the changes that affect its quality.

The administrator of HealthDIS, called Mary, is in charge of the maintenance of DIS quality. The
most serious problem she has is related to the system restructuring that may be necessary each time
quality changes. Sometimes, the system looses quality and it must be restructured in order to
recover its previous quality. This may imply, for example, to eliminate a data source from the
system, to change some data transformation process, etc., which are in general very expensive
system modifications. The DIS administrator needs to minimize the frequency of system
restructuring.

Adriana Marotta

11

It would be a great solution for the previously described situation to have a DIS that is tolerant to
quality changes. This means that the DIS is constructed taking into account previsions of quality
behavior, such that if changes occur according to these previsions the system is not affected at all
by them. These previsions could be provided by models of quality behavior of DIS data, which
should be maintained up to date. With this strategy, the DIS would be affected only when quality
behavior models change, instead of being affected each time there is a quality variation in the
system.

In summary, it is necessary to have models of the behavior of DIS quality. With this powerful tool,
we would be able to construct and maintain a DIS that is tolerant to quality changes. Through the
detection of DIS-quality behavior changes, instead of only punctual quality changes, the impact of
quality changes on the DIS is minimized.

3. Problem Statement

A preliminary analysis of the problem of DIS quality changes can be found in Appendix I, where
we characterize the phenomenon and we compare it with a well-known similar problem.

The problem we address is basically how to maintain an acceptable level of quality in a DIS.
Normally, there are diverse and frequent changes in these systems that may affect their quality,
leading us to apply corrective modifications to it. It is important to avoid unnecessary
modifications, since they may be deep ones, such as changes on the design, elimination or
substitution of the participant sources, etc. Therefore, it is necessary to correctly determine when an
occurred change on the DIS merits this kind of actions. It is desirable to have a control over the DIS
that allows us to monitor it, know the behavior of its quality, detect when we should act for
repairing its quality and repair it when it is necessary.

We should have as much knowledge as possible, about the DIS; its past, present and probable
future, such that we can have a clear idea of its situation when we have to modify it to improve its
quality.

We distinguish three basic problems to address:

1- How can we know the quality behavior of the DIS?

Quality is measured in source data and we are able to calculate from it the quality of
information provided to the user. It is clearly possible to calculate the quality provided by the
DIS at a certain moment, measuring quality of the used source data and calculating the resulting
quality, or directly measuring quality in the resulting data. However, it would be more useful to
know how DIS quality behaves in general, having an estimation of the quality that may be
obtained in the queries to the DIS. We want to have a model of this behavior. A model of DIS
quality behavior will depend on the models of sources quality behaviors. All these models must
be calculated and also maintained.

2- How can we detect a change that has occurred on the DIS, affecting its quality behavior and
taking it to an unacceptable state?

Many different changes may occur in the DIS. These changes may have different degrees of
incidence on DIS quality. We must define techniques for identifying when an occurred change
affected the DIS quality to a degree that it turns unacceptable. For this we must take into
account the user quality requirements. It is very important to detect which are the relevant
changes in order to minimize the actions for compensating changes on the DIS.

Introduction

12

3- How can we repair DIS quality after a change?

There are many modifications that can be applied to the DIS in order to improve its quality. It is
necessary to study how the different components relate to each-other and how their different
characteristics affect the quality factors. In addition, when we choose some modifications, they
may not be the most suitable ones, i.e. the most convenient in a cost/benefit relation, for the
given DIS situation. Therefore, the most important issue in this problem is to correctly diagnose
the DIS situation and to determine the best actions to be applied for repairing its quality. In the
resolution of this problem it may be taken into account the change that generated the
dissatisfaction and all the information that is maintained about the DIS and its quality.

4. Goal of the thesis

The general goal of this thesis is to provide mechanisms for maintaining DIS quality at a level that
satisfies the quality requirements of end-users, minimizing the modifications to the system that are
generated by the quality changes.

For achieving this general goal it is necessary to reach some particular or specific sub-goals:

o Provide techniques for modeling DIS quality behavior and maintaining these models.

o Propose strategies for monitoring DIS quality.

o Propose a mechanism for detecting relevant DIS quality changes.

o Propose a mechanism for repairing DIS quality

In addition, there is another sub-goal, which is the experimentation of an important part of the
proposed techniques in a real case. This is useful to show the feasibility and applicability of the
proposal.

5. Approach of the thesis

The thesis has a probabilistic approach, which allows modeling the behavior of the quality factors at
the sources and at the DIS, allows the users to state flexible quality requirements (using
probabilities), and provides tools, such as certainty, mathematical expectation, etc., that help to
decide which quality changes are relevant to the DIS quality.

We propose to monitor the probabilistic models in order to detect source quality changes, strategy
that allows detecting changes on quality behavior and not only punctual quality changes. We
propose to monitor also other DIS properties that affect its quality, and for each of these changes
decide if they affect the behavior of DIS quality, taking into account DIS quality models.

Finally, the probabilistic approach is also applied at the moment of determining actions to take for
improving DIS quality. To interpret DIS situation we propose to use statistics, which include, in
particular, the history of the quality models.

In conclusion, the general approach used throughout the thesis is the probabilistic vision of the
quality at the system. As secondary approaches we use the management of events for detecting
changes and rules for managing them.

We think that this is a proactive approach, since it is based on actions we can perform before the
occurrence of a change: a) calculating how source and DIS quality can vary without failing to
satisfy the quality requirements of the DIS, and (b) building probabilistic models, which allow

Adriana Marotta

13

predicting quality behavior. This prediction allows having a DIS that is tolerant to quality changes,
since it is maintained so that it supports the predicted changes.

The main advantage of this approach is that it minimizes the impact of quality changes on the DIS,
avoiding a lot of useless work in its maintenance.

It is difficult to give behavior patterns or rules, and detailed solutions, applicable to the majority of
the quality factors. Therefore, to study more deeply the problem of changes it is necessary to start
considering one factor at a time, since each factor has a particular behavior, and affects the system
differently. In our work we focus on two quality factors: freshness and accuracy. We have chosen
these factors because they have very different characteristics, such as the form of propagation in the
system or the parameters that affect them.

We propose the existence of a system that coexists with the DIS, which we call Quality
Management System, where our proposed mechanisms are carried out.

6. Contributions

The main contributions of this thesis are the following:

o Techniques for modeling quality behavior in a DIS
We propose to build and maintain probabilistic models of the quality factors at the sources and
DIS. We provide techniques for modeling quality of the sources for freshness and accuracy,
which apply to different scenarios. We also provide techniques for modeling quality of the DIS
for freshness and accuracy factors.

o A mechanism for detecting relevant quality changes in a DIS
We provide a mechanism for detecting changes of DIS quality from events that notify certain
changes in different DIS elements. After processing the events and evaluating the effects of the
changes it notifies only the relevant changes. The main advantage of the mechanism is that it
filters a lot of changes that are not relevant and selects only the changes that deserve a
treatment, which are changes on quality behavior that generate the dissatisfaction of user
quality requirements.

o A mechanism for analyzing DIS situation and finding the most suitable actions for recovering
quality
We provide a mechanism that from the occurred relevant changes analyzes the situation of the
DIS, basing on statistical information maintained in the management system, deduce an
interpretation of the situation and then determines a ranked list of actions for recovering DIS
quality. The mechanism basically consists of sets of rules, which can be extended adding new
rules, new interpretations and new actions. The provided interpretations, actions and rules
show the usefulness of the mechanism.

Introduction

14

7. Document Organization

The present document is organized as follows.

Chapter 2 presents the existing knowledge about quality management, specially quality changes
management.

Chapter 3 presents an overview of our proposal. It also presents some basic concepts that are used
throughout the proposal.

Chapter 4 presents the techniques for building the sources quality models and the DIS quality
models.

Chapter 5 presents the proposal for change detection; first a taxonomy of changes and then the
mechanism for detecting relevant quality changes at the DIS.

Chapter 6 presents the proposal for quality recovery. It first presents an analysis of the possible and
effective modifications that can be applied to the DIS after a quality change, and then it presents the
proposed mechanism for deducing which actions are the most suitable for each situation of the DIS.

Chapter 7 presents a description of the experimentation that was carried out in order to show the
applicability of the proposal.

Chapter 8 presents the conclusion of the thesis.

Adriana Marotta

15

CCCHHHAAAPPPTTTEEERRR 222... EEEXXXIIISSSTTTIIINNNGGG KKKNNNOOOWWWLLLEEEDDDGGGEEE

1. Introduction

In this chapter we present an overview of the existing knowledge in the areas that are related and
relevant to our work.

With respect to Data Quality area, we briefly present some of the most relevant works about the
general field, data quality dimensions and measurement. We analyze more in depth some works
about data quality evaluation in Data Integration Systems, since our work is strongly based on them,
and finally we emphasize and focus on analyzing the works about data quality improvement, since
this is the sub-area that is closest to the one addressed in the present thesis. Therefore, we mostly
concentrate on analyzing data quality improvement proposals, whose approaches we found closest
to ours.

The separation in the sub-topics quality dimensions, measurement, evaluation in DIS and
improvement, perhaps is not so realistic or natural, in fact many proposals involve several of them
and they strongly inter-relate. Nevertheless we opted to organize the works in this way because it
allows us to concentrate in which we are most interested and, on the other hand, it is useful for the
positioning of our work.

In addition to quality-related research works, we comment some existing works about schema
evolution and probability techniques applications. Our intention is to show works that have
influence in our approach and solutions.

In Section 2 we present the works in the area of Data Quality, in Section 3 we comment some works
about source schema evolution problem, in Section 4 we comment some applications of probability
techniques to data management, in Section 5 we position our work with respect to the previously
presented ones, and finally, in Section 6 we present the summary of the chapter.

2. Data Quality

Data Quality is a wide research area, which involves many different aspects and problems, and also
important research challenges. On the other hand, it has an enormous relevance for industry due to
its great impact on information systems usefulness in all application domains. A great amount of
work about data quality can be found in the literature, mostly generated in the last decade. An
interesting analysis of the evolution and current state of the field is presented in [Neely-05]. In this
paper, the author combines the five principles for product and service quality defined by J. M. Juran
in [Juran-88] and the framework for analysis of data quality research presented by Wang et al. in
[Wang+95-a]. Based on this combination he analyzes in which problems existing work most
focuses and which ones have not had much attention. Her main conclusions are the following.
There is significant research regarding the production and distribution of information, in particular
related to data warehousing. Also the problem of quality dimensions has been well researched,
while more work still needs to be done with regards to measurement or metrics. There is very little
work related to economic resources and operation and assurance costs. The author claims that it is
time to move beyond the definition of data quality dimensions and determine how these dimensions
define the quality of data in terms of the user. She also states that more research in improving the
analysis and design of information systems to include quality constructs is needed. Finally she
poses the need of supporting frameworks with empirical data.

Another interesting analysis of data quality research area is the presented in the paper written by
Scannapieco et al., [Scannapieco+05-a]. Here, the authors, after insisting in the importance of

Existing Knowledge

16

addressing data quality problems and improving quality of data in many contexts, mention a
definition of data quality that is referenced in many other papers ([Neely-05], [Wang-98]): fitness
for use. Then they focus on the multidimensional characteristic of data quality, as researchers have
traditionally done. They precisely define the dimensions: accuracy, completeness, currency and
consistency. They say that this core set of dimensions is shared by most proposals in the literature,
although the research community is still debating the exact meaning of each dimension, and
studying which is the best way to define data quality. Various general sets of data quality
dimensions have been proposed including the mentioned core set and further dimensions. Finally
they comment that for specific application domains, it may be appropriate to have more specific sets
of dimensions.

With respect to quality dimensions, we highlight the following works. In [Wang+95-b] the authors
motivate the need for data quality dimensions definition, as the need for tagging data with quality
indicators which are characteristics of the data and its manufacturing process. They introduce a
large set of data quality dimensions and a hierarchy of them. In [Strong+97], based on the concept
that high-quality data is data that is fit for use by data consumers, the authors define certain data
quality dimensions and categories. Finally, quality dimensions and classifications of them into
categories are presented in [Lee+02], where the authors provide a table summarizing the academics’
view of information quality (quality properties defined by different researchers), and another table
summarizing the practitioner’s view (quality properties defined by specialists within organizations,
consultants, vendors of products).

In our research group, we have also worked on the study and definition of data quality dimensions.
We presented, in a joint work with R. Ruggia, [Marotta+03], a study of a wide set of quality
dimensions and we propose a correspondence between user-viewpoint and system-viewpoint
quality dimensions. As an example of definition of quality dimensions specific to an application
domain, there is the work presented in [Etcheverry+07], which focus on defining the appropriate
quality dimensions for the biological domain, specifically for microarray databases.

There are works that concentrate in very few quality properties, such as [Peralta-06], where a very
deep study of freshness and accuracy quality dimensions is presented, and [Bright+02] and
[Theodoratos+99], where freshness and its impact in the system design is studied in depth.

Oriented to Data Warehouse (DW) environments, many data quality works can be found. In
[Ballou+99] the authors bring the data quality problem to the DW area. In [Jarke+97] the authors
present a set of quality factors, grouped in categories that may influence a DW system. They discuss
several relationships between quality parameters and design/operational aspects of a DW. The work
presented in [Jeusfeld+98] gives a formal meta-model for representing quality goal formulation and
quality measurement in a DW. Examples of specialization and instantiation of the model are
presented. In [Calero+01] the authors focus on multidimensional models’ quality. They present a set
of quality metrics for a DW “star” design, and a formal validation process that is applied to them.

Addressing the problem of quality measurement, many works can also be found. We highlight, for
example, the one in [Pipino+02], where data quality assessment is presented as depending on
subjective perceptions and objective measurements. Subjective assessments reflect the needs and
experiences of stakeholders (collectors, custodians and consumers of data). In many cases different
stakeholders have different assessments for the same quality dimensions. Objective assessments,
which involve metrics for the data set in question, can be task-independent (the metrics do not take
into account the context of the application) or task-dependent (the metrics are developed in specific
application contexts). In practice, the authors propose performing subjective and objective
assessments, comparing the results and identifying discrepancies in order to take actions for
improvement. On the other hand they propose three functional forms for developing objective

Adriana Marotta

17

metrics: Simple Ratio, Min or Max Operation, and Weighted Average. The simple ratio is the
number of undesirable outcomes divided by total outcomes subtracted from 1. The min or max
operation is used when the dimension measurement requires the aggregation of multiple data
quality indicators. The weighted average is an alternative to the min or max operation, useful when
there is a good understanding of the importance of each variable to the overall evaluation of a
dimension. The authors present a set of data quality dimensions and the metric for each one,
applying these three forms.

We also highlight the work in [Naumann+00], where the authors present a classification for
information quality criteria according to the possible sources of the criteria scores. They classify
them in three classes: subject-criteria, object-criteria and process-criteria. The first is when the
scores can only be determined by individual users (e.g., understandability). The second one is when
the scores can be determined exactly by analysis of information (e.g., completeness). The third one
is when the scores are determined by the process of querying (e.g., response time). They analyze the
characteristics of each kind of measurement and they propose general methods for each one. They
also comment the confidence of the measurement in each case. They emphasize the importance of
having a detailed description of how and when the assessments should take place, remarking the
convenience of repeating the assessment regularly.

Other important works include proposals for measuring certain quality dimensions, such as
accuracy and currency, [Shankaranarayan+03] [Ballou+95][Ballou+03], also taking into account
weights that contemplate context characteristics. In [Even+05] they have an approach where
measurement is oriented to the content and its applicability for business use, instead of basing upon
impartial characteristics of the data (assuming standards for the measurement).

In addition, there are several works that measure other quality aspects of data, such as [Calero+01],
which focuses on multidimensional models’ quality, and [Moraes+07], which measures quality in
data integration schemas.

2.1 Data Quality Evaluation in DIS

In systems whose information is obtained from multiple sources, integrated and eventually
transformed in different manners, to know the quality of the information provided to the user is not
a trivial problem. Even in the case where the quality of sources is perfectly known and informed by
the sources owners, the quality provided by the DIS to the user must be calculated. We call data
quality evaluation to this calculation, which in some cases is actually an estimation.

In the following paragraphs we comment some of the works that address this topic, which we found
and selected from the literature, due to their influence or relation with our approach.

In [Naumann+99] the authors present a quality model in a heterogeneous information system, which
allows calculating quality values for the possible plans of a query. They propagate quality factors
through the query plans in order to deduce the quality of them. They consider a plan as a binary tree
with QCAs (query correspondence assertions between the sources and the mediator) as leaves and
join-operators as inner nodes. They propose to use a function Merge to obtain the factor value of a
relation that is the result of a join, from the factor values of the participating relations. In particular,
they define accuracy quality factor as the percentage of objects without data errors such as
misspellings, out-of-range values, etc., and the Merge function they propose for accuracy is the
product of the accuracy values of the joining relations.

In [Ballou+06] the authors propose techniques for estimating accuracy in tables that are the result of
combinations of base tables. On one hand, they propose a method (Reference-Table Procedure) that
estimates the accuracy of the result of any operation, doing a comparison between the resulting

Existing Knowledge

18

table and a reference “correct” one. Samples of the base tables are used. The reference table is a
sample obtained from the corrected base tables samples. Then the sample obtained from the original
base tables samples, is compared to the reference table, and from this comparison the resulting
accuracy is determined. On the other hand, they propose some formulas for estimating accuracy
from the accuracy of the samples of the base tables. The combinations they consider are the basic
operators of relational algebra. For the cases of Selection and Projection operations the estimated
accuracy is the same as the estimated accuracy of the input table. In the case of Union operation,
they give the following formula: P = (n1*P1 + n2*P2) / (n1 + n2), where n1 and n2 are the number of
tuples of the input tables and P1 and P2 are the estimated accuracy values of each of them. In the
cases of Projection and Union the respective formulas are useful when no duplicates are generated
in the result; for both operations, in the cases of existence of duplicates (which are analyzed
separately) they propose the use of the Reference-Table Procedure. For Cartesian Product and Join
by foreign key operations, the proposed formula is the following: P = P1 * P2, where P1 and P2 are
the estimated accuracy values of the input tables. The estimation of accuracy for Join over non-
foreign key attributes is very complex. They analyze various cases for showing the complexity of
the problem. They also propose for each estimation the calculation of the confidence interval, and
they finally present techniques for obtaining appropriate samples.

The work presented in [Shankaranarayan+03] involves many aspects of the problem of quality
management, but, due to our interest here, now we only pay attention to their proposal for
evaluating accuracy factor. They work basing on a model for the processing of an information
product, called IPMAP, which we better describe in next section. In this model there are different
constructs, such as processing blocks. A processing block combines data units to create a different
data unit. The accuracy of the output data unit is dependent on the processing performed. The
proposed formula is for a generic process that combines multiple data elements to create an output,
not taking into account the type of processing performed and ignoring the error (in accuracy) that
might be introduced by the process itself. They propose to do a weighted average of the input
accuracy values: Σi =1, n (ai * A i) / Σi = 1, n (A i), where ai is a weight provided by the decision-maker
for the input data unit i and Ai is the accuracy value of the input data unit i.

In [Pon+05] the authors propose a method for ranking several sources basing on their accuracy,
giving the possibility to DIS of selecting the more accurate source data and knowing its accuracy. In
this context there is a set of data sources, from where the system extracts the same data, therefore
each source data can be compared to each other. The proposal for evaluating the accuracy of a
source consists of a formula that considers the following three issues: (1) a probability of the source
of being absolutely accurate, (2) the previous estimated accuracy (at the previous time unit), and (3)
the agreement with the other data sources. They are based on two main ideas. The first one is that
data sources that have been accurate in the past are also likely to be accurate in the future. The
second one is that if a data source agrees with an accurate data source, it should also be accurate,
and if a data source agrees with an inaccurate data source, it should also be inaccurate.

In [Peralta-06] the author defines the Quality Evaluation Framework, which is intended to be a
flexible context which allows specializing evaluation algorithms in order to take into account the
characteristics of specific application scenarios. For example, in a DIS that materializes data, the
data freshness evaluation method should take into account the delays introduced by data
refreshment, while in a virtual DIS such delays are not applicable. The framework models data
sources, data targets and the DIS processes. DIS processes include the tasks for extracting,
transforming and integrating data and conveying it to users. The DIS is modeled as a workflow
process that includes these tasks, and they define the concept of Quality Graph for representing and
managing it. The graph is directed and acyclic. Its nodes are of three types: activity nodes, source
nodes and target nodes, and its edges are of two types: control edges and data edges, which in
general coincide. The quality graph is adorned with property labels that allow estimating the quality

Adriana Marotta

19

of the data that can be produced by the DIS, for example, the time an activity needs for executing or
a descriptor stating if an activity materializes data or not. Quality evaluation is performed by
evaluation algorithms that calculate the quality values for the graph.

She proposes a basic algorithm for evaluating data freshness, which takes into account the freshness
of source data but also the amount of time needed for executing all the activities and the delays that
may exist among their executions. The algorithm propagates freshness actual values traversing the
quality graph and calculating the freshness of the data outgoing each node. The calculation is done
as follows:

- For an activity node A with one predecessor P, the freshness of data outgoing A is
calculated adding the freshness of data produced by P, the inter-process delay between P
and A, and the processing cost of A.

- If an activity A has several predecessors, the freshness of data coming from each
predecessor (plus the corresponding inter-process delay) is combined and added to the
processing cost of activity A. The typical combination function computes the maximum of
the input values, but other user-specific functions may be considered.

Figure 2.1 shows an example of freshness evaluation through the described algorithm (Afreshness
means actual freshness).

Then the work presents a general algorithm for evaluating freshness and studies different scenarios
and ways to instantiate the algorithm.

Figure 2.1: Example of Freshness Evaluation (from [Peralta06])

The author also proposes a method for evaluating accuracy quality factor. The method considers
that accuracy is not necessarily homogeneous over a whole source table, however partitions of a
source table can be defined where homogeneity can be assumed. Therefore, her proposal for
accuracy evaluation consists of three steps: (1) Partitioning source relations according to accuracy
homogeneity, (2) Rewriting user queries in terms of partitions, and (3) Estimating data accuracy of
query results. The estimation of data accuracy for each partition is done assuming accuracy

Existing Knowledge

20

homogeneity, which simplifies the problem. At the end of the process, accuracy values of the
resulting partitions are aggregated for obtaining one value of accuracy for the target data obtained.
We do not comment in depth the process of evaluation proposed.

In Table 2.1 we present a summary of the previously commented characteristics of the works. It is
important to note that we only make reference to the characteristics we are interested to investigate
in this section, which are not necessarily among the most important contributions of each
considered work.

Work Quality Evaluation Proposal

[Naumann+99] - Merge function for join operations.
- Merge for accuracy factor: product of input accuracies

[Ballou+06] - Evaluation based on Samples of the source data.
- Reference-table Procedure for any operation.
- Estimation of accuracy:

- Selection and Projection (no duplicates): it is maintained.
- Union (no duplicates): weighted average of the input

accuracies (weight: number of tuples).
 - Cartesian Product and Join (by fk): product of input accuracies

[Shankaranarayan+0
3]

- For accuracy, formula for a generic process that combines multiple
input data: weighted average of input accuracies, where weights are
given by decision-maker.

[Pon+05] - Evaluates accuracy considering:
- Probability of the source of being accurate
- Previous estimated accuracy
- Agreement with other sources

[Peralta-06] - Evaluates freshness considering input freshness, inter-process delay
and activity cost. If many inputs to the activity, uses Maximum.
- Evaluates accuracy generating partitions that have homogeneous
accuracy.

Table 2.1: Quality evaluation proposals

We have also done some specific works in the area of data quality evaluation. In particular, in
[Marotta+06] we propose evaluation techniques for accuracy, freshness and availability factors in
the context of ROLAP systems. We provide a set of formulas that allow estimating or calculating
the values of these factors, for the result of any multidimensional operation of a predefined basic
set. These multidimensional operations were: dice, projection, drill-across, roll-up, change-base,
and union. Basing on their expressions in function of the basic relational algebra operators, a
calculation is derived for each quality factor. The calculation also takes into account the type of the
elements that participate in each operation (in ROLAP systems we distinguish, e.g. a measure
attribute from a dimension attribute). For the calculations of the factors in the basic algebra
operations we based ourselves on the different formulas proposed in some of the previously
commented works.

2.2 Data Quality Improvement

Data quality improvement is a very vast topic. Its scope is very wide since it involves many
different aspects of data management and can be treated with many different approaches. Much
work oriented to this problem can be found in the literature, mostly generated in the last few years.

Adriana Marotta

21

Under the “umbrella” of data quality improvement we identify three main different kinds of works:
(i) those which point to improving practices relative to data, inside an organization, (ii) those which
are directed to systems that manage data coming from multiple and heterogeneous sources, each
one providing their own data quality, and (iii) those which propose specific quality improvement
techniques oriented to solve certain data quality problems. The proposals of the different groups are
complementary; in fact they frequently appear as portions of other of them. For example, proposals
from group (ii) often include or need to be complemented with proposals from (iii).

2.2.1 Practices-Oriented Improvement

The works we group here, focus on managing data quality inside an organization, i.e. they are
oriented to data generated in the context of an organization. Therefore, they do not consider external
data sources that have a given quality; they consider data whose generation may be under their
control. Due to this reason they mainly orient their solutions to the improvement of data related
practices.

The most relevant research effort we found in this direction is TDQM (Total Data Quality
Management) [TDQM]. TDQM is a program developed at MIT that aims to establish a theoretical
foundation in data quality management field and, from this work, to devise practical methods for
business and industry to improve data quality. One of the main components of this research is the
improvement component, which involves redesigning business practices and implementing new
technologies in order to significantly improve the quality of corporate information. They address
various methods for improving data quality, which are grouped into four categories: (i) business
redesign, (ii) data quality motivation, (iii) use of new technologies, and (iv) data interpretation
technology. All of them are intended to improve the different mechanisms of generation of data in
an organization, in order to minimize poor data quality.

The publications we highlight in this project are, on one hand, [Wang-98], [Shankaranarayan+00]
and [Lee+02], which present the project general approach and proposals, and on the other hand,
[Madnick+01], [Madnick+04] and [Wang+05], which present a more specific approach oriented to
corporate householding.

In [Wang-98] the authors claim that to increase productivity, organizations must manage
information as they manage products. They refer to an information manufacturing system as a
system that produces information products. The TDQM methodology proposes the continuous
iteration of four tasks: Define, Measure, Analyze, Improve, in order to proactively improve the
quality of the information product, continuously. In particular, Analysis phase involves
investigating the root causes for current IQ problems. To achieve improvement, information
manufacturers and suppliers need to expand their knowledge about how and why the consumers use
information, while information consumers need to understand how information is produced and
maintained.

In [Shankaranarayan+00] the IP-MAP is presented; a modeling method for representing the
manufacture process of an IP (information product). This method provides several possibilities to
the IP manager, which are very useful for IQ (information quality) management. In particular, it
allows him to identify the critical phases and bottlenecks in the manufacturing of an IP, that affect
its quality, and to identify ownership of the processes at each of these phases also helping in
implementing quality-at-source. It allows IP managers to understand the manufacture process of the
IP and to measure its quality at the various stages of the process. In addition, the source of a data
quality problem in an IP can be traced in its manufacture process. The modeling constructs in the
IP-MAP consist of construct blocks. Among all the block types, they define the Data Quality block,
which is used to represent the checks for data quality on data items, and the Data Correction Block,
which is for applying corrective actions when quality problems are identified.

Existing Knowledge

22

In [Lee+02] AIMQ is presented, which is a methodology oriented to solve the problem of
information quality assessment and improvement in organizations. The authors focus on giving
assessment methods and techniques that allow an organization to compare its information quality to
others’ and to benchmarks, and also to analyze it across different roles with respect to information
(consumers and managers). They assert that this support is essential for an organization to face the
problem of data quality improvement.

The methodology is based on three components. The first one, PSP/IQ Model, is a model of what
IQ means to information consumers and managers. The second one, IQA Instrument, is a
questionnaire for measuring IQ along the dimensions important for information consumers and
managers. The third one, IQ Gap Analysis Techniques, consists of two analysis techniques for
interpreting the assessments.

The PSP/IQ model classifies the dimensions into four quadrants: sound, dependable, useful, and
usable information. The IQA instrument measures IQ for each of the IQ dimensions, and generates
measures for the four quadrants. The IQ Gap Analysis techniques are used to benchmark the quality
of an organization’s IQ and to identify IQ problem areas and focus improvement activities. It
consists of two techniques: IQ Benchmark Gaps and IQ Role Gaps. IQ Benchmark Gaps assesses an
organization’s information quality against a benchmark, which corresponds to a best-practice
organization. IQ Role Gaps compare the IQ assessments from IS professionals and information
consumers respondents. For each quadrant, it shows the degree of agreement about the level of IQ
that there is between information consumers and IS professionals. It is used for determining
whether differences between roles are a source of a benchmark gap.

The articles relative to corporate householding are [Madnick+01], [Madnick+04] and [Wang+05].
These articles propose a data quality improvement approach oriented to solve a specific kind of
problems. The addressed problems refer to data from corporate household, concept that is deeply
explained in [Madnick+01], and basically are how to obtain correct data from a corporation when
this data comes from different and diverse components of the corporation. They show that corporate
inter-relations must be studied and modeled and rules must be stated in order to correctly process
the obtained data. They also focus on understanding the relations between the data and the context
where it is being queried, in order to assure that the obtained results are the expected ones. They
state the following three categories of corporate householding problems: entity identification, entity
aggregation and transparency of inter-entity relationships. Entity identification concerns solving the
problem of multiple representations of the same entity (very frequent in corporate entities). Entity
aggregation refers to how data must be aggregated, considering the structure of the corporation,
which may be very complex, and the context of the query. Transparency of inter-entity relationships
refers to the existence of relationships between corporate entities that involve multiple layers, which
must also be taken into account at aggregation time.

We also classify in this group some work from M. Scanappieco, presented in [Scannapieco+02] and
[Scannapieco+05-b]. In this work a UML profile for data quality is proposed with the aim of
supporting quality improvement inside an organization. All the proposal is based on the use of
UML and IP-MAP framework [Shankaranarayan+00], which graphically describes the process by
which the information product is manufactured.

The profile consists of three models: (i) the data analysis model, (ii) the quality analysis model and
(iii) the quality design model. (i) is a model that represents different classes of data: raw data, semi-
processed information and information product, and a class named quality data that generalizes the
others. (ii) models the quality requirements, which includes a classification of quality dimensions,
and relates these requirements to the data represented in (i). (iii) represents the processes that
manage data. These models are a support for analysis that allows detecting potential quality

Adriana Marotta

23

problems and, after having checked the non-conformance to quality requirements, introducing
quality improvement actions.

In addition, this work presents a methodology for data quality improvement, which consists in three
phases: data analysis, quality analysis, and quality improvement design, each of which leave as
result the corresponding models previously presented. With respect to the processes applied to
improve quality they propose the use of quality improvement patterns, so that solutions and
experiences are reused. These patterns mainly consist of the description of a problem and the
description of a solution.

Finally, in [Caballero+04] the authors propose a framework for modeling, assessing and improving
quality of information in an organization. They emphasize the importance of an integrative
framework for assessing and improving information quality that is based on knowledge about the
company and the “information manufacturing processes” (viewing information as a product). The
proposal defines two main components: (i) an information quality management model based on
maturity staged levels, and (ii) an assessment and improvement methodology. (i) defines five
information quality management maturity levels: Initial, Definition, Integration, Quantitative
Management and Optimizing. The levels are ordered by taking into account information quality
goals and their relative importance. (ii) The main actions proposed by the methodology are the
measurement of the state of maturity level and the definition of a plan for improvements.

2.2.2 Data-Processing-Oriented Improvement

The proposals of this group are oriented to systems that manage data coming from multiple and
heterogeneous external sources, each one providing their own data quality. In these systems the
quality of source data is given and the integration system must deal with this fact, having the
possibilities, for example, of selecting sources, negotiating with sources, post-processing source
data, combining source data in the most convenient way according to its quality needs, etc.

All these works have as an objective the improvement of data quality, some of them address data
quality maintenance, and some others concentrate on quality change management.

We analyze the following four groups of works, which we found in the literature as conference
papers, journal articles and thesis works: (1) works from C. Cappiello et al., (2) DaQuinCIS project,
(3) work from V. Peralta, and (4) works from P. Bugajski et al..

Proposals of C. Cappiello et al. address data quality improvement through quality monitoring,
quality problems detection, and quality recovery. Their works are commented in the following
paragraphs.

In [Cappiello+06-a] the Hybrid Information Quality Management (HIQM) methodology is
proposed. It provides a methodological approach for run time error detection and correction
management. Detection of errors in the run-time phase of the process is supported and suitable
improvement actions are enforced. The methodology consists of eight phases, from which the ones
related to quality improvement are: Analysis & Monitoring, Improvement Functions and Strategy
Correction. The methodology basically proposes to measure data quality, compare it to data quality
requirements and if they are not satisfied find out the causes and identify the suitable improvement
actions. In the improvement actions, both data-oriented and process-oriented techniques are
considered. However, the most emphasized contribution of the paper is the Warning generation and
management of the methodology. This management enables to monitor data and processes in real-
time. The different modules of the warning management interact, detecting three different data
quality faults: discrepancies between internal and external data (e.g. web sources), inconsistencies

Existing Knowledge

24

between data quality values and quality requirements, and anomalies in data management in the
system. In addition, data quality problems are identified from feedbacks received from different
actors. Finally there is a real-time recovery module that applies recovery actions based on rules for
problem solving.

In [Cappiello+06-b] the authors say that in the context of systems using Web Services,
organizations should continuously check the quality of the owned and exchanged data. They
propose the same methodology as previously. The methodology is proposed as a support for self-
healing environments, allowing solving run time data quality problems. An analysis of the business
process must be done in the design phase, identifying critical points in the business tasks that may
worsen data quality. In these points, information quality is continuously monitored, i.e. it is
measured each time information passes through the points. They work with accuracy, completeness
and timeliness dimensions. They classify faults along two categories: value mismatch and missing
data. The possible causes mentioned in the paper for these errors are: typos, delays in update
operations between two databases that contain the same data, value unavailability. For error
recovery they propose two types of methods: data oriented and process oriented. The former
includes data cleaning, which can be: manually comparing to real world, comparing to other
databases or correcting pre-defined errors. The latter refers to modifications to the process structure.

In her thesis work [Cappiello-05], Cappiello devotes a chapter to data quality management, which,
according to her, must include algorithms for measuring data quality and automatic techniques for
the improvement of data when their quality decreases below acceptable values. This chapter
includes an analysis of quality monitoring and evaluation, distinguishing between two possible
approaches: (a) on line evaluation, where data quality is computed against each user request, and (b)
off line evaluation, where quality values are pre-computed and stored on a quality repository. (a)
involves an additional cost to compute the result of the query. On the other hand, it guarantees that
the quality metadata are up-to-date. For requests of large data sets, it could be more appropriate to
consider the results provided by the off line evaluation process. (b) is independent of the execution
of a particular query. Evaluations are done periodically and sometimes they are specifically
invoked. It reduces the response time, but it may provide out-of-date information about the quality
of data. The stored quality metadata do not take into account all the changes performed in the time
interval between two periodic assessments. The author considers as a critical issue the definition of
this time interval.

This chapter also includes the proposal of the Quality Factory, which supports the data quality
assessment and improvement methodology. The methodology is based on rules, which allow the
interaction between the Assessment module and the Monitoring module of the Quality Factory, and
allow the Monitoring module to evaluate whether quality improvement actions are needed. Rules
are also used to determine when quality must be evaluated. For improvement actions they discuss
the two possibilities: actions based on data-oriented or process-oriented techniques. The former are
appropriate when data are not modified frequently, as they are expensive and have short-term
effects. The latter prevents future errors with a long-term effect. Process oriented improvement aims
to identify the causes of data errors and eliminate them permanently. Improvement actions change
data access and update activities through process analysis and redesign. As a support, they propose
to maintain historical information where they maintain the modifications they apply and how they
affect data quality.

In [Cappiello-04] the authors present a table summarizing the characteristics of on line and off line
evaluations (see Table 2.2). In this paper they also present an evaluation of the methodology
through its implementation. We remark two of the aspects they mention. The first one is that the
assessment algorithms, when performed on-line, generate a response time that is excessively high,
since in the application case there are large amounts of data and users require low response times.
They say that in this respect, the off-line evaluation is preferable, although it provides quality values

Adriana Marotta

25

valid at the time of the last assessment. The second aspect concerns the improvement phase. They
say that a fundamental result is that it is not necessary to undertake improvement actions every time
the system identifies a quality problem, and that it is important to estimate the returns from an
improvement action through a cost-benefit analysis.

 On-line Evaluation Off-line Evaluation

Evaluation input Query submission Periodically
Upon specific events
Upon request of data
quality administrator

Data granularity Small amount of data
(query results)

Large amount of data
(usually, entire databases)

Improvement
methods

Search for an alternative
source

Data or process-oriented
improvement methods

Table 2.2: Comparison between on-line and off-line evaluation approaches. (From [Cappiello-04]).

The DaQuinCIS project [DaQuinCIS] has as main objective the definition of an integrated
framework that includes: (i) an integrated methodology for data quality enhancement in cooperative
systems, and (ii) a distributed architecture supporting data quality monitoring and improvement.
Some of their proposals are presented in [Scannapieco+04] and [Mecella+03]. These papers
propose an architecture for managing data quality in cooperative information systems (CIS). The
architecture aims to avoid dissemination of low qualified data through the CIS, by providing a
support for data quality diffusion and improvement.

CIS are characterized by high data replication; different copies of the same data are stored by
different organizations. They propose an approach for data quality improvement that takes profit of
this characteristic, comparing the different copies, selecting the most appropriate one or reconciling
them obtaining an improved one. The proposed architecture fits in the TDQM_CIS methodological
cycle [Bertolazzi+01], which has five phases: Definition, Measurement, Exchange, Analysis and
Improvement. The architecture consists on different modules that support the mentioned phases, but
the paper focus on two of these modules: the Data Quality Broker and the Quality Notification
Service, which mainly support the Exchange and Improvement phases.

The Data Quality Broker performs the quality brokering function, which consists on posing a data
request with quality requirements over the other cooperating entities, and the quality improvement
function, which selects the best-quality value and proposes it to the organizations that can choose to
discard their data and to adopt higher quality ones. The quality improvement feature consists of
notifying organizations with low quality data about higher quality data that are available through the
CIS.

The Quality Notification Service is a publish/subscribe engine that allows subscriptions for users to
be notified on changes of the quality of data [Marchetti+03]. When a change in quality happens, an
event is published by the Quality Notification Service i.e., all the users which have a consistent
subscription receive a notification. An interesting aspect is that the Quality Notification Service can
be used in the CIS to control the quality of critical data, keeping track of its quality changes and
being always aware when quality degrades under a certain threshold.

The paper deeply presents all the previous concepts an also covers other aspects such as a model for
data and quality data exported by cooperating organizations.

Existing Knowledge

26

The thesis work of V. Peralta [Peralta-06] treats quality improvement problem for freshness quality
factor in DIS (Data Integration Systems). Its approach is based on providing, on one hand, facilities
for the analysis of freshness problems, and on the other hand, some possible freshness improvement
strategies. As a support for these strategies, they provide a set of basic actions over the
transformation process of the DIS (called improvement actions) and combinations of them for
achieving the different freshness improvement strategies.

The facilities for freshness problems analysis consists of two main techniques. The first one is the
top-down analysis of data freshness, that is, to first analyze data freshness in a high-level quality
graph1 and analyze more detailed quality graphs when further details are needed. The second one is
the calculation of a critical path on the quality graph for a target node (node that represents the
information delivery to the user), which represents the bottleneck for data freshness. In the
following we comment more in detail these two proposals.

To achieve the possibility of top-down analysis the author defines a hierarchy of representations of
the DIS processes, which is composed by quality graphs at different abstraction levels. The root
represents the whole DIS. High-level activities abstract high-level tasks while lower-level activities
show the processing details of the tasks. Ascending in the hierarchy implies abstracting task
behaviors while descending in the hierarchy implies decomposing an activity in more detailed sub-
tasks. All the mechanisms for browsing among the different levels’ graphs and for calculating the
properties of a graph from the previous graph in the hierarchy, are specified. The properties of the
quality graph are the ones that allow evaluating freshness in it, so freshness can be evaluated at any
graph of the hierarchy.

Given a quality graph, a path for a target node is a critical path if starts at a source node and ends at
the target node, and its freshness is equal to the freshness of the data delivered in the target node
(target-node’s freshness). The freshness of a path (path freshness) is defined as the sum of source-
node’s freshness, the processing costs of the nodes in the path and the inter-process delays among
the nodes. They define these concepts in the context of the assumption that the combination
function (calculation of freshness value in an activity node) returns the maximum of input freshness
values, and they prove that for such function the critical path always exists. They also prove that
critical paths are those that have the greatest path freshness. We transcribe the example they
propose for an intuitive idea of the concept of critical path:

Example 2.1: (from [Peralta06])

Consider the quality graph of Figure 2.2. The freshness of data produced by activity A6
(delivered to target T2) can be calculated adding the source data actual freshness of source S1
(0), plus interprocess delays (0,0,10,20) and processing costs (30,60,30,5) in the path from S1
passing by activities A1,A3,A5 and A6, i.e. 0 + (0,0,10,20) + (30,60,30,5) = 155. So, this
path is a critical path for T2.

1 Graph proposed in the work for evaluating quality in the DIS, which is based on the data
transformation process performed by the DIS.

Adriana Marotta

27

Figure 2.2: Example of Critical Path (from [Peralta06])

◊◊◊◊

The critical path identification is useful because it is the area of the quality graph that should be
modified in order to improve data target freshness.

As said before, this work also proposes some improvement strategies and basic actions for
achieving them. The strategies they propose are the following: reducing processing costs, reducing
synchronization delays, reducing source data freshness, and augmenting target required freshness.
Different possibilities for the application of these strategies are analyzed. They propose a set of
elementary actions that modify the quality graph topology or properties, for example “AddNode”,
“AddProperty”, “RemoveNode”. Over these actions they propose some macros that are useful for
applying the mentioned strategies. For example, “ReplaceSubGraph”, which may be used for
replacing a set of activities by a set of more performing components or replacing a source and its
wrapper by new ones providing fresher data.

The works of Bugajski et al. focus on data quality changes detection and analysis of quality
problems.

In [Bugajski+05-a] the authors propose a framework that basically allows: modeling data baselines
(off line analysis), monitoring data and comparing it to baselines (on line), and analyzing
relationships between data in order to find causes of quality problems. Considered data is event
based, for example, payment transactions.

They claim that instead of focusing on quality factors (accuracy, completeness, consistency, etc.)
we should focus on deviations from baselines for measures derived from those. The latter are
certain data that is significant for the quality factor and that constitutes persistent features associated

Existing Knowledge

28

with the business events. They propose then to focus on changes. In addition, they propose to think
distributions, not values. For this objective, they build baseline models, which are baseline
distributions. They compare the observed model (distribution) to the baseline model (distribution).
To build baselines, they continuously observe streams of data and keep persistent state information,
i.e. features that maintain across data.

Data are divided into homogeneous segments and for each segment a baseline model is constructed.
The construction of baselines and the monitoring of the data streams allow detecting statistically
significant changes in data, through detecting deviations from baselines. For example, in a
payments card transaction case, they verify if the number of declined transactions is different than
the baseline.

Root cause analysis is intended to provide an identification of conditions that are correlated with
variables of business interest. Investigations are undertaken involving domain experts to explore
these relationships between data.

The paper approach is mainly to present the proposed framework through its application to real
cases in payments card domain and highway traffic domain. In [Bugajski+05-b] they go more in
depth in showing the construction of the baseline models.

In the paper [Bugajski+06] the authors present more in depth the construction of the baseline
distributions for a particular application case: Visa. The problem they approach is the generation of
a very big quantity of different baselines that are necessary for this case. They propose the
construction of a data cube that is split in different cells, for each of which a baseline model is
constructed. They discuss the problems generated by the enormous size of data managed; the
determination of the cells, the construction of thousands of baselines, and the management of many
alerts that must be studied by the domain experts. They present two concrete case studies of the
method application to Visa context.

Finally, in [Curry+07] the authors show the application of the proposal in Visa case study,
remarking that they have demonstrated through this case study that change detection using data
cubes of baseline models is an effective framework for computing changes on large, complex data
sets.

2.2.3 Specific Quality Improvement Techniques

We classify here works that propose concrete techniques to be applied to data, in order to improve
its quality. We found a very large quantity of works for data cleaning, which refers to improving
accuracy-related factors in data, and on the other hand, a work that proposes techniques for
improving data freshness.

A great amount of work is proposed for data cleaning, which consists of techniques for improving
factors of accuracy dimension in data. A wide variety of errors are identified and classified, and
techniques for the different kinds of errors are proposed. In this work, we do not present an
exhaustive or in-depth analysis of data cleaning proposals, we only intend to briefly comment some
relevant bibliography.

Some papers that show an interesting analysis of data cleaning are [Rahm+00], [Oliveira+04],
[Oliveira+05], [Müller+03], [Quass-99]. In [Rahm+00] the authors provide a classification of data
quality problems in data sources differentiating between single- and multi-source and between
schema- and instance-level problems, giving an overview of the main existing solution approaches.
They also give an overview of commercial data cleaning tools. In [Oliveira+05] the authors present
a taxonomy of data quality problems, organizing them by granularity levels of occurrence. They
formally define a large number of quality problems, classifying them according to the data

Adriana Marotta

29

granularity to which they are applied. In [Oliveira+04], the same authors present a classification of
the quality problems and the existing proposes for their solutions (data cleaning techniques). In
[Müller+03] a survey of data cleansing problems, approaches, and methods, is proposed.

Generalizing, with respect to the classification of errors, some of the errors identified and classified
are: (a) illegal values, such as values outside domain range, misspellings and value entered in the
wrong field, (b) illegal format, such as unidentifiable abbreviations, no standard format (e.g. in the
date) and no standard units, (c) multiple values entered in one attribute, (d) consistency problems,
such as integrity constraints violation, and (e) incorrect values with respect to real world.

Some important projects in data cleaning are the ones presented in [Galhardas+00], [Galhardas+01],
which present the AJAX tool, [Vassiliadis+01], with ARKTOS tool, [Raman+01], with Potter’s
Wheel system, and [Lee+00], with IntelliClean tool.

In general, with respect to cleaning techniques, we found that we might classify them according to
three dimensions: (i) approach, where we find techniques oriented to: rules, look-up tables
comparisons, patterns, statistical methods, or functions (such as distance), (ii) user interaction
degree, where we find tools that are interactive, automatic, a combination of both, or manual, and
(iii) error type they manage, which were commented above.

In [Peralta-06], as commented in previous section, strategies for data freshness improvement are
proposed. They analyze different solutions for the context of DIS that improve the freshness
obtained in the data delivered to the user.

2.2.4 Summary of Data Quality Improvement

In this section we synthesize the existing knowledge about data quality improvement, basing on the
previously analyzed works.

We find as general approaches to data quality maintenance, the following:

o Iteration of tasks for proactively improving quality: definition, measurement, analysis,
improvement.

o Data quality monitoring and change detection.

o Models for the process applied to data, enhanced with data quality values representation, data
quality checks, and corrections.

o Specific techniques for improving freshness and accuracy related quality factors in data.

With respect to analysis and improvement, we mainly find the following proposals:

o Analysis of causes of poor quality, mainly through the following approaches:

- Detection of bottlenecks in the process that is applied to data

- Comparison of data quality to benchmarks and comparison between different roles’
perception of the data quality, as a possible source of errors.

- Correlation between variables and analysis supported by domain experts

o Definition of patterns for improvement (problem - solution).

Existing Knowledge

30

o Quality recovery through data cleaning and through modifications to the process (data-oriented
or process-oriented techniques).

o Statement of information quality goals or user quality requirements.

o Improvement through notifications to the participant organizations in a cooperative system
about better quality data that can be adopted by them.

With respect to data quality monitoring and change detection:

o Monitoring through on-line or off-line evaluations and change detection through comparison to
quality requirements.

o In the context of cooperative information systems, offered data quality is monitored and when
it changes it is notified to the participant organizations.

o Distributions of data values monitoring. Construction of baseline models and detection of
quality changes through detection of deviations of data distributions from them.

With respect to models for data processing:

o Definition of models for the manufacturing process of an information product, which include
modules for quality checkings and corrections.

o Definition of models that relate data quality, data quality requirements and processes that
manage data.

With respect to specific techniques for improving quality in data:

o Data cleaning techniques, which identify a great gamma of possible errors in data, such as
syntactic, semantic or consistency problems, and apply corrections basing on rules, look-up
tables, patterns, etc.

o Strategies for improving freshness of data in the context of Data Integration Systems.

Finally, we classify some representative analyzed papers, according to some parameters that are
relevant for our work, taking into account the most relevant characteristics of each proposal. Table
2.3 shows this classification.

Adriana Marotta

31

Parameter Option Proposal

Context Multiple data sources [Cappiello+06-a] [Cappiello-
05] [DaQuinCIS] [Peralta-06]

Inside a corporation [TDQM] [Scannapieco+02]
[Caballero+04]

Quality Dimension Only accuracy [Madnick+01] [Galhardas+00]
[Vassiliadis+01] [Raman+01]
[Lee+00]

Only freshness [Peralta-06]

In general, for various
dimensions

[Cappiello+06-b] [TDQM]

General Improvement
Approach

Iteration of tasks [TDQM] [Cappiello+06-a]

Monitoring and changes
detection

[Cappiello+06-b] [Cappiello-
05] [DaQuinCIS]
[Bugajski+05-a]

Construction of models [Scannapieco+05-b]
[Caballero+04]

Specific improvement
techniques

[Galhardas+00]
[Vassiliadis+01] [Raman+01]
[Lee+00] [Peralta-06]

Analysis of causes of poor
quality

 [Wang-98] [Lee+02]
[Madnick+01]
[Scannapieco+02] [Peralta-06]
[Bugajski+05-a]

Approach for error detection
and correction

Run-time [Cappiello+06-b] [DaQuinCIS]

Offline, through statistical
models

[Bugajski+05-a]

Table 2.3: Classification of quality improvement proposals

3. Source Schema Evolution in DIS

We regard source schema evolution problem as a problem that may have some similarities with
ours and that has been very much studied. Therefore we are interested in the general approaches
that have been adopted in order to this problem. In the following we briefly comment some work
about schema evolution and then we concentrate in the proposals for source schema evolution in
DIS.

With respect to the general problem of schema evolution in databases we refer to some
representative works. In [Zicari-91] and [Ferradina+96] two main aspects are taken into account in
relation to the state of a database after schema evolution: (i) structural consistency and (ii)
behavioural consistency. Structural consistency is the consistency between the database and the
schema, and behavioural consistency is related to keeping the consistency of the application
programs that existed before evolution. On the other hand, there are two approaches for managing
schema evolution: (a) Adaptational approach [Ferradina+95] and (b) Versioning approach
[Skarra+86][Ferradina+96][Lautemann-97][Nguyen+89]. In the adaptational approach, when the
schema is modified the state of the schema before the change is lost and the final result of evolution

Existing Knowledge

32

is an only one schema with the new structure. The existing instances and the application programs
that run over the database have to be adapted to the new schema. In the versioning approach,
modifications to the schema are not applied directly on the existing schema. Instead, a new version
of the schema is created. In this case the existing instances do not necessary have to be transformed
to satisfy the new schema, and neither the application programs. Finally, taxonomies for evolution
and the effects of each operation on the schema and its instances are found in [Zicari-91] and
[Skarra+86].

There are some works in the literature about source schema evolution in DIS, which we comment in
the following.

A big amount of work has been done by Rundensteiner et al. in source schema evolution in the
context of materialized views (MV). In [Rundensteiner+97] the authors present a study and
classification of view adaptation problems. They distinguish the following problems: view
synchronization, MV maintenance after view synchronization, MV maintenance after sources data
updates, and MV maintenance after view redefinition. They also characterize the problem space in
the view synchronization problem, considering a taxonomy of source schema changes, as well as
the complexity of the view definition language and its meta-information. They propose a framework
for solving view adaptation, called EVE (Evolvable View Environment), where there is a view
synchronizer that rewrites the view definitions by replacing view components with suitable
components from other ISs. In addition, in [Nica+99] they propose a language, called E-SQL, for
evolvable view definition, which allows declaring if an attribute, relation or condition is replaceable
and/or dispensable, and also characteristics about the new view extent with respect to the old one.
The proposed strategy for view synchronization takes into account the evolution parameters
imposed by the E-SQL view specification. Then they solve view maintenance after materialized
view synchronization. Another algorithm for view synchronization is proposed in [Nica+98]. On the
other hand, they have presented a work [Koeller+02] that proposes techniques for maintenance of
schema-restructuring views. These views are defined with Schema-SQL language, presented in
[Lakshmanan+96], which main characteristic is that allows a uniform manipulation of data and
meta-data, generating a dynamic output schema.

The work presented in [McBrien+02] give solutions to source schema evolution in a DIS that is
generated with a schema transformation approach. They propose a framework that supports
evolution of source schemas allowing the global schema and the query pathways to be easily
repaired. The same set of primitive transformations they propose for integrating source schemas
into the global schema, are used for propagating source schema evolution.

Specifically in the context of Data Warehouse, we remark the works in [Bouzeghoub+00],
[Bouzeghoub+03] and [Papastefanatos+07].

In [Bouzeghoub+00] the DW is defined, at the design level, as a hierarchy of view expressions
whose ultimate nodes are queries on data sources. This schema is represented by a graph, and is
used for design purposes as well as for managing evolution. The authors distinguish three different
cases for DW evolution: (1) evolution of users’ needs, (2) evolution of data sources and (3)
evolution of the materialized views. For the case of data sources evolution they consider the
changes: adding a new data source and deleting an existing data source. Both types of changes with
the possible managements for them are analyzed in the paper. When it is possible, changes are
solved at the graph without affecting the users’ views. In the work presented in [Bouzeghoub+03]
the system considered involves a mediation schema and a set of heterogeneous and autonomous
data sources. The authors address the problem of propagating to the mediation queries changes
raised at source schemas. They base themselves on the definitions of: a set of source change
operations, a set of propagation primitives (modifications at the mediation level), and a set of

Adriana Marotta

33

propagation rules. The rules determine which propagation primitives must be applied after a source
change. They say that the propagation may either modify the mediation schema or the mediation
queries, and they focus on the problem of propagation over the mediation queries. The proposed
rules are ECA rules, whose events are stated in terms of source change operations, and whose
actions are in terms of propagation primitives.

In [Papastefanatos+07] the authors propose an extension of the graph they proposed in previous
works for representing ETL processes, such that they can represent the actions that should be taken
when a change event occurs. They propose to enrich the ETL graph with annotations that facilitate
what-if analysis. When an event occurs an action is triggered that either blocks the event or
reshapes the graph to adapt to the proposed change. Three kinds of actions can be annotated for a
construct of the graph (e.g. a query): propagate the change, block the change, prompt the
administrator for deciding. They present an algorithm that determines how to propagate the change
in the ETL graph.

Finally, relating DW evolution with quality, we find the work in [Quix-99], which provides a
taxonomy of schema evolution operations and the quality properties that are affected by each of
them.

As a general conclusion about the commented proposals for source schema evolution problem in
DIS, we state that all of them mainly focus on the layer that maps sources and integrated system for
absorbing the source changes. A wide gamma of strategies or approaches for data integration is
managed in these works: materialized views, mediation queries, transformation primitives, ETL
graphs. In all cases, the mapping generated between sources schemas and integrated schema is
processed and managed according to the occurred change, in order to minimize the impact on the
integrated schema.

4. Applications of Probabilistic Techniques to Data Management

In this section we briefly comment some works that, despite not addressing the same problem as
we, they serve as a reference point for us with respect to the application of probabilistic models
and/or techniques to data management problems.

In the following paragraphs we comment three works that address different problems, basing on
probabilistic models. The first one, by Cho and Garcia-Molina, study how to estimate the change
frequency of source data. The second one, by Karakasidis, Vassiliadis and Pitoura, models the
refreshements of DWs using queue theory. The third one, by Liu, Luo, Cho and Chu, addresses the
problem of selecting the most relevant database for a user query.

In [Cho+03] the authors consider a context were data sources are updated autonomously and the
users do not know when and how often they change. The authors give some examples of
applications that can improve their effectiveness using an estimated change frequency: a web
crawler, the update policy of a DW, web caching, data mining. They study how to estimate how
often a data item changes. A taxonomy is given, based on how the element is accessed
(passive/active monitoring, regular/random interval) and what information is available (complete
history of changes / last date of change / existence of change). They propose several estimators that
measure the change frequency, assuming that a source element changes by a Poisson Process, in
particular they mention experimental data that shows this behavior for web pages. They focus on
estimating λ in the case that they only know whether the element changed or not between their
accesses, and they present as further work the problem of changing λ.

Existing Knowledge

34

In [Karakasidis+05], motivated by the need of as fresh data as possible in the DW, the authors
propose a framework for the implementation of active data warehousing (DWs are updated as
frequently as possible). In their architecture, data flows from the sources to the DW through an
intermediate data processing stage, where it suffers different transformations. The authors employ
queue theory as the cost model that predicts the data delay at this stage. They model each ETL
activity as a queue in a queuing network, assuming that tuple arrivals to each ETL activity occur
due to a Poisson process.

The work presented in [Liu+04] addresses the problem of metasearching, i.e. selecting the most
relevant databases to a user’s query on the Web. One of the techniques they propose is probabilistic
relevancy modeling. They construct the probabilistic distribution for the relevancy of each database
for a given query. Using the probabilistic model, the user can explicitly specify a desired level of
certainty for the database selection.

There are some works that use probabilistic techniques for data cleaning. In [Chu+05] the authors,
based on the fact that many applications exhibit strong dependencies between data samples, propose
to use such dependencies for cleaning the data. Their approach is based on modeling data
dependencies with Markov networks and use belief propagation to compute probabilities and to
infer missing values or to correct errors. In [Andritsos+06] the authors address the problem of
detecting duplicate tuples, corresponding to the same real-world entity. Their approach allows query
answering over duplicated data, where each duplicate is associated with a probability of being in the
clean database. For achieving this, they rewrite queries over the database containing duplicates.

In addition, there is a group of works that focus on the problem of uncertainty in databases, using in
various different ways the potential of probability. For example, in [Cheng+05] probabilistic models
are used for solving uncertainty of the database values, since they may not coincide exactly with the
changing reality. It is also interesting for us, the inclusion to the queries of a probability requirement
in the “where” condition. [Benjelloun+06], [Antova+07] and [Boulos+05] are other examples of
probabilistic techniques application for managing uncertainty in databases’ values.

5. How this Work Positions

We believe that our approach has important similarities with the approaches of Cappiello et al. and
Bugajski et al., which were presented in Section 2.2.2. The main points in common of our approach
and Cappiello’s is the objective of monitoring, and detecting quality changes in DIS, as well as the
utilization of rules for their implementation. In particular, we coincide with one of their results that
expresses that it is not necessary to undertake improvement actions every time the system identifies
a quality problem (considering this has a cost). With respect to Bugajski’s approaches we mainly
coincide with the idea, strongly supported by them, of thinking on distributions, not on particular
values. However, there are important differences between our work and theirs.

In the case of Cappiello’s works, they detect data quality errors while we detect data quality
changes. In addition, they focus on run time error detection and management, while we address
offline changes detection and management. Finally, they work detecting errors in a one-by-one
basis, while we model data quality behavior achieving the possibility of detecting and predicting
changes on the behavior of data quality.

In the case of Bugajski’s works, they probabilistically model the attributes’ values, i.e. data values
behavior, while in our work we probabilistically model the data quality values behavior.

The proposals presented in Section 4, specially the ones from Cho et al., Karakasidis et al. and Liu
et al., reaffirm our approach of probabilistic modeling source behavior. At the same time, the
proposal of Pon et al. (Section 2.1) is an example of a work that takes into account and emphasizes

Adriana Marotta

35

the fact that data sources that have been accurate in the past are also likely to be accurate in the
future. This concept is also used by us when working with quality models that are built from past
behavior.

Evolution works were used as a starting point for analyzing the problem of quality changes,
specially the problem of source schema evolution in DIS, which has some analogies with source
quality changes in DIS.

It is very important to remark that the work presented in [Peralta-06] is a base from which we start
for making our proposal. We use this work’s results, in particular: quality factors study and
definitions, and quality evaluation framework and algorithms, as a starting point. We believe that
this work and ours are complementary.

6. Summary

In this chapter we presented an overview of the existing knowledge in the areas of data quality,
source schema evolution in DIS, and applications of probabilistic techniques to data management.

Data Quality is a very wide research area. We commented the most important problems and some
of the most relevant proposals for their solutions. For the problems of data quality dimensions and
their measurement we have given a brief overview, while we concentrated on the issues of data
quality evaluation in DIS and data quality improvement in general.

For data quality evaluation we highlighted the strategies for combining quality values that come
from different sources. From the proposals for data quality evaluation, we extracted the concrete
techniques for accuracy and freshness evaluation, which are the aspects we must take into account
in our work. We found and selected some proposals for accuracy and only one for freshness.

Data quality improvement was the area we analyzed more in depth, since it is the closest one to our
work. Works that address quality maintenance and quality changes management are usually
presented as quality improvement works. Besides, data quality maintenance includes the problem of
data quality improvement.

The approaches of the analyzed improvement works basically focus on any of the following: (a)
iteration of tasks for proactively improving quality, (b) data quality monitoring and change
detection, (c) models for the process applied to data, enhanced with data quality issues, (d) specific
techniques for improving quality factors in data. We classified the works into three categories:
practices-oriented improvement, data-processing-oriented improvement, and specific quality
improvement techniques. The works classified in the second category are the ones that are closest to
ours, and their approaches have points in common with ours. In Section 5 we position our work
with respect to these ones.

Some important proposals about source schema evolution in DIS were commented in order to show
some basic knowledge about how to manage this problem.

Finally, works about probabilistic techniques applications to the area of information systems are
commented. Some of these works show how data behavior is probabilistically modeled, and in
particular, there are cases that are assumed to behave as a Poisson process.

As we tried to remark in this chapter, many approaches throughout the analyzed literature present
characteristics that show the pertinence and relevance of the approach we have chosen in the
present work.

Existing Knowledge

36

Adriana Marotta

37

CCCHHHAAAPPPTTTEEERRR 333... MMMAAAIIINNNTTTAAAIIINNNIIINNNGGG QQQUUUAAALLLIIITTTYYY

We should take care of quality in our Data Integration System, avoiding its
degradation.

1. Introduction

As said before, our goal is to maintain the system quality at a level that satisfies the user quality
requirements. In order to achieve this, we must manage all the changes that affect system quality,
considering that it may be continuously changing, in particular its data sources, its data
transformation graph and its users’ requirements.

For the management of DIS changes we identify two possible approaches. In the first one, we
simply act when a change occurs, evaluating if it provokes the dissatisfaction of the user quality
requirements and acting in consequence. We work only with what we see in a certain moment (a
“snapshot” of the system). This strategy would manage each quality change independently, using
the available information about the current state of the system. It allows solving the quality
problems originated by each change on the system. However, when thinking on system changes, it
is clearly more natural and useful to have a dynamic vision of the system. This is the base of the
second approach. It has a vision of the system through time, and not only in a punctual moment.
This dynamic vision allows to better diagnose what is happening to the system and to take more
effective decisions. The main advantages of having this vision are the possibilities of: (i) detecting
more “macro” changes, for example a change on the average freshness of a source, instead of a
change on the source freshness in certain moment, (ii) acting preventively, i.e. taking actions before
the system is negatively affected by a change, and (iii) considering historical information for
determining the actions to be taken after a change. The second one is the approach we choose for
maintaining quality. We present the following simple examples with illustration purposes.

Example 3.1 (about freshness)

A DIS has a data source that provides it economic information, whose freshness oscillates
between 0 and 12 hours. However, only in exceptional cases, when the enterprise does not
work normally due to an unexpected holiday or employees’ problem, the data source
freshness reaches 13 hours or more. The DIS does not satisfy users’ freshness requirement if
this source passes the value of 12 hours. Suppose that the first approach for changes
management is being applied. One day, the source reaches 13 hours, this change is detected
by the DIS quality management system, and as a consequence the source is eliminated from
the system, and substituted by another one. In fact, if the DIS administrator would have
known that this was an exceptional situation, he would not have taken that decision since the
source was very reliable and accurate.

◊◊◊◊

Example 3.2 (about accuracy)

Suppose there is an operational database that registers the sales in certain store, and which
also serves as a data source for a DIS of the global company. There are pre-defined
procedures for measuring the accuracy of the DIS-sources’ data, which are executed
periodically at the sources. In certain moment this measurement is applied to the mentioned
store database and the resultant accuracy is under the acceptable values for the accuracy
required at the DIS. The DIS administrator immediately starts implementing very expensive

Maintaining Quality

38

cleaning processes for the data extracted from this source (affecting the obtained freshness).
Perhaps, if the DIS administrator would have known that the last-measured accuracy was
strongly influenced by one exceptional day, when the operator was momentarily substituted
by an inexperienced one, he would not have taken that decision.

◊◊◊◊

With these examples we intend to show the importance of determining which situations should be
considered as relevant quality changes, since considering a change as relevant may have drastic
consequences on the DIS, its design, its sources, etc. One of our main sub-goals is to propose good
criteria for determining which changes are relevant and an effective mechanism for identifying
them. Once a relevant change is detected, it must be determined which are the possible actions that
may be taken in order to “repair” the DIS quality. For this, having a dynamic vision of the DIS
quality is also very useful, since it gives more information for selecting the best actions to be taken.

We carry out the chosen approach strongly basing on probabilistic and statistical techniques.

Quality maintenance is performed by the Quality Management System, which is in charge of all the
functionalities related to the quality of the DIS. It is in charge of quality evaluation, proposed in
[Peralta-06], quality-oriented DIS design, partially addressed in [Peralta-06] and in the present
work, and quality maintenance, addressed in the present work.

In this work we focus on the management of two factors, freshness and accuracy, considering
definitions and evaluation-calculations that are simple or simplified. This is because our goal is to
propose techniques for changes management and we prefer as a strategy, to start with non complex
factors and calculations such that the focus can be posed on the object of our study.

In this chapter we intend to give the support for understanding the proposal of the thesis, which is
presented in the three following chapters. We present: a set of concepts that are basic in our work,
the specification of the basic components of our framework, and the whole mechanism that we
propose for maintaining quality. The latter is necessary to put the pieces together, because we
present the solutions to the different aspects of the problem in different chapters. These are: the
modeling of quality behavior, in Chapter 4, the detection of relevant quality changes, in Chapter 5,
and the repair of DIS quality, in Chapter 6.

In Section 2 we present basic definitions, in Section 3 we present the mechanism for maintaining
quality and in Section 4 we present the summary of the chapter.

2. Basic Definitions

In this section we present some concepts that are basic in our work. Some of them are taken from
existing work, some are adapted to our problem, some are proposed by us. We also present here the
specification of some of these concepts, which will be extended all through the document.

2.1 Data Integration System and Quality Management System

As said before, the Data Integration System (DIS) is an information system that integrates data from
a set of heterogeneous and autonomous information sources and provides it to users. In our context,
it basically consists of a set of data sources, a transformation process that is applied to data
extracted from sources, and a user front-end, which is a set of pre-defined queries or an integrated
schema. The data involved in these different elements have some quality, which can be measured,
estimated, and eventually improved.

Adriana Marotta

39

We propose the existence of a Quality Management System (QMS) associated to the DIS. The main
functionalities of this system are the following:

o Construction of source quality model.
Given certain information about the source, the QMS is capable of building a model that
represents the quality behavior of the source.

o Evaluation of the quality of the DIS. (Proposed in [Peralta06])
The quality values provided by the DIS to the users are calculated from the sources quality
values.

o Construction of the DIS quality model.
Given the sources quality models and the user quality requirements, the DIS quality model is
calculated.

o DIS quality changes management.
The QMS is capable to detect relevant quality changes and to propose actions in order to repair
the DIS quality.

The QMS functionalities are based on a framework for quality management. This framework,
called Quality Management Framework, is an extension of the Quality Evaluation Framework
proposed in [Peralta-06].

2.2 Freshness and Accuracy

As seen in Chapter 2, there are many different interpretations and definitions of freshness and
accuracy quality factors. We intend to give solutions that are as general as possible for freshness
and accuracy factors, however, in order to avoid any ambiguity, we choose the following particular
definitions for these factors and we restrict ourselves to them in all our proposals.

Definition 3.1: Freshness is the time elapsed since the data is updated at the DIS sources until the
data arrives to the DIS data target (user-query answer or materialized database).

Definition 3.2: Accuracy tells how correct the data is. It may refer to any of the following
interpretations: semantic correctness, syntactic correctness or precision, according to their
definitions in [Peralta-06]. Basically, semantic correctness describes how well data represent states
of the real-world, syntactic correctness expresses the degree to which data is free of syntactic errors
(such as misspellings and format discordances), and precision concerns the level of detail of data
representation.

For our work we assume some context characteristics that are related to the management of these
quality factors in the DIS, which are the following:

o Granularity. The granularity is the basic information unit to which quality measures are
associated. We manage a granularity of relation. At the sources we have a quality value for
each source relation (in general, we call it source), in the transformation process we have a
quality value for each activity result, which is a relation, and we also have a quality value for
each data target, which is also a relation.

o Measure unit.

- In the case of freshness, it is a Natural number that represents any measure of time; days,
hours, minutes, seconds, etc., according to the real case.

- In the case of accuracy, it is a Decimal number between 0 and 1, whose precision is
determined according to the needs of the real case.

Maintaining Quality

40

- Time and accuracy values are discretized as explained later, in Chapter 4, Section 2.2.

o Measurement at the sources.

- In the case of freshness, it is measured in function of the occurred updates. When there is an
update in a source relation it holds freshness = 0, as time passes, freshness increases one by
one according to the chosen unit.

- In the case of accuracy, there are processes that measure the different types of accuracy in a
relation. In general, it is measured cell1 by cell and these measures are aggregated to a
granularity of relation [Etcheverry+06].

o Information about sources. The Quality Management System needs metadata from the sources
that provide either the quality values or data that allows deducing them.

- In the case of freshness, the system receives information of the updates occurred on the
source or information that allows estimating the freshness through the construction of a
model.

- In the case of accuracy, either the source provides the accuracy values of each relation or
the system itself measures them periodically.

o User required values. The user expresses the freshness and accuracy values with the same
units, precision and interpretation we presented above.

2.3 Quality Evaluation

Quality evaluation problem in DIS is addressed in [Peralta-06]. We incorporate the proposed
solutions and, as said before, extend the proposed framework (Quality Evaluation Framework).

The proposed techniques for quality evaluation are applicable in different situations and with
different strategies. In the following sub-section we state our approach for their application.

2.3.1 DIS Quality Evaluation through Estimations

We identify two different ways of evaluating quality in a DIS. We call them calculation and
estimation. In the case of calculation, at the moment of integrated schema population or at the
moment of user-query execution, quality is measured at the sources and propagated (combined and
calculated) with the data that goes from the sources to the user. In the case of estimation, sources
quality is measured and DIS quality (quality of information provided by the DIS) is estimated,
regularly. When the user comes to use the DIS, it provides quality information before he retrieves
the data from the sources. This quality information is an estimation based on knowledge about
sources quality (which may be obtained in different ways) and about sources and DIS
characteristics. Estimated quality is the quality that the DIS is currently providing (at any moment
DIS information is required), while calculated quality is the quality provided by the DIS at certain
instant with a certain dataset. Calculation needs information that is only obtained through execution
of the data queries or transformations. Table 3.1 shows a summary of Calculation/Estimation
characteristics.

In this work we consider that the DIS quality is evaluated through estimation. In this context, we do
not give the quality values of certain data, we give an estimation of the data quality that the DIS is
offering to its users. That is why we manage average, maximum, most probable, etc. quality values,

1 We call cell to the value of an attribute in a tuple of a relation.

Adriana Marotta

41

instead of punctual quality values. If we considered, for quality evaluation, calculation instead of
estimation, it would not have any sense to talk about changes, since quality would be fixed values
corresponding to certain data at a certain moment. We would not have any changes to detect or
calculate their impact.

Calculation Estimation

Based on actual quality values of the sources Based on representative quality values of the
sources (max, average, etc.)

Using actual sources’ instances Using usual characteristics of sources’ instances

Actual quality values of the DIS are calculated Mean, maximum or most-probable quality
values of the DIS are calculated

Quality given by the DIS at a given time instant Quality given by the DIS at any moment

Table 3.1: Calculation vs. Estimation

2.3.2 Quality Evaluation Framework

The Quality Evaluation Framework is proposed in [Peralta-06], first as a specific solution for
freshness quality factor and then it is extended for accuracy factor. In the framework the DIS is
modeled; sources, transformation process and data provided to users are modeled.

DIS is modeled as a workflow process in which the workflow activities perform the different tasks
that extract, integrate and convey data to end-users. Quality evaluation algorithms are based on the
workflow’s graph representation, basically consisting on value aggregation and propagation through
this graph.

The following definitions are textually transcribed from [Peralta-06], with the exception of
Definition 3.3, where we substitute the set of QualityGraphs by only one QualityGraph. This is
done with the purpose of simplifying the specification and does not interfere with the correct DIS
representation.

Definition 3.3: The quality evaluation framework is a 5-uple: <Sources, Targets, QualityGraph,
Properties, Algorithms>, where Sources is a set of available data sources, Targets is a set of data
targets, QualityGraph is a graph representing the DIS process, Properties is a set of properties
describing DISs features and quality measures and Algorithms is a set of quality evaluation
algorithms. ����

Definition 3.4: A data source is represented by a pair <Name, Description>, where Name is a
String that uniquely identifies the source and Description is a free-form text providing additional
information useful for end-users to identify the source (e.g. URL, provider, high-level content
description). ����

Definition 3.5: A data target is represented by a pair <Name, Description>, where Name is a String
that uniquely identifies the data target and Description is a free-form text providing additional
information useful for end-users to identify the target (e.g. application/process name, interfaces,
servers running the application). ����

It is introduced the concept of quality graph, which is a graph that has the same workflow structure
as the DIS and is adorned with additional DIS information that is useful for quality evaluation.
Figure 3.1 shows an example of quality graph.

Maintaining Quality

42

Figure 3.1: Quality graph [Peralta-06]

2.4 Specific Scenarios for Managing Freshness

Freshness quality factor is highly dependant on certain context characteristics that generate different
scenarios. We define three dimensions that are relevant to freshness management and whose
crossing generates the different scenarios. The dimensions are the following:

1) DIS materialization

This dimension refers to the degree of materialization of the integrated schema. This is very
important when considering freshness property, since it directly affects the calculation of the
freshness of the data that arrives to the user. The DIS are classified in (i) Virtual, (ii)
Materialized, and (iii) Hybrid, as presented in Chapter 1, Section 1.

2) Sources loading

In order to know about the behavior of freshness factor at a source, it is essential to know how
the source is loaded. In this dimension we classify the sources according the way they are
loaded, into two categories: (i) periodic loading, and (ii) continuous loading.

In (i) the source is loaded or updated in a periodic basis, i.e. the data is always updated with
exactly the same frequency. An example of this kind of source may be a Data Warehouse that is
loaded every month, and provides its information to a system that integrates data from several
Data Warehouses.

In (ii) the source is updated in a continuous basis, randomly. This occurs, for example, with
sources that are autonomous with respect to the integrated system, and are the operational
databases of other systems.

3) Sources meta-data

Adriana Marotta

43

We distinguish four kinds of meta-data, related to source freshness, that may be provided by the
sources: (i) date-time of last update, (ii) all or some of the occurred updates, (iii) update period
(only for case of periodic loading), and (iv) estimations of the update frequency.

Example 3.3

We classify, according to the previous dimensions, a Data Warehouse and an OLAP System.

The Data Warehouse has a materialized integrated database, its sources are updated in a
continuous basis, since they are operational databases, and each source provide to the Data
Warehouse system the estimation of the frequency of updates.

The OLAP system integrates information coming from several Data Marts, which are its
sources. It has a virtual integrated database, its sources are updated periodically, and they
provide information about the update period. (In [Marotta+06] we propose techniques for the
management of quality factors in a Data Marts system with these characteristics.)

Figure 3.2 shows this classification by the different dimensions.

DIS
Materialization

Virtual

Materialized

Hybrid

Sources
Loading

Periodic
loading

Continuous
loading

Sources
Meta-data

Last-update time

Updates

Update
frequency

Update
period

DATA
WAREHOUSE

OLAP
SYSTEM

Figure 3.2: Classification of example cases

◊◊◊◊

3. Mechanism for Maintaining Quality

In order to maintain the quality of the DIS at a level that satisfies user quality requirements, the
QMS must be continuously doing two basic tasks: (1) maintaining up-to-date meta-information
about system quality and about other system properties that affect quality, and (2) monitoring the
quality of the system (this includes the quality of the sources and the quality of the DIS), detecting
when there is a change that is relevant to DIS quality. On the other hand, the QMS must
occasionally react doing the following tasks: (3) evaluations and calculations related to DIS current
quality, as necessary and (4) analysis and recommendations of actions for repairing DIS quality.

Maintaining Quality

44

3.1 Mechanism overview

The mechanism for maintaining quality proposed in the present work is integrated with other
functionalities into a larger context. This context is composed by the Data Integration System (DIS),
meta-information about it, the Quality Management System (QMS), and the users. Figure 3.3 shows
the architecture of the whole process of DIS quality management, which we explain in the
following paragraphs.

As can be seen, in the DIS environment we distinguish the DIS processes, and other four processes
that interact with it: Execution, which obtains information about the DIS processes execution, Event
Monitor, which monitors the events sent by the sources, Design & Maintenance, which executes
design tasks and modifications to the DIS, and finally, Measurement, which is a process that may
exist for measuring the quality of data extracted from a source.

The meta-information needed by the QMS acts as an interface between the DIS environment and
the QMS. We divide it in the events repository and the estimations & statistics. The first one stores
all the events that it receives, which come from the Event Monitor and/or triggered by changes on
estimations & statistics. The second one stores a large variety of information about the system,
which we can group basically in: current information and estimations about DIS properties, quality
models, historical information about them, and statistical data about quality measurements.

In the QMS we distinguish three groups of processes, one related to the building of the management
framework, a second one related to the evaluation of DIS quality, and a third one related to the
improvement of DIS quality. All the processes of these groups interact with the Quality Graph,
which is the representation of the DIS.

Quality Graph Builder is in charge of the creation and maintenance of the quality graph, obtaining
the necessary information from the estimations & statistics metadata. Quality Models Builder
calculates the quality behavior models of the sources and the DIS, obtaining information from the
meta-information repositories and storing the models and the histories of these models in
estimations & statistics repository.

Quality Changes Detection and Quality Verifications are in charge of managing the changes
occurred on the DIS, and determining if they are relevant to the DIS quality. Quality Verifications
verifies the DIS quality taking into account the user quality requirements and the quality provided
by the DIS to the user. Quality Evaluation evaluates the quality given by the DIS, providing this
information to the end-user if needed.

Design Refinement improves the DIS design basing on quality evaluation and an analysis of critical
points. Quality Repair is the process that compensates the DIS quality when it was negatively
affected by a change, and this event was notified to it by the Quality Changes Detection process.
The Improvement processes do not act directly on the DIS, but they give the designer the
recommendations of which improvement actions he should apply.

Not all the solutions for the different modules shown in the figure are given in the present work.
Here we propose solutions for the processes: Quality Models Builder, Quality Changes Detection,
Quality Verifications and Quality Repair (green-colored in the figure), we define meta-information
about events and estimations & statistics, and we enrich the quality graph specification. The
processes Quality Graph Builder, Quality Evaluation and Design Refinement, as well as the quality
graph proposal and specification, are addressed in [Peralta-06].

Our proposal for the process Quality Models Builder and the meta-information it manages is
presented in Chapter 4. Our proposal for Quality Changes Detection and Quality Verifications, as
well as the events they manage, are presented in Chapter 5. Our proposal for Quality Repair is

Adriana Marotta

45

presented in Chapter 6. Our specification of the management framework is presented in next section
of this chapter.

DIS environment
Quality Management

System

DIS processes

Building

Improvement

Design &
Maintenance

Execution

estimations
& statistics

events

Event
Monitor

end-userdesigner

Quality
Graph

Builder

Quality
Models
Builder

Evaluation

Quality
Changes
Detection

Quality
Verifications

Quality
Evaluation

Quality
Repair

Design
Refinement

Q
U
A
L
I
T
Y

G
R
A
P
H

Mesurement

Figure 3.3: Architecture of the process of DIS Quality Management

The parts of the architecture covered in our work are shown in Figure 3.4. There we also show how
the modules of DIS quality maintenance are inter-connected. Quality Models Builder feeds
estimation & statistics repository, which generates events (through database triggers), which are
received by Quality Changes Detection, which in some cases invokes Quality Repair.

The mechanism we propose for maintaining quality is supported by two main actions: (1) up-to-date
maintenance of the quality models and statistics, and (2) management of the DIS changes that affect
quality.

Quality models of the sources are maintained and monitored such that changes on them can be
detected. This maintenance is done by Quality Models Builder based on events that come from
sources, and on periodic measurements. The monitoring is automatically carried out by estimation
& statistics database, through triggers that react when models are updated.

In addition to source quality models changes, changes on user quality requirements and DIS
transformation process are detected. These changes are notified to Quality Changes Detection
module through events, which are generated from estimation & statistics repository.

Quality Models Builder is also in charge of maintaining DIS quality models. These models take into
account sources models, DIS transformation process, and user quality requirements. They are used
for determining if the DIS quality is acceptable or if it must be repaired.

Maintaining Quality

46

Quality Management
Systemestimations

& statistics

events

designer

Quality
Models
Builder

Quality
Changes
Detection

Quality
Verifications

Quality
Repair

Q
U
A
L
I
T
Y

G
R
A
P
H

DIS Quality Maintenance

D
I
S

e
n
v
i
r
o
n
m
e
n
t

Figure 3.4: Modules of DIS Quality Management solved in the present work

It is important to note that in the proposed mechanism actions are taken in function of changes that
have already occurred. If a quality factor reaches a value that falls far from the expected ranges, this
situation is not avoided neither managed at the instant it occurs. The reached value affects the
general quality behavior of the sources and system, and it is later taken into account in the relevant
changes detection.

3.2 Quality Management Framework

In order to specifying and implementing our solutions we define a framework, called Quality
Management Framework. In the following we present its specification. We extend the Quality
Evaluation Framework of [Peralta-06], also making some modifications to the existing
specifications. Our definitions are based on the existing definitions, changing basically the way the
properties are defined and related to the quality graph or its elements. This modification is
necessary because in our proposal most of the managed concepts are represented as properties and
the previously existing definitions do not adapt to our needs naturally.

Definition 3.6: The Quality Management Framework is a 6-uple QMF = <Sources, Targets,
QualityGraph, Properties, Algorithms, ChangeManagementElements>, where.

- Sources is a set of available data sources,

- Targets is a set of data targets,

- QualityGraph is a graph representing the DIS process,

- Properties is a set of functions for describing DISs features and quality measures,

Adriana Marotta

47

- Algorithms is a set of quality management algorithms,

- ChangeManagementElements are the tools that are used to manage quality changes. ����

Definition 3.7: The ChangeManagementElements is a 7-uple QMF = <Events, DetectionRules,
Statistics, Interpretations, InterpretationRules, Actions, RepairingRules>, where.

- Events is a set of events managed by the QMS,

- DetectionRules is a set of rules that allow detecting relevant quality changes,

- Statistics is a set of functions that give current and historical information about the DIS,

- Interpretations is a set of interpretations about DIS situation,

- InterpretationRules is a set of rules that deduce interpretations from events and statistics,

- Actions is a set of actions that may be applied to the DIS,

- RepairingRules is a set of rules that define, from the interpretations, which actions should be taken
for recovering DIS quality ����

The different components of ChangeManagementElements are defined and specified through the
different chapters of this document, except in the case of Statistics component, which is not
completely specified in this work. It involves many different kinds of meta-information, which in
some cases is specified and in other ones not. In all cases this information is assumed to be
available and up-to-date in the estimations & statistics repository.

Definition 3.8: A data source is represented by a pair <Name, Description>, where Name is a
String that uniquely identifies the source and Description is a free-form text providing additional
information useful for end-users to identify the source (e.g. URL, provider, high-level content
description). ����

Definition 3.9: A data target is represented by a pair <Name, Description>, where Name is a String
that uniquely identifies the data target and Description is a free-form text providing additional
information useful for end-users to identify the target (e.g. application/process name, interfaces,
servers running the application). ����

Definition 3.10: PropTypes is a set of Strings, each of which names a property type. A property
type is for example, “user quality requirement”, “cost”, “source quality behavior model”. ����

Definition 3.11: PropertiesDefinition is a function PD: PropTypes � U that gives for each
property type the domain of the properties of the type, where U is the universe of domains (the set
of possible domains for a property). ����

The quality graph specification we propose has two main differences with the one of [Peralta-06]:
we specify a relation between graph elements and property values and we add the possibility of
assigning properties globally to the graph.

Maintaining Quality

48

Definition 3.12: A quality graph is a 5-uple G = (V, E, ρV, ρE, gp) where:

- V is the set of nodes. Vs, Vt and Va are the sets of source, target and activity nodes respectively;
with V = Vs ∪ Vt ∪ Va. Each source or target node corresponds to a source or target of the
framework.

- E ⊂ V × V × T is the set of edges. T ={c, d} distinguishes between control edges (c) and data
edges (d). The edge (u, v)t originates at node u, terminates at node v and has type t; with u, v ∈V,
t ∈ T.

- ρV represents the node properties. It is a function that given a node returns a function, which
given a property type returns a function, which given a property name returns the value of the
property,

 ρV : V → {f / f: PropTypes � (String � U) ∧

 ∀x ∈ PropTypes ∀y ∈ String (f(x))(y) ∈ PD(x) ∪ {⊥}},

 where U is the union of the property domains.

- ρE represents the edge properties. It is a function that given an edge returns a function, which
given a property type returns a function, which given a property name returns the value of the
property,

 ρE : E → {f / f: PropTypes � (String � U) ∧

 ∀x ∈ PropTypes ∀y ∈ String (f(x))(y) ∈ PD(x) ∪ {⊥}},

 where U is the union of the property domains.

- gp represents the graph properties. It is a function that for each property type, gives a function
that for each property name gives the value of the property,

gp: PropTypes � {f / f: String � U ∧

 ∀x ∈ PropTypes, ∀y ∈ String, (gp(x))(y) ∈ PD(x) ∪ {⊥}},

where U is the union of the property domains. ����

It is considered, without loss of generality, that target nodes have a unique incoming data edge and
source nodes have a unique outgoing data edge.

To better understand the representation of properties in the quality graph, refer to Example 3.4,
shown in the following subsection.

3.3 Quality Requirements

The use of statistical and probabilistic values for DIS quality factors gives the possibility of
expressing the user quality requirements using also these kinds of values.

We define the following types of user quality requirements that can be expressed in the DIS:

o value + probability

The user gives a quality value v and a probability value p. This means that the user requires a
maximum or minimum (depending on the quality factor) value v, which must be verified by
the DIS with a probability p. In other words, quality value v must be verified in the p*100
percent of the cases.

o maximum / minimum

Adriana Marotta

49

The user expresses that the quality value of the DIS element must be greater than or equal to or
less than or equal to a given value.

o average

The user expresses that the average quality value he expects from the DIS element, must be the
given value, ≤ or ≥, according to the quality factor.

o most frequent value

The user expresses that the most frequently quality value verified by the DIS element, must be
the given value, ≤ or ≥, according to the quality factor.

These possibilities for expressing quality requirements give to the user much more flexibility than
expressing the requirements only by a quality value. For example, suppose a user needs that certain
information has a freshness of, as maximum, 24 hours, but he does not care if in some punctual
cases this freshness reaches greater values. He can state as quality requirement: freshness <= 24
with probability = 0.9. With this requirement he accepts greater freshness values in 10% of the
cases, otherwise, if he could not express this, perhaps he would loose some source, which cannot
verify always the requirement, or he would accept a maximum value of 48 hours.

Definition 3.13: User Quality Requirement is a property type, whose corresponding domain
is a set of 4-uples of the form: <qfactor, type, value, prob>, where:

- qfactor is a String, representing the quality factor.

- type ∈ {“probability”, “maximum”, “minimum”, “average”, “frequency”), tells the type of the
requirement.

- value is a Decimal, the quality value of the requirement.

- prob ∈ 0..1, is the probabilistic value associated to the quality value. Used only when type =
“probability”. ����

We present an example in order to illustrate the representation of these properties in the DIS.

Example 3.4

Suppose the data target T1 has four user quality requirements defined, two for freshness and
two for accuracy. They are specified as follows:

((ρV (T1)) (UserQualityRequirement)) (req1) = <freshness, maximum, 10, NULL>,

((ρV (T1)) (UserQualityRequirement)) (req2) = <freshness, probability, 8, 0.9>,

((ρV (T1)) (UserQualityRequirement)) (req3) = <accuracy, minimum, 0.7, NULL>,

((ρV (T1)) (UserQualityRequirement)) (req4) = <accuracy, frequency, 0.9, NULL>

For referencing all T1 requirements:

T1Reqs = {<n, r> / n ∈ String, r ∈ PD(UserQualityRequirement) and

r = (ρV (T1) (UserQualityRequirement)) (n)}

◊◊◊◊

It is well worth clarifying that the requirement types “average” and “frequency” are later confronted
with the calculations of expectation and mode (concepts that are explained in next chapter),

Maintaining Quality

50

respectively, of the sources quality models. When referring to user requirements we prefer to use
the terms “average” and “frequency” because they are closer to the user perspective.

4. Summary

In this chapter we present different concepts that are basic for the comprehension of the following
chapters. They are basic concepts, definitions, specifications of objects that are managed in
successive chapters, and a complete vision of the mechanism proposed in this thesis.

The basic concepts we present are those definitions and assumptions from where we start. Some are
taken from previous work, some are taken and adapted to our needs, and others are defined by us.

The mechanism for maintaining quality that we present can be seen as the summary of our proposal.
It contains the different solutions we give in this work and how they inter-relate. In addition, we
present the specification of the framework we use in the rest of the work and the definition and
specification of the user quality requirements.

Adriana Marotta

51

CCCHHHAAAPPPTTTEEERRR 444... QQQUUUAAALLLIIITTTYYY BBBEEEHHHAAAVVVIIIOOORRR MMMOOODDDEEELLLSSS

How does quality vary in our Data Integration System?

1. Introduction

In order to achieve the dynamic vision of the system quality and considering the volatility of the
source quality values, we build quality behavior models for the sources as well as for the system
itself. The quality behavior models are strongly based on probability distributions. Having
probabilistic models describing the quality of the sources and the DIS gives the possibility of
foreseeing what may happen with quality in the short term.

The idea is to model which can be the quality-factors’ values at any instant and how they vary
through time. In the case of the sources, for each source we calculate the probability distribution of
the quality values. In the case of the system, we calculate the probability that its quality satisfy the
required quality, and the probability distribution of the quality values given by the system. In both
cases we maintain the history of the models.

In order to buid and maintain these models we monitor the sources and the DIS and we maintain
metadata, which constitute the support for the DIS quality maintenance.

In Section 2 we present an overview of the probabilistic concepts we apply, en Section 3 we present
the modeling of the sources quality, in Section 4 we present the modeling of the DIS quality, in
Section 5 we comment the strategy for having the information about quality through time, and
finally, in Section 6, we present the summary of this chapter.

2. Probabilistic Techniques Application

As said before, we want to model the system quality as something dynamic, and we achieve this
through the construction of probabilistic models.

Given some information relative to the behavior of the quality factor, the probabilistic techniques
application allows us to: have an estimation of the current quality value and to have information
about the possible quality values in the short term. These techniques give enough information to
characterize the quality of a source as well as the quality of the DIS.

In this section we enumerate and briefly explain some probabilistic concepts that we apply in our
problem, and we comment some particularities of this application.

2.1 Some Probabilistic Concepts

We give here an overview of the basic concepts we apply in our analysis and solutions, mainly
based on [Canavos-88][IOCourse-07][Virtamo-04][Wikipedia-07]. The idea is to briefly comment
these concepts, assuming the reader has a basic knowledge of the topic. For a deeper study, the
interested reader may go to the cited references.

Random Experiment

It is a process whose result can be observed, but whose value cannot be anticipated with certainty.
Each possible experiment result is called random point and noted wi.

Quality Behavior Models

52

Sample Space

It is the set of all the possible results of a random experiment.
Ω = {wi: wi is an observable result of the experiment}

Event

It is any sub-set of the sample space.
An event A consists in the set of the random points wi that represent experiment results where A
occurs.

Union of E1 and E2: E1 ∪ E2. The event that consists of all the possible results of E1, E2 or both.

Intersection of E1 and E2: E1 ∩ E2. The event that consists of all the results that belong to E1 and E2.

E1 and E2 are disjoint if E1 ∩ E2 = ∅

Probability

The probability is a real number that measures the possibility that a result of the sample space occur
when the experiment is carried out.

There are three different interpretations of the probability: classic, of relative frequency, and
subjective. The first and second ones are based on the repetition of experiments carried out under
the same conditions. The third one represents a measure of the degree of belief with respect to a
proposition.

The axiomatic definition of Probability is the following:

Let S be a sample space and E any event of S. P(E) is a probability function over S if it
satisfies the following axioms:

1) P(E) ≥ 0

2) P(S) = 1

3) If, for events E1, E2, E3, …

Ei ∩ Ej = ∅ for all i ≠ j, then

P(E1 ∪ E2 ∪ …) = P(E1) + P(E2) + …

The addition rule of probabilities is used for any two events E1 and E2 of the sample space:

 P(E1 ∪ E2) = P(E1) + P(E2) – P(E1 ∩ E2)

Intuitively, P(E1) and P(E2) reflect the number of times that results of E1 and E2 will occur,
respectively. It is necessary to subtract the common results because otherwise they are
double counted.

Joint probability is the probability of the intersection of two events. It is the probability of two
events in conjunction.

Marginal probability is the unconditional probability of an event, the probability of one event
regardless of the other event.

Conditional probability is the probability of an event, conditioned to the previous occurrence of
other event.

Let A and B be two events of the sample space S, so that P(B) >0. The conditional
probability of A when B occurs is the following:

P(A | B) = P(A ∩ B) / P(B)

Adriana Marotta

53

Statistical Independence

Let A and B be any two events of a sample space. A is statistically independent from B if P(A|B) =
P(A). This has as consequence:

P(A ∩ B) = P(A) P(B)

Events A1, A2, …, An of a sample space S are statistically independent if and only if the joint
probability of any combination of them is equal to the product of their respective marginal
probabilities.

Random Variable

It is a function defined over the sample space, which transforms all the possible results of the
sample space in numeric values.

A random variable is discrete if the quantity of values it can take is countable (finite or infinite) and
if they can be arranged into a sequence that corresponds with the positive integer numbers.

Probability distribution of a discrete random variable

The domain of the random variable is the sample space. We can associate a probability measure to
each possible random variable value.

Let X be a discrete random variable, and {xj, j=1,2,3,...} the set of the values X can take. The
probability distribution of the random variable X is:

P(X = xj) = p(xj) ≥ 0, j= 1, 2, 3, … and ∑j p(xj) = 1

Expected Value (or expectation) of a discrete random variable

The expected value of a discrete random variable X, denoted E(X), is the average or mean value of
X.

E(X) = ∑x p(x)

Mode of a discrete random variable

The mode of a discrete random variable X is the value xm of X that maximizes the probability
function, i.e. the most frequent value assumed by X.

Known probability distributions

There are specific probability distributions that have empirically demonstrated to be useful models
for diverse practical problems. Their probability functions are mathematically deduced basing on
certain hypothesis that are supposed to be valid for the considered random phenomenon.

Poisson Distribution

It is a discrete probability distribution where the random variable represents the number of
independent events, each of which occurs with a known average rate and is independent of the time
since the last event.

The distribution parameter is λ, the average number of occurrences of the random event in a time
unit.

The Poisson process can be defined in three different (but equivalent) ways. We choose the
following one:

Quality Behavior Models

54

The number of arrivals N(t) in a finite interval of length t obeys the Poisson(λt) distribution,

P {N(t) = n} = (λt)n e−λt

 n!

Moreover, the number of arrivals N(t1, t2) and N(t3, t4) in non-overlapping intervals (t1 ≤ t2 ≤
t3 ≤ t4) are independent.

The expectation is: E(N(t)) = λt

We can say that the resulting process of counting the number of events occurred in a time interval
of duration t, has a Poissson distribution of parameter λt.

Descriptive Statistics

Statistics is the study of random phenomena. Its main aspect is the obtainment of conclusions based
on experimental data (called statistic inference).

Descriptive statistics are used to describe the basic features of the data in a study. They provide
simple summaries about the sample and the measures. They are useful when we have large data sets
that can be considered as random samples. They can give the general distribution of values, basing
on empirical evidence. Graphical description, tabular description and summary statistics are
commonly used to summarize data. These techniques are based on the collection of data, its
classification and the calculation of their relative frequency. The relative frequency is the quotient
between the frequency of a class of observations and the total quantity of observations. The relative
frequency histogram is the graphical representation of the relative frequencies of the classes.

Probability as relative frequency

As said before, one of the possible interpretations of probability is through relative frequency. The
idea is that an experiment is carried out many times under the same conditions, and each time, a
result is observed. The probability of the presence of certain attribute is approximated by the
relative frequency of the results that have the attribute.

The definition of probability with this approach is the following:

If an experiment is repeated n times under the same conditions and nB of the results are
favorable to an attribute B, the limit of nB / n when n becomes large, is defined as the
probability of the attribute B.

PASTA Property (Poisson Arrivals See Time Averages)

This property says that customers with Poisson arrivals see the system as if they came into the
system at a random instant of time. The probability that when a customer arrives, he observes the
system in a given state n, is equal to the probability that the system is in that state.

In our solutions we also apply some concepts of Statistical Reliability Theory [Gertsbakh-89], but
we prefer to present them in the Section of their application for reasons of presentation clarity.

Adriana Marotta

55

2.2 Application to our problem

In our problem we apply probability techniques to calculate the probability distributions of: (i) the
quality values of the sources, (ii) the quality values provided by the DIS in certain data target, and
(iii) the satisfaction of the user quality requirements by the DIS.

In all these cases, the random experiment considered is the observation of the DIS at a punctual
moment. At this moment the sources have certain quality values, the DIS data target have certain
quality values and the DIS is satisfying or not the user quality requirements.

For the experiment it is important to remark that we consider our observations have the PASTA
property, ensuring there is not any correlation between the observations and the variation of the
sources and system.

We define the random variables according to the model we are constructing. For example, in some
cases we define the following ones:

X – Variable that represents the quality value of a source.
Y – Variable that represents the satisfaction or not of the user quality requirements by a

source.

The events we define are sets of sources quality values combinations.

In all our models we discretize the quality values. The used criteria for this discretization vary
according to the quality factor and the use of the quality value. When we discretize the values we
must define two aspects: the precision we will manage for the values, and how we will round the
values to the corresponding discrete value. The choice of the precision strongly depends on the
particular case, for example, for freshness factor, the use of days, hours, minutes or seconds is
determined by the characteristics of the data and data requirements in the DIS. The criteria we
propose for rounding the values for freshness and accuracy are in general the following:

- In quality requirements we round the value to the most restrictive value. This implies that in
the case of freshness we round it to the lowest value and in the case of accuracy to the
highest one. Note that quality requirements are not only the ones directly posed by the
users, but also the ones calculated in the system for being compared to the sources values
(this is presented later in the document).

- In the sources quality models, in the case of freshness, values are rounded to the lowest
value, since the idea is to transmit the quantity of time units that has effectively passed. In
the case of accuracy, values are rounded to the nearest one.

3. Probabilistic Modeling of Sources Quality

We build probabilistic models where the random experiment consists on the verification of a source
quality value, the random variable (RV) represents the source quality factor, and the sample space is
the set of all its possible values. With this we have the probability distribution of the quality values
at the source. The objective is to know the probabilities that hold for each of the possible quality
values of the source if we query it at any moment. Having this distribution also gives us the
possibility of calculating useful indicators such as expectation, mode, maximum and minimum.

In the case of freshness, for example, suppose we have the random variables X1, X2, …, Xn, so that
each one corresponds to one of the n sources of the integration system. Xi represents the freshness
value of source i at a given instant. The probability that freshnessi = ki is verified (where freshnessi
is the current freshness value of source i and ki is a positive integer number), is: p(Xi = ki).

Quality Behavior Models

56

3.1 Models Construction

We build the models through three possible mechanisms, depending on the characteristics of the
quality factor and the system, and on the available information.

Mechanism 1- Using an existing distribution. This can be done if the behavior of the quality
factor or some property on which it is based, is already represented in a theoretical model.

Mechanism 2 - Calculating the distribution. This can be done if we have enough information
about the behavior of the quality factor to deduce how the probabilities distribute across the
possible values.

Mechanism 3 - Obtaining the probability distribution through the utilization of statistical
techniques. We calculate the relative frequencies [Canavos-88] with the collected values of the
quality factor. These relative frequencies, verifying some conditions depending on the case, are
a good estimation of the respective probabilities [Canavos-88] [Cho+03].

In the cases of Mechanism 1 and Mechanism 2, the calculation of the models may be aided by the
use of SQL tools that specialize in extracting probabilistic models from data or generating known
probabilistic models given the necessary information. One of these tools is SQLSAM, proposed in
[Choobineh-95].

3.1.1 Freshness

In order to obtain the probability distribution of the freshness of a source, we need to know some
specific characteristics of the source, which determine the mechanisms we can use. Following the
definition of possible scenarios stated in Chapter 3, Section 2.4, we distinguish the different
scenarios that are based on two of the dimensions, which are relevant to the source probabilistic
modeling: (1) type of sources loading (periodically or continuously), and (2) meta-data provided by
the sources (with respect to updates). The crossing of these dimensions generates the different
scenarios.

In the following we show three probabilistic models we have developed for three different
scenarios. The first one is built through Mechanism 2, the second through Mechanism 1 and the
third through Mechanism 3.

Model 1

This model corresponds to a scenario where source loading is periodic and the available source
meta-data is the update period. In this case we build the model calculating the distribution.

Consider a source S, let T be the period of the source loading, and X be the RV for the source
freshness. The probabilities for the different possible values of freshness are all equal to 1/T:

p(x) ≡ p(X=x)
p(0) = p(1) = … = p(T-1) = 1/T

We also calculate the expectation for X, which coincides with the average of the possible freshness
values:

E(X) = Σx xp(x) = 0(1/T) + 1(1/T) + ... + (T-1)(1/T) = (0+1+…+T-1) / T

On the other hand, supposing we start at an instant t0=0, we have an expression for the freshness at
a given instant t:

freshness(t) = t – (t DIV T) * T

Adriana Marotta

57

Figure 4.1 shows a graph that represents the variation of freshness through time, in the case of T=5.

0 321 124 65 11 time

freshness

1
2
3
4

5

Figure 4.1: Freshness values through time

Examples of sources that are updated periodically are:

o Salaries system database. A database that is updated each 30 days, when salaries are
liquidated.

o Cinema billboard. A cinema where the billboard is updated once a week.

o Data Warehouse. A data warehouse that is updated each 24 hours.

Model 2

In this model the source loading is in a continuous basis. We assume that source updates follow a
Poisson process and that the update frequency λ is available. We chose this example taking into
account the paper [Cho+03], where the authors assume that a source element changes by a Poisson
process, mentioning experimental data that shows this behavior for web pages. With respect to λ
estimation, they say that in the case of “complete history of changes”, it is well known that (number
of changes)/(monitoring period) gives “good” estimation of the frequency of change.

We build the model deducing the probability distribution of freshness values from the probability
distribution of the quantity of updates in the source, which is a Poisson distribution.

Given a source S, the RV X represents the quantity of updates in a time unit, and the RV Y
represents the source freshness. We know the distribution of X, we deduce the distribution of Y.

The probability that there is at least one update in a certain time interval (pU) is the complement of
the probability that there is zero updates in this time interval:

pU = 1 – p(X=0)

The probability that the freshness at the end of certain time interval is 0, is equal to pU. The
probability that the freshness is 1, is equal to the probability that there has been an update in the
previous time interval, multiplied by pU. In this way we can obtain the distribution for the RV Y:

p(Y=0) = pU

p(Y=1) = pU.p(X=0)
p(Y=2) = pU.p(X=0).p(X=0)
……

Quality Behavior Models

58

We also calculate the expectation:

E(Y) = Σy yp(y) = p(X=0) + (p(X=0))2 + ...

In addition, this model is a stochastic process and also a Markov chain [Hillier+91] [IOCourse-07].

A stochastic process X = (Xt, t∈T) is a family of random variables that describe the evolution of an
experiment, through time. t∈T is the time parameter of process X. Each possible value of RV Xt is a
possible system state. Xt = e indicates that at instant t the process is in state e.

{X i} is a stochastic process, where Xi is the quantity of updates in each time interval. The Xi are
independent RVs and identically distributed with known probability distribution, Poisson.

{Y i} is a stochastic process, where Yi is the freshness at the end of i interval. The Yi are dependent
RVs and they can be evaluated iteratively through the expression:

Y t+1 = Yt + 1, if Xt+1 = 0
0, if Xt+1 ≥ 1

Y0 = 0

The {Yi} stochastic process has the markovian property, which roughly means that given the
present, the future is conditionally independent of the past:

p{Y t+1 = j | Y0 = k0, …, Yt-1 = kt-1, Yt = i} = p{Y t+1 = j |Yt = i}

Additionally, the transition probabilities p{Yt+1 = j |Yt = i} are stationary, since:

pij = p{Y t+1 = j | Yt = i} = p{Y 1 = j | Y0 = i} for all t = 0, 1, …

This characteristic gives us the possibility of calculating the transition matrix, obtaining all the
transition probabilities, i.e. the probabilities that the freshness changes from certain value to
another.

The following is an example where this model is applied.

Example 4.1

The considered data source is a database table of a bank. In the bank the clients arrive
following a Poisson process and also the database updates occur according to this process.
The estimated update frequency for the table is 1 update each 4 minutes.

We choose the interval length as 4 minutes. When using this method the time interval we
choose for the Poisson model of the updates is necessarily the time unit the model for
freshness will have. Therefore, our values for freshness will be multiples of 4 minutes.

t = 4, time interval (minutes)

λ = 1, estimated quantity of updates in 4 minutes

Let X be the RV that represents the quantity of updates of the source, and Y the RV that
represents the freshness of the source measured in time units (of 4 minutes).

P(X=0) = (λn/n!)e -λ = (10/0!) e -1 = e-1 = 1/e1 = 0.36 -- Probability of 0 updates in a 4-
minutes interval

Adriana Marotta

59

pU = 1 – p(X=0) = 1 – 0.36 = 0.64 -- Probability that freshness is equal to 0 at the end of the
interval

The distribution of RV Y is the following:

p(Y=0) = pU = 0.64
p(Y=1) = pU.p(X=0) = 0.64 x 0.36 = 0.2304
p(Y=2) = pU.p(X=0).p(X=0) = 0.64 x (0.36)2 = 0.082944
p(Y=3) = pU.p(X=0).p(X=0).p(X=0) = 0.64 x (0.36) 3 = 0.02985984
p(Y=4) = pU.p(X=0).p(X=0).p(X=0).p(X=0) = 0.64 x (0.36) 4 = 0.0107495424
p(Y=5) = pU.p(X=0).p(X=0).p(X=0).p(X=0).p(X=0) = 0.64 x (0.36) 5 = 0.003869835264
……….
p(Y=n) = pU.(p(X=0))n = 0.64 x (0.36) n

Intuitively, we can see that the deduced distribution for freshness is correct. See the graph
presented in Figure 4.2. This is the graph of the probability distribution (Poisson distribution)
of the quantity of updates at the source. It shows that the highest probability is for the value
1, and the values near 1 have also a high probability. As the values increase, the probability is
drastically lower. The value 0 for freshness has a high probability (P(Y=0)), because this
probability is equal to the sum of the probabilities corresponding to quantity of updates
greater than 0, which is the probability P(X≥1). The probabilities corresponding to freshness
values greater than 0 (P(Y=v), v>0), are noticeable lower because they are equal to the
product of several probabilities of X; the greater is the value, the greater is the quantity of
times we multiply by P(X=0), which is equal to 0.36.

0,0000

0,0500

0,1000

0,1500

0,2000

0,2500

0,3000

0,3500

0,4000

0 1 2 3 4 5 6 7 8 9

Quantity of updates

P
ro

b
ab

il
it

y

Figure 4.2: Poisson Distribution of Quantity of Updates

We also calculate the expectation for freshness values:

E(Y) = Σy yp(y) = Σy (y x 0.64 x 0.36y) = 0.36 x 0.64 x Σy y x 0.36y-1 =1 0.5625

Finally, we can express freshness in terms of minutes. We consider a RV Z that represents
the freshness of the source, measured in minutes, having the following distribution:

p(Z=0) = 0.64 p(Z=8) = 0.082944 p(Z=16) = 0.0107495424
p(Z=4) = 0.2304 p(Z=12) = 0.02985984 p(Z=20) = 0.003869835264

Expectation now is: E(Z) = 2.25
◊◊◊◊

1 We apply the following equality: Σn n pn-1 = 1 / (1 - p)2, where p < 1

Quality Behavior Models

60

Model 3

In this model the source loading is in a continuous basis. The information we have for constructing
the model is an events repository where each event is generated when a data update occurs at the
source. The following are the steps for obtaining the model:

- From the events repository calculate a table T, which will be the sample for our model,
where:

o there is a tuple for each “time point”, according to the defined timestep
o each tuple has a timestamp (the time point)
o each tuple has the freshness value corresponding to the timestamp

- Considering the last n tuples inserted in table T, construct a relative frequencies table,
containing for each freshness value that occurs in T, an index that is calculated as the
quantity of occurrences in T of the freshness value, divided by n.

- The probability distribution is derived from the relative frequencies, assigning a probability
value for each possible freshness value as follows:

o For the freshness values that appears in the relative frequencies table, the
probability is equal to the corresponding index, rounded to a predefined precision

o For the freshness values that do not appear in the relative frequencies table, the
probability is equal to 0

The number n of tuples considered as enough to build the relative frequencies table (our sample)
must be determined according to the context, as well as the precision of the probability values.
From the relative frequencies table, a frequency histogram can be constructed, which shows a
graphic description of the data.

We show an example where this model is constructed.

Example 4.2

Consider a source relation that stores data about meteorological predictions, which comes
from a satellite in real time. The source is updated irregularly.

Table 4.1 is a portion of the events repository, where Date-time is the date and time in the
format “dd/mm-hh”, where time is represented in hours.

Source Event Date-time

S1.Meteo data update 2/11-2
S1.Meteo data update 2/11-3
S1.Meteo data update 2/11-5
S1.Meteo data update 2/11-8
S1.Meteo data update 2/11-9
S1.Meteo data update 2/11-10
S1.Meteo data update 2/11-12
S1.Meteo data update 2/11-14
S1.Meteo data update 2/11-18
S1.Meteo data update 2/11-21
S1.Meteo data update 2/11-22

Table 4.1: Events Repository

From the events repository we calculate the freshness that held at each time point (see Table
4.2), considering the first time point as 2/11-2, the first timestamp of the events repository,
and a time step of 1 hour.

Adriana Marotta

61

Source Time point Freshness

S1.Meteo 2/11-2 0
S1.Meteo 2/11-3 0
S1.Meteo 2/11-4 1
S1.Meteo 2/11-5 0
S1.Meteo 2/11-6 1
S1.Meteo 2/11-7 2
S1.Meteo 2/11-8 0
S1.Meteo 2/11-9 0
S1.Meteo 2/11-10 0
S1.Meteo 2/11-11 1
S1.Meteo 2/11-12 0
S1.Meteo 2/11-13 1
S1.Meteo 2/11-14 0
S1.Meteo 2/11-15 1
S1.Meteo 2/11-16 2
S1.Meteo 2/11-17 3
S1.Meteo 2/11-18 0
S1.Meteo 2/11-19 1
S1.Meteo 2/11-20 2
S1.Meteo 2/11-21 0
S1.Meteo 2/11-22 0

Table 4.2: Calculated freshness

Then we calculate the relative frequencies of the freshness values (see Table 4.3). For each
freshness value, the relative frequency is the number of occurrences of the value divided by
21, which is the quantity of hours chosen as our sample.

Source Freshness value Relative frequency

S1.Meteo 0 11/21
S1.Meteo 1 6/21
S1.Meteo 2 3/21
S1.Meteo 3 1/21

Table 4.3: Relative frequencies of freshness values

Let X be the RV that represents the freshness of source S1.Meteo. The following is the
probability distribution of X:

P(X=0) = 0.52
P(X=1) = 0.29
P(X=2) = 0.14
P(X=3) = 0.05

We calculate the expectation of X as follows:

E(X) = Σx xp(x) = 0*0.52 + 1*0.29 + 2*0.14 + 3*0.05 = 0.72

◊◊◊◊

Quality Behavior Models

62

3.1.2 Accuracy

To obtain the probability distribution of the accuracy quality factor of a source we apply the
mechanism of calculating the relative frequencies with the collected values (Mechanism 3). For this
we need to have a periodic measurement of the accuracy of the source. The method we propose is
the following:

- Source accuracy is measured each n time-units.
- When m accuracy measurements have been done, a relative frequencies table is constructed,

containing for each possible accuracy value, an index that is calculated as the quantity of
occurrences of the value divided by m (the quantity of measurements done).

- We consider these relative frequencies as an estimation of the probability distribution of the
accuracy values.

We show this through the following example.

Example 4.3

Suppose we have a source table that stores meteorological information and is updated three
times a day by humans operators. The accuracy of this table is measured twice a week. Table
4.4 shows the measured values.

Source-Table Measure Date

S1-Temperature 0,6 7/3/07
S1-Temperature 0,5 10/3/07
S1-Temperature 0,6 14/3/07
S1-Temperature 0,6 17/3/07
S1-Temperature 0,8 21/3/07
S1-Temperature 0,7 24/3/07
S1-Temperature 0,7 28/3/07
S1-Temperature 0,8 31/3/07
S1-Temperature 0,6 4/4/07
S1-Temperature 0,7 7/4/07
S1-Temperature 0,7 11/4/07
S1-Temperature 0,7 14/4/07
S1-Temperature 0,7 18/4/07
S1-Temperature 0,8 21/4/07
S1-Temperature 0,7 25/4/07
S1-Temperature 0,7 28/4/07

Table 4.4: Accuracy measurements.

We construct the relative frequencies table and each two months we update it. Table 4.5 is
the relative frequencies table that corresponds to the data in Table 4.4.

Source-Table Acc-value Relative frequency

S1-Temperature 0 0
S1-Temperature 0.1 0
S1-Temperature 0.2 0
S1-Temperature 0.3 0

Adriana Marotta

63

S1-Temperature 0.4 0
S1-Temperature 0.5 1/16
S1-Temperature 0.6 4/16
S1-Temperature 0.7 8/16
S1-Temperature 0.8 3/16
S1-Temperature 0.9 0
S1-Temperature 1 0

Table 4.5: Relative frequencies.

We consider this table as an estimation of the probability distribution of accuracy values in
table Temperature of S1. Considering the RV X as the accuracy, the rounded probability
values are:

p(X=0.6) = 0.3
p(X=0.7) = 0.5
p(X=0.8) = 0.2

The expectation for X is calculated. It coincides with the average of the measured values.

E(X) = Σx xp(x) = 0.6*0.3+0.7*0.5+0.8*0.2 = 0.69 ≈ 0.7

◊◊◊◊

3.2 Models Specification

We specify a source quality model through the probability distribution of its quality values. For
each source and quality factor there is a set of value-pairs that have the probability associated to
each possible quality value.

Definition 4.1: A source quality behavior model is a property type, whose corresponding domain is
a set of 3-uples of the form: <qfactor, source, distribution>, where

- qfactor is a String, representing the quality factor,

- source is a String, the name of the source to which the model corresponds,

- distribution is a set of pairs <qvalue, probability>, where

- qvalue is a Decimal number and

- probability is a number between 0 and 1, representing the probability of the quality value.
����

This information allows obtaining, for a source and a quality factor, besides the probability
associated to each value, the expectation, the mode, and the maximum and minimum values.

We include sources quality behavior models in the quality graph (presented in Chapter 3), each one
as a property associated to a source.

4. Probabilistic Modeling of System Quality

In order to model DIS quality we first must define what the quality of the DIS is for us. As we
previously said, quality is better, the nearer its values are to the quality values required by the user.
Therefore DIS quality not only involves the quality values provided by the DIS to the user, but also
the satisfaction or not of the user quality requirements. DIS quality is affected by sources quality,

Quality Behavior Models

64

transformations that are applied to sources data, and user quality requirements. To model it we must
take into account the three elements.

The DIS model may be given through three different aspects: (1) The DIS Quality Certainty, which
is the probability that the DIS satisfies the quality requirements (those whose type is “probability”),
(2) the information about the satisfaction of the requirements of maximum, minimum, average and
most frequent value, and (3) the probability distribution of the possible quality values satisfied by
the DIS. Calculation of (1) is done when there is at least one requirement of type “probability”, i.e.
that gives a condition and a probability for its satisfaction. Calculation of (2) only has sense if there
are any requirements of type “maximum”, “minimum”, “average” or “frequency”. The three aspects
can be calculated and used simultaneously.

Different approaches could be chosen to calculate (1) and (2). We choose to propagate the user
quality requirements to the sources and verify the satisfaction of these requirements by the sources’
models. In the propagation we take into account the transformations that are applied to the data. We
emphasize in the satisfaction of quality requirements working at sources level, which gives us more
information about each source influence in DIS quality, especially useful at change detection-and-
management time. We call accepted configurations to the requirements at sources’ level.

In the calculation of (3) user quality requirements are not taken into account. The possible sources
quality values are propagated to the data targets in order to obtain the DIS quality distribution.

In the following sub-sections we present the definition and calculation of accepted configurations,
the calculation of DIS quality certainty and of the satisfaction of “non-probability” requirements,
and the probability distribution of the quality provided by the DIS.

4.1 Accepted Configurations

Given a quality graph and a set of quality requirements associated to its target nodes, the accepted
configurations are all the combinations of quality values, each value associated to a source, that
make the quality requirements satisfied. The quality requirements considered for this calculation
must be all of the same type, for example we calculate accepted configurations for requirements of
average or for requirements of maximum, etc.

From the user quality requirements we deduce the quality restrictions the sources must satisfy,
existing different combinations of sources quality values that satisfy these restrictions, which are the
accepted configurations.

As said before, we need the accepted configurations to model the quality of the DIS, since this
quality depends on how the system achieves the satisfaction of the quality requirements. However,
the accepted configurations are also very useful from other viewpoints. For example, each time
there is a source quality change it is not necessary to re-calculate the system quality to know if it
satisfies the requirements. On the other hand, they may be used as an assistance for negotiation with
sources (if you want to ask another source to improve some quality value).

The following are the concepts we manage for representing the accepted configurations:

Definition 4.2: A source restriction is a restriction to be verified by the quality factor of the source.
It is a 4-uple r = <qfactor, source, op, value>, where:

- qfactor is a String, representing the quality factor

- source is a source node of the quality graph

- op ∈ {“<”, “ ≤”, “>”, “ ≥”, “=”}, is a comparison operator

Adriana Marotta

65

- value is a Decimal ����

Definition 4.3: A restriction vector is a set of source restrictions, one restriction for each one of the
DIS sources, where all the restriction operators are the same. We use the following notation:

v = < r S1, …, r Sn>, where r Si is the restriction associated to source Si ����

Definition 4.4: A restriction-vector space is a set of restriction vectors. We use the following
notation:

s = {v 1, …, v m}, where v i is a restriction vector. ����

We specify the accepted configurations as a property, which is associated to the graph. It may exist
many different accepted configurations associated to the quality graph.

Definition 4.5: The accepted configurations is a property type, whose corresponding domain is a
set of pairs of the form: <req-set, rv-space>, where:

- reqs-set is a set of pairs of the form <target, req-name>, where:

 - target is the data target to which the requirement is associated

 - req-name is a String (the name of the requirement)

- rv-space is a restriction-vector space, which corresponds to the requirements of reqs-set. ����

Note that the accepted configurations contain the solution space for the satisfaction of a set of user
quality requirements. If the sources satisfy any of the restriction vectors of the solution space, they
are satisfying these requirements.

We calculate the accepted configurations by means of the propagation of the user quality
requirements to the sources. For each target node requirement (user quality requirement), we
traverse the quality graph from the target node to the source nodes, starting with an equation (it may
be an equation or an inequation, depending on the type of requirement, but for simplicity we use the
word “equation”) whose variable is the quality value of the activity node that is predecessor of the
target1, and finally obtaining an equation, whose variables are the sources quality values. This
equation is the restriction the sources quality values must satisfy in order to satisfy the user quality
requirement considered. When we have processed all target node requirements, we obtain an
equation system, whose variables are the sources quality values.

We present a general algorithm to achieve this calculation and associating it to the quality graph.
Our algorithm has as precondition that the propagation for evaluating the quality of the graph target
nodes is pre-defined. This means that we know how the quality values of each activity node are
calculated in function of its predecessors. We assume we have a function, called Propagation-
expression, that returns the calculation expression for an activity node. This problem is studied and
solutions are proposed for freshness and accuracy in [Peralta-06].

In the following we present a pseudo-code of the algorithm, which intends to describe the steps we
follow to calculate the accepted configurations for a graph, a set of requirements and one quality
factor. This is a general approach, since the specific implementations are different according to the
quality factor considered and the specific characteristics of the DIS.

1 According to [Peralta-06], target nodes have a unique incoming data edge.

Quality Behavior Models

66

TYPE
TargetRequirement: target: DataTarget
 req-name: String

 RequirementExpression: op: Operator

value: Decimal
 Operator: (<, ≤, >, ≥, =)

 Equation: exp: Expression
 op: Operator
 dec: Decimal
 Expression: String
 EquationSystem: Set of Equation

FUNCTION Accepted_Conf_Calculation (G: QualityGraph, qfactor: String, reqs: Set of
TargetRequirement): AcceptedConfigurations

R: TargetRequirement
requirement: UserQualityRequirement
reqexp: RequirementExpression
equ, source-equ, e: Equation
r: SourceRestriction
equation-system: EquationSystem
s: RestrictionVectorSpace

Create(s)
FOR EACH R of reqs DO
 requirement = Obtain_requirement (R)
 reqexp = Obtain_requirement_expression (requirement)
 equ = Generate_satisfaction_equation (G, R.target, reqexp)
 source-equ = Obtain_sources_equation (G, equ)
 IF it is possible to obtain a set of equations, each one depending on only 1 source
THEN
 FOR EACH obtained equation e corresponding to source S DO
 IF Exists_source_restriction (s, S) THEN
 r = Obtain_source_restriction (s, S)
 IF r is less restrictive than e THEN
 Change_source_restriction (s, e, r, S, qfactor)
 ELSE
 Add_source_restriction (s, e, S, qfactor)
 ELSE
 Insert (source-equ, equation-system)
IF equation-system is not empty THEN
 s = Obtain_solutions (equation-system)
Accepted_Conf_Calculation = <reqs, s >

END FUNCTION

Adriana Marotta

67

The following are the descriptions of the used functions and procedures:

- Obtain_requirement (R: TargetRequirement): UserQualityRequirement

It obtains the requirement: ρV (R.target) (“UserQualityRequirement”) (R.req-name)

- Obtain_requirement_expression (req: UserQualityRequirement): RequirementExpression

It obtains from a user quality requirement a pair (op, value) according to the requirement’s type
and quality factor. E.g.: (≤, 20)

- Generate_satisfaction_equation (G: QualityGraph, t: Node, reqexp: RequirementExpression):
Equation

It generates a 3-uple <last-activity, op, value>, where: last-activity is the activity node that is
predecessor of t, and op and value are extracted from reqexp.

- Obtain_sources_equation (G: QualityGraph, equ: Equation): Equation

It generates an equation through the following steps:
expression = Propagation-expression (equ.exp)
WHILE there is an activity node A contained in expression DO
// It ends when all nodes in expression are source nodes.

 expression = Substitute A by Propagation-expression (A)
Build equation as: <expression, op, value>

- Propagation-expression (activity-name: String): Expression

Given an activity node, it returns the expression that corresponds to the calculation of the quality
factor value in that activity node.

- Exists_source_restriction (s : RestrictionVectorSpace, S: Node): Boolean

It verifies if:
- it exists a restriction vector v ∈ s and
- it exists a source restriction r ∈ v, where r.source = S

- Obtain_source_restriction (s : RestrictionVectorSpace, S: Node): SourceRestriction

It returns the source restriction r that verifies:
- r .source = S
- r ∈ v, v is a restriction vector of s

- Change_source_restriction (s : RestrictionVectorSpace, e: Equation, r: SourceRestriction, S:
Node, qfactor: String)

It substitutes in s the source restriction r by the source restriction <qfactor, S, e.op, e.value >

- Add_source_restriction (s : RestrictionVectorSpace, e: Equation, S: Node, qfactor: String)

It adds the source restriction <qfactor, S, e.op, e.value > to s

- Insert (equ: Equation, equation-system: EquationSystem)

It inserts an equation into a set of equations.

- Obtain_solutions (equation-system: EquationSystem): RestrictionVectorSpace

It returns the set of restriction vectors that satisfy all the equations of the equations system.

Quality Behavior Models

68

Note that this algorithm calculates the accepted configurations for one quality factor and a set of
user requirements that are posed for this quality factor. As said before, the user quality requirements
of this set must be all of the same type, otherwise the algorithm may not work correctly. The
different quality requirements involve different sources, according to the sub-graph that generates
the data target corresponding to the quality requirement.

We distinguish two possible cases for the calculated accepted configurations. They depend on the
way the quality values are propagated from the sources to the target, more precisely; in the way the
quality is calculated in a node in function of its predecessors (we call it “propagation function”).
These cases are the following:

1- The accepted configurations consist of an only one restriction-vector. This means that there
is a fixed restriction for each source relation, for example: “freshness(Source2)<15”. This
occurs when in the propagation of quality requirements from targets to sources, the
generated equation can be decomposed in various new equations such that each new
equation has only one variable (a source quality value). This is shown more clearly in
Example 4.4 presented below.

2- The accepted configurations consist of a set of restriction vectors (a vector space). This
means that there is a set of possible combinations of sources quality values, where each
combination satisfies the user quality requirements. This occurs when in the propagation of
quality requirements from targets to sources, for each requirement an equation is generated
that has several variables (representing the source quality values).

Observing the algorithm, it can be noted that each processed quality requirement can generate: (i)
new source restrictions, which substitute the existing source restrictions, or (ii) new restrictions that
combine several sources and are combined with other restrictions.

In order to experiment this proposal we worked with a study case. We considered a system that
integrates information from several hospitals of a country (presented as example in Chapter 1). In
the following we present as an example some of the calculation of the accepted configurations for
the quality factor freshness in the quality graph of our case study.

Example 4.4

Figure 4.4 shows the quality graph of the DIS of the study case, which works with five source
relations. The activity nodes have labels that represent the cost of the activity expressed in
hours. The target nodes have labels expressing the required values for freshness, giving the
maximum quantity of hours they accept. The edges have labels that represent a
synchronization delay between one activity and the other, expressed in hours.

The freshness propagation function in this case is the following for any activity node A:

Freshness(A) = Max (Freshness(A1) + Delay(A1,A), …, Freshness(An) + Delay(An,A)) +
Cost(A), where A1, …, An are A predecessors

We calculate the accepted configurations:

1) We propagate requirement of T1:

We generate the first inequation in function of the predecessor of T1.

fr(A6) ≤≤≤≤ 24

We substitute fr(A6) by an expression in function of sources freshness.

Max (fr(A1) + 3.5, fr(A2) + 3.5, fr(A5) + 0) + 0 ≤ 24
fr(A1) = fr(S1) + 0 + 0.5

Adriana Marotta

69

fr(A2) = Max (fr(S2) + 0, fr(S4) + 0) + 0.5
fr(A5) = fr(A4) + 0 + 1
Max (fr(S1) + 0.5 + 3.5, Max (fr(S2), fr(S4)) + 0.5 + 3.5, fr(A4) + 1) ≤ 24
fr(A4) = fr(S5) + 0 + 3
Max (fr(S1) + 0.5 + 3.5, Max (fr(S2), fr(S4)) + 0.5 + 3.5, fr(S5) + 3 + 1) ≤≤≤≤ 24

We obtain several inequations with only one variable.

fr(S1) + 0.5 + 3.5 ≤ 24
Max (fr(S2), fr(S4)) + 0.5 + 3.5 ≤ 24
fr(S2) + 0.5 + 3.5 ≤ 24
fr(S4) + 0.5 + 3.5 ≤ 24
fr(S5) + 3 + 1 ≤ 24

Source restrictions: fr(S1) ≤≤≤≤ 20
fr(S2) ≤≤≤≤ 20
fr(S4) ≤≤≤≤ 20
fr(S5) ≤≤≤≤ 20

S1

A1

A3

A2

A4

A5

T1

A6

A7

A8

A9

A10

A11

c=0

c=0
c=0 c=0,5

c=0,5

c=0,5

c=0,5

c=0 c=2

c=3

c=1

req freshness ≤≤≤≤ 24 req freshness ≤≤≤≤ 10
req freshness ≤≤≤≤ 24

S4
S3

S2 S5

T2
T3

d=3.5

d=0d=3.5

d=0

d=0d=0

d=0
d=3.5

d=0d=0 d=0

d=2

d=0
d=0

d=4

d=0

d=0

Figure 4.4: Quality graph of Study Case

2) We propagate requirement of T2:

We generate the first inequation in function of the predecessor of T2.

fr(A9) ≤≤≤≤ 10

Analogously to 1), we obtain:

Source restrictions: fr(S1) ≤≤≤≤ 5.5
fr(S3) ≤≤≤≤ 5.5
fr(S5) ≤≤≤≤ 5.5

3) We propagate requirement of T3:

Quality Behavior Models

70

We generate the first inequation in function of the predecessor of T3.

fr(A10) ≤≤≤≤ 24

Analogously to 1), we obtain:

Source restrictions: fr(S4) ≤≤≤≤ 19.5
fr(S5) ≤≤≤≤ 19.5

The accepted configurations are:

fr(S1) ≤≤≤≤ 5.5
fr(S2) ≤≤≤≤ 20
fr(S3) ≤≤≤≤ 5.5
fr(S4) ≤≤≤≤ 19.5
fr(S5) ≤≤≤≤ 5.5

◊◊◊◊

In [Peralta-06] there is a proposal for freshness requirements propagation in a specific scenario.

4.2 Satisfaction of Probabilistic User Quality Requirements

Probabilistic user quality requirements are the requirements (presented in Chapter 3, Section 3) that
express a value and an associated probability (of type “probability”). The meaning is that the value
must be verified (as maximum or minimum) with the given probability.

Using the sources quality models and the accepted configurations, we calculate with which
probability the DIS can verify the values stated in all the probabilistic requirements. For this, we
first model the satisfaction of the accepted configurations by the sources, and then we calculate the
DIS Quality Certainty.

4.2.1 Probabilistic Modeling of Accepted Configurations Satisfaction

In Section 3 we presented how we model the quality of the sources. Basing on those models we
calculate the model of the satisfaction of accepted configurations by the sources.

Before working with the combination of the sources models and the accepted configurations, we
need to make the values managed in both cases, compatible. This means that the values of the
accepted configurations and the possible values of the sources must be in the same units and with
the same precision. We must consider that in the sources models we discretize the possible values
of the sources quality, therefore, in order to allow the satisfaction of the restrictions, the values used
in the restrictions must be discretized with the same discretization unit. Furthermore, to discretize
the values of the restrictions we must take into account the comparison operator used. If it is “<” or
“≤” the value must be rounded down, while if it is “>” or “≥” it must be rounded up. If the operator
is “=” we must take into account the quality factor to decide how to round the value. In the
following we show an example of the discretization of the restrictions values, and how they are
compared to the sources values.

Example 4.5

Continuing with Example 4.4, we convert the obtained accepted configurations as follows:

fr(S1) ≤≤≤≤ 5.5 ���� fr(S1) ≤≤≤≤ 5
fr(S2) ≤≤≤≤ 20

Adriana Marotta

71

fr(S3) ≤≤≤≤ 5.5 ���� fr(S3) ≤≤≤≤ 5
fr(S4) ≤≤≤≤ 19.5 ���� fr(S4) ≤≤≤≤ 19
fr(S5) ≤≤≤≤ 5.5 ���� fr(S5) ≤≤≤≤ 5

Note that if S1 has a freshness value of 5.8, in the source model it is considered as 5 (the idea
is that 5 hours has passed, not 6), so the restriction is verified. However, if the restriction was
fr(S1) < 5.5, it would be converted to fr(S1) < 5, which would not be verified by S1.

If we have, for accuracy, a restriction:

acc(S3) ≥≥≥≥ 0.73, we must convert it to acc(S3) ≥≥≥≥ 0.8.

Note that if S3 has an accuracy value of 0.74, it is discretized to 0.7, and the restriction is not
verified. However, if S3 has an accuracy value of 0.76, it is descretized to 0.8, and the
restriction is verified.

If we have the following restriction:

fr(S5) = 5.5, we convert it to fr(S5) = 5, such that we prevent the passing of freshness values
greater than 5.5

If we have the restriction:

acc(S3) = 0.73, we convert it to acc(S3) = 0.8, such that we prevent the passing of accuracy
values lower than 0.73

◊◊◊◊

When modeling the quality of a source, the random experiment consists on the verification of a
source quality value, the random variable (RV) X represents the source quality factor, and the
sample space is the set of all its possible values. In order to model the accepted configurations
satisfaction by a source, we define a binary RV Y, whose possible values are 0 and 1. Y maps the
values of the sample space to these two values. We define Y in function of X and of the accepted
configurations:

Definition 4.6:

Let s be the accepted configurations, s = {v 1, …, v m}, where vi = <r iS1, …, r iSn>, and r iSj
is the restriction associated to source Sj in the restriction vector vi, r iSj = <qfactor, Sj, op,
value>

Let X be the RV that represents the quality factor qfactor in source Sj, over the sample
space S

Let (x1, x2, …, xh) the values of S / xi ∈ Real and xi < xi+1 and (∃ k / xk = value)

Y is a random variable over S, such that:

For restriction vector vi and source Sj, Y = 1 if (X op value)

 Y = 0 if not (X op value)
 ����

The probability distribution of Y is calculated in function of the probability distribution of X. This
calculation depends on the op comparison operator, according to these cases:

Quality Behavior Models

72

1) op = “<”

 P(Y = 1) = P(X < value) = ∑i=1..k-1 P(X=xi)

2) op = “≤”

 P(Y = 1) = P(X ≤ value) = ∑i=1..k P(X=xi)

3) op = “>”

 P(Y = 1) = P(X > value) = ∑i=k+1..h P(X=xi)

4) op = “≥”

 P(Y = 1) = P(X ≥ value) = ∑i=k ..h P(X=xi)

5) op = “=”

 P(Y = 1) = P(X = value) = P(X=xk)

For all cases, P(Y = 0) = 1 – P(Y = 1)

In the definition of Y, for simplicity, we considered that the sample space is discrete and finite.
However there are some cases where we need to consider a sample space discrete and infinite. For
example, this may occur in the case of freshness, when it is not possible to anticipate which value
the freshness can reach. In these cases, the values of the sample space S are (x1, x2, …) and some
probabilities must be calculated as the complement of others:

If op = “>”

 P(Y = 1) = P(X > value) = 1 – P(X ≤ value) = 1 – ∑i=1..k P(X=xi)

If op = “≥”

 P(Y = 1) = P(X ≥ value) = 1 – P(X < value) = 1 – ∑i=1..k-1 P(X=xi)

In the following we show an example of a model of accepted configurations satisfaction.

Example 4.6

We retake the Example 4.2, which is a source updated irregularly (S1.Meteo), whose data is
about meteorological predictions and comes from a satellite in real time.

X is the RV that represents the freshness of S1.Meteo and the following is its probability
distribution:

P(X=0) = 0.52
P(X=1) = 0.29
P(X=2) = 0.14
P(X=3) = 0.05

The accepted configurations has for source S1.Meteo, the restriction: fr(S1.Meteo) ≤ 2

Let Y be the RV that represents the accepted configurations satisfaction by S1.Meteo. We
calculate distribution of Y:

P(Y = 1) = P(X ≤ 2) = P(X=0) + P(X=1) + P(X=2) = 0.52 + 0.29 + 0.14 = 0.95

Adriana Marotta

73

P(Y = 0) = 1 – P(Y = 1) = 0.05

Therefore, there is a probability of 0.95 that S1.Meteo verifies the accepted configurations.

◊◊◊◊

We model the satisfaction of one restriction by one source through RV Y. To model the satisfaction
of a restriction vector v = <r1, …, rn> by the n sources involved, it is necessary to have the
distributions of the RVs Y1, …, Yn / Yi represents the satisfaction of ri by source Si. To obtain this
we must have the distributions of X1, …, Xn / Xi is the RV that represents the quality factor values
of source Si.

4.2.2 DIS Quality Certainty

Considering the requirements of type “probabilistic”, we define DIS Quality Certainty as follows:

Definition 4.7: DIS Quality Certainty is the probability that the DIS quality requirements are
satisfied. ����

This concept and its calculation were inspired by Reliability Theory [Gertsbakh-89], in particular
some of its techniques.

According to Reliability Theory, “the word reliability refers to the ability of a system to perform its
stated purpose adequately ... under the operational conditions encountered”. In particular, structural
reliability relates the reliability of the components of a system and the reliability of the whole
system. It is based on the structure function, which relates the state of the system to the state of its
components. The possible states are two, operational (up) and failure (down). The state of
component i, i= 1, 2, ..., n, is described by a binary variable Xi / Xi =1 if the component is up and
X i = 0 if the component is down. The state of the system is determined by the state of its
components through the structure function: ϕ(X), where X = X1, …, Xn, and ϕ(X) = 1 if the system
is up and ϕ(X) = 0 if the system is down.

Reliability of a system, whose components are independent and non-renewable1, is defined:

Let Xi be the RV that represents the state of component i, ϕ(X) = ϕ(X1, … Xn) is also a
binary RV and the system reliability R is the probability that ϕ(X) = 1.

We make the analogy with these concepts in the following way:

- our system is the DIS

- our components are the sources

- each component is operational when it satisfies the accepted configurations

- the system is operational when its quality requirements are being satisfied

- DIS Quality Certainty is the Reliability of our system

1 If a component fails it is not repaired or substituted

Quality Behavior Models

74

In order to calculate DIS Quality Certainty, in the following we deduce how our structural function
ϕ is.

In previous Section we defined the RV Yi that represents the accepted configurations satisfaction by
a source Si. Considering n sources, for a restriction vector v = <r1,…,rn> we have a set of n RV Yi,
i=1..n, each of which is equal to 1 if source Si is operational (if the quality value at source i satisfies
the restriction ri), and is equal to 0 if Si is not operational. Note that Yi are statistically independent
random variables (each source quality value varies independently from each other).

According to [Gertsbakh-89] a series system is a system that is operational if and only if all of its
elements are up, while a parallel system is a system that is down if and only if all of its elements are
not operational. Figure 4.5 illustrates these ideas. In a series system the structural function and its
probability of being equal to 1 are the following:

ϕ(X) = ∏i=1..n Xi

P(ϕ(X) = 1) = ∏i=1..n P(Xi = 1)

In a parallel system they are:

ϕ(X) = 1 – ∏i=1..n (1 – Xi)

P(ϕ(X) = 1) = 1 - ∏i=1..n (1 - P(Xi = 1))

1 2 n
1

2

n(a) (b)

Figure 4.5: (a) Series system, (b) Parallel system

We must make an important distinction between two cases:

In the cases where the accepted configurations consist of only one restriction vector, we have a
series system, and our structural function is ϕ(Y) = ∏i=1..n Y i. Therefore we calculate the DIS
Quality Certainty as follows:

C = P(ϕ(Y) =1) = Πi=1..n P(Yi = 1)

Once we have the Certainty calculated, we compare it to the probabilities expressed in the
“probability” requirements. All these requirements are considered in the accepted configurations
and their associated probabilities should be less or equal to the Certainty of the DIS.

Example 4.7

Retaking the Example 4.4, we now consider that the user posed the requirements
accompanied by a probability value. See Figure 4.6.

Using an informal notation, the restriction vector was: < 5.5, 20, 5.5, 19.5, 5.5 >. We
discretize the values as explained in previous Section: < 5, 20, 5, 19, 5 >

Suppose that from the sources models we calculate the following satisfaction probabilities:

Adriana Marotta

75

P(Y1 = 1) = P(X1 ≤ 5) = 0.9
P(Y2 = 1) = P(X2 ≤ 20) = 1
P(Y3 = 1) = P(X3 ≤ 5) = 0.9
P(Y4 = 1) = P(X4 ≤ 19) = 1
P(Y5 = 1) = P(X5 ≤ 5) = 1

S1

A1

A3

A2

A4

A5

T1

A6

A7

A8

A9

A10

A11

req freshness ≤≤≤≤ 24
prob = 0.9 req freshness ≤≤≤≤ 10

prob = 0.8
req freshness ≤≤≤≤ 24
prob = 0.9

S4
S3

S2 S5

T2
T3

P(Y1 = 1) =
P(X1 ≤≤≤≤ 5) = 0.9

P(Y2 = 1) =
P(X2 ≤≤≤≤ 20) = 1 P(Y3 = 1) =

P(X3 ≤≤≤≤ 5) = 0.9

P(Y4 = 1) =
P(X4 ≤≤≤≤ 19) = 1

P(Y5 = 1) =
P(X5 ≤≤≤≤ 5) = 1

Restriction Vector:
< 5.5, 20, 5.5, 19.5, 5.5 >

DIS Quality Certainty: 0.8

Figure 4.6: Calculation of DIS Quality Certainty

We calculate DIS Quality Certainty:

C = P(ϕ(Y) =1) = Πi=1..n P(Yi = 1) = P(Y1 = 1) P(Y2 = 1) P(Y3 = 1) P(Y4 = 1) P(Y5 = 1)

C = 0.9 * 1 * 0.9 * 1 * 1 = 0.81

0.8 is the probability that the DIS satisfies all the freshness values required. It satisfies T2
requirement, but it does not satisfy T1 and T3 probability requirements. However, we can
calculate the probability that the DIS satisfies T1 requirement, this is the DIS Certainty taking
into account only T1 requirement (CT1). We do this in the following:

Restriction vector only for T1 requirement, sources S1, S2, S4, S5: < 20, 20, 20, 20 >

Now the satisfaction probabilities are:

P(Y1 = 1) = P(X1 ≤ 20) = 1
P(Y2 = 1) = P(X2 ≤ 20) = 1
P(Y4 = 1) = P(X4 ≤ 20 = 1
P(Y5 = 1) = P(X5 ≤ 20) = 1

Now C T1 = 1, which satisfies T1 requirement.

◊◊◊◊

Quality Behavior Models

76

In the case where the accepted configurations consist of many restriction vectors, we can think of
a parallel system, where each vector is a component that may be operational or not. The problem we
encounter is that the components are not statistically independent, since the probability of a
restriction vector conditioned to the occurrence of other one, may be different from its marginal
probability. We show this through an example:

Example 4.8

Consider the restriction vector for freshness: v1=<5, 10, 8> that pose the restrictions: fr(S1) ≤
5, fr(S2) ≤ 10, and fr(S3) ≤ 8. Consider v2=<3, 9, 8>. We calculate the marginal probability
P(v1) as:

P(v1) = P(fr(S1) ≤ 5) P(fr(S2) ≤ 10) P(fr(S3) ≤ 8)

On the other hand, we can state that:

P(v1|v2) = 1, since we know that if v2 occurs then v1 also occurs.

We cannot say that P(v1|v2) = P(v1), therefore v1 and v2 are not statistically independent.

◊◊◊◊

Due to the exposed reason, in the case of many restriction vectors that satisfy the requirements, we
cannot calculate DIS quality certainty applying the technique proposed in [Gertsbakh-89] for
parallel systems. We apply a different approach for these cases. We model the random experiment
for this scenario in the following way.

Previous definition:

Definition 4.8: A quality-values vector is a set of quality values, containing one value for each one
of the DIS sources. We use the following notation:

vv = < qvS1, …, qvSn>, where qvSi is the quality value associated to source Si ����

Note that a source-restriction vector represents a set of quality-values vectors.

Random experiment:

- Sample space. It is the set of quality-values vectors that are possible in the DIS.

- Event. It is any subset of the sample space. A source-restriction vector is an event, since it
represents a set of quality-values vectors.

We must calculate the probability that the accepted configurations are satisfied. This is the
probability that at least one of the restriction vectors is satisfied.

Let S = {v1, …, vm}, where vi is a source restriction vector, be the accepted configurations.

We consider vi as events of our experiment, being not disjoint. The probability of event v1, or event
v2,…,or event vm is the probability of the union of the events [Canavos-88].

To calculate the union of the events, considering that they are not-disjoint sets, in order to avoid
multiple counting, we must apply the Inclusion-Exclusion Principle, from set theory, [Weisstein-
03]:

Let |A| denote the cardinality of set A, then it follows immediately that

|A ∪ B| = |A| + |B| – |A ∩ B|

Adriana Marotta

77

This formula can be generalized for sets A1, …, Ap in the following manner.

|A1 ∪ A2 ∪ …∪ Ap| = ∑1≤i≤p |Ai| – ∑1≤i<j≤p |Ai ∩ Aj| + ∑1≤i<j<k≤p |Ai ∩ Aj ∩ Ak| – … +

(-1)p–1 |A1 ∩ A2 ∩ …∩ Ap|

We apply the principle to Probability:

If there are only 2 events, m = 2, the formula is:

P(v1 ∪ v2) = P(v1) + P(v2) – P(v1 ∩v2)

If there are more than 2 events:

P(v 1 ∪ v 2 ∪… ∪ v m) = ∑1≤i≤m P(v i) – ∑1≤i<j≤m P(v i ∩ v j) + ∑1≤i<j<k≤m P(v i ∩ v j ∩ v k) –

… + (-1)m–1 P(v 1 ∩ v 2 ∩ …∩ v m)

To calculate the probability of one restriction vector P(vi) we directly apply the calculation of the
DIS Quality Certainty for only one restriction vector (presented above).

In order to calculate the probabilities of the intersections of restriction vectors, we previously solve
the intersection operations. In the following we show that the result of these intersections is always
a restriction vector.

Theorem 4.1

Given the accepted configurations of a DIS, the intersection between two restriction
vectors is a restriction vector.

Demonstration:

We demonstrate by construction.

Let v1 and v2 be restriction vectors, such that:

vi = <riS1, …, riSn>, where riSj is the restriction associated to source Sj,
riSj = <qfactor, Sj, op, valuei> (recall that qfactor and op are the same for all the restrictions

of the same accepted configurations)

When op = “<” or op = “≤”:

v3 = v1 ∩ v2 : FOR j:1..n DO
 IF value1 ≤ value2 THEN
 r3Sj = <qfactor, Sj, op, value1>
 ELSE
 r3Sj = <qfactor, Sj, op, value2>

When op = “>” or op = “≥”:

v3 = v1 ∩ v2 : FOR j:1..n DO
 IF value1 ≥ value2 THEN
 r3Sj = <qfactor, Sj, op, value1>
 ELSE
 r3Sj = <qfactor, Sj, op, value2>

The diagrams in Figure 4.7 show how the points that belong to the intersection are the ones
that we obtain through the previous construction algorithm. We consider the possible kinds

Quality Behavior Models

78

of cases for two restriction vectors r1= <x1, y1> and r2= <x2, y2>. Figure 4.7, a) and b) are
the cases where op = “≤”. In a), x1< x2 and y1 < y2. In b), x1< x2 and y2 < y1. c) and d)
are the cases where op = “≥”. In c), x1< x2 and y1 < y2. In d), x1< x2 and y2 < y1.

x1 x2

y2

y1

x1 x2

y1

y2

x1 x2

y2

y1

x1 x2

y1

y2

a)

d)c)

b)

Figure 4.7: Intersection of restriction vectors <x1,y1> and <x2,y2>. a), b): restriction vectors with ≤≤≤≤
operator. c), d): restriction vectors with ≥≥≥≥ operator.

∇∇∇∇

As the result of the intersections is a restriction vector, we first solve these operations and then we
solve the probability of the resulting restriction vector.

In summary, in the cases where the accepted configurations consist of many restriction vectors,
v1, …, vm, we calculate the DIS Quality Certainty as follows:

If m = 2:

C = P(v1) + P(v2) – P(v1 ∩v2)

If m >2:

C = ∑1≤i≤m P(v i) – ∑1≤i<j≤m P(v i ∩ v j) + ∑1≤i<j<k≤m P(v i ∩ v j ∩ v k) – … +
(-1)m–1 P(v 1 ∩ v 2 ∩ …∩ v m)

Example 4.9

Consider a DIS where there are 5 sources S1… S5. We want to calculate the Certainty for the
quality factor accuracy. The Accepted Configurations consist of the following restriction
vectors, whose operator is ≥:

Adriana Marotta

79

v1 = <0.8, 1, 0.8, 0.9, 1> (This means the restrictions: accuracy(S1)≥0.8, accuracy(S2)≥1,
accuracy(S3)≥0.8, accuracy(S4)≥0.9, accuracy(S1)≥1)

v2 = <1, 1, 0.8, 0.7, 0.9>

v3 = <0.9, 1, 0.8, 0.8, 1>

v4 = <0.9, 0.9, 0.8, 1, 0.9>

C = ∑1≤i≤m P(v i) – ∑1≤i<j≤m P(v i ∩ v j) + ∑1≤i<j<k≤m P(v i ∩ v j ∩ v k) – … + (-1)m–1 P(v 1 ∩ v 2
∩ …∩ vm)

C = P(v1) + P(v2) + P(v3) + P(v4) – (P(v1 ∩ v2) + P(v2 ∩ v3) + P(v3 ∩ v4) + P(v1 ∩ v3) +
P(v1 ∩ v4) + P(v2 ∩ v4)) + P(v1 ∩ v2 ∩ v3) + P(v2 ∩ v3 ∩ v4) + P(v1 ∩ v3 ∩ v4) –
P(v1 ∩ v2 ∩ v3 ∩ v4)

We have the probability distribution of each source, where the RV is Xi for source Si.

P(v1) = P(X1 ≥ 0.8) P(X2 ≥ 1) P(X3 ≥ 0.8) P(X4 ≥ 0.9) P(X5 ≥ 1)

P(v2) = P(X1 ≥ 1) P(X2 ≥ 1) P(X3 ≥ 0.8) P(X4 ≥ 0.7) P(X5 ≥ 0.9)

P(v3) = P(X1 ≥ 0.9) P(X2 ≥ 1) P(X3 ≥ 0.8) P(X4 ≥ 0.8) P(X5 ≥ 1)

P(v4) = P(X1 ≥ 0.8) P(X2 ≥ 0.9) P(X3 ≥ 0.8) P(X4 ≥ 1) P(X5 ≥ 0.9)

v1∩v2 = <1, 1, 0.8, 0.9, 1>

P(v1∩v2) = P(X1 ≥ 1) P(X2 ≥ 1) P(X3 ≥ 0.8) P(X4 ≥ 0.9) P(X5 ≥ 1)

v2∩v3 = <1, 1, 0.8, 0.8, 1>

P(v2∩v3) = P(X1 ≥ 1) P(X2 ≥ 1) P(X3 ≥ 0.8) P(X4 ≥ 0.8) P(X5 ≥ 1)

(v3∩v4) = <0.9, 1, 0.8, 1, 1>

P(v3∩v4) = P(X1 ≥ 0.9) P(X2 ≥ 1) P(X3 ≥ 0.8) P(X4 ≥ 1) P(X5 ≥ 1)

We calculate analogously the probabilities of the other intersections. From the probability
distributions of each source we substitute the corresponding probability values, obtaining C.

◊◊◊◊

4.3 Satisfaction of non-probabilistic user quality requirements

When there are quality requirements whose type are “maximum”, “minimum”, “average” or
“frequency”, we propagate them to the sources, obtaining the accepted configurations. From the
sources models we obtain the corresponding calculated values, e.g expectation, maximum, etc, and
verify if they satisfy the accepted configurations. It is important to remember that the requirement

Quality Behavior Models

80

type “average” corresponds to the concept of expectation in source models, and the requirement
type “frequency” corresponds to the concept of mode in source models.

In the following we sketch the algorithm used for determining the satisfaction of non-probabilistic
requirements. We must execute it for each type of the existing quality requirements, and previously
calculate the corresponding accepted configurations. Given a requirement type and the accepted
configurations for the requirements of this type, the algorithm determines if the sources satisfy the
accepted configurations. For doing this, it verifies if exists a vector in the accepted configurations
whose source restrictions are all satisfied.

FUNCTION QualitySatisfaction (G: QualityGraph, ac: AcceptedConfigurations, qfactor:
String, reqt: RequirementType): Boolean

sat1, sat2: Boolean

sat2 = FALSE
FOR EACH restriction vector v of ac.rv-space DO
 sat1 = TRUE

FOR EACH restriction rSi of v DO
 sat1 = Satisfy? (qfactor, reqt, rSi) AND sat1

 IF sat1 THEN sat2 = TRUE
QualitySatisfaction = sat2

END FUNCTION

FUNCTION Satisfy? (qfactor: String, reqt: RequirementType, r: SourceRestriction):
Boolean

val: Decimal
CASE reqt OF
 “maximum”: val = ObtainMaximum (G, qfactor, GetSource(r))
 CASE GetOp(r) OF

“<”: Satisfy? = (val < GetValue(r))
“≤”: Satisfy? = (val ≤ GetValue(r))
“=”: Satisfy? = (val = GetValue(r))

 “minimum”: val = ObtainMinimum (G, qfactor, GetSource(r))
 CASE GetOp(r) OF

“>”: Satisfy? = (val > GetValue(r))
“≥”: Satisfy? = (val ≤ GetValue(r))
“=”: Satisfy? = (val = GetValue(r))

 “average”: val = ObtainExpectation (G, qfactor, GetSource(r))
 CASE GetOp(r) OF

“<”: Satisfy? = (val < GetValue(r))
“≤”: Satisfy? = (val ≤ GetValue(r))
“>”: Satisfy? = (val > GetValue(r))
“≥”: Satisfy? = (val ≤ GetValue(r))

Adriana Marotta

81

“=”: Satisfy? = (val = GetValue(r))
 “frequency”: val = ObtainMode (G, qfactor, GetSource(r))

CASE GetOp(r) OF
“<”: Satisfy? = (val < GetValue(r))
“≤”: Satisfy? = (val ≤ GetValue(r))
“>”: Satisfy? = (val > GetValue(r))
“≥”: Satisfy? = (val ≤ GetValue(r))
“=”: Satisfy? = (val = GetValue(r))

END FUNCTION

The functions ObtainMaximum , ObtainMinimum , ObtainExpectation and ObtainMode,
calculate the maximum, minimum, expectation and mode, respectively from the source model, as
explained in Section 3.

The functions GetSource, GetOp and GetValue obtains the source, the operator and the value,
respectively, from the source restriction.

As can be seen in the presented pseudo-code, to verify the satisfaction of a source restriction
(function Satisfy?), we compare the value calculated from the source model (maximum, minimum,
expectation or mode) to the value of the source restriction.

4.4 Probability Distribution of DIS Quality

In addition to calculating the quality provided by the DIS for certain user quality requirements (as
presented in previous Sections), we can calculate the probabilities of the different quality values
that the DIS may give. For simplicity we consider this calculation for only one data target, and
therefore only the sources involved in its generation.

We calculate the DIS quality values that result from all the possible combinations of sources quality
values, and the probabilities of satisfying them. This can be done if and only if the set of possible
quality values in each source is finite.

For the calculation of the probability of each DIS quality value we calculate the probability that one
of the combinations is satisfied by the sources. For this, we sum the probabilities of the
combinations of sources values (quality-values vectors) that give the DIS quality value, since we
consider the quality-values vectors as disjoint events.

The following are the steps to claculate the probability distribution of DIS quality, for target T and
set of sources (involved in T generation) {S1, …, Sn}:

1- Generate all the possible combinations of quality values for S1, …, Sn, obtaining a set of
combinations Comb = {vv1, …, vvk}, where vvi is a quality-values vector (defined in Section
4.2.2) vvi = {qi1, …, qin}

2- For each vvi ∈ Comb, calculate the quality value provided in T, qvi, generating DISValues1 =
{qv1, …, qvk}. This is done through the corresponding quality evaluation algorithm (Chapter 3).

3- Eliminate duplicate values from DISValues1, generating DISValues2 = {qvi1, …, qvim}, 1≤ ij ≤
k.

4- For each qvij ∈ DISValues2, sum the probabilities of the vectors of Comb that generate qvij (this
probabilities are obtained from the sources’ models), obtaining the probability that one of the
vectors is satisfied by the sources.

Quality Behavior Models

82

The following example illustrates how the steps are applied.

Example 4.10

Continuing with example 4.4, where T3 obtains its data from sources S4 and S5, we will
calculate the possible DIS maximum freshness values, in this case T3 freshness values, and
their corresponding probabilities. See Figure 4.7.

Suppose that:

S4 possible freshness values: {0, 1, 2, 3, 4, 5, 6}

S5 possible freshness values: {0, 1, 2}

The following is the set of all possible combinations of freshness values for S4, S5:

Comb = { <0, 0>; <0, 1>; <0, 2>; <1, 0>; <1, 1>; <1, 2>; <2, 0>; <2, 1>; <2, 2>; <3, 0>; <3,
1>; <3, 2>; <4, 0>; <4, 1>; <4, 2>; <5, 0>; <5, 1>; <5, 2>; <6, 0>; <6, 1>; <6, 2> }

A3

A4

A5

A8

A10

c=0

c=0,5

c=2

c=3

c=1

S4 S5

T3

d=0

d=0d=0

d=2

d=0

d=0

Figure 4.7: Quality Graph for T3

For each combination, we calculate the quality value provided in T3. As stated in Example
4.4, the freshness propagation function for a node A was:

Freshness(A) = Max (Freshness(A1) + Delay(A1,A), …, Freshness(An) + Delay(An,A)) +
Cost(A), where A1, …, An are A predecessors

For simplicity of the presentation we show only some of the combinations:

Sources freshness:
<S4, S5>

T3 Freshness:

<0, 0> 4.5

<0, 1> 5.5

<0, 2> 6.5

<1, 0> 5.5

Adriana Marotta

83

<1, 1> 5.5

…… ……

<6, 1> 10.5

<6, 2> 10.5

We eliminate duplicated values of T3 freshness:

{4.5, 5.5, 6.5, …, 10.5}

For fr(T3) = 4.5:

P(fr(T3) = 4.5) = P(<0, 0>) = P(fr(S4) = 0) P(fr(S5) = 0)

For fr(T3) = 5.5:

P(fr(T3) = 5.5) = P(<0, 1>) + P(<1, 0> + P(<1, 1>) =

P(fr(S4) = 0) P(fr(S5) = 1) + P(fr(S4) = 1) P(fr(S5) = 0) + P(fr(S4) = 1) P(fr(S5) = 1)

The models of S4 and S5 include this information:

P(fr(S4) = 0) = 0.7

P(fr(S4) = 1) = 0.2

P(fr(S5) = 0) = 0.6

P(fr(S5) = 1) = 0.4

P(fr(T3) = 4.5) = 0.7 * 0.6

P(fr(T3) = 5.5) = 0.7 * 0.4 + 0.2 * 0.6 + 0.2 * 0.4

Distribution of T3 freshness values:

T3 Freshness Probability

4.5 0.42

5.5 0.48

……. …….

◊◊◊◊

From the probability distribution of the possible DIS quality values we can easily obtain the DIS
Quality Certainty of a possible DIS quality value v1 (considering v1 as the user quality
requirement), i.e the probability that the DIS quality value is equal or “better” than v1. Depending
on the quality factor, we consider v2 as better than v1 if v2≤v1 or if v2≥v1. In particular, if the
quality factor is freshness it should hold v2≤v1, and if it is accuracy it should hold v2≥v1.

Let X be a RV representing the possible DIS quality values.

Quality Behavior Models

84

Let the probability distribution of RV X be the following:

P(X=qv1) = p1

P(X=qv2) = p2

…..

P(X=qvn) = pn

We calculate the DIS Quality Certainty of qvi as:

P(X ≤ qvi) = ∑j:1..i pj

or

P(X ≥ qvi) = ∑j:i..n pj

according to the quality factor.

4.5 Models Specification

We specify two types of DIS quality behavior models: (i) DIS quality satisfaction model and (ii)
DIS quality distribution model. (i) includes DIS Certainty and satisfaction of non-probabilistic
quality requirements. (ii) is for specifying probability distribution models of the quality provided by
the DIS in certain data-target.

Definition 4.9: A DIS quality satisfaction model is a property type, whose corresponding domain is
a set of 3-uples of the form: <qfactor, requirements-set, sat-probability>, where

- qfactor is a String, representing the quality factor,

- requirements-set is a set of Requirements,

- sat-probability is a number between 0 and 1, representing the probability of the satisfaction of
these requirements by the DIS. ����

We include DIS quality satisfaction models in the quality graph (presented in Chapter 3), as
properties associated to the graph.

In the case of models of satisfaction of non-probabilistic quality requirements, the sat-probability
field is always 1.

Definition 4.10: A DIS quality distribution model is a property type, whose corresponding domain
is a set of 3-uples of the form: <qfactor, data-target, distribution>, where

- qfactor is a String, representing the quality factor,

- data-target is a String, the name of the data target to which the model corresponds,

- distribution is a set of pairs <qvalue, probability>, where

- qvalue is a Decimal number and

- probability is a number between 0 and 1, representing the probability of the quality value.
����

We include DIS quality distribution models in the quality graph, each one as a property associated
to a data-target.

Adriana Marotta

85

5. Quality Behaviour through Time

The behaviour of the sources quality factors, i.e. the way their values vary, may change through
time, and therefore their probabilistic models. For instance, in the case of freshness, the update
period of a periodically updated source may change, or if the updates follow a Poisson distribution,
it may change the update frequency λ. In the case of any quality factor that is measured periodically
and its distribution is estimated, this distribution may change when considering new measurements.

We propose to maintain for each source, the history of the different distributions, a quality factor
has through time. We simply store some summary values that characterize the probability
distribution, such as the expectation, the mode, the maximum and minimum values, with a
corresponding timestamp.

Maintaining this information is very useful because it constitutes highly valuable information when
we have to take actions in order to improve the DIS quality.

The following is the specification of this historical information.

Definition 4.11: A source quality models history is a property type, whose corresponding domain is
a set of 3-uples of the form: <qfactor, source, distributions>, where

- qfactor is a String, representing the quality factor,

- source is a String, the name of the source to which the model corresponds,

- distributions is a set of 5-uples, indicators = <minimum, maximum, expectation, mode,
timestamp>, where

- minimum, maximum, expectation and mode are Decimal numbers,

- timestamp is a date/time field, representing the instant when the distribution was stated as
current. ����

The indicators are the information that characterizes a distribution.

The most recent distribution in a source quality models history corresponds to the current
distribution of the source, that is, to the source quality behavior model.

We include source quality models histories in the quality graph (presented in Chapter 3), each one
as a property associated to a source.

6. Summary

The way we have chosen to maintain information about the quality of the DIS is through quality
behavior models. These models show how quality behaves beyond punctual values, providing
information that enables to make estimations about the current and future quality.

The quality behavior models are probabilistic models. We apply them to sources quality as well as
to DIS quality. We characterize DIS quality, through two different approaches, as: the quality
values that the DIS can take (for the data targets), and the quality considering the user quality
requirements, i.e. the satisfaction or not of the quality requirements.

For DIS quality approach where user quality requirements are taken into account, it is necessary to
define and be able to calculate the accepted configurations. These are the quality requirements at the
sources that are deduced from the user requirements and the transformations suffered by the data as
it goes from sources to data targets. The complexity of these requirements is due to the possible
existence of many combinations of source quality values that satisfy the user quality requirements.
This caused that, when modeling DIS quality, we first stated a solution for the case where there is

Quality Behavior Models

86

only one restriction for each source (only one restriction vector), and then we achieved a more
advanced solution for the cases where the accepted configurations consist of many restrictions
vectors.

For the DIS quality model that provides the probability distribution for the possible DIS quality
values, it also was considered that it may exist many combinations of sources quality values that
generate the same quality value in a data target, obtaining a global probability in those cases.

The source quality models that were presented are examples of possible models. In some cases it
may happen that none of these models are useful or adequate, and it may exist other ones, which
better adapt to the cases. The idea is to show the followed approach and the possibility of working
with this kind of models.

All the presented models can be summarized into values that characterize them, such as the
expectation or the mode. We propose to store the summarized information of the models, through
time, since they may be used to explain current situations and observing tendencies.

The examples presented all along the chapter are intended to clarify the proposals and show their
viability and usefulness.

Adriana Marotta

87

CCCHHHAAAPPPTTTEEERRR 555... QQQUUUAAALLLIIITTTYYY CCCHHHAAANNNGGGEEESSS DDDEEETTTEEECCCTTTIIIOOONNN

We must be alert. Our Data Integration System may loose quality…

1. Introduction

Detecting changes implies identifying the changes that are relevant to our problem. Our problem
can be synthesized as achieving the satisfaction of the DIS user quality requirements as
continuously as possible. Therefore, we are interested in detecting changes that generate the
dissatisfaction of DIS quality requirements.

There are different kinds of changes that may affect DIS Quality. We manage changes on sources
quality, changes on DIS structure, and changes on quality requirements. We present a classification
for changes, according to their nature and to the components of the system where they occur. On the
other hand, changes may have different degrees of incidence on the DIS, characteristic that is very
important for detecting relevant changes. Therefore, we define another classification, orthogonal to
the first one, which considers how the change affects DIS quality.

In order to model the dynamism involved in the occurrence of changes and its notification to the
different modules of our management system, we base ourselves on the notion of events. We define
different types of events. We consider that some of them are generated by the sources, while there
are many of them that are generated internally to the Quality Management System (as said before,
QMS).

With respect to the events received from the sources, our intention is to leave this aspect as open as
possible, since the quantity of meta-information a source may give to a DIS is very variable. It
depends on the degree of autonomy of the source as well as its will of collaborating with the DIS
and sharing the different information. In our proposal, we consider some possible cases of meta-
information given by sources.

Our proposal for relevant changes detection is mainly contained in the management of events that
are generated internally to the QMS. We manage these events in a way that changes are gradually
filtered, remaining only the relevant ones. For the management of events we propose a set of ECA
(Event Condition Action) rules, which we call Change Detection Rules.

There is a close relationship between the quality models developed in the previous chapter and the
techniques for detecting relevant quality changes proposed in the present chapter. First, the source
quality change that is detected and then treated by the rules is a change on the quality model of the
source. Second, the evaluation of the relevance of any change, performed through the rules, is
strongly based on the quality models of the DIS (verifying DIS Quality Certainty, and satisfaction
of requirements of average, most frequent value, etc.).

The detection of relevant quality changes involves the verification of different aspects of quality
satisfaction. Our proposal is to verify only the aspects that were affected by the change, in order to
avoid unnecessary work. Therefore, when the management system is normally working, partial
quality verifications are done each time a change occurs. However, it is necessary to define how a
complete verification of DIS quality must be done, stating this way, the quality level we demand to
the DIS and the state we try to maintain in our proposal. On the other hand, this complete quality
verification may be done periodically to ensure the detection of quality problems that may be
involuntary ignored through the change detection process. We propose one possible complete
verification for DIS quality.

Quality Changes Detection

88

Figure 5.1 shows the processes that are proposed for solving changes detection, and their
interaction. Events that come from sources are processed, sometimes causing updates to the source
quality models contained in the estimations & statistics meta-information. Certain changes in this
meta-information generate the creation of QMS events. These events may also be created as a
consequence of an execution of a complete DIS quality verification. QMS events are processed by
the Change Detection Rules, which sometimes create new QMS events, and other times generate
events that notify to the Quality Repair module of the QMS, that a relevant quality change occurred.

estimations
& statistics

events

Complete
DIS Quality
Verification

Change
Detection

Rules

Quality
Repair

Quality Changes Detection

QMS events

source events
Source-
events

Processing

Figure 5.1: Quality Changes Detection Architecture

This Chapter is organized as follows: Section 2 presents a proposal for doing a complete DIS
quality verification, Section 3 presents a taxonomy of changes, Section 4 presents the events
defined for change management, Section 5 presents a method for relevant changes identification,
Section 6 present an example and Section 7 presents the summary of the chapter.

2. Complete DIS-Quality Verification

Before addressing the detection of quality changes, we define how a complete quality verification
must be done for a quality factor. Later, we take this as a guide for the different verifications that
must be done in the different cases of quality changes.

The algorithm for a complete DIS-quality verification must perform the following verifications:

- The accepted configurations that have as requirements all DIS user quality requirements of
type “minimum” must be satisfied

- The accepted configurations that have as requirements all DIS user quality requirements of
type “maximum” must be satisfied

- The accepted configurations that have as requirements all DIS user quality requirements of
type “average” must be satisfied

Adriana Marotta

89

- The accepted configurations that have as requirements all DIS user quality requirements of
type “frequency” must be satisfied

- DIS Quality Certainty must be greater or equal to the probabilities of all DIS user quality
requirements of type “probability”

We present a pseudo-code of the algorithm, for a given quality graph and a given quality factor:

FUNCTION DIS_Quality_Verification (G: QualityGraph, qfactor: String): Boolean

DIS_Quality_Verification = Quality_Verification (G, qfactor, “minimum”,
“ac_minimum”) AND Quality_Verification (G, qfactor,
“maximum”, “ac_maximum”) AND Quality_Verification (G,
qfactor, “average”, “ac_expectation”) AND Quality_Verification
(G, qfactor, “frequency”, “ac_mode”) AND
Quality_Certainty_Verification (G, qfactor)

END FUNCTION

FUNCTION Quality_Verification (G: QualityGraph, qfactor: String, reqtype: String,
acname: String): Boolean

reqs: Set of <Target, String>
ac: AcceptedConfigurations

reqs = Get_Target_Requirements (G, qfactor, reqtype)
IF NOT Empty (reqs)

ac = Accepted_Conf_Calculation (G, qfactor, reqs)
G = Add_Graph_Property (G, “AcceptedConfigurations”, acname, ac)
Quality_Verification = QualitySatisfaction (G, ac, qfactor, reqtype)

ELSE
Quality_Verification = TRUE

END FUNCTION

FUNCTION Quality_Certainty_Verification (G: QualityGraph, qfactor: String, acname:

String): Boolean

reqs: Set of <Target, String>
ac: AcceptedConfigurations
aux: Boolean
C: Decimal (0 .. 1)

reqs = Get_Target_Requirements (G, qfactor, “probability”)
IF NOT Empty (reqs)

ac = Accepted_Conf_Calculation (G, qfactor, reqs)
G = Add_Graph_Property (G, “AcceptedConfigurations”, acname, ac)
C = DIS_Quality_Certainty (G, qfactor, ac)
aux = TRUE
FOR EACH requirement r of reqs DO

Quality Changes Detection

90

aux = aux AND (C ≥ GetProbability (r))
Quality_Certainty_Verification = aux

ELSE
Quality_Certainty_Verification = TRUE

END FUNCTION

Function Get_Target_Requirements obtains, given a quality graph and a quality factor, the names
of all the requirements of certain type. It returns a set of pairs <target, requirement-name>.

Function Accepted_Conf_Calculation was specified in Chapter 4, Section 4.1. It calculates the
accepted configurations for a quality graph, a set of requirements and a quality factor.

Function Add_Graph_Property receives a graph, a property type, a property name, and a property
value, and modifies the graph adding the new property.

Function QualitySatisfaction was specified in Chapter 4, Section 4.3. Given a requirement type
and the accepted configurations for a set of requirements of this type, this function determines if the
sources satisfy the accepted configurations.

Function DIS_Quality_Certainty implements the formula stated in Chapter 4, Section 4.2.2 to
calculate DIS Quality Certainty from the accepted configurations and the models of the involved
sources.

Function GetProbability obtains the probability from a requirement of type “probability”.

The QMS executes periodically this verification in the DIS, since there may be changes that are not
detected through the proposed mechanism although they generate requirements dissatisfaction. If
this execution detects dissatisfaction of quality requirements, the events QValuesDissatisfaction
and/or ProbabilityDissatisfaction, which are explained later in this chapter, are generated.

3. Changes Taxonomy

We classify the changes that may affect the DIS quality, according to the taxonomy shown in
Figure 5.2. In the following we describe each type of change:

o Quality change. A change on the value/s associated to a quality factor.

- Change on the quality of a source. Change in quality behavior model.

- Change on user quality requirements. Change on one user quality requirement, addition of
a user quality requirement or elimination of a user quality requirement.

o Structural change. Change on some structure or property of the DIS.

- Source-schema change. Changes on the structure of a source table, addition of a source
table or elimination of a source table.

- Integrated-schema change. For the cases where the DIS has a pre-defined integrated
schema. Changes on a table structure, addition of a table or elimination of a table.

- Change on the DIS transformation graph. Change on the structure of the graph or change
on an activity’s property (cost, effectiveness, etc.).

We left out of the scope of this work the management of source schema and integrated schema
changes.

Adriana Marotta

91

The possible changes of each type of change, are at the same time classified according to how they
affect the DIS.

From all the possible source quality changes (See Figure 5.3, (a)), only a subset change the source
quality model, since there are many changes that maintain the same probability distribution of the
source quality. From the mentioned subset only some changes affect the DIS quality, changing the
quality values of the information received by the user. From the changes that change the DIS
quality, only some make the user quality requirements dissatisfied. The following summarizes this
classification of changes.

o Source quality changes (Figure 5.3, (a)).

- Changes that change the source quality model

• Changes that affect the DIS quality

� Changes that make the user quality requirements dissatisfied

� Changes that do not make the user quality requirements dissatisfied

• Changes that do not affect the DIS quality

- Changes that do not change the source quality model

CHANGES

QUALITY STRUCTURAL

SOURCE USER REQS.

SOURCE
SCHEMA

INTEGRATED
SCHEMA

TRANSFORM.
GRAPH

Figure 5.2: Changes taxonomy

From all the possible changes on the transformation graph (See Figure 5.3, (b)), only some change
the DIS quality, and from these, only some generate the quality requirements dissatisfaction. For
example, if a cleaning activity is eliminated, the accuracy of some query results may decrease,
which may generate the dissatisfaction of the user quality requirements. In the same way, if this
activity is added to the system the accuracy may increase, and this would change the DIS quality
but not generate requirements dissatisfaction. The following summarizes this classification of
changes.

o Transformation graph changes (Figure 5.3, (b)).

- Changes that affect the DIS quality

• Changes that make the user quality requirements dissatisfied

• Changes that do not make the user quality requirements dissatisfied

Quality Changes Detection

92

- Changes that do not affect the DIS quality

Only some of all the possible changes on user quality requirements (See Figure 5.3, (c)) generate
changes on the sources required quality values (i.e., on the accepted configurations). For example, if
user quality requirement req1 changes, there may exist another requirement req2 that already
generated a stronger requirement on the sources, so req1 change does not affect sources required
values. Besides, only some of the changes that affect sources required values cause the
dissatisfaction of the user quality requirements, since it may happen that the sources quality values
satisfy the new requirements. The following summarizes this classification of changes.

o User quality requirements changes (Figure 5.3, (c)).

- Changes that affect the sources required quality values

• Changes that make the user quality requirements dissatisfied

• Changes that do not make the user quality requirements dissatisfied

- Changes that do not affect the DIS quality

Those who change the
source quality model

Those who
change the DIS
quality

Those who
generate the
quality reqs.
dissatisfaction

Those who change the
DIS quality

Those who generate
the quality reqs.
dissatisfaction

Those who change the
sources required values

Those who generate
the quality reqs.
dissatisfaction

(a)

(c)(b)

Source quality changes

Quality requirements
changes

Transformation graph
changes

Figure 5.3: (a) Source changes classification, (b) Transformation graph changes classification, (c) User

quality requirements changes classification.

Our strategy to detect relevant changes is based on this latest classification. We filter the changes
through the different layers shown in Figure 5.3, obtaining the ones that generate quality
requirements dissatisfaction.

Adriana Marotta

93

4. Events

The way the QMS (as said before, Quality Management System) is notified about changes and also
the way it treats these changes is through events. We lean our change detection mechanism on the
reception, generation and management of events.

We model the events using the notions of classes and objects of the Object Oriented paradigm. We
define different classes of events whose objects are the particular events that are generated in the
system.

We define two groups of events: (1) the events that come from the sources to the DIS and (2) the
events that are generated at the QMS. The events from (1) are, for example, source data updates and
source schema changes. The events from (2) are changes of DIS elements, such as a source model
or transformation graph change, which need to be noticed and managed.

Events from group (1) are generated at the sources and captured by the QMS, while group (2)
events are generated by the QMS and also captured by it.

We concentrate in the management of group (2) events, since this is the base of our approach for
relevant changes detection.

4.1 Events that come from sources

The events generated at the sources enable the notification to the QMS of sources changes that are
important for it. We assume that these events are generated by the sources themselves, although
they could be generated by an external monitoring mechanism.

These events may be generated as consequence of the following happenings:

o There was a data update
There was a data update at the source. Note that a source for us is a whole data source or a
relation from a relational source (a source relation).

o Update frequency λ has changed
In the cases where the source is updated according to a Poisson process, the source may give
the information about the estimated update frequency λ, notifying the QMS when λ changes.

o Update period has changed
In the cases where the source is updated periodically, the source may inform the QMS when
the period changes.

For freshness as well as for accuracy quality factors, the QMS needs to detect some of the above-
mentioned sources’ events, or some other one that provides useful information, in order to obtain a
periodic measurement of the freshness or of the accuracy. For this work, we assume that the QMS is
able to detect at least data update events at the sources.

In Table 5.1 we show the events classes that we define.

We do not extend in the details of these classes, neither in the management of these events, since we
prefer to concentrate in the management of the QMS events. In the following we give a brief
description of the processing of these events.

Quality Changes Detection

94

Event Name Event Description

SourceDataUpdate There was a data update in the source.

UpdateFreqChange The estimated update frequency (λ) of a
Poisson-updated source has changed.

UpdatePeriodChange The update period of a periodically updated
source has changed.

Table 5.1: Classes of sources events

SourceDataUpdate events are accumulated in a repository, storing the changed source and a
timestamp corresponding to the instant of the change. A certain time period is chosen, according to
the characteristics of the application and the source. Each time this period passes, a quality model
for the source is calculated, from the repository data. The calculation of this model for freshness is
described in Chapter 4, Section 3.1.1, Model 3, and for accuracy, in Chapter 4, Section 3.1.2.

When an UpdateFreqChange event is received by the QMS, it calculates a new model for the
corresponding source, with the new λ. This calculation is described in Chapter 4, Section 3.1.1,
Model 2.

When an UpdatePeriodChange event is received by the QMS, it calculates a new model for the
corresponding source, with the new period. This calculation is described in Chapter 4, Section 3.1.1,
Model 1.

In all cases, once a new model is calculated, it is stated as the current model for the source (and the
corresponding quality factor) and added to the history of the source models, as follows:

o For source S1, quality factor qf1, and distribution = {<qv1, prob1>, …, <qvn, probn>}, we create
a source behavior model:

- <qf1, S1, distribution>, where distribution = {<qv1, prob1>, …, <qvn, probn>}

o We add the model, with name model1, such that:
 ((ρV (S1)) (SourceQualityBehaviorModel)) (“model1”) = <qf1, S1, distribution>

o The following indicators are calculated:
- minimum, maximum, expectation and mode are calculated from

<qv1, prob1>, …, <qvn, probn>
- timestamp = current date and time

o We modify the models history of the source S1 and quality factor qf1, adding the new
distribution:

- hist1 = ObtainHistory (ρV (S1) (SourceQualityModelsHistory), qf1, S1)
- A new field indicators is added to the distributions set of hist1, indicators = < minimum,

maximum, expectation, mode, timestamp >
- We substitute the current models history of S1 and qf1, by hist1.

4.2 Events that are internal to the QMS

At the QMS we generate events that notify a change on a source quality model, a change on the
transformation graph or a change on the user quality requirements. These events originate a series
of verifications and eventually the generation of other new events. The succession of events may
culminate with the notification of the dissatisfaction of user quality requirements, which means that
we detected a relevant change.

Adriana Marotta

95

We group these events in three levels, according to their meaning and to how they inter-relate.
Level-1 events cause the generation of level-2 events and level-2 events cause the generation of
level-3 events. Level-1 events are fired when a change that may affect the DIS has occurred, level-2
events are fired in the cases where DIS quality or DIS required quality has changed, and level-3
ones are fired in the cases where quality requirements are not being satisfied.

In Figure 5.4 we show how each level of events (denoted as L1, L2 and L3) corresponds to a group
of changes as previously classified. As can be seen, in the case of source quality, we pay attention
to changes that have affected the source quality model, filtering those which have not changed the
model.

Source quality changes

Those who change the
source quality model

Those who
change the DIS
quality

Those who
generate the
quality reqs.
dissatisfaction

Transformation graph
changes

Those who change the
DIS quality

Those who generate
the quality reqs.
dissatisfaction

Quality requirements
changes

Those who change the
sources required values

Those who generate
the quality reqs.
dissatisfaction

(a)

(c)(b)

L1

L1

L1

L2

L2L2

L3

L3L3

Figure 5.4: Event levels in different types of changes. (a) Source changes classification, (b)

Transformation graph changes classification, (c) User quality requirements changes classification.

We define seven classes of events. The events of these classes give alerts notifying the following
situations:

o Quality model of a source has changed.
One of the indicators of the quality model of a source has changed. These indicators are: the
maximum, minimum, expectation and mode of the probability distribution of a quality factor in
a source.

o The transformation graph of the DIS has changed.
A change on the structure of the graph or a change on an activity’s property (like the cost or the
effectiveness) has occurred.

o There was a change on the user quality requirements.
There was a change on one user quality requirement, an addition or an elimination of a user
quality requirement.

Quality Changes Detection

96

o DIS Quality Certainty has changed.

o The degree of satisfaction of quality requirements has changed.
This means that there was a change that affected the satisfaction of some quality requirements,
i.e. there was a change in the relation between a quality value provided by the DIS and the
corresponding quality value required by the user.

o There is a required probability that is not being satisfied by the DIS.
There is at least one quality requirement of type “probability”, whose probability value is
greater than the DIS Quality Certainty.

o There is a quality requirement that is not being satisfied by the DIS.
There is at least one quality requirement of type different from “probability”, associated to a
data target, such that the quality value provided by the DIS in that data target does not satisfy
it.

The events classes are presented in Table 5.2, with the level to which they correspond.

Event Level Event Name Event Description

Level 1

QModelChange The probability distribution of a quality factor
has changed in a source.

TGraphChange There was a change in the transformation graph
of the DIS.

QReqChange There was a change in the quality requirements.

Level 2

CertaintyChange DIS Quality Certainty has changed.

QSatisfactionChange The degree of satisfaction of quality
requirements has changed.

Level 3

ProbabilityDissatisfaction Required probability for required quality value
is not satisfied by the DIS.

QValuesDissatisfaction Required quality value is not satisfied by the
DIS.

Table 5.2: Classes of QMS events

With the only objective of showing graphically how the different events generate the creation of
others, we take advantage of the idea of collaboration diagram from UML. Figure 5.5 presents a
collaboration diagram of the events classes that shows how the events interact. The label
“Create(att-vals)” means that the event invokes the creation of the other one (according to the arrow
sense) passing the values of the attributes to it.

Each event class has a set of attributes whose values are necessary at the moment of events
management, for example, the source that was affected in a QModelChange event. With illustration
purposes we show the detailed specification of two of the event classes in Table 5.3, while the
complete specification can be read in Appendix III.

Adriana Marotta

97

QModelChange TGraphChange QReqChange

CertaintyChange QSatisfactionChange

ProbabilityDissatisfaction QValuesDissatisfaction

Create (att-vals)

Create (att-vals)

Create (att-vals)
Create (att-vals)

Create (att-vals)

Create (att-vals)

Create (att-vals) Create (att-vals)

LEVEL-1 EVENTS

LEVEL-2 EVENTS

LEVEL-3 EVENTS

Figure 5.5: Interaction of events

ClassName Attribute Attribute Description

QModelChange QGraph Quality Graph where the change occurred.

QFactor Quality factor corresponding to the changed
model.

SourceName Name of the source whose quality model has
changed.

ChangedIndicators Set of model indicators (min, expectation, etc.)
that changed.

Timestamp Date-time of the change.

CertaintyChange QGraph Quality Graph where the change occurred.

QFactor Quality factor affected by the change.

OriginalChange Change that generated the level-1 event.

OriginalSource Source where the change occurred

GraphChange Kind of change that occurred on the
transformation graph.

ChangedActivity Graph activity where a change occurred.

ChangedReq Requirement that has changed.

Timestamp Date-time of the original change.

Table 5.3: Specification of some events

The idea is that events from a level pass information to events from the following level, such that at
the end of the chain, if a level-3 event is created, it is able to provide information about the occurred
change.

Quality Changes Detection

98

As can be seen in Table 5.3, the attributes of event CertaintyChange cover the different possibilities
of changes that may occurred when level-1 event was generated. Therefore, some of these attributes
will have the NULL value. If the original change was a source quality model change, attributes
GraphChange, ActivityChange and ChangedReq are NULL, if it was a transformation graph
change, OriginalSource and ChangedReq are NULL, and if it was a user quality requirement change
OriginalSource, GraphChange and ActivityChange are NULL.

4.3 Generation and capture of QMS events

Events that are internal to the QMS are generated by different mechanisms.

Each generated event is immediately captured and treated by the Change Detection Rules, which
are presented in the following section.

Level-1 events are related to changes on objects (models, graph, requirements), and they are
generated by the mechanisms that manage them. QModelChange events are generated by triggers of
the repository that stores the sources quality models. TGraphChange and QReqChange events are
generated by triggers of the database that stores the Quality Graph. In the following we describe the
generation of these events:

QModelChange events

Let ind1 be a 5-uple indicators / ind1 = < minimum1, maximum1, expectation1, mode1, timestamp1 >
of a source quality models history, where timestamp1 is the most recent timestamp of the
distributions set.

A QModelChange event is generated when:

- A new 5-uple indicators, ind2 = < minimum2, maximum2, expectation2, mode2, timestamp2 > is
added to the distributions set, AND

- minimum2 ≠ minimum1 OR maximum2 ≠ maximum1 OR expectation2 ≠ expectation1 OR mode2 ≠
mode1

TGraphChange events

Given a quality graph G, an event of this class is generated when a change occurs over one of the
following elements:

- the set of activity nodes of G
- the set of edges of G
- a property of type “feature” associated to an activity node
- a property of type “feature” associated to an edge

Note: An event of this class is generated for each quality factor managed in the system.

QReqChange events

Given a quality graph G and its set of target nodes V, let R be the set of all user quality
requirements, which are associated to different target nodes of V.

A QReqChange event is generated when one of the following occurs:

- in a requirement r ∈ R, r = <name, qfactor, type, value, prob>, value changes or prob changes
- a new requirement is added to R
- a requirement r ∈ R is eliminated

Adriana Marotta

99

Level-2 and level-3 events are generated by the Change Detection Rules. Level-3 events may also
be generated by an execution of the complete DIS quality verification, presented in Section 2.

5. Identification of Relevant Changes

The management of the previously presented events allows the Change Detection module of the
QMS to identify the relevant changes and to notify them to Quality Repair module, so that it takes
the corresponding actions.

We process the events through a set of ECA rules, called Change Detection Rules, which are
executed when there is a change, they discard the changes that do not affect negatively the DIS, and
they notify the relevant changes. These rules process events that are generated at the QMS. They
execute different verifications, according to the type of requirements that are affected by the
change. Generalizing, some rules check if the occurred change affects existing quality requirements,
while other ones check if certain set of quality requirements are being satisfied.

5.1 Change Detection Rules

We use Event Condition Action rules [Elmasri+00] as a tool for specification of events
management.

The rules for level-1 events may be triggered if there is a change on a source quality model, on the
transformation graph or on the user quality requirements. These rules, considering the occurred
change and the user quality requirements that are affected by the change, make other rules be
executed through the creation of level-2 events. The rules for level-2 events determine if there are
user quality requirements that are not satisfied by the DIS and in that case generate the
corresponding level-3 events.

We define a set of rules for each class of event. The following is a general description of the rules.

o Rules for QModelChange events.
We define a rule for each possible type of user quality requirement. In the cases of types
different from “probability”, each rule verifies if the source model change has modified an
indicator that is involved by a requirement of the considered type. If this condition is verified,
it creates an event of class QSatisfactionChange, passing to it all the requirements of the
considered type that involves the changed source. In the case of “probability” type, the rule
creates an event of class CertaintyChange passing to it all the existing requirements of
“probability” type.

o Rules for TGraphChange events.
We define a rule for each possible type of user quality requirement. Each rule verifies if it
exists a requirement of the considered type, and in this case it creates an event of class
QSatisfactionChange or CertaintyChange, according to the requirement type, passing to it, all
the existing requirements of the considered type.

o Rules for QReqChange events.
We define a rule for each possible type of user quality requirement. Each rule verifies if the
changed-requirement’s type is the considered in the rule, and in this case it creates an event of
class QSatisfactionChange or CertaintyChange, according to the requirement type, passing to
it, all the existing requirements of the considered type.

o Rule for QSatisfactionChange events.
It verifies if the accepted configurations that correspond to the received (through the event) set

Quality Changes Detection

100

of user quality requirements are verified by the sources. If this condition is not verified it
creates an event of class QValuesDissatisfaction.

o Rule for CertaintyChange events.
It verifies if the DIS Quality Certainty is greater or equal to all the probabilities of the received
(through the event) user quality requirements. If this condition is not verified it creates an event
of class ProbabilityDissatisfaction.

In the following we give a high-level specification of the rules in order to state what they are
intended to do.

Change Detection Rules

Rules for QModelChange events:

EVENT: QModelChange
CONDITION : ∃ r, quality requirement that involves the changed source AND
 r is of type “minimum” AND
 source minimum has changed
ACTION : Create event QSatisfactionChange, with set of requirements of type “minimum” that

involves the changed source.

EVENT: QModelChange
CONDITION : ∃ r, quality requirement that involves the changed source AND
 r is of type “maximum” AND
 source maximum has changed
ACTION : Create event QSatisfactionChange, with set of requirements of type “maximum” that

involves the changed source.

EVENT: QModelChange
CONDITION : ∃ r, quality requirement that involves the changed source AND
 r is of type “average” AND
 source expectation has changed
ACTION : Create event QSatisfactionChange, with set of requirements of type “average” that

involves the changed source.

EVENT: QModelChange
CONDITION : ∃ r, quality requirement that involves the changed source AND
 r is of type “frequency” AND
 source mode has changed
ACTION : Create event QSatisfactionChange, with set of requirements of type “frequency” that

involves the changed source.

EVENT: QModelChange
CONDITION : ∃ r, quality requirement of type “probability”
ACTION : Create event CertaintyChange, with set of requirements of type “probability”.

Adriana Marotta

101

Rules for TGraphChange events:

EVENT: TGraphChange
CONDITION : ∃ r, quality requirement of type “minimum”
ACTION : Create event QSatisfactionChange, with set of requirements of type “minimum”.

EVENT: TGraphChange
CONDITION : ∃ r, quality requirement of type “maximum”
ACTION : Create event QSatisfactionChange, with set of requirements of type “maximum”.

EVENT: TGraphChange
CONDITION : ∃ r, quality requirement of type “average”
ACTION : Create event QSatisfactionChange, with set of requirements of type “average”.

EVENT: TGraphChange
CONDITION : ∃ r, quality requirement of type “frequency”
ACTION : Create event QSatisfactionChange, with set of requirements of type “frequency”.

EVENT: TGraphChange
CONDITION : ∃ r, quality requirement of type “probability”
ACTION : Create event CertaintyChange, with set of requirements of type “probability”.

Rules for QReqChange events:

EVENT: QReqChange
CONDITION : Affected requirement is of type “minimum”
ACTION : Create event QSatisfactionChange, with set of requirements of type “minimum”

EVENT: QReqChange
CONDITION : Affected requirement is of type “maximum”
ACTION : Create event QSatisfactionChange, with set of requirements of type “maximum”

EVENT: QReqChange
CONDITION : Affected requirement is of type “average”
ACTION : Create event QSatisfactionChange, with set of requirements of type “average”.

EVENT: QReqChange
CONDITION : Affected requirement is of type “frequency”
ACTION : Create event QSatisfactionChange, with set of requirements of type “frequency”.

EVENT: QReqChange
CONDITION : Affected requirement is of type “probability”
ACTION : Create event CertaintyChange, with set of requirements of type “probability”.

Quality Changes Detection

102

Rule for QSatisfactionChange events:

EVENT: QSatisfactionChange
CONDITION : Accepted Configurations for the received quality requirements are not satisfied by the

sources
ACTION : Create event QvaluesDissatisfaction.

Rule for CertaintyChange events:

EVENT: CertaintyChange
CONDITION : The probability of one of the received quality requirements is greater than the DIS

Quality Certainty
ACTION : Create event ProbabilityDissatisfaction.

Through the application of these rules we filter changes that are not relevant to the system. For
instance, suppose that the quality requirements are only on maximum values, and the source quality
model changes, but the maximum value of the source continues being the same. In this case none of
the rules are applied and therefore the change is ignored.

There are two filters, which are applied between the events’ levels. The first one is between level-1
and level-2 events and filters the changes that do not affect the aspects of the quality considered in
the requirements. The second one is between level-2 and level-3 events and filters the changes that
do not generate the dissatisfaction of the quality requirements. (See Figure 5.6)

Only if the change leads to the dissatisfaction of a quality requirement, a non-satisfaction event will
finally be generated and passed as a notification to another layer of change management. Besides,
this notification event will provide a considerable amount of information about the change that is
useful for taking the appropriate decisions and actions.

QModelChange TGraphChange QReqChange

CertaintyChange QSatisfactionChange

ProbabilityDissatisfaction QValuesDissatisfaction

Create (att-vals)

Create (att-vals)

Create (att-vals)
Create (att-vals)

Create (att-vals)

Create (att-vals)

Create (att-vals) Create (att-vals)

LEVEL-1 EVENTS

LEVEL-2 EVENTS

LEVEL-3 EVENTS

FILTER 1

FILTER 2

Figure 5.6: Filtering of changes

Adriana Marotta

103

5.2 Specification of Change Detection Rules

In order to show how the rules are specified, we present, as an example, some of them. The
complete specification can be read in Appendix III.

Change Detection Rules

EVENT: e1: QModelChange
CONDITION : SelectReqs (‘average’,
 GetCorrespondingRequirements(e1.QGraph, e1.QFactor, e1.SourceName)) ≠ ∅
 AND ‘expectation’ ∈ e1.ChangedIndicators
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = SelectReqs (‘average’,
 GetCorrespondingRequirements (e1.QGraph, e1.QFactor, e1.SourceName))
 - OriginalChange = ‘QModelChange’
 - OriginalSource = e1.SourceName
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

EVENT: e1: TGraphChange
CONDITION : Get_Requirements (e1.QGraph, e1.QFactor, ‘probability’) ≠ ∅
ACTION : Create event e2: CertaintyChange, attribute values:
 - QGraph = e1.QGraph
 - QFactor = e1.QFactor
 - OriginalChange = ‘TGraphChange’
 - OriginalSource = NULL
 - GraphChange = e1.Type
 - ChangedActivity = e1.ActivityName
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

EVENT: e1: QReqChange
CONDITION : GetType(e1.ChangedReq) = ‘maximum’
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = Get_Requirements (e1.QGraph,
 GetQFactor(e1.ChangedReq), ‘maximum’)
 - OriginalChange = ‘QReqChange’
 - OriginalSource = NULL
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = e1.ChangedReq
 - Timestamp = e1.Timestamp

EVENT: e1: CertaintyChange
CONDITION : NOT Quality_Certainty_Verification (e1.QGraph, e1.QFactor)
ACTION : Create event e2: ProbabilityDissatisfaction, attribute values:
 - QGraph = e1.QGraph
 - QFactor = e1.QFactor

Quality Changes Detection

104

 - OriginalChange = e1. OriginalChange
 - OriginalSource = e1. OriginalSource
 - GraphChange = e1. GraphChange
 - ChangedActivity = e1. ActivityChange
 - ChangedReq = e1. ChangedReq
 - Timestamp = e1.Timestamp

Description of used auxiliary functions:

Function SelectReqs selects from a set of user quality requirements, those whose type is the given
one.

Function GetCorrespondingRequirements obtains for a source, the quality requirements of certain
quality factor, that involve it.

Function Get_Requirements obtains, given a quality graph and a quality factor, all the requirements
of certain type (which are associated to data targets of the given graph).

Function GetType returns the type of a user quality requirement.

Function GetQFactor returns the quality factor of a user quality requirement.

Function Quality_Certainty_Verification receives a quality graph and a quality factor, and verifies
if the DIS Quality Certainty satisfies the user quality requirements (specified in Section 2).

6. Example

In this section we present an example that shows a possible scenario in a DIS, and how two
different situations of quality change are detected.

This example not only covers problems of this chapter but also of Chapter 4, since it is intended to
show the complete situation and resolution. This example scenario is based on one presented in
[Peralta-06] and parts of it have already been presented in some examples of Chapter 4.

6.1 The DIS

Consider a DIS built for retrieving meteorological information, whose quality graph is illustrated in
Figure 5.7. Quality factor freshness is evaluated. There are three source relations: S1 with real time
satellite meteorological predictions, S2 which is a dissemination database updated once a day and S3
with information about climatic sensors which is published once an hour. S1 is updated irregularly,
S2 is updated periodically, each 24 hours, and S3 is updated periodically with period 1 hour.

The goal of the system is to provide fresh meteorological information to solve three types of
queries: T1 (historical information about climate alerts), T2 (aggregated data about predictions) and
T3 (detailed data about climate measurements). Users require that freshness of retrieved data does
not exceed 72, 48 and 2 hours respectively. Additionally, they require that the average values
obtained in each query are: 60, 42 and 2 hours respectively.

The DIS is composed of nine activities that process the information performing the extraction,
filtering, integration and aggregation of data. Figure 5.7 shows the quality graph; processing costs
and synchronization delays are expressed in hours. Activity A5 executes every 12 hours,
materializing the produced data; for that reason, synchronization delay with activity A6 is 12 hours.
Analogously, activity A6 materializes data every 7 hours. The other activities execute coordinated,

Adriana Marotta

105

one immediately after its predecessor (delay 0). Activities A7, A8 and A9 execute for each user
query and activities A1, A2, A3 (extraction activities) and A4, execute when successor activities
ask them for data.

A 1 A 3

A 5

A 6

A 4

A 8

delay =0

cost =2 cost =1

cost =2 cost =1

cost =2

cost =0

delay =0

delay =0 delay =12

delay =7

S 1 S 2

T 1

S 3

delay =0 delay =0 delay =0

delay =0

T 2 T 3

maxfr =72, avgfr =60

A 2

A 7 A 9

delay =0

delay =0

delay =0 delay =0

delay =7

cost =0 cost =1

cost =1

maxfr =48, avgfr =42 maxfr =2, avgfr =2

Figure 5.7: DIS Quality Graph

6.2 Sources’ Models

We build the quality behavior models of the sources, using as discretization unit: 1 hour.

Source S1:

Since S1 is updated irregularly, we must estimate the probability distribution from the
SourceDataUpdate events repository (as it was done in Chapter 4, Example 4.2). Table 5.4 is a
portion of the events repository, where Date-time is the date and time in the format “dd/mm-hh”,
where time is represented in hours.

Source Date-time

S1 2/11-2
S1 2/11-3
S1 2/11-5
S1 2/11-8
S1 2/11-9
S1 2/11-10
S1 2/11-12
S1 2/11-14

Quality Changes Detection

106

S1 2/11-18
S1 2/11-21
S1 2/11-22

Table 5.4: SourceDataUpdate events repository

From the events repository we calculate the freshness that held at each time point (see Table 5.5),
considering the first time point as 2/11-2, the first timestamp of the events repository, and a time
step of 1 hour.

Source time point Freshness

S1 2/11-2 0
S1 2/11-3 0
S1 2/11-4 1
S1 2/11-5 0
S1 2/11-6 1
S1 2/11-7 2
S1 2/11-8 0
S1 2/11-9 0
S1 2/11-10 0
S1 2/11-11 1
S1 2/11-12 0
S1 2/11-13 1
S1 2/11-14 0
S1 2/11-15 1
S1 2/11-16 2
S1 2/11-17 3
S1 2/11-18 0
S1 2/11-19 1
S1 2/11-20 2
S1 2/11-21 0
S1 2/11-22 0

Table 5.5: Calculated freshness

Then we calculate the relative frequencies of the freshness values (see Table 5.6). For each
freshness value, the relative frequency is the number of occurrences of the value divided by 21,
which is the quantity of hours chosen as our sample.

Source Freshness value Relative frequency

S1 0 11/21
S1 1 6/21
S1 2 3/21
S1 3 1/21

Table 5.6: Relative frequencies of freshness values

Let X be the RV that represents the freshness of source S1. The following is the probability
distribution of X:

Adriana Marotta

107

P(X=0) = 0.52
P(X=1) = 0.28
P(X=2) = 0.14
P(X=3) = 0.04

In order to add the model to the source information of the QMS, we follow these steps:

- We create the source behavior model:

<freshness, S1, distribution>, where

distribution = {<0, 0.52>, <1, 0.28>, <2, 0.14>, <3, 0.04>}

- We add this model, with name “fresh-meteo”, such that:

ρV (S1) (SourceQualityBehaviorModel) (“fresh-meteo”) = <freshness, S1, distribution>

- We calculate indicators:

minimum = 0
maximum = 3
expectation = Σx xp(x) = 0*0.52 + 1*0.28 + 2*0.14 + 3*0.04 = 0.68
mode = 0

- We modify the models history of the source S1 and quality factor freshness, adding the new
distribution

<0, 3, 0.68, 0, 2/11-22>, where 2/11-22 is the current date-time.

Source S2:

This source is updated each 24 hours.

- We create the source behavior model:

<freshness, S2, distribution>, where

distribution = {<0, 0.04>, <1, 0.04>, <2, 0.04>, <3, 0.04>, …, <23, 0.04>}

- We add this model, with name “fresh-meteo”, such that:

ρV (S2) (SourceQualityBehaviorModel) (“fresh-meteo”) = <freshness, S2, distribution>

- We calculate indicators:

minimum = 0
maximum = 23
expectation = Σx xp(x) = 11

- We modify the models history of the source S2 and quality factor freshness, adding the new
distribution

<0, 23, 11, NULL, current-date-time>

Source S3:

This source is updated each hour. As our precision is 1 hour, we consider this source as always
fresh.

Quality Changes Detection

108

- We create the source behavior model:

<freshness, S3, distribution>, where

distribution = {<0, 1>}

- We add this model, with name “fresh-meteo”, such that:

ρV (S3) (SourceQualityBehaviorModel) (“fresh-meteo”) = <freshness, S3, distribution>

- We calculate indicators:

minimum = 0
maximum = 0
expectation = Σx xp(x) = 0
mode = 0

- We modify the models history of the source S2 and quality factor freshness, adding the new
distribution

<0, 0, 0, 0, current-date-time>

6.3 User quality requirements

We assign names to the requirements: Rmax1, Ravg1, Rmax2, Ravg2, Rmax3, Ravg3, such that:

ρV (T1) (UserQualityRequirement) (Rmax1) = < freshness, maximum, 72, NULL >

ρV (T2) (UserQualityRequirement) (Rmax2) = < freshness, maximum, 48, NULL >

ρV (T3) (UserQualityRequirement) (Rmax3) = < freshness, maximum, 2, NULL >

ρV (T1) (UserQualityRequirement) (Ravg1) = < freshness, average, 60, NULL >

ρV (T2) (UserQualityRequirement) (Ravg2) = < freshness, average, 42, NULL >

ρV (T3) (UserQualityRequirement) (Ravg3) = < freshness, average, 2, NULL >

6.4 Initial DIS Quality Verification

We apply the algorithm specified in Section 2.

1) We verify the quality satisfaction for “maximum” user requirements:

- Requirements = { <T1, Rmax1>,
 <T2, Rmax2>,

 <T3, Rmax3> }

- Accepted Configurations, named: “ac_maximum”:

gp(AcceptedConfigurations) (ac_maximum) = < {<T1, Rmax1>, <T2, Rmax2>, <T3, Rmax3>},
 {<restriction1, restriction2, restriction3>} > , where:

restriction1 = <freshness, S1, “≤”, 23>
restriction2 = <freshness, S2, “≤”, 24>
restriction3 = <freshness, S3, “≤”, 0>

The calculation of accepted configurations is done through the algorithm of Chapter 4, Section
4.1. We briefly show how it is done.

Adriana Marotta

109

For the propagation we use the following formula, for an activity A:

Freshness(A) = Max (Freshness(A1) + Delay(A1,A), …, Freshness(An) + Delay(An,A)) + Cost(A),
where A1, …, An are A predecessors

For example, for T1 and requirement of maximum, the propagation is done as follows:

fr(T1) ≤ 72
fr(T1) = fr(A7) = fr(A6) + delay(A6, A7) + cost(A7) = fr(A6) + 7 + 1 = fr(A6) + 8
fr(A6) = Max (fr(A5) + delay(A5, A6), fr(A4) + delay(A4, A6)) + cost(A6) =

Max (fr(A5) + 12, fr(A4)) + 2
fr(A5) = Max (fr(A1) + delay(A1, A5), fr(A2) + delay(A2, A5)) + cost(A5) =

Max (fr(A1), fr(A2)) + 2
fr(A4) = fr(A3) + delay(A3, A4) + cost(A4) = fr(A3) +1
fr(A1) = fr(S1) + delay(S1, A1) + cost(A1) = fr(S1) + 2
fr(A2) = fr(S2) + delay(S2, A2) + cost(A2) = fr(S2) + 1
fr(A3) = fr(S3) + delay(S3, A3) + cost(A3) = fr(S3) + 1

fr(T1) = Max [Max (fr(S1) + 2, fr(S2) + 1) + 2 + 12, fr(S3) + 1 +1] + 2 + 8
Max [Max (fr(S1) + 2, fr(S2) + 1) + 14, fr(S3) + 2] + 10 ≤ 72
Max (fr(S1) + 2, fr(S2) + 1) + 14 + 10 ≤ 72
Max (fr(S1) + 2, fr(S2) + 1) ≤ 48
fr(S1) ≤≤≤≤ 46
fr(S2) ≤≤≤≤ 47
fr(S3) + 2 + 10 ≤ 72
fr(S3) ≤≤≤≤ 60

Table 5.7 shows the propagated values form the requirements to the sources. For each source and
each data target the table presents the propagated value for the requirement of maximum.

source requirement maximum

S1 T1 46
S1 T2 23
S2 T1 47
S2 T2 24
S3 T1 60
S3 T2 37
S3 T3 0

Table 5.7: Propagated values for each user quality requirement

Finally, the smallest value is selected for the restriction of each source.

- We verify the quality satisfaction of the requirements of maximum (algorithm specified in Chapter
4, Section 4.3):

For each source restriction we verify if it is satisfied. Maxima of the sources models were obtained
in Section 6.2.

restriction1 = <freshness, S1, “≤”, 23>

Quality Changes Detection

110

maximum of S1 = 3

3 ≤≤≤≤ 23, verifies

Analogously with restriction2 and restriction3:

23 ≤≤≤≤ 24, verifies
0 ≤≤≤≤ 0, verifies

Maximum requirements satisfaction = TRUE

2) We verify the quality satisfaction for “average” user requirements:

- Requirements = { <T1, Ravg1>,
<T2, Ravg2>,
<T3, Ravg3> }

- Accepted Configurations, named: “ac_average”, are calculated analogously to the ones for
requirements of maximum.

gp(AcceptedConfigurations) (ac_average) = < {<T1, Ravg1>, <T2, Ravg2>, <T3,
Ravg3>},

 {<restriction1, restriction2, restriction3>} > , where:
restriction1 = <freshness, S1, “≤”, 17>
restriction2 = <freshness, S2, “≤”, 18>
restriction3 = <freshness, S3, “≤”, 0>

- We verify the quality satisfaction of the requirements of average:

For each source restriction we verify if it is satisfied. Expectations of the sources models were
obtained in Section 6.2.

restriction1 = <freshness, S1, “≤”, 17>
expectation of S1 = 0.68

0.68 ≤≤≤≤ 17, verifies

Analogously with restriction2 and restriction3:

11 ≤≤≤≤ 18, verifies
0 ≤≤≤≤ 0, verifies

Average requirements satisfaction = TRUE

We conclude that DIS quality is being verified.

6.5 Detection of First Change

Occurred change:

The property cost of the activity node A2 has changed (see Figure 5.8).

Adriana Marotta

111

Before: ρV(A2) (Cost) (“cost”) = 1
Now: ρV(A2) (Cost) (“cost”) = 4

A 1 A 3

A 5

A 6

A 4

A 8

delay =0

cost =2 cost =1

cost =2 cost =1

cost =2

cost =0

delay =0

delay =0 delay =12

delay =7

S 1 S 2

T 1

S 3

delay =0 delay =0 delay =0

delay =0

T 2 T 3

maxfr =72, avgfr =60

A 2

A 7 A 9

delay =0

delay =0

delay =0 delay =0

delay =7

cost =0 cost =1

cost =1

maxfr =48, avgfr =42 maxfr =2, avgfr =2

4

Figure 5.8: Transformation graph change

Event TGraphChange is created, with attributes:

QGraph = “MeteoGraph”
QFactor = freshness
Type = activity-cost
ActivityName = A2
Timestamp = 5/11-3

Detection Rules application:

The following rule is applied:

EVENT : e1: TGraphChange
CONDITION : Get_Requirements (e1.QGraph, e1.QFactor, ‘maximum’) ≠ ∅
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements =Get_Requirements (e1.QGraph, e1.QFactor, ‘maximum’)
 - OriginalChange = “TGraphChange”
 - OriginalSource = NULL

Quality Changes Detection

112

 - GraphChange = e1.Type
 - ChangedActivity = e1.ActivityName
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

Event QSatisfactionChange is created, with attributes:

QGraph = “MeteoGraph”
Requirements = { <T1, Rmax1>, <T2, Rmax2>, <T3, Rmax3> }
OriginalChange = “TGraphChange”
OriginalSource = NULL
GraphChange = activity-cost
ChangedActivity = A2
ChangedReq = NULL
Timestamp = 5/11-3

Is the following rule applied ?

EVENT : e1: QSatisfactionChange
CONDITION : NOT QualitySatisfaction (e1.QGraph,

Accepted_Conf_Calculation (e1.QGraph,
GetQFactor(e1.Requirements), e1.Requirements),

 GetQFactor(e1.Requirements),
 GetType(e1.Requirements))

ACTION : Create event e2: QValuesDissatisfaction, attribute values:
 - QGraph = e1.QGraph
 - Requirements = e1.Requirements
 - OriginalChange = e1. OriginalChange
 - OriginalSource = e1. OriginalSource
 - GraphChange = e1. GraphChange
 - ChangedActivity = e1. ChangedActivity
 - ChangedReq = e1. ChangedReq
 - Timestamp = e1.Timestamp

The condition is verified:

- Requirements = { <T1, Rmax1>, <T2, Rmax2>, <T3, Rmax3> }
- Accepted Configurations, named: “ac_maximum”:

gp(AcceptedConfigurations) (ac_maximum) = < {<T1, Rmax1>, <T2, Rmax2>, <T3, Rmax3>},
 {<restriction1, restriction2, restriction3>} > , where:

restriction1 = <freshness, S1, “≤”, 23>
restriction2 = <freshness, S2, “≤”, 21>
restriction3 = <freshness, S3, “≤”, 0>

The restriction over S2 (restriction2) has changed.

- QualitySatisfaction:

The sources models have not changed, S2 maximum = 23, we verify S2 satisfaction:

23 ≤≤≤≤ 21, does not verify

QualitySatisfaction = FALSE

Adriana Marotta

113

The condition of the rule is satisfied.

Event QValuesDissatisfaction is created, with attributes:

QGraph = “MeteoGraph”
Requirements = { <T1, Rmax1>, <T2, Rmax2>, <T3, Rmax3> }
OriginalChange = “TGraphChange”
OriginalSource = NULL
GraphChange = activity-cost
ChangedActivity = A2
ChangedReq = NULL
Timestamp = 5/11-3

The following rule is also applied:

EVENT : e1: TGraphChange
CONDITION : Get_Requirements (e1.QGraph, e1.QFactor, ‘average’) ≠ ∅
ACTION : Create event e2: QSatisfactionChange, attribute values:

 - QGraph = e1.QGraph
 - Requirements = Get_Requirements (e1.QGraph, e1.QFactor, ‘average’)
 - OriginalChange = ‘TGraphChange’
 - OriginalSource = NULL
 - GraphChange = e1.Type
 - ChangedActivity = e1.ActivityName
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

Event QSatisfactionChange is created, with attributes:

QGraph = “MeteoGraph”
Requirements = { <T1, Ravg1>, <T2, Ravg2>, <T3, Ravg3> }
OriginalChange = “TGraphChange”
OriginalSource = NULL
GraphChange = activity-cost
ChangedActivity = A2
ChangedReq = NULL
Timestamp = 5/11-3

The condition of the rule that corresponds to this event is verified:

- Analogously to the case for “maximum” requirements, accepted configurations have changed.

gp(AcceptedConfigurations) (ac_average) = < {<T1, Ravg1>, <T2, Ravg2>, <T3, Ravg3>},
 {<restriction1, restriction2, restriction3>} > , where:

restriction1 = <freshness, S1, “≤”, 17>
restriction2 = <freshness, S2, “≤”, 15>
restriction3 = <freshness, S3, “≤”, 0>

The restriction over S2 (restriction2) has changed.

Quality Changes Detection

114

- QualitySatisfaction:

The sources models have not changed, S2 average = 11, we verify S2 satisfaction:

11 ≤≤≤≤ 15, verifies

QualitySatisfaction = TRUE

No more rules are applied.

In summary, one relevant change was detected, and event QValuesDissatisfaction was created with
all the relative information.

6.6 Detection of Second Change

Occurred change:

The source quality model of S1 is re-calculated from the repository data (which contains source
data updates). Therefore the new model is stored as the current one:

ρV (S1) (SourceQualityBehaviorModel) (“fresh-meteo”) = <freshness, S1, distribution>, where

distribution = {<0, 0.25>, <1, 0.12>, <2, 0.07>, <3, 0.02>, …, <24, 0.02>}

The indicators are calculated:

minimum = 0
maximum = 24
expectation = Σx xp(x) = 6
mode = 0

The models history of the source S1 and freshness is modified, the new distribution, <0, 24, 6, 0,
5/11-3> is added, where 5/11-3 is the current date-time.

Now:

ρV (S1) (SourceQualityModelHistory) (“fresh-meteo”) = <freshness, S1, distributions>, where

distributions = { <0, 24, 6, 0, 5/11-3>, <0, 3, 0.68, 0, 2/11-22> }

As a consequence of the fact that there are two indicators (maximum and expectation) that have
changed their values, event QModelChange is created, with attributes:

QGraph = “MeteoGraph”
QFactor = freshness
SourceName = S1
ChangedIndicators = {maximum, expectation}
Timestamp = 5/11-3

Adriana Marotta

115

Detection Rules application:

The following rule is applied, since the condition is satisfied:

EVENT : e1: QModelChange
CONDITION : SelectReqs (‘maximum’,

 GetCorrespondingRequirements (e1.QGraph, e1.QFactor, e1.SourceName)) ≠ ∅
 AND ‘maximum’ ∈ e1.ChangedIndicators

ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = SelectReqs (‘maximum’,
 GetCorrespondingRequirements(e1.QGraph, e1.QFactor,

e1.SourceName))
 - OriginalChange = ‘QModelChange’
 - OriginalSource = e1.SourceName
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

Event QSatisfactionChange is created, with attributes:

QGraph = “MeteoGraph”
Requirements = { <T1, Rmax1>, <T2, Rmax2> } // Note that Rmax3 does not involve S1.
OriginalChange = “QModelChange”
OriginalSource = S1
GraphChange = NULL
ChangedActivity = NULL
ChangedReq = NULL
Timestamp = 5/11-3

Is the following rule applied ?

EVENT : e1: QSatisfactionChange
CONDITION : NOT QualitySatisfaction (e1.QGraph,

Accepted_Conf_Calculation (e1.QGraph,
GetQFactor(e1.Requirements), e1.Requirements),

 GetQFactor(e1.Requirements),
 GetType(e1.Requirements))

ACTION : Create event e2: QValuesDissatisfaction, attribute values:
 - QGraph = e1.QGraph
 - Requirements = e1.Requirements
 - OriginalChange = e1. OriginalChange
 - OriginalSource = e1. OriginalSource
 - GraphChange = e1. GraphChange
 - ChangedActivity = e1. ChangedActivity
 - ChangedReq = e1. ChangedReq
 - Timestamp = e1.Timestamp

Quality Changes Detection

116

The condition is verified:

- Requirements = { <T1, Rmax1>, <T2, Rmax2> }
- Accepted Configurations, named: “ac_maximum”:

gp(AcceptedConfigurations) (ac_maximum) = < {<T1, Rmax1>, <T2, Rmax2>},
 {<restriction1, restriction2>} > , where:

restriction1 = <freshness, S1, “≤”, 23>
restriction2 = <freshness, S2, “≤”, 24>

The restrictions over S1 and S2 have not changed.

- QualitySatisfaction:

S1 quality model has changed, S1 maximum = 24, we verify S1 satisfaction:

24 ≤≤≤≤ 23, does not verify

QualitySatisfaction = FALSE

The condition of the rule is satisfied.

Event QValuesDissatisfaction is created, with attributes:

QGraph = “MeteoGraph”
Requirements = { <T1, Rmax1>, <T2, Rmax2> }
OriginalChange = “QModelChange”
OriginalSource = S1
GraphChange = NULL
ActivityChange = NULL
ChangedReq = NULL
Timestamp = 5/11-3

The following rule is also applied:

EVENT : e1: QModelChange
CONDITION : SelectReqs (‘average’,

 GetCorrespondingRequirements (e1.QGraph, e1.QFactor, e1.SourceName)) ≠ ∅
 AND ‘expectation’ ∈ e1.ChangedIndicators

ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = SelectReqs (‘average’,
 GetCorrespondingRequirements (e1.QGraph, e1.QFactor,

e1.SourceName))
 - OriginalChange = ‘QModelChange’
 - OriginalSource = e1.SourceName
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

Event QSatisfactionChange is created, with attributes:

Adriana Marotta

117

QGraph = “MeteoGraph”
Requirements = { <T1, Ravg1>, <T2, Ravg2> } // Note that Ravg3 does not involve S1.
OriginalChange = “QModelChange”
OriginalSource = S1
GraphChange = NULL
ChangedActivity = NULL
ChangedReq = NULL
Timestamp = 5/11-3

The condition of the rule that corresponds to this event is verified:

- Analogously to the case for “maximum” requirements, the restrictions over S1 and S2 have not
changed. Restriction over S1: < freshness, S1, “≤”, 17>

- QualitySatisfaction:

S1 quality model has changed, S1 expectation = 6, we verify S1 satisfaction:

6 ≤≤≤≤ 17, verifies

QualitySatisfaction = TRUE

No more rules are applied.

In summary, one relevant change was detected, and event QValuesDissatisfaction was created with
all the relative information.

6.7 Example Conclusion

In this example we present a DIS that provides meteorological information, which is constituted by
3 data sources, a transformation graph, and 3 data targets. It has some freshness requirements
associated to its data targets; each data target has one “maximum” requirement and one “average”
requirement.

We first calculate the sources quality models from the information we have about the sources
updates (applying the techniques presented in Chapter 4). Source S1’s model is calculated obtaining
the probability distribution through the calculation of relative frequencies. Sources S2 and S3 are
updated periodically, so their quality models are calculated from the respective update periods.

Then we verify the quality of the DIS in the initial state (applying mechanism presented in Section
2). The quality is correct, since all the quality requirements are being satisfied.

We then study two different quality changes that may occur, and how the QMS would behave
applying the proposed change-detection mechanism, in each alternative case.

The first considered change is a change in the cost of an activity of the transformation graph. This
change causes the creation of an event TGraphChange. A rule for this event is applied, which
considers the “maximum” requirements, and an event QSatisfactionChange is created. A rule for
this event is applied and an event QValuesDissatisfaction is created. This event is the alert that
notifies that a relevant quality change has occurred. The event contains information about the
change, such as the graph activity that has changed and the requirements that are not being satisfied.
The same original change also causes the application of another rule that considers the “average”
requirements, generating the creation of another QSatisfactionChange event. However, this event
has no consequences. Figure 5.9 shows the flow of the generated events.

Quality Changes Detection

118

The second considered change is a change in the quality behavior model of source S1. This change
causes the creation of an event QModelChange. Analogously to the first change, the change is
detected as relevant, as a consequence of the non satisfaction of “maximum” requirements. Figure
5.9 shows the flow of the generated events.

In summary, in the first change case, a notification of relevant change is generated, informing that
there was a change in the cost of the activity A2 of the transformation graph, that the requirements
of type “maximum” are not satisfied, and that the change occurred on 5/11, at 3. In the second
change case, a notification of relevant change is generated, informing that there was a change in the
quality model of source S1, that the “maximum” requirements of target T1 and target T2 are not
satisfied, and that the change occurred on 5/11, at 3.

QModelChange TGraphChange QReqChange

CertaintyChange QSatisfactionChange

ProbabilityInsatisfaction QValuesInsatisfaction

Create (att-vals)

Create (att-vals)

Create (att-vals)
Create (att-vals)

Create (att-vals)

Create (att-vals)

Create (att-vals) Create (att-vals)

LEVEL-1 EVENTS

LEVEL-2 EVENTS

LEVEL-3 EVENTS

Figure 5.9: Events flow

7. Summary

This chapter focuses on the problem of detecting changes that affect the quality of the DIS.

The considered changes are changes on sources quality, changes on the DIS transformation process
and changes on user quality requirements.

We propose a mechanism that allows the QMS to detect that a change has occurred. In the case of
source quality changes we assume that certain information about source updates can be obtained,
either through an alert provided by the source itself, or analyzing the extracted information. In the
case of changes on the transformation or on user quality requirements, we assume that events are
automatically triggered from updates on the system metadata.

Once the QMS realizes that a change has occurred, the proposed mechanism deals with the
information about the change and about the DIS current state, in order to determine if the change is
relevant to the system quality or not. In order to achieve this, a set of events are defined and
managed, such that each change passes through two filters, which decide if the change is notified to
the quality repair module or it is discarded. The events management is implemented through ECA
rules, which we call Change Detection Rules.

Adriana Marotta

119

Different kinds of events are defined and managed: (i) events that are generated when a change has
occurred on a source, (ii) events that are generated when a change has occurred on the quality
model of a source, on the DIS transformation process, or on a user quality requirement, (iii) events
that are generated when certain conditions related to the occurred change and to the DIS state, are
verified. Events from group (i) cause the generation of some of the events from group (ii). Events
from (ii) cause the generation of events from group (iii). Events from group (i) are generated by the
sources, events from group (ii) are generated by the QMS through metadata triggers, and events
from group (iii) are generated by the QMS, specifically by the Change Detection Rules.

During quality changes detection, partial verifications of DIS quality are done, minimizing the
workload of the QMS. This chapter also presents a mechanism for doing a complete DIS quality
verification, that is, for evaluating if a DIS is satisfying all the existing requirements or not. This is
a basic verification, which considers one by one the groups of requirements, grouped by type, and
verifies if they are satisfied by the DIS. Variations of this algorithm may be implemented, for
example, individualizing each requirement satisfaction, or showing the quality probability
distribution of the DIS.

An example is presented in detail, showing the modeling of the sources quality and all the process
of relevant change detection. This example enables to see the application of the mechanism to
concrete cases helping to better comprehend the proposal.

The proposed mechanism has two main characteristics that give it effectiveness and efficiency. On
one hand, it works with a preventive strategy, since it manages source quality model changes
instead of changes on punctual values, and it also manages requirements that include probabilities,
expected values, and modes (most probable values). On the other hand, it absorbs many changes
that do not affect DIS quality, avoiding unnecessary work.

One aspect of the mechanism that could be improved, achieving even more efficiency, is the
verification of some of the rules conditions. For example, in the case of transformation-graph
change, the verification is done over all the user quality requirements and sources, while it may be
done only over the requirements and sources that are involved with the change. For doing this, it is
necessary to calculate, given an activity or an edge of the graph, all the requirements and sources
that are “connected” to it.

It is important to note that the detection of sources quality changes is done based on past events,
since we work with the model of the source quality. This specially happens in the case of models
that are built from statistical information. This characteristic has important advantages that have
already been commented, but at the same time it has the disadvantage of putting the DIS at the risk
of suffering punctual changes that generate the requirements dissatisfaction, which are detected
later.

Finally, we want to remark that the solutions proposed in this chapter are totally independent from
the quality factor that is considered. The mechanism is applicable to any quality factor, existing the
possibility of extending the information passed through the events with information particular to the
factor.

DIS Quality Repair

120

Adriana Marotta

121

CCCHHHAAAPPPTTTEEERRR 666... DDDIIISSS QQQUUUAAALLLIIITTTYYY RRREEEPPPAAAIIIRRR

Quality of our Data Integration System has changed. Now it is not good enough.
What should we do?

1. Introduction

We consider that DIS quality is acceptable if it satisfies all user quality requirements, and otherwise
it is unacceptable. When the DIS suffers a change that generates the dissatisfaction of user quality
requirements, its quality becomes unacceptable. For these cases, we propose to search for actions to
repair DIS quality, which means to take DIS quality to an acceptable state.

In this chapter we first present an overview of the possible actions that may be applied to the DIS
and sources in order to repair quality. We analyze which actions have sense in the different cases of
change. Secondly, we present our proposal for DIS quality repair by the QMS.

In the beginning of our analysis we base ourselves on a problem that seems to be near ours: source
schema evolution in information systems with multiple sources. We use as starting point the
analysis of how to manage source schema changes in these systems. From that point we find an
analogy, when we consider the different changes that affect DIS quality, between the actions we
may do for repairing DIS quality and the actions that may be done for propagating source schema
evolution. After this initial analysis we arrive to a classification of the repairing actions. We group
them according to which part of the DIS they modify and according to the kind of modifications
they apply.

Among the possible actions for repairing DIS quality, there are some that modify DIS-elements’
properties and others that modify DIS design, i.e. how it combines data and which sources it uses.
We intend to propose modifications that affect as less as possible the design of the DIS. We study
the different modifications that may be done in order to repair DIS quality in the different contexts
and cases of change, for freshness factor and for accuracy factor. In each case we observe how
modifications on different DIS elements affect DIS quality. In addition, we analyze how freshness
behavior affects accuracy, and vice versa.

There are many different actions that can be applied to improve DIS quality, such as reducing
processing costs, restructuring the data transformation graph, adding new tasks, etc. The greatest
complexity resides in determining which actions should be applied in order to recover DIS quality
from changes that damaged it.

Our goal is to give to the user (DIS designer or administrator) suggestions to repair DIS quality. In
our proposal, the QMS is capable of analyzing what has happened taking into account all the
available information, and creating a list of possible actions, each of which would take the DIS to
an acceptable quality state. This list is a ranking that goes from the most recommended action to the
least recommended one.

The QMS uses the following information in order to repair DIS quality: (i) the event received from
the Change Detection process, which notifies that a relevant change has occurred and provides
information about it, and (ii) the statistical information about DIS properties and quality, which is
maintained at the system. The QMS analyses the situation of changes at the DIS taking into account
the change that generated the event and the statistics or historical information, arriving to an
interpretation. This interpretation is later used to construct the previously mentioned list of repairing
actions as well as any warnings that are given when necessary. The repairing actions can be

DIS Quality Repair

122

expressed in terms of the improvement actions, proposed in [Peralta-06], which are basic actions to
apply over the quality graph.

The outline of this chapter is as follows. Section 2 presents an analysis and overview of the actions
that may be applied to repair DIS quality, Section 3 presents our proposal for quality repair in the
QMS, Section 4 presents an example, and Section 5 presents the summary of the chapter.

2. Quality Repairing Actions

There is a wide range of different actions that may be carried out in order to repair DIS quality. In
this section we intend to visualize all these possible actions and organize them in a taxonomy.

While analyzing our problem and searching for similar problems that may be already addressed and
solved, we find that the problem of source schema evolution in integration systems presents some
common aspects with ours. An exhaustive comparison of both problems is presented in Appendix 1
of this document.

2.1 Inspiration in Previously Studied Problem

Taking advantage of the existing similarity between our problem and the problem of source schema
evolution in DIS, we use the latter as an inspiration for starting our analysis.

We take the idea of “change propagation”, which means calculating how the source change affects
the DIS, and includes the possibility of modifying different DIS components in order to avoid the
change in the data targets. The similarity consists on the actions that may be carried out in order to
manage the source change, minimizing the consequences in the results given to the DIS users.

As we are talking about schema evolution, for simplicity, we suppose a DIS that has a pre-defined
integrated schema. Generalizing, we synthesize source schema evolution situations in the following
three cases:

(i) Source schema changes are propagated to the integrated schema generating changes on this
schema and also changes on the transformation process. Figure 6.1 shows an example of this
situation. There are three sources providing data to the relation Doctors. In source S3 the
relation Symptoms is deleted and this change causes the deletion of the attribute
common_symptoms from Doctors, and its associated transformations.

(ii) Due to a source schema change, the transformation is modified in a way that it absorbs the
changes, and the integrated schema is not modified. Figure 6.2 shows an example of this
situation. In this case relation Patients of source S2 is changed and must be eliminated from the
system. This causes the modification of the transformation and the elimination of source S2
from the system (including relation Treatments). The schema of the relation Doctors is not
modified.

Adriana Marotta

123

(a) (b)

S1 S2 S3

A1

A3

∪

|><|

DOCTORS
(diagnosis, common_symptoms, doctor, hospital, qty)

Patients
Patients

Treatments Entries
Symptoms

A2

A4
A5

S1 S2 S3

A1

A3

∪

|><|

DOCTORS
(diagnosis, common_symptoms, doctor, hospital, qty)

Patients
Patients

Treatments Entries
Symptoms

A2

A4
A5

Figure 6.1: Source change propagation to integrated schema. (a) Before change. (b) After change.

(a) (b)

S1 S2 S3

A1

A3

∪

|><|

DOCTORS
(diagnosis, common_symptoms, doctor, hospital, qty)

Patients
Patients

Treatments Entries
Symptoms

A2

A4
A5

S1 S2 S3

A1

A3

∪

|><|

DOCTORS
(diagnosis, common_symptoms, doctor, hospital, qty)

Patients
Patients

Treatments
Entries

Symptoms

A2

A4
A5

Figure 6.2: Source change propagation, where transformation absorbs the change.

(a) Before change. (b) After change.

(iii) A source schema change causes a change in the schema of other source relation. Figure 6.3
shows an example of this situation. In this example the attribute hospital of relation S1.Doctors
is deleted. This attribute was the join attribute with the relation S2.Hospital. In order to
maintain the integrated schema without alterations the source S2 is changed, adding the
attribute doctor to relation Hospitals of S2. Obviously the transformation process is also
modified changing the join attribute.

DIS Quality Repair

124

S1 S2

|><|

DOCTORS
(doctor, city,)

Doctors
(name, hospital,)

Hospitals
(hospital, city,)

A2

S1 S2

|><|

DOCTORS
(doctor, city,)

Doctors
(name,)

Hospitals
(hospital, city,
doctor,)

A2

CHG: add att.CHG: delete att.

(a) (b)

Figure 6.3: Source change propagation, where other source is modified.
(a) Before change. (b) After change.

We now present the analogy of the situations of quality changes with the previous presented
situations of source schema changes. In each case, we consider the three different types of changes
we manage in this thesis: source quality change, transformation graph change, and user quality
requirement change.

Situations:

(i) In source schema evolution, this is the case where changes propagate to the integrated schema.
In the problem of quality changes, propagation occurs automatically. If the quality change is on
a source or on the transformation graph, data targets quality automatically changes. If the
change is on a user quality requirement, data targets quality does not change. In both cases the
DIS probably goes to a state of non-satisfaction of user quality requirements.
Figure 6.4 shows an example. Values for the factor accuracy are shown. The value in source
S1 changes from 0.8 to 0.7. After the propagation to the data target, the value changes from 0.7
to 0.6.

(ii) This is the case where changes are absorbed by the data transformation process. This means
that a modification is done to the transformation in order to compensate the occurred change.
This modification may be on the transformation graph structure or on some property of an
activity of this graph. In quality changes problem this case occurs as follows. If source quality
or a quality requirement changes, the transformation is modified, compensating the change. If
the change occurs on the transformation, some other modification is applied to it in order to
compensate the change.
We show two different examples for this case. In Figure 6.5 we continue with the example of
Figure 6.4, but the source accuracy change is compensated adding a cleaning task to the data
transformations. In Figure 6.6 we show an example where freshness factor is considered.
Freshness value changes in source S2 from 19 to 21, and this change is compensated
decreasing the cost of activity A3 from 3 to 2, in order to continue satisfying the required
freshness.

Adriana Marotta

125

S1 S2

|><|

DOCTORS
(doctor, city,)

Doctors
(name, hospital,)

Hospitals
(hospital, city,)

A2

S1 S2

|><|

DOCTORS
(doctor, city,)

Doctors
(name, hospital....)

Hospitals
(hospital, city,)

A2

CHANGE

Acc=0,8 Acc=0,9 Acc=0,7 Acc=0,9

Acc=0,7 Acc=0,6

PROPAGATION

CHANGE:
Acc=0,7

CHANGE

Figure 6.4: Example: source quality change propagation

S1 S2

|><|

DOCTORS
(doctor, city,)

Doctors
(name, hospital,)

Hospitals
(hospital, city,)

A2

S1 S2

|><|

DOCTORS
(doctor, city,)

Doctors
(name, hospital....)

Hospitals
(hospital, city,)

A2

CHANGE

Acc=0,8 Acc=0,9

Acc=0,7 Acc=0,9

Acc=0,7 Acc=0,7

CHANGE:
Acc=0,7

Cleaning

Figure 6.5: Example 1: source quality change absorbed by transformation

DIS Quality Repair

126

S1 S2 S3

A1

A3

∪

|><|

DOCTORS
(diagnosis, common_symptoms, doctor, hospital, qty)

Patients
Patients

Treatments
Entries

Symptoms

A2

A4
A5

c=0

c=0,5c=0,5

c=3

c=1

c=0

c=1

Required
Fre=24

Fre=20

Fre=19

Fre=12

Fre=18

Fre=20

CHANGE:

Fre=21

CHANGE:

c=2

Figure 6.6: Example 2: source quality change absorbed by transformation

(iii) In this case, changes are compensated through a modification on a source. Considering the
problem of quality changes, if the change occurs on the quality of a source, it is compensated
changing the quality of another source. If the change occurs on a quality requirement or on the
transformation process, a quality change is applied on a source in order to improve DIS quality.
Figure 6.7 continues with example of Figure 6.5, but the change is compensated modifying
quality of another source. In order to know which quality value is necessary in source S2 for
satisfying quality requirements, accepted configurations (defined in Chapter 4) are calculated.

S1 S2

|><|

DOCTORS
(doctor, city,)

Doctors
(name, hospital,)

Hospitals
(hospital, city,)

A2

S1 S2

|><|

DOCTORS
(doctor, city,)

Doctors
(name, hospital....)

Hospitals
(hospital, city,)

A2

CHANGE

Acc=0,8 Acc=0,9 Acc=0,7 Acc=1

Acc=0,7 Required
Acc=0,7

Accepted
Configurations
Calculation

CHANGE:
Acc=0,7

CHANGE

Required
Acc=0,7

Figure 6.7: Example: source quality change compensated by change on another source

Adriana Marotta

127

It is important to remark that these cases may occur or not, depending on the different particular
systems and conditions. In the cases corresponding to (i) the DIS may result in the dissatisfaction of
the required quality, while in the ones of (ii) and (iii), in general the actions are carried out in order
to achieve requirements satisfaction again.

In Table 6.1 we summarize the situations presented above. Each situation can be seen as the
consequence of the change.

Change \
Situation

(i) (ii) (iii)

Source quality Data target quality
changes

Transformation is
modified

Another source changes
its quality

User quality
requirement

Data target quality does
not change

Transformation is
modified

Some source changes its
quality

Transformation Data target quality
changes

Another change is
applied to the
transformation

Some source changes its
quality

Table 6.1: Situations summary

2.2 Repairing Actions Classification

We classify repairing actions according to two different criteria. Therefore we have two orthogonal
classifications.

The first one is directly obtained from the analysis of previous section. We classify repairing actions
into two categories, according to what part of the DIS they modify:

o Actions on transformation graph.
These are the actions that modify either the graph structure, either a property of certain graph
activity.

o Actions on a source
These are the actions that modify the quality or another characteristic of a source.

The second classification takes into account the kind of modification that the action applies. There
are also two categories for the actions, according to this criterion:

o Actions that modify quality values or related properties
These are the actions that are applied to quality values of the sources or to DIS properties that
affect the quality values.

o Actions that modify DIS design
These are the actions that change the design of the DIS, that is, the transformation structure,
the transformation activities, the participant sources, etc.

Finally, a repairing action, for us, can belong to one of four different categories, shown in Table 6.2
as A, B, C or D.

DIS Quality Repair

128

Fst classif \ Snd classif modifies quality values or related properties modifies DIS design

on transformation graph A B

on a source C D

Table 6.2: Possible categories for a repairing action

“D” category corresponds to source schema modifications. In our work, we do not consider actions
from this category, they fall outside of the scope.

For example, an action that modifies the cost of an activity of the quality graph, maintaining the
semantics of the activity, (see example in Figure 6.6) is classified in “A” category. An action that
adds an activity to the graph (see example in Figure 6.5) is classified in “B” category. An action that
modifies the quality value of a source (see example in Figure 6.7) is classified in “C” category.

2.3 Quality Tuning

In order to determine the appropriate actions to apply in each case, it is necessary to know how each
modification of each element of the DIS affects the resulting quality values. This behavior strongly
depends on the quality factor we are considering. Therefore we do this analysis independently for
each factor, freshness and accuracy. However, we also study how an action applied as a
consequence of a change on one quality factor may affect the values of the other.

In the following we analyze the possible adjustments that can be made to the DIS in order to repair
its quality, after a change that generated the dissatisfaction of quality requirements occurred.

It is important to note that the modifications we propose are intended to maintain as much as
possible the topology of the graph, that is, the DIS design.

2.3.1 Freshness

To know how the different DIS elements affect data targets’ freshness we must know how this
freshness is calculated.

Depending on the application domain, the kind of transformation activities, and the nature of the
data, data target freshness may be calculated differently. Generalizing, we consider that freshness
can be calculated at each node of the quality graph, by what we call propagation function,
according to two possible criteria: (i) choosing the freshness of one of the predecessors of the node,
or (ii) combining all predecessor nodes’ freshness. Basing on this, we distinguish two cases in our
analysis:

Case 1 - Propagation function chooses one freshness value

In these cases the most relevant characteristic is the existence of a critical path in the quality graph,
which we present in the following.

In order to fix ideas we consider the following propagation function, which is one of the possible
ones in this case (also used in Chapter 4):

For any activity node A:

Freshness(A) = Max (Freshness(A1) + Delay(A1,A), …, Freshness(An) + Delay(An,A)) + Cost(A),
where A1, …, An are A predecessors

Adriana Marotta

129

The Delay is the time that passes between the end-time of one activity and the start-time of its
successor. The Cost of an activity is its processing time interval.

We found that in this case, given a target node of the quality graph, there exists at least one path
from one source to the target node that fixes the freshness of this node, which we call critical path.
This means that the other paths to that target node are not affecting the final freshness. We define
path and critical path in [Marotta+05], but for this work we use an alternative definition presented
in [Peralta-06], which is presented as follows:

Definition 6.1 (from [Peralta-06]): A data path in a quality graph is a sequence of nodes of the
graph, where each node is connected to its successor in the sequence by a data edge. We denote a
data path, giving the sequence of nodes that compose it, comma separated and between square
brackets, for example [A0,A1,A3,A4]. We also use suspension points for omitting intermediate
nodes, for example [A0,…A4]. ����

Definition 6.2 (from [Peralta-06]1): Given a data path in a quality graph [A0,A1,…Ap], starting at a
source node A0, the path freshness is the freshness value propagated along the path (ignoring other
nodes of the graph), i.e. it is the sum of source data freshness of the source node, the processing
costs of the nodes in the path and the inter-process delays between the nodes:

PathFreshness([A0,…Ap]) = SourceFreshness(A0) + ∑x=0..p Cost(Ax) + ∑x=1..p
InterProcessDelay(Ax-1,Ax) ����

InterProcessDelay is the time that necessarily passes between two successive activities, without
considering synchronization delays. That is to say it may exist a time interval between two activities
generated by the way one activity passes data to the other, the frequency, etc.

Definition 6.3 (from [Peralta-06] 2): Given an activity node Ap, a critical path for Ap is a data path
[A 0,…Ap], from a source node A0, for which the freshness of data produced by node Ap (delivered
to each successor) equals the path freshness.

Freshness(Ap) = PathFreshness([A0,…Ap])

Given a target node Ti, a critical path for Ti is the critical path of its predecessor activity. ����

The following is an example for showing a critical path in a quality graph.

Example 6.1

Retaking the example case managed in previous section, in Figure 6.8 we show a quality
graph with the activities’ costs and the processing delays attached to its nodes and edges
respectively.

We first calculate the freshness of the target node Doctors:

fr(Doctors) = fr(A7)

fr(A 7) = Max (fr(A6) + Delay(A6,A7), fr(A5) + Delay(A5,A7)) + Cost(A7)
fr(A 7) = Max (fr(A6), fr(A5))

1 With minimum nomenclature modifications.
2 With minimum nomenclature modifications.

DIS Quality Repair

130

fr(A 6) = Max (fr(A1) + Delay(A1,A6), fr(A2) + Delay(A2,A6), fr(A4) + Delay(A4,A6)) +
Cost(A6)

fr(A 6) = Max (fr(A1) + 0.5, fr(A2), fr(A4))

fr(A 5) = fr(Symptoms) + Delay(Symptoms,A5) + Cost(A5)
fr(A 5) = 20 + 0 + 1 = 21

fr(A 1) = fr(S1.Patients) + Delay(S1.Patients,A1) + Cost(A1)
fr(A 1) = 20 + 0 + 0.5 = 20.5

fr(A 2) = Max (fr(S2.Patients) + Delay(S2.Patients, A2), fr(Treatments) +
Delay(Treatments,A2)) + Cost(A2)

fr(A 2) = Max (19, 12) + 0.5 = 19.5

fr(A 4) = fr(A3) + Delay(A3,A4) + Cost(A4)
fr(A 4) = fr(A3) + 2 + 1

fr(A 3) = fr(Entries) + Delay(Entries,A3) + Cost(A3)
fr(A 3) = 16 + 3 = 19

Substituting:

fr(A 4) = 19 + 2 + 1 = 22

fr(A 6) = Max (20.5 + 0.5, 19.5, 22) = 22

fr(A 7) = Max (22, 21) = 22

fr(Doctors) = 22

The following are the paths of the quality graph that start in a source node and end in the
target node:

[S1.Patients, A1, A6, A7, Doctors]
[S2.Patients, A2, A6, A7, Doctors]
[S2.Treatments, A2, A6, A7, Doctors]
[S3.Entries, A3, A4, A6, A7, Doctors]
[S3.Symptoms, A5, A7, Doctors]

We calculate the freshness values of the paths, applying the formula
PathFreshness([A0,…Ap]) =
SourceFreshness(A0) + ∑x=0..p Cost(Ax) + ∑x=1..p InterProcessDelay(Ax-1,Ax).

PathFreshness([S1.Patients, A1, A6, A7, Doctors]) = 20 + 0.5 + 0.5 = 21

Analogously we calculate the other ones, in particular, the following:

PathFreshness([S3.Entries, A3, A4, A6, A7, Doctors]) = 16 + 4 + 2 = 22

We see that:

fr(Doctors) = PathFreshness([S3.Entries, A3, A4, A6, A7, Doctors])

According to Definition 6.3, [S3.Entries, A3, A4, A6, A7, Doctors] is the critical path for
Doctors.

Adriana Marotta

131

S1 S2 S3

A1

A3

A6

A7

DOCTORS
(diagnosis, common_symptoms, doctor, hospital, qty)

Patients
Patients

Treatments
Entries

Symptoms

A2

A4
A5

c=0

c=0,5c=0,5

c=3

c=1

c=0

c=1

Required
Fre ≤≤≤≤ 24

Fre=20

Fre=19

Fre=12

Fre=16

Fre=20

d=0

d=0
d=0

d=0d=0
d=0

d=0

d=0d=0,5

d=0

d=2

Figure 6.8: Critical Path

◊◊◊◊

The set of critical paths may change at any moment; if a path p1 is a critical path and its freshness
decreases, perhaps some other path p2 becomes a critical path. On the other hand, if a path p1 is a
critical path and some other path p3 increases its freshness, p3 may become a critical path, while p1
may not be a critical path any more.

From the study of critical paths we deduce that to decrease target freshness we must decrease the
freshness of these paths.

In the following we analyze the modifications we can apply in order to repair the DIS after a change
that generated the dissatisfaction of the quality requirements, considering quality requirements
without probabilities.

If the occurred change was on a source quality or on the transformation graph, the critical path may
have changed, i.e. is not the same path as before. In the case of source quality change, this happens
if the changed source node did not belong to the critical path before the change. In this case the
critical path becomes the one that goes from the changed source node to the target node. This is
because the changed source node is the one that caused the dissatisfaction of quality requirements.
This assertion can be clearly shown through an example. See Example 6.2.

Example 6.2

Consider the quality graph of Example 6.1, see Figure 6.8. The critical path is [S3.Entries,
A3, A4, A6, A7, Doctors]. Suppose source relation S2.Patients changes its freshness from 19
to 24. This generates the dissatisfaction of the requirement: freshness ≤ 24, since, now the
freshness of Doctors is equal to 24.5 (calculating this freshness as it was calculated in
Example 6.1).

DIS Quality Repair

132

S1 S2 S3

A1

A3

∪

|><|

DOCTORS
(diagnosis, common_symptoms, doctor, hospital, qty)

Patients
Patients

Treatments
Entries

Symptoms

A2

A4
A5

c=0

c=0,5c=0,5

c=3

c=1

c=0

c=1

Required
Fre ≤≤≤≤ 24

Fre=20

Fre=24

Fre=12

Fre=16

Fre=20

d=0

d=0
d=0

d=0d=0
d=0

d=0

d=0d=0,5

d=0

d=2

HAS CHANGED

Figure 6.9: Source quality change - Critical Path change

In this case we have as change, the source quality change of S2.Patients. This source did not
belong to the critical path before the change. We calculate now the critical path, applying its
definition. It is the path whose freshness is equal to the freshness of the data target, which is
Doctors.

PathFreshness ([S2.Patients, A2, A6, A7, Doctors]) = 24.5

fr (Doctors) = 24.5

Therefore, the critical path now is: [S2.Patients, A2, A6, A7, Doctors]. We can see this
comparing Figure 6.8 and 6.9.

◊◊◊◊

Therefore, to repair DIS quality:

1) In the cases of source quality change, where the source node did not belong to the critical
path, and transformation graph change, we must re-calculate the critical path.

2) We must decrease the freshness value of the critical path. The modifications that may be
useful to apply are:

a. decreasing costs of activities of the critical path

b. decreasing inter-process delays of the critical path

c. eliminating an activity of the critical path

d. decreasing freshness value of the source that belongs to the critical path

e. eliminating a source that belongs to the critical path (specially when the change
was on this source)

Adriana Marotta

133

f. substituting a source that belongs to the critical path, by another one (specially
when the change was on this source)

3) After decreasing the value of critical path freshness, it may happen that other path becomes
the critical path. If the quality requirements are still not being satisfied, we must decrease
freshness value of the new critical path. The same repeats successively.

Case 2 - Propagation function combines freshness values

These are the cases where the propagation function associated to an activity of the transformation
graph, calculates a freshness value, for the resulting data, from the combination of the freshness
values of the input data. For instance, a propagation function for an activity that applies a join
operation between two input relations, may calculate freshness of the resulting data as the average
of the input relations’ freshness.

In this case there is not a critical path, since we can influence on the target freshness modifying
several different paths. This is because the freshness resulting from each activity may be modified
changing any of the input data freshness.

For the previously exposed reasons, there are more possible modifications to repair DIS quality in
this case than in Case 1. That is to say, in Case 1, to improve target freshness it only has sense to
“touch” the critical path. However, in this case the set of DIS components we may “touch” to
improve target freshness after a change that generated quality requirements dissatisfaction, is wider.
The DIS components we may modify achieving an improvement are the following:

1) Any source that is connected to the target node in the quality graph

2) Any part of the transformation graph that is connected to the target node in the quality
graph

If the occurred change was on the transformation graph or on the user quality requirements, the
accepted configurations must be re-calculated.

If we opt to modify 1), we propose the following procedure: Choose a restriction vector from the
accepted configurations of the target node, and try to make the sources satisfy these restrictions. For
choosing the most convenient restriction vector, useful criteria would be to choose the vector which
has the greatest amount of sources satisfying the restrictions, or to take into account which sources
offer more possibilities of changing their quality.

If we opt to modify 2), the modifications that may decrease the freshness of the target are:

a. decreasing costs of activities

b. decreasing inter-process delays

c. eliminating an activity

d. substituting a source by another one

e. eliminating a source

Case 1 and Case 2

In both cases, if the user quality requirement/s considered is of type “probability” and the generated
dissatisfaction is that the DIS Quality Certainty does not satisfy this requirement, then the
modifications suggested in both cases have as secondary effect that the probabilities of the sources
satisfaction of quality requirements increase, and then certainty improves.

DIS Quality Repair

134

2.3.2 Accuracy

The case of accuracy factor is very similar to Case 2 of previous section, since we consider that for
accuracy, in general, the propagation function takes a combination of the accuracy values of the
input relations. For example, a typical and very simple propagation function is the one proposed in
[Naumann+99], which lays on the assumption that errors are uniformly distributed in the input
relations. In this proposal, for the join operation, the accuracy of the joined data is calculated as the
product of the accuracies of both input relations.

Due to the characteristic of the propagation functions of combining accuracies of the input relations
to obtain the resulting accuracy, like in Case 2 of freshness, all the input accuracy values influence
the resulting accuracy. Therefore, the accuracy resulting from each activity may be modified
changing any of the input data accuracies.

When a change that generated quality requirements dissatisfaction has occurred, like in the case of
freshness, the DIS components we may modify to repair DIS quality, are the following:

1) Any source that is connected to the target node in the quality graph

2) Any part of the transformation graph that is connected to the target node in the quality
graph

In addition, the statements about re-calculation of accepted configurations and the procedure to
follow if we want to modify 1) presented for freshness, also applies to accuracy.

In the case we opt to modify 2), the modifications that may increase accuracy of the target are:

a. increasing effectiveness of cleaning activities (augmenting the percentage of
information that is corrected).

b. adding cleaning activities

c. substituting a source by another one

d. eliminating a source

2.3.3 Freshness vs. Accuracy

Freshness and accuracy are not totally independent factors.

It is true that a change on one factor does not automatically generate a change on the other one. For
example, if a certain source increases or decreases its accuracy, without affecting DIS structure or
functioning, freshness of the source or of the DIS is not affected at all. However, when the occurred
change affects DIS quality and, as a consequence, some DIS characteristics are modified, the other
factor may be affected. In summary, when we modify the system in order to improve the values of
one factor, the values of the other factor may get worse.

We can cite concrete examples of this fact, basing on the possible modifications suggested in
previous sections:

o Eliminating an activity of the quality graph to improve target node freshness.
If the eliminated activity is a cleaning activity perhaps target node accuracy decreases.

o Substituting a source by another one whose data has a lower freshness value, to improve target
node freshness.
If accuracy of the new source data is lower than accuracy of the old source, target node
accuracy decreases.

Adriana Marotta

135

o Substituting a source by another one whose data has a better accuracy value, to improve target
node accuracy.
If freshness of the new source data is worse than freshness of the old source, target node
freshness value increases.

o Augmenting effectiveness of cleaning activities to improve target node accuracy.
This modification probably augments the cost of the activities, and in that case it probably
increases target node freshness value.

o Adding cleaning activities.
This modification may increase the freshness value of the target node.

Example 6.3

Retaking example of Figure 6.5, we now consider also freshness factor. Before the change on
the accuracy of source S1, freshness of the data target Doctors was equal to 18. After the
source change, an activity is added to the graph maintaining the accuracy of target Doctors,
but this action has as secondary effect that freshness changes to 22. Figure 6.10 illustrates this
example.

S1 S2

|><|

DOCTORS
(doctor, city,)

Doctors
(name, hospital,)

Hospitals
(hospital, city,)

A2

S1 S2

|><|

DOCTORS
(doctor, city,)

Doctors
(name, hospital....)

Hospitals
(hospital, city,)

A2

CHANGE

Acc=0,8 Acc=0,9

Acc=0,7 Acc=0,9

Acc=0,7 Acc=0,7

CHANGE:
Acc=0,7

Cleaning

Fre=18 Fre=22

Freshness
has changed !!

Figure 6.10: Accuracy change indirectly causes freshness change

◊◊◊◊

3. Quality Repair in the QMS

The QMS receives two kinds of events, which communicate that DIS quality has suffered a change
and now is not satisfying user quality requirements. These two kinds of events are:
QValuesDissatisfaction and ProbabilityDissatisfaction. The first means that there was a change that
caused the dissatisfaction of quality requirements that are not “probability” requirements. The
second means that there was a change that caused the dissatisfaction of “probability” requirements,

DIS Quality Repair

136

that is, DIS quality certainty does not reach all the probability values given by the users in the
requirements.

The received events provide information about the occurred change, such as the type of change, the
DIS component where it occurred, etc. On the other hand, more useful information can be found in
the meta-information database, called estimations & statistics (presented in Chapter 3). The QMS
uses all this information for diagnosing the situation of the DIS and then determining the
recommendable actions that are adequate for the obtained diagnostic. The concept of DIS situation
involves not only its current state, but also its history and its probable future. The actions that are
recommended are basically the ones presented and analyzed in Section 2.

In this section we address the problem of determining actions to recommend for repairing DIS
quality, given a received event and statistical information. We divide this problem into two sub-
problems: (1) arriving to an interpretation of DIS situation, and (2) from DIS situation, obtaining a
list of recommended actions for repairing DIS quality.

Our intention is to provide a mechanism for solving this problem, which can be easily instantiated
with different statistics, interpretations and rules. The mechanism is based on two sets of rules, one
for deducing the interpretation, called Interpretation Rules, and the other for obtaining the actions,
called Repairing Rules. Figure 6.11 shows the proposed processes for DIS Quality Repair. We
propose some of these rules, as examples of which may be done. The DIS administrator may define
new rules, interpretations, and actions. It is also possible to define new statistics, but in that case it
is necessary to implement the way these statistics will be maintained.

estimations
& statistics

Analysis
Interpretation

Rules

DIS Quality Repair

Quality
Changes
Detection

Determining
Actions

Repairing Rules

DIS administrator

ev
en

t

interpretation

list of actions

Figure 6.11: DIS Quality Repair Architecture

3.1 Analysis of DIS Situation

For the tasks of analyzing and interpreting the DIS situation we define Interpretation Rules. These
rules give an interpretation of the main problem the DIS is having, given a change event, a
condition satisfied by the change, and some statistical information.

Adriana Marotta

137

The event is received from the Change Detection module and, as said before, it can be a
QValuesDissatisfaction event or a ProbabilityDissatisfaction event. It notifies that a change that
generated quality requirements dissatisfaction has occurred, and it provides information about the
occurred change. Table 6.3 shows the structure of the possible events.

The condition of the rules is a condition over the event’s attributes.

Event Class Attribute Attribute Description

QValuesDissatisfaction QGraph Quality Graph where the change occurred.

Requirements Set of requirements that are not satisfied.

OriginalChange Change that generated the level-1 event.

OriginalSource Source where the change occurred.

GraphChange Kind of change that occurred on the
transformation graph.

ChangedActivity Graph activity where a change occurred.

ChangedReq Requirement that has changed.

Timestamp Date-time of the original change.

ProbabilityDissatisfaction QGraph Quality Graph where the change occurred.

QFactor Quality factor.

OriginalChange Change that generated the level-1 event.

OriginalSource Source where the change occurred.

GraphChange Kind of change that occurred on the
transformation graph.

ChangedActivity Graph activity where a change occurred.

ChangedReq Requirement that has changed.

Timestamp Date-time of the original change.

Table 6.3: Events structure

Statistical information is extracted from the estimations & statistics part of the meta-information
managed by the QMS, which contains current information and estimations about DIS properties and
quality models, quality measurements, and also historical information about them. We propose to
use functions that query and process this information returning a boolean answer.

The interpretation is how we interpret the DIS situation, after observing the change event and
querying the statistical information. It supposes what has happened in a source, in an activity, etc.

As expressed before, we do not intend to provide an exhaustive or complete set of rules or
interpretations, the idea is to give the general mechanism that makes possible the treatment of as
many cases as wanted.

The following are some possible interpretations for DIS situations:

o The kinds of accuracy errors coming from sources have changed.
Data present errors that are different from the ones that it used to present before. The cleaning
activity assigned to these data is not working as effectively as before.

DIS Quality Repair

138

o Inconvenient source.
A certain source changes very frequently, causing quality requirements dissatisfaction each
time.

o Source punctual change.
A certain source had a quality change causing quality requirements dissatisfaction, but this was
an isolated event.1

o There is a problem with data accessibility in a source.
Query efficiency has decreased in the source, affecting DIS freshness.

o There is a problem with the volume of data coming from certain source.
The volume of data coming from a source has increased and affects DIS freshness.

o User quality requirement is constantly changing.
In certain data target, user quality requirement for a quality factor is changing very frequently.

We specify the interpretations as object classes, which are instantiated in each particular case. Table
6.4 shows these classes.

Interpretation Class Attribute Attribute Description

InconvenientSource Source Referred source.

QFactor Quality Factor for which the
source is inconvenient.

Requirements Requirements that are not
satisfied.

SourcePunctualChange Source Referred source.

QFactor Quality Factor that has changed.

Requirements Requirements that are not
satisfied.

SourceError-typesChange Activity Cleaning activity that processes
the data.

SourceDataAccessibilityProblem Activity Extraction activity that extracts
the data.

SourceDataVolumeProblem Activity Extraction activity that extracts
the data.

ConstantlyChangingUserQualityRequirement Requirement Referred requirement.

Table 6.4: Interpretations structure

In the following we present the statistics used in our rules. The information comes from estimations
& statistics meta-information. In some cases we define a function that obtains it, and in other cases

1 Note that the occurred change was a change on the source quality model. We call it a punctual
change because the model does not change very frequently.

Adriana Marotta

139

we use the information contained in the change event, which also comes from the same meta-
information database.

o Data_Volume_Increased
Given an activity, it returns TRUE if the volume of data that is processed by the activity has
increased, according to the statistics, and FALSE otherwise.

o Frequently_Changes
It may receive as input a source or a quality requirement, and a quality factor. It returns TRUE
if the source or requirement has changed its values for the quality factor, with certain
frequency and recently. Otherwise it returns FALSE. The function implementation determines
the frequency and time interval considered, according to the application domain and needs.

o Activity cost has increased
The attribute GraphChange of the change event (QValuesDissatisfaction or
ProbabilityDissatisfaction) has the kind of change the transformation graph has suffered.
When this value is “Activity-cost”, it means that the cost of an activity has increased, affecting
target freshness.

o Activity effectiveness has decreased
The attribute GraphChange of the change event (QValuesDissatisfaction or
ProbabilityDissatisfaction) has the kind of change the transformation graph has suffered.
When this value is “Activity-effectiveness”, it means that the percentage of cleaned data by
certain cleaning activity has decreased, affecting target accuracy.

In the following we sketch some possible rules.

Note: In the rules we specify interpretations as functions that create the interpretation with the
attribute values they receive as input.

Interpretation Rules

EVENT: e: QValuesDissatisfaction
CONDITION : e.OriginalChange = “QModelChange”
STATISTIC : Frequently_Changes (e.OriginalSource, GetQFactor(e.Requirements))
INTERPRETATION : Inconvenient_Source (e.OriginalSource, GetQFactor(e.Requirements),
 e.Requirements)

EVENT: e: ProbabilityDissatisfaction
CONDITION : e.OriginalChange = “QModelChange”
STATISTIC : Frequently_Changes (e.OriginalSource, GetQFactor(e.Requirements))
INTERPRETATION : Inconvenient_Source (e.OriginalSource, GetQFactor(e.Requirements),
 e.Requirements)

EVENT: e: QValuesDissatisfaction
CONDITION : e.OriginalChange = “QModelChange”
STATISTIC : NOT Frequently_Changes (e.OriginalSource, GetQFactor(e.Requirements))
INTERPRETATION : Source_Punctual_Change (e.OriginalSource, GetQFactor(e.Requirements),
 e.Requirements)

DIS Quality Repair

140

EVENT: e: QValuesDissatisfaction
CONDITION : e.OriginalChange = “TGraphChange”
STATISTIC : e.GraphChange = “activity-effectiveness”
INTERPRETATION : Source_Error-types_Change (e.ChangedActivity)

EVENT: e: QValuesDissatisfaction
CONDITION : e.OriginalChange = “TGraphChange”
 AND GetQFactor(e.Requirements) = “freshness”
 AND ExtractionActivity (e.ChangedActivity)
STATISTIC : e.GraphChange = “activity-cost” AND
 NOT Data_Volume_Increased (e.ChangedActivity)
INTERPRETATION : Source_Data_Accessibility_Problem (e.ChangedActivity)

EVENT: e: QValuesDissatisfaction
CONDITION : e.OriginalChange = “TGraphChange”
 AND GetQFactor(e.Requirements) = “freshness”
 AND ExtractionActivity (e.ChangedActivity)
STATISTIC : e.GraphChange = “activity-cost”
 AND Data_Volume_Increased (e.ChangedActivity)
INTERPRETATION : Source_Data_Volume_Problem (e.ChangedActivity)

EVENT: e: QValuesDissatisfaction
CONDITION : e.OriginalChange = “QReqChange”
STATISTIC : Frequently_Changes (e.ChangedReq)
INTERPRETATION : Constantly_Changing_User_Quality_Requirement (e.ChangedReq)

Used auxiliary functions:

Function ExtractionActivity receives an activity node of the quality graph, and returns a Boolean
that indicates if it is an extraction activity or not.

Function GetQFactor returns the quality factor of the user quality requirements.

3.2 Determination of Recommended Actions

Once the situation of the DIS was diagnosed, generating an interpretation for it, the QMS
determines a ranked-list of actions that may be applied to the DIS to repair its quality. Then it
provides this list to the DIS administrator, who decides what to do, choosing one of the options
given by the system. The system will automatically update its models and all necessary meta-
information for continuing working.

In Section 2 we analyzed many different actions that may be carried out in order to recover DIS
quality. In this section we consider those actions as a set from which the recommended ones are
picked, depending on the current interpretation.

Adriana Marotta

141

The QMS selects the most adequate actions for each interpretation. We specify this selection
through a set of rules of the form interpretation, condition � action-list, which we call Repairing
Rules.

The intention in giving this ranked-list of actions to the user (DIS administrator) is to provide him
some clue, some line, or simply, useful information, for arriving to a good solution for the DIS
quality problem. The idea is that the user chooses one of the recommended actions and uses other
functionalities of the QMS for obtaining more information, which may be needed to apply the
action.

We present here some repairing rules that apply to the interpretations presented in previous section,
and as in the case of interpretation rules, they are not meant to be exhaustive. Our intention is to
show some examples of these rules.

We first present an intuitive description of some of the given rules:

RR1 -
The QMS detected an inconvenient source for freshness. This means that the source is really
compromising the maintenance of DIS freshness. The most recommended action is to eliminate this
source. As a second possibility it is recommended to substitute the source by another one. The
following recommended actions are to decrease some activity cost, to decrease inter-process delays
or to eliminate some activity, all of them from the critical paths of the affected requirements.

RR2 -
The QMS detected an inconvenient source for accuracy. This means that the source is really
compromising the maintenance of DIS accuracy. The most recommended action is to eliminate this
source. As a second possibility it is recommended to substitute the source by another one. The
following recommended actions are to increase the effectiveness of some cleaning activities or to
add a new cleaning activity, considering activities that affect the requirements that are not being
satisfied. The last recommended action is to modify the accuracy of another source, which supposes
a negotiation with it. For this, the user may obtain the accepted configurations for the affected
requirements in order to know which are the changes he needs.

RR3 -
The QMS detected that there was a source punctual change of freshness. The most recommended
action is to decrease the costs of activities that belong to the critical paths of the affected
requirements. The following recommended actions are to decrease inter-process delays and to
eliminate activities, from the same paths. As a final option, it is recommended to do nothing and
wait for taking a decision.

RR5 -
The QMS detected that the types of errors that arrive to certain cleaning activity, have changed. The
cleaning techniques that are applied to these source-data are not as effective as before. The most
recommended action is to substitute the cleaning activity by another one that works better with the
current types of errors. Secondly it is suggested to add a new cleaning activity to achieve the
necessary accuracy.

RR6 -
The QMS detected that data from certain source is not being extracted as efficiently as before. The
first proposed action is to substitute the extraction activity by another one that is capable to obtain
these data more efficiently. The second proposed action is to achieve an improvement in source data
accessibility, that is to say, to ask the source for an improvement on its access paths.

DIS Quality Repair

142

We specify the repairing actions as object classes, which are instantiated in each particular case.
The information contained in their attributes is the information that the QMS provides the user
together with each action, as complementary information. For example, in the case of
“EliminatingSource”, the complementary information is the source he should eliminate. In the case
of “DecreasingActivityCost”, the complementary information are the paths where the activities that
may be modified belong. Table 6.5 shows the object classes.

Action Class Attribute Attribute Description

EliminatingSource Source Source to eliminate.

SubstitutingSource Source Source to substitute.

DecreasingActivityCost CPaths Set of critical paths.

DecreasingInter-processDelays CPaths Set of critical paths.

EliminatingActivity CPaths Set of critical paths.

IncreasingActivityEffectiveness CleaningActivities Set of cleaning activities.

AddingCleaningActivity Requirements Set of requirements to be satisfied.

ModifyingOtherSource Source Source that has changed.

Requirements Set of requirements to be satisfied.

Waiting

SubstitutingActivity Activity Activity to substitute.

ModifyingSourceAccessibility Activity Extraction activity.

NotifyUser Requirement Requirement that is constantly changing.

SubstitutingSomeSource CPaths Set of critical paths.

Table 6.5: Actions structure

As said at the beginning of this section, once the user chooses one of the actions proposed by the
QMS, the QMS must automatically update its models and all necessary meta-information for
continuing working. In [Peralta-06], the author specifies a set of actions, called improvement
actions, which are the possible basic modifications to the quality graph. They are for example,
add_node, add_edge, remove_node, add_property, etc. In addition, combinations of these elemental
actions, macro actions, are defined. The repairing actions we propose can be easily written in terms
of these improvement actions, adding some input information that should be obtained through the
interaction with the user. This allows having the specification of the correction to the quality graph
after the user chooses a repairing action. For example, repairing action SubstitutingSource, with
source S, should be transformed to improvement action replaceNode, with the following arguments
provided by the user: the quality graph, the node by which the source node S is replaced and the
properties of this node.

Note: In the same way as for interpretations, in the rules we specify actions as functions that create
the action with the attribute values they receive as input.

Adriana Marotta

143

Repairing Rules:

RR1 -
INTERPRETATION : I: InconvenientSource
CONDITION : I.QFactor = “freshness”
ACTION -LIST : 1- EliminatingSource (I.Source)
 2- SubstitutingSource (I.Source)
 3- DecreasingActivityCost (CriticalPaths (I.Requirements))
 4- DecreasingInter-processDelays (CriticalPaths (I.Requirements))
 5- EliminatingActivity (CriticalPaths (I.Requirements))

RR2 -
INTERPRETATION : I: InconvenientSource
CONDITION : I.QFactor = “accuracy”
ACTION -LIST : 1- EliminatingSource (I.Source)
 2- SubstitutingSource (I.Source)
 3- IncreasingActivityEffectiveness (CleaningActivities (I.Requirements))
 4- AddingCleaningActivity (I.Requirements)
 5- ModifyingOtherSource (I.Source, I.Requirements)
RR3 -
INTERPRETATION : I: Source_Punctual_Change
CONDITION : I.QFactor = “freshness”
ACTION -LIST : 1- DecreasingActivityCost (CriticalPaths (I.Requirements))
 2- DecreasingInter-processDelays (CriticalPaths (I.Requirements))
 3- EliminatingActivity (CriticalPaths (I.Requirements))
 4- Waiting

RR4 -
INTERPRETATION : I: Source_Punctual_Change
CONDITION : I.QFactor = “accuracy”
ACTION -LIST : 1- IncreasingActivityEffectiveness (CleaningActivities (I.Requirements))
 2- AddingCleaningActivity (I.Requirements)
 3- ModifyingOtherSource (I.Source, I.Requirements)
 4- Waiting

RR5 -
INTERPRETATION : I: Source_Error-types_Change
CONDITION : TRUE
ACTION -LIST : 1- SubstitutingActivity (I.Activity)
 2- AddingCleaningActivity (I.Requirements)

RR6 -
INTERPRETATION : I: Source_Data_Accessibility_Problem
CONDITION : TRUE
ACTION -LIST : 1- SubstitutingActivity (I.Activity)
 2- ModifyingSourceAccessibility (I.Activity)

DIS Quality Repair

144

RR7 -
INTERPRETATION : I: Source_Data_Volume_Problem
CONDITION : TRUE
ACTION -LIST : 1- SubstitutingActivity (I.Activity)

RR8 -
INTERPRETATION : I: Constantly_Changing_User_Quality_Requirement
CONDITION : GetQFactor(I.Requirement) = “freshness”
ACTION -LIST : 1- NotifyUser (I.Requirement)
 2- DecreasingActivityCost (CriticalPaths (I.Requirement))
 3- DecreasingInter-processDelays (CriticalPaths (I.Requirement))
 4- SubstitutingSomeSource (CriticalPaths (I.Requirement))

Used auxiliary functions:

Function CriticalPaths receives a set of requirements and returns a set of paths that are the critical
paths of the received requirements.

Function CleaningActivities receives a set of requirements and returns all the cleaning activities that
process data that is involved by the requirements.

Note: In rules RR1, RR3 and RR8, we assume the case where freshness propagation function
chooses one of the input freshness values for giving the resulting freshness, when applied to an
activity (Case 1 of Section 2.3.1 of this Chapter).

4. Example

In Chapter 5, Section 6 we had presented an example where some relevant quality changes were
detected. In this section we continue with the same example, assuming the QMS Quality Repair
module has received the event generated by the Change Detection module.

4.1 First Change

The cost of activity A2 has changed. Figure 6.12 shows the quality graph and its change.

The received event was:

QValuesDissatisfaction, with attributes:

QGraph = “MeteoGraph”
Requirements = { <T1, Rmax1>, <T2, Rmax2>, <T3, Rmax3> }
OriginalChange = “TGraphChange”
OriginalSource = NULL
GraphChange = “activity-cost”
ChangedActivity = A2
ChangedReq = NULL
Timestamp = 5/11-3

Remember that the requirements were the following:

ρV (T1) (UserQualityRequirement) (Rmax1) = < freshness, maximum, 72, NULL >
ρV (T2) (UserQualityRequirement) (Rmax2) = < freshness, maximum, 48, NULL >
ρV (T3) (UserQualityRequirement) (Rmax3) = < freshness, maximum, 2, NULL >

Adriana Marotta

145

The following Interpretation Rule is applied:

EVENT: e: QValuesDissatisfaction
CONDITION : e.OriginalChange = “TGraphChange”
 AND GetQFactor(e.Requirements) = “freshness”
 AND ExtractionActivity (e.ChangedActivity)
STATISTIC : e.GraphChange = “activity-cost” AND
 NOT Data_Volume_Increased (e.ChangedActivity)
INTERPRETATION :Source_Data_Accessibility_Problem (e.ChangedActivity)

The condition is satisfied, since: ExtractionActivity (A2) = TRUE

Statistic is satisfied because: Data_Volume_Increased (A2) = FALSE

Interpretation Source_Data_Accessibility_Problem is generated, with attribute Activity = A2.

The following Repairing Rule is applied:

INTERPRETATION :I: Source_Data_Accessibility_Problem
CONDITION : TRUE
ACTION -LIST : 1- SubstitutingActivity (I.Activity)
 2- ModifyingSourceAccessibility (I.Activity)

A 1 A 3

A 5

A 6

A 4

A 8

delay =0

cost =2 cost =1

cost =2 cost =1

cost =2

cost =0

delay =0

delay =0 delay =12

delay =7

S 1 S 2

T 1

S 3

delay =0 delay =0 delay =0

delay =0

T 2 T 3

maxfr =72, avgfr =60

A 2

A 7 A 9

delay =0

delay =0

delay =0 delay =0

delay =7

cost =0 cost =1

cost =1

maxfr =48, avgfr =42 maxfr =2, avgfr =2

4

Figure 6.12: Transformation graph change

The QMS proposes the system administrator, in first place, to substitute the activity A2 by another
one that extracts source S2 data in a more efficiently way. In second place it proposes him to ask

DIS Quality Repair

146

source S2 administrator to improve data access, taking into account that this accessibility has
decreased.

4.2 Second Change

Two indicators (maximum and expectation) have changed in the quality model of source S1.

The received event was:

QValuesDissatisfaction, with attributes:

QGraph = “MeteoGraph”
Requirements = { <T1, Rmax1>, <T2, Rmax2> }
OriginalChange = “QModelChange”
OriginalSource = S1
GraphChange = NULL
ActivityChange = NULL
ChangedReq = NULL
Timestamp = 5/11-3

The following Interpretation Rule is applied:

EVENT: e: QValuesDissatisfaction
CONDITION : e.OriginalChange = “QModelChange”
STATISTIC : NOT Frequently_Changes (e.OriginalSource, GetQFactor(e.Requirements))
INTERPRETATION :Source_Punctual_Change (e.OriginalSource, GetQFactor(e.Requirements),
 e.Requirements)

Statistic is satisfied because: Frequently_Changes (S1, freshness) = FALSE

Interpretation Source_Punctual_Change is generated, with attributes:
Source = S1
QFactor = freshness
Requirements = { <T1, Rmax1>, <T2, Rmax2> }

The following Repairing Rule is applied:

INTERPRETATION :I: Source_Punctual_Change
CONDITION : I.QFactor = “freshness”
ACTION -LIST : 1- DecreasingActivityCost (CriticalPaths (I.Requirements))
 2- DecreasingInter-processDelays (CriticalPaths (I.Requirements))
 3- EliminatingActivity (CriticalPaths (I.Requirements))
 4- Waiting

The critical paths in this case are the ones that start at S1, since the value of S1 has caused the
dissatisfaction of the target requirements. Therefore, the critical paths are the following (see Figure
6.12):

[S1, A1, A5, A6, A7, T1]

[S1, A1, A5, A6, A8, T2]

Adriana Marotta

147

Therefore, the QMS suggests the administrator to decrease the cost of activities of these paths. For
example, decreasing the cost of A1, A5 or A6, helps to the satisfaction of both requirements Rmax1
and Rmax2. The following suggested actions are to decrease inter-process delays and to eliminate
activities from the same paths. As a final option it suggests to do nothing and wait for the source to
return to the previous values itself.

5. Summary

This chapter presents, on one hand, an analysis of the possible modifications to the DIS for
recovering from a quality change, and on the other hand, the mechanism that the QMS applies for
automatically determining the most suitable actions for recovering DIS quality, once it detects a
relevant change.

The analysis of DIS modifications arrives to: (i) a classification of the actions according to the kind
of modification and to the part of the DIS they affect, and (ii) some guidelines about how each
modification of each element of the DIS affects the resulting quality values. In (ii) we present for
freshness management, an important concept: the critical path. For each target node in the quality
graph there is path that determines the target freshness. This path may change at any time, but target
freshness may be improved only by improving this path´s freshness. In general, in (ii), we say for
the different possible changes which elements we should modify and which modification we should
apply in order to improve DIS quality.

When the Quality Repair module receives an event from the Change Detection module in the QMS,
it knows that DIS quality is not satisfying user quality requirements and it must be repaired. The
proposed automatic mechanism for determining the repairing actions consists of rules for obtaining
an interpretation of the DIS situation from the received event and statistical meta-information, and
other rules for determining a ranked list of repairing actions from the interpretation. The idea is that
the QMS provides to the user the ranked list of actions and he decides which action to apply using
other tools and information from the QMS for applying it. For example, if he wants to apply an
action that substitutes an activity by a more efficient one, he needs to know how much the cost of
the activity must be reduced. For this, he can use the meta-information maintained by the QMS and
the quality evaluation functionalities.

Interpretations, actions and rules for obtaining them are presented. However, they are presented as
an illustration of the possibilities of the mechanism, since the intention is not to give an exhaustive
set of interpretations, actions and rules, but to give the framework where they can be defined.

In our mechanism interpretations are derived from statistical information. An important kind of
statistical information is how frequently a source changes its quality. We want to remark that this
information must be obtained from the history of the quality models of the source, and may not be
obtained from the history of the quality values of the source, in which case the obtained frequency
would be irrelevant. This is because quality values at a source may be continuously changing, as in
the case of freshness factor, but this does not mean that the source quality has relevant changes. In
summary, when we suggest the action of eliminating a source or substituting it by another one, we
are taking into account the quality models maintained for it.

The information given to the user (DIS administrator) is, in some cases, rather raw, and the user
must process it and also query and/or calculate more information for applying the actions. The QMS
provides all the necessary information but it does not give it totally processed.

Experimentation

148

Adriana Marotta

149

CCCHHHAAAPPPTTTEEERRR 777... EEEXXXPPPEEERRRIIIMMMEEENNNTTTAAATTTIIIOOONNN

1. Introduction

The main goal of our experimentation is to apply to a study case, the techniques for the construction
of source and DIS quality models, as well as the maintenance of their history, such that we show the
usefulness of the proposals. The idea is to apply to a simple case the whole cycle that includes the
successive measurements of sources data, the construction of the quality models of each source, the
construction of the quality models of the DIS taking into account the user quality requirements, and
the history analysis. For the experimentation we simulate two data sources that are continuously
operating and being updated. We design a DIS that extracts data from them and is queried by the
users.

Another goal is to implement a prototype that automates the mentioned process, interacting with the
user, who decides when a measurement is executed and when a model is calculated. The techniques
for DIS quality evaluation, which are needed for the construction of DIS quality models, are
implemented in a previously developed prototype, called DQE [Peralta-06], which is now enriched
with the calculation of the accepted configurations, proposed in this work. Our tool for quality
measurement and quality models construction is designed to interact with DQE tool.

The study case we use is based on a web data source that is real, but its data is generated for the
experimentation because it is not yet operating. We describe it in detail in next section. The other
data source we consider is a simple database defined by us. The generation of data is made
randomly as well as the inclusion of errors.

In this first phase of the experimentation we work only with accuracy factor.

We have done a previous experimentation with a real case, mainly in the measurement of accuracy
factor, in a Data Warehouse of the School of Engineering of our University. This was in the context
of a project for quality analysis in multi-source information systems [MSISQuality-07]. The main
tasks carried out in the experimentation were, at the sources, the identification of the types of errors
to measure, the granularity of measurement, and the measurement implementation [Etcheverry+06].
We also analyzed the evaluation of the DW quality from the quality measured at the sources.

In Section 2 we describe the study case, in Section 3 we present the main functionalities of the tool
prototype, in Section 4 we present the experiment execution and results, in Section 5 we present the
conclusions we arrive through the experimentation, and finally in Section 6 we present the summary
of the chapter.

2. Study Case

A social network is a social structure made of nodes (generally individuals or organizations) that are
tied by one or more specific types of interdependency. A social network service focuses on the
building of online social networks for communities of people who share interests and activities.
Facebook [Facebook-07] is one of the most widely used in 2007, and in this year it began allowing
externally-developed add-on applications. Facebook is undergoing a huge period of growth, with
more than 150,000 new users signing up daily.

Our study case is based on an add-on application developed for Facebook. This application provides
an environment for people to play games together. The users agree meetings for playing games on
the web. After they play they have the possibility of rating the game. Given the enormous quantity
of users that participate in Facebook proposals, it is expected that hundreds of users will be using

Experimentation

150

this application daily. This fact has as consequence the continuous growth and change of the
application data. For this reason we find the database of this application, called Fogojogo, a very
interesting data source for our study.

People who want to choose a game for playing or someone who dedicates to creating games for the
internet, would find very useful to have trustable information about users’ preferences on the
existing internet games. We thought about a system that provides this facility to users, extracting
data from different sources.

We propose a very simple DIS in order to focus the experimentation on quality changes
management, not complicating it with other management problems. The DIS has two data sources,
Source1, called Fogojogo, which is the real database described above, and Source2, called Ratings,
which is a data source that provides qualifications for games given from web users. The DIS mainly
allows querying about games ratings, integrating information coming from both sources.

Fogojogo is a real database that will be soon operating, but as it is not yet working we decided to
simulate its behavior, generating data for it. Ratings is a simple data source totally simulated by us.

2.1 Sources

In the following we describe the schemas of the data sources and the mechanisms employed for
their population.

2.1.1 Source1 – Fogojogo

Fogojogo is a database containing 5 tables, which store information about games, users’ meetings
for playing games and users’ opinions about games. We consider this schema, which is a part of the
original one, in order to manage a smaller schema, not affecting the experimentation possibilities.

The following are the description of the tables:

o fj_games (name, creator_uid, rates_quantity, rating, last_update)
Table fj_games stores data about games. Attribute id is a number that identifies the game, name
is the name of the game, creator_uid is an identification of the author of the game,
rates_quantity is the quantity of users that gave an opinion for the game, rating is the sum of
all the points given by the users for the game, and last_update is the last update of the tuple.

o fj_meetings (id, game_id)
Table fj_meetings stores data about the meetings for a game. Attribute id is a number that
identifies the meeting, and game_id is the identifier of the game.

o fj_group_games (meeting_id, uid)
Table fj_group_games stores data about the users that participate in the meeting. Attribute
meeting_id is the meeting identifier, and uid is the identifier of user.

o fj_ratings (meeting_id, uid, rated, date)
Table fj_rating, given a meeting, indicates for each player of the meeting, if he has given an
opinion of the corresponding game. Attribute meeting_id is the meeting identifier, uid is the
user identifier, rated indicates if the user evaluated the game or not, and date is the last update
of the tuple.

o fj_users (uid)
Table fj_users contains all the user identifiers.

In the real case, information about the users is found in the database of Facebook, and the identifiers
used here are references to this database.

Adriana Marotta

151

Figure 7.1 presents a diagram of the relational schema, where primary keys and relations between
tables through foreign keys are shown.

Fogojogo

Figure 7.1: Source1 schema

Data generation is done simulating reality, generating randomly the users that agree a meeting, the
users that rate a game and the ratings they assign to it. In addition, errors in data are also generated
randomly. Data errors are introduced in table fj_games, attributes: name, creator_uid,
rates_quantity and rating.

The following is a high-level pseudo-code of the algorithm for generating Source1 data.

- Generate all games in table fj_games with:

- rate_quantity and rating attributes with value 0
- initial date for last_update attribute
- errors: randomly generated in name and creator_uid attributes

- Generate all users in fj_users
- Repeat

- Generate a new meeting in fj_meetings
- For the new meeting generate random quantity of tuples in fj_group_games
- For each new tuple of fj_group_games

- Generate new tuple in fj_ratings where:
- rated attribute is randomly equal to 0 or 1

- If rated = 1
- Update in fj_games attributes rates_quantity and rating,

corresponding to the game of the current meeting, where:
- errors are randomly generated
- if rating has no error, a valid number is randomly generated

Our data generator is capable of generating successively database images. It receives a date and it
generates a new image considering the last generated image. This allows us to simulate the data
source as a live entity.

Experimentation

152

2.1.2 Source2 – GamesRatings

Ratings is a database that stores information about users’ qualifications of games that are available
for playing in internet. We define a very simple version that consists of the following table:

o ratings (id, uid, game_name, points, date)
Table ratings stores users’ ratings for games. Attribute id is a number that identifies the user
rating, uid is an identification of the user, game_name is the name of the rated game, points is
the rating assigned by the user to the game, and date is the date of the user rating.

Data is generated randomly. For each new tuple, attribute date has the value of the last date plus a
random quantity of minutes. Errors are introduced randomly in data for attributes game_name and
points.

Successive data images are also generated for this data source.

2.2 Data Targets

In DataTarget1 the DIS provides the average rating of a game and the oldest date that corresponds
to this rating. Figure 7.2 shows the data processing graph.

fj_games (id, name, creator_uid,
rates_quantity, rating, last_update)

fj_group_games

fj_meetingsfj_users

fj_ratings

Source1: Fogojogo
Source2: DBGames

ratings (id, uid,
game_name, points, date)

DataTarget1

A1

A4

A3

A2

A6

A5

Names
Cleaning

GroupBy

Join

Select-
Project

Select-
Project

Union

(game_name, rating, date)

Figure 7.2: Data processing for DataTarget1

The descriptions of the activities of the transformation process are the following:

• A1: Names Cleaning
This activity performs a cleaning on the attribute “name”, which corresponds to names of

Adriana Marotta

153

games. Each value of the attribute is cleaned through a comparison to a referential table of
game names. When an invalid value is found, according to a distance metric, the value is
substituted by a valid one if there is a certain maximum distance between them, otherwise,
it is not modified. In the case the value is modified it is verified if the new value is already
in another tuple, and in this case the two tuples are merged.

• A2: GroupBy
This activity performs the following SQL query over Source2.ratings table:

SELECT game_name, SUM(points) AS points, MAX(date) AS date
FROM ratings
GROUP BY game_name

• A3: Join
This activity performs a SQL join between A1 result and A2 result, as follows:

SELECT *
FROM A1, A2
WHERE A1.name = A2.game_name

• A4: Select-Project
This activity performs the following SQL query over A3 result:

SELECT game_name, ((rating/rates_quantity) + points)/2 AS rating, last_update AS date
FROM A3
WHERE last_update < date

It averages the ratings that come from Source1 and Source2.

The desired date for each constructed tuple is the smallest one since the freshness of the
tuple should be considered depending on the value that was updated before. For selecting
the smallest date we use also activity A5. A4 query selects the tuples where attribute
last_update value (date coming from Source1) is smaller than attribute date value (date
coming from Source2).

• A5: Select-Project
This activity performs the following SQL query over A3 result:

SELECT game_name, ((rating/rates_quantity) + points)/2 AS rating, date
FROM A3
WHERE date < last_update

It averages the ratings that come from Source1 and Source2.

It selects the tuples where attribute date value (date coming from Source2) is smaller than
attribute last_update value (date coming from Source1).

• A6: Union
This activity performs a union between A4 and A5 results.

2.3 Quality Management

The quality factor managed in the experimentation is accuracy.

In the following we describe how the factor is measured at the sources, how sources quality models
are constructed, how quality is evaluated at the DIS and how DIS quality models are constructed.

Experimentation

154

Source Accuracy Measurement

Accuracy is measured at cell level (for each value of each tuple) and then it is aggregated to tuple
level and table level.

In Source1, we measure accuracy in certain attributes of table fj_games. Then, after aggregating the
values we obtain only one value of accuracy for Source1. For measuring accuracy of games names,
we use a referential table that contains all the valid names. We define a distance (quantity of
different characters between two names) for deciding if a name has a mistyping error or it does not
belong to the referential table. In Table 7.1 we show the measured attributes and the way they are
measured.

Attribute Accuracy measurement

name If it belongs to the GamesReferentialTable
 name_accuracy = 1
Elsif it has mistyping error
 name_accuracy = 0,5
Else
 name_accuracy = 0

creator_uid If it belongs to fj_users table
 creator_uid_accuracy = 1
Else
 creator_uid_accuracy = 0

rates_quantity If it is equal to the quantity of users that rated the game
 rates_quantity_accuracy = 1
Else
 rates_quantity_accuracy = 0

rating If it is greater than 10 * quantity of users that rated the
game
 rating_accuracy = 0
Else
 rating_accuracy = 1

Table 7.1: Accuracy measurement for Source1

The value of accuracy at tuple level is obtained, for each tuple, in the following manner. If the name
of the game does not exist (in the referential) the tuple accuracy is set to 0, regardless of the rest of
the attributes’ values. If the game exists, a weight is assigned to each measured attribute, such that
the most important accuracy value is the one of the rating. The aggregation calculation is the
following:

If name_accuracy = 0
 tuple_accuracy = 0

Else
 tuple_accuracy = name_accuracy * 0.2 + creator_uid_accuracy * 0.1 +

rates_quantity_accuracy * 0.2 + rating_accuracy * 0.5

At table level we calculate accuracy as the average of the accuracy values of the tuples.

In Source2 we measure accuracy analogously to Source1. In Table 7.2 we show these
measurements.

Adriana Marotta

155

The value of accuracy at tuple level is obtained analogously to the case of Source1. Here, the
attribute with highest weight is the one containing the points assigned by each user. The aggregation
calculation is the following:

If game_name_accuracy = 0 or points_accuracy = 0
 tuple_accuracy = 0

Else
 tuple_accuracy = game_name_accuracy * 0.2 + points_accuracy * 0.8

At table level we calculate accuracy as the average of the accuracy values of the tuples.

Attribute Accuracy measurement
game_name If it belongs to the GamesReferentialTable

 game_name_accuracy = 1
Elsif it has mistyping error
 game_name_accuracy = 0,5
Else
 game_name_accuracy = 0

points If it is between 1 and 10
 points_accuracy = 1
Else
 points_accuracy = 0

Table 7.2: Accuracy measurement for Source2

Source Quality Models for Accuracy

When we have many accuracy measurements of a source at different points through time, we
calculate the accuracy model for the source, which is the probability distribution of the possible
accuracy values. A precision is selected for accuracy values.

We build these models and we maintain the history of these models, as it is proposed in Chapter 4
of this thesis.

DIS Quality Evaluation for Accuracy

For evaluating accuracy in DataTarget1 we apply the following propagation functions for each
activity of the transformation graph:

Consider input_data as the relation that enters the activity and output_data as the relation that
results from the activity, and acc(x) as the accuracy of relation x.

o Names Cleaning:
acc(output_data) = acc(input_data) + 0.1
The cleaning process is estimated to improve the accuracy of the input relation in a 10%

o Group By:
acc(output_data) = acc(input_data)

o Join:
acc(output_data) = acc(input_data_1) * acc(input_data_2)

o Select-Project:
acc(output_data) = acc(input_data)

Experimentation

156

o Union:
acc(output_data) = (acc(input_data_1) * |input_data_1| + acc(input_data_2) * |input_data_2|) /

|output_data|

DIS Quality Models for Accuracy

Using the requirements of type maximum, minimum, average or most frequent, DIS Quality is
evaluated and compared to the requirements. The history of these evaluations is maintained.

Using the requirement of type probability given by the user for DataTarget1, DIS Quality
Certainty , which is the probability that our system satisfies the required value, is calculated as
described in Chapter 4.

DIS Quality Distribution is calculated for each possible accuracy value of DataTarget1 (not
taking into account the requirements), as described in Chapter 4.

3. Quality Models Manager – The Prototype

The Quality Models Manager prototype has three main functionalities: (1) calculating source
quality models, (2) evaluating DIS quality, comparing to quality requirements, and (3) calculating
DIS quality models.

The tool is able to measure accuracy of data sources according to the criteria explained in previous
section, to calculate the probability distribution of accuracy values from a set of successive
measurements, and to maintain and show the histories of both. It executes the evaluation of the
accuracy of the selected data target, according to the criteria presented in previous section. It
receives user quality requirements and it shows the satisfaction or dissatisfaction of them. In
addition, it is able to calculate DIS Quality Certainty (probability of satisfying a user quality
requirement), and also to calculate the probability distribution of DIS quality values. Finally, it
manages the history of the DIS models.

3.1 Prototype Architecture and Implementation

The prototype’s general architecture is designed according to the Model-View-Controller pattern,
which allows separating data (model) and user interface (view), through a third component
(controller). The model component encapsulates the access and management of data, the view
component manages the user interface, and the controller component processes and responds to
user actions and generates changes to the model.

We developed the tool as a web application for practical reasons. Therefore our view is the HTML
page, and the cotroller receives user actions and acts on the model, which manages a database that
stores the system metadata and the sources databases. Finally the model prepares information to be
shown by the view. Figure 7.3 shows the general architecture of the tool.

Adriana Marotta

157

View

Model

Controller

event

change
information

results

Metadata Source1 Source2

Figure 7.3: Model-View-Controller Architecture

The Controller module implements the different tool functionalities, through five modules:
Measurement, which measures accuracy of sources data, Distribution Calculation, which calculates
the quality models of sources data, DIS Certainty Calculation and DIS Quality Distribution, which
calculates DIS Certainty and DIS quality distribution, interacting with Evaluation module.
Evaluation module implements the propagation of DIS quality values from the sources to the data
targets and also the propagation of quality requirements from the data targets to the sources. This
module is totally implemented in this prototype but in later versions it will connect to DQE
prototype (mentioned before), using its functionalities for quality evaluation. See Figure 7.4 for
Controller architecture.

Measurement
Distribution
Calculation

Certainty
Calculation

DIS Distribution
Calculation

Quality
Evaluation

Model

Controller

Figure 7.4: Controller Architecture

The prototype is implemented in PHP language and uses MySQL as database management system
for the metadata.

Experimentation

158

3.2 Tool Functionalities

In this section we show the functionalities of the tool and the way it interacts with the user.

3.2.1 Source Models Calculation

After selecting a source and a quality factor, the user must choose among the following actions:
Execute Measurement, History of Measurements, Distribution Calculation, History of Distributions
(see this in Figure 7.5-(a))

Execute Measurement functionality asks the user for the current date and then executes the
measurement of the quality factor on the entire source. It then shows the obtained quality values for
each cell, for each tuple, and the calculated quality value for the whole source (Figure 7.5-(b)).

(a)

(b)

Figure 7.5: (a) Options for source models management, (b) Result of a source measurement

History of Measurements allows selecting from a list containing all the measurement dates, a
starting date and an ending date, and then it shows the list of obtained quality values and optionally
it shows them graphically. See an example in Figure 7.6.

Distribution Calculation obtains the histogram and the probability distribution and indicators, from
the measurements that were executed during a period selected by the user. The user can re-calculate
the last calculated distribution, adding new measurements, or he can calculate a new distribution
with the new measurements.

Adriana Marotta

159

History of Distributions functionality gives the history of all the distributions calculated. The
evolution of the distribution indicators can be observed graphically. See an example in Figure 7.7.

Figure 7.6: History of Measurements

Dates

Accuracy

Dates

Accuracy

Figure 7.7: History of Distributions – Graphs of minimums and modes

Experimentation

160

3.2.2 DIS Quality Evaluation

The system receives the user quality requirements that may be of type maximum, minimum, average
or most frequent, and then it evaluates the corresponding quality values given by the DIS. For
example if the user enters two requirements, one for the minimum and another for the average, then
the minimum and average values given by the DIS are calculated.

This evaluation is made for certain target; in our case for DataTarget1.

3.2.3 DIS Models Calculation

This functionality has three options: DIS Quality Certainty, DIS Quality Distribution, and History
of DIS Quality.

DIS Quality Certainty calculates the probability of satisfying the current user quality requirements
of type probability. For the calculation it uses one of the previously calculated distributions of
Source1 and one of the previously calculated distributions of Source2, which are chosen by the
user. For obtaining the current DIS Certainty, one should choose the last distributions of the
sources.

DIS Quality Distribution calculates the probability distributions of the possible accuracy values of
the data target. Analogously to DIS Certainty functionality, the user chooses the sources
distributions that are considered.

History of DIS Quality shows all the previously calculated DIS Quality Certainty or DIS Quality
Distributions. The evolution of these values is also shown graphically. See an example in Figure
7.8.

Distribution

Figure 7.8: History of DIS Quality Distributions – Graph of expectations evolution

Adriana Marotta

161

4. Experiment Execution and Results

In our experiment we built several quality models of the sources and the DIS. We simulated sources
updates during some months (between 4 and 6), and for each source we measured accuracy
periodically (approximately each 3 days) and we constructed a quality model each month.

In the simulation we chose between two kinds of data generation: one that generated a low
percentage of errors and another that generated a high percentage of errors. The idea was to
simulate two kinds of users, an expert one that makes few errors when entering data, and an
inexpert one that very frequently makes errors.

We modeled accuracy of Source1 during approximately 4 months. In the simulation data was
entered by an expert user, except in the last month, where during 9 days, an inexpert user was
entering data.

We show in Figure 7.9 the graph of the accuracy values that were measured each few days. Then
observe, in Figure 7.10 how the models indicators, minimum and mode evolved during the same
period. Both were stable in the first models and in the last one they decreased.

Figure 7.9: History of measurements of Source1 accuracy

Experimentation

162

Accuracy Accuracy

Dates Dates

Figure 7.10: History of Distributions of Source1 – Graphs of minimums and modes

In Figure 7.11 we can observe the evolution of the indicators maximum and expectation.

Dates

Accuracy

Dates

Accuracy

Figure 7.11: History of Distributions of Source1 – Graphs of maximums and expectations

The evolution of the distribution indicators shows that during the first month the maximum and
expectation values decrease, while minimum and mode maintain the same values.

As can be observed, as a consequence of 9 days with the inexpert user, the minimums, expectations
and modes decrease drastically.

We modeled accuracy of Source2 during approximately 6 months. During the middle two months
the inexpert user entered the data. In Figures 7.12 and 7.13 we show the obtained distributions
graphically.

Adriana Marotta

163

Dates

AccuracyAccuracy

Dates

Figure 7.12: History of Distributions of Source2 – Graphs of maximums and minimums

Dates

Accuracy

Figure 7.13: History of Distributions of Source2 – Graphs of expectation and modes

Models of DIS Quality were calculated using the models of sources quality.

DIS Quality Certainty was calculated at different points in time. First, we stated the following
requirement:

Minimum Accuracy: 0.8 Probability: 0.8

Later, after verifying the low value obtained for Certainty, we stated the following requirement:

Minimum Accuracy: 0.7 Probability: 0.8

In each of these calculations the corresponding source quality distributions were used, according to
the moment of the calculation. The obtained results are shown in Figure 7.14. In the table given by
the tool each row corresponds to a DIS Certainty calculation. Each calculation corresponds to
certain distribution of each source, shown in the first two columns, and to certain user quality
requirement. The columns “required accuracy” and “with probability” correspond to the user

Experimentation

164

quality requirement; they give the minimum accuracy required and the probability accepted for this
minimum. The column Certainty gives the probability that the DIS satisfies the required minimum
accuracy. It should be equal or greater than the probability given by the user, for satisfying the user
quality requirement.

Figure 7.14: DIS Quality Certainty history

As it can be observed, the DIS Certainty has decreased through time. With the first sources’
distributions there was a probability of 0.4 for accuracy ≥ 0.8, and 1 for accuracy ≥ 0.7. This
happens despite Source1 minimum was around 0.7, because there is a cleaning task in the process
that improves significantly the source’s data accuracy. With the following sources’ distributions the
probability for accuracy ≥ 0.8 and also for accuracy ≥ 0.7 decreases, because the minimum of
Source2 distribution decreases successively.

The probability distribution of DIS quality was also calculated at different points in time. In Figure
7.15 we show two examples: the distribution corresponding to the first sources distributions and the
distribution corresponding to the second sources distributions. As can be seen, these results are
consistent with the obtained in the Certainty calculation.

In Figure 7.8, previously shown, the history of the indicator expectation of DIS distributions is
presented. Here, we can observe that at first expectation decreases and then it maintains stable.

Adriana Marotta

165

Figure 7.15: DIS Quality Distributions

5. Experimentation Conclusions

The experimentation allowed us to make some observations and analyze them. In the following we
comment this analysis and we present some conclusions we arrived to.

5.1 Results Analysis

With respect to the source quality models, we could observe some characteristics of data sources
accuracy behavior. Sources accuracy behaviors are very dependent on the way the source is
updated. In the case of Source1, where we consider quality of the table fj_games, the source updates
result in an update on the attribute rating of fj_games (for the corresponding game). Therefore,
when new data has lower accuracy than previous one, it immediately impacts the source accuracy.
In contrast, in the case of Source2, where updates consist of insertions of new tuples, the decrement
of the accuracy in new data does not immediately impact on the source accuracy. A great
percentage of new tuples with lower accuracy must be inserted for impacting the accuracy of the
whole source. This happens because the accuracy of a table is calculated as the average of the
accuracies of its tuples. This characteristic of the behavior is shown in the experiments, since in
Source1 the quality of new data is decreased for nine days and it impacts the quality models, while
in Source2 the quality is decreased for two months and then it impacts the quality models. On the
other hand, we observe that in Source1, at the beginning, accuracy decreases. This is because at the
beginning the games were not rated by anybody and then they start being rated, so mistakes start
being introduced. Then they maintain stable if we do not change the kind of data generation.

Experimentation

166

The calculated DIS quality models show that the probabilities for DIS accuracy values are quite
lower than the probabilities at the sources. This is completely reasonable, since for verifying a
quality condition at DIS level the corresponding conditions at sources level must be verified
simultaneously. If there were more sources in the system, the probabilities of the DIS would be
even lower. This fact leads us to think that a DIS with many sources needs very high probabilities
of sources verifying the conditions, for having an acceptable level of requirement satisfaction.

Observing the calculated DIS Certainty and DIS probability distributions, we note that Source2 has
more incidence than Source1 in the quality given by the DIS. We think this is because Source2
continuously increases its quantity of rows, while Source1 maintains stable in its quantity of rows.

Due to the considered reality and to the way data was generated, the accuracy values presented by
the sources through time did not vary very much (except when we explicitly changed the level of
errors generated). Therefore, the calculated distributions had only two or three possible accuracy
values.

5.2 Conclusions

This experimentation was a first attempt to applying the proposed techniques. We believe there is
much more to do with respect to experimentation. For time limitations reasons, we designed a very
limited experiment, where we have only two data sources, only one data target and only one quality
factor. We should extend these aspects and also increment the number of executions of the
prototype, in order to arrive to more significant results. On the other hand, although the generation
of data was done very carefully, generating data and errors randomly, we should do the
experimentation with real data.

DIS Quality Certainty calculation turned into a very heavy algorithm; the quantity of operations it
implies quickly explodes. When executing this functionality in the prototype, sometimes some
minutes are required and in some occasions it cannot arrive to an end. This would get worse if we
had, for example, more data sources. This is an important limitation that must be taken into account
for future improvements or changes on the proposal. Nevertheless DIS Quality Certainty may be
calculated from the calculation of DIS distribution.

DIS Quality Certainty calculation has not the previously commented problem if we work with
freshness quality factor. In this case, as it is explained in Chapter 4 of this thesis, the calculation is
much simpler. For time limitations reasons we did not run the experimentation with freshness
factor.

In spite of being a very primary experimentation, we believe that it was interesting and useful. It
materialized the proposals about the quality models, showing their feasibility and also their
usefulness. The latter was verified mainly when we discovered characteristics of quality behavior
that we had not perceived before the experimentation.

This experimentation did not include all the proposals of the present thesis. Quality change
detection and quality repair were not addressed. We plan to extend it including these techniques.

6. Summary

In this chapter we presented the experimentation we have done in order to apply the techniques
proposed in the present thesis.

Adriana Marotta

167

We selected a study case, which was a DIS containing two data sources. Data was successively
generated for both sources so that their states through time were simulated. The generation was
made with random data and random errors in it. However, the error margins were managed so that
two kinds of users entering data were simulated; an expert user and an inexpert one. A data target
was defined and also the transformation applied to source data for obtaining it.

Our tool prototype allowed us to successively measure accuracy at source data and to construct
models of accuracy behavior for each source. It also allowed calculating DIS accuracy models: DIS
Quality Certainty, given certain requirement, and DIS Quality Distribution.

We measured sources accuracy during some months, each few days, and we calculated their models
each ten or more measurements. We calculated DIS models considering different pairs of sources
distributions.

We were able to make some observations and analysis that were presented in the last sections of
this chapter. In previous section we presented some conclusions that we could extract from the
experimentation.

Conclusions

168

Adriana Marotta

169

CCCHHHAAAPPPTTTEEERRR 888... CCCOOONNNCCCLLLUUUSSSIIIOOONNNSSS

1. Summary

This thesis presents a proposal for maintaining quality in a DIS. The proposal is based on the
construction and maintenance of quality behavior models, quality change detection and
determination of actions for repairing the quality of the DIS. The most specific parts of the solutions
are given for two quality factors: freshness and accuracy.

The most important support of the proposal are the quality behavior models. Thanks to them, the
quality changes detection mechanism is able to filter punctual changes that are not important for
DIS quality, and in consequence, repair to the DIS is only applied when changes on quality
behavior have occurred, avoiding unnecessary impacts on the DIS (which later would probably be
reverted).

Quality behavior models are probabilistic models of the quality values presented by the data. We
propose models for quality of source data and models for quality of data provided by the DIS.

A source quality model is a probability distribution of the quality values of the source. This
distribution provides useful indicators of source quality, such as expectation and mode. In the case
of freshness factor, the distribution is deduced from information about source data updates.
According to the available information, different techniques may be applied for constructing the
model. In the case of accuracy factor, the distribution is calculated from a set of measurements of
accuracy over the source data. The idea is that after an appropriate number of measurements that
have been done on source data over time, the distribution is calculated. For any quality factor, each
time a new distribution is calculated, the previous one (its indicators) is stored with the history of
the source models.

DIS quality models show the behavior of the targets-data quality given by the DIS. We characterize
DIS quality, through two different approaches, as: the quality values that the DIS can take, and the
quality considering the user quality requirements, i.e. the satisfaction or not of the quality
requirements. The DIS model may be given through three different aspects: (1) The DIS Quality
Certainty, which is the probability that the DIS satisfies the quality requirements that have a
probability associated, (2) the information about the satisfaction of the requirements of maximum,
minimum, average and most frequent value, and (3) the probability distribution of the possible
quality values satisfied by the DIS. (1) and (2) are calculated through the application of probabilistic
techniques, while (2) consists on the evaluation of DIS quality from the sources models’ indicators
and their comparison to the quality requirements.

The management of probabilities for the quality values in the system allowed us to propose a
variety of types of user quality requirements, which gives expressiveness to the user and allows him
to pose more flexible requirements. For example, the user may state as quality requirement the
average quality value he wants to obtain in certain query.

The mechanism proposed for quality changes detection is based on events that are managed through
rules. There are events that come from the sources to the DIS and events that are generated at the
system. The latter are generated as a consequence of a change on a source quality model, a change
in the transformation graph or a change in the user quality requirements. Rules process these events
and eventually generate new ones. With the successively application of rules the selection of the
real relevant changes is achieved. When a relevant change is detected an event is generated to be
captured by the quality repairing module. The defined events and rules are based on a classification
of changes according to how they affect the DIS.

Conclusions

170

For DIS quality repairing we propose to analyze the situation of the DIS beyond the occurred
change and the current conditions of the system. We are able to achieve this because we take
advantage of the quality models, their history, and information about other properties of the system
that affect the quality factor. For example, if we are analyzing a problem with freshness of data
given by the DIS, we may consider the cause of the freshness behavior change, the history of
freshness behavior in this data, and the history and current values of the activities’ costs of the
transformation graph. The analysis of DIS situation has as result an interpretation, and then the
possible suitable repairing actions are deduced from it. Rules are proposed for the deduction of
interpretations and actions. A ranked list of possible repairing actions is given as final result of this
process.

We did an experimentation with the purpose of applying some of the proposed techniques to a study
case the most close to reality as possible. We chose as application domain the playing and
evaluation of games in internet by a user community. We based our case on a real data source, but
we generated data for both considered data sources. Data sources were simulated through time. A
tool prototype was implemented, which allowed us to apply the proposed techniques for quality
models construction and maintenance. Some interesting observations about sources quality behavior
and DIS quality behavior could be made.

2. Contributions

The main contributions of this thesis are the following:

o Techniques for modeling quality behavior in a DIS
We propose to build and maintain probabilistic models of the quality factors at the sources and
DIS. We provide techniques for modeling quality of the sources for freshness and accuracy,
which apply to different scenarios. We also provide techniques for modeling quality of the DIS
for freshness and accuracy factors.

o A mechanism for detecting relevant quality changes in a DIS
We provide a mechanism for detecting changes of DIS quality from events that notify certain
changes in different DIS elements. The main advantage of the mechanism is that it filters a lot
of changes that are not relevant and selects only the changes that deserve a treatment, which
are the ones that generate the dissatisfaction of user quality requirements. After processing the
events and evaluating the effects of the changes it notifies only the relevant changes.

o A mechanism for analyzing DIS situation and finding the most suitable actions for recovering
quality
We provide a mechanism that from the occurred relevant changes analyzes the situation of the
DIS, basing on statistical information maintained in the management system, deduce an
interpretation of the situation and then determines a ranked list of actions for recovering DIS
quality. The mechanism basically consists of sets of rules, which can be extended adding new
rules, new interpretations and new actions. The provided interpretations, actions and rules
show the usefulness of the mechanism.

3. Concluding Remarks

Our proposal can be seen at two different levels of abstraction. The first level has the advantage that
its generality allows it to be applied to any quality factor. The second level consists of solutions that
are specific for freshness and accuracy quality factors. With respect to quality models, in the case of

Adriana Marotta

171

sources’ ones, the proposal of constructing and maintaining the models is general, may be applied
to any quality factor, while the proposed mechanisms for constructing the models is specifically for
freshness and accuracy. In the case of DIS quality models, we believe the whole proposal may be
applied to any factor, taking into account that there is a differentiation between two kinds of factors,
which are treated differently. With respect to quality change detection, the proposed mechanism as
well as the defined events and rules are general, they can be applied to any quality factor. Perhaps
some modification may be done to events’ attributes, adding information that is particular to a
quality factor, for passing it to the quality repairing module. Finally, with respect to DIS quality
repair, we consider that the proposed mechanism and the structure of the rules are general, while
the interpretations, statistics, actions and the particular rules presented are specific to freshness and
accuracy factors. Table 8.1 summarizes this analysis of the proposal.

We believe that the main advantage of this proposal is that it leads to the application of a
preventive strategy, at the same time optimizing the corrective actions that are applied to the DIS
for maintaining quality.

The use of probabilistic models for the quality of the DIS allows acting preventively, since actions
are taken if the possibility of not satisfying the required quality increases, for example if DIS
Quality Certainty decreases from 0.9 to 0.7. This means that in some cases actions are carried out
before quality values obtained by the users effectively get worse, so avoiding quality changes.

 General Specific to quality
factor

Source Quality Models To construct the models X

How to construct the
models X

DIS Quality Models To construct the models X

How to construct the
models X

Quality Changes
Detection

The mechanism X

Events and rules X

DIS Quality Repair The mechanism and rules
structure X

Interpretations, statistics,
actions, particular rules X

Table 8.1: Applicability of the proposal of this work

Corrective actions are optimized, since on one hand, they are applied only when DIS quality has
demonstrated that it really needs to be improved (because it had a change in its behavior), and on
the other hand, they are applied taking into account an analysis of the DIS situation, which is based
on a big amount of information and statistics about the DIS.

In this work we propose to take actions when DIS quality behavior does not satisfy user quality
requirements; concretely, when DIS Quality Certainty does not reach the probability asked by the
user, and when quality indicators: minimum, maximum, average or most probable value, do not
reach the ones asked by the user. However, we also propose to maintain the probability distribution
of DIS quality values, which is independent of user quality requirements. This information is very
useful for doing tendencies studies. Tendencies could be detected in the histories of quality models,

Conclusions

172

and, defining appropriate criteria, we could act for avoiding harmful changes on the DIS. The
complexity of this problem resides in the determination of valid criteria for deciding when
something is a clear tendency such that it can be assumed that the analyzed fact will continue
evolving in the same way.

4. Limitations

Up to now we have detected two limitations in our proposal. The first one refers to the kind of
application domains where it can be applied, and the second one refers to the implementation of one
of the proposed algorithms.

There may be some application domains that cannot admit even one error, or cannot admit that a
quality value passes certain threshold even one time. For example, in the management of data
obtained from medical instruments, which give information for determining an exact medicine dose
or treatment for a patient. In our proposal, quality behavior is observed and certain quality behavior
is assured, but it is not guaranteed that some punctual dissatisfaction of quality requirements will
not occur.

The experimentation, which was our first attempt to apply the proposed techniques, has shown that
one of the probability calculations we propose, in some cases, is extremely expensive to implement.
This happens when we calculate DIS Quality Certainty for accuracy, which is the probability of
satisfying certain accuracy value at the DIS, and there are a big number of combinations of sources
accuracy values that satisfy this value. In this case, it must be calculated the union of many
probabilistic events, and this calculation may be very heavy. This problem gets worse as we
increment the quantity of sources of the DIS.

5. Future Work

With respect to the present work, there are some aspects that could be improved or treated more in
depth.

The specification of the framework, algorithms and mechanisms may be improved, completing and
unifying the models and specification languages. In particular, statistic data was not clearly
specified, and some assumptions were made for its utilization in the solutions.

The repairing actions, together with the possible system analysis and interpretations, may be studied
more in depth and many more cases may be deduced and specified. An interesting possibility for
the problem of quality repairing would be the proposition of patterns for deducing interpretations
and determining repairing actions, and a mechanism for their reusing.

Finally, much more experimentation should be done, testing different quality evolutions, and
considering completely real cases. The difficulty in this issue is that the real cases for our
experimentation must allow us to monitor the data for a period in time, being not enough to have
one particular image of data. In addition, experimentation should be extended to the detection and
treatment of changes. We currently have different prototypes, one for the management of quality
models, and another for quality evaluation; we should integrate them and add the functionalities for
change detection and repairing actions recommendations. These two functionalities would be
implemented through a logic language that allows defining rules.

With respect to new works related to this one or as a continuation of it, we see the following two
main directions:

Adriana Marotta

173

o The study of other quality factors, and the application and extension of this proposal to them.
As previously commented, our proposal has parts that are applicable to other quality factors
and other parts that are specifically proposed for accuracy and/or freshness factors. In addition,
the thesis of V. Peralta [Peralta-06], whose solutions are very much used in our proposal, also
focuses on accuracy and freshness. Therefore, we think that there is much work to do if a new
quality factor is selected and quality evaluation and quality maintenance techniques are
searched for it. We think that our framework can be reused, and also many parts of these both
proposals, but at the same time many new challenges will appear and as a secondary effect the
existing solutions would be improved and generalized.

o Addressing the problem of quality maintenance considering the relation that exists between the
different factors.
Up to now we considered each quality factor independently. Quality evaluation and
maintenance was solved for one quality factor at a time. However, we have detected that they
are not independent. Many quality factors are related in their semantics, which means that they
inherently affect each other; the value of one factor always affects the value of the other. For
example, availability affects freshness, freshness affects accuracy, and accuracy affects
usefulness. In addition, many quality factors are related because the actions that improve one
factor directly affect the other one. For example, adding a cleaning task to the transformation
process that is applied to data, affects the freshness of the resulting data. We believe that
quality maintenance considering many aspects of quality at the same time is an important
research challenge.

Bibliography

174

Adriana Marotta

175

BBBIIIBBBLLLIIIOOOGGGRRRAAAPPPHHHYYY

[Andritsos+06] P. Andritsos, A. Fuxman, R. J. Miller. Clean Answers over Dirty Databases: A
Probabilistic Approach. Proceedings of the 22nd International Conference on Data
Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA. IEEE 2006.

[Antova+07] L. Antova, C. Koch, D. Olteanu. MayBMS: Managing Incomplete Information with
Probabilistic World-Set Decompositions. Proceedings of the 23rd International Conference
on Data Engineering, ICDE 2007, April 15-20, 2007, Istanbul, Turkey. IEEE 2007.

[Ballou+95] D.P. Ballou, H.L. Pazer. Designing Information Systems to Optimize the Accuracy-
timeliness Tradeoff. Information Systems Research (6:1), Mar. 1995, pp. 51-72

[Ballou+99] D. P. Ballou, G. K. Tayi. Enhancing Data Quality in Data Warehouse Environments.
Communications of the ACM 42(1): 73-78 (1999)

[Ballou+03] D.P. Ballou, and Pazer H.L. (2003), “Modeling Completeness versus Consistency Tradeoffs
in Information Decision Systems”, IEEE Transactions fn Knowledge Management and Data
Engineering (15:1), Jan.\Feb. 2003, pp. 240-243

[Ballou+06] D. P. Ballou, I. N. Chengalur-Smith, R. Y. Wang. Sample-Based Quality Estimation of
Query Results in Relational Database Environments. IEEE Transactions on Knowledge and
Data Engineering. Vol 18, No 5, May 2006.

[Benjelloun+06] O. Benjelloun, A. Das Sarma, A. Halevy, J. Widom. ULDBs: Databases with Uncertainty
and Lineage. VLDB 2006

[Bertolazzi+01] P. Bertolazzi, M. Scannapieco. Introducing Data Quality in a Cooperative Context.
Proceedings of the 6th International Conference on Information Quality (ICIQ’01), Boston,
MA, USA, 2001.

[Boulos+05] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, D. Suciu. MYSTIQ: A system for
finding more answers by using probabilities. Proceedings of the ACM SIGMOD
International Conference on Management of Data, Baltimore, Maryland, USA, June 14-16,
2005. ACM 2005, ISBN 1-59593-060-4.

[Bouzeghoub+00] M. Bouzeghoub, Z. Kedad. A Logical Model for Data Warehouse Design and Evolution.
DaWaK’00.

[Bouzeghoub+03] M. Bouzeghoub, B. Farias Lóscio, Z. Kedad, A.C. Salgado. Managing the Evolution of
Mediation Queries. CoopIS/DOA/ODBASE 2003: 22-37

[Bright+02] L. Bright, L. Raschid. Using Latency-Recency Profiles for Data Delivery on the Web. In
Proc. of the 28th Int. Conf. on Very Large Databases (VLDB'02), China, 2002.

[Bugajski+05-a] J. Bugajski, R. L. Grossman, E. Sumner, Z. Tang. An event based framework for improving
information quality that integrates baseline models, causal models and formal reference
models. Int. Workshop on Information Quality in Information Systems (IQIS), June 2005,
USA.

[Bugajski+05-b] J. Bugajski, R. L. Grossman, E. Sumner, T. Zhang. A Methodology for Establishing
Information Quality Baselines for Complex, Distributed Systems. Proceedings of the 10th
International Conference on Information Quality MIT, Cambridge, Massachusetts, USA.
November 4 - 6, 2005 (IQ’2005).

[Bugajski+06] J. Bugajski, R. Grossman, E. Sumner, S. Vejcik. Monitoring Data Quality for Very High
Volume Transaction Systems. Proceedings of the 2006 International Conference on
Information Quality. IQ 2006.

[Caballero+04] I. Caballero, O. Gomez, M. Piattini. Getting Better Information Quality by Assessing and
Improving Information Quality Management. Proceedings of the 9th International
Conference on Information Quality MIT, 2004 (IQ’2004).

Bibliography

176

[Calero+01] C. Calero, M. Piattini, C. Pascual, M. A. Serrano. Towards Data Warehouse Quality
Metrics. Proceedings of the 3rd Intl. Workshop on Design and Management of Data
Warehouses, DMDW'2001, Interlaken, Switzerland, June 4, 2001.

[Canavos-88] G. Canavos. Probabilidad y Estadística. Aplicaciones y Métodos. Mc. Graw Hill. ISBN:
968-451-856-0

[Cappiello+06-a] C. Cappiello, P. Ficiaro, B. Pernici. HIQM: a Methodology for Information Quality
Monitoring, Measurement, and Improvement. In Proceedings of the International Workshop
on Quality of Information Systems, in conjunction with the 25th International conference on
Conceptual Modeling (ER 2006).

[Cappiello+06-b] C. Cappiello, B. Pernici. A Methodology for Information Quality Management in self-
healing Web Services. (Completed academic paper, Politecnico di Milano, Milano, Italy).
Proceedings of the 2006 International Conference on Information Quality (ICIQ’06, MIT IQ
Conference).

[Cappiello-04] C. Cappiello, C. Francalanci, B. Pernici. A Rule-Based Methodology to Support Information
Quality Assessment and Improvement. Studies in Communication Sciences, vol. 4, no. 2,
December 2004, pp. 137-154.

[Cappiello-05] C. Cappiello. Data Quality and Multichannel Services. Phd. Thesis. Politecnico di Milano,
Dipartimento di Elettronica e Informazione. May 2005.

[Chawathe-04] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman,
and J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources.
In Proceedings of IPSJ Conference, pp. 7-18, Tokyo, Japan, October 1994.

[Cheng+05] R. Cheng, S. Singh, S. Prabhakar. U-DBMS: a database system for managing constantly-
evolving data. Demo. 31st Int. Conference on Very Large Data Bases VLDB '05.
Trondheim, Norway, August-September, 2005.

[Cho+03] J. Cho, H. Garcia-Molina. Estimating Frequency of Change. ACM Transactions on Internet
Technology (TOIT), Volume 3, Issue 3 , Pages: 256 – 290. 2003.

[Choobineh-95] J. Choobineh, A. Kini. SQLSAM: SQL for Statistical Analysis and Modeling. Proceedings of
the 28th Annual Hawaii International Conference on System Sciences - 1995.

[Chu+05] F. Chu, Y. Wang, D. S. Parker, C. Zaniolo. Data Cleaning Using Belief Propagation. Int.
Workshop on Information Quality in Information Systems (IQIS), June 2005, USA.

[Curry+07] C. Curry, R. L. Grossman, D. Locke, S. Vejcik, J. Bugajski. Detecting changes in large data
sets of payment card data: a case study. Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. Industrial and
government track short papers. California, USA, August 2007.

[DaQuinCIS] DaQuinCIS. Joint project among: Università di Roma "La Sapienza", Politecnico di Milano,
Università di Milano Bicocca. http://www.dis.uniroma1.it/~dq/index.html (last accessed:
14th Oct. 2007).

[Elmasri+00] R. Elmasri, S. Navathe. Fundamentals of Database Systems. Addison-Wesley, 2000. ISBN
0-8053-1755-4.

[Etcheverry-07] L. Etcheverry. Medición de calidad en experimentos de expresión génica con microarrays.
EVaBio'07 I Workshop Español sobre Extracción y Validación de Conocimiento en Bases
de Datos Biomédicas, en el marco de CAEPIA 2007, 12/11/2007, Salamanca España.

[Etcheverry+06] L. Etcheverry, S. Tercia, A. Marotta, V. Peralta. Medición de la Exactitud de Datos Fuente:
Un caso de Estudio. Technical Report, InCo, Universidad de la República, Uruguay, 2006.

[Even+05] A. Even, G. Shankaranarayan. Value-Driven Data Quality Assessment. Proceedings of the
2005 International Conference on Information Quality (MIT IQ Conference).

Adriana Marotta

177

[Ferradina+95] F. Ferradina, T. Meyer, R. Zicari. Measuring the Performance of Immediate and Deferred
Updates in Object Database Systems. OOPSLA Workshop on Object Database Behaviour,
Benchmarks and Performance. Austin, Texas, October 15, 1995.

[Ferradina+96] F. Ferradina, S. Lautemann. An Integrated Approach to Schema Evolution for Object
Databases. OOIS 1996, London, U.K.

[Galhardas+00] H. Galhardas, D. Florescu, D. Shasha, E. Simon. AJAX: An Extensible Data Cleaning Tool,
SIGMOD 2000 demo paper (extended version).

[Galhardas+01] H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita. Declarative Data Cleaning:
Language, Model, and Algorithms. Proceedings of 27th International Conference on Very
Large Data Bases, VLDB 2001. Roma, Italy.

[Gertsbakh-89] I. B. Gertsbakh. Statistical Reliability Theory. Probability: Pure and Applied. A Series of
Text Books and Reference Books. MARCEL DEKKER, INC., 1989. ISBN: 0-8247-8019-1.

[Hillier+91] F. Hillier, G. Lieberman. Introducción a la Investigación de Operaciones. Mc.Graw-Hill.
1991. ISBN 968-422-993-3.

[IOCourse-07] Lecture notes of course: Introducción a la Investigación de Operaciones. 2007. Facultad de
Ingeniería, Universidad de la República, Uruguay.

[Jarke+97] M. Jarke, Y. Vassiliou. Data Warehouse Quality: A Review of the DWQ Project. Invited
Paper, Proc. 2nd Conference on Information Quality. MIT, Cambridge, 1997.

[Jeusfeld+98] M. A. Jeusfeld, C. Quix, M. Jarke. Design and Analysis of Quality Information for Data
Warehouses. ER 1998: 349-362

[Juran-88] J. M. Juran. Juran's Quality Control Handbook. 4 ed, ed. F.M. Gryna. 1988, New York:
Mc-Graw-Hill, Inc.

[Karakasidis+05] A. Karakasidis, P. Vassiliadis, E. Pitoura. ETL Queues for Active Data Warehousing. Int.
Workshop on Information Quality in Information Systems (IQIS), June 2005, USA.

[Koeller+02] A. Koeller, E. A. Rundensteiner. Incremental Maintenance of Schema-Restructuring Views.
EDBT’02

[Lakshmanan+96] L. V. S. Lakshmanan, F. Sadri, I. N. Subramanian. SchemaSql – A Language for
Interoperability in Relational Multi-database Systems. VLDB’96

[Lautemann-97] S. Lautemann. Schema Versions in Object Oriented Database Systems. In proc. of the 5th.
Int’l. Conf. On Database Systems for Advanced Applications (DASFAA), Melbourne,
Australia, April 1997.

[Lee+00] M. Lee, T. W. Ling, W. L. Low. IntelliClean: a knowledge-based intelligent data cleaner.
Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery
and data mining, August 20-23, 2000, Boston, MA, USA. ACM, 2000

[Lee+02] Y. Lee, D. Strong, B. Kahn, R. Wang. AIMQ: A Methodology for Information Quality
Assessment. Information & Management, December 2002, Volume 40, Issue 2, pp. 133-146.

[Liu+04] Z. Liu, C. Luo, J. Cho, W. W. Chu. A Probabilistic Approach to Metasearching with
Adaptive Probing. ICDE 2004

[Madnick+01] S. Madnick, R. Wang, F. Dravis, X. Chen. Improving the Quality of Corporate Household
Data: Current Practices and Research Directions. Proceedings of the Sixth International
Conference on Information Quality, November 2001. pp. 92-104.

[Madnick+04] S. Madnick, R. Wang, X. Xian. The Design and Implementation of a Corporate
Householding Knowledge Processor to Improve Data Quality. Journal of Management
Information Systems, Vol. 20, No. 3, Winter 2003-04, pp 41-69.

Bibliography

178

[Marchetti+03] C. Marchetti, M. Mecella, M. Scannapieco, A. Virgillito, R. Baldoni. Data Quality
Notification in Cooperative Information Systems. International Workshop on Data Quality
in Cooperative Information Systems. Italy, 2003.

[Marotta+03] A. Marotta, R. Ruggia. Quality Management in Multi-Source Information Systems. II
Workshop de Bases de Datos. Jornadas Chilenas de Computación. Chile. Nov. 2003.

[Marotta+05] A. Marotta, R. Ruggia. Managing Source Quality Changes in Data Integration Systems.
Second International Workshop on Data and Information Quality (DIQ’05) (with CAISE).
June, 14th. 2005, Porto, Portugal

[Marotta+06] A. Marotta, F. Piedrabuena, A. Abelló. Managing Quality Properties in a ROLAP
Environment. In Proceedings of 18th. Conference on Advanced Information Systems
Engineering (CAISE’06). 5-9 June, 2006. Luxembourg.

[McBrien+02] P. McBrien, A. Poulovassilis. Schema Evolution in Heterogeneous Database Architectures,
a Schema Transformation Approach. CAiSE’02: 484-499.

[Mecella+03] M. Mecella, M. Scannapieco, A. Virgillito, R. Baldoni, T. Catarci, C. Batini. The
DaQuinCIS Broker: Querying Data and Their Quality in Cooperative Information Systems.
J. Data Semantics I 2003:208-232

[MSISQuality-07] Analisis de Factores de Calidad en Sistemas de Información Multi-fuentes. Project at
Universidad de la República, supported by Comisión Sectorial de Investigación Científica.
Main researchers: A. Marotta, V. Peralta, R. Ruggia. Finished: March, 2007.

[Moraes+07] M. Moraes Batista, A. C. Salgado. Information Quality Measurement in Data Integration
Schemas. 5th International Workshop on Quality in Databases at VLDB. September 23,
2007, Vienna, Austria.

[Müller+03] H. Müller, J. C. Freytag. Problems, Methods, and Challenges in Comprehensive Data
Cleansing. Technical Report, HUB-IB-164, Humboldt University Berlin, Berlin, Germany,
2003.

[Naumann+99] F. Naumann, U. Leser, J. C. Freytag. Quality-driven Integration of Heterogenous
Information Systems. VLDB 1999: 447-458

[Naumann+00] F. Naumann, C. Rolker. Assessment Methods for Information Quality Criteria. 5th.
International Conference on Information Quality, 2000. IQ 2000: 148-162.

[Neely-05] M. P. Neely. The Product Approach to Data Quality and Fitness for Use: A Framework for
Analysis. Proceedings of the 10th International Conference on Information Quality MIT,
Cambridge, Massachusetts, USA. November 4 - 6, 2005 (IQ’2005)

[Nguyen+89] G. T. Nguyen, D. Rieu. Schema Evolution in Object-Oriented Database Systems. Data &
Knowledge Engineering (DKE) , Volume 4, 1989.

[Nica+98] A. Nica, A. J. Lee, E. A. Rundensteiner. The CVS Algorithm for view synchronization in
evolvable large-scale information systems. EDBT’98.

[Nica+99] A. Nica, E. A. Rundensteiner. View Maintenance after View Synchronization. IDEAS’99

[Oliveira+04] P. Oliveira, F. Rodrigues, P. Henriques. Limpeza de Dados - Uma Visão Geral. In Proc. of
Data Gadgets Workshop, Malaga, Spain, 2004.

[Oliveira+05] P. Oliveira, F. Rodrigues, P. Henriques. A Formal Definition of Data Quality Problems.
Proceedings of the 10th International Conference on Information Quality MIT, Cambridge,
Massachusetts, USA. November 4 - 6, 2005 (IQ’2005)

[Papastefanatos+07] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou. What-If Analysis for Data
Warehouse Evolution. Data Warehousing and Knowledge Discovery, 9th International
Conference, DaWaK 2007, Regensburg, Germany, September 3-7, 2007.

Adriana Marotta

179

[Peralta+04] V. Peralta, R. Ruggia, Z. Kedad, M. Bouzeghoub A Framework for Data Quality Evaluation
in a Data Integration System. 19º Simposio Brasileiro de Banco de Dados (SBBD’2004).
Brasil, October 2004.

[Peralta-06] V. Peralta. Data Quality Evaluation in Data Integration Systems. PhD Thesis. Université de
Versailles, France and Universidad de la República, Uruguay. November, 2006.

[Pon+05] R. K. Pon, A. F. Cárdenas. Data Quality Inference. Int. Workshop on Information Quality in
Information Systems (IQIS), June 2005, USA.

[Pipino+02] L. L. Pipino, Y. W. Lee, R. Y. Wang. Data Quality Assessment. Communications of the
ACM. April 2002 / Vol. 45, No. 4ve.

[Quass-99] D. Quass. A framework for research in data cleaning. Draft, Brigham Young University,
1999.

[Quix-99] C. Quix. Repository Support for Data Warehouse Evolution. DMDW’99

[Rahm+00] E. Rahm, H. H. Do. Data Cleaning: Problems and Current Approaches. IEEE Data
Engineering Bulletin, Volume 23(4): 3-13 (2000)

[Raman+01] V. Raman, J. Hellerstein. Potter's Wheel: An Interactive Data Cleaning System. In Proc. of
the 27th Int. Conf. on Very Large Data Bases (VLDB’01), Roma, Italy, 2001.

[Rundensteiner+97] E. A. Rundensteiner, A. J. Lee, A. Nica. On Preserving views in evolving environments.
KRDB’97.

[Scannapieco+02] M. Scannapieco, B. Pernici, E. Pierce. IP-UML: Towards a Methodology for Quality
Improvement Based on the IP-Map Framework. 7th. International Conference on
Information Quality, 2002. (IQ 2002).

[Scannapieco+04] M. Scannapieco, A. Virgillito, C. Marchetti, M. Mecella, R. Baldoni. The DaQuinCIS
Architecture: a Platform for Exchanging and Improving Data Quality in Cooperative
Information Systems. Information Systems 29, 7 (2004), 551–582.

[Scannapieco+05-a] M. Scannapieco, P. Missier, C. Batini. Data Quality at a Glance. Datenbank-Spektrum
(German data base technology journal, successor of "Datenbank-Rundbrief"), 2005.

[Scannapieco+05-b] M. Scannapieco, B. Pernici, E. M. Pierce. IP-UML: A Methodology for Quality
Improvement based on IP-MAP and UML. In Advances in Management Information
Systems - Information Quality (AMIS-IQ) Monograph, R. Y. Wang, E. M. Pierce, S. E.
Madnick, and C. W. Fisher, Eds. Sharpe, M.E., April 2005.

[Shankaranarayan+00] G. Shankaranarayan, R. Wang, M. Ziad. IP-MAP: Representing the Manufacture of an
Information Product. Proceedings of the 2000 International Conference on Information
Quality, October 2000. pp. 1-16.

[Shankaranarayan+03] G. Shankaranarayan, M. Ziad, R. Y. Wang. Managing Data Quality in Dynamic
Decision Making Environments: An Information Product Approach. Journal of Database
Management (14:4), Oct- Dec 2003, pp. 14-32

[Skarra+86] A. H. Skarra, S. B. Zdonik. The Management of Changing Types in an Object-Oriented
Database. OOP SLA 1986, Portland, Oregon.

[Strong+97] D. M. Strong, Y. W. Lee, R. Y. Wang. Data Quality in Context. Communications of the
ACM. May 1997/Vol.40, No.5.

[TDQM] http://web.mit.edu/tdqm/www/index.shtml

[Theodoratos+99] D. Theodoratos, M. Bouzeghoub. Data Currency Quality Factors in Data Warehouse
Design. In Proc. of the Int. Workshop on Design and Management of Data Warehouses
(DMDW'99), Germany, 1999.

Bibliography

180

[Vassiliadis+01] P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis, T. K. Sellis. ARKTOS:
towards the modeling, design, control and execution of ETL processes. Information
Systems, Volume 26, Number 8: 537-561. 2001.

[Virtamo-04] J. Virtamo. Poisson Process. Lecture notes of course Queueing Theory, 2004. Helsinki
University of Technology Networking Laboratory.

[Wang+05] R. Y. Wang, K. Chettayar, F. Dravis, J. Funk, R. Katz-Haas, C. Lee, Y. Lee, X. Xian, S.
Bhansali. Exemplifying Business Opportunities for Improving Data Quality from Corporate
Household Research. In Advances in Management Information Systems - Information
Quality (AMIS-IQ) Monograph, R. Y. Wang, E. M. Pierce, S. E. Madnick, and C. W.
Fisher, Eds. Sharpe, M.E., April 2005.

[Wang+95-a] R. Y. Wang, V. C. Storey, C. P. Firth. A Framework for Analysis of Data Quality Research.
IEEE Transactions on Knowledge and Data Engineering, 1995. 7(4): p. 623-641.

[Wang+95-b] R. Y. Wang, M. P. Reddy, H. B. Kon. Toward Quality Data: An Attribute-based Approach.
Decision Support System 13,1995, pp. 349-372.

[Wang-98] R. Y. Wang. A Product Perspective on Total Data Quality Management. Communications
of the ACM, February 1998, pp. 58-63.

[Weisstein-03] E. W. Weisstein. Inclusion-Exclusion Principle. From MathWorld--A Wolfram Web
Resource. http://mathworld.wolfram.com/Inclusion-ExclusionPrinciple.html. Last accessed
on June 2007.

[Wikipedia-07] Wikipedia. URL: www.wikipedia.org. Last accessed on November 2007.

[Zicari-91] R. Zicari. A Framework for Schema Updates In An Object-Oriented Database System. GIP
Altair, Politecnico di Milano, Milano, Italy, 1991.

Adriana Marotta

181

AAAPPPPPPEEENNNDDDIIIXXX III

Preliminary Analysis of the Problem of DIS Quality Changes

Characterization of the phenomenon

In order to study the repercussion of source quality changes on a DIS and with the ultimate goal of
proposing some solution for the management of this phenomenon, we start by giving a
characterization of the problem.

We have the intuition that this is a new problem which cannot be completely mapped to an existing
one, and whose particular features do not allow completely solving it, reusing existing solutions.

In the following we present some characteristics we identify.

Concerning the nature of changes:

• Difficult to predict. Changes in the quality values of a source can be difficult to predict. For
example, consider the quality property response time. Its value can change at any time, since
it depends on factors that are extern to the source, such as the network load. In such cases,
statistics can be useful for predicting changes and sometimes avoiding them. If, for example,
we know that at a certain time the network traffic will be heavier, perhaps we can change the
time of the data transmission from the source, achieving a better performance for the global
system.

• Frequent. Changes in source quality can be very frequent, specially when we consider various
quality properties, including those that do not depend on the source administrator decisions.

• Not in a certain direction. Quality values may oscillate; a property can change a value and
later come back to the same value in several occasions.

Concerning the origin of changes.

• In some cases source quality changes are not decided by the administrator of the source. This
may happen in several properties, like response time, or confidence. Sometimes these changes
are caused by changes in the communications or system infrastructure, or by characteristics
that the data acquires.

• A quality value of a source may be explicitly changed in order to satisfy a DIS requirement.
For example, some procedure at the source level may be improved achieving a better quality
value in some property.

Concerning the consequences of changes:

A change in a quality value of a source may have many different consequences, some of them are a
direct impact and others are generated by the management of the change. We enumerate them:

Appendix I

182

• Change in the system quality. In particular, the mediator quality may change and not continue
satisfying its required quality.

• Change in the required values of other sources of the system. This may happen in the cases of
some quality properties, in which the values of the mediator are a combination of the values
of the sources.

• Change in source selection. A source that provided data to the DIS may not continue being of
interest to the system, and therefore be left aside.

• Change in the system implementation. The mediator schema as well as the transformation
defined for the processing of the data coming from the sources, may be changed in order to
recuperate the quality of the system.

Source quality changes vs. source schema evolution

We compare the problem of source quality changes with the problem of source schema evolution in
a DIS in order to explore the possible reusing of the existing techniques for managing schema
evolution. The following are the differences we found:

• While in schema evolution we find a relatively low frequency of changes, quality changes
may have a very high frequency.

• While in schema evolution changes are always applied by the source DBA, quality changes
sometimes do not depend on source DBA.

• Schema changes in general are not reverted, while quality changes are sometimes reverted.

• Quality changes statistics can be used for predicting changes, furthermore, probabilistic
calculations may be used. In schema evolution, in general, changes cannot be predicted, since
they are associated to arbitrary business-related decisions.

• A systematic way for determining the value ranges that must be verified by the source quality
values for satisfying the DIS quality requirements, may be defined. In schema evolution it is
difficult, or not possible, to define restrictions for the source schemas variations in order to
maintain the integrated system stability.

• With respect to the impact of the changes on the sources, in the case of source schema
evolution, the impact may very high, since it may affect the rest of the source schema.
However, in the case of source quality changes, there is not a direct impact on the source.

• With respect to the impact of the changes on the DIS there is an important difference. Source
schema changes automatically generate changes in the mediator schema and in the
transformation process (this includes the case where a source or part of it disappears of the
system), while source quality changes automatically generate changes only in the mediator
quality values. In the case of source quality changes, in order to avoid or minimize mediator
quality changes, other modifications may be provoked, such as: mediator schema changes,
transformation process changes, elimination of sources, changes on quality values of other
sources.

Adriana Marotta

183

In Table 1 we summarize the presented differences.

 Source schema evolution Source quality changes

Frecuency Generally Low (not in some
cases like Web).

Potentially very High.

Origin DBA decision. Not necessarily DBA.

Behavior of changes Generally not reverted. May be reverted.

Predictability Cannot be predicted. May be predicted.

Valid ranges for
changes

Cannot be determined. May be determined.

Direct impact on the
source

Probably high. No impact.

Direct impact on the
DIS

Integrated schema and
transformation processes.

DIS quality values.

Table 1: Source schema evolution vs. source quality changes

Despite the differences existing between the two problems, there is an important similarity
concerning the management of the source changes. This includes the idea of “change propagation”,
which means calculating how the source change affects the DIS, following the transformation trace
(or mappings generated by the transformation). It also includes the idea of modifying the
transformation or generating a change in another source, in order to avoid the change in the
integrated schema. Therefore, the similarity consists on the actions that may be carried out for
managing the source change.

The characteristics of the problem of source quality changes that differentiate it from the problem
of source schema evolution, are the ones that give the possiblities of applying the preventive
approach. The similarities between both problems give the possibility of reusing ideas of source
schema evolution management, for the management of source quality changes, when we know
they will happen or after they have happened.

Appendix II

184

Adriana Marotta

185

AAAPPPPPPEEENNNDDDIIIXXX IIIIII

Quality Management Framework - Complete specification

Definition 3.6: The Quality Management Framework is a 6-uple QMF = <Sources, Targets,
QualityGraph, Properties, Algorithms, ChangeManagementElements>, where.

- Sources is a set of available data sources,

- Targets is a set of data targets,

- QualityGraph is a graph representing the DIS process,

- Properties is a set of functions for describing DISs features and quality measures,

- Algorithms is a set of quality management algorithms,

- ChangeManagementElements are the tools that are used to manage quality changes. ����

Definition 3.7: The ChangeManagementElements is a 7-uple QMF = <Events, DetectionRules,
Statistics, Interpretations, InterpretationRules, Actions, RepairingRules>, where.

- Events is a set of events managed by the QMS,

- DetectionRules is a set of rules that allow detecting relevant quality changes,

- Statistics is a set of functions that give current and historical information about the DIS,

- Interpretations is a set of interpretations about DIS situation,

- InterpretationRules is a set of rules that deduce interpretations from events and statistics,

- Actions is a set of actions that may be applied to the DIS,

- RepairingRules is a set of rules that define, from the interpretations, which actions may be taken
for recovering DIS quality ����

Definition 3.8: A data source is represented by a pair <Name, Description>, where Name is a
String that uniquely identifies the source and Description is a free-form text providing additional
information useful for end-users to identify the source (e.g. URL, provider, high-level content
description). ����

Definition 3.9: A data target is represented by a pair <Name, Description>, where Name is a String
that uniquely identifies the data target and Description is a free-form text providing additional
information useful for end-users to identify the target (e.g. application/process name, interfaces,
servers running the application). ����

Definition 3.10: PropTypes is a set of Strings, each of which names a property type. A property
type is for example, “user quality requirement”, “cost”, “source quality behavior model”. ����

Definition 3.11: PropertiesDefinition is a function PD: PropTypes � U that gives for each
property type the domain of the properties of the type, where U is the universe of domains (the set
of possible domains for a property). ����

Appendix II

186

Definition 3.12: A quality graph is a 5-uple G = (V, E, ρV, ρE, gp) where:

- V is the set of nodes. Vs, Vt and Va are the sets of source, target and activity nodes respectively;
with V = Vs ∪ Vt ∪ Va. Each source or target node corresponds to a source or target of the
framework.

- E ⊂ V × V × T is the set of edges. T ={c, d} distinguishes between control edges (c) and data
edges (d). The edge (u, v)t originates at node u, terminates at node v and has type t; with u, v ∈V,
t ∈ T.

- ρV represents the node properties. It is a function that given a node returns a function, which
given a property type returns a function, which given a property name returns the value of the
property,

 ρV : V → {f / f: PropTypes � (String � U) ∧

 ∀x ∈ PropTypes ∀y ∈ String (f(x))(y) ∈ PD(x) ∪ {⊥}},

 where U is the union of the property domains.

- ρE represents the edge properties. It is a function that given an edge returns a function, which
given a property type returns a function, which given a property name returns the value of the
property,

 ρE : E → {f / f: PropTypes � (String � U) ∧

 ∀x ∈ PropTypes ∀y ∈ String (f(x))(y) ∈ PD(x) ∪ {⊥}},

 where U is the union of the property domains.

- gp represents the graph properties. It is a function that for each property type, gives a function
that for each property name gives the value of the property,

gp: PropTypes � {f / f: String � U ∧

 ∀x ∈ PropTypes, ∀y ∈ String, (gp(x))(y) ∈ PD(x) ∪ {⊥}},

where U is the union of the property domains. ����

Definition 3.13: User Quality Requirement is a property type, whose corresponding domain
is a set of 4-uples of the form: <qfactor, type, value, prob>, where:

- qfactor is a String, representing the quality factor.

- type ∈ {“probability”, “maximum”, “minimum”, “average”, “frequency”), tells the type of the
requirement.

- value is a Decimal, the quality value of the requirement.

- prob ∈ 0..1, is the probabilistic value associated to the quality value. Used only when type =
“probability”. ����

Adriana Marotta

187

Definition 4.1: A source quality behavior model is a property type, whose corresponding domain is
a set of 3-uples of the form: <qfactor, source, distribution>, where

- qfactor is a String, representing the quality factor,

- source is a String, the name of the source to which the model corresponds,

- distribution is a set of pairs <qvalue, probability>, where

- qvalue is a Decimal number and

- probability is a number between 0 and 1, representing the probability of the quality value.
����

Definition 4.2: A source restriction is a restriction to be verified by the quality factor of the source.
It is a 4-uple r = <qfactor, source, op, value>, where:

- qfactor is a String, representing the quality factor

- source is a source node of the quality graph

- op ∈ {“<”, “ ≤”, “>”, “ ≥”, “=”}, is a comparison operator

- value is a Decimal ����

Definition 4.3: A restriction vector is a set of source restrictions, one restriction for each one of the
DIS sources, where all the restriction operators are the same. We use the following notation:

v = < r S1, …, r Sn>, where r Si is the restriction associated to source Si ����

Definition 4.4: A restriction-vector space is a set of restriction vectors. We use the following
notation:

s = {v 1, …, v m}, where v i is a restriction vector. ����

Definition 4.5: The accepted configurations is a property type, whose corresponding domain is a
set of pairs of the form: <req-set, rv-space>, where:

- reqs-set is a set of pairs of the form <target, req-name>, where:

 - target is the data target to which the requirement is associated

 - req-name is a String (the name of the requirement)

- rv-space is a restriction-vector space, which corresponds to the requirements of reqs-set. ����

Definition 4.8: A quality-values vector is a set of quality values, containing one value for each one
of the DIS sources. We use the following notation:

vv = < qvS1, …, qvSn>, where qvSi is the quality value associated to source Si ����

Definition 4.9: A DIS quality satisfaction model is a property type, whose corresponding domain is
a set of 3-uples of the form: <qfactor, requirements-set, sat-probability>, where

- qfactor is a String, representing the quality factor,

- requirements-set is a set of Requirements,

- sat-probability is a number between 0 and 1, representing the probability of the satisfaction of
these requirements by the DIS. ����

Appendix II

188

Definition 4.10: A DIS quality distribution model is a property type, whose corresponding domain
is a set of 3-uples of the form: <qfactor, data-target, distribution>, where

- qfactor is a String, representing the quality factor,

- data-target is a String, the name of the data target to which the model corresponds,

- distribution is a set of pairs <qvalue, probability>, where

- qvalue is a Decimal number and

- probability is a number between 0 and 1, representing the probability of the quality value.
����

Definition 4.11: A source quality models history is a property type, whose corresponding domain is
a set of 3-uples of the form: <qfactor, source, distributions>, where

- qfactor is a String, representing the quality factor,

- source is a String, the name of the source to which the model corresponds,

- distributions is a set of 5-uples, indicators = <minimum, maximum, expectation, mode,
timestamp>, where

- minimum, maximum, expectation and mode are Decimal numbers,

- timestamp is a date/time field, representing the instant when the distribution was stated as
current. ����

Definition 6.1 (from [Peralta-06]): A data path in a quality graph is a sequence of nodes of the
graph, where each node is connected to its successor in the sequence by a data edge. We denote a
data path, giving the sequence of nodes that compose it, comma separated and between square
brackets, for example [A0,A1,A3,A4]. We also use suspension points for omitting intermediate
nodes, for example [A0,…A4]. ����

Definition 6.2 (from [Peralta-06]1): Given a data path in a quality graph [A0,A1,…Ap], starting at a
source node A0, the path freshness is the freshness value propagated along the path (ignoring other
nodes of the graph), i.e. it is the sum of source data freshness of the source node, the processing
costs of the nodes in the path and the inter-process delays between the nodes:

PathFreshness([A0,…Ap]) = SourceFreshness(A0) + ∑x=0..p Cost(Ax) + ∑x=1..p
InterProcessDelay(Ax-1,Ax) ����

InterProcessDelay is the time that necessarily passes between two successive activities, without
considering synchronization delays. That is to say it may exist a time interval between two activities
generated by the way one activity passes data to the other, the frequency, etc.

Definition 6.3 (from [Peralta-06] 2): Given an activity node Ap, a critical path for Ap is a data path
[A 0,…Ap], from a source node A0, for which the freshness of data produced by node Ap (delivered
to each successor) equals the path freshness.

Freshness(Ap) = PathFreshness([A0,…Ap])

1 With minimum nomenclature modifications.
2 With minimum nomenclature modifications.

Adriana Marotta

189

Given a target node Ti, a critical path for Ti is the critical path of its predecessor activity. ����

Appendix III

190

Adriana Marotta

191

AAAPPPPPPEEENNNDDDIIIXXX IIIIIIIII

Change Detection Rules - Complete specification

Events

ClassName Attribute Attribute Description

QModelChange Qgraph Quality Graph where the change occurred.

Qfactor Quality factor corresponding to the changed
model.

SourceName Name of the source whose quality model has
changed.

ChangedIndicators Set of model indicators (min, expectation,
etc.) that changed.

Timestamp Date-time of the change.

TGraphChange QGraph Quality Graph where the change occurred.

QFactor Quality factor affected by the change.

Type Type of change that has occurred on the
transformation graph. Some possible values:
“structure”, “activity-cost”, “activity-
effectiveness”.

ActivityName Only in the case of change on certain graph
activity.

Timestamp Date-time of the change.

QReqChange QGraph Quality Graph where the change occurred.

ChangedReq Requirement that has changed.

Timestamp Date-time of the change.

QSatisfactionChange QGraph Quality Graph where the change occurred.

Requirements Considered requirements.

OriginalChange Change that generated the level-1 event.

OriginalSource Source where the change occurred.

GraphChange Kind of change that occurred on the
transformation graph.

ChangedActivity Graph activity where a change occurred.

ChangedReq Requirement that has changed.

Timestamp Date-time of the original change.

CertaintyChange QGraph Quality Graph where the change occurred.

QFactor Quality factor affected by the change.

OriginalChange Change that generated the level-1 event.

Appendix III

192

OriginalSource Source where the change occurred

GraphChange Kind of change that occurred on the
transformation graph.

ChangedActivity Graph activity where a change occurred.

ChangedReq Requirement that has changed.

Timestamp Date-time of the original change.

QValuesDissatisfaction QGraph Quality Graph where the change occurred.

Requirements Set of requirements that are not satisfied.

OriginalChange Change that generated the level-1 event.

OriginalSource Source where the change occurred.

GraphChange Kind of change that occurred on the
transformation graph.

ChangedActivity Graph activity where a change occurred.

ChangedReq Requirement that has changed.

Timestamp Date-time of the original change.

ProbabilityDissatisfaction QGraph Quality Graph where the change occurred.

QFactor Quality factor.

OriginalChange Change that generated the level-1 event.

OriginalSource Source where the change occurred.

GraphChange Kind of change that occurred on the
transformation graph.

ChangedActivity Graph activity where a change occurred.

ChangedReq Requirement that has changed.

Timestamp Date-time of the original change.

Change Detection Rules

Rules for QModelChange events:

EVENT: e1: QModelChange
CONDITION : SelectReqs (‘minimum’, GetCorrespondingRequirements (e1.QGraph, e1.QFactor,
 e1.SourceName)) ≠ ∅
 AND ‘minimum’ ∈ e1.ChangedIndicators
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = SelectReqs (‘minimum’,
 GetCorrespondingRequirements (e1.QGraph, e1.QFactor, e1.SourceName))
 - OriginalChange = ‘QModelChange’
 - OriginalSource = e1.SourceName
 - GraphChange = NULL

Adriana Marotta

193

 - ChangedActivity = NULL
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

EVENT: e1: QModelChange
CONDITION : SelectReqs (‘maximum’, GetCorrespondingRequirements (e1.QGraph, e1.QFactor,
 e1.SourceName)) ≠ ∅
 AND ‘maximum’ ∈ e1.ChangedIndicators
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = SelectReqs (‘maximum’,
 GetCorrespondingRequirements (e1.QGraph, e1.QFactor, e1.SourceName))
 - OriginalChange = ‘QModelChange’
 - OriginalSource = e1.SourceName
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

EVENT: e1: QModelChange
CONDITION : SelectReqs (‘average’, GetCorrespondingRequirements (e1.QGraph, e1.QFactor,
 e1.SourceName)) ≠ ∅
 AND ‘expectation’ ∈ e1.ChangedIndicators
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = SelectReqs (‘average’,
 GetCorrespondingRequirements (e1.QGraph, e1.QFactor, e1.SourceName))
 - OriginalChange = ‘QModelChange’
 - OriginalSource = e1.SourceName
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

EVENT: e1: QModelChange
CONDITION : SelectReqs (‘frequency’, GetCorrespondingRequirements (e1.QGraph, e1.QFactor,
 e1.SourceName)) ≠ ∅
 AND ‘mode’ ∈ e1.ChangedIndicators
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = SelectReqs (‘frequency’,
 GetCorrespondingRequirements (e1.QGraph, e1.QFactor, e1.SourceName))
 - OriginalChange = ‘QModelChange’
 - OriginalSource = e1.SourceName
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

EVENT: e1: QModelChange
CONDITION : Get_Requirements (e1.QGraph, e1.QFactor, ‘probability’) ≠ ∅
ACTION : Create event e2: CertaintyChange, attribute values:

Appendix III

194

 - QGraph = e1.QGraph
 - QFactor = e1.QFactor
 - OriginalChange = ‘QModelChange’
 - OriginalSource = e1.SourceName
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

Rules for TGraphChange events:

EVENT: e1: TGraphChange
CONDITION : Get_Requirements (e1.QGraph, e1.QFactor, ‘minimum’) ≠ ∅
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = Get_Requirements (e1.QGraph, e1.QFactor, ‘minimum’)
 - OriginalChange = ‘TGraphChange’
 - OriginalSource = NULL
 - GraphChange = e1.Type
 - ChangedActivity = e1.ActivityName
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

EVENT: e1: TGraphChange
CONDITION : Get_Requirements (e1.QGraph, e1.QFactor, ‘maximum’) ≠ ∅
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = Get_Requirements (e1.QGraph, e1.QFactor, ‘maximum’)
 - OriginalChange = ‘TGraphChange’
 - OriginalSource = NULL
 - GraphChange = e1.Type
 - ChangedActivity = e1.ActivityName
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

EVENT: e1: TGraphChange
CONDITION : Get_Requirements (e1.QGraph, e1.QFactor, ‘average’) ≠ ∅
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = Get_Requirements (e1.QGraph, e1.QFactor, ‘average’)
 - OriginalChange = ‘TGraphChange’
 - OriginalSource = NULL
 - GraphChange = e1.Type
 - ChangedActivity = e1.ActivityName
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

EVENT: e1: TGraphChange
CONDITION : Get_Requirements (e1.QGraph, e1.QFactor, ‘frequency’) ≠ ∅
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = Get_Requirements (e1.QGraph, e1.QFactor, ‘frequency’)

Adriana Marotta

195

 - OriginalChange = ‘TGraphChange’
 - OriginalSource = NULL
 - GraphChange = e1.Type
 - ChangedActivity = e1.ActivityName
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

EVENT: e1: TGraphChange
CONDITION : Get_Requirements (e1.QGraph, e1.QFactor, ‘probability’) ≠ ∅
ACTION : Create event e2: CertaintyChange, attribute values:
 - QGraph = e1.QGraph
 - QFactor = e1.QFactor
 - OriginalChange = ‘TGraphChange’
 - OriginalSource = NULL
 - GraphChange = e1.Type
 - ChangedActivity = e1.ActivityName
 - ChangedReq = NULL
 - Timestamp = e1.Timestamp

Rules for QReqChange events:

EVENT: e1: QReqChange
CONDITION : GetType(e1.ChangedReq) = ‘minimum’
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = Get_Requirements (e1.QGraph,
 GetQFactor(e1.ChangedReq), ‘minimum’)
 - OriginalChange = ‘QReqChange’
 - OriginalSource = NULL
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = e1.ChangedReq
 - Timestamp = e1.Timestamp

EVENT: e1: QReqChange
CONDITION : GetType(e1.ChangedReq) = ‘maximum’
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = Get_Requirements (e1.QGraph,
 GetQFactor(e1.ChangedReq), ‘maximum’)
 - OriginalChange = ‘QReqChange’
 - OriginalSource = NULL
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = e1.ChangedReq
 - Timestamp = e1.Timestamp

EVENT: e1: QReqChange
CONDITION : GetType(e1.ChangedReq) = ‘average’
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = Get_Requirements (e1.QGraph,

Appendix III

196

 GetQFactor(e1.ChangedReq), ‘average’)
 - OriginalChange = ‘QReqChange’
 - OriginalSource = NULL
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = e1.ChangedReq
 - Timestamp = e1.Timestamp

EVENT: e1: QReqChange
CONDITION : GetType(e1.ChangedReq) = ‘frequency’
ACTION : Create event e2: QSatisfactionChange, attribute values:
 - QGraph = e1.QGraph
 - Requirements = Get_Requirements (e1.QGraph,
 GetQFactor(e1.ChangedReq), ‘frequency’)
 - OriginalChange = ‘QReqChange’
 - OriginalSource = NULL
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = e1.ChangedReq
 - Timestamp = e1.Timestamp

EVENT: e1: QReqChange
CONDITION : GetType(e1.ChangedReq) = ‘probability’
ACTION : Create event e2: CertaintyChange, attribute values:
 - QGraph = e1.QGraph
 - QFactor = GetQFactor(e1.ChangedReq)
 - OriginalChange = ‘QReqChange’
 - OriginalSource = NULL
 - GraphChange = NULL
 - ChangedActivity = NULL
 - ChangedReq = e1.ChangedReq
 - Timestamp = e1.Timestamp

Rule for QSatisfactionChange events:

EVENT: e1: QSatisfactionChange
CONDITION : NOT QualitySatisfaction (e1.QGraph,

Accepted_Conf_Calculation (e1.QGraph,
GetQFactor(e1.Requirements), e1.Requirements),

 GetQFactor(e1.Requirements),
 GetType(e1.Requirements))
ACTION : Create event e2: QValuesDissatisfaction, attribute values:
 - QGraph = e1.QGraph
 - Requirements = e1.Requirements
 - OriginalChange = e1.OriginalChange
 - OriginalSource = e1.OriginalSource
 - GraphChange = e1.GraphChange
 - ChangedActivity = e1.ChangedActivity
 - ChangedReq = e1.ChangedReq
 - Timestamp = e1.Timestamp

Adriana Marotta

197

Rule for CertaintyChange events:

EVENT: e1: CertaintyChange
CONDITION : NOT Quality_Certainty_Verification (e1.QGraph, e1.QFactor)
ACTION : Create event e2: ProbabilityDissatisfaction, attribute values:
 - QGraph = e1.QGraph
 - QFactor = e1.QFactor
 - OriginalChange = e1.OriginalChange
 - OriginalSource = e1.OriginalSource
 - GraphChange = e1.GraphChange
 - ChangedActivity = e1.ChangedActivity
 - ChangedReq = e1.ChangedReq
 - Timestamp = e1.Timestamp

Description of used auxiliary functions:

Function SelectReqs selects from a set of user quality requirements, those whose type is the given
one.

Function GetCorrespondingRequirements obtains for a source, the quality requirements of
certain quality factor, that involve it.

Function Quality_Certainty_Verification receives a quality graph and a quality factor, and
verifies if the DIS Quality Certainty satisfies the user quality requirements (specified in Chapter 5,
Section 2).

Function Get_Requirements obtains, given a quality graph and a quality factor, all the
requirements of certain type (which are associated to data targets of the given graph).

Function Accepted_Conf_Calculation was specified in Chapter 4, Section 4.1. It calculates the
accepted configurations for a quality graph, a set of requirements and a quality factor.

Function QualitySatisfaction was specified in Chapter 4, Section 4.3. Given a requirement type
and the accepted configurations for a set of requirements of this type, this function determines if the
sources satisfy the accepted configurations.

Function GetType returns the type of a user quality requirement. We overload this function, so that
it can receive one requirement or a set of requirements. In the second case it returns the type of any
of the requirements.

Function GetQFactor returns the quality factor of a user quality requirement. We overload this
function, so that it can receive one requirement or a set of requirements. In the second case it returns
the quality factor of any of the requirements.

