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Report on the PhD thesis of Luis Alberto Stábile Suárez entitled “GRASP/VND 

Optimization Algorithms for Hard Combinatorial Problems” 

 

SUMMARY 

Generally speaking, the presented PhD thesis is devoted to solving hard combinatorial problems related to 

graphs. For the first two of them (finding a max cut-clique and finding a uniformly most-reliable graph) 

heuristic algorithms based on the GRASP (greedy randomized adaptive search procedure) and VND (varia-

ble neighborhood descent) approaches, customized to the considered problems by means of problem-

specific properties, are presented. The third problem, consisting in computing system reliability, is also hard 

and is approached by theoretical means that allow for distinguishing a class of systems, for which this 

problem is tractable. 

 

CONTENT AND CONTRIBUTIONS 

Chapter 1 presents a brief summary of the three main problems studied in the thesis and gives some 

motivation why there are worth considering. The links between the problems, however, are not discussed. 

Chapters 2, 3, and 4 constitute the first part of the thesis (Part I), devoted to an extension of the classical 

NP-complete maximum clique problem. The extension, called the maximum cut-clique (MCC) problem, asks 

for finding a clique with the maximum number of links in the cut corresponding to the clique (i.e., the set of 

all links with only one end node in the clique) and is studied in Chapters 2 and 3. The MCC problem is 

shown to be NP-complete (an original contribution) and treated by a heuristic method called GRASP/VND 

developed by the PhD Candidate (together with his co-authors). The method is based on smartly defined 

neighborhood structures, based on a set of originally derived inequalities. The presented numerical results 

demonstrate that, for the considered network instances, the proposed method almost always gives an 

optimal solution (that is independently found by means of an appropriate exact mixed-integer program-

ming formulation) in a short time. An attempt to find reasonable lower and upper bounds on the maximum 

cut-clique is presented. The results of Part I constitute a non-trivial and seemingly effective technique for 

finding the cliques in question.  
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A version of MCC, maximum edge-weight neighborhood clique (MEWNC), is dealt with in Chapter 4, where 

appropriate extensions of the approach developed for MCC are discussed. The presented numerical results 

show that the extended methods are basically of quality similar to those developed for MCC. 

In Part II, consisting of Chapters 5 and 6, the so called uniformly most-reliable graphs are studied. Finding 

such graphs is an important and interesting problem in reliability theory. Chapter 5 contains a nice sum-

mary of (deep) graph-theoretical results underlying this problem, and, using some known and new proper-

ties (like Proposition 1) proposes a heuristic GRASP/VND approach to find the graphs in question, which 

seems to be effective for the special case of 3-regular graphs. Considerations of Part II represent a good 

theoretical level. Chapter 6 is an extension of Chapter 5. It introduces the so called Cubic algorithm that 

effectively solves the problem of transforming a (2r,3r) graph to a highly reliable cubic graph. The 

construction is based on an originally proven theorem. 

Part III is composed of Chapter 7. The paper included in this chapter is mathematically rigorous and 

contains non-trivial results, valuable for reliability analysis. It introduces an interesting concept of separable 

stochastic binary systems and describes an original approach to represent and analyze such systems, and to 

approximate characteristics of general systems by means of separable systems. A special attention is 

devoted to reliability analysis of the stochastic binary systems relevant for the classical problem of all-

terminal reliability evaluation. 

Finally, Part IV briefly summarizes the work described in the thesis. 

 

EVALUATION AND COMMENTS 

The presented thesis is of good quality and contains valuable results, both theoretical and algorithmic, in 

the fields of combinatorial optimization and reliability theory. The mathematical presentation is rigorous, 

the presented results correct, and the numerical results convincing. 

As far as drawbacks of the presented thesis are concerned, I have noticed the following:  

 Reading Part I is a bit tedious as the three papers presented there contain a lot of repetitions. 

 Concerning Parts I and II, the following question could be discussed: Are there any polynomial 

approximate algorithms, i.e., algorithms producing solutions with guaranteed quality in polynomial 

time? Did the authors encounter any network examples for which their heuristics do not work 

well? Has the “real-life product-placement” application mentioned as the future work in all three 

papers composing Part I been finally studied?  

 In general, potential applications of the problems and models studied in the paper could be descri-

bed in a more convincing way. 

The above drawbacks have little influence on the overall technical value of the thesis. However, taking 

them into account would somewhat increase readability of the thesis and make it more complete. 

 

RECOMMENDATION 

In my opinion, the results of PhD Candidate’s research described in the thesis constitute a valuable 

contribution to the field of combinatorial optimization and reliability theory. This judgment is implied by 

the technical contents of the thesis, including six valuable publications co-authored by the Candidate: two 

papers in international journals and four papers in the proceedings of good international conferences. 
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Therefore, I recommend Luis Alberto Stábile Suárez to present his thesis at a public defense leading to the 

Doctor Degree of the Universidad de la República. 

 

 

Michał Pióro 

Full Professor, Computer Networks and Services Division 

Warsaw, 20.08.2019 
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Report on Luis Stábile's Ph. D. Thesis:
GRASP/VND optimization algorithms for hard combinatorial

problems

Contents

The thesis is composed of three parts each of those focusing in a different problem,
related by the methodology used to solve them.

The first  part is devoted to the study of the Max Cut Clique (MCC) problem and its
weigthed version (MEWNC). From the complexity point of view it is proved that both
problems are NP-hard. From a combinatorial perspective, upper bounds for the value of
optimal solutions are given in terms of an easy to compute function of the degrees. The
same tool  allows to get  lower and upper  bounds for the size of  the smallest  clique
achieving the optimum. In order to solve instances of the problem, a metaheuristic is
proposed based on GRASP. In the construction phase a clique is built which then is
locally  modified  by  using  four  local  search  rules.  The performance of  the  proposed
algorithm  is  compared  with  the  solution  obtained  from  an  integer  lineal  program
formulation solved with commercial solver CPLEX. 

In  the  second  part,  the  problem  of  finding  reliable  network  under  edges  failure  is
considered.  The  work  focuses  on  the  computation  of  cubic  graphs  minimizing  the
number  of  their  disconnected  spanning  subgraphs,  aiming  to  get  a  uniformly  most-
reliable graph. This goal is achieved for small size graphs.  

In the last part, a reasonable generalization of previous work to the setting of boolean
functions is  given.  The special  cases of  monotone boolean functions and separable
boolean functions are studied. The concept of ``separable graphs'' appears when these
notions  are  applied  to  the  case  of  all  reliability  problem,  and  a  combinatorial
characterization for them is given, proving that the membership problem of separable
graphs belongs to the class P.

Beauchef 851, torre norte, piso 5, Santiago – Chile.    Tel:  6711530    Email: mar.mat.vas@dim.uchile.cl                                                                  
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Evaluation

Overall the thesis is well written and contains original results ranging over the areas of
complexity  theory  and  graph  theory,  and  mainly,  the  area  of  metaheuristics.  The
contribution in terms of publications is above the average, and it would be quite strong if
the two submitted papers are accepted. 
Therefore, without any doubt, I recommend that Luis Stabile defends his doctoral thesis.

Additional comments

It would be interesting to evaluate the integrality gap of the integer linear programs that 
appear in this thesis.  It would also be important to know if the interaction between the 
surgery and cubic movements does not prevent the Local Search Phase to finish.

If possible the thesis should include in the introduction of each chapter the notation not 
defined in the individual section. 

Martín Matamala.
Full Professor

Universidad de Chile   

Beauchef 851, torre norte, piso 5, Santiago – Chile.    Tel:  6711530    Email: mar.mat.vas@dim.uchile.cl                                                                  
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Abstract

Two hard combinatorial problems are addressed in this thesis. The first one is known as the ”Max Cut-
Clique”, a combinatorial problem introduced by P. Martins in 2012. Given a simple graph, the goal is to
find a clique C such that the number of links shared between C and its complement CC is maximum.

In a first contribution, a GRASP/VND methodology is proposed to tackle the problem. In a second
one, the N P -Completeness of the problem is mathematically proved. Finally, a further generalization
with weighted links is formally presented with a mathematical programming formulation, and the
previous GRASP is adapted to the new problem.

The second problem under study is a celebrated optimization problem coming from network
reliability analysis. We assume a graph G with perfect nodes and imperfect links, that fail independently
with identical probability ρ ∈ [0,1]. The reliability RG(ρ), is the probability that the resulting subgraph
has some spanning tree. Given a number of nodes and links, p and q, the goal is to find the (p,q)-graph
that has the maximum reliability RG(ρ), uniformly in the compact set ρ ∈ [0,1]. In a first contribution,
we exploit properties shared by all uniformly most-reliable graphs such as maximum connectivity and
maximum Kirchhoff number, in order to build a novel GRASP/VND methodology. Our proposal finds
the globally optimum solution under small cases, and it returns novel candidates of uniformly
most-reliable graphs, such as Kantor-Möbius and Heawood graphs. We also offer a literature review,
and a mathematical proof that the bipartite graph K4,4 is uniformly most-reliable.

Finally, an abstract mathematical model of Stochastic Binary Systems (SBS) is also studied. It is a
further generalization of network reliability models, where failures are modelled by a general logical
function. A geometrical approximation of a logical function is offered, as well as a novel method to find
reliability bounds for general SBS. This bounding method combines an algebraic duality, Markov
inequality and Hahn-Banach separation theorem between convex and compact sets.

Keywords— Max Cut-Clique, Uniformly Most-Reliable Graph, Stochastic Binary System, GRASP,
VND
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in Operational Research Journal published by Wiley Online Library.

4. “A Hybrid GRASP/VND Heuristic for the Design of Highly Reliable Networks”, Mathias Bourel,
Eduardo Canale, Franco Robledo, Pablo Romero and Luis Stábile. In Proccedings of the Eleventh
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International Conference on the Design of Reliable Communication Networks (DRCN 2019),
March 19-21, 2019, Coimbra, Portugal. Published by IEEE 2019, ISBN 978-1-5386-8461-0,
Pages 91–98.

6. “Analysis and Reliability of Separable Systems”, Mathias Bourel, Héctor Cancela, Gustavo
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guiarme, acompañarme, aconsejarme y apoyarme de forma incondicional, incluso en los momentos más
difı́ciles.

En primer lugar quiero agradecer a mis tutores Franco Robledo, Pablo Romero y Mathias Bourel,
por todas las horas que me dedicaron y por confiar en mı́. Franco Robledo quién creyó, confió y guió
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Chapter 1

Introduction

Two hard combinatorial problems are addressed in this thesis. The first one is known as the ”Max Cut-
Clique” and the second one coming from network reliability analysis. Finally, an abstract mathematical
model of Stochastic Binary Systems (SBS) is also studied.

Searching for dense components in a network has long been attracting many researchers from
different areas. Among those structures there is the concept of a clique, in which all elements are
pairwise adjacent. This structure is expected to reveal a strongly related set of elements. A large number
of applications involving cliques have been discussed in the literature. Some of those applications can
be found in coding theory, fault diagnosis, computer vision, pattern recognition between others. Finding
the maximum cardinality clique in G is known as the maximum clique (MC) problem.

Instead of searching for the largest size clique in the graph, we want a clique (of any size) with the
largest number of edges incident to the nodes in the clique, excluding those within the clique. This
problem has been introduced by (Martins, 2012), where formulations were proposed and their
applicability to some real-world problems was shown.

Given an undirected graph G = (V,E) and a clique C of G, the cut-clique is the set of edges running
between C and V \C , establishing the cut (C , V \C ). The MCC in G is to find a clique with the largest
number of edges in the neighborhood of the clique, also known as the maximum edge-neighborhood
clique (MENC). We can generalize this problem considering the weights associated with each link. In
this context we are interested in finding the clique C ⊂V such that the weighted-sum associated to each
link shared between C and V \C is maximized. The weighted version of MCC is known as MEWNC
(Maximum Edge-Weight Neighborhood Clique).

Some of their applications can be found in Market Basket Analysis (MBA), sometimes known as
affinity analysis. The goal of MBA is to identify non-obvious or counterintuitive relationships between
groups of products, items, or categories. The determination of a set of items with a large correlation
with others is a valuable tool in this context. The information obtained from MBA can have an
important impact in the business strategy and operations. In the specific case of marketing, we can find
valuable applications such as product placement, optimal product-line offering, personalized marketing
campaigns and product promotions. In this thesis, we present algorithms for tackling this problem and
compare the results with the state of the art.

The second part of this thesis refers to networks represented by graphs. Components can be either
nodes or links which connect nodes. The study of the structure, the introduction of minimum levels of
connectivity between their nodes, redundancy and resilience are main factors to avoid outages in case of
a failure. Basically, the goal is to find the probability of correct operation of a system (Colbourn, 1999;



Beineke et al., 2012).
Several researchers from different fields of knowledge (mathematics, computer science, engineering),

shaped the body of network reliability analysis, given the application and importance of the underlying
models. A fundamental problem is to find the connectedness probability of a random graph, subject
to link failures, called the all-terminal reliability. The scientific literature around this problem is vast;
however, this problem is not fully understood yet. The corresponding practical problem is to connect p
sites using q links in the best way, this is, to find the graph whose all-terminal reliability is maximum
among all (p,q)-graphs. Such graphs are called uniformly most-reliable graphs.

The third part of this thesis refers to a more abstract setting of system reliability with stochastic binary
systems (SBS). A SBS is a mathematical model of multi-component on-off system, where its components
are subject to random failures. The number of feasible states for a system with N on-off components is
2N , and an exhaustive list of all the states is computationally prohibitive. Recent works confirm that there
is a special class of SBS called separable system, that accept an efficient representation, an the truth-table
can be found by an inner product in the Euclidean space (Cancela et al., 2018).
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1.1 Structure of the Thesis

This thesis follows the Swedish style, and it is organized into Three Parts. These parts have been
ordered according to our chronological study. Part I contains the contributions related to the MCC and
its weighted version MEWNC:

1. The computational complexity of both MCC and MEWNC is established.

2. A GRASP/VND methodology enriched with a Tabu Search is developed, where the main
ingredients are novel local searches and a Restricted Candidate List that trades greediness for
randomization in a multi-start fashion.

3. An exact Integer Linear Programming (ILP) formulation including bounds is proposed.

4. We offer bounds for both a globally optimal solution and the clique size are produced using
elementary graph theory.

5. A fair comparison with respect to recent heuristics reveals that our proposal is competitive with
state-of-the-art solutions

Part II presents the contributions on uniformly most-reliable graphs:

1. An exact VND that returns uniformly most-reliable graphs is presented.

2. A hybrid GRASP/VND heuristic is introduced in order to find graphs with high reliability. It trades
quality for computational feasibility.

3. Novel networks that show high reliability and connectivity are found, as a result of our hybrid
heuristic.

4. Our study confirms that our resulting graphs achieve the maximum tree-number (therefore, they
are the only candidates of uniformly most-reliable graphs), and the maximum girth as well.

Finally, a more abstract setting of system reliability is presented in Part III:

1. A model construction methodology is proposed for the structure of stochastic binary systems.

2. A full reliability analysis and model construction is offered for the distinguished systems.

3. The hardness of reliability evaluation of separable systems is established.

3
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Chapter 2

A GRASP/VND Heuristic
for the Max Cut-Clique Problem

In this chapter, the complexity of the MCC is established. Considering the complexity proved for the
MCC problem, which belongs to the class of N P -Complete problems, we developed an Heuristic
GRASP/VND methodology enriched with Tabu Search. Finally a fair comparison that our approach is
comparative with state-of-the art solutions.
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Abstract. In Market Basket Analysis, the goal is to understand the
human behavior in order to maximize sales. An evident behavior is to
buy correlated items. As a consequence, the determination of a set of
items with a large correlation with others is a valuable tool for Market
Basket Analysis.

In this paper we address a combinatorial optimization problem that
formalizes the previous application. Given a simple graph G = (V,E)
(where the nodes are items and links represent correlation), we want to
find the clique C ⊆ V such that the number of links shared between C
and V − C is maximized. This problem is known in the literature as
Max Cut-Clique (MCC).

The contributions of this paper are three-fold. First, the computational
complexity of the MCC is established. Second, a full GRASP/VND
methodology enriched with a Tabu Search is here developed, where the
main ingredients are novel local searches and a Restricted Candidate
List that trades greediness for randomization in a multi-start fashion. A
Tabu Search is also included in order to avoid locally optimum
solutions. Finally, a fair comparison with respect to recent heuristics
reveals that our proposal is competitive with state-of-the-art solutions.

Keywords: Market Basket Analysis, Combinatorial Optimization, Max
Cut-Clique, Metaheuristics

1 Motivation

There is a serious disconnection between the knowledge that academics are
producing and the knowledge that practitioners are consuming [7]. A bridge
between the science-practice division can be found in Market Basket Analysis
(MBA), sometimes known as affinity analysis [2]. In synthesis, MBA is a Data
Mining technique [1, 19] originated in the field of marketing. It has recent
applications to other fields, such as bioinformatics [4, 5], WWW networks [12],
criminal networks [6] and financial networks [13]. The goal of MBA is to
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identify non-obvious or counterintuitive relationships between groups of
products, items, or categories.

The information obtained from MBA can have an important impact in the
business strategy and operations. In the specific case of marketing, we can find
valuable applications such as product placement, optimal product-line offering,
personalized marketing campaigns and product promotions. The analysis is
commonly supported by Machine Learning (pattern matching, clustering,
feature extraction, statistics), Optimization and Logical rules for association.

This work is focused on a specific combinatorial optimization methodology
to assist product placement; however, related applications could be found. The
problem under study is called Max Cut-Clique (MCC), and it was introduced
by P. Martins [15]. Given a simple graph G = (V,E) (where the nodes are
items and links represent correlation), we want to find the clique C ⊆ V such
that the number of links shared between C and V − C is maximized. The MCC
has an evident application to product-placement. For instance, the manager of
a supermarket must decide how to locate the different items in the different
compartments. In a first stage, it is essential to determine the correlation
between the different pairs of items, for psychological/attractive reasons. Then,
the priceless/basic products (bread, rice, milk and others) could be hidden on
the back, in order to give the opportunity for other products in a large corridor
(and candies should be at hand by kids as well). Observe that the MCC
appears in the first stage, while marketing/psychological aspects play a key
role in a second stage for product-placement in a supermarket.

In [15], the author states that the MCC is presumably hard, since related
problems such as MAX−CUT and MAX−CLIQUE are both NP-Complete.
To the best of our knowledge, there is no formal proof available for the hardness
of the MCC in the published scientific literature. Nevertheless, the MCC is
systematically addressed by the scientific community with metaheuristics and
exact solvers that run in exponential time.

A recent work in the field develops an Iterated Local Search for theMCC [16].
As far as we know, this work belongs to the state-of-the-art techniques for the
MCC. The authors find optimal solutions for most instances under study, and
suggest a rich number of applications.

The contributions of this paper can be summarized in the following items:

1. The NP-Completeness of the MCC is established (Section 2).
2. A hybrid GRASP/VND heuristic enriched with Tabu Search is developed to

address the MCC (Section 3).
3. A fair comparison with a state-of-the-art heuristic is presented using

DIMACS benchmark (Section 4).
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2 Computational Complexity

The cornerstone in computational complexity is Cook’s Theorem [8] and Karp
reducibility among combinatorial problems [14].

Stephen Cook formally proved that the joint satisfiability of an input set of
clauses in disjunctive form is the first NP-Complete decision problem [8].
Furthermore, he provided a systematic procedure to prove that a certain
problem is NP-Complete. Specifically, it suffices to prove that the decision
problem belongs to set NP, and that it is at least as hard as an NP-Complete
problem. Richard Karp followed this hint, and presented the first 21
combinatorial problems that belong to this class [14]. In particular,
MAX − CLIQUE belongs to this list. The reader is invited to consult an
authoritative book in Complexity Theory, which has a larger list of
NP-Complete problems and a rich number of bibliographic references [10].

Here, we formally prove that the MCC is at least as hard as
MAX − CLIQUE. Let us denote |C| the cardinality of a clique C, and δ(C)
denotes the corresponding cutset induced by the clique (or the set) C.

Definition 1 (MAX-CLIQUE).
GIVEN: a simple graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ V such that |C| ≥ K?

For convenience, we describe MCC as a decision problem:

Definition 2 (MCC).
GIVEN: a simple graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ G such that |δ(C)| ≥ K?

Theorem 1. The MCC belongs to the class of NP-Complete problems.

Proof. We prove that the MCC is at least as hard as MAX − CLIQUE.
Consider a simple graph G = (V,E) with order n = |V | and size m = |E|. Let
us connect a large number of M hanging nodes, to every single node v ∈ V .
The resulting graph is called H (see Figure 1 for an example). If we find a
polynomial-time algorithm for MCC, then we can produce the max cut-clique
in H. But observe that the Max Cut-Clique C in H cannot include hanging
nodes, thus it must belong entirely to G. If a clique C has cardinality c, then
the clique-cut has precisely c × M hanging nodes. By construction, the
cut-clique must maximize the number of hanging nodes, if we choose M ≥ m.
As a consequence, c must be the MAX −CLIQUE. We proved that the MCC
is at least as hard as MAX −CLIQUE, as desired. Since MCC belongs to the
set of NP Decision problems, it belongs to the NP-Complete class. �

Theorem 1 promotes the development of heuristics in order to address the
MCC.
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Fig. 1. Construction of H with M = 21 hanging nodes.

3 Methodology

GRASP and Tabu Search are well known metaheuristics that have been
successfully used to solve many hard combinatorial optimization problems.
GRASP is an iterative multi-start process which operates in two phases [17]. In
the Construction Phase a feasible solution is built whose neighborhood is then
explored in the Local Search Phase. Tabu Search [11, 3] is a strategy to prevent
local search algorithms getting trapped in locally optimal solutions. A
penalization mechanism called Tabu List is considered to avoid returning to
previously visited solutions. For a complete description of these methods the
reader is referred to the works of Glover and Laguna [11] and Resende and
Ribeiro [17]. The reader is invited to consult the comprehensive Handbook of
Metaheuristic for further information [18].

Here, we develop a GRASP/VND methodology enriched with Tabu Search
in order to avoid getting trapped in previous visited solutions. In the following,
the pseudocode of our Hybrid Metaheuristic (HM) for the Max Cut-Clique is
presented. It follows the traditional two-phase GRASP template enriched with a
Variable Neighborhood Descent (Lines 4-5). A Tabu Search strategy is included
in order to enhance feasible solutions. The tabu list T stores tabu nodes (Line
2), discarding previous solutions. Essentially, the most frequent nodes involved
in all solutions after the second phase of Variable Neighborhood Descent (VND)
are not considered for further solutions during θ iterations, whenever we reach
θmax consecutive iterations without improvement. The most frequent nodes are
selected if they appear more than φ times since the last tabu list refresh. The
real numbers φ and θ are uniformly chosen at random in the interval [1, θmax],
being θmax a parameter of the algorithm. The specific GRASP phases for the
MCC are described in detail in the following subsections.
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Algorithm 1 HM pseudocode

Input: α, θmax, maxIter, G
Output: C∗

1: C∗ ← ∅
2: T ← ∅
3: for iter = 1 to maxIter do
4: C ← Clique(α, T , G)
5: C ← VND(C, T , G)
6: T ← Update(T , θmax, C) . Tabu List
7: if |E′(C)| > |E′(C∗)| then
8: C∗ ← C
9: return C∗

3.1 Construction Phase - Clique

The construction phase of the proposed algorithm is depicted in Algorithm 2.
Let us denote by C the clique under construction, δ(U) and ∆(U) the minimum
and maximum degree of the node-set U . The clique C is initially empty (Line
1), and a multi-start process is considered (Line 2). A Restricted Candidate
List, RCL, is defined in Line 3. Observe that the RCL includes nodes with the
highest degree, and α trades greediness for randomization. During the While
loop of Lines 4-11, a singleton {i} is uniformly picked from the RCL (Line 5),
and the maximum clique C′ is built using all the nodes from the set C ∪ {i} (see
Line 6). The best solution is updated if necessary (Lines 7-8). Observe that the
process is finished only if we meet MAX ATTEMPTS without improvement
(Lines 9-11). The reader can appreciate that the output C is the best feasible
clique during the whole process (Line 12).

Algorithm 2 Clique

Input: α, T , G
Output: C

1: C ← ∅
2: improving = MAX ATTEMPTS
3: RCL← {v ∈ V − C : |E′(v)| ≥ ∆(V − C)− α(∆(V − C)− δ(V − C))}
4: while improving > 0 do
5: i← selectRandom(RCL)
6: C′ ← [C ∩N(i)] ∪ {i}
7: if |E′(C′)| > |E′(C)| then
8: C ← C′
9: improving ← MAX ATTEMPTS

10: else
11: improving ← improving − 1

12: return C
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3.2 Local Search Phase - V ND

The goal is to combine a rich diversity of neighborhoods in order to obtain an
output that is locally optimum solution for every feasible neighborhood. Five
neighborhood structures are considered to build a VND [9].

– Remove: a singleton {i} is removed from a clique C.
– Add: a singleton {i} is added from a clique C.
– Swap: if we find j /∈ C such that C − {i} ⊆ N(j), we can include j in the

clique and delete i (swap i and j).
– Cone: generalization of Swap for multiple nodes. The clique C is replaced

by C ∪ {i} − A, being A the nodes from C that are non-adjacent to i.
– Aspiration: this movement offers the opportunity of nodes belonging to the

Tabu List to be added.

The previous neighborhoods take effect whenever the resulting cut-clique is
increased. It is worth to remark that Add, Swap, and Aspiration are taken
from a previous ILS [16]. However, our VND is enriched with 2 additional
neighborhood structures, named Remove and Cone. Observe that the Tabu
list works during the potential additions during Add, Swap and Cone. On
the other hand, Aspiration provides diversification with an opportunistic
unchoking process: it picks nodes from the Tabu List instead.

For the remaining four local searches, there is an efficient way to determine
whether there is an improvement with respect to some neighbor-set. Specifically,
the Test Lemmas 1 to 4 are useful to determine the improvements for Remove,
Add, Swap and Cone movements, respectively. We call Aspiration Test to
Lemma 2 but applied in a different domain (specifically, the candidate nodes
must belong to the Tabu List).

Lemma 1 (Remove). |δ(C − {i})| > |δ(C)| iff |δ(i)| < 2(|C| − 1).

Proof.

|δ(C − {i})| = |δ(C)|+ |C| − 1− (|δ(i)| − (|C| − 1))

= |δ(C)|+ |C| − 1− |δ(i)|+ |C| − 1

= δ(C)|+ 2(|C| − 1)− |δ(i)|
> |δ(C)|,

where the last inequality holds iff 2(|C| − 1)− |δ(i)| > 0. �

Lemma 2 (Add). |δ(C ∪ {i})| > |δ(C)| iff |δ(i)| > 2|C|.
Proof.

|δ(C ∪ {i})| = |δ(C)| − |C|+ |δ(i)| − |C|
= |δ(C)|+ |δ(i)| − 2|C|
> |δ(C)|,

where the last inequality holds iff |δ(i)| > 2|C|. �
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Lemma 3 (Swap). |δ(C − {j} ∪ {i})| > |δ(C)| iff |δ(i)| > |δ(j)|.

Proof.

|δ(C − {j} ∪ {i})| = |δ(C)| − |δ(j)|+ 2(|C| − 1) + |δ(i)| − 2(|C| − 1)

= |δ(C)| − |δ(j) + |δ(i)|
> |δ(C)|,

where the last inequality holds iff |δ(i)| > |δ(j)|. �

Lemma 4 (Cone). |δ(C−A∪{i})| > |δ(C)| iff |δ(i)| > |δ(A)|−2|C−A|(|A|−1).

Proof.

|δ(C − A ∪ {i})| = |δ(C)|+ |A||C − A| − (|δ(A)| − |A||C − A|)− 2|C − A|+ |δ(i)|
= |δ(C)|+ 2|A||C − A| − |δ(A)| − 2|C − A|+ |δ(i)|
= |δ(C)|+ 2|C − A|(|A| − 1)− |δ(A)|+ |δ(i)||δ(C − A ∪ {i})|
> |δ(C)|

where the last inequality holds iff |δ(i)| > |δ(A)| − 2|C − A|(|A| − 1). �

The Flow Diagram of our VND is presented in Figure 2. The ordered sequence
of local searches are Remove, Add, Swap, Cone and Aspiration moves. Once
an improvement is obtained, the process restarts from the beginning. Observe
that, in the output, a locally optimum solution under all neighborhood structures
is met.

4 Computational Results

In order to test the performance of the algorithm, a fair comparison with
respect to an Iterated Local Search solution [16] is carried out using DIMACS
benchmark. The test was executed on an Intel Core i7, 2.4 GHz, 8GB RAM.

Table 1 reports the performance of our HM algorithm for each instance 1. All

instances were tested using 100 runs with α = 1
2 , MAX ATTEMPTS = b |V |

10 c,
θmax = 10. The values remarked using bold letters from column |E′(C)| indicate
that the best solution known was reached according to [16].

Following the terminology, max iter represents the number of iterations
considered in the algorithm, |E′(C)|, |C| and Time represent maximum
cut-clique size found, best solution and the CPU time for the Best solution
found. The same columns are reported for an averaging over 100 runs.

1 All the scripts are available at the following URL: https://www.fing.edu.uy/

~lstabile/mcc-octave-source.zip
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Fig. 2. Flow Diagram for the Local Search Phase - VND.

19



Instances Parameters Best Average
name n Density max iter |E′(C)| |C| Time (s) |E′(C)| Time (s)

c-fat200-1 200 0.071 10 81 9 0.1 81 0.3
c-fat200-2 200 0.163 10 306 17 0.5 306 0.8
c-fat200-5 200 0.426 10 1892 43 3 1892 4.9
c-fat500-1 500 0.036 10 110 10 0.5 110 2.4
c-fat500-2 500 0.073 10 380 19 3 380 5.8
c-fat500-5 500 0.186 10 2304 48 10 2304 10.8

c-fat500-10 500 0.374 10 8930 94 38 8930 65
p hat300-1 300 0.244 100 789 8 129 787 905
p hat300-2 300 0.489 100 4637 25 8 4636 3659
p hat300-3 300 0.744 1000 7740 36 469 7556 3992
p hat500-1 500 0.253 100 1621 9 13 1621 694
p hat500-2 500 0.505 100 11539 36 16 11401 723
p hat500-3 500 0.752 1000 18859 50 679 18855 723
p hat700-1 700 0.249 100 2606 11 305 2602 439
p hat700-2 700 0.498 1000 20425 44 79 20425 839
p hat700-3 700 0.748 1000 33480 62 945 33468 1807

p hat1000-1 1000 0.245 1000 3556 10 216 3556 355
p hat1000-2 1000 0.490 10000 31174 46 2124 31174 2538
p hat1000-3 1000 0.744 10000 51259 65 2687 53256 3584
p hat1500-1 1500 0.253 1000 6018 11 399 6018 904
p hat1500-2 1500 0.506 10000 67486 65 2482 67486 2942
p hat1500-3 1500 0.754 10000 112873 94 1174 112872 23162

keller4 171 0.649 100 1140 11 9 1140 11
keller5 776 0.752 10000 15184 27 1956 15183 1167
keller6 3361 0.818 100000 159608 59 26362 158423 321731
c125 9 125 0.899 1000 2766 34 102 2766 253
c250 9 250 0.899 1000 8123 44 426 8123 831
c500 9 500 0.901 10000 22691 57 2354 22652 4469

c1000 9 1000 0.901 10000 57149 68 3924 56038 4125
c2000 5 2000 0.500 10000 16106 16 23472 16082 23472
c2000 9 2000 0.900 50000 136769 79 37472 135001 45472
c4000 5 4000 0.500 50000 36174 18 31196 35891 38119

MANN a9 45 0.927 1000 412 16 4 412 145
MANN a27 378 0.990 10000 31284 126 309 31244 548
MANN a45 1035 0.996 50000 236406 344 46881 235072 52112
MANN a81 3321 0.999 50000 2436894 1098 73213 2433624 96743

Table 1. Results of the algorithm for the MCC problem
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The reader can appreciate that our HM algorithm meets the best solution
known so far in all cases. On the one hand, HM is a more powerful strategy than
ILS, since the local search from the latter are completely included in the former.
On the other, the computational effort is increased using HM. Even though a
globally optimum is not formally proved for some instances, the null gap between
ILS and our solution suggests an evidence of optimality.

The results described in this section reflect that our GRASP/VND
methodology is competitive with state-of-the-art solutions for the MCC. We
underscore the simplicity of implementation conducted by simple building
blocks (solution construction procedures and local search methods).

5 Conclusions and Trends for Future Work

Several business models can be represented by Market Basket Analysis (MBA).
A relevant marketing approach is to find a subset of items that are strongly
correlated with the others. This intuition is formalized by means of a
combinatorial optimization problem, called Max Cut-Clique (MCC). In this
paper the NP-Completeness of MCC is established. Then, a GRASP/VND
methodology enriched with Tabu Search is developed to address the MCC. A
fair comparison confirms that our approach is competitive with state-of-the art
solutions.

As future work, we want to implement our solution into a real-life product-
placement scenario. In a first stage, we need historical information to determine
the links between pairs of items. Finally, the physical location of the items must
be determined using a complementary geometrical problem with constraints. The
solution could consider multi-constrained clustering in order to include categories
for the items, or other Machine Learning techniques to determine profiles for the
customers, according to the product under study. After the real implementation,
the feedback of sales in a period is a valuable metric of success.
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Chapter 3

Complexity and Heuristics
for the Max Cut-Clique Problem

In this Chapter, the N P -Completeness of MCC promotes the development of heuristics and bounds. As
a consequence, we offered bounds for both the globally optimum solution and the size of the minimum
cardinality clique with maximum cut. Additionally, an exact Integer Linear Programming (ILP)
formulation for the problem is offered. A more extensive experimental analysis is carried out including
the results of the exact method.
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Facultad de Ingenieŕıa - Universidad de la República

Montevideo Uruguay
(mbourel,canale,frobledo,promero,lstabile)@fing.edu.uy,

Abstract. In this paper we address a metaheuristic for an
combinatorial optimization problem. For any given graph G = (V,E)
(where the nodes represent items and edges correlations), we want to
find the clique C ⊆ V such that the number of links shared between C
and V − C is maximized. This problem is known in the literature as the
Max Cut-Clique (MCC).

The contributions of this paper are three-fold. First, the complexity of
the MCC is established, and we offer bounds for the MCC using
elementary graph theory. Second, an exact Integer Linear Programming
(ILP) formulation for the MCC is offered. Third, a full GRASP/VND
methodology enriched with a Tabu Search is here developed, where the
main ingredients are novel local searches and a Restricted Candidate
List that trades greediness for randomization in a multi-start fashion. A
dynamic Tabu list considers a bounding technique based on the
previous analysis.

Finally, a fair comparison between our hybrid algorithm and the globally
optimum solution using the ILP formulation confirms that the globally
optimum solution is found by our heuristic for graphs with hundreds of
nodes, but more efficiently in terms of time and memory requirements.

Keywords: Combinatorial Optimization Problem, Max Cut-Clique,
ILP, GRASP, VND, Tabu Search.

1 Motivation

The MCC has an evident application to product-placement in Market Basket
Analysis (MBA), sometimes known as affinity analysis [1]. For instance, the
manager of a supermarket must decide how to locate the different items in the
different compartments. In a first stage, it is essential to determine the correlation
between the different pairs of items, for psychological/attractive reasons. Then,
the priceless/basic products (bread, rice, milk and others) could be hidden on the
back, in order to give the opportunity for other products in a large corridor (and
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candies should be at hand by kids as well). Observe that the MCC appears in
the first stage, while marketing/psychological aspects play a key role in a second
stage for product-placement in a supermarket.

This work is focused on a specific combinatorial optimization methodology
to assist product placement; however, related applications could be found. The
problem under study is called Max Cut-Clique (MCC), and it was introduced
by P. Martins [5]. For any given graph G = (V,E) (where the nodes are items
and links represent correlation), we want to find the clique C ⊆ V such that the
number of links shared between C and V − C is maximized.

In [5], the author states that the MCC is presumably hard, since related
problems such as MAX-CUT and MAX-CLIQUE are both NP-Complete. To
the best of our knowledge, there is no formal proof available for the hardness
of the MCC in the published scientific literature. Nevertheless, the MCC is
systematically addressed by the scientific community with metaheuristics and
exact solvers that run in exponential time.

A recent work in the field develops an Iterated Local Search for the MCC [6].
As far as we know, this work belongs to the state-of-the-art techniques for the
MCC. The authors find optimal solutions for most instances under study, and
suggest a rich number of applications.

The contributions of this paper can be summarized in the following items:

1. The NP-Completeness of MCC is established (Subsection 2.1).
2. Bounds for both the globally optimum solution and the clique size are

produced (Subsection 2.2).
3. A hybrid GRASP/VND heuristic enriched with Tabu Search is developed to

address the MCC (Section 3).
4. An exact Integer Linear Programming (ILP) formulation for the MCC is

proposed (Section 4).
5. The performance of our approach is studied (Section 5).
6. A discussion of applications for product-placement is included (Section 6).

2 Analysis and Complexity

In this section, the computational complexity for the MCC is established. We
formally prove that the corresponding decision version for the MCC belongs
to the class of NP-Complete decision problems (Subsection 2.1). Then, we find
bounds for the MCC using elementary graph theory (Subsection 2.2).

It is worth to remark that the hardness promotes the development of
heuristics, and these bounds will enrich our GRASP/VND heuristic with a
dynamic Tabu List.
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2.1 Complexity

We formally prove that the MCC is at least as hard as MAX-CLIQUE. First,
we describe both decision problems and the decision versions for the MCC:

Definition 1 (MAX-CLIQUE).
GIVEN: a graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ V such that |C| ≥ K?

For convenience, we describe the MCC as a decision problem. Let us denote
δ(C) to the cut produced by a node-set C, or the objective value for the MCC
whenever C is a clique.

Definition 2 (MCC ).
GIVEN: a graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ G such that |δ(C)| ≥ K?

Theorem 1. The MCC belongs to the class of NP-Complete problems.

Proof. We prove that the MCC is at least as hard as MAX-CLIQUE. Consider a
simple graph G = (V,E) with order n = |V | and size m = |E|. Let us connect m
leaf-nodes hanging to every single node v ∈ V (observe that there are m×n such
nodes). The resulting graph is called H. If we find a polynomial-time algorithm
for MCC, then we can produce the max cut-clique in H. But observe that the
max cut-clique C in H must belong to G. If C has cardinality c, then the cut-
clique has precisely c ×m hanging nodes. By construction, the cut-clique must
maximize the number of hanging nodes, since the whole size |E| = m is added
to the cut by a single addition of a node in the clique. As a consequence, c must
be the MAX-CLIQUE. We proved that the MCC is at least as hard as MAX-
CLIQUE, as desired. Since MCC belongs to the set of NP decision problems,
it belongs to the NP-Complete class. �

2.2 Bounds for MCC

Observe that the globally optimum for the MCC could be attained by more
than one clique. Let us denote by Cmin the minimum cardinality clique such
that |δ(Cmin)| = OPT , the optimal value for the MCC, and cmin = |Cmin|.

Definition 3. A finite sequence {ai}ni=0 is strictly unimodal if there exists some
index k0 ∈ {0, . . . , n} such that a0 < a1 < · · · < ak0 and ak0 ≥ ak0+1 > ak0+2 >
· · · > an.

Lemma 1. Consider a connected graph G with degree-sequence (δ1, . . . , δn),
where for convenience we consider δ1 ≤ δ2 ≤ · · · ≤ δn. Then, the following
finite sequence {f(k)}nk=0 is strictly unimodal, where

f(k) = −k(k − 1) +
k∑

i=1

δn−i+1, ∀k ∈ {0, 1, . . . , n}. (1)

26



Proof. The difference between consecutive terms, ∆k = f(k)− f(k − 1), is:

∆k = −k(k−1)+

k∑

i=1

δn−i+1 +(k−1)(k−2)−
k−1∑

i=1

δn−i+1 = −2(k−1)+ δn−k+1.

Since −2(k − 1) and δn−k+1 are monotonically decreasing sequences, being the
former strictly decreasing, {∆k}k≥0 must be strictly decreasing as well.
Furthermore, since ∆1 = f(1) − f(0) = δn > 0 and ∆n = −2(n − 1) + δ1 < 0,
there exists some index k0 such that: f(0) < f(1) < · · · < f(k0) and
f(k0) ≥ f(k0 + 1) > f(k0 + 2) > · · · > f(n), as desired. �
Lemma 2. The following inequalities hold for any clique C:

−|C|(|C| − 1) +

|C|∑

i=1

δi ≤ |δ(C)| ≤ f(|C|) (2)

Proof. The sum |δ(C)|+ |C|(|C|−1) =
∑

vi∈C δi is greater (smaller) than the sum
of the |C| smallest (greatest) degrees. �

In the following, we will provide an upper-bound for OPT , the globally
optimum value for the MCC, and bounds for the size cmin of the minimum
cardinality clique Cmin, in terms of the auxiliary sequence {f(k)}nk=0.

Theorem 2 (Upper-Bound for MCC).
If OPT denotes the optimal value for the MCC and f is maximized at k0, then
OPT ≤ f(k0).

Proof. If we are given an arbitrary clique C, the incident edges to some v ∈ C
either belong to the clique or to the cut. Then:

|δ(C)| =
∑

vi∈C
δi − |C|(|C| − 1) ≤ f(|C|) ≤ f(k0), (3)

where Lemma 2 and Lemma 1 were considered in the last two inequalities. Since
the inequalities hold for every clique, in particular we get that OPT ≤ f(k0). �
Theorem 3 (Bounds for cmin).
If {k0, k1} = argmaxf(k) with k0 ≤ k1, then the following inequalities hold for
any clique C:

max {k ≤ k0 : f(k) ≤ |δ(C)|} ≤ cmin ≤ min {k ≥ k1 : f(k) ≤ |δ(C)|} . (4)

Proof. Let C′ be a clique such that f(|C′|) ≤ |δ(C)| and |C′| ≤ k0. Since |δ(C)| ≤
OPT ≤ f(cmin) and f is strictly increasing in [1, k0], then |C′| ≤ cmin. Taking
maximum on |C′| ≤ k0, we obtain the first inequality.

The reasoning for the second inequality is analogous. �
Corollary 1. If k0 and k1 are as in previous Theorem, then the the following
inequalities hold:

max{k ≤ k0 : f(k) ≤ δn} ≤ cmin ≤ min{k ≥ k1 : f(k) ≤ δn} (5)

Proof. Apply Theorem 3 with the clique C = {vn}. �

27



3 Methodology

GRASP, VND and Tabu Search are well known metaheuristics that have been
successfully used to solve many hard combinatorial optimization problems.
GRASP is an iterative multi-start process which operates in two phases [7]. In
the Construction Phase a feasible solution is built whose neighborhood is then
explored in the Local Search Phase [7]. The second phase is usually enriched by
means of different variable neighborhood structures. For instance, VND
(Variable Neighborhood Descent) explores several neighborhood structures in a
deterministic order. Its success is based on the simple fact that different
neighborhood structures do not usually have the same local minimum. Thus
local optima can be escaped by applying some deterministic rule for altering
the neighborhoods [3]. Tabu Search is a strategy to prevent local search
algorithms getting trapped in previously visited solutions. It accepts
non-improving moves and uses a penalization mechanism called Tabu List [4,
2]. The reader is invited to consult the comprehensive Handbook of
Metaheuristic for further information [8].

Here, we develop a GRASP/VND methodology enriched with Tabu Search
in order to avoid getting trapped in previous visited solutions. In the following,
the Pseudo-code of our Hybrid Metaheuristic (HM) for the max cut-clique is
presented (see Algorithm 1). It follows the traditional two-phase GRASP
template enriched with a VND (Lines 4-5).

A Tabu Search strategy is included in order to enhance feasible solutions.
The tabu list T stores tabu nodes (Line 6), discarding previous solutions.
Essentially, the most frequent nodes involved in all solutions after the second
phase (VND) are not considered for further solutions during θ iterations,
whenever we reach θmax consecutive iterations without improvement. Most
frequent nodes are selected if they appear more than φ times since the last
tabu list refresh. The real numbers φ and θ are uniformly chosen at random in
the interval [1, θmax], being θmax a parameter of the algorithm. The specific
GRASP phases for the MCC are described in detail in the following
subsections.

Algorithm 1 HM Pseudo-code

Input: α, θmax, maxIter, G
Output: C∗

1: C∗ ← ∅
2: T ← ∅
3: for iter = 1 to maxIter do
4: C ← Clique(α, T , G)
5: C ← VND(C, T , G)
6: T ← Update(T , θmax, C) . Tabu List
7: if |E′(C)| > |E′(C∗)| then
8: C∗ ← C
9: return C∗
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3.1 Construction Phase - Clique

The construction phase of the proposed algorithm is depicted in Algorithm 2.
Let us denote by C the clique under construction, δ(U) and ∆(U) the minimum
and maximum degree of the node-set U . The clique C is initially empty (Line
1), and a multi-start process is considered (Line 2). A Restricted Candidate
List (RCL) is defined in Line 3. Observe that the RCL includes nodes with
the highest degree, and α trades greediness for randomization. During the While
loop of Lines 4-11, a singleton {i} is uniformly picked from the RCL (Line 5), and
the maximum clique C′ is built using the nodes from the set C ∪{i}, specifically,
[C ∩ N(i)] ∪ {i}, being N(i) the neighbor-set of node i (see Line 6). The best
solution is updated if necessary (Lines 7-8). Observe that the process is finished
only if we meet MAX ATTEMPTS without improvement (Lines 9-11). The
reader can appreciate that the output C is the best feasible clique during the
whole process (Line 12).

Algorithm 2 Clique

Input: α, T , G
Output: C

1: C ← ∅
2: improving = MAX ATTEMPTS
3: RCL← {v ∈ V − C : |E′(v)| ≥ ∆(V − C)− α(∆(V − C)− δ(V − C))}
4: while improving > 0 do
5: i← selectRandom(RCL)
6: C′ ← [C ∩N(i)] ∪ {i}
7: if |E′(C′)| > |E′(C)| then
8: C ← C′
9: improving ←MAX ATTEMPTS

10: else
11: improving ← improving − 1

12: return C

3.2 Local Search Phase - V ND

The goal is to combine a rich diversity of neighborhoods in order to obtain an
output that is locally optimum solution for every feasible neighborhood. Five
neighborhood structures are considered to build a VND [3]. Add, Swap, and
Aspiration are taken from a previous ILS [6]. However, our VND is enriched
with 2 additional neighborhood structures, named Remove and Cone. The
following neighborhood take effect whenever the resulting cut-clique is increased:
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– Remove: a singleton {i} is removed from a clique C.
– Add: a singleton {i} is added from a clique C.
– Swap: if we find j /∈ C such that C − {i} ⊆ N(j), we can include j in the

clique and delete i (swap i and j).
– Cone: generalization of Swap for multiple nodes. The clique C is replaced

by C ∪ {i} − A, being A the nodes from C that are non-adjacent to i.
– Aspiration: this movement offers the opportunity of nodes belonging to the

Tabu List to be added.

Observe that the dynamic Tabu list works during the potential additions
during Add, Swap and Cone. On the other hand, Aspiration provides
diversification with an opportunistic unchoking process: it picks nodes from the
Tabu List instead. For the remaining four local searches, there is an efficient
way to determine whether there is an improvement with respect to some
neighbor-set. Specifically, the Test Lemmas 3 to 6 are useful to determine the
improvements for Remove, Add, Swap and Cone movements, respectively.
We call Aspiration Test to Lemma 4 but applied in a different domain
(specifically, the candidate nodes must belong to the Tabu List).

Lemma 3 (Remove). |δ(C − {i})| > |δ(C)| iff |δ(i)| < 2(|C| − 1).

Proof.

|δ(C − {i})| = |δ(C)|+ |C| − 1− (|δ(i)| − (|C| − 1))

= |δ(C)|+ |C| − 1− |δ(i)|+ |C| − 1

= |δ(C)|+ 2(|C| − 1)− |δ(i)|
> |δ(C)|,

where the last inequality holds iff 2(|C| − 1)− |δ(i)| > 0. �
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Lemma 4 (Add). |δ(C ∪ {i})| > |δ(C)| iff |δ(i)| > 2|C|.

Proof.

|δ(C ∪ {i})| = |δ(C)| − |C|+ |δ(i)| − |C|
= |δ(C)|+ |δ(i)| − 2|C|
> |δ(C)|,

where the last inequality holds iff |δ(i)| > 2|C|. �

Lemma 5 (Swap). |δ(C − {j} ∪ {i})| > |δ(C)| iff |δ(i)| > |δ(j)|.

Proof.

|δ(C − {j} ∪ {i})| = |δ(C)| − |δ(j)|+ 2(|C| − 1) + |δ(i)| − 2(|C| − 1)

= |δ(C)| − |δ(j) + |δ(i)|
> |δ(C)|,

where the last inequality holds iff |δ(i)| > |δ(j)|. �

Lemma 6 (Cone). |δ(C−A∪{i})| > |δ(C)| iff |δ(i)| > |δ(A)|−2|C−A|(|A|−1).

Proof.

|δ(C − A ∪ {i})| = |δ(C)|+ |A||C − A| − (|δ(A)| − |A||C − A|)− 2|C − A|+ |δ(i)|
= |δ(C)|+ 2|A||C − A| − |δ(A)| − 2|C − A|+ |δ(i)|
= |δ(C)|+ 2|C − A|(|A| − 1)− |δ(A)|+ |δ(i)||δ(C − A ∪ {i})|
> |δ(C)|

where the last inequality holds iff |δ(i)| > |δ(A)| − 2|C − A|(|A| − 1). �

The Flow Diagram of our VND is presented in Figure 1. The ordered sequence
of local searches are Remove, Add, Swap, Cone and Aspiration moves. Once
an improvement is obtained, the process restarts from the beginning. Observe
that, in the output, a locally optimum solution under all neighborhood structures
is met.
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Fig. 1. Flow Diagram for the Local Search Phase - VND.
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4 Exact Method for the MCC

In this section, we present an exact method based on a mathematical
formulation. Due to combinatorial nature, we addressed it by integer
programming, using the following decision variables:

wi =

{
1 if node i ∈ C
0 otherwise

, ∀i ∈ V

w(i,j) =

{
1 if edge (i, j) ∈ E(C)
0 otherwise

, ∀(i, j) ∈ E

An integer programming model is presented below. Constraint (1) and (2)
state that both nodes i, j belong to the clique C if and only if (i, j) ∈ E(C).
Recall that Theorem 3 provides a feasible interval for the size of the clique,
cmin. Constraints (3) and (4) determine lower and upper bounds Lb and Ub for
the size of the clique, found combining Theorem 3 and the best output of our
GRASP/VND heuristic. Constraints (5) and (6) just state that wi and w(i,j)

are binary variables. The goal is maximize the cut-clique, which is precisely the
difference between the sum-degree minus twice the number of internal links.

max
∑

i∈V di × wi − 2×∑
(i,j)∈E w(i,j)

s.a. 2w(i,j) ≤ wi + wj ∀(i, j) ∈ E (1)
wi + wj − 1 ≤ w(i,j) ∀i, j ∈ V (2)

∑
i∈V wi ≥ Lb (3)∑
i∈V wi ≤ Ub (4)

w(i,j) ∈ {0, 1} ∀(i, j) ∈ E (5)
wi ∈ {0, 1} ∀i ∈ V (6)
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5 Computational Results

In order to test the performance of the algorithm we carried out a fair
comparison with respect to the ILP model implemented using IBM CPLEX
12.8. Both algorithms are executed on a Home-PC (Intel Core i7, 2.4 GHz,
8GB RAM). The graphs under study were obtained from the SteinLib 1 and
DIMACS.

Table 1 reports the performance of both algorithms for each instance. All HM
algorithm instances were tested using a single run with one-hundred iterations

and α = 1
2 , MAX ATTEMPTS = b |V |10 c, θmax = 4. Lower and upper bounds

Lb and Ub were obtained for each topology under study using Corollary 1.
The values remarked using bold letters from column |δ(C)| indicate that the

best solution was reached according to the output from the ILP solver.
Following the terminology, |δ(C)|, |C| and Time represent maximum cut-

clique size found, best solution, and the CPU time for the best solution found.
Lb, Ub columns are reported for the ILP solver which represents the lower an
upper bound for the ILP model. Under ILP, Time give the time to reach the
optimum value or the best lower bound to the optimum when the optimum is
not attained within the given time limit (10800 seconds).

The reader can appreciate from Table 1 that our GRASP/VND algorithm
meets the best solution in all cases. The globally optimum for all the instances
under study is formally proved using the ILP formulation. Furthermore, our
GRASP/VND approach presents consistently smaller CPU times for graphs with
large size.

Table 2 shows the performance of the VND algorithm. The activity of every
single local search is studied. Swap and Add movements show to be more
effective, while Remove and Cone take effect few times. Aspiration has no
effect, but it works for dense graphs.

In order to understand the global effectiveness of our VND scheme, a
mid-point test is performed. The columns Remove, Add, Swap, Cone and
Aspiration show the percentage of each kind of movement applied over
one-hundred executions of the VND local search phase. The column #moves
states the amount of movement applied during these iterations. The column
entitled mp displays the average gap in percentage between the best solution
found in each local search phase with respect to the feasible solution obtained
from the construction phase over one-hundred iterations. The reader can
appreciate that the VND effect is notorious, since the cut-clique is roughly half
the optimum in most cases using only the Construction Phase.

It is worth to remark that we further studied the performance of our
GRASP/VND methodology versus a state-of-the-art ILS heuristic for the
MCC, detailed in [6]. We could find optimality in all the reported instances
which achieved optimality, and we found the best feasible solutions so far in
the remaining cases, with identical results offered in [6].

1 The dataset can be found in the URL http://steinlib.zib.de/steinlib.php
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Instances GRASP/VND ILP
name n Density |E′(C)| |C| Time (s) Lb Ub |E′(C)| |C| Time (s)

i080-001 80 0.039 13 2 0.7120 2 8 13 2 0.66
i080-002 80 0.039 13 2 1.4779 2 9 13 2 0.62
i080-011 80 0.11 38 4 3.0396 3 16 38 4 0.94
i080-044 80 0.2 80 5 1.1495 4 26 80 5 0.71
i080-045 80 0.2 74 4 0.5748 4 25 74 4 0.90
i080-111 80 0.11 35 4 0.4141 3 15 35 4 0.88
i080-112 80 0.11 39 3 0.3191 3 19 39 3 0.64
i080-131 80 0.05 16 2 1.1908 2 10 16 2 0.73
i080-132 80 0.05 15 3 0.5146 2 9 15 3 0.69
i080-142 80 0.2 74 4 1.0306 4 25 74 4 0.70
i080-143 80 0.2 80 4 0.8546 4 26 80 4 0.85
i160-001 160 0.019 15 2 0.6351 2 10 15 2 2.84
i160-002 160 0.019 14 2 2.8054 2 9 14 2 2.44
i160-011 160 0.064 44 3 4.6177 3 20 44 3 24.53
i160-044 160 0.2 180 5 5.7298 5 47 180 5 11.23
i160-045 160 0.2 173 5 3.8451 5 42 173 5 14.92
i160-111 160 0.064 50 4 5.9956 4 18 50 4 5.59
i160-112 160 0.064 46 4 0.47 3 18 46 4 5.71
i160-131 160 0.025 19 3 2.5908 3 10 19 3 2.80
i160-132 160 0.025 22 3 2.3052 3 12 22 3 2.95
i160-142 160 0.2 183 5 3.7192 5 45 183 5 10.63
i160-143 160 0.2 170 5 05.097 5 44 170 5 10.57
mc11 400 0.0095 6 2 0.7292 2 2 6 2 6.43
c-fat200-1 200 0.077 81 9 0.1860 9 17 81 9 29.57
c-fat200-2 200 0.163 306 17 0.8388 17 34 306 17 88.79
c-fat200-5 200 0.426 1892 43 13.0593 43 86 1892 43 1717.39
c-fat500-1 500 0.036 110 10 4.77459 10 20 110 10 1198.31
c-fat500-2 500 0.073 380 19 14.1875 19 38 380 19 1822.08
c-fat500-5 500 0.186 2304 48 121.32 48 95 2304 48 10800
c-fat500-10 500 0.374 8930 94 33.298 94 188 8930 94 10800

Table 1. HM versus ILP for the MCC.
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Instances GRASP/VND
name n Density Remove (%) Add (%) Swap (%) Cone (%) Aspiration (%) #moves mp (%)

i080-001 80 0.039 0 38 57 5 0 154 30.949
i080-002 80 0.039 3 32 59 7 0 147 27.571
i080-011 80 0.11 1 48 48 3 0 158 18.647
i080-044 80 0.2 0 54 46 0 0 239 17.390
i080-045 80 0.2 0 56 44 0 0 217 20.585
i080-111 80 0.11 0 59 39 3 0 176 22.572
i080-112 80 0.11 0 48 37 5 0 244 16.261
i080-131 80 0.05 1 30 60 9 0 151 25.983
i080-132 80 0.05 0 32 68 0 0 136 23.402
i080-142 80 0.2 0 50 50 0 0 202 19.762
i080-143 80 0.2 0 52 48 0 0 253 18.467
i160-001 160 0.019 0 22 73 5 0 143 29.452
i160-002 160 0.019 0 20 80 0 0 135 26.427
i160-011 160 0.064 0 57 40 3 0 186 21.803
i160-044 160 0.2 0 60 40 0 0 251 18.079
i160-045 160 0.2 0 53 47 0 0 211 16.358
i160-111 160 0.064 0 61 38 1 0 181 23.816
i160-112 160 0.064 0 55 45 0 0 154 23.940
i160-131 160 0.025 0 39 58 2 0 168 23.710
i160-132 160 0.025 0 42 54 3 0 179 26.588
i160-142 160 0.2 0 57 42 0 0 250 18.146
i160-143 160 0.2 0 59 41 0 0 196 17.664
mc11 400 0.0095 0 100 0 0 0 46 50.000
c-fat200-1 200 0.077 0 100 0 0 0 376 13.159
c-fat200-2 200 0.163 0 100 0 0 0 475 6.338
c-fat200-5 200 0.426 0 99 1 0 0 138 0.505
c-fat500-1 500 0.036 0 100 0 0 0 391 12.965
c-fat500-2 500 0.073 0 100 0 0 0 278 3.736
c-fat500-5 500 0.186 2 98 0 0 0 132 3.252
c-fat500-10 500 0.374 0 100 0 0 0 11 0.132

Table 2. Performance of the Local Search Phase.
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6 Conclusions and Trends for Future Work

Several business models can be represented by Market Basket Analysis (MBA).
A relevant marketing approach is to find a subset of items that are strongly
correlated with the others. This intuition is formalized by means of a
combinatorial optimization problem, called Max Cut-Clique (MCC).

In this paper, the NP-Completeness of MCC is established. This fact
promotes the development of heuristics and bounds. As a consequence, we
offered bounds for both the globally optimum solution and the size of the
minimum cardinality clique with maximum cut. Then, a GRASP/VND
methodology enriched with Tabu Search is developed to address the MCC. A
fair comparison with an exact ILP formulation confirms the optimality of our
approach for hundreds of nodes. Furthermore, the computational effort is
reduced for the heuristic under large-sized graphs. The movements Swap and
Add have the largest activity for the instances under study. The experiments
shows that our GRASP/VND heuristic is competitive with state-of-the-art
solutions for the MCC. Further analysis should be done to determine the best
order for the VND in terms of computational efficiency.

As future work we would like to implement our solution into a real-life
product-placement scenario. In a first stage, we need historical information to
determine the links between pairs of items. The physical location of the items
must be determined using a complementary geometrical problem with
constraints. The solution could consider multi-constrained clustering in order
to include categories for the items, or other Machine Learning techniques to
determine profiles for the customers, according to the product under study.
After the real implementation, the feedback of sales in a period is a valuable
metric of success.
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Chapter 4

Complexity and Heuristics
for the Weighted Max Cut-Clique Problem

In this chapter, a generalization of the MCC is established considering the weights associated with each
link. In this context we are interested in finding the clique C ⊂V such that the weighted-sum associated
to each link shared between C and V \ C is maximized. The weighted version of MCC is known as
MEWNC (Maximum Edge-Weight Neighborhood Clique).
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Abstract

In Market Basket Analysis (MBA), the goal is to understand the human behavior in order to maximize sales. An
evident behavior is to buy correlated items. As a consequence, the determination of a set of items with a large
correlation with others is a valuable tool for MBA.

In this work we address a combinatorial optimization problem with valuable applications to MBA, specially in
marketing and product-placement. For any given graph G = (V,E) (where the nodes are items and links
represent correlation), we want to find the clique C ⊆ V such that the number of links shared between C and
V − C is maximized. This problem is known in the literature as Max Cut-Clique (MCC). We can generalize this
problem considering the weights associated with each link. In this context we are interested in finding the clique
C ⊆ V such that the weighted-sum associated to each link shared between C and V − C is maximized. The
weighted version of MCC is known as MEWNC (Maximum Edge-Weight Neighborhood Clique).

The contributions of this paper are four-fold. First, the computational complexity of both MCC and MEWNC, are
established. Specifically, we prove that the MCC and MEWNC belong to the class of NP-Complete problems.
Second, an exact Integer Linear Programming (ILP) formulation for the MEWNC is offered. Third, a full
GRASP/VND methodology enriched with a Tabu Search is here developed, where the main ingredients are novel
local searches and a Restricted Candidate List that trades greediness for randomization in a multi-start fashion. A
dynamic Tabu list considers a bounding technique based on the previous analysis.

Finally, a fair comparison between our hybrid algorithm and a globally optimal solution using the ILP formulation
confirms that a globally optimal solution is found by our heuristic for graphs with hundreds of nodes, but it is more
efficiently than the exact solution in terms of time and memory requirements.

Keywords: Market Basket Analysis, Combinatorial Optimization Problem, Max Cut-Clique, ILP, GRASP, Tabu Search.

∗Luis Stábile (lstabile@fing.edu.uy).

c© 2019 International Transactions in Operational Research c© 2019 International Federation of Operational Research Societies

40
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1. Introduction

There is a serious disconnection between the knowledge that academics are producing and the
knowledge that practitioners are consuming (Cascio and Aguinis (2008)). A bridge between the
science-practice division can be found in Market Basket Analysis (MBA), sometimes known as affinity
analysis (Aguinis et al. (2013)). In synthesis, MBA is a Data Mining technique (Agrawal et al. (1993);
Tan et al. (2005)) originated in the field of marketing. It has recent applications to other fields, such as
bioinformatics (Bader and Hogue (2003); Brohée and van Helden (2006)), WWW networks (Henzinger
and Lawrence (2004)), criminal networks (Bruinsma and Bernasco (2004)) and financial
networks (Hüffner et al. (2008)). The goal of MBA is to identify non-obvious or counterintuitive
relationships between groups of products, items, or categories.

The information obtained from MBA impacts in the business model and operations. It commonly
suggests a new approach to product placement solutions, optimal product-line offering, personalized
marketing campaigns and product promotions. The analysis is commonly supported by Machine
Learning (pattern matching, clustering, feature extraction, statistics), Optimization and Logical rules for
association.

This work is focused on a specific combinatorial optimization methodology to assist product
placement; however, related applications could be found. The problems under study are called Max
Cut-Clique (MCC) and Weighted Max Cut-Clique respectively. The first one was introduced by
Martins (2012) and the second one was introduced by Martins and Gouveia (2015). For any given
graph G = (V,E) (where the nodes are items and links represent correlation with their respective
weights), we want to find the clique C ⊆ V such that the number of links (or the weighted-sum in the
second case) shared between C and V − C is maximized.

In (Martins (2012)), the author states that the MCC is presumably hard, since related problems such as
MAX-CUT and MAX-CLIQUE are bothNP-Complete. To the best of our knowledge, there is no formal
proof available for the hardness of the MCC in the published scientific literature. Nevertheless, the MCC
is systematically addressed by the scientific community with metaheuristics and exact solvers that run in
exponential time.

A recent work in the field develops an Iterated Local Search for the MCC (Martins et al. (2015)).
As far as we know, this work belongs to the state-of-the-art techniques for the MCC. The authors find
optimal solutions for most instances under study, and suggest a rich number of applications.

The contributions of this paper can be summarized in the following items:

1. The NP-Completeness of both MCC and MEWNC are established (Subsection 2.1).
2. Bounds for both a globally optimal solution and the clique size are produced (Subsection 2.2).
3. A hybrid GRASP/VND heuristic enriched with Tabu Search is developed to address the MCC and

MEWNC (Section 3).
4. An exact Integer Linear Programming (ILP) formulation for the MEWNC is proposed (Section 4).
5. Our GRASP/VND is not only faster than the exact solution, but also achieves optimality under

instances with hundreds of nodes (Section 5).
6. A fair comparison with a state-of-the-art heuristic is also presented (Section 6).
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7. A discussion of potential applications for product-placement is included (Section 7).

2. Analysis and Complexity

In this section, the computational complexity for both the MCC and MEWNC are established. We
formally prove that the MEWNC accepts a reduction from PARTITION, while the MCC accepts a
reduction from MAX-CLIQUE (Subsection 2.1). Then, we find bounds for the MCC using elementary
graph theory (Subsection 2.2).

It is worth to remark that the hardness promotes the development of heuristics, and these bounds will
enrich our GRASP/VND heuristic with a dynamic Tabu List.

2.1. Complexity

The cornerstone in computational complexity is Cook Theorem (Cook, 1971) and Karp reducibility
among combinatorial problems (Karp, 1972). Stephen Cook formally proved that the joint satisfiability
of an input set of clauses in disjunctive form is an NP-Complete decision problem. Furthermore, he
provided a systematic procedure to prove that a certain problem is NP-Complete. Specifically, it
suffices to prove that the decision problem belongs to set NP , and that it is at least as hard as an
NP-Complete problem. Richard Karp followed this hint, and presented the first 21 combinatorial
problems that belong to this class. In particular, PARTITION belongs to this list. The reader is invited to
consult the classical book in Complexity Theory (Garey and Johnson, 1979), which has a larger list of
NP-Complete problems, a rich number of bibliographic references and examples.

Consider the two following auxiliary decision problems:
Definition 1 (PARTITION). GIVEN: a set of natural numbers A = {a1, . . . , an}.
QUESTION: is there a subset S ⊂ A such that

∑
ai∈S ai =

∑
aj /∈S aj?

Definition 2 (MAX-CLIQUE). GIVEN: a graph G = (V,E) and a number K ∈ R.
QUESTION: is there a clique C ⊆ V such that |C| ≥ K?

Here, we formally prove that the decision versions for both MCC and MEWNC are NP-Complete.
Let us denote for convenience δ(C) as the cut produced by a node-set C.
Definition 3 (MCC). GIVEN: a graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ G such that |δ(C)| ≥ K?
Definition 4 (MEWNC). GIVEN: a weighted graph G = (V,E,w) with w : E → N and a number
K ∈ R.
QUESTION: is there a clique C ⊆ G such that

∑
i∈C,j /∈C,e=(i,j),e∈E w(e) ≥ K?

Observe that the MCC is precisely the MEWNC when w(e) = 1 for all e ∈ E. It is clear that, by
inclusion, the hardness of the MCC implies the hardness of the MEWNC. Since we chronologically
discovered the hardness of the latter first, here we present both proofs. Basically, MEWNC accepts a
reduction from PARTITION such as in the foundational work from Karp (1972), while MCC accepts a
reduction from MAX-CLIQUE:

c© 2019 International Transactions in Operational Research c© 2019 International Federation of Operational Research Societies

42
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Theorem 1. The MEWNC belongs to the class of NP-Complete problems.

Proof. Given a natural subset A = {a1, . . . , an}, let us denote s =
∑n

i=1 ai. We consider the instance
(G,w,K) for the MEWNC with G = Kn, e = (i, j), w(e) = ai × aj for every link e and K = s2/4.
The clique C that achieves the maximum cut accepts the following factorization:

max
C

∑

i∈C,j /∈C
ai × aj = max

∑

i∈C
ai

∑

j /∈C
aj = A×B,

where A + B = s is constant. But the product A × B is maximized exactly when A = B = s/2, this
is, when PARTITION is solved. In that case, the answer for the MEWNC is positive, since the max
cut-clique has capacity A×B = s2/4 ≥ K.

We proved that the answer for MEWNC for the instance (G,w,K) is positive if and only if
PARTITION has a positive answer. Therefore, MEWNC is at least as hard as PARTITION . Both
problems clearly belong to the set of NP decision problems. Then, MEWNC is NP-Complete, as
desired.

Theorem 2. The MCC belongs to the class of NP-Complete problems.

Proof. We prove that the MCC is at least as hard as MAX-CLIQUE. Consider a simple graphG = (V,E)
with order n = |V | and size m = |E|. Let us connect m leaf-nodes hanging to every single node v ∈ V
(observe that there are m×n such nodes). The resulting graph is called H . If we find a polynomial-time
algorithm for MCC, then we can produce the max cut-clique inH . But observe that the max cut-clique C
in H must belong to G. If C has cardinality c, then the cut-clique has precisely c×m hanging nodes. By
construction, the cut-clique must maximize the number of hanging nodes, since the whole size |E| = m
is added to the cut by a single addition of a node in the clique. As a consequence, c must be the MAX-
CLIQUE. We proved that the MCC is at least as hard as MAX-CLIQUE, as desired. Since MCC belongs
to the set of NP decision problems, it belongs to the NP-Complete class.

2.2. Bounds for MCC

Observe that a global optimum for the MCC could be attained by more than one clique. Let us denote by
Cmin the minimum cardinality clique such that |δ(Cmin)| = OPT , the optimal value for the MCC, and
cmin = |Cmin|.
Definition 5. A finite sequence {ai}ni=0 is strictly unimodal if there exists some index k0 ∈ {0, . . . , n}
such that a0 < a1 < · · · < ak0

and ak0
≥ ak0+1 > ak0+2 > · · · > an.

Lemma 1. Consider a connected graph G with degree-sequence (δ1, . . . , δn), where for convenience we
consider δ1 ≤ δ2 ≤ · · · ≤ δn. Then, the following finite sequence {f(k)}nk=0 is strictly unimodal, where

f(k) = −k(k − 1) +

k∑

i=1

δn−i+1, ∀k ∈ {0, 1, . . . , n}. (1)
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Proof. The difference between consecutive terms, ∆k = f(k)− f(k − 1), is:

∆k = −k(k − 1) +

k∑

i=1

δn−i+1 + (k − 1)(k − 2)−
k−1∑

i=1

δn−i+1 = −2(k − 1) + δn−k+1.

Since −2(k − 1) and δn−k+1 are monotonically decreasing sequences, being the former strictly
decreasing, {∆k}k≥0 must be strictly decreasing as well. Furthermore, since
∆1 = f(1) − f(0) = δn > 0 and ∆n = −2(n − 1) + δ1 < 0, there exists some index k0 such that:
f(0) < f(1) < · · · < f(k0) and f(k0) ≥ f(k0 + 1) > f(k0 + 2) > · · · > f(n), as desired.

Lemma 2. The following inequalities hold for any clique C:

−|C|(|C| − 1)−
|C|∑

i=1

δi ≤ |δ(C)| ≤ f(|C|) (2)

Proof. The sum |δ(C)| + |C|(|C| − 1) =
∑

vi∈C δi is greater (smaller) than the sum of the |C| smallest
(greatest) degrees.

In the following, we will provide an upper-bound for OPT , the optimal value for the MCC, and
bounds for the size cmin of the minimum cardinality clique Cmin, in terms of the auxiliary sequence
{f(k)}nk=0.

Theorem 3 (Upper-Bound for MCC). IfOPT denotes the optimal value for the MCC and f is maximized
at k0, then OPT ≤ f(k0).

Proof. If we are given an arbitrary clique C, the incident links to some v ∈ C either belong to the clique
or to the cut. Then:

|δ(C)| =
∑

vi∈C
δi − |C|(|C| − 1) ≤ f(|C|) ≤ f(k0), (3)

where Lemma 2 and Lemma 1 were considered in the last two inequalities. Since the inequalities hold
for every clique, in particular we get that OPT ≤ f(k0).

Theorem 4 (Bounds for cmin). If {k0, k1} = argmaxf(k) with k0 ≤ k1, then the following inequalities
hold for any clique C:

max {k ≤ k0 : f(k) ≤ |δ(C)|} ≤ cmin ≤ min {k ≥ k1 : f(k) ≤ |δ(C)|} . (4)

Proof. Let C′ be a clique such that f(|C′|) ≤ |δ(C)| and |C′| ≤ k0. Since |δ(C)| ≤ OPT ≤ f(cmin) and
f is strictly increasing in [1, k0], then |C′| ≤ cmin. Taking maximum on |C′| ≤ k0, we obtain the first
inequality. The reasoning for the second inequality is analogous.

Corollary 1. If k0 and k1 are as in previous Theorem, then the following inequalities hold:

max{k ≤ k0 : f(k) ≤ δn} ≤ cmin ≤ min{k ≥ k1 : f(k) ≤ δn} (5)

Proof. Apply Theorem 4 with the clique C = {vn}.
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2.3. Bounds for MEWNC

Let Tk be the kth triangle number, i.e.,

Tk =
(k + 1)k

2
,

and let us denote by Cωmin the minimum cardinality clique such that ω(δ(Cωmin)) = OPTω, the optimal
value for the MEWNC, and cωmin = |Cωmin|.
Lemma 3. Consider a connected graph G with vertices v1, . . . , vn and edges e1, . . . , em such that δω1 ≤
. . . ≤ δωn where δωi = ω(δ(vi))), and ω1 ≤ ω2 ≤ · · · ≤ ωm, with ωi = ω(ei).

Then, the following finite sequence {g(k)}n0

k=0 is either strictly unimodal or increasing, where n0 =
max{k : Tk ≤ m} and

g(k) =

k∑

i=1

δωn−i+1 −
Tk−1∑

i=1

ωi.

Proof. We proceed by computing the difference between consecutive terms of g(k):

∆g(k) = g(k + 1)− g(k) = δωn−k − sk with sk =

Tk∑

i=Tk−1+1

ωi

Since δωn−k is monotonically decreasing, it suffices to prove that sk is strictly increasing. Since wi is an
increasing sequence and Tk − Tk−1 = k, the sequence sk is monotonically increasing, the result holds.

Theorem 5. The following inequalities hold for any clique C with cardinality c = |C|:

ω(δ(C)) ≤ g(c). (6)

Proof. For any clique C, the incident links to some v ∈ C either belong to the clique or to the cut δ(C),
thus

ω(δ(C)) = −
∑

x,y∈C
ω(xy) +

∑

vi∈C
δωi

The sum of the Tc−1 weights ω(xy) (respectively c weighted degrees δωi ) is greater (resp. smaller) than
the sum of the Tc−1 smallest weights ω1, . . . ωTc−1

(respectively c greater weighted degrees
δωn , . . . , δ

ω
n−c+1). Thus

ω(δ(C)) ≤ −
Tc−1∑

i=1

ωi +

c∑

i=1

δωn−i+1 = g(c).

In the following, we will provide an upper-bound for OPTω, the optimal value for the MEWNC, and
bounds for the size cωmin of the minimum cardinality clique Cωmin, in terms of the auxiliary sequence
{g(k)}n0

k=0.
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Corollary 2 (Upper-Bound for MEWNC). If OPTω denotes the optimal value for the MEWNC and g is
maximized at k0, then OPTω ≤ g(k0).
Theorem 6 (Bounds for cωmin). If {k0, k1} = argmax g(k) with k0 ≤ k1, then the following inequalities
hold for any clique C:

max {k ≤ k0 : g(k) ≤ ω(δ(C))} ≤ cωmin ≤ min {k ≥ k1 : g(k) ≤ ω(δ(C))} . (7)

Proof. Let C′ be a clique such that g(|C′|) ≤ ω(δ(C)) and |C′| ≤ k0. Since ω(δ(C)) ≤ OPTω ≤ g(cωmin)
and g is strictly increasing in [1, k0], then |C′| ≤ cωmin. Taking maximum on |C′| ≤ k0, we obtain the first
inequality. The reasoning for the second inequality is analogous.

3. Methodology

GRASP, VND and Tabu Search are well known metaheuristics that have been successfully used to
solve many hard combinatorial optimization problems. GRASP is an iterative multi-start process which
operates in two phases (Resende and Ribeiro (2016)). In the Construction Phase a feasible solution is
built whose neighborhood is then explored in the Local Search Phase (Resende and Ribeiro (2016)).
The second phase is usually enriched by means of different variable neighborhood structures. For
instance, VND (Variable Neighborhood Descent) explores several neighborhood structures in a
deterministic order. Its success is based on the simple fact that different neighborhood structures do not
usually have the same local minimum. Thus, the local optima trap problem may be resolved by
deterministic change of neighborhoods (Duarte et al. (2016)). Tabu Search is a strategy to prevent local
search algorithms getting trapped in previously visited solutions. It operates accepting non improving
moves and uses a penalization mechanism called Tabu List (Glover and Laguna (1997); Amuthan and
Thilak (2016)). The reader is invited to consult the comprehensive Handbook of Metaheuristic for
further information (Salhi (2014)).

Here, we develop a GRASP/VND methodology enriched with Tabu Search in order to avoid getting
trapped in previous visited solutions. In the following, the Pseudo-code of our Hybrid Metaheuristic
(HM) for the max cut-clique is presented (see Algorithm 1). It follows the traditional two-phase GRASP
template enriched with a VND (Lines 4-5).

A Tabu Search strategy is included in order to enhance feasible solutions. The tabu list T stores
tabu nodes (Line 6), discarding previous solutions. Essentially, the most frequent nodes involved in all
solutions after the second phase (VND) are not considered for further solutions during θ iterations,
whenever we reach θmax consecutive iterations without improvement. Most frequent nodes are selected
if they appear more than φ times since the last tabu list refresh. The real numbers φ and θ are uniformly
chosen at random in the interval [1, θmax], being θmax a parameter of the algorithm. The specific GRASP
phases for the MCC and MEWNC are described in detail in the following subsections.

3.1. Construction Phase - Clique

The construction phase of the proposed algorithm is depicted in Algorithm 2. Let us denote by C the
clique under construction, δw(U) and ∆w(U) the highest and lowest weighted-sum in their adjacent
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Algorithm 1 HM PSEUDO-CODE

Input: α, θmax, maxIter, G
Output: C∗

1: C∗ ← ∅
2: T ← ∅
3: for iter = 1 to maxIter do
4: C ← CLIQUE(α, T , G)
5: C ← VND(C, T , G)
6: T ← UPDATE(T , θmax, C) . Tabu List
7: if |δ(C)| > |δ(C∗)| then
8: C∗ ← C
9: return C∗

links in the node-set U respectively. The clique C is initially empty (Line 1), and a multi-start process is
considered (Line 2). A Restricted Candidate List (RCL) is defined in Line 3. Observe that the RCL
includes nodes with the highest weights in their adjacent links, and α trades greediness for
randomization. During the While loop of Lines 4-11, a singleton {i} is uniformly picked from the RCL
(Line 5), and the maximum clique C′ is built using the nodes from the set C ∪ {i}, specifically,
[C ∩ N(i)] ∪ {i}, being N(i) the neighbor-set of node i (see Line 6). The best solution is updated if
necessary (Lines 7-8). Observe that the process is finished only if we meet maxAttempts without
improvement (Lines 9-11). The reader can appreciate that the output C is the best feasible clique during
the whole process (Line 12).

Algorithm 2 CLIQUE

Input: α, T , maxAttempts, G
Output: C

1: C ← ∅
2: improving = maxAttempts
3: RCL← {v ∈ V − C : |δ(v)| ≥ ∆w(V − C)− α(∆w(V − C)− δw(V − C))}
4: while improving > 0 do
5: i← selectRandom(RCL)
6: C′ ← [C ∩N(i)] ∪ {i}
7: if |δ(C′)| > |δ(C)| then
8: C ← C′
9: improving ← maxAttempts

10: else
11: improving ← improving − 1

12: return C
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3.2. Local Search Phase - V ND

The goal is to combine a rich diversity of neighborhoods in order to obtain an output that is locally
optimal solution for every feasible neighborhood. Five neighborhood structures are considered to build
a VND Duarte et al. (2016). Add, Swap, and Aspiration are taken from a previous ILS Martins et al.
(2015). However, our VND is enriched with 2 additional neighborhood structures, named Remove and
Cone. The following neighborhood take effect whenever the resulting cut-clique is increased:

• Remove: a vertex i is removed from a clique C.
• Add: if we have a vertex i with C ⊂ N(i) we can add i to clique C.
• Swap: if we find j /∈ C such that C \ {i} ⊆ N(j), we can include j in the clique and delete i.
• Cone: generalization of Swap for multiple nodes. The clique C is replaced by C ∪ {i} \ A, being i a

node that does not belong to C and A the nodes from C that are non-adjacent to i.
• Aspiration: this movement offers the opportunity of nodes belonging to the Tabu List to be added.

Observe that the dynamic Tabu list works during the potential additions during Add, Swap and
Cone. On the other hand, Aspiration provides diversification with an opportunistic unchoking process:
it picks nodes from the Tabu List instead. For the remaining four local searches, there is an efficient
way to determine whether there is an improvement with respect to some neighbor-set. Specifically, the
Test Lemmas 4 to 7 are just efficient tests to determine whether there is an improvement under the
different local searches Remove, Add, Swap and Cone movements, respectively. We call Aspiration
Test to Lemma 5 but applied in a different domain (specifically, the candidate nodes must belong to the
Tabu List).

The Flow Diagram of our VND is presented in Figure 1. The ordered sequence of local searches
are Remove, Add, Swap, Cone and Aspiration moves. Once an improvement is obtained, the process
restarts from the beginning. Observe that, in the output, a locally optimal solution under all neighborhood
structures is met.
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Start VND

Lemma 4?

C ← Remove

Lemma 5?

C ← Add

Lemma 6?

C ← Swap

Lemma 7?

C ← Cone

Aspiration
test?

C ← Aspiration

Return C

yes

no

yes

no

yes

no

yes

no

yes

no

Fig. 1: Flow Diagram for the Local Search Phase - VND.
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In the following we re-write the tests for each local search efficiently. We denote Ω(v,H) to the
weighted-sum of all the links between v and the node-set H .

Lemma 4 (Remove). |δ(C \ {i})| > |δ(C)| iff Ω(i, G \ C) < Ω(i, C).

Proof. |δ(C \ {i})| = |δ(C)|+ Ω(i, C)−Ω(i, G \ C) > |δ(C)|; the last inequality holds iff Ω(i, G \ C) <
Ω(i, C).

Lemma 5 (Add). |δ(C ∪ {i})| > |δ(C)| iff Ω(i, C) < Ω(i, G \ C).

Proof. |δ(C ∪ {i})| = |δ(C)| − Ω(i, C) + Ω(i, G \ C) > |δ(C)|; the last inequality holds iff Ω(i, C) <
Ω(i, G \ C).

Lemma 6 (Swap). |δ(C \ {j} ∪ {i})| > |δ(C)| iff
Ω(j,G \ C) + Ω(i, C) < Ω(j, C) + Ω(i, G \ C).

Proof.
|δ(C \ {j} ∪ {i})| = |δ(C)| − Ω(j,G \ C) + Ω(j, C)− Ω(i, C) + Ω(i, G \ C)

= |δ(C)| − Ω(j,G \ C)− Ω(i, C) + Ω(j, C) + Ω(i, G \ C)
> |δ(C)|,

where the last inequality holds iff Ω(j,G \ C) + Ω(i, C) < Ω(j, C) + Ω(i, G \ C).

Lemma 7 (Cone). |δ(C\A∪{i})| > |δ(C)| iff ∑j∈A Ω(j,G\C)+Ω(i, C) <∑
j∈A Ω(j, C)+Ω(i, G\C).

Proof.
|δ(C \ A ∪ {i})| = |δ(C)| −

∑

j∈A
Ω(j,G \ C) +

∑

j∈A
Ω(j, C)− Ω(i, C) + Ω(i, G \ C)

= |δ(C)| −
∑

j∈A
Ω(j,G \ C)− Ω(i, C) +

∑

j∈A
Ω(j, C) + Ω(i, G \ C)

> |δ(C)|

where the last inequality holds iff
∑

j∈A Ω(j,G \ C) + Ω(i, C) <∑
j∈A Ω(j, C) + Ω(i, G \ C).
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4. Exact Method for the MEWNC

In this section, we present an exact method based on a mathematical formulation. Due to combinatorial
nature, we addressed it by integer programming, using the following decision variables:

Given a graph G = (V,E), we denote C as a set of nodes whose elements define the clique that has
the max cut (the subgraph of G induced by C is the clique that we are looking for).

ui =

{
1 if node i ∈ C
0 otherwise

, ∀i ∈ V

w(i,j) =

{
1 if nodes i, j ∈ C
0 otherwise

, ∀(i, j) ∈ E

An integer programming model is presented below. As in Martins and Gouveia (2015), the constraint
that guarantee a clique are from (1) to (5). Constraints in (1) state that both nodes i, j belong to the clique
C if and only if the edge (i, j) belongs to its edges set. Constraint (2) states that if i, j ∈ C necessarily
(i, j) belongs to its edges set. Constraint (3) states that if an edge does not belong to E, at most one of
the nodes belongs to the clique C. Constraints (4) and (5) just state that wi and w(i,j) are binary variables.
Recall that Theorem 6 provides a feasible interval for the size of the clique, cmin. Constraints (6) and
(7) determine lower and upper bounds LB and UB for the size of the clique, which helps to reduce the
space of solutions. The upper bound (Constraint (7)) was proposed by Martins and Gouveia (2015). Our
bounding scheme provides a further reduction of the set of candidate solutions.

The goal is to maximize the weighted cut-clique. Let us define the weight of a given node, i, as the
weighted-sum of all its adjacent links, di =

∑
j∈Neighbors(i)weight(i, j). Observe that the weighted

cut-clique is the weighted-sum of its nodes, minus twice the weight of its internal links:

max
∑

i∈V di × ui − 2×∑
(i,j)∈E w(i,j) × weight(i, j)

s.a. w(i,j) ≤ ui, w(i,j) ≤ uj ∀(i, j) ∈ E (1)
ui + uj ≤ w(i,j)+1 ∀(i, j) ∈ E (2)

ui + uj ≤ 1 ∀(i, j) /∈ E (3)

w(i,j) ∈ {0, 1} ∀(i, j) ∈ E (4)
ui ∈ {0, 1} ∀i ∈ V (5)

∑
i∈V ui ≥ LB (6)∑
i∈V ui ≤ UB (7)
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5. Computational Results

In order to test the performance of the GRASP/VND algorithm we carried out a fair comparison with
respect to the ILP model implemented using IBM CPLEX 12.8. Both are executed on a PC (Intel Core i7,
2.4 GHz, 8GB RAM). The graphs under study were obtained from the SteinLib 1, DIMACS, NIP class
with origin in Förster et al. (2003) and the RTN class with origin in Batagelj and Mrvar (2009). The
original DIMACS instances do not include weights on its edges. However, we followed the weighting
strategy proposed by Pullan (2008), setting cij = (i+ j) mod 200 + 1 in order to study c-fat instances.

Table 1 reports the performance of the GRASP/VND and ILP for each instance considering all links
with unit weights (MCC). Table 3 reports the same considering instances’ original weights. All
GRASP/VND algorithm instances were tested using a single run with one-hundred iterations and
α = 1

2 , maxAttempts = b|V |/10c, θmax = 4. Lower and upper bounds LB and UB were obtained
for each topology under study combining Corollary 1 and Theorem 6 for the unweighted and weighted
versions of the problem respectively. An exact CPLEX resolution for the ILP was executed with and
without Constraint (6), in order to evaluate the performance of our bounding scheme.

The values remarked using bold letters from column |δ(C)| indicate that the best solution was reached
according to the output from the ILP solver with the case of using both bounds (LB and UB).

Following the terminology, |δ(C)|, |C| and Time represent maximum cut-clique size found, best
solution, and the CPU time in seconds for the best solution found. LB, UB columns are reported for
the ILP solver which represents lower an upper bounds for the ILP model. Under ILP, Time gives the
time to reach the optimum value or the best lower bound to the optimum when the optimum is not
attained within the given time limit (10800 seconds).

The reader can appreciate from Tables 1 and 3 that our GRASP/VND algorithm meets the best
solution in almost all cases. A global optimum for almost all the instances under study is formally proved
using the ILP formulation. Furthermore, our GRASP/VND approach presents consistently smaller CPU
times for graphs with large size. The reader can appreciate that Constraint (6) is really worth for the
reduction of the computational times.

Table 2 and 4 show the performance of the VND algorithm for MCC and MEWNC respectively. The
activity of every single local search is studied. Swap and Add movements show to be more effective,
while Remove and Cone take effect few times. Aspiration has no effect, but it works for dense graphs.

In order to understand the global effectiveness of our VND scheme, a mid-point test is performed.
The columns Remove, Add, Swap, Cone and Aspiration show the percentage of each kind of movement
applied over one-hundred executions of the VND local search phase. The column #moves states the
number of moves applied during these iterations. The column entitled mp displays the average gap
in percentage between the best solution found in each local search phase with respect to the feasible
solution obtained from the construction phase over one-hundred iterations. The reader can appreciate
that the VND effect is notorious, since the cut-clique is roughly half an optimum in most cases using
only the Construction Phase.

It is worth to remark that we further studied the performance of our GRASP/VND methodology
versus a state-of-the-art ILS heuristic for the MCC, reported in Martins et al. (2015) and Martins and
Gouveia (2015) for the MEWNC. We found optimality under all the reported instances which previously

1The dataset can be found in the URL http://steinlib.zib.de/steinlib.php
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Instances GRASP/VND Bounds ILP with UB ILP with LB & UB
name n Density |δ(C)| |C| Time (s) LB UB |δ(C)| |C| Time (s) |δ(C)| |C| Time (s)

i080-001 80 0.039 13 2 0.7120 2 8 13 2 1.02 13 2 0.66
i080-002 80 0.039 13 2 1.4779 2 9 13 2 0.97 13 2 0.62
i080-011 80 0.11 38 4 3.0396 3 16 38 4 1.38 38 4 0.94
i080-044 80 0.2 80 5 1.1495 4 26 80 5 1.32 80 5 0.71
i080-045 80 0.2 74 4 0.5748 4 25 74 4 1.26 74 4 0.90
i080-111 80 0.11 35 4 0.4141 3 15 35 4 1.33 35 4 0.88
i080-112 80 0.11 39 3 0.3191 3 19 39 3 0.98 39 3 0.64
i080-131 80 0.05 16 2 1.1908 2 10 16 2 1.27 16 2 0.73
i080-132 80 0.05 15 3 0.5146 2 9 15 3 1.19 15 3 0.69
i080-142 80 0.2 74 4 1.0306 4 25 74 4 0.98 74 4 0.70
i080-143 80 0.2 80 4 0.8546 4 26 80 4 1.16 80 4 0.85
i160-001 160 0.019 15 2 0.6351 2 10 15 2 4.02 15 2 2.84
i160-002 160 0.019 14 2 2.8054 2 9 14 2 4.17 14 2 2.44
i160-011 160 0.064 44 3 4.6177 3 20 44 3 37.2 44 3 24.53
i160-044 160 0.2 180 5 5.7298 5 47 180 5 19.8 180 5 11.23
i160-045 160 0.2 173 5 3.8451 5 42 173 5 26.43 173 5 14.92
i160-111 160 0.064 50 4 5.9956 4 18 50 4 8.75 50 4 5.59
i160-112 160 0.064 46 4 0.47 3 18 46 4 7.43 46 4 5.71
i160-131 160 0.025 19 3 2.5908 3 10 19 3 5.01 19 3 2.80
i160-132 160 0.025 22 3 2.3052 3 12 22 3 4.7 22 3 2.95
i160-142 160 0.2 183 5 3.7192 5 45 183 5 23.48 183 5 10.63
i160-143 160 0.2 170 5 05.097 5 44 170 5 19.33 170 5 10.57
mc11 400 0.0095 6 2 0.7292 2 2 6 2 9.88 6 2 6.43
c-fat200-1 200 0.077 81 9 0.1860 9 17 81 9 83.7 81 9 29.57
c-fat200-2 200 0.163 306 17 0.8388 17 34 306 17 201.6 306 17 88.79
c-fat200-5 200 0.426 1892 43 13.0593 43 86 1892 43 4627.9 1892 43 1717.39
c-fat500-1 500 0.036 110 10 4.77459 10 20 110 10 2781.2 110 10 1198.31
c-fat500-2 500 0.073 380 19 14.1875 19 38 ≥380 19 10800 380 19 1822.08
c-fat500-5 500 0.186 2304 48 121.32 48 95 ≥2304 48 10800 ≥2304 48 10800
c-fat500-10 500 0.374 8930 94 33.298 94 188 ≥8930 94 10800 ≥8930 94 10800

Table 1: GRASP/VND versus ILP for the MCC.

achieved optimality. Furthermore, we found the best feasible solutions so far in the remaining cases, with
identical results offered by Martins et al. (2015) and Martins and Gouveia (2015) as the reader can see
in Section 6.
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Instances GRASP/VND
name n Density Remove (%) Add (%) Swap (%) Cone (%) Aspiration (%) #moves mp (%)

i080-001 80 0.039 0 38 57 5 0 154 30.949
i080-002 80 0.039 3 32 59 7 0 147 27.571
i080-011 80 0.11 1 48 48 3 0 158 18.647
i080-044 80 0.2 0 54 46 0 0 239 17.390
i080-045 80 0.2 0 56 44 0 0 217 20.585
i080-111 80 0.11 0 59 39 3 0 176 22.572
i080-112 80 0.11 0 48 37 5 0 244 16.261
i080-131 80 0.05 1 30 60 9 0 151 25.983
i080-132 80 0.05 0 32 68 0 0 136 23.402
i080-142 80 0.2 0 50 50 0 0 202 19.762
i080-143 80 0.2 0 52 48 0 0 253 18.467
i160-001 160 0.019 0 22 73 5 0 143 29.452
i160-002 160 0.019 0 20 80 0 0 135 26.427
i160-011 160 0.064 0 57 40 3 0 186 21.803
i160-044 160 0.2 0 60 40 0 0 251 18.079
i160-045 160 0.2 0 53 47 0 0 211 16.358
i160-111 160 0.064 0 61 38 1 0 181 23.816
i160-112 160 0.064 0 55 45 0 0 154 23.940
i160-131 160 0.025 0 39 58 2 0 168 23.710
i160-132 160 0.025 0 42 54 3 0 179 26.588
i160-142 160 0.2 0 57 42 0 0 250 18.146
i160-143 160 0.2 0 59 41 0 0 196 17.664
mc11 400 0.0095 0 100 0 0 0 46 50.000
c-fat200-1 200 0.077 0 100 0 0 0 376 13.159
c-fat200-2 200 0.163 0 100 0 0 0 475 6.338
c-fat200-5 200 0.426 0 99 1 0 0 138 0.505
c-fat500-1 500 0.036 0 100 0 0 0 391 12.965
c-fat500-2 500 0.073 0 100 0 0 0 278 3.736
c-fat500-5 500 0.186 2 98 0 0 0 132 3.252
c-fat500-10 500 0.374 0 100 0 0 0 11 0.132

Table 2: Performance of the Local Search Phase of the GRASP/VND for MCC.
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Instances GRASP/VND Bounds ILP with UB ILP with LB & UB
name n Density |δ(C)| |C| Time (s) LB UB |δ(C)| |C| Time (s) |δ(C)| |C| Time (s)

i080-001 80 0.0380 1912 2 0.8522 2 8 1912 2 2.06 1912 2 0.77
i080-011 80 0.1108 5468 3 85.0657 2 16 5468 3 2.51 5468 3 0.94
i080-044 80 0.2000 9442 5 16.7738 3 26 9442 5 1.91 9442 5 0.97
i080-131 80 0.0506 2534 3 5.7053 2 10 2534 3 2.12 2534 3 0.79
i160-001 160 0.0189 1691 2 9.4890 2 10 1691 2 7.6 1691 2 3.12
i160-011 160 0.0638 5448 3 11.1498 2 20 5448 3 12.46 5448 3 4.01
i160-044. 160 0.2000 22737 5 79.3854 3 47 22737 5 21.64 22737 5 12.37
i160-131 160 0.0252 2301 3 19.1936 2 10 2301 3 4.21 2301 3 2.96
i320-001 320 0.0094 2274 2 11.3182 2 10 2274 2 15.43 2274 2 8.75
i320-011 320 0.0361 5595 3 290.534 2 21 5595 3 69.89 5595 3 26.31
i320-044 320 0.2000 56366 5 223.0667 4 90 56366 5 1383.2 56366 5 441.57
i320-131 320 0.0125 2396 2 15.8872 2 10 2396 2 9.59 2396 2 6.86
i640-001 640 0.0047 2797 2 160.0125 2 13 2797 2 72.85 2797 2 27.43
i640-011 640 0.0202 6480 3 50.1892 3 28 6480 3 241.11 6480 3 67.12
i640-044 640 0.2000 103453 7 4255.319 4 161 ≥103453 7 10800 ≥103453 7 10800
i640-131 640 0.0063 2612 2 27.292 2 12 2612 2 101.77 2612 2 36.26
mc11 400 0.0095 1374 2 25.0436 2 4 1374 2 10.8 1374 2 6.03
c01 500 0.0050 92 2 221.738 2 12 92 2 123.41 92 2 16.92
c06 500 0.0080 129 3 32.8086 2 13 129 3 31.42 129 3 7.28
c11 500 0.0200 232 3 498.365 2 22 232 3 154.56 232 3 30.35
c16 500 0.1002 1464 5 7046.529 4 71 1464 5 1341.8 1464 5 692.63
d01 1000 0.0025 102 3 86.4624 2 13 102 3 173.51 102 3 69.84
d06 1000 0.0040 126 2 245.2698 2 12 126 2 230.22 126 2 72.56
d11 1000 0.0100 289 3 1052.1850 3 23 289 3 726.68 289 3 77.92
d16 1000 0.0501 1386 4 3368.4034 4 73 1386 4 6124.6 1386 4 2861.09
e01 2500 0.001 137 2 3932.207 2 14 137 2 947.30 137 2 506.30
e06 2500 0.0016 142 2 3251.8594 2 16 142 2 2312.2 142 2 495.11
e11 2500 0.0040 253 3 3289.2753 2 24 253 3 3855.37 253 3 1179.18
e16 2500 0.0200 1252 4 10191.045 3 75 ≥1252 4 10800 ≥1252 4 10800
c-fat200-1 200 0.077 9952 8 77.1055 5 17 9952 8 12.52 9952 8 11.43
c-fat200-2 200 0.163 32976 16 89.67 9 34 32976 16 342.37 32976 16 43.02
c-fat200-5 200 0.426 204714 40 196.81 24 86 ≥202298 38 10800 ≥204714 40 10800
c-fat500-1 500 0.036 14036 9 350.58 6 20 14036 9 1041.2 14036 9 630
c-fat500-2 500 0.073 47798 17 75484.98 11 38 47798 17 8322.7 47798 17 4453
c-fat500-5 500 0.186 251324 42 4584.046 25 95 ≥241245 45 10800 ≥251324 42 10800
c-fat500-10 500 0.37 975450 83 10401.35 48 188 ≥788250 126 10800 ≥975450 83 10800

Table 3: GRASP/VND versus ILP for the MEWNC.
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Instances GRASP/VND
name n Density Remove (%) Add (%) Swap (%) Cone (%) Aspiration (%) #moves mp (%)

i080-001 80 0.0380 0.03 0.45 0.38 0.14 0.00 29 0.26368
i080-011 80 0.1108 0.00 0.26 0.48 0.26 0.01 524 0.03808
i080-044 80 0.2000 0.00 0.54 0.41 0.06 0.00 235 0.15235
i080-131 80 0.0506 0.06 0.33 0.61 0.00 0.00 18 0.26374
i160-001 160 0.0189 0.00 0.14 0.86 0.00 0.00 14 0.12890
i160-011 160 0.0638 0.00 0.64 0.36 0.00 0.00 11 0.28564
i160-044 160 0.2000 0.00 0.53 0.43 0.04 0.00 246 0.18027
i160-131 160 0.0252 0.00 0.28 0.59 0.12 0.00 32 0.15454
i320-001 320 0.0094 0.00 0.19 0.72 0.08 0.00 36 0.24908
i320-011 320 0.0361 0.00 0.20 0.80 0.00 0.00 35 0.12719
i320-044 320 0.2000 0.00 0.44 0.41 0.15 0.00 34 0.11657
i640-001 640 0.0047 0.00 0.17 0.70 0.12 0.00 40 0.22110
i640-011 640 0.0202 0.00 0.24 0.65 0.12 0.00 17 0.13911
i640-044 640 0.2000 0.00 0.53 0.46 0.01 0.00 256 0.14234
i640-131 640 0.0063 0.00 0.00 0.82 0.18 0.00 11 0.16355
mc11 400 0.0095 0.00 0.33 0.67 0.00 0.00 33 0.14887
c01 500 0.0050 0.00 0.13 0.80 0.07 0.00 15 0.14679
c06 500 0.0080 0.00 0.23 0.77 0.00 0.00 13 0.23910
c11 500 0.0200 0.00 0.27 0.64 0.09 0.00 33 0.17143
c16 500 0.1002 0.00 0.51 0.49 0.00 0.00 774 0.16977
d01 1000 0.0025 0.00 0.31 0.69 0.00 0.00 29 0.20144
d06 1000 0.0040 0.00 0.17 0.83 0.00 0.00 42 0.19271
d11 1000 0.0100 0.00 0.40 0.60 0.00 0.00 20 0.16935
d16 1000 0.0501 0.00 0.43 0.57 0.00 0.00 58 0.18596
e01 2500 0.0010 0.00 0.11 0.83 0.06 0.00 36 0.13332
e06 2500 0.0016 0.00 0.06 0.94 0.00 0.00 51 0.12423
e11 2500 0.0040 0.00 0.21 0.74 0.05 0.00 19 0.10851
e16 2500 0.0200 0.00 0.53 0.47 0.00 0.00 138 0.19983
c-fat200-1 200 0.077 0.40 0.60 0.00 0.00 0.00 10 0.02157
c-fat200-2 200 0.1626 0.33 0.62 0.00 0.00 0.04 135 0.04134
c-fat200-5 200 0.426 0.39 0.58 0.00 0.00 0.03 372 0.00657
c-fat500-1 500 0.0357 0.33 0.63 0.00 0.00 0.03 87 0.03155
c-fat500-2 500 0.0733 0.45 0.51 0.00 0.00 0.04 116 0.01004
c-fat500-5 500 0.186 0.32 0.64 0.00 0.00 0.05 546 0.01795
c-fat500-10 500 0.3738 0.35 0.60 0.00 0.00 0.04 788 0.00272

Table 4: Performance of the GRASP/VND for the Local Search Phase for the MEWNC.
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Instances Parameters Best Average
name n Density maxIter |δ(C)| |C| Time (s) |δ(C)| Time (s)

c-fat200-1 200 0.077 10E1 81 9 0.186043 81 0.372932
c-fat200-2 200 0.163 10E1 306 17 0.528618 306 0.806601
c-fat200-5 200 0.426 10E1 1892 43 2.9922 1892 4.9419
c-fat500-1 500 0.036 10E1 110 10 0.528809 110 2.45625
c-fat500-2 500 0.073 10E1 380 19 2.90601 380 5.83031
c-fat500-5 500 0.186 10E1 2304 48 9.93067 2304 10.8468
c-fat500-10 500 0.374 10E1 8930 94 38.0456 8930 65.7376
p hat300-1 300 0.244 10E2 789 8 129.241 787.9 905.13
p hat300-2 300 0.489 10E2 4637 25 8.2183 4636.2 3659.39
p hat300-3 300 0.744 10E3 7740 36 469.674 7756.8 3992.42
p hat500-1 500 0.253 10E2 1621 9 13.722 7 1621 694.2
p hat500-2 500 0.505 10E2 11539 36 16.196 11401.8 723.93
p hat500-3 500 0.752 10E3 18859 50 679.3 18855.5 723.6155
p hat700-1 700 0.249 10E2 2606 11 305.914 2602.1 439.94
p hat700-2 700 0.498 10E3 20425 44 79.981 20425 839.1
p hat700-3 700 0.748 10E3 33480 62 945.01 33468.1 1807.5
p hat1000-1 1000 0.245 10E3 3556 10 216.49 3556 355.9
p hat1000-2 1000 0.490 10E4 31174 46 2124.2 31174 2538.3
p hat1000-3 1000 0.744 10E4 53259 65 2687.4 53256.1 3584.6
p hat1500-1 1500 0.253 10E3 6018 11 399.92 6018 904.85
p hat1500-2 1500 0.506 10E4 67486 65 2482.08 67486 2942.63
p hat1500-3 1500 0.754 10E4 112873 94 11746.5 112872.1 23162.2
keller4 171 0.649 10E2 1140 11 9.18 1140 11.8
keller5 776 0.752 10E4 15184 27 1956.2 15183.24 1167.64
keller6 3361 0.818 10E5 159608 59 26362.1 158423.2 321731.6
c125 9 125 0.899 10E3 2766 34 102.391 2766 253.247
c250 9 250 0.899 10E3 8123 44 426.18 8123 831.2
c500 9 500 0.901 10E4 22691 57 2354.11 22652.4 4469.86
c1000 9 1000 0.901 10E4 57149 68 3924.6 56038.7 4125.66
c2000 5 2000 0.500 10E4 16106 16 23472.9 16082.1 23472.9
c2000 9 2000 0.900 5x10E4 136769 79 37472.9 135001.2 45472.9
c4000 5 4000 0.500 5x10E4 36174 18 31196.2 35891.5 38119.2
MANN a9 45 0.927 10E3 412 16 4.32143 412 145.675
MANN a27 378 0.990 10E4 31284 126 309.746 31244.1 548.54
MANN a45 1035 0.996 5x10E4 236406 344 46881.1 235072.1 52112.36
MANN a81 3321 0.999 5x10E4 2436894 1098 73213.6 2433624.7 96743.12
d1-RTN 2418 0.0032 10E2 1273 8 3.834 1273 4.903
d3-RTN 4755 0.0024 10E2 3526 12 3.961 3526 5.162
d7-RTN 6511 0.0021 10E2 5656 15 4.013 5656 5.348
d15-RTN 7965 0.0020 10E2 7772 16 3.967 7772 5.664
d30-RTN 10101 0.0018 10E2 13099 21 6.012 13099 6.399
d66-RTN 13308 0.0017 10E2 22379 28 6.723 22379 7.403

Table 5: Results of the algorithm for the MCC problem
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Instances Parameters Best Average
name n Density maxIter |δ(C)| |C| Time (s) |δ(C)| Time (s)

d1-RTN 2418 0.0032 10E2 17151 8 5.726 17151 6.1
d3-RTN 4755 0.0024 10E2 28254 11 5.832 28254 7.025
d7-RTN 6511 0.0021 10E2 37771 13 6.675 37771 7.873
SC-NIP-m-t1 991 0.0085 10E2 2022 9 4.93 2022 6.286
SC-NIP-r-t1 1394 0.0579 10E3 20843 97 12.93 20843 15.88
SC-NIP-r-t2 1394 0.0183 10E3 8516 61 9.063 8516 11.21

Table 6: Results of the algorithm for the MEWNC problem

6. Comparation with the state-of-the-art

In order to test the performance of the algorithms with a state-of-the-art solution, a fair comparison
with respect to an Iterated Local Search offered by Martins et al. (2015) is carried out using DIMACS
benchmark and a family of strong sparse graphs known as Reuters Terror News Networks 2. An
analogous comparison with the results obtained by Martins and Gouveia (2015) is carried out, using
RTN and SCi-NIP (Saccharomyces cerevisiae metabolic networks (Förster et al., 2003)).

Tables 5 and 6 show the performance of our GRASP/VND algorithm for each instance. All instances
were tested using 100 independent runs with α = 1

2 , maxAttempts = b|V |/10c and θmax = 10. The
values remarked using bold letters from column |δ(C)| indicate that the best solution known was
previously reached. The parameter maxIter represents the number of iterations considered in the
algorithm; |δ(C)|, |C| and Time represents, respectively, the maximum cut-clique size, best solution
and CPU time for the best solution. The same columns are reported for the averaging over 100
independent runs.

The reader can appreciate that our GRASP/VND algorithm meets the best solution known so far in all
cases. On one hand GRASP/VND is a more powerful solution than ILS, since the local search from the
latter are strictly included in the former. On the other hand, the computational effort is increased in our
proposal. Even though a global optimum is not formally proved for some instances, the null gap between
ILS and our solution reinforces the evidence of optimality.

The results described in this section reflect that our GRASP/VND methodology is competitive with
state-of-the-art solutions for both MCC and MEWNC. We underscore the simplicity of implementation
conducted by simple building blocks (solution construction procedures and local search methods).

2The dataset is available in the link: http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm
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7. Conclusions and Trends for Future Work

Several business models can be represented by Market Basket Analysis (MBA). A relevant marketing
approach is to find a subset of items that are strongly correlated with the others. This intuition is
formalized by means of a combinatorial optimization problem, called the maximum edge-weight
neighborhood clique (MEWNC).

In this paper, the NP-Completeness of both the MCC and MEWNC are established. This fact
promotes the development of heuristics and bounds. As a consequence, we offered bounds for both a
globally optimal solution and the size of the minimum cardinality clique with maximum cut. Then, a
GRASP/VND methodology enriched with Tabu Search is developed to address the MCC and MEWNC.
A fair comparison with an exact ILP formulation confirms the optimality of our approach for hundreds
of nodes. Furthermore, the computational effort is reduced for the heuristic under large-sized graphs.
The movements Swap and Add have the largest activity for the instances under study. The experiments
show that our GRASP/VND heuristic is competitive with state-of-the-art solutions for the MCC and
MEWNC. Further analysis should be done to determine the best order for the VND in terms of
computational efficiency.

As future work we would like to implement our solution into a real-life product-placement scenario. In
a first stage, we need historical information to determine the links between pairs of items. The physical
location of the items must be determined using a complementary geometrical problem with constraints.
The solution could consider multi-constrained clustering in order to include categories for the items, or
other Machine Learning techniques to determine profiles for the customers, according to the product
under study. After the real implementation, the feedback of sales in a period is a valuable metric of
success.
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Chapter 5

A Hybrid GRASP/VND Heuristic
for the Design of Highly Reliable Networks

In this chapter we develop an ideal VND metaheuristic that returns a uniformly most-reliable graph.
Since it has exponential time, we must trade accuracy for computational effort. As a consequence, a full
GRASP/VND heuristic is introduced and novel networks that show high reliability are found.
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Abstract. There is a strong interplay between network reliability and
connectivity theory. In fact, previous studies show that the graphs with
maximum reliability, called uniformly most-reliable graphs, must have
the highest connectivity. In this paper, we revisit the underlying theory in
order to build uniformly most-reliable cubic graphs. The computational
complexity of the problem promotes the development of heuristics. The
contributions of this paper are three-fold. In a first stage, we propose
an ideal Variable Neighborhood Descent (VND) which returns the graph
with maximum reliability. This VND works in exponential time. In a
second stage, we propose a hybrid GRASP/VND approach that trades
quality for computational effort. A construction phase enriched with a
Restricted Candidate List (RCL) offers diversification. Our local search
phase includes a factor-2 algorithm for an Integer Linear Programming
(ILP) model. As a product of our research, we recovered previous optimal
graphs from the related literature in the field. Additionally, we offer new
candidates of uniformly most-reliable graphs with maximum connectivity
and maximum number of spanning trees.

Keywords: Network Optimization, Maximum Reliability, Heuristics,
GRASP, VND, ILP.

1 Motivation

In network reliability analysis, the goal is to find the probability of correct
operation of a system [6, 2]. The context of the original problem determines our
notion of correct operation. For instance, delay sensitive applications such as
videoconference require a hop-constrained network, where the terminals should
be connected by short paths [5]. Wireless systems deal with a hostile
environment with mobility (fading, handover and coverage, among other
challenges). The goal is to achieve a Grade of Service (GoS) during the busy
hour, and node-reliability analysis is more suitable for this context [12]. The
interaction between peers in a cooperative environment suggests potential
links, and a link-reliability analysis is adequate for this context. Peer-to-peer
systems suffer from starvation when the missing-piece syndrome affect all the
system [9]. Clearly, the swarm (or population) should be connected, and the
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all-terminal reliability model is a suitable tool in order to understand this
phenomena.

Several researchers from different fields of knowledge (mathematics, computer
science, engineering), shaped the body of network reliability analysis, given the
application and importance of the underlying models. A fundamental problem is
to find the connectedness probability of a random graph, subject to link failures,
called the all-terminal reliability. The scientific literature around this problem
is vast; however, this problem is not fully understood yet. The corresponding
practical problem is to connect p sites using q links in the best way, this is, to
find the graph whose all-terminal reliability is maximum among all (p, q)-graphs.
Such graphs are called uniformly most-reliable graphs.

The main contributions of this paper are the following:

1. An exact VND that returns uniformly most-reliable graphs is presented.
2. A hybrid GRASP/VND heuristic is introduced in order to find graphs with

high reliability. It trades quality for computational feasibility.
3. An Integer Lineal Programming (ILP) formulation called Regularity

Problem is proposed. The goal is to find a regular graph starting from a
non-regular one moving as minimum number of links as possible.

4. A factor 2 for the Regularity Problem is introduced.
5. Novel networks that show high reliability and connectivity are found, as a

result of our hybrid heuristic.

The document is organized in the following manner. Section 2 formally
states the problem and breakthroughs in the field of uniformly most-reliable
graphs. Section 3 presents an exact VND that runs in exponential time, and a
hybrid GRASP/VND heuristic that trades quality for computational
feasibility. As a product, we offer novel cubic networks with high reliability in
Section 4. Concluding remarks and open problems are discussed in Section 5.

2 Uniformly Most-Reliable Graphs

2.1 Definition

In the following, we work with undirected graphs without loops, and a graph
with p nodes and q links is a (p, q)-graph.

Definition 1. Consider a graph G with perfect nodes but independent link
failures with identical probability ρ ∈ (0, 1). The all-terminal reliability, RG(ρ),
is the probability that the resulting subgraph remains connected.

The unreliability UG(ρ) = 1−RG(ρ) can be expressed using sum-rule:

UG(ρ) =

q∑

k=0

mk(G)ρk(1− ρ)q−k, (1)

being mk(G) the number of spanning disconnected subgraphs of G with exactly
q−k links. Therefore, RG(ρ) is a polynomial in ρ ∈ (0, 1), and its determination
is reduced to counting the numbers {mk}k=0,...,q.
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Definition 2. A (p, q)-graph H is uniformly most-reliable if RH(ρ) ≥ RG(ρ)
for all (p, q)-graph G and all ρ ∈ (0, 1).

Alternatively, H is uniformly most-reliable if its unreliability UH(ρ) is dominated
(i.e., upper-bounded) by all functions UG(ρ) for all (p, q)-graph G.

2.2 Breakthroughs

In this section we present fundamental results that are the cornerstone in the
theory of uniformly most-reliable graphs. The following section briefly describes
the main findings that complement the fundamental results.

In 1977, Arnie Rosenthal formally proved that the K-terminal reliability
evaluation belongs to the class of NP-Hard computational problems [19]. The
key concept of the proof is the reducibility introduced in 1972 by Richard
Karp, which represents a foundational work in computational complexity [13].
As corollary, finding uniformly most-reliable graphs is a hard problem as well.

Observe that if mk(H) ≤ mk(G) for all k ∈ {0, . . . , q} and (p, q)-graph
G, then H is uniformly most-reliable. This is a simple but elegant interplay
between network reliability analysis and connectivity theory. Curiously enough,
the converse is still an open problem:

Conjecture 1 (Boesch et. al.). If G is uniformly most-reliable (p, q)-graph, then
mk(G) ≤ mk(H) for all (p, q)-graph H.

If λ(H) denotes the connectivity of H and τ(H) its number of spanning trees,
the following necessary criterion holds [1]:

Corollary 1. A uniformly most-reliable graph H must have the maximum tree-
number τ(H), maximum connectivity λ(H), and the minimum number mλ(H).

Corollary 1 wakes up interest in two special sub-problems: the maximum
connectivity and maximum tree-number of a graph. In the second book ever
written in graph theory, Claude Berge challenges the readers to find the graph
with maximum connectivity among all graphs with a fixed number of nodes
and links. Frank Harary provided not only a full answer, but also found
connected graphs with minimum and maximum diameter [10]. The idea behind
his construction is simple: by handshaking, the average degree of a (p, q)-graph
is 2q

p . Therefore, λ ≤ b 2qp c. Harary graphs achieve this upper-bound, which
represents the maximum connectivity of a graph.

Gustav Kirchhoff solved linear time-invariant resistive circuits, and as
corollary he introduced the Matrix-Tree theorem, where he counts the number
of spanning trees of a connected graph (i.e., the tree-number) using the
determinant of a matrix [15, 3]. This breakthrough in electrical systems
launched the theory of trees, which provides the building blocks in
communication design. However, the corresponding extremal problem is not
well understood: find the graph with a fixed number of nodes and links that
maximizes the tree-number.
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For convenience we say that a (p, q)-graph, H, is t-optimal if τ(H) ≥ τ(G)
for every (p, q) graph G. Briefly, Corollary 1 claims that uniformly
most-reliable graphs must be t-optimal and max-λ min-mλ, where λ denotes
the edge connectivity.

Another breakthrough from the related literature is a reliability improving
graph transformation called swing surgery, independently discovered by
Kelmans [14] and Satyanarayana et. al. [20]. Specifically, if we are given a
(p, q)-graph G = (V,E), two nodes x, y ∈ V with respective neighboring nodes
Sx and Sy with Sx \ {y} ⊂ Sy, B ⊆ Sy − {x} such that B ∩ Sx = ∅, and G′ the
graph obtained by G by removing the links {(y, z), z ∈ B} and adding the links
{(x, z), z ∈ B}, then RG′(ρ) ≥ RG(ρ) for all ρ ∈ (0, 1).

2.3 Findings

Redundancy is of paramount importance in communication networks. For that
reason, in the following we are specifically focused on uniformly most-reliable
cubic graphs (i.e., 3-regular connected graphs). By handshaking, this is the case
of (2r, 3r)-graphs for some r ≥ 2. Recall that Möbius graph Mn is precisely
the elementary cycle C2n together with all the diameters (opposite nodes are
also linked). So far, the findings of uniformly most-reliable cubic graphs can be
summarized in the following list:

– K4 = M2; complete graph with 4 nodes; case r = 2; see [4].
– K(3,3) = M3; complete bipartite graph; case r = 3; see [23].
– W4 = M4; Wagner graph (r = 4); see [18].
– P5; Petersen graph (r = 5); see [16].
– Y6; Yutsis graph (r = 6); see [22].

The reader is invited to consult the corresponding references for a
mathematical proof that these graphs are uniformly most-reliable. They are
sketched in Figures 1-2. By computational limits, currently it is not possible to
find uniformly most-reliable cubic graphs for r ≥ 7. The goal of this paper is to
build highly reliable cubic graphs for r ∈ {7, . . . , 10}, finding a trade-off
between quality and computational effort.
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(a) K4 = M2 (b) K(3,3) = M3 (c) M4

Fig. 1. Möbius graphs M2, M3 and M4
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Fig. 2. Petersen P5 and Yutsis graph Y6.

2.4 Equivalent Combinatorial Problem

It is worth to remark that the problem of finding uniformly most-reliable
graphs is a simultaneous minimization of an uncountable family of numbers
{UG(ρ)}ρ∈(0,1). However, if Boesch Conjecture holds, we observe that the
problem can be translated to a (single-objective) combinatorial optimization
problem. Specifically, let us denote m(G) to the number of disconnected
spanning subgraphs for G. By the definition of link disconnecting sets, we get
that:

m(G) =

q∑

k=0

mk(G).

Proposition 1. Consider natural numbers p and q such that there exists a
unique (p, q)-graph. If Boesch conjecture holds, then G is uniformly
most-reliable (p, q) graph if and only if m(G) is minimum.

Proof. Assume that G is uniformly most-reliable. By Boesch conjecture, every
disconnecting set mk(G) is minimum among all the other (p, q)-graphs.
Therefore, the number m(G) =

∑q
k=0mk(G) is also minimum in this set.

For the converse, consider a (p, q)-graph G such that m(G) is minimum. By
hypothesis, there exists some (p, q)-graph, denoted by H. By Boesch
conjecture, mk(H) ≤ mk(G). Since m(G) =

∑q
k=0mk(G) is minimum, the only

possibility is that mk(G) = mk(H) for all k. Therefore, G and H share the
same unreliability polynomial. By uniqueness, we must have G = H, and the
statement is proved.

In short, Proposition 1 tells us that if Boesch conjecture holds, then finding
uniformly most-reliable graphs is equivalent to the minimization of
disconnected spanning subgraphs m(G). This result reinforces the evidence
that the optimum graphs under connectivity (i.e., purely deterministic) and
reliability optics (probabilistic) share common properties.
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In this work we are focused on the minimization of disconnecting spanning
subgraphs m(G). In this paper, we offer highly reliable cubic graphs, which share
strong connectivity properties as well, supported by Proposition 1.

It is well-known that finding the coefficients {mk(G)}k=0,...,q belongs to the
hierarchy of #P-Complete counting problems [21]. Furthermore, the number
m(G) =

∑q
k=0mk(G) = T (1, 2), is precisely Tutte polynomial evaluated at the

point (1, 2), which is a #P-Hard counting problem, even for bipartite planar
graphs [11]. Here, we propose a pointwise statistical estimation of this number.
Monte Carlo is a noteworthy computational tool for simulation. From a
macroscopic point of view, the idea is to faithfully simulate a complex system
(or a part of it), and consider N independent experiments of that simulation,
in order to determine the performance of the system (or subsystem) and assist
decisions on it [8].

We will use Crude Monte Carlo (CMC) in order to provide an unbiased
statistical estimation for m(G). First of all, observe that m(G) is strictly related
with the unreliability evaluation at ρ = 1

2 :

UG(
1

2
) =

q∑

k=0

mk(G)(
1

2
)k(

1

2
)q−k =

m(G)

2q
. (2)

Equation 2 shows that, alternatively, we must minimize UG( 1
2 ), or the

probability that the resulting subgraph is disconnected under identical
independent link failures with probability ρ = 1

2 . For any given graph G, let us
consider a sample of random graphs G1, . . . , GN picked independently with
link failures ρ = 1

2 , and independent Bernoulli variables X1, . . . , XN such that
Xi = 1 if and only if Gi is disconnected. By strong law of large numbers, the
mean sample XN converges almost surely to u = UG( 1

2 ). Therefore, in order to

decide whether m(G1) < m(G2) or not, we use the criterion XN
1
< XN

2
for N

large enough, being XN
i

the mean sample for the graph Gi. This criterion
avoids the full determination of the coefficients mk(G), and it will be useful for
the design of a GRASP/VND heuristic to build highly reliable graphs.

3 Metaheuristics

In this section we develop an ideal VND metaheuristic that returns a uniformly
most-reliable graph. Since it has exponential time, we must trade accuracy for
computational effort. As a consequence, a full GRASP/VND heuristic is
introduced.

3.1 VND

Variable Neighborhood Descent (VND) explores several neighborhood
structures in a deterministic order. Its success is based on the simple fact that
different neighborhood structures do not usually have the same local minima.
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Thus, the local optima trap problem is addressed by a deterministic change of
neighborhoods [7].

Recall that a simultaneous minimization of the coefficients {mk(G)}k=0,...,q

is a sufficient condition for G to be uniformly most-reliable. Therefore, if there
is one local search dedicated to each coefficient, the output must be uniformly
most-reliable. Trivial neighborhood structures where all (p, q)-graphs are
neighbors of some fixed graph work. However, the cardinality of the
search-space of (p, q)-graphs is

(
p(p−1)/2

q

)
. Therefore, an exhaustive search

among the trivial neighborhood structures of all (p, q)-graphs is
computationally prohibitive.

3.2 GRASP/VND Heuristic

GRASP is an iterative multi-start process which operates in two phases [17]. In
the Construction Phase a feasible solution is built whose neighborhood is then
explored in the Local Search Phase [17]. The second phase is usually enriched
by means of different variable neighborhood structures, for instance, VND.

We adapt the previous ideal VND in order to obtain a feasible computational
solution in a multi-start fashion with diversification in a previous construction
phase. Algorithm HighlyReliable receives a maximum number of iterations iter,
a natural number r ≥ 2, and returns a highly reliable cubic (2r, 3r)-graph.

Algorithm 1 G = HighlyReliable(r, iter)

1: G←Mr

2: for i = 1 to iter do
3: Ginput ← GreedyRandomized(r, α)
4: G(i)← V ND(Ginput)
5: if m(G(i)) ≤ m(G) for all k then
6: G← G(i)
7: end if
8: end for
9: return G

In Line 1, the graph is initialized in Möbius graph Mr, which is known to
be optimal for the cases where r ∈ {2, 3, 4}. In a for-loop with iter iterations
(Lines 2-8), we iteratively call in sequence the Construction Phase (Lines 3) and
VND (Line 4). If the number of disconnecting spanning subgraphs m(G(i)) is
dominated by m(G), the current graph G is replaced by G(i) (Lines 5-6). It is
worth to remark that the test m(G(i)) ≤ m(G) considers the criterion detailed
in Subsection 2.4. The best graph among all the iterations is returned as the
output (Line 9).

In the following, we provide details of the Construction Phase
(GreedyRandomized(r) from Line 3) and Local Search Phase (V ND function,
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from Line 4). The result is not necessarily a uniformly most-reliable network,
but a highly reliable cubic network, which is useful for practical purposes.

Algorithm 2 G = Construct(r)

1: U ← RandomNumbers(r(r − 1)/2)
2: G← RandomTree(U)
3: δ ← minv∈G{deg(v)}
4: ∆← maxv∈G{deg(v)}
5: RCL← {(vi, vj) : deg(vi)deg(vj) ≤ δ2 + α(∆2 − δ2)}
6: for i = 1 to r + 1 do
7: ei ← Random(RCL)
8: G← G ∪ {ei}
9: RCL← Update(RCL, ei)

10: end for
11: return G

Construction Phase The main idea is to start with a random tree with 2r −
1 links and insert adequately r + 1 links meeting a final size of 3r links. In
Line 1, for every pair of potential links we pick independent numbers in (0, 1)
uniformly chosen at random. In this way, we get random costs cij for every
pair of nodes vi and vj . A random tree is found in Line 2. Specifically, function
RandomTree applies Kruskal algorithm with the costs cij . The minimum and
maximum degree of the resulting graph are found in Lines 3 and 4 respectively.
The addition of the remaining r + 1 links takes place in the block of Lines
5-10. A Restricted Candidate List, RCL, selects a percentage of α links e(i,j)
with the lowest product degrees deg(vi) × deg(vj); see Line 5. In the for-loop
of Lines 6-10, links are iteratively picked from the RCL (Line 7) and added
to the graph G (Line 8). Observe that the RCL should be updated, since the
degrees are modified in each iteration. This operation takes place in function
Update(RCL, ei) (Line 9). Clearly, G is not necessarily regular, but the effect of
the RCL provides diversity in the solutions. Naturally, it trades greediness for
randomization with the parameter α, and tends to return almost-regular graphs.

Local Search Phase In the Local Search Phase, a VND is considered with the
following movements:

1. Surgery: applies the graph transformation called Swing Surgery (see
Subsection 2.2).

2. Regular: returns a regular graph after adequate link addition/deletions.
3. Crossing: tests whether the tree-number is increased after all feasible graph-

crossings.

A graph G is healthy if there is no feasible surgery that improves the reliability
uniformly in (0,1). In other words, it is locally optimum with respect to local
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movements under Swing Surgery. Analogously, we say that G is strong if G
has the largest tree-number with respect to all feasible crossings (i.e., it is a
locally optimum solution with respect to local movements of Crossing). Figure 3
presents the full VND. The reader can observe that the output G is regular,
healthy and strong.

In the following, we explain the three movements. Let us start with Surgery
and Crossing (as we will see, Regular movement includes an ILP formulation, a
new result on approximation algorithms and an exact polynomial time algorithm
to solve it). Surgery just applies a reliability-improving graph transformation
called Swing Surgery from Subsection 2.2 whenever possible. Finally, Crossing
tries to find an edge-crossing with largest tree-number. Specifically, if the links
e1 = (x, y) and e2 = (z, t) belong to G, but (x, z), (y, t) do not belong to G,
Crossing counts the tree-number of the new graph G′ = (G − {(x, y), (z, t)} ∪
{(x, z), (y, t)}. The tree-number is efficiently found by Kirchhoff theorem, as any
cofactor of the Laplacian matrix [3].

The main idea of Regular is to return a regular graph, starting from a non-
regular one. Regular movement is a solution to an Integer Linear Programming
formulation. Consider the input graph G = (V,E), the resulting regular graph
G′ = (V,E′) and the following binary variables:

– e(i,j) = 1 iff (i, j) ∈ E (adjacency matrix for G);

– a(i,j) = 1 iff (i, j) ∈ E′ − E (links added to G′);

– r(i,j) = 1 iff (i, j) ∈ E − E′ (links removed from G).

Our goal is to minimize the number of addition/deletions in order to return a
3-regular graph G′. The Regularity Problem can be formalized by the following
ILP:

min
∑

i<j

a(i,j) (3)

s.t. (4)
∑

i<j

a(i,j) =
∑

i<j

r(i,j) (5)

∑

i<j

a(i,j) + e(i,j) − ri,j = 3∀i ∈ {1, . . . , 2r} (6)

a(i,j); r(i,j) ∈ {0, 1} ∀i < j. (7)

Constraint 5 states that the number of added/removed links must be
identical, so, |E| = |E′|. Constraints 6 state that the resulting graph G′ must
be 3-regular. Finally, Constraints 7 determine the binary domain for the
decision variables a(i,j) and r(i,j).
In the following, Regular movement is specified.
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Algorithm 3 G = Regular(G)

1: ∆← maxv∈V (Gin){deg(v)}
2: δ ← minv∈V (Gin){deg(v)}
3: while δ(G) < ∆(G) do
4: x← arg maxu∈V {deg(u)}
5: y ← arg minu∈V {deg(v′)}
6: z ← Random(N(x)−N(y))
7: G← (G− (x, z)) ∪ (y, z)
8: end while
9: return G

Regular function receives a (p, q)-graph G and returns a regular graph. The
key is to move links from nodes with the highest degree to nodes with the lowest
degree. In Lines 1-2, the maximum and minimum degrees for the input graph are
found. A while-loop (Lines 3-8) takes effect whenever δ < ∆. Since the degree
of some low-degree (high-degree) node is increased (resp. decreased) by a unit
in all the iterations, the number of iterations is finite, and the algorithm returns
a 3-regular graph. In Lines 4 and 5, we pick some node x (y) with the highest
(resp. lowest) degree. Since deg(x) > deg(y), there exists some node, z, such that
z is adjacent to x but non-adjacent to y (Line 6). In the iteration, the link (x, z)
is deleted, while (y, z) is added (Line 7). Observe that, in the resulting graph,
the degree of x (y) is decreased (resp. increased), but the degree of the pivotal
node z is identical. The output of while-loop must be a regular graph, which is
returned in Line 9.

73



G← Construct(r, α)

Is G
Healthy?

G ← Surgery(G)

Is G
Regular?

G ← Regular(G)

Is G
Strong?

G ← Crossing(G)

Return G

no

yes

no

yes

no

yes

Fig. 3. Flow Diagram for the Local Search Phase - VND.
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Theorem 1. Regular is an approximation algorithm with factor 2 for the
Regularity Problem.

Proof. In an arbitrary link addition/deletion, we can reduce at most 2 degrees
of high-degree nodes and increase 2 degrees in the set of low-degree nodes.
Regular performs methodically an addition/reduction of a single-degree in
each movement. Therefore, the number of movements during the execution of
Regular is, at most, twice the optimal solution. ut

4 Results

By construction, it is clear that our GRASP/VND heuristic returns Mr for the
known cases r ∈ {2, 3, 4} (see Line 1 of Construction). In order to test the
effectiveness of our GRASP/VND heuristic, we look for r ∈ {5, . . . , 10}. We
know beforehand that the uniformly most reliable graph for r = 5 is Petersen
graph [16]; when r = 6 Yutsis graph Y6.

Figure 4 sketches the six resulting graphs for r ∈ {5, 6, 7, 8, 9, 10} using
iter = 105 iterations, α = 0.5 and sample size N = 104 for Crude Monte Carlo
for the pointwise reliability estimation of UG( 1

2 ) as detailed in Subsection 2.4.
Figures 4 (a) and (b) depict Petersen and Yutsis graphs respectively. These
base-steps confirm that our hybrid GRASP/VND heuristic is able to discover
uniformly most-reliable graphs, as the recent literature in the field confirms with
mathematical proofs [16].

Curiously enough, the following cases for r ≥ 7 are not covered in the related
literature. The graphs produced for r = 7 and r = 8 are strongly symmetric, and
they are respectively Heawood and Möbius-Kantor graphs (Figures 4 (c) and (d)
depict both graphs). Finally, we could not identify the graphs from Figures 4
(e) and (f) with a previous known name. These results are encouraging, since
some uniformly most-reliable graphs were identified. Furthermore, an exhaustive
computational test with cubic graphs with girth greater than 3 confirms that the
resulting graphs have the maximum tree-number (therefore, they are the only
candidates of uniformly most-reliable graphs).
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Petersen Graph Yutsis Graph
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Fig. 4. Results for r ∈ {5, 6, 7, 8, 9, 10}
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5 Conclusions and Trends for Future Work

Reliability maximization is a relevant problem from network design. Potential
applications include virtual and wireless systems, and cooperative
environments in a hostile system, where the links may fail.

In the theory of reliability maximization, the goal is to find uniformly
most-reliable graphs. The breakthroughs and main result of this theory are
here outlined. It has half a century of development; however, there are key
questions without concluding answers. Boesch conjecture and Wagner
extension are just examples.

Supported by the computational complexity of the problem, we first present
a VND metaheuristic that returns all uniformly most-reliable graphs. The main
drawback of this proposal is the computational effort. As a consequence, we
then develop a hybrid GRASP/VND heuristic that keeps the most meaningful
elements of the first VND implementation, enriched with a construction phase
in order to gain diversification.

The first results are encouraging. Our hybrid GRASP/VND was able to
detect a couple of previous uniformly most-reliable graphs from the related
literature. Furthermore, it returns new candidates of such optimal graphs from
a reliability viewpoint.

There are several trends for future work. A powerful methodology to find
uniformly most-reliable graphs is not known. The power of different graph
transformations such as iterative augmentation and swing surgery is not
explored yet.
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Variable Neighborhood Descent, pages 1–27. Springer International Publishing,
Cham, 2016.

8. George S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer
Verlag, New York, NY, USA, 1996.

9. B. Hajek and J. Zhu. The missing piece syndrome in peer-to-peer communication.
In 2010 IEEE International Symposium on Information Theory, pages 1748–1752,
June 2010.

10. Frank Harary. The maximum connectivity of a graph. Proceedings of the National
Academy of Sciences of the United States of America, 48(7):1142–1146, 1962.

11. F. Jaeger, D. L. Vertigan, and D. J. A. Welsh. On the computational complexity
of the jones and tutte polynomials. Mathematical Proceedings of the Cambridge
Philosophical Society, 108(1):35–53, 1990.

12. R. Jin, B. Wang, W. Wei, X. Zhang, X. Chen, Y. Bar-Shalom, and P. Willett.
Detecting node failures in mobile wireless networks: A probabilistic approach.
IEEE Transactions on Mobile Computing, 15(7):1647–1660, July 2016.

13. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

14. A. K. Kelmans. On graphs with randomly deleted edges. Acta Mathematica
Academiae Scientiarum Hungarica, 37(1):77–88, 1981.
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Chapter 6

Building Highly Reliable Networks
with GRASP/VND Heuristics

In this chapter we continue growing with the number of node in (2,3)-graphs in order to find uniformly
most-reliable graphs. An exhaustive computational test with cubic graphs with girth greater than 3
confirms that our resulting graphs achieve the maximum tree-number (therefore, they are the only
candidates of uniformly most-reliable graphs), and the maximum girth as well. Finally we conjecture
that regular uniformly most-reliable (p,q)-graph must have maximum girth.
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Abstract—There is a strong interplay between network
reliability and connectivity theory. In fact, previous studies
show that the graphs with maximum reliability, called
uniformly most-reliable graphs, must have the highest
connectivity.

In this paper, we revisit the underlying theory in order to
build uniformly most-reliable cubic graphs. The computational
complexity of the problem promotes the development of
heuristics.

The contributions of this paper are three-fold. In a first
stage, we propose an ideal Variable Neighborhood Descent
(VND) which returns the graph with maximum reliability. This
VND works in exponential time. In a second stage, we propose
a Greedy Randomized Adaptive Search Procedure (GRASP),
that trades quality for computational effort. A construction
phase enriched with a Restricted Candidate List (RCL) offers
diversification. Our local search phase includes a globally
optimum solution of an Integer Linear Programming (ILP)
formulation. As a product of our research, we recovered
previous optimal graphs from the related literature in the field.
Additionally, we offer new candidates of uniformly
most-reliable graphs with maximum connectivity and maximum
number of spanning trees.

Index Terms—Network Optimization, Maximum Reliability,
Heuristics, GRASP, VND, ILP.

I. MOTIVATION

In network reliability analysis, the goal is to find the
probability of correct operation of a system [1], [2]. The
context of the original problem determines our notion of
correct operation. For instance, delay sensitive applications
such as videoconference require a hop-constrained network,
where the terminals should be connected by short paths [3].
Wireless systems deal with a hostile environment with
mobility (fading, handover and coverage, among other
challenges). The goal is to achieve a Grade of Service (GoS)
during the busy hour, and node-reliability analysis is more
suitable for this context [4]. The interaction between peers in
a cooperative environment suggests potential links, and a
link-reliability analysis is adequate for this context.
Peer-to-peer systems suffer from starvation when the
missing-piece syndrome affect all the system [5]. Clearly, the
swarm (or population) should be connected, and the

all-terminal reliability model is a suitable tool in order to
understand this phenomena.

Several researchers from different fields of knowledge
(mathematics, computer science, engineering), shaped the
body of network reliability analysis, given the application
and importance of the underlying models. A fundamental
problem is to find the connectedness probability of a random
graph, subject to link failures, called the all-terminal
reliability. The scientific literature around this problem is
vast; however, this problem is not fully understood yet. The
corresponding practical problem is to connect p sites using q
links in the best way, this is, to find the graph whose
all-terminal reliability is maximum among all (p, q)-graphs.
Such graphs are called uniformly most-reliable graphs.

The main contributions of this paper are the following:

1) An exact VND that returns uniformly most-reliable
graphs is presented.

2) A hybrid GRASP/VND heuristic is introduced in order
to find graphs with high reliability. It trades quality for
computational feasibility.

3) An Integer Lineal Programming (ILP) formulation called
Regularity Problem is proposed. The goal is to find a
regular graph starting from a non-regular one moving
as minimum number of links as possible.

4) A globally optimum solution for the Regularity
Problem is proposed. It is included as a local search in
our GRASP/VND solution.

5) Novel networks that show high reliability and
connectivity are found, as a result of our hybrid
heuristic.

The document is organized in the following manner.
Section II formally states the problem and breakthroughs in
the field of uniformly most-reliable graphs. Section III
presents an exact VND that runs in exponential time, and a
hybrid GRASP/VND heuristic that trades quality for
computational feasibility. As a product, we offer novel cubic
networks with high reliability in Section IV. Concluding
remarks and open problems are discussed in Section V.
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II. UNIFORMLY MOST-RELIABLE GRAPHS

A. Definition

In the following, we work with undirected graphs without
loops, and a graph with p nodes and q links is a (p, q)-graph.

Definition 1. Consider a graph G with perfect nodes but
independent link failures with identical probability
ρ ∈ (0, 1). The all-terminal reliability, RG(ρ), is the
probability that the resulting subgraph remains connected.

The unreliability UG(ρ) = 1 − RG(ρ) can be expressed
using sum-rule:

UG(ρ) =

q∑

k=0

mk(G)ρk(1− ρ)q−k, (1)

mk(G) being the number of spanning disconnected subgraphs
of G with exactly q−k links. Therefore, RG(ρ) is a polynomial
in ρ ∈ (0, 1), and its determination is reduced to counting the
numbers {mk(G)}k=0,...,q .

Definition 2. A (p, q)-graph H is uniformly most-reliable if
RH(ρ) ≥ RG(ρ) for all (p, q)-graph G and all ρ ∈ (0, 1).

Alternatively, H is uniformly most-reliable if its
unreliability UH(ρ) is dominated (i.e., upper-bounded) by all
functions UG(ρ) for all (p, q)-graph G.

B. Breakthroughs

In this section we present fundamental results that are the
cornerstone in the theory of uniformly most-reliable graphs.
The following section briefly describes the main findings that
complement the fundamental results.

In 1977, Arnie Rosenthal formally proved that the
K-terminal reliability evaluation belongs to the class of
NP-Hard computational problems [6]. The key concept of
the proof is the reducibility introduced in 1972 by Richard
Karp, which represents a foundational work in computational
complexity [7]. As corollary, finding uniformly most-reliable
graphs is a hard problem as well.

Observe that if mk(H) ≤ mk(G) for all k ∈ {0, . . . , q}
and (p, q)-graph G, then H is uniformly most-reliable. This
is a simple but elegant interplay between network reliability
analysis and connectivity theory. Curiously enough, the
converse is still an open problem:

Conjecture 1 (Boesch et. al.). If G is uniformly most-reliable
(p, q)-graph, then mk(G) ≤ mk(H) for all (p, q)-graph H .

If λ(H) denotes the connectivity of H and τ(H) its number
of spanning trees, the following necessary criterion holds [8]:

Corollary 1. A uniformly most-reliable graph H must have
the maximum tree-number τ(H), maximum connectivity λ(H),
and the minimum number mλ(H).

Corollary 1 wakes up interest in two special sub-problems:
the maximum connectivity and maximum tree-number of a
graph. In the second book ever written in graph theory,
Claude Berge challenges the readers to find the graph with

maximum connectivity among all graphs with a fixed
number of nodes and links. Frank Harary provided not only
a full answer, but also found connected graphs with
minimum and maximum diameter [9]. The idea behind his
construction is simple: by handshaking, the average degree
of a (p, q)-graph is 2q

p . Therefore, λ ≤ b 2qp c. Harary graphs
achieve this upper-bound, which represents the maximum
connectivity of a graph.

Gustav Kirchhoff solved linear time-invariant resistive
circuits, and as corollary he introduced the Matrix-Tree
theorem, where he counts the number of spanning trees, or
the tree-number, of a connected graph (i.e., the number
mq−p+1(G)), using the determinant of a matrix [10], [11].
This breakthrough in electrical systems launched the theory
of trees, which provides the building blocks in
communication design. However, the maximization of the
tree-number among all (p, q)-graphs is not well understood.

For convenience we say that a (p, q)-graph, H , is
t-optimal if τ(H) ≥ τ(G) for every (p, q) graph G. Briefly,
Corollary 1 claims that uniformly most-reliable graphs must
be t-optimal and max-λ min-mλ, where λ denotes the
link-connectivity.

To the best of our knowledge, the only general reliability
improving graph transformation from the literature is called
swing surgery by Satyanarayana et. al. [12], and it was
discovered by Kelmans [13]. Specifically, if we are given a
(p, q)-graph G = (V,E), two nodes x, y ∈ V with respective
neighboring nodes Sx and Sy with Sx − {y} ⊂ Sy ,
B ⊆ Sy − {x} such that B ∩ Sx = ∅, and G′ the graph
obtained by G by removing the links {(y, z), z ∈ B} and
adding the links {(x, z), z ∈ B}, then RG′(ρ) ≥ RG(ρ) for
all ρ ∈ (0, 1).

C. Findings

Redundancy is of paramount importance in
communication networks. For this reason, in the following
we are specifically focused on uniformly most-reliable cubic
graphs (i.e., 3-regular connected graphs). By handshaking,
this is the case of (2r, 3r)-graphs for some r ≥ 2. Recall that
Möbius graph Mn is precisely the elementary cycle C2n

together with all the diameters (opposite nodes are also
linked). So far, the findings of uniformly most-reliable cubic
graphs can be summarized in the following list:
• K4 = M2; complete graph with 4 nodes; case r = 2;

see [14].
• K(3,3) = M3; complete bipartite graph; case r = 3;

see [15].
• W4 = M4; Wagner graph (r = 4); see [16].
• P5; Petersen graph (r = 5); see [17].
• Y6; Yutsis graph (r = 6); see [18].

The reader is invited to consult the corresponding references
for a formal proof that these graphs are uniformly
most-reliable. They are sketched in Figures 1-2. By
computational limits, currently it is not possible to find
uniformly most-reliable cubic graphs by an exhaustive search
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for r ≥ 7. In previous works we built highly reliable cubic
graphs for r ≥ 7, . . . , 10. The goal of this paper is to build
highly reliable cubic graphs for r ∈ {11, . . . , 15}, finding a
trade-off between quality and computational effort.

(a) K4 = M2 (b) K(3,3) = M3 (c) M4

Fig. 1. Complete, Bipartite and Wagner graphs.

(d) P5 (e) Y6
Fig. 2. Petersen and Yutsis graphs.

D. Equivalent Combinatorial Problem
It is worth remarking that the problem of finding

uniformly most-reliable graphs is a simultaneous
minimization of an uncountable family of numbers
{UG(ρ)}ρ∈(0,1). However, if Boesch Conjecture holds, we
observe that the problem can be translated to a
single-objective combinatorial optimization problem.
Specifically, let us denote m(G) as number of disconnected
spanning subgraphs for G. By the definition of link
disconnecting sets, we get that:

m(G) =

q∑

k=0

mk(G).

The problem under study in this work is to minimize m(G)
restricted to the family of (p, q)-graphs, for p even and q =
3p/2.

Proposition 1. Consider natural numbers p and q such that
there exists a unique uniformly most-reliable (p, q)-graph. If
Boesch conjecture holds, then G is uniformly most-reliable
(p, q) graph if and only if m(G) is minimum.

Proof. Assume that G is uniformly most-reliable. By Boesch
conjecture, every disconnecting set mk(G) is minimum
among all the other (p, q)-graphs. Therefore, the number
m(G) =

∑q
k=0mk(G) is also minimum in this set. For the

converse, consider a (p, q)-graph G such that m(G) is
minimum. By hypothesis, there exists a uniformly
most-reliable (p, q)-graph, denoted by H . By Boesch
conjecture, mk(H) ≤ mk(G). Since m(G) =

∑q
k=0mk(G)

is minimum, the only possibility is that mk(G) = mk(H)
for all k. Therefore, G and H share the same unreliability
polynomial. By uniqueness, we must have G = H , and the
statement is proved.

In short, Proposition 1 tells us that if Boesch conjecture
holds, then finding uniformly most-reliable graphs is
equivalent to the minimization of disconnected spanning
subgraphs m(G). The optimum graphs under connectivity
(i.e., purely deterministic) and reliability optics
(probabilistic) share common properties.

Supported by Proposition 1, we are focused on the
minimization of disconnected spanning subgraphs m(G). In
this paper, we offer highly reliable cubic graphs with strong
connectivity properties as well.

It is well-known that finding the coefficients
{mk(G)}k=0,...,q belongs to the hierarchy of #P-Complete
counting problems [19]. Furthermore, the number
m(G) =

∑q
k=0mk(G) = T (1, 2), is precisely Tutte

polynomial evaluated at the point (1, 2), which is a #P-Hard
counting problem, even for bipartite planar graphs [20].
Here, we propose a pointwise statistical estimation of this
number. Monte Carlo is a noteworthy computational tool for
simulation. From a macroscopic point of view, the idea is to
faithfully simulate a complex system (or a part of it), and
consider N independent experiments of that simulation, in
order to determine the performance of the system (or
subsystem) and assist decisions on it [21].

We will use Crude Monte Carlo (CMC) in order to
provide an unbiased statistical estimation for m(G). First of
all, observe that m(G) is strictly related with the
unreliability evaluation at ρ = 1

2 :

UG

(
1

2

)
=

q∑

k=0

mk(G)

(
1

2

)k (
1

2

)q−k
=
m(G)

2q
. (2)

Equation (2) shows that, alternatively, we must minimize
UG( 1

2 ). If we are given two graphs G and G′, and we want
to determine whether m(G) < m(G′) or not, we proceed as
follows. First, we pick two independent random graphs
G1, . . . , Gn for G and G′1, . . . , G

′
n for G′, with link failures

ρ = 1
2 . Define independent Bernoulli variables X1, . . . , Xn

and Y1, . . . , Yn such that Xi = 1 if and only if Gi is
disconnected (resp. Yi = 1 if and only if G′i is
disconnected). Supported by the strong law of large
numbers, we decide m(G) < m(G′) if and only if the
respective averages X̄n and Ȳn verify the test X̄n < Ȳn.
This criterion avoids the full determination of the coefficients
mk(G), and it will be useful for the design of a
GRASP/VND heuristic to build highly reliable graphs.

III. METAHEURISTICS

In this section we develop an ideal VND metaheuristic
that returns a uniformly most-reliable graph. Since it has
exponential time, we must trade accuracy for computational
effort. As a consequence, a full GRASP/VND heuristic is
introduced.

A. Exact VND

Variable Neighborhood Descent (VND) explores several
neighborhood structures in a deterministic order. Its success
is based on the simple fact that different neighborhood
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structures do not usually have the same local minima. Thus,
the local optima trap problem is addressed by a deterministic
change of neighborhoods [22].

Recall that a simultaneous minimization of the coefficients
{mk(G)}k=0,...,q is a sufficient condition for G to be
uniformly most-reliable. Therefore, if there is one local
search dedicated to each coefficient, the output must be
uniformly most-reliable. Trivial neighborhood structures
where all (p, q)-graphs are neighbors of some fixed graph
work. However, the cardinality of the search-space of
(p, q)-graphs is

(
p(p−1)/2

q

)
. Therefore, an exhaustive search

among the trivial neighborhood structures of all (p, q)-graphs
is computationally prohibitive. This fact promotes the
development of heuristics that trade quality for
computational efficiency.

B. GRASP/VND Heuristic

GRASP is an iterative multi-start process which operates
in two phases [23]. In the Construction Phase a feasible
solution is built whose neighborhood is then explored in the
Local Search Phase. The second phase is usually enriched by
means of different variable neighborhood structures, for
instance, VND.

We adapt the previous ideal VND in order to obtain a
feasible computational solution in a multi-start fashion with
diversification in a previous construction phase. Algorithm
HighlyReliable receives a maximum number of iterations
iter, a natural number r ≥ 2, and returns a highly reliable
cubic (2r, 3r)-graph.

Algorithm 1 G = HighlyReliable(r, iter, α)

1: G←Mr

2: for i = 1 to iter do
3: Ginput ← Construct(r, α)
4: G(i)← V ND(Ginput)
5: if m(G(i)) ≤ m(G) for all k then
6: G← G(i)
7: end if
8: end for
9: return G

In Line 1, the graph G is initialized as Möbius graph Mr,
which is known to be optimal for the cases where
r ∈ {2, 3, 4}. In a for-loop with iter iterations (Lines 2-8),
we iteratively call in sequence the Construction Phase (Lines
3) and V ND (Line 4). If the number of disconnected
spanning subgraphs m(G(i)) is dominated by m(G), the
current graph G is replaced by G(i) (Lines 5-6). It is worth
to remark that the test m(G(i)) ≤ m(G) considers the test
of averages detailed in Subsection II-D. The best graph
among all the iterations is returned as the output (Line 9).

In the following, we provide details of the Construction
Phase (Construct(r, α) from Line 3) and Local Search Phase
(V ND function, from Line 4). The result is not necessarily
a uniformly most-reliable network, but a highly reliable cubic
network, which is useful for practical purposes.

Algorithm 2 G = Construct(r, α)

1: U ← RandomNumbers(r(r − 1)/2)
2: G← RandomTree(U)
3: δ ← minv∈G{deg(v)}
4: ∆← maxv∈G{deg(v)}
5: RCL← {(vi, vj) : deg(vi) deg(vj) ≤ δ2 + α(∆2 − δ2)}
6: for i = 1 to r + 1 do
7: ei ← Random(RCL)
8: G← G ∪ {ei}
9: RCL← Update(RCL, ei)

10: end for
11: return G

1) Construction Phase: The main idea is to start with a
random tree with 2r − 1 links and insert adequately r + 1
links meeting a final size of 3r links. In Line 1, for every
pair of potential links we pick independent numbers in (0, 1)
uniformly chosen at random. In this way, we get random
costs cij for every pair of nodes vi and vj . A random tree is
found in Line 2. Specifically, function RandomTree applies
Kruskal algorithm with the costs cij . The minimum and
maximum degree of the resulting graph are found in Lines 3
and 4 respectively. The addition of the remaining r + 1 links
takes place in the block of Lines 5-10. A Restricted
Candidate List, RCL, selects a percentage of α links e(i,j)
with the lowest product degrees deg(vi) × deg(vj); see Line
5. In the for-loop of Lines 6-10, the remaining links are
iteratively picked from the RCL (Line 7) and added to the
graph G (Line 8). Observe that the RCL should be updated,
since the degrees are modified in each iteration. This
operation takes place in function Update(RCL, ei) (Line 9).
Clearly, G is not necessarily regular, but the effect of the
RCL provides diversity in the solutions. Naturally, it trades
greediness for randomization with the parameter α, and
tends to return almost-regular graphs.

2) Local Search Phase: In the Local Search Phase, a VND
is considered with the following movements:

1) Surgery: applies the graph transformation called Swing
Surgery (see Subsection II-B).

2) Cubic: returns a cubic graph after adequate link
addition/deletions.

3) Crossing: tests whether the tree-number is increased
after all feasible graph-crossings.

A graph G is healthy if there is no reliability-improving
surgery. It is strong if G has the largest tree-number under
all feasible crossings. Figure 3 presents the full VND
diagram. The reader can observe that the output G is cubic,
healthy and strong.

In the following, we explain the three movements. Let us
start with Surgery and Crossing (as we will see, Cubic
includes a globally optimum solution of an ILP formulation).
Surgery just applies the reliability-improving graph
transformation called Swing Surgery from Subsection II-B
whenever possible. Crossing tries to find a link-crossing
with largest tree-number. Specifically, if the links e1 = (x, y)
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and e2 = (z, t) belong to G, but e3 = (x, z), e4 = (y, t) do
not belong to G, Crossing counts the tree-number of the
new graph G′ = G − e1 − e2 + e3 + e4. The tree-number is
efficiently found by Kirchhoff theorem, as the magnitude of
any cofactor of the Laplacian matrix [11].

The main idea of Cubic is to return a cubic graph starting
from a graph G such that 2|V | = 3|E|. It returns the
globally optimum solution to an Integer Linear Programming
formulation. Consider the input graph G = (V,E), the
resulting cubic graph G′ = (V,E′) and the following binary
variables:

• e(i,j) = 1 iff (i, j) ∈ E (adjacency matrix for G);
• a(i,j) = 1 iff (i, j) ∈ E′ − E (links added to G′);
• r(i,j) = 1 iff (i, j) ∈ E − E′ (links removed from G).

Our goal is to minimize the number of addition/deletions in
order to return a cubic graph G′. The Regularity Problem can
be formalized by the following ILP:

min
∑

i<j

a(i,j) (3)

s.t. (4)∑

i,j

a(i,j) =
∑

i<j

r(i,j) (5)

∑

j:j 6=i
a(i,j) + e(i,j) − ri,j = 3∀i ∈ {1, . . . , 2r} (6)

a(i,j); r(i,j) ∈ {0, 1} ∀i, j. (7)

Constraint 5 states that the number of added/removed
links must be identical, so, |E| = |E′|. Constraints 6 state
that the resulting graph G′ must be 3-regular. Finally,
Constraints 7 determine the binary domain for the decision
variables a(i,j) and r(i,j).

In the following, Cubic movement is specified. The key
idea is to move links from the set E+(G) = {vw ∈ E :
degG(v),degG(w) > 3} into some adequate potential link-
subset F ⊆ E−(G) = {vw /∈ E : degG(v),degG(w) < 3}.
After the block of translations of type-I moves from Lines 1-6,
we could have links e = {u, v} ∈ E with degrees deg(u) < 3
and deg(v) ≥ 3. This is solved by new pivotal moves or type-
II moves, in a second block of Lines 7-11. In order to find
an optimal F , consider Vi = {v ∈ V : degG(v) = i} and let
V + = ∪i>3Vi the node-set with exceeding degrees.

G← Construct(r, α)

Is G
Healthy?

G ← Surgery(G)

Is G
Cubic?

G ← Cubic(G)

Is G
Strong?

G ← Crossing(G)

Return G

no

yes

no

yes

no

yes

Fig. 3. Flow Diagram for the Local Search Phase - VND.

Algorithm 3 G = Cubic(G)

Require: G = (V,E) connected with 3|V | = 2|E|
1: F ← PotentialLinks(G)
2: while |E+(G)|, |F | > 0 do
3: Get e from E+(G) and f from F
4: G← G− e+ f
5: F ← F − f
6: end while
7: while ∃v ∈ V : degG(v) > 3 do
8: Find v′ ∈ V : deg(v′) < 3
9: Find w ∈ Nv −Nv′

10: G← G− vw + v′w
11: end while
12: return G
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Similarly, let V − = V1 ∪ V2 be the node-set with deficient
degrees. By Handshaking, the exceeding degree γ(G) is equal
to the total deficient degree, and

γ(G) =
∑

x∈V +

(deg(x)−3) =
∑

x∈V −
(3−deg(x)) = 2|V1|+|V2|.

(8)
Since type-I moves are better than type-II moves in terms of
the objective of the Regularity Problem, the best is to pick |F |
as large as possible. Indeed, the algorithm achieves the optimal
value for the Regularity Problem if there exists some potential
link-subset F such that |F | ≥ γ(G)/2−3/2. We will construct
such F in the proof of the following theorem. The existence of
such subset in the general k-regular case is an open problem
related with a generalization of the Erdös-Gallai theorem, but
for cubic graph, it is an easy puzzle. Indeed, if G′ = (V −, F ),
then degG′(x) ≤ 2 for all x ∈ V1, while degG′(x) ≤ 1 for all
x ∈ V1. As a consequence, G′ is a union of paths and cycles,
which leads to a tractable problem.

Theorem. For any graph G with 3|V | = 2|E| there is a set
F of potential edges of size γ(G)/2− 3/2 or more.

A full proof is included in the Appendix. As corollary,
Cubic algorithm is globally optimum for the Regularity
Problem, and it serves as one of the local searches in our
GRASP/VND solution.

IV. RESULTS

By construction, it is clear that our GRASP/VND heuristic
returns Mr for the known cases r ∈ {2, 3, 4} (see Line 1 of
Construction). Figure 4 sketches the five resulting graphs
for r ∈ {11, 12, 13, 14, 15} using m = 106 iterations,
α = 0.5 and sample size N = 104 for Crude Monte Carlo
for the pointwise reliability estimation of UG( 1

2 ) as detailed
in Subsection II-D. All the graphs produced for
r = 11, . . . , 15 have the maximum tree-number among all
cubic graphs. Figure 5 shows the evolution of the
tree-number as a function of the number of iterations in the
algorithm.

(a) UR11( 1
2 ) = 0.9801 (b) UR12( 1

2 ) = 0.988
τ(R11) = 32710656 τ(R12) = 168664320

(c) UR13
( 1
2 ) = 0.9904 (d) UR14

( 1
2 ) = 0.9931

τ(R13) = 862488000 τ(R14) = 4410450000

(e) UR15( 1
2 ) = 0.9956

τ(R15) = 23066015625

Fig. 4. Results for r ∈ {11, . . . , 15}

An exhaustive computational test with cubic graphs with
girth greater than 3 confirms that our resulting graphs
achieve the maximum tree-number (therefore, they are the
only candidates of uniformly most-reliable graphs), and the
maximum girth as well. We conjecture that this is the case
for any uniformly most-reliable graph under regularity.

Conjecture 2. Regular uniformly most-reliable (p, q)-graph
must have maximum girth.

Fig. 5. Evolution of tree-number for r ∈ {11, . . . , 15}.

V. CONCLUSIONS AND TRENDS FOR FUTURE WORK

Reliability maximization is a relevant problem from
network design. Potential applications include virtual and
wireless systems, and cooperative environments in a hostile
system, where the links may fail.
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In the theory of reliability maximization, the goal is to
find uniformly most-reliable graphs. The breakthroughs and
main result of this theory are here outlined. It has half a
century of development; however, there are key questions
without concluding answers. Boesch conjecture and Wagner
extension are just examples.

Supported by the computational complexity of the problem,
we first present a VND metaheuristic that returns all uniformly
most-reliable graphs. The main drawback of this proposal is
the computational effort. As a consequence, we then develop a
hybrid GRASP/VND heuristic that keeps the most meaningful
elements of the first VND implementation, enriched with a
construction phase in order to gain diversification.

The first results are encouraging. Our hybrid
GRASP/VND was able to return new candidates of such
optimal graphs from a reliability viewpoint.

There are several trends for future work. A powerful
methodology to find uniformly most-reliable graphs is not
known. The power of new reliability-improving graph
transformations is not considered yet.

APPENDIX

Theorem. For any graph G with 3|V G| = 2|EG| the largest
possible set F of potential edges has size γ(G)/2 − 3/2 or
more.

Proof. We consider the induced subgraphs G1 = G(V1) and
G2 = G(V2) by the nodes V1 and V2 of degrees 1 and 2,
respectively. Since G is connected, the only possibility is that
G1 has isolated nodes, and G isolated paths (it cannot have
cycles since it would represent a whole isolated component
from G).

We construct F as a function of k = |V1| and h = |V2|. We
can sort the nodes V1 = {u1, . . . , uk} and V2 = {v1, . . . , vh}
in such a way that if (vi, vj) ∈ E(G2), then |i− j| = 1, since
they are isolated paths. In order to define F we need some
previous definitions: if h, k ≥ 3, let F1 = {u1u2, . . . , uku1}
and let

F2(v1, . . . , vl) =





∅ l ≤ 2,

{v1v3, v2v4} l = 4,

{v1vl} ∪ F2(v2, . . . , vl−1) otherwise.

Finally, let F3(w1, w2, . . . , wl) be link-set defined recursively
as:

F3(w1, w2, . . . , wl) =



{u1u2, w1w2} l = 2, I 6= ∅,
{u1u2, u1wi, u2w3−i} l = 2, I = ∅, u1 6∼ wi,
F3(wi, wj) l = 3, i < j, {i, j} ∩ I = ∅,
F3(wi, wi+2) ∪ {w3−iw5−i} l = 4, {i, i+ 2} ∩ I = ∅
F3(w2, . . . , wh−1) ∪ {w1wh} l ≥ 5,

where I = {i : u1 ∼ wi ∼ u2}.
Then, we define F as follows, where s = (h mod 2)/2:

l h F 1
2
γ(G)− |F |

0 ≥ 3 F2(v1, . . . , vl) s

≥ 3 0 F1 0
≥ 3 ≥ 3 F1 ∪ F2(v1, . . . , vl) s

1 0 ∅ 1
1 1 {u1v1} if u1 6∼ v1 1/2
1 1 ∅ if u1 ∼ v1 3/2
1 2 {u1v1, u1v2} if v1 6∼ u1 6∼ v2 0
1 2 {u1vi} if u1 ∼ v3−i 1
1 3 {u1vi, u1vj} if vi 6∼ u1 6∼ vj 1/2
1 ≥ 4 {u1v1, u1vh} ∪ F2(v2, . . . , vh−1) s

2 0 {u1u2} 1
2 1 {u1u2} if u1 ∼ v1 ∼ u2 3/2
2 1 {u1u2, uiv1} if ui 6∼ v1 1/2
2 2 F3(v1, v2) 1I 6=∅
2 ≥ 3 F3(v1, . . . , vh) s

TABLE I
DEFINITION OF F .

F2 even

v1 v2 v3 v4 v5 v6 v7 v8

F2 odd

v1 v2 v3 v4 v5 v6 v7

F1

u1 u2 u3 u4 u5 u6 u7 u8

l = 1, h ≥ 4

v1 v2 v3 v4 v5 v6 v7 v8

u1

(l, h) = (2, 2)

u1 u2

v1 v2

u1 u2

v1 v2

u1 u2

v1 v2

(l, h) = (2, 3)

u1 u2

v1 v2 v3

u1 u2

v1 v2 v3

l = 2, h ≥ 4
u1 u2

v1 v2 v3 v4 v5 v6

Fig. 6. Examples of F in gray. In black edges of G.

As the last column shows, the statement is verified in all
the cases and it is clear that it cannot be improved.
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86



REFERENCES

[1] C. J. Colbourn, “Reliability issues in telecommunications network
planning,” in Telecommunications network planning, chapter 9. Kluwer
Academic Publishers, 1999, pp. 135–146.

[2] L. Beineke, R. Wilson, and O. Oellermann, Topics in Structural
Graph Theory, ser. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2012.

[3] E. Canale, H. Cancela, F. Robledo, P. Romero, and P. Sartor,
“Full complexity analysis of the diameter-constrained reliability,”
International Transactions in Operational Research, vol. 22, no. 5, pp.
811–821, 2015.

[4] R. Jin, B. Wang, W. Wei, X. Zhang, X. Chen, Y. Bar-Shalom,
and P. Willett, “Detecting node failures in mobile wireless networks:
A probabilistic approach,” IEEE Transactions on Mobile Computing,
vol. 15, no. 7, pp. 1647–1660, July 2016.

[5] B. Hajek and J. Zhu, “The missing piece syndrome in peer-to-peer
communication,” in 2010 IEEE International Symposium on Information
Theory, June 2010, pp. 1748–1752.

[6] A. Rosenthal, “Computing the reliability of complex networks,” SIAM
Journal on Applied Mathematics, vol. 32, no. 2, pp. 384–393, 1977.

[7] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of Computer Computations, R. E. Miller and J. W. Thatcher,
Eds. Plenum Press, 1972, pp. 85–103.

[8] D. Bauer, F. Boesch, C. Suffel, and R. V. Slyke, “On the validity of a
reduction of reliable network design to a graph extremal problem,” IEEE
Transactions on Circuits and Systems, vol. 34, no. 12, pp. 1579–1581,
1987.

[9] F. Harary, “The maximum connectivity of a graph,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 48,
no. 7, pp. 1142–1146, 1962.
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Chapter 7

Analysis and Reliability of
Separable Systems

A Stochastic Binary System is a mathematical model of multi-component on-off system, where its
components are subject to random failures. Considering the number of feasible states is
computationally prohibitive. In this chapter we present a special class of SBS called separable system,
that accept an efficient representation. Besides we proved that, even in this case, their reliability
evaluation is computationally hard.
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AStochastic Binary System (SBS) is amathematical model of
multi-component on-off systems subject to random failures.
An SBSmodels complex interactions between the states of
the individual components and the operation of a global sys-
tem. The reliability evaluation of SBSs isNP-Hard, since it
subsumes the classical network reliability evaluation. Fur-
thermore, the number of states is exponential with respect
to the number of components of the system. As a conse-
quence, the representation of an SBS becomes a key ele-
ment in order to develop exact or approximationmethods
for reliability evaluation.
The contributions of this article are multi-fold. First,

we present the concept of separable systems, a special sub-
set of SBSs that accept a compact representation. Second,
we provide reliability bounds for arbitrary SBSs inspired by
separable systems. Third, we formally prove that the re-
liability evaluation of separable systems is still NP-Hard.
However, we fully characterize separable systems under the
all-terminal reliability model, finding that they admit effi-
cient reliability evaluation in this relevant context.
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Stochastic Binary System, Network Reliability, Computational

Abbreviations: SBS(s), Stochastic Binary System(s); SMBS(s), StochasticMonotone Binary System(s).
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2 HÉCTOR CANCELA ET AL.

Complexity, Separable systems, Reliability bounds, Mathematical
Programming

1 | INTRODUCTION
In system reliability analysis, the goal is to find the probability of correct operation of a system subject to component
failures. A common practical problem is to design a systemwithmaximum reliability meeting budget constraints [1, 2].

Classical network reliability analysis shaped the body of this field. In this basic setting, we are given a connected
graphG with perfect nodes, and the links work independently with identical probability r . The all-terminal reliability,
RG (r ), is the probability that the resulting subgraph remains connected. This model and some variants (such as perfect
links and nodes subject to failure) has been employed tomodel reliability of classical communications networks, where
the emphasis was on a fixed infrastructure of sites holding communication equipment and of fixed links connecting
them. Nevertheless, thesemodels have limitations to represent themore diverse landscape of communication networks
infrastructure, relying on different equipments, paradigms, and particularly in the case of wireless networks, where
usually there does not exist a fixed, predetermined topology.

Stochastic binary systems (SBS) generalize the static reliability concept to any system composed of a number
of components subject to independent failures with known probabilities, and where the operation or failure of the
system as a whole is a function of the state of the individual components. In this sense, SBS are amore flexible tool for
evaluating and optimizing the reliability of a wider spectrum of real systems, both in the networking area and in other
quite different applications area [3, 4, 5]. At the same time, SBS present their own challenges in terms of computational
analysis, as the evaluation of the reliability a general stochastic binary systembelongs to the class ofNP-Hard problems.
This hasmotivated different research efforts, tackling efficient exact methods for some subclasses of SBS, as well as
approximations for the general case [6, 7, 8, 9, 10].

The contributions of this article can be summarized in the following items:

1. The concept of separable systems is presented.
2. Reliability bounds for arbitrary SBSs are provided, inspired by separability, duality and Chernoff inequality.
3. The NP-Hardness of the reliability evaluation for separable systems is established.
4. A separable system under the all-terminal reliability model is called a separable graph. We fully characterize

separable graphs. As a corollary, we conclude that the reliability evaluation of separable graphs can be obtained in
linear time.

5. A discussion of the level of separability for non-separable systems is offered.

It is worth remarking that the concept of separable systemwas recently introduced in [11] by the same authors of the
present paper. The reliability bounds were also presented in that previous conference work. Here, an extended analysis
includes the hardness of the reliability evaluation of separable systems, as well as its application to the celebrated
all-terminal reliability model, and a discussion of open problems.

The document is organized as follows. Section 2 presents fundamental concepts and examples of stochastic binary
systems. Separable systems are presented in Section 3. Reliability bounds for arbitrary SBS are found in Section 4 using
separable systems.

A theoretical analysis of separable systems is covered in Section 5. It includes a full characterization of separable
systems in terms of Functional Analysis, as well as the hardness of the reliability evaluation for these systems. A
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particular analysis of the all-terminal reliability model is offered in Section 6. Finally, Section 7 presents a preliminary
analysis of nonseparable systems, concluding remarks and trends for future work.

2 | STOCHASTIC BINARY SYSTEMS
The following terminology is adapted from [12].
Stochastic Binary System A stochastic binary system is a triad (S , r ,φ):

• S = {1, . . . ,N } is a ground set of components,
• r = (r1, . . . , rN ) are their elementary reliabilities, and
• φ : {0, 1}N → {0, 1} is the structure.

The concept of reliability is generalized to arbitrary stochastic binary systems.
Reliability/Unreliability Let S = (S , p,φ)bea stochastic binary system, andconsider a randomvectorX = (X1, . . . ,XN )
with independent coordinates governed by Bernoulli random variables such that P (Xi = 1) = ri . The reliability of S is
the probability of correct operation of the system:

RS = P (φ(X ) = 1) = E (φ(X )) =
∑

x :φ(x )=1
P (X = x ). (1)

The unreliability of S isUS = 1 − RS .
A stochastic binary system is homogeneous if the elementary reliabilities are identical (i.e., ri = r for all i ). In this

paper we deal with homogeneous SBSs.

Pathsets/Cutsets Let S = (S , r ,φ) be a stochastic binary system. A possible state or configuration x ∈ {0, 1}N is a
pathset (resp. cutset) ifφ(x ) = 1 (resp., ifφ(x ) = 0).

The binary set {0, 1} is equippedwith the partial order, defined by 0 ≤ 0, 0 ≤ 1 and 1 ≤ 1. The set {0, 1}N inherits a
natural order in the Cartesian product. Given two partially ordered setsA and B , a function f : A→ B is monotonically
increasing if f (a1) ≤ f (a2)whenever a1 ≤ a2. As usual, we denote y < x if y ≤ x and y , x . Let us denote by ®0N (resp.
®1N ) the binary wordwith all bits set to 0 (resp. to 1), and by δi the binary wordwith all bits in 0 except the bit in position i
which is set to 1.

StochasticMonotone Binary System (SMBS) The triad S = (S , r ,φ) is a stochastic monotone binary system if the struc-
ture functionφ : {0, 1}N → {0, 1} is monotonically increasing,φ(®0N ) = 0 andφ(®1N ) = 1.

Observe that SMBSs representwell-behaved SBSs, in the sense that, given a working configuration, the system can fail
after the removal of some components, but can not fail if some failed components start towork. Additionally, the system
does not work if it has no operational components, and the full systemworks.

Minpaths/Mincuts/Rays Let S = (S , r ,φ) be an SMBS:

• A pathset x is aminpath ifφ(y ) = 0 for all y < x .
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• A cutset y is amincut ifφ(x ) = 1 for all x > y .
• The x -ray is the set Sx = {y ∈ {0, 1}N : y ≥ x }.

An SMBS is fully characterized by its mincuts (or its minpaths). In fact, if we are given the complete list of minpaths,
then the complete list of pathsets is precisely the union of the x -rays over all minpaths x .

Wewill denote by x the state complementary to x in bits (i.e., 0 in x are set to 1 in x , and vice-versa). In particular,
φ(x ) = 1 − φ(x ). The following definition of duality will be useful for our later analysis of monotonicity and bounds [13]:
Duality Thedual of a stochastic binary system S = (S , r ,φ)has identical ground set S , elementary reliabilities r d

i
= 1−ri ,

and structureφd (x ) = 1 − φ(x ), for all possible states x ∈ {0, 1}N . The dual is denoted by Sd = (S , 1 − r ,φd ).
The following examples provide an insight of the different applications of stochastic binary systems. Classical examples
include a reference in the field for the interested reader.

1. All-Terminal Reliability: the ground set is the set of links of a simple graph. The system is up if the resulting random
graph is connected.

2. K -Terminal Reliability: in the same random graph, the system is up if some distinguished node-set K , called the
terminals set, is included in a connected component [14].

3. Source-Terminal Reliability: the previousmodel with K = {s, t }.
4. Diameter Constrained Reliability: a diameter constraint d is added to the K -Terminal Reliability. The system is up if

every pair of terminals is connected by paths whose length is not greater than d [15, 16].
5. Node-Reliability: the ground set is the set of the nodes of a simple graph. The system is up if the resulting random

graph is connected [17].
6. Forbidden patterns: given a binary word w , the operation rule is that φw (x ) = 1 if and only if w appears as a

sub-word of x . This example shows that an SBS is not always represented by a network.

The reader can observe that all the examples are SMBSs except for the last one, which is not presented in terms of a
network.

There exists a direct connection between SBSs and propositional logic. Recall that a theorem-proving procedure
is the first NP-Complete decision problem established by Stephen Cook [18]. In other words, the recognition of a
tautology is a hard decision problem from propositional logic.
Theorem 1 The reliability evaluation of an arbitrary SMBS belongs to the class of NP-Hard problems.

Proof Arnie Rosenthal proved that the reliability evaluation for the K -terminal reliability model belongs to the class of
NP-Hard computational problems [19]. Since K -Terminal is a particular SMBS, the result follows by inclusion.

Corollary 2 The reliability evaluation of an arbitrary SBS belongs to the class of NP-Hard problems.

Les us close this section with three elementary properties of the dual system that will be useful in our analysis.
Lemma 3 The dual of the dual is the original system.

Proof φd d (x ) = 1 − φd (x ) = 1 − (1 − φ(x )) = φ(x ).

Lemma 4 The dual of an SMBS is another SMBS.
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Proof Consider arbitrary states x ≤ y and amonotone structureφ. Since x ≥ y , we get thatφ(y ) ≤ φ(x ). Therefore:
φd (x ) = 1 − φ(x ) ≤ 1 − φ(y ) = φd (y ).

The dual system has complementary reliability with respect to the original one:
Lemma 5 If S = (S ,φ, p) is an SBS, then RSd = 1 − RS .

Proof Recall that the dual system has complementary probabilities in every component. Therefore: P d (X = x ) =∏
i :xi =1(1 − ri )

∏
i :xi =1(ri ) = P (X = x ). Let P denote the path-sets of the original SBS. Then:

RSd =
∑

x :φd (x )=1
P d (X = x ) =

∑
x :φ(x )=0

P d (X = x )

= 1 −
∑

x :φ(x )=1
P d (X = x )

= 1 −
∑

x :φ(x )=1
P (X = x )

= 1 − P (x ∈ P) = 1 − RS .

3 | SEPARABLE SYSTEMS
Observe that {0, 1}N is the set of the extremal points of the unit hypercube QN ⊆ ÒN . Let us assign labels to the
extremal points ofQN according to a given structureφ. Every hyperplane defines a partition ofÒN into two subsets.
Consider the family of hyperplanesH such that ®0N and ®1N lie on different sides. For anymember H ofH, denote by
Q0 ⊆ QN the extremal points of the hypercube that belong to the side of ®0N ; andQ1 = QN − Q0. Define a structure
functionφH such that its cutsets are preciselyQ0, and its pathsets areQ1. Consider an equivalence relation (H,∼) such
thatH1 ∼ H2 if and only ifφH1 = φH2 .

Recall that in the Euclidean spaceÒN , a hyperplane is fully characterized by a normal vector ®n and a point P that
belongs to the hyperplane: 〈 ®n,X − P 〉 = 0, where 〈x , y 〉 = ∑N

i=1 xi yi is the inner product. If we denote ®n = (n1, . . . , nN )
and 〈 ®n, P 〉 = α0, the hyperplane can bewritten as∑N

i=1 ni xi = α0. By convention andwithout loss of generality, wewill
consider that cutsets lie on the hyperplane or in its negative side, so that they verify∑N

i=1 ni xi ≤ α0, and that pathsets
lie on the positive side of the hyperplane, and verify∑N

i=1 ni xi > α0.

Lemma 6 Consider a monotone structureφ. Ifφ = φH for some hyperplane H , then there exists H ′ ∼ H with non-negative
normal vector such that ‖ ®n ‖1 =

∑N
i=1 ni = 1.

Proof Letφ = φH for the hyperplane H )∑N
i=1 ni xi = α0, and suppose that there exists some index j such that n j < 0.

There are two exhaustive andmutually disjoint cases:

i There exists some mincut x = (x1, . . . , xN ) such that xj = 0: in this case, we know that x + δj is a minpath,
so, φ(x + δj ) = 1. By the definition of the separating hyperplane and the structure function φH , we get that∑N
i=1 ni xi ≤ α0 but ∑N

i=1 ni xi + n j > α0. The only possibility is that n j > 0. But we assumed n j < 0; this is a
contradiction.

ii All mincuts verify xj = 1: Consider an alternative hyperplaneH ′)∑N
i,j ni xi = α0 − n j . Wewill prove thatH ′ ∼ H . If

x is a mincut, then∑N
i=1 ni xi ≤ α0, and therefore∑N

i,j ni xi ≤ α0 − n j . If x is a minpath, it must have xj = 1. Since
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6 HÉCTOR CANCELA ET AL.∑N
i=1 ni xi > α0 we get that ∑N

i,j ni xi > α0 − n j . Observe that n j = 0 in the new hyperplane H ′, and H ′ ∼ H as
desired.

By an iterative replacement of all the negative coordinates we obtain an equivalent hyperplane H ′ ∼ H with non-
negative vector ®n′, expressed byH ′)∑N

i=1 n
′
i
xi = α

′ for some real number α ′. Finally, observe that ®0N is always a cutset,
so 0 ≤ α ′. Analogously, ®1N is always a pathset, so∑N

i=1 n
′
i
> α ′ ≥ 0. The result is obtained by a normalization of the

resulting vector, which is possible since∑N
i=1 n

′
i
> 0.

Even though there exist infinite equivalent hyperplanes, using Support VectorMachine (SVM) it is possible to find a
single hyperplane with the largest gap (this is, with the largest distance to any of the vertices in the hypercube). Using
Lemma 6, we can replace it by an equivalent hyperplanewith non-negative versor. Without loss of generality, wewill
assume a non-negative normal vector with unit 1-norm.
Proposition 7 The structuresφH are monotone.

Proof By Lemma 6, in particular we can choose ni ≥ 0 in the hyperplane H )∑N
i=1 ni xi = α0. Let us denote f (x ) =∑N

i=1 ni xi . If x ≤ y , then f (x ) ≤ f (y ), and thereforeφH (x ) ≤ φH (y ).

A subtlety is that themincuts fromLemma6are indeed thepointsQ0 ⊂ QN that are closer to theoriginal hyperplane.
A natural question is to determine if all SMBSs can be represented by a hyperplane. The answer is negative:

Proposition 8 There exist SMBSs that cannot be represented by a hyperplane.

Proof Consider the SMBS defined by themincutsM = {(1, 1, 0, 0), (0, 0, 1, 1)}. Then the set of minpaths P is defined by
P = {(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), }. Suppose for amoment that there exists some separatorH )∑4

i=1 ni xi =

α for some real numbers α , n1, . . . , n4 . Since (1, 1, 0, 0) and (0, 0, 1, 1) aremincuts, we get that n1+n2 ≤ α and n3+n4 ≤ α ,
so that∑4

i=1 ni ≤ 2α . However, if we consider the twominpaths (1, 0, 1, 0) and (0, 1, 0, 1), it holds that n1 + n3 > α and
n2 + n4 > α , so that∑4

i=1 ni > 2α ; a contradiction.

Separable System An SBS is separable if the cutsets/pathsets can be separated by some hyperplane.

An interpretation of separable systems recalls Riesz representation theorem for Hilbert spaces [20]. Indeed, the
structure of a separable system can bewritten as an indicator that an inner-product exceeds some threshold in a Hilbert
space:

φ(x ) = 1〈x , ®n〉≥α0 . (2)

A separable system can be representedwithN +1 real numbers, instead of a logic table of 2N values for an arbitrary
SBS. This compact, space-efficient representation is a key point of our interest in separable systems.
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4 | RELIABILITY BOUNDS

In this section we exploit the properties shared by separable systems in order to find reliability bounds for arbitrary
SBSs. The strategy is the following:

• First, we find an upper bound for the reliability of separable systems using Chernoff inequality [21].
• For any given structureφ, we find the closest separable systemsφ andφ such thatφ ≤ φ ≤ φ.
• Bymeans of Chernoff-upper bound for separable systems andφ, we produce an upper bound for the reliability of

the original SBS.
• Bymeans ofChernoff-upper bound for separable systems,φ andduality, weproduce a lower bound for the reliability

of the original SBS.

We describe each step in the following subsections.

4.1 | Chernoff Bound
Lemma 9 For all separable systems S we have:

RS ≤ e
− supt>0

{
t α0−

∑N
i=1

c(i ,t )
}
, (3)

being c(i , t ) = logÅ (
e t ni xi

)
= log(p .e t ni + 1 − p).

Proof We apply a well-known result introduced by Chernoff and used in the proof of Cramér Theorem for large
deviations bounds [21]. For each t > 0we have:

RS = Ð(φ(x ) = 1) = Ð(
N∑
i=1

ni xi ≥ α0)

= Ð(t
N∑
i=1

ni xi ≥ t α0) = Ð(e t
∑N
i=1

ni xi ≥ e t α0 )

≤ e−t α0Å
(
e t

∑N
i=1

ni xi
)
= e−t α0

N∏
i=1

Å
(
e t ni xi

)
= e−t α0

N∏
i=1

(
ec(i ,t )

)
= e−{t α0−

∑N
i=1

c(i ,t )}, (4)

whereMarkov’s inequality for positive randomvariables has been used. The result holds taking the infimumwith respect
to t > 0 on both sides.

4.2 | Closest Separable Systems
For any given structureφ, we build the closest separable structuresφ andφ such thatφ ≤ φ ≤ φ in terms of misclassifi-
cation error:
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Misclassification Error If we are given two structuresφ1 andφ2, themisclassification error is:

d (φ1,φ2) =
∑

x∈{0,1}N
|φ1(x ) − φ2(x ) |. (5)

Clearly, d is a metric in the space of all structures. For a rough approximation ofφ within the set of separable systems
we also consider the closest separableφ∗:

Closest separable system Given an arbitrary structureφ, a closest separable structureφ∗ is the one thatminimizes
themisclassification error.

Proposition 10 The upper bound forφ isφ = 1 − φ′, beingφ′ the lower bound of 1 − φ.

Proof By duality, 1 − φ ≤ 1 − φ ≤ 1 − φ. The closest lower bound for 1 − φ is precisely 1 − φ = φ′, and the result holds.

Now, we fully characterizeφ∗ andφ using Integer Linear Programming (ILP) formulations. The upper boundφ can
be obtained using Proposition 10. The following ILP describesφ:

min. ∑
x∈{0,1}N

d (x ) (6)

s.t.
φ(®0) = 0, (7)
φ(®1) = 1, (8)
d (x ) = φ(x ) − φ(x ), [x ∈ {0, 1}N (9)∑
i=1..N

ni xi > φ(x ), [x ∈ {0, 1}N (10)∑
i=1..N

ni xi ≤ 1 +Mφ(x ), [x ∈ {0, 1}N (11)

φ(x ) ∈ {0, 1}, [x ∈ {0, 1}N (12)
d (x ) ∈ {0, 1}, [x ∈ {0, 1}N (13)
ni ≥ 0, [i ∈ {1, . . . ,N } (14)

Where:

• The objective function (6) states that themodel will minimize themissclassification error.
• Constraints (7) and (8) establishmonotonicity.
• Constraints (9) define themisclassification error d (x ) betweenφ andφ.
• Constraints (10) and (11) state thatφ∗ is separable.
• Constraints (12) to (14) define the domains of the decision variables.

Note that the fact thatφ(x ) ≤ φ ∗ x )[x ∈ {0, 1}N arises from the combination of (9) and (13).
Also observe that Constraints (10) are active when x = (x1, . . . , xN ) is a pathset ofφ. In this case (11) is superfluous

(choosing the constantM large enough). Constraints (11) define a similar condition for cutsets ofφ.
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The following ILPmodel providesφ∗:

min. ∑
x∈{0,1}N

d (x ) (15)

s.t.
φ∗(®0) = 0, (16)
φ∗(®1) = 1, (17)
d (x ) ≥ φ(x ) − φ∗(x ), [x ∈ {0, 1}N (18)
d (x ) ≥ φ∗(x ) − φ(x ), [x ∈ {0, 1}N (19)∑
j=1..N

n j xj > φ
∗(x ), [x ∈ {0, 1}N (20)∑

j=1..N

n j xj ≤ 1 +Mφ∗(x ), [x ∈ {0, 1}N (21)

φ∗(x ) ∈ {0, 1}, [x ∈ {0, 1}N (22)
d (x ) ∈ {0, 1}, [x ∈ {0, 1}N (23)
ni ≥ 0, [i ∈ {1, . . . ,N } (24)

Where:

• d (x ) is set to 1 ifφ(x ) , φ∗(x ).

4.3 | Reliability Bounds
Combining the ILP formulation forφ and Chernoff bounds (Lemma 9), a lower bound for an arbitrary SBSφ is produced.
Finally, combining the ILP formulation forφ, Chernoff bounds and Theorem 12, an upper bound for an arbitrary SBSφ is
produced. First, we state a technical lemma:
Lemma 11 The dual of a separable system is also separable.

Proof If we are given a separable systemwith hyperplaneH )∑N
i=1 ni xi = α0 , being ®n non-negative, thenH d )∑N

i=1 ni xi =

1 − α0 . In fact, if we are given a pathset from the dual x ∈ Pd , we know that x = ®1N − x is a cutset in the original system,
and∑N

i=1 ni xi =
∑N
i=1 ni (1 − xi ) = 1 −∑N

i=1 ni xi > 1 − α0. A similar calculation holds for pathsets.

Theorem 12 RS ≥ 1 − R ′, being R ′ the Chernoff bound for (φ)d .

Proof By duality we know thatφd ≤ (φ)d . Since the dual of a separable system is also separable, we can apply Lemma 9
in order to find an upper bound R ′ for the reliability of the system (φ)d . We get that RSd ≤ R ′. Finally, recall that the
reliability of a dual is complementary to the reliability of the original system (Lemma 5). Therefore:

RS = 1 − RSd ≥ 1 − R ′. (25)

The reader can find an application of these bounds in [11]. As shown in that work, the bounds are not tight for
general SBSs, and there is a large room of future work in this research line.
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5 | ANALYSIS OF SEPARABLE SYSTEMS
In this section, we first study the hardness of the reliability evaluation for separable systems. Then, we provide two
alternative characterizations of these systems.

5.1 | Complexity
Even though separable systems accept an efficient representation, their reliability evaluation is computationally hard:

Theorem 13 The reliability evaluation of separable systems belongs to the class of NP-Hard problems.

Proof By reduction from PARTITION. Consider an instance of natural numbersA = {a1, . . . , aN }, and let s = ∑N
i=1 ai be

the sum over the elements of the list. Let us define ni = ai
s , nmin = mini=1,...,N {ni }, and consider the separable systems

S1 and S2:

1. The separable system S1 characterized by the hyperplane∑N
i=1 ni xi =

1
2 +

nmin
2 ;

2. The separable system S2 characterized by the hyperplane∑N
i=1 ni xi =

1
2 ;

Observe that the difference of the reliability of both systems evaluated at p = 1/2 is:

RS2 (1/2) − RS1 (1/2)

= P (
N∑
i=1

ni xi ≥
1

2
) − P (

N∑
i=1

ni xi ≥
1

2
+
nmin
2
)

= P (
N∑
i=1

ni xi =
1

2
)

=
#{(x1, . . . , xN ) ∈ {0, 1}N : ∑N

i=1 ni xi =
1
2 }

2N
,

and the last number is positive if and only if there exists a subset B ⊆ {1, . . . ,N } such that∑i ∈B ni =
1
2 . In that case, if

wemultiply on both sides by s we get that∑i ∈B ai =
s
2 , and the answer to PARTITION for the listA is YES. Otherwise, the

answer to PARTITION is NO. Therefore, the reliability evaluation of separable systems is at least as hard as PARTITION,
and it belongs to the class of NP-Hard problems.

5.2 | Characterizations
A natural question is to characterize separable systems in terms of pathsets and cutsets. Let us denote CH (P) and
CH (C) the convex hull of the pathsets and cutsets respectively.

Theorem 14 An SBS is separable iffCH (P) ∩ CH (C) = ∅.

Proof If the intersection is empty, Hahn-Banach separation theorem for convex sets asserts that there exists a hyper-
planeH that separates those convex sets [20]. As a consequence,φ = φH for some hyperplaneH .
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For the converse, we know that the SBS is separable. Therefore, there exists some hyperplaneH )∑N
i=1 ni xi = α0

such that∑N
i=1 ni xi ≤ α0 for cutsets, and∑N

i=1 ni xi > α0 for pathsets. Suppose for amoment thatCH (P) ∩ CH (C) , ∅.
There exists some element z ∈ ÒN such that:

z =
l∑
j=1

αj x
j =

s∑
k=1

βk y
k , (26)

for some states x1, . . . , x l ∈ P, y 1, . . . , y s ∈ C, and non-negative numbers such that ∑l
j=1 αj =

∑s
k=1 βk = 1. If we

denote x j = (x j1, . . . , x jN )we know that∑N
i=1 ni x

j
i
> α0. Therefore, for z = (z1, . . . , zN )we get that:

N∑
i=1

ni zi =
N∑
i=1

ni (
l∑
j=1

αj x
j
i
)

=
l∑
j=1

αj [
N∑
i=1

ni x
j
i
]

> (
l∑
j=1

αj )α0 = α0 .

Analogously, using the fact that z =
∑s
k=1 βk y

k we get that∑N
i=1 ni zi ≤ α0, which is a contradiction. Therefore wemust

haveCH (P) ∩ CH (C) = ∅, and the result holds.
By Proposition 14 we have a full geometrical characterization of separable systems, which accept an efficient

representation.
In the following, we consider an alternative characterization, in terms of weighted cutsets and pathsets. Consider

an arbitrary assignment n1, . . . , nN of non-negative numbers to the respective components of the system. The condition∑N
i=1 ni xi ≥ α0 for all the pathsets is equivalent to finding the pathset x with minimum-cost, c(x ) = ∑

i :xi =1 ni , and
testing if c(x ) ≥ α0. Analogously, the condition∑N

i=1 ni yi < α0 for all the cutsets is equivalent to testing whether the
cutset y withminimum cost, c(y ) = ∑

i :yi =0 ni , satisfies the test S − c(y ) < α0 , where S =
∑N
i=1 ni is the cost of the global

system. Observe that, for convenience, the cost of a cutset is defined as the sum of the components under failure. In
particular, we get the following characterization of separable systems:
Theorem 15 An SBS is separable if and only if there exists an assignment of non-negative costs to the components {ni }i=1,...,N
such that S < c(y ) + c(x ), being c(x ) and c(y ) the pathset/cutset with minimum cost respectively.
Proof First, let us assume that we have a separable SBSwith hyperplane∑N

i=1 ni xi = α0. Using the previous reasoning,
the assignment {ni }i=1,...,N verifies c(x ) ≥ α0 and S − c(y ) < α0. Therefore, S < c(y ) + c(x ).

For the converse, let us fix α0 = c(x ), the pathset with minimum cost. Clearly, the specific pathset x meets the
condition∑N

i=1 ni xi ≥ α0; in fact the equality is met. By its definition, the inequality holds for the other pathsets. Finally,
we use the fact that S < c(y ) + c(x ) to verify that the cutset with minimum-cost, y , meets the inequality∑N

i=1 ni yi < α0.
The inequality for the other cutsets is straight since y is a cutset withminimum-cost. Therefore, the SBS is separable,
concluding the proof.

6 | SEPARABILITY IN GRAPHS
Our characterization of separable systems has a straight reading in the celebrated all-terminal reliability model.
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Separable Graph A graphG = (V , E ) is separable if there exists an assignment of non-negative real numbers n1, . . . , nm
to itsm links, and there exists a threshold α such that c(E ′) ≥ α if and only if the spanning subgraphG ′ = (V , E ′) is
connected.
LetG be a connected graph. Recall that Kruskal algorithm provides efficiently the cost of theminimum spanning tree,
MST (G ). Furthermore, the cutset withminimum-cost,m(G ), is obtained using Ford-Fulkerson algorithm. Therefore,
the following corollary of Theorem 15 holds for graphs:
Corollary 16 A graph is separable iff there exists a feasible assignment {ni }i=1,...,N to the links such that S < MST (G )+m(G ),
beingMST (G ) the cost of the minimum spanning tree,m(G ) the mincut with minimum capacity, and S =

∑N
i=1 ni the sum of

the link weights.
For example, trees and elementary cycles are separable graphs. Indeed, ifTn is a treewith n nodes, a feasible assignment
is an identical unit-cost to all the links, since in that case MST (Tn ) = n − 1, m(G ) = 1 and the global sum is S =

n − 1 < MST (Tn ) + m(Tn ). Analogously, if Cn denotes the elementary cycle with n nodes, then S = n < (n − 1) + 2 =

MST (Cn ) +m(Cn ), and the same unit-cost assignment works.
Intuitively, if the graph is dense enough, it is not expected to exceed the global cost S of the graphs using the

minimum spanning tree andmincut. Our first result deals with the extremal case of complete graphs:
Proposition 17 Complete graphs (Kn )n≥4 are nonseparable.
Proof Consider an arbitrary assignment {ni }i=1,...,n(n−1)/2 to the links of Kn , and an arbitrary star-graph K1,n contained
in Kn . Since K1,n is connected, its cost is greater than, or equal to theminimum spanning tree, so, c(K1,n ) ≥ MST (Kn ).
Furthermore, the complementary links of K1,n , or the complementary graph KC1,n , is a cutset (it isolates a single node), so
the cost must exceed themincut: c(KC1,n ) ≥ m(Kn ). But then, the global cost is c(Kn ) = c(K1,n ) + c(KC1,n ) ≥ MST (Kn ) +
m(Kn ). The conclusion is that S = c(Kn ) ≥ MST (Kn ) +m(Kn ) for any feasible assignment, and Kn is nonseparable.

With the following lemmas, we will present a hereditary property of separable graphs, stated in Theorem 20.
Consider a simple connected graphG = (V , E ). Wewill consider two different link additions:

• WedenoteGi n = G + e i n to the resulting graph after the addition of an internal link e i n = {u1,u2 }, where u1,u2 ∈ V .
• We denote Gout = G + eout to the resulting graph after the addition of an external link eout = {u1,u2 }, where

u1 ∈ V but u2 <V .

Observe thatG + e i n andG share an identical node-setV , while the node-set forG + eout isV ∪ {u2 }.
Lemma 18 IfG is nonseparable thenGout is nonseparable.
Proof Suppose for amoment that there exists a feasible assignment {ni }i=1,...,N+1 forGout . Then:

(
N∑
i=1

ni ) + nN+1 < MST (Gout ) +m(Gout )

= MST (G ) + nN+1 +min{m(G ), nN+1 }

≤ MST (G ) + nN+1 +m(G ),

and {ni }i=1,...,N would be a feasible assignment forG , which is a contradiction. Therefore,Gout is nonseparable.
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Lemma 19 IfG is nonseparable thenGi n is nonseparable.

Proof Suppose for amoment that there exists a feasible assignment {ni }i=1,...,N+1 forGi n . Then:

(
N∑
i=1

ni ) + nN+1 < MST (Gi n ) +m(Gi n )

≤ MST (G ) +m(G ) + nN+1,

and {ni }i=1,...,N would be a feasible assignment forG , which is a contradiction. Therefore,Gi n is nonseparable.

Observe that Lemma 19 informally states that graphswithmore density are nonseparable. Using the counter-reciprocal
of Lemmas 18 and 19, we obtain the following:

Theorem 20 Separability is a hereditary property in graphs.

Proof Reading the counter-reciprocal of Lemma 19, we know that the deletion of one or several links from a separable
graph is also separable. By Lemma 18, we also know that a node-deletion in a separable graph (with the intermediate
deletion of links using Lemma19) is also separable. Combining node and link deletions, an arbitrary subgraph is obtained,
and it must be separable as well.

Lemma 21 IfG is separable,Gout is also separable.

Proof Consider a feasible assignment {ni }i=1,...,N forG , where S < MST (G )+m(G ) holds. Let us consider an extended
assignment with nN+1 for the external link, such that nN+1 > m(G ). Then:

S + nm+1 < (MST (G ) + nN+1) +m(G )

= MST (Gout ) +min{m(G ), nN+1 }

= MST (Gout ) +m(Gout ),

and {ni }i=1,...,N+1 is a feasible assignment forGout .

Corollary 22 Cycles with arborescences are separable graphs

Proof Weknow that elementary cycles are separable. The result follows by the addition of one or several trees hanging
to different nodes from the first cycle. Supported by Lemma 21, the separability is preserved by the addition of those
links.

Figure 1 depictsMonma graphs. They have two degree-3 nodes connected by 3 node-disjoint paths. We already
know that an arbitrary subgraph ofMonma is separable, since it is a graphwith arborescence (or disconnected graphs,
which are trivially separable graphs). However, we will see that Monma graphs are minimally nonseparable graphs.
ClydeMonma et. al. used these graphs to designminimum cost biconnectedmetric networks [22]. Furthermore, they
attain themaximum reliability among all the graphs with p nodes and q = p + 1 links [23].

Lemma 23 Monma graphs are nonseparable
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u v

c1 c2 c l3

b1 b2 b l2

a1 a2 a l1

F IGURE 1 Monma graphM l1+1,l2+1,l3+1.

Proof Consider an arbitrary order for the links ofMonma graph, and the ruleφ(x ) = 1 iff theMonma subgraph given by
the links in x is connected. Wewill find a convex combination of pathsets and cutsets with identical result. Consider the
four links e1 = {u, a1 }, e2 = {a1, a2 }, e3 = {u, b1 } and e4 = {b1, b2 } from Figure 1. Let us denote 1ei ,e j the binary word
that is set to 1 in all the bits but 0 in the positions corresponding to the links e i and e j . Consider the following identity:

1

2
(1e1,e2 + 1e3,e4 ) =

1

4
(1e1,e3 + 1e1,e4 + 1e2,e3 + 1e2,e4 ) (27)

On one hand, we have a convex combination of cutsets. On the other, a convex combination of pathsets. By Theorem 14,
Monma graphs are nonseparable.

Recall that a node v in a graph G is a cut-point if G − v has more components than G . A connected graph is
biconnected if it has no cut-points. The addition of an ear in a graphG is the addition of an external elementary path
between two different nodes from G . Frederickson-Jàjà characterization theorem asserts that there exists an ear
decomposition of all biconnected graphs, such thatG = Cs ∪ H1 ∪ H2 ∪ · · · ∪ Hr ,Cs is an elementary cycle andHi is the
addition of an ear to the previous graph [24]. This structural characterization of biconnected graphs lead us immediately
to the following:

Theorem 24 All biconnected graphs that are not elementary cycles are nonseparable.

Proof As the base-step, we know by Lemma 23 that Monma graphs are nonseparable. IfG is biconnected and it is
not an elementary cycle, then it has the addition of at least one ear of a cycle. Therefore, it hasMonma as a subgraph.
Therefore, Theorem 20 asserts thatG cannot be separable.

Recall that the link-connectivity of a graphG is the least number of links thatmust be removed in order to disconnect
G . The Bowtie-graph consists of two triangles meeting in a common point (see Figure 2). This is the smallest graph with
link connectivity 2 that is not biconnected, since the kissing-point is a cut-point. As a consequence, it is natural to decide
the separability of this graph:

Lemma 25 The Bowtie-graph B is nonseparable

Proof Consider an arbitrary assignment {ni }i=1,...,6 for the links. We consider an assignment n1 ≤ n2 ≤ n3 in the left
triangle, and n4 ≤ n5 ≤ n6 in the right triangle. ThereforeMST (B) = S − n3 − n6, andm(B) = min{n1 + n2, n4 + n5 } ≤
min{2n2, 2n5 } ≤ n3 + n6. This implies thatMST (B) +m(B) ≤ S for all possible assignments in B , and B has no feasible
assignment.

An analogous reasoning leads to the following generalization:
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Bowtie
F IGURE 2 Bowtie-graph B .

F IGURE 3 Glasses-graph Be .

Corollary 26 Two kissing cycles are nonseparable.
A further generalization recalls Frederickson-Jàjà characterization: G is a bridgeless graph if and only if G =

Cs ∪H1 ∪H2 ∪ · · · ∪Hr ,Cs is an elementary cycle andHi is the addition of an ear or a kissing cycle to the previous graph.
The following result is analogous to Theorem 24:

Corollary 27 Bridgeless graphs are nonseparable, except for elementary cycles.
In order to fully characterize separable graphs, we need to study graphs that have at least one bridge e ∈ G .

We already know that all the links in a tree are bridges, and they are separable graphs. Furthermore, cycles with
arborescences are separable as well. Let us proceed our analysis with two triangles linked by a single bridge e , a graph
called as Glasses-graph Be .

Lemma 28 The Glasses-graph Be is nonseparable.

Proof The reasoning is identical to the Bowtie-graph. Consider an assignment {ni }i=1,...,7 as in the Bowtie-graph, but
n7 is the assignment for the bridge e . Therefore:

MST (Be ) +m(Be ) = (S − n3 − n6)

+min{n1 + n2, n4 + n5, n7 }
≤ S ,

sincemin{n1 + n2, n4 + n5, n7 } ≤ n3 + n6, and the last inequality was already proved for the Bowtie-graph.

A slight generalization is possible:

Corollary 29 Two cycles linked by an elementary path are nonseparable.
We are in conditions to fully characterize separable graphs:

Theorem 30 A graphG is separable iffG falls into one of the four categories:
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1. G is not connected;
2. G is a tree;
3. G is an elementary cycle; or
4. G is an elementary cycle with arborescences.

Proof In order to prove the converse, we test case by case that the graph is separable:

1. If G is disconnected, all of its configurations are cutsets and the reliability is null. In this case, the inequality∑N
i=1 xi > 2N is not satisfied by any binary vector x = (x1, . . . , xN ), and the graph is separable.

2. IfG is a treeTN with N links, the evidence is the hyperplane∑N
i=1 xi ≥ N (or a unit-assignment is feasible).

3. IfG = CN is an elementary cycle, the evidence is the inequality∑N
i=1 xi ≥ N − 1.

4. IfG is a tree with arborescences, Lemma 22 states thatG is separable.

Finally, letG be a separable graph, and assumeG is connected. We know by Corollary 27 thatG must have a bridge.
Combining Theorem 20 and Corollary 24,G cannot have any bridgeless subgraph different than elementary cycles.
Combining Corollaries 26 and 29,G cannot have two cycles (either they are kissing or connected by a path). Therefore,
G is either a tree, an elementary cycle of an elementary cycle with arborescences.

Corollary 31 The all-terminal reliability evaluation of separable graphs belong to the class P of polynomial-time problems.

Proof The analysis is straight. LetG be a separable graph:

1. IfG is not connected R (G ) = 0.
2. IfG = TN a tree with N links with independent reliabilities (pe )e∈TN then R (G ) = ∏

e∈TN pe .
3. IfG = CN ,

R (CN ) =
∏
e∈CN

pe +
∑
e∈CN

(1 − pe )
∏
e′,e

pe′ .

4. Finally, ifG is an elementary cycle with arborescences: G = C l ∪Ts , beingTs union of trees pending from the cycle
C l . Therefore, R (G ) = R (C l ) ×∏

e∈Ts pe .

The reader can appreciate that the reliability computation is a product, or a sum of products of the elementary link
reliabilities. Therefore, the number of operations involved are linear, or quadratic, in the number of links.

The corank of a graph is the number of independent cycles. In a connected graphwith n nodes andm links, its corank
is precisely c(G ) = m − n + 1. It is worth to remark that Theorem 30 can be re-stated in terms of corank: a connected
graphG is separable if and only if its corank is either 0 or 1.

We close this section discussing an interplay between a combinatorial optimization called the Network Utility
Problem (NUP) and separable graphs. First, observe that an arbitrary spanning tree of a connected graphG has n−1 links.
Therefore, the corank of a graph is precisely the number of additional links that we must pay to build the graphG , starting
from aminimally-connected graph. In terms of communication, the corank ofG represents redundancy. At the cost of
redundancy, the resulting network canbe robust under a certain amount of link failures. Theprofit is the link connectivity
λ(G ), which represent the lowest number of links that should be removed in order to disconnectG . As a consequence,
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the utility of a graph, u(G ), is the difference between the connectivity and the corank: u(G ) = λ(G ) − c(G ) = λ −m + n − 1.
In [25], the authors formally proved the following

Theorem 32 The graphs with maximum utility are trees and cycles. Their utility value is 1. There is no other graph with
maximum utility.

Corollary 33 All the graphs with maximum utility are separable graphs.

The all-terminal reliability polynomial under identical elementary reliabilities in the links r is

RG (r ) =
c(G )−1∑
i=λ(G )

ni (G )pm−i (1 − p)i + τ(G )pn−1(1 − p)m−n+1, (28)

being ni (G ) the number of connected subgraphs ofG with preciselym − i links, and τ(G ) the tree-number ofG , which
is known usingMatrix-Tree Kirchhoff theorem [26]. Therefore, the number of unknowns is precisely the number of
terms involved in the summation: c(G ) − λ. The only cases where there are no terms in the sum occur either when
c(G ) − λ = −1, exactly in trees and cycles, or when c(G ) − λ = 0, only in an elementary cycle with arborescence, K4,
Kite-graph and Bowtie-graph [25]. These graphs are considered as the simplest in terms of reliability analysis. Indeed,
in [25] the authors define the level of difficulty of a graph as the difference d (G ) = c(G ) − λ − 1, and a graph is easy if and
only if d (G ) ≤ 0:

Corollary 34 All separable graphs are easy graphs.
The reader can observe that the graphs withmaximum utility u(G ) are the easiest graphs, with theminimum level of
difficulty d (G ).

7 | DISCUSSION AND CONCLUDING REMARKS
7.1 | Discussion
A natural extension of our prior analysis is a classification of nonseparable systems.

Let S = (S , r ,φ) be an arbitrary SMBS, and consider its corresponding 0-1 labels of the vertices of a hypercubeQN
in the Euclidean spaceÒN .

Level of Separability The level of separability of S is the least positive integer d such that there exists positive separator
hyperplanes π1, . . . , πd , where all the pathsets of S lie on the same side as the unit vector for all the hyperplanes, and all
the cutsets do not meet the previous condition, at least for one hyperplane.

Proposition 35 Let S be an arbitrary SMBS, and let mc = |MC | be the number of all its mincuts. Therefore, the level of
separability d verifies d ≤ mc .

Proof Assume that x1, . . . , xmc is the list of all themincuts of S. Consider the sets Si = {j : x ij = 0}, that represent the
non-operational states for the mincut x i . Observe that the mincut x i does not meet the inequality πi : ∑j ∈Si xj ≥ 1.
Furthermore, the hyperplanes π1, . . . , πmc meet the definition 7.1, and the result follows.
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Proposition 35 shows that the level of separability will always bewell defined for any arbitrary SMBS, thus it is an
alternative way to classify a notion of difficulty in the reliability evaluation for SMBSs.

If we return to the all-terminal reliability model, we know from Theorem 30 all the graphs with level of separability
d = 1 (i.e., all separable graphs). We can observe that the Bowtie-graph, the Glasses-graph and Monma represent
minimally nonseparable cases. For a better understanding of definition 7.1, we find the level of separability in these
minimally nonseparable cases in the following paragraphs.

Let us denote x1, x2, x3 and y1, y2, y3 to the states of the links for the Bowtie-graph, corresponding to both triangles
(see Figure 2). All pathsets must have at least two links from every triangle, and the following 2 hyperplanes determine
pathsets:

x1 + x2 + x3 ≥ 2

y1 + y2 + y3 ≥ 2.

Since we know that the Bowtie-graph is nonseparable, d > 1, and since the previous hyperplanes fulfill the definition,
the level of separability for the Bowtie-graph is d = 2.

Analogously, if we link both triangles with a new link z , we get the Glasses-graph. A slight modification of the
hyperplanes serve as an evidence that the Glasses-graph has level of separability d = 2:

x1 + x2 + x3 + 3z ≥ 5

y1 + y2 + y3 ≥ 2.

Observe that we force the link z to be operational, adding the term 3z in the first hyperplane. Finally, let us consider
Monma graphM2,2,1 from Figure 1, where the three paths have respective lengths 2, 2 and 1, and the respective links
from each path are sequentially identifiedwith the binary states x1, x2, y1, y2 and z . The reader is invited to check that
the level of separability inMonma graphM2,2,1 is also d = 2, and the following pair of hyperplanes works:

10x1 + 10x2 + y1 + y2 + z ≥ 12

x1 + x2 + 10y1 + 10y2 + z ≥ 12.

Currently, there is no constructive algorithm to produce theminimum number of hyperplanes for an SMBS.Wewish to
develop a complementary theory to the one presented in Section 6 for separable graphs, but finding the correct level of
separability for any given graph. Inspired by Theorem 31, we promote the following:

Conjecture 1 Let d be a fixed positive integer. Then, the all-terminal reliability evaluation of graphs with level of separability d
belongs to the class P of polynomial-time problems.

7.2 | Concluding Remarks
In this work, we study the reliability evaluation of stochastic binary systems (SBS), and its impact in the celebrated
all-terminal reliability model.

An efficient representation of separable systems is here presented, and a full characterization of these special
systems. The major strength of separable systems is their efficient representation. The major shortcoming is that
the reliability evaluation is as hard as an arbitrary SBS. Supported by duality, separability and large deviation theory,
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reliability bounds were presented for arbitrary SBSs. The bounds are not tight in general, and this fact motivates further
research.

Separable systems accept polynomial-time reliability evaluation when restricted to the all-terminal reliability
model. This result was discovered using functional analysis and feasible functionals from the links of a graph, meeting
separability constraints. This interplay between SBSs and Functional Analysis should be further studied.

As future work, wewould like to establish Conjecture 1 for a better understanding of nonseparable systems, and
the interplay between general SBSs and the all-terminal reliability model, which has a wide spectrum of applications.
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Chapter 8

Model Construction in
Stochastic Binary Systems

In this chapter we present a second stage of the work introduced in Chapter 7. Here a model construction
methodology is proposed, supported by a random sample of the space-state that considers Support Vector
Machine (SVM) and a binary classification.
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Abstract—A Stochastic Binary System (SBS) is a mathematical
model of a multi-component on-off system, where its components
are subject to random failures. The reliability evaluation of an
SBS is a common target in the research community, since it
includes the traditional network reliability measures, which have
many applications.

Several works from the scientific literature assume that the
rule that determines the system operation is fully known, and
that the failures are independent with known probabilities.
However, the number of feasible states for a system with N
on-off components is 2N , and an exhaustive list of all the states
is computationally prohibitive. Furthermore, the reliability
evaluation of an arbitrary SBS belongs to the class of
NP-Hard problems.

In this work, we outline the main challenges in the reliability
evaluation of an SBS, and recent progress in the field.
Additionally, we propose a model construction of an SBS
supported by a random sample of the space-state that considers
Support Vector Machine (SVM) and binary classification. We
believe that this approach is not only more realistic, but it is
also a point of departure to discuss the traditional
independence assumption in general SBS.

Index Terms—Stochastic Binary Systems, Network Reliability,
Support Vector Machine, Machine Learning.

I. MOTIVATION

The term reliability stands for the probability of correct
operation of a system. Given the importance of networks in
our lives, network reliability analysis is a mature field of
knowledge, and the literature is vast. The common approach
is to consider random graphs with either node or link
failures, depending on the specific application. Stochastic
Binary Systems (SBS) represent a more abstract setting,
where the components subject to random failures are not
necessarily configured or related by a network. Real
examples are provided by vehicles, redundant systems,
robots or systems of systems. Pioneer works by Provan,
Colbourn [1] and Rosenthal [2] confirm the hardness of the
network reliability evaluation. The reader is invited to
consult the monograph [3] for an authoritative work in the
field of network reliability. The diameter-constrained
reliability is also hard, even for all the diameters d ≥ 3,
see [4]. As corollary, the reliability evaluation of general
SBS is also hard, since it subsumes the hardness of the
previous sub-models. What is more, the rule that determines
the operation or failure of the system for a given
configuration has an exponential domain. Therefore, the

challenges to extend a theory on stochastic binary systems
are noteworthy.

This work is part of an international Research &
Development project entitled Dynamic Stochastic Binary
Systems. From a high level point of view, this project
includes the following three stages:

1) Understand the combinatorics and reliability of
Stochastic Binary Systems.

2) Define realistic models with dependent failures.
3) Introduce time and dynamism in the previous models.
A concrete example of a dynamic SBS with dependent

failures on its components is a car, where a failure on a
wheel modifies the failure probability of the other wheels,
and the concept of reliability is understood as a correct
operation of a trajectory, or a target distance. So far, our
achievements can be summarized in the following items:

1) A better understanding of the combinatorics and
structure of SBS.

2) We introduced special sub-systems with an efficient
representation.

3) We found reliability bounds for general SBS, under the
independence assumption.

Recent works confirm that there is a special class of SBS,
called separable systems, that accept an efficient
representation, and the truth-table can be found by an inner
product in the Euclidean space [5]. Furthermore, this class of
systems can be fully characterized using functional analysis,
and we have built reliability bounds for general SBS using
the duality of separable systems. The present work represent
a first approach to address the second stage of the above
mentioned research project. The contributions of this paper
can be summarized in the following items:

1) A model construction methodology is proposed for the
structure of stochastic binary systems.

2) A full reliability analysis and model construction is
offered for the distinguished systems.

3) The hardness of the reliability evaluation of separable
systems is established.

4) The concepts of separability and reliability are discussed
for the models under study.

This paper is organized as follows. Section II formally
presents the problem under study. At the end of this section
we establish the hardness of the reliability evaluation of
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separable systems. Distinguished models are studied in
Section III inspired by real-life applications (redundant
systems, recovery/failure systems). They will be the focus of
this work. This section also includes the reliability analysis
and a discussion of separability for each model. The selected
machine learning techniques for the model construction is
outlined in Section IV. Section V presents the
misclassification error, and Section VI contains concluding
remarks and trends for future work.

II. CONCEPTS

The following terminology is adapted from [6].

Definition 1 (Stochastic Binary System). A stochastic binary
system is a triad (S, r, φ):
• S = {1, . . . , N} is a ground set of components,
• r = (r1, . . . , rN ) are their elementary reliabilities, and
• φ : {0, 1}N → {0, 1} is the structure.

The concept of reliability is generalized to arbitrary
stochastic binary systems.

Definition 2 (Reliability/Unreliability). Let S = (S, p, φ) be
a stochastic binary system, and consider a random vector
X = (X1, . . . , XN ) with independent coordinates governed
by Bernoulli random variables such that P (Xi = 1) = ri.
The reliability of S is the probability of correct operation of
the system:

RS = P (φ(X) = 1) = E(φ(X)) =
∑

x:φ(x)=1

P (X = x). (1)

The unreliability of S is US = 1−RS .

A stochastic binary system is homogeneous if the
elementary reliabilities are identical (i.e., ri = r for all i).

Definition 3 (Pathsets/Cutsets). Let S = (S, r, φ) be a
stochastic binary system. A possible state or configuration
x ∈ {0, 1}N is a pathset (resp. cutset) if φ(x) = 1 (resp., if
φ(x) = 0).

Definition 4 (Stochastic Monotone Binary System (SMBS)).
The triad S = (S, r, φ) is a stochastic monotone binary system
if the structure function φ : {0, 1}N → {0, 1} is monotonically
increasing, φ(0N ) = 0 and φ(1N ) = 1.

Observe that SMBS represent well-behaved SBS, in the
sense that, given a working configuration, the system can fail
after the removal of some components, but can not fail if
some failed components start to work. Additionally, the
system does not work if it has no operational components,
and the full system works.

Definition 5 (Minpaths/Mincuts/Rays). Let S = (S, r, φ) be
an SMBS:
• A pathset x is a minpath if φ(y) = 0 for all y < x.
• A cutset y is a mincut if φ(x) = 1 for all x > y.
• The x-ray is the set Sx = {y ∈ {0, 1}N : y ≥ x}.
An SMBS is fully characterized by its mincuts (or its

minpaths). In fact, if we are given the complete list of

minpaths, then the complete list of pathsets is precisely the
union of the x-rays for every minpath x. Observe that the
representation of an SBS requires a truth-table (i.e., the
structure function) with 2N rows. In order to find an efficient
representation, the following concept was introduced in [5]:

Definition 6 (Separable System). An SBS is separable if the
cutsets/pathsets can be separated by some hyperplane.

Since a hyperplane in the Euclidean space can be fully
determined by a normal vector −→n and a point P , the
structure evaluation requires only N multiplications for
separable systems, and there is no need to store 2N rows as
in the general case. Separable systems can be fully
characterized using pathsets and cutsets. Let us denote
CH(P) and CH(C) the convex hull of the pathsets and
cutsets respectively.

Proposition 1. An SBS is separable iff CH(P)∩CH(C) = ∅.
The proof exploits Hahn-Banach separation theorem for

compact/convex sets [7]. See [5] for a proof. The following
examples provide an insight of the different applications of
stochastic binary systems to network reliability.

1) K-Terminal Reliability: the ground-set is precisely the
links of a simple graph. The system is up if the terminal-
set K belongs to the same connected component [8].

2) All-Terminal Reliability: all nodes belong to the
terminal-set K.

3) Source-Terminal Reliability: choose K = {s, t}.
4) Diameter Constrained Reliability: a diameter constraint

d is added to the K-Terminal Reliability. The system
is up if every pair of terminals are connected by paths
whose length is not greater than the diameter [9], [4].

5) Node-Reliability: the ground set is the set of the nodes of
a simple graph. The system is up if the resulting random
graph is connected.

There exists an interplay between SBS and propositional
logic. Recall that a theorem-proving procedure is the first
NP-Complete decision problem established by Stephen
Cook [10]. In other words, the recognition of a tautology is
a hard decision problem from propositional logic.

Theorem 1. The reliability evaluation of an arbitrary SMBS
belongs to the class of NP-Hard problems.

Proof. Arnie Rosenthal formally proved that the reliability
evaluation for the K-terminal reliability model belongs to
the class of NP-Hard computational problems [2]. Since
K-Terminal is a particular SMBS, the result follows by
inclusion.

Corollary. The reliability evaluation of an arbitrary SBS
belongs to the class of NP-Hard problems.

Theorem 2. The reliability evaluation of separable systems is
NP-Hard.

Proof. By reduction from PARTITION . Consider an
instance of natural numbers A = {a1, . . . , aN}, and let
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s =
∑N
i=1 ai be the sum over the elements of the list. Let us

consider the separable systems S1 and S2:
1) S1 characterized by the hyperplane

∑N
i=1 nixi =

1
2+

1
2s ;

2) S2 characterized by the hyperplane
∑N
i=1 nixi =

1
2 ;

The difference of the reliability of both systems, considering
Bernoulli independent random variables with parameter p =
1/2, is:

RS2(1/2)−RS1(1/2)

= P

(
N∑

i=1

nixi ≥
1

2

)
− P

(
N∑

i=1

nixi ≥
1

2
+

1

2s

)

= P

(
N∑

i=1

aixi ≥
s

2

)
− P

(
N∑

i=1

aixi ≥
s

2
+

1

2

)

= P

(
N∑

i=1

aixi =
s

2

)

=
#{(x1, . . . , xN ) ∈ {0, 1}N :

∑N
i=1 sixi =

s
2}

2N
,

and the last number is positive if and only if there exists a
subset B ⊆ {1, . . . , N} such that

∑
i∈B ai =

s
2 . This means

the valure will be possitive iff the answer to PARTITION for
the list A is YES. Otherwise, the answer to PARTITION is
NO. Therefore, the reliability evaluation of separable systems
is at least as hard as PARTITION, and it belongs to the class
of NP-Hard problems.

Observe that separable systems accept an efficient
representation, but their reliability evaluation is still
NP-Hard.

Proposition 2. A separable system with positive normal vector
is an SMBS.

Proof. If x ≤ y and (x − Po)−→n ≥ 0, then (y − Po)−→n ≥ 0.
Therefore, φ(x) ≤ φ(y), and we have an SMBS as desired.
We have denoted −→n the normal vector, whose components are
nonnegative, and Po a point in the plane.

We can appreciate that separable systems with positive
normal vectors are SMBS; but the converse is false. The
smallest counterexample (SC) is the SBS with only two
minpaths: m1 = (0, 1, 0, 1) and m2 = (1, 0, 1, 0). Note that
c1 = (1, 1, 0, 0) and c2 = (0, 0, 1, 1) are mincuts. Therefore,
(1/2, 1/2, 1/2, 1/2) = (m1 +m2)/2 = (c1 + c2)/2 belongs
to the convex hull of pathsets and cutsets, so by
Proposition 1, SC is not separable.

III. MODELS

We will study the following SBS as case examples:
(M1) k-out-of-N , in the homogeneous case with individual

survivability p ∈ [0, 1].
(M2) Pattern: φ(x) = 1 iff w ⊂ x, where w = 11111.
(M3) Random hyperplane: pick the coordinates of −→n and Po

uniformly at random in [0, 1].

(M4) Two random hyperplanes: pick two normal vectors, −→n1
and −→n2, and two points, Po and Qo, as in the previous
example. φ(x) = 1 iff x−→n1 > Po

−→n1 and x−→n2 > Qo
−→n2.

(M5) Event in a Chain: consider a transition 2 × 2 matrix
M , starting distribution π = (1/2, 1/2) and two states
{0, 1}. The system works if the path contains 11 (the
state 1 is visited consecutively).

(M6) SC with noise: φ(x) = 1 iff the last 4 bits
x′ = (xN−3, xN−2, xN−1, xN ) meet either x′ ≥ m1 or
x′ ≥ m2, being m1 = (0, 1, 0, 1) and m2 = (1, 0, 1, 0).

Let us first discuss the separability of each model. Model
1 is simple to understand. It is a separable SMBS, with a
normal vector with identical coordinates ni = 1. Model 2 is
not separable: observe that the zig-zag states x = 1010... and
its complementary one x are cutsets. However, the states
y = w00000... and y are pathsets, but
(x + x)/2 = (y + y)/2. As a consequence, the convex hulls
have at least a common element, and by Proposition 1,
Model 2 (Pattern) is not separable. By construction, Model 3
is separable. Model 4 is not separable, since the union of
two half-spaces is not necessarily a half-space. Model 5 is
not separable (the reasoning is analogous to Pattern, but
using w = 11). Finally, Model 6 is not separable, since SC is
the smallest nonseparable example. Let us proceed with the
reliability analysis of each individual model. The reliability
of Model 1 can be found by means of a Binomial
distribution (a sum of N independent Bernoulli random
variables). If uN denotes the unreliability of Model 2 with
N components, then the sequence (un) respects the initial
condition u1 = u2 = u3 = u4 = 1; u5 = 1 − p5 and the
following recursion:

un+5 = (1− p)un+4 + p(1− p)un+3 + p2(1− p)un+2

+ p3(1− p)un+1 + p4(1− p)un

The reliability for Model 2 is RN = 1 − uN . Curiously
enough, separable systems accept an efficient representation,
but the reliability evaluation belongs to the class of
NP-Hard problems. Therefore, the problem of computing
the reliability for Model 3 (for an arbitrary N and an
arbitrary random hyperplane) is NP-Hard, since it
represents an arbitrary separable system. As exact
computation is then computationally hard, an alternative is to
employ pointwise reliability estimations for Models 3 and 4
using for instance Crude Monte Carlo method [11]. The
reliability evaluation of Model 5 is found by considering the
equivalent four-state system composed by the strings
{00, 01, 10, 11}. The reliability is then the fourth component
of the vector π′ × QN−2, being
π′ = (π0M(0,0), π0M(0,1), π1M(1,0), π1M(1,1)), and Q:

Q =




M(0,0) 1−M(0,0) 0 0
0 0 M(1,0) 1−M(1,0)

M(0,0) 1−M(0,0) 0 0
0 0 0 1


 ,
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Finally, the reliability of Model 6 is R(p) = p4 + 2p2(1 −
p)2 + 4p3(1− p).

IV. SUPPORT VECTOR MACHINES

Observe that the number of states of an SBS grows
exponentially with respect to the number of components. In
practice, the underlying structure of an SBS is only known
for partial states. As a consequence, we assume a set of
independent samples φ(X1), . . . , φ(Xm) of the structure, and
the goal is to have a computational efficient representation,
with low misclassification error.

In order to have a honest estimation of the
misclassification error, machine learning methods can be
evaluated in a two-step fashion: first, a model is
trained/constructed and second, it is tested on a new dataset,
which has not contributed to the construction of the model.
The reader can consult alternative resampling methods such
as cross-validation [12] or bootstrap [13], especially when
the number of observations is reduced.

A modern method of statistical learning, Support Vector
Machine (SVM), does not impose any assumption on the
data distribution. The goal is to find a hyperplane that
linearly separates different groups of observations. The
rationale behind this construction is to maximize the distance
between the two sets, or the margin between the points and
the hyperplane. This approach is different from discriminant
analysis, whose construction of the separator hyperplane
depends on all the data, with hard constraints (i.e.,
continuous variables and identical covariance matrix for the
groups).

Even if the data is not completely linearly separated or if it is
actually impossible to find a hyperplane that separates them,
SVM, using the kernel trick, can map the observations in a
space of higher dimension, where it could be much simpler
to separate them linearly. The intuition is that it is easier to
separate groups in a larger space. The methodology is based
on the kernel trick [14], and the fact that an SVM classifier
only depends on a dot product. The most used kernels are
the radial or gaussian kernel kr(x, y) = e−γ||x−y||

2

, the linear
kernel kl(x, y) = 〈x, y〉 and the polynomial kernel kp(x, y) =
(1+ 〈x, y〉)d of degree d. The reader is invited to consult [14]
or [12] for further details.

V. RESULTS

In this section, we present and discuss results obtained
applying the previous ideas to a number of particular test
cases, based on the models (M1) to (M6) defined previously.
For each of the models, we considered three values for the
number of components, N ∈ {10, 30, 50}. For models (M3)
and (M4), random hyperplanes were sampled to complete the
model definitions. In order to apply SV methodology, we
used three sample size values, m ∈ {600, 3000, 9000}. We
now discuss model fitting and then analyze how the results
can be used to estimate reliability.

A. Model Fitting

In order to highlight the level of separability and potential
representation of an SBS, we considered three different SVM
classifiers described in Section IV, to know, linear, radial and
polynomial kernels. We carried out the simulations using
package e1071 of R software, specifically useful for
SVM [15].

As a rule of thumb in machine learning, we considered two-
thirds of the sample to build the model (training stage), and the
remaining one-third of the sample to validate the model. The
performance of the different SVMs is measured in terms of
their accuracy, for the six SBSs under study from Section III.
Tables I-III report the accuracy of the different SVM classifiers
over an averaging of 50 independent-runs, for the different
systems under study, considering N = 10, N = 30 and N =
50, respectively.

There is a trade-off between the sampling size m and the
accuracy. The corresponding systems for N ∈ {30, 50} have
abundant number of states and modest sample size m (see
Tables II and III). However, Table I presents a scenario under
a forced overfitting, with the 2N = 1024 states of the system.
The matching between the different structures and classifiers
is better as m is increased. This fact confirms the consistency
of our methods.

SBS Linear Radial Polynomial

1024

M1 1.0000 1.0000 1.0000
M2 0.9334 0.9188 0.9221
M3 0.9677 0.9316 0.9545
M4 0.9452 0.9319 0.9330
M6 0.8930 1.0000 1.0000

TABLE I
ACCURACY OF THE THREE SVM MODELS WITH N = 10

m SBS Linear Radial Polynomial

600

M1 0.9630 0.8995 0.8566
M2 0.7639 0.7601 0.7742
M3 0.9474 0.9072 0.9048
M4 0.9519 0.9135 0.9249
M5 0.6641 0.6078 0.5530
M6 0.9200 0.8558 0.8129

3000

M1 1.0000 0.9657 0.9733
M2 0.7476 0.7693 0.7674
M3 0.9817 0.9596 0.9535
M4 0.8973 0.9014 0.8982
M5 0.6621 0.7438 0.7102
M6 0.9361 0.9240 0.9263

9000

M1 1.0000 0.9860 0.9902
M2 0.7533 0.8070 0.8006
M3 0.9918 0.9768 0.9751
M4 0.9890 0.9781 0.9751
M5 0.6629 0.8412 0.8233
M6 0.9431 1.0000 0.9711

TABLE II
ACCURACY OF THE THREE SVM MODELS WITH N = 30 AND

m = 600, 3000, 9000

The Linear classifier predicts correctly more than 93% of the
sample for Models M1 and M3, for all the cases under study.
The matching is even better as the number of components N
is increased. This is in correspondence with the fact that M1
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m SBS Linear Radial Polynomial

600

M1 0.9488 0.8673 0.8668
M2 0.7970 0.8215 0.8215
M3 0.9378 0.8210 0.7851
M4 0.9147 0.8743 0.8881
M5 0.6091 0.6372 0.6372
M6 0.8986 0.8206 0.7814

3000

M1 0.9991 0.9363 0.9125
M2 0.8273 0.8235 0.8235
M3 0.9851 0.9255 0.9025
M4 0.9828 0.9482 0.9420
M5 0.6471 0.6409 0.6408
M6 0.9612 0.9607 0.9555

9000

M1 1.0000 0.9695 0.9587
M2 0.8366 0.8366 0.8366
M3 0.9905 0.9698 0.9571
M4 0.9605 0.9557 0.9530
M5 0.6557 0.6781 0.6483
M6 0.9680 0.9710 0.9704

TABLE III
ACCURACY OF THE THREE SVM MODELS WITH N = 50 AND

m = 600, 3000, 9000

and M3 are separable systems, so actually a perfect solution in
theory could attain a 100% accuracy. The reader can appreciate
that the method finding an imperfect matching, or sub-optimal
hyperplane, is related to the partial knowledge of the structure
during the training stage (i.e., not all the states of the structure
are known in order to build the model). Furthermore, observe
that there is a perfect matching between the Linear classifier
and M1 using a sample-size of m = 9000 for all the cases
N ∈ {10, 30, 50}. This fact suggests a reasonable sampling-
size to consider in real-life separable systems.

The linear classifier has good results for M4 (89% or more
of the sample predicted correctly). This system is not linearly
separable, so that there will always be a discrepancy between
a linear separation and the actual system. in this context, the
results obtained by the linear classifier seem very good, and
they outperform the other two classifiers in most combinations
of N and M .

For model M2 results are not so clearcut, and in general
all clssifiers give relatively poor results (with accuracy 83% in
the best case). The results are relatively similar and insensitive
on the choice of the classifier, at the same time the polynomial
classifier in most cases is the best or obtains results similar to
the best for this model.

For model M5, the best model overall seems to be the radial
one, which in most cases obtains better results than the linear
and polynomial one. The accuracies obtained in the N = 30
case grow quickly with the sample size m, but in the N = 50
case the results are not so promising, with very low success
rate (at most 67%).

Regarding model M6, for low m values the linear model
gas good accuracies, when m increases both the polynomial
and the radial model improve, and this latter one reaches very
high accuracy cases for both M = 30 and M = 50 when
m = 9000.

In an overall perspective, the Linear classifier has better
general performance, but the kind of model impacts greatly
and for systems which are far away from being linearly

separable, the other classifiers may be better options.

B. Reliability Evaluation

Once a classifier is adopted, we can perform a pointwise
reliability evaluation, using Crude Monte Carlo (CMC).
From a macroscopic viewpoint, Monte Carlo is a noteworthy
statistical method to simulate complex systems. The reader
can find an extensive analysis of Monte Carlo methods in the
authoritative book [11]. Here, the use of CMC is just an
averaging among all the sample. Let us denote Xn the
averaging over the set X1, . . . , Xn, and consider the three
classifiers: Y ix = Cx(Xi), being x ∈ {l, r, p} linear, radial
and polynomial estimations. Tables IV-VI show the
performance of CMC for the six models treated in the
previous section, taking the most complex cases, i.e N = 50.
Complementarily, Tables VII-IX show the performance of
the pointwise reliability evaluation obtained when employing
the SVM approximation. The correct reliability value R is
analytically found whenever possible as described in
Section III (when non-avaible, an NA entry is shown in the
tables). An approximate confidence interval [Rl, Rr] with a
level of 90% centered at φ(Xm) for the reliability R is also
provided. Observe that the reliability evaluation of separable
systems is NP-Hard (Theorem 2). Thus, here we do not
report the exact reliability evaluation for models M3 and
M4. Observe that both Radial and Polynomial classifiers
tend to overestimate the reliability. Furthermore, they tend to
classify all the states as operational, specially under small
sampling size. The Linear classifier has a small gap with the
pointwise unbiased estimation φ(Xm) under the separable
models M3 and M4. Furthermore, the numbers Cl(Ym/3)
are centered in the corresponding reliability intervals. The
reliability estimations are mixed, in some cases the values
are part of the confidence intervals, in other ones they are
quite afar, suggesting that additional work must be
performed to improve the use of the SVM models as a
source of reliability estimation.

φ(Xm) R Rl Rr

M1 0.8633 0.8721 0.8377 0.8855
M2 0.8183 0.8350 0.7902 0.8436
M3 0.7900 NA 0.7605 0.8168
M4 0.5283 NA 0.4939 0.5625
M5 0.6367 0.6446 0.6030 0.6691
M6 0.7167 0.7399 0.6846 0.7467

TABLE IV
RELIABILITY ESTIMATION WITH N = 50 AND m = 600.

φ(Xm) R Rl Rr

M1 0.8623 0.8721 0.8515 0.8725
M2 0.8233 0.8350 0.8114 0.8347
M3 0.9027 NA 0.8932 0.9114
M4 0.2477 NA 0.2348 0.2610
M5 0.6423 0.6446 0.6276 0.6568
M6 0.7437 0.7399 0.7302 0.7567

TABLE V
RELIABILITY ESTIMATION WITH N = 50 AND m = 3000.
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φ(Xm) R Rl Rr

M1 0.8711 0.8721 0.8651 0.8769
M2 0.8373 0.8350 0.8308 0.8437
M3 0.8682 NA 0.8622 0.8740
M4 0.8431 NA 0.8366 0.8494
M5 0.6469 0.6446 0.6385 0.6552
M6 0.7390 0.7399 0.7313 0.7466

TABLE VI
RELIABILITY ESTIMATION WITH N = 50 AND m = 9000.

Model Cl(Ym/3) Cr(Ym/3) Cp(Ym/3) R

M1 0.8850 1.0000 1.0000 0.8721
M2 0.8650 1.0000 1.0000 0.8350
M3 0.7750 0.9750 1.0000 NA
M4 0.5150 0.5650 0.5350 NA
M5 0.7850 1.0000 1.0000 0.6446
M6 0.6950 0.8500 0.9250 0.7399

TABLE VII
N = 50, m = 600.

Model Cl(Ym/3) Cr(Ym/3) Cp(Ym/3) R
M1 0.8760 0.9210 0.9450 0.8721
M2 0.9570 1.0000 1.0000 0.8350
M3 0.8980 0.9780 0.9990 ?
M4 0.2510 0.2150 0.2060 ?
M5 0.9020 1.0000 1.0000 0.6446
M6 0.7060 0.7400 0.7370 0.7399

TABLE VIII
N = 50, m = 3000.

Model Cl(Ym/3) Cr(Ym/3) Cp(Ym/3) R
M1 0.8707 0.8990 0.9090 0.8721
M2 1.0000 1.0000 1.0000 0.8350
M3 0.8677 0.8977 0.9150 NA
M4 0.8507 0.8717 0.8780 NA
M5 0.8930 0.9370 0.9987 0.6446
M6 0.6963 0.6527 0.6527 0.7399

TABLE IX
N = 50, m = 9000.

VI. CONCLUSIONS AND TRENDS FOR FUTURE WORK

System reliability has multiple applications, from
transportation to the design of communication networks. The
reliability analysis of Stochastic Binary Systems (SBS)
belongs to the class of NP-Hard problems. Furthermore,
special separable SBS accept an efficient representation, but
its reliability evaluation remains hard. Prior works in the
literature assume independent failures, which is not
necessarily a realistic assumption. Also, while it is assumed
that the system structure is known perfectly, in practice we
can observe the system under a number of particular states
or configurations; it is not always possible to observe all its
feasible states. Then, it can be a challenge to build a
valuable model starting from a finite number of observations
or samples.

In this work, we propose a model fitting methodology to
build a model of an SBS. Experiments with linear,
polynomial and radial SVM were performed. Of course other

classifiers could be considered, to see if better fits are
posssible. Also, some experiments for giving an estimation
of the reliability were performed. The results suggest
promising progress for model estimation of separable
systems, and more mixed success in the case of
non-separable systems, which must be studied with more
detail in the future.

Other additional future work can include discussing SBS
with dependent failures: independent cluster-failures,
cascading failures, two or three-dependent failures. Also, it is
an open issue to further develop machine learning techniques
in order to build structures which lead to efficient reliability
evaluation of general systems.
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