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Financial markets are paradigmatic examples of complex systems and have been compared to ecological
networks in which different species (firms) interact and co-evolve. A central object governing species
dynamics in ecology is the community matrix, whose elements are closely related to pairwise interspecific
interaction coefficients. Using this ecological analogy we propose a method, based on the Maximum
Entropy (MaxEnt) principle, that allows us to infer candidates for an economic community matrix from
time series data of market values. To assess the usefulness of this picture, we construct community matrices
for a set of companies belonging to the Fortune 500 list and perform a community analysis on the resultant
networks. This analysis shows these networks to strongly reflect the known industry groupings of the firms.
We conclude therefore that our community matrices capture non-trivial information about the interaction
of firms, not immediately apparent from the covariance of market values. We anticipate our approach being
useful in elucidating further aspects of market structure, as well as forming the basis of forecasting market
dynamics.

Keywords: MaxEnt, business ecosystem, ecological networks, community detection, modularity.

1. Introduction

Financial markets are paradigmatic examples of complex systems, comprising a large number of inter-
acting agents (traders and algorithms) whose decisions dictate their ongoing evolution. Correspondingly,
markets have been regarded as being similar to ecosystems in which species interact and co-evolve [1–5],
and population dynamics has been proposed as a model of the dynamics of companies regarded as species
in the ‘business ecosystem’ [3, 4]. This ecological paradigm has been applied to different industrial sec-
tors, such as the newspaper industry [6], the airline and oil-drilling industries [7], internet [8] and software
firms [9].

Ecosystems comprise a biotic component (communities of living organisms) and an abiotic one (the
non-living chemical and physical parts of the environment that affect living organisms), interacting as a
single system [10]. A central piece of the biotic component is the ecological interactions between organ-
isms. Such biotic interactions, which can be regarded as operating either between individual organisms or
entire species, are often difficult to define and measure [11, 12]. The most direct procedure to estimate the
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2 C. EMARY AND H. FORT

pairwise interaction coefficients, either in natural or artificial biological assemblies of species, is through
pairwise competition trials that compare the species yields in biculture relative to monoculture [13–15].
These experiments, common in community ecology and agriculture science, are not feasible in systems
like markets since we cannot isolate single firms from the rest in order to study their evolution under
controlled conditions. It becomes necessary, therefore, to resort to indirect methods to infer the nature
and strength of interactions between firms. In this paper we approach this problem using the principle of
maximum entropy (MaxEnt).

The MaxEnt principle, introduced by Jaynes [16, 17], is a general method to make the least-biased
inferences compatible with available data. Jaynes’ MaxEnt formulation can be viewed as a method of
making predictions from limited data by assuming maximal ignorance about unknown degrees of freedom.
MaxEnt has been successfully used to infer interactions from datasets in a wide variety of biological
systems: from tropical forests [18–20] to networks of neurons [21, 22], and from gene expression in yeast
[23] to flocks of birds [24].

Here, we use MaxEnt to infer the effective interaction coefficients for a set of companies in the
Fortune 500 list. In total, Fortune 500 companies represented in 2019 two-thirds of the U.S. GDP with
$13.7 trillion in revenues, $1.1 trillion in profits, and $22.6 trillion in market value [25]. The set we
study includes the 38 companies with revenues among the largest in 2018 that were in this list for five
consecutive years in a row, 2014–2018.

In theoretical ecological terms, the interaction coefficients that we derive for these firms can be
interpreted as belonging to a community matrix [26], an object that has played [27, 28] and continues to
play [29–32], a key role in understanding the collective properties of assemblies of interacting species.
Our MaxEnt approach produces several related candidates for the community matrix for the firms we
consider. We translate these community matrices into adjacency matrices [33, 34] by mapping interaction
strengths onto edge weights. This then establishes a precise analogy between the relationships between
firms in a market and an ecological network in which the nodes represent species (firms) and the edges,
pairwise interactions.

To explore how well the resultant networks reflect salient information about the relationships between
firms, we subject the networks to a community analysis [34], the aim of which is to identify groups of
firms (communities) that interact more strongly with one another than they do with the rest of the network.
Again, such an analysis has its counterpart in ecological theory [35, 36], where the connection between
modularity and ecosystem stability has been a theme of particular interest [31, 37, 38]. We find strong
evidence for a modular structure in network of firms. Moreover, we compare the communities obtained
from our network analysis with an independent classification of firms into groups, namely the 24 GICS
industry groups [39]. This comparison shows that the network modules derived from MaxEnt interaction
matrices strongly reflect the industry groupings. By considering overlap with the GICS industry group
as a measure of fitness, we are able to determine which of the possible MaxEnt community matrices is
the best choice for describing the clustering of interactions within the network.

Thus, we present a methodology for directly extracting from empirical time-series market data a
network representation of the interactions of firms within a market. We speculate that this methodology
will be useful in the future both for the analysis of market structures, as well as forming the basis of an
approach towards the dynamics of market values.

2. MaxEnt and the community matrix

The maximum entropy (MaxEnt) principle is a general method to make the least-biased inferences
compatible with available data [16, 17]. The lack of knowledge we generally have of a real system can
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MARKETS AS ECOLOGICAL NETWORKS 3

be modelled by a probability distribution for the different possible observable states of that system. This
probability distribution will typically not be known, and in fact there are many possible choices for it
that are compatible with observations. Of all such distributions, the recipe of MaxEnt is to choose the
probability distribution that maximizes the information entropy subject to the constraints of the available
data. We consider a system of N random variables, {vi | 1 ≤ i ≤ N}, arranged into the vector v. Then, if
we assume that the only information we possess about these variables is their mean v and their covariance
matrix �, the MaxEnt principle posits the following joint probability distribution

P(v) = [Det 2π�]−1/2 exp

[
−1

2
(v − v) · �−1 · (v − v)

]
. (1)

This distribution has previously been interpreted in terms of the equilibrium statistical mechanics of a
generalised Ising model [18] in which J = −�−1 is the matrix of interaction strengths between ‘spins’ of
length vi. In this work, however, we consider an interpretation of Eq. (1) in terms of ecosystem interactions
where, as we now show, the matrix J can be related to a community matrix.

Let � = v(t) − v be the vector of deviations from the mean, and let F(t) be a random force vector
with zero mean and temporal correlations described by

〈F(t)F(t′)〉 = 2B δ
(
t − t′

)
, (2)

were B is a symmetric matrix. In this light, the MaxEnt distribution of Eq. (1) can then be interpreted as
the stationary probability distribution of the Langevin equation [40]

d

dt
� = C · � + F(t), (3)

provided that matrix C satisfies

C · � + � · CT = −2B, (4)

with T denoting the matrix transpose. In a population-dynamics setting, Eq. (3) describes behaviour of
populations v near stationary point v with F(t) describing external (typically abiotic) forcing [41] and
with matrix C the community matrix, describing interactions between the species1.

Further progress can be made by splitting C into two components: C = K + �, the first of which
gives the symmetric part of C · �, and the second, the antisymmetric part. From Eq. (4), we see that the
symmetric part obeys

K = −B �−1. (5)

This equation shows that although �−1 does not determine K uniquely by itself, with the addition
of a noise model (B) it does. In principle, the noise affecting different species could be correlated,
but here, we consider all correlations to come from interactions, such that the noise for each firm is

1 Technically, the community matrix is defined as the Jacobian of a set of nonlinear equations of motion, such as a generalised
Lotka–Volterra model, evaluated at a particular stationary point. Its elements describe the influence of species on one another for
small changes in populations near their equilibrium value.
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4 C. EMARY AND H. FORT

independent. We will consider two particular cases. Firstly, we posit that the noise is of constant strength
for each firm with amplitude scaled to one, that is, Bij = δij with δij the Kronecker delta. This gives us
the community-matrix contribution

K = J = −�−1, (6)

which is the same interaction matrix implied by the Ising-model interpretation. Ignoring for a second
interactions between firms (i.e. just looking at the diagonal elements of K), in this model the relative size
of the fluctuations in vi is determined by the size of the ‘restoring rate’ |Kii|, since the noise driving each
market value is the same. In our second model, we assume that the restoring rate |Kii| is constant for all
firms, and that it is the differences in noise amplitude that drives the difference in the size of fluctuations.
Thus, we set Bij = |Jii|−1δij in Eq. (5) such that the community-matrix contribution reads

K = I with Iij = Jij/|Jii|. (7)

This has diagonal elements Iii = −1; ∀i. Thought of in term of Ising-model interaction strengths, matrix
element Iij is the strength of the interaction between firms i and j relative to the self-interaction of i. Note
that whereas matrix J is symmetric, matrix I is not.

The MaxEnt procedure with fixed mean and covariance tells us nothing about the antisymmetric part
� of the product C · �. For want of additional information, we therefore assume this contribution is zero
and base our subsequent analysis exclusively on the part K—a point we will return to in the discussions.

3. Market data

The NYSE market has 2800 listed firms and because we do not have time series data for all 2800 firms
and working with 2800 × 2800 matrices would increase the difficulty of the analysis considerably, we
consider a subset of these firms, roughly corresponding to the “largest” firms in our data set. This is
similar to the situation in ecological networks, which typically only include the most relevant species,
i.e. the most abundant ones or those species that are a priory expected to exhibit stronger effects over
other species [18]. In detail, then, the firms we consider in our analysis were selected according to the
following criteria:

(1) They are all amongst companies with the largest revenues in the Fortune 500 list as of March 29,
2018 [42], coinciding with day 1000 of the time series we have.

(2) They simultaneously were in the list for 5 years in a row, from 2014 to 20182.

(3) The market values of these firms were available in the 2014–2018 Fortune 500 lists3.

This results in a list of 39 firms. However, inspecting the market value times series, we found that those
corresponding to the two home mortgage companies created by the U.S. Congress, Fannie Mae and
Freddie Mac, are almost exactly linearly dependent. This poses a problem for inferring the effective
interaction matrix (see below) since this requires inversion of the covariance matrix � which becomes

2 Thus, for example firms like Dell Technologies, ranked 35 in the 2018 Fortune 500 list [42], was not included because from
2014–2016 it was not in the Fortune 500 list.

3 For example, there is no market value listed for State Farm Insurance in 2018 [42].

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/9/2/cnab022/6356775 by U
N

IVER
SID

AD
 D

E LA R
EPU

B user on 24 June 2022



MARKETS AS ECOLOGICAL NETWORKS 5

singular with the above linear dependence. To overcome this difficulty we treat these two firms as a
single firm, FNMA+FMCC, by summing their market values. In this way, we obtain the set of 38 firms
in Table 1. For each firm we also list its ticker symbol and its Industry Group based on Global Industry
Classification Standard (GICS) [39, 43]. Taken together they represent always at least 25% of the total
NYSE market value along this period [44], and thus this set constitutes a significant and important sample
of the market.

For each of the firms in our set we consider a 1000-day time series of market values from 4 October
2014 to 29 March 2018. Let us define vi(t) to be the market value of firm 1 ≤ i ≤ 38 in day 1 ≤ t ≤ 1000
of this time series. In our subsequent analysis, we consider a coarse-graining of the data over different
time scales. To this end, we divide the 1000-day data into time slices, each of length T and labelled by
1 ≤ n ≤ nmax = �1000/T�. Within time slice n the mean market value of firm i is

v(n,T)

i = T−1
nT∑

t=(n−1)T+1

vi(t), (8)

and market-value covariance matrix has elements

�
(n,T)

ij = T−1
nT∑

t=(n−1)T+1

[
vi(t) − v(n)

i

] [
vj(t) − v(n)

j

]
. (9)

4. Community and adjacency matrix construction

In this section, we use matrices �(n,T) to construct community matrices and the interaction networks
they imply. Our first step is to combine the matrices from different time slices. For the covariance and J
matrices, we simply take the mean of the individual matrices over the time slices

�tot = � = 1

nmax

nmax∑
n=1

�(n,T); J tot = 	J = −1

nmax

nmax∑
n=1

[
�(n,T)

]−1
. (10)

We could similarly define a total I matrix as the average over the individual I-matrices defined as in
Eq. (7) for each time slice. Empirically, however, we find that for the following analysis a preferable
procedure is to construct a total I matrix by obtaining mean values of on- and off-diagonal elements of
J separately, and then combining. Thus we define the matrix I tot elementwise as

I tot
ij = J tot

ij

|J tot
ii | . (11)

We then use the matrices �tot, J tot and I tot as the bases of adjacency matrices of the interaction
networks. We specifically want to maintain information about interaction strengths in these networks and
so the networks will be weighted. Interpreting them directly as adjacent matrices brings up a number
of issues, particularly in the context of community detection. The first is that the matrices are signed.
Although community analysis can be carried out on signed networks [45], it is not clear that the sign
here is relevant for defining communities. The second issue is the diagonal elements. Again, whilst self
loops can in principle be included in community analysis, the significance of them here is unclear. Thus,
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6 C. EMARY AND H. FORT

Table 1 Firms included in our analysis ordered by their mean market value in the 1000-day period from
4 October 2014 to 29 March 2018. Also listed for each firm is its ticker symbol and its industry group.

# Firm Ticker Industry group Mean market value [$M]

1 Apple AAPL Tech hardware 675216
2 Alphabet GOOGL Media 519446
3 Microsoft MSFT Software Svcs 453842
4 Berkshire Hathaway BRK.B Insurance 377161
5 Exxon Mobil XOM Energy 361658
6 Amazon AMZN CD Retail 325291
7 Johnson & Johnson JNJ Bio Pharma 312114
8 Wells Fargo WFC Banks 269755
9 JP Morgan JPM Banks 265640
10 General electrics GE Capital goods 251764
11 Walmart WMT CS Retail 237163
12 P&G PG CS Products 222644
13 AT&T T Telecoms 215103
14 Chevron CVX Energy 202676
15 Verizon VZ Telecoms 200803
16 Bank of America BAC Banks 197126
17 Home Depot HD CD Retail 160504
18 Citigroup C Banks 159949
19 Comcast CMCSA Media 158147
20 IBM IBM Software Svcs 154334
21 UnitedHealth Group UNH HC Svcs 134340
22 Boeing BA Capital goods 108381
23 CVS Caremark CVS HC Svcs 95810
24 Walgreens Boots Alliance WBA CS Retail 82163
25 Costco COST CS Retail 66937
26 Lowe’s LOW CD Retail 64926
27 Ford Motors F Auto 53559
28 General motors GM Auto 53379
29 Phillips 66 PSX Energy 43770
30 Target TGT CD Retail 41185
31 Anthen ANTM HC Svcs 40344
32 McKesson MCK HC Svcs 40181
33 Valero Energy VLO Energy 30120
34 Kroger KR CS Retail 29837
35 Marathon Petroleum MPC Energy 25858
36 Cardinal Health CAH HC Svcs 25099
37 AmerisourceBergen ABC HC Svcs 19339
38 Fannie Mae+Freddy Mac FNMA+FMCC Banks 4583
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MARKETS AS ECOLOGICAL NETWORKS 7

(a) (b) (c)

Fig. 1. Plots of the adjacency matrices A� , AJ and AI for T = 1000 with firms ordered by mean market value as in Table 1. Each
matrix has been normalized to have a maximum element of one.

in defining adjacency matrices, we take the absolute value of the corresponding interaction matrix and
drop the diagonal elements, and thus the adjacency matrices we consider are

A�
ij = |�tot

ij | (1 − δij

)
; AJ

ij = |J tot
ij | (1 − δij

)
; AI

ij = |I tot
ij | (1 − δij

)
. (12)

A plot of the matrices A� , AJ and AI is given in Fig. 1. With firms ranked by mean market value, this
representation shows that both A� and AJ are quite nested [46], albeit with the direction of the nesting
occurring in opposite directions. The matrix AI also has a concentration of large matrix elements, but this
occurs in the upper right quadrant.

The adjacency matrix AI presents an additional problem for community detection as it is non-
symmmetric and thus generates a directed network. A number of approaches have been proposed to
address community detection in directed networks [47], with the simplest being to consider standard
(undirected) community detection algorithms applied to an appropriately symmetrized version of the
original matrix [48]. The most obvious symmetrization is to take the arithmetic mean of the adjacency
matrix and its transpose: 1

2

[
AI + (AI)T

]
. However, in this work we employ that the geometric mean

symmetrization AI
sym = √

I � IT , where � denotes the Hadamard product, or in terms of matrix elements

[
AI

sym

]
ij

= √
IijIji = |J tot

ij |/
√

(J tot
ii J tot

jj ). (13)

The significant difference between the two symmetrizations is that, in the arithmetic case, significant
values can be obtained when only one of Iij or Iji is large, whereas in the geometric case, this requires
both Iij and Iji to be significant. Thus, two-way links are picked out as stronger that those in a single
direction. In the following, we will only give results for the geometric symmetrization AI

sym and discuss
briefly those from the arithmetic symmetrization at the end.

4.1 Thresholding

From Fig. 1, it is clear that these adjacency matrices contain a large proportion of very small values,
and it might be wondered whether these represent genuine interactions or are simply a product of data
imperfections or some random process not significant to the properties under consideration. To investigate
how this potential “noise” effects our results, we introduce a threshold τ below which values in the
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8 C. EMARY AND H. FORT

adjacency matrix are set to zero. Specifically, for a weighted adjacency matrix with elements Aij ≥ 0 of
which Amax

ij is the maximum value, we define a thresholded version as

Aij(τ ) = Aij θ [Aij − τAmax
ij ], (14)

where 0 ≤ τ ≤ 1 is the (fractional) threshold and θ [x] is the unit-step function. Increasing the threshold
causes the initially fully connected networks to first become more sparse and eventually break up into
disconnected pieces.

Due to the different distributions of matrix element magnitudes, comparing different matrices with
the same value of the threshold is not a like comparison. We thus define the “weight removed” in the
thresholding procedure as

w(A, τ) = 1 −
∑

ij Aij(τ )∑
ij Aij

, (15)

such that the impact of thresholding two different matrices to the same value of weight w is roughly
comparable. In the following, we thus plot our results as a function of this weight.

4.2 Null model

To interpret community analysis results, it is important to compare with a null model [49]. The null model
we consider here results from randomizing the temporal order of original market value data for each firm
separately. This preserves mean and variance for the individual firms but randomizes their correlations.
Adjacency matrices are constructed exactly as above, and we present results here obtained from 200 such
randomizations.

5. Community structure

The modularity Q(g, C) is a measure of the extent to which network g is connected along the lines
of community structure C [50]. We will not repeat its definition here but note that it is applicable to
both weighted and unweighted networks [51]. Modularity is bounded |Q| ≤ 1, with a value of Q → 1
indicating that g possesses exactly structure C. A value of Q = 0 indicates agreement no better than
random, and a value Q < 0 indicates a tendency for the graph to clustered in a fashion ‘opposite’ to
the way defined by C (i.e. more links between the communities of C than within them). We will look at
the modularity of the network defined above in two ways. First we consider the modularity with respect
to the communities Cind defined by the industry groups of Table 1. This value of modularity we denote
as Qind = Q(g, Cind). Second, we consider the modularity for a particular network maximized over all
community structures Qmax = Q(g, Cmax) = maxC Q(g, C), where Cmax is the maximizing community
structure. Given the small size of the network, it is possible to find exactly the community structure
that maximizes the modularity. This procedure is slow and, given that we will sweep over threshold and
consider 200 random instances in the null model, to consistently use this exact optimization is impractical.
We therefore consider instead the ‘greedy’ algorithm of Ref. [52] to obtain approximations to Qmax and
Cmax. We ran both the greedy and full optimization algorithms 4 for a test case of matrix AI

sym with
T = 100. In this case, the ‘greedy communities’ were found to have a modularity Qmax to within 4% of

4 All calculations were performed using the IGraph/M v0.4 package [53] on Wolfram Mathematica v12.0.1.
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MARKETS AS ECOLOGICAL NETWORKS 9

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 2. Network modularities for the adjacency matrices A� (a, d), AJ (b,e), and AI
sym (c, f) as a function of weight remaining after

thresholding. The results in the top row were obtained with T = 1000, whilst those on the bottom were obtained with T = 100.
The continuous black lines show the optimal modularity Qmax and the dashed black lines show the industry-sector modularity Qind.
The coloured lines show the same quantities for the randomized null model together with the 10:90 quantiles of same. The extent to
which Qmax and Qind exceed their randomizations is indicative of the presence of well-defined modules and overlap with industrial
groups, respectively.

the exact maximum across the whole τ range. For τ > 0.25 (w > 0.75), when the networks become
sufficiently sparse, the optimal communities found by both algorithms were exactly the same. From this
we conclude that the greedy algorithm gives a close enough approximation to the optimal communities
for our purposes here, and we use this algorithm to generate the results that follow.

Figure 2 shows the modularities Qmax and Qind as a function of weight removed for the three matrices
A� , AJ and AI

sym after thresholding. Results are given for time-slices of T = 1000 (top row) and T = 100
(bottom) and are compared with those obtained from the null-model randomizations.5 We begin by
considering the results for network derived from the covariance matrix. With T = 1000, the maximum
modularity Qmax remains close to zero across the full range of thresholding (Fig. 2a), a result which,
compared with the randomizations, is anomalously low. This can be explained by noting that the full A�

matrix (at τ = 0) is far more nested that is typical for the randomized ensemble and, at high connectances,
there is an inverse relation between modularity and nestedness [35] because the dominant firms (i.e. those
with the largest mean market value) connect strongly to most other firms in the network. Moreover, as

5 In obtaining the mean and 10:90 quantiles, the sample used was taken from results with the same weight to within ±0.005 of
the target value.
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10 C. EMARY AND H. FORT

the threshold increases, the high nestedness means that it is single nodes that become disconnected from
the network (rather than more sizeable subgraphs), and these individual nodes contribute nothing to the
modularity. For T = 100, the Qmax modularity of the covariance network is increased slightly with a
maximum value Qmax ≈ 0.2 (Fig. 2d). This is consistent with the randomization results, and thus not
indicative of any particular structure in the network. Concerning the industry-group modularity Qind in the
covariance case, the T = 1000 results match with randomizations, whereas for T = 100, Qind is slightly
higher than expected from the randomizations, but still negative. Overall, then, the covariance adjacency
matrix (both values of T ) shows little trace of any particular community structure, and certainly none
relating to the industry groups.

Turning now to the results for the AJ matrix, we first comment that the randomizations have similar
modularity properties to those for the A� matrix. The properties of the actual AJ matrices are significantly
different, however. For both T = 100 and T = 1000, the maximum modularity Qmax lies at or above
the upper end of expectations from randomizations, and this is most pronounced in the T = 100 case
(panel 2e). The industry-group modularity Qind is now positive across the range of threshold (compared
with the negative values from the randomizations) and for T = 100 lies around the upper end of the
randomization range for the maximum Qmax.

This trend towards increasing modularity (both Qmax and Qind) is continued by the symmetric-
interaction matrix AI

sym. The strong increase in Qmax as a function of the threshold is not in itself especially
significant, as this is also demonstrated by the randomizations. However, for T = 1000, the actual Qmax

lies slightly above expectation from randomizations (panel 2c), and for T = 100, it lies significantly above
the random results (panel 2f). As for AJ , the industry group modularity Qmax is positive across the range,
and in the T = 100 case, it is large and lies around or above the upper end of expectation for the optimal
modularity Qmax found from the randomization. These results mean that the matrices AJ and AI both show
a more modular structure that would otherwise be anticipated for the null model. Moreover, Qind being
high for both these networks, especially in the T = 100 case, hints that the industry-group communities,
whilst not the optimal partitioning of these networks, are playing a significant role in structuring them.

We can investigate this latter point quantitatively by comparing the community structures Cind and
Cmax using the ‘adjusted Rand index’ (ARI) [54]. This assumes a value of 1 when the communities are
identical, and 0 when they are only as closely related as chance would suggest. The ARI can take negative
values for anti-correlation. Again, we interpret these results through comparison with the randomization
null model [49]. Figure 3 shows the ARI comparing Cmax and Cind as a function of the weight for the
same adjacency matrices as in Fig. 2. The first general trend is that the ARI for the T = 100 case (bottom
row) is higher and more distinct from the randomizations than is the T = 1000 case (top row). Moreover,
for T = 100 results as we go from A� to AJ to AI

sym, the ARI values increase markedly. In particular, the
results for AI

sym with T = 100 stand out with ARI � 0.35 for most of the threshold range, well in excess
of the randomization, and with a peak value of 0.61 (Fig. 3f). This peak value occurs for large thresholds
(large weight) where the network is heavily disconnected. At the other end of the spectrum, the ARI for
the A� matrix with T = 1000 shows that the optimal communities bear no significant relation to the
industry groups (Fig. 3a).

From these results, we therefore expect the AI
sym network for T = 100 to strongly reflect the structure

of the industry groups, and this is apparent when we visualize the network. The main panel of Fig. 4 shows
the network for AI

sym with T = 100 and no thresholding applied. The nodes are colour coded according
to industry group, and grouped together into the optimal communities Cmax. There are six modules in
the optimal structure. The only module to match perfectly with a community in Cind is the telecoms
community consisting of T and VZ. Nevertheless, there a number of modules with clear connections to
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 3. Plot of the ARI measure of similarity between maximum-modularity communities Cmax and the industry groups Cind as a
function of weight removed by thresholding. Layout of the panels is as in Fig. 2. Continuous black lines show the results for the
adjacency matrix in question; coloured lines show results for the randomized null model including 10:90 quantiles. The degree
to the ARI exceeds the randomization results indicates how the communities found by community detection reflect the externally
determined industry groups.

industry groups. All five energy firms are bunched together, along with the two auto companies F and
GM. All five banks are bunched together, along with the other finance-sector firm BRK.B, IBM, and
the capital goods firms GE and BA. One module contains most of the healthcare firms plus the only
biotech-pharms firm in the network, plus the seemingly unrelated firms LOW, HD and CMCSA. Then
there are two modules which, although the firms within them belong to different industry groups, are
clearly closely related. There is a ‘tech community’ consisting or AMZN, GOOGL, MSFT and AAPL,
and one consisting of COST, KR, WMT and WBA (CS retail) together with PG (CS products) and CVS
and TGT.

Figure 4b shows the network diagram for AI
sym with T = 100 again but this time with a threshold

(corresponding to a weight removed of 0.79 obtained with a threshold τ = 0.271) chosen to give
the maximum ARI value for this network in Fig. 3. With this high a threshold, the network is highly
disconnected, and only strongly-connected modules persist. These include a healthcare-services module
(5 firms, all HC Svcs minus CVS), an energy module (5 firms), a finance module (4 banks pls BRK.B,
minus FNMA+FMCC which is perhaps an exception), a 6-firm module that groups together four CS
retail firms COST-KR-WBA-WMT with CVS and TGT and tech module consisting of AMZN, GOOGL
and MSFT. There are also several pairs. Within industry groups we have T-VZ, HD-LOW and F-GM. We
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(a)

(b) (c)

Fig. 4. Network visualizations with nodes (firms) colour-coded by industry group, and divided into modules according to the optimal
community detection. The strength of line connecting nodes corresponds to the weight of the edge. The three networks shown are
for the adjacency matrices: (a) AI

sym matrix without thresholding; (b) AI
sym matrix with threshold τ = 0.271 corresponding to a

removed weight of w = 0.79, which gives the maximum ARI value for this matrix; and (c) A� without thresholding. All networks
derived for T = 100.

also have the AAPL–CMCSA pair, a relationship which seems plausible given Apple’s role as a media
provider.
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In strong contrast to these networks, Fig. 4c shows the network based on covariance matrix A�

with T = 100 and zero threshold. Here, community detection finds three large modules, each of which
contains firms from various industry groups. This division into modules is not particularly robust with
respect to thresholding, as when the threshold is changed, a number of firms switch modules. At high
levels of thresholding, we obtain mostly disconnected single nodes. The only robust non-trivial modules
that appear are the single pair CVX–XOM and one including the all financial firms except FNMA+FMCC.
All of which reinforces what we found by studying the modularity and the ARI index, namely that the
traces of the industry groups in the covariance network are extremely faint.

Finally, we address in more detail the impact of the time-slice length. Figure 5 shows the ARI for
AI

sym constructed using a range of values of T from 50 to 1000. Whilst there is considerable variation
with threshold, it is clear from this figure that overall the ARI shows a non-linear dependence on T . In
particular, the results for T = 50 and for T ≥ 250 are generally lower than those obtained for T = 100
and T = 200. Although the results differ in detail, the overall character of the T = 100 and T = 200
results is similar. From this, we see that a choice around T = 100 to T = 200 gives the greatest similarity
with the industry groups.

6. Discussion

In this article, we have presented a method that uses the principle of MaxEnt along with time-series data
of market values to infer community matrices and networks that describe the interactions between firms
in a fashion similar to how theoretical ecology pictures the interaction of species in an ecosystem.

We then considered the question of whether the networks of interacting firms so-derived exhibit a
significant community structure. If we were to base our answer to this question directly on the covariance
matrix � itself, we would conclude that the answer is no, as the corresponding adjacency matrix shows
a modularity no greater than we would expect by chance and no particular trace of the GICS industry
groups. A very different story emerges, however, when we look at the interaction networks derived from
the MaxEnt community matrices. Here, we see modularities above what chance would suggest and, more
importantly, we see a strong overlap between the optimal communities of networks and the externally-
determined GICS industry groups. And, although the match between industry groups and the optimal
communities of the AI

sym network is not perfect, some of the optimal communities have a logical coherence
of their own, for example, the tech stocks grouped together. For some purposes these communities might
conceivably be preferable to GICS groups. A related question that this community analysis enables us to
answer is which of the community matrices derived from MaxEnt is the best. If we take overlap with the
GICS classification as the metric, then it is clear that, although the ‘Ising’ matrix J shows some positive
features, it is the matrix I , with adjacency matrix symmetrized as discussed, that shows the strongest
signatures of the industry group structure. This analysis therefore clearly picks out matrix I as the best
candidate for interaction matrix, at least in the present context.

Our second main observation in this regard is that we obtain far greater overlap with the industry groups
when we split the time-sequence data into 100-day chunks and then average, rather than considering the
1000-day series as a whole. We take this as a sign that the interactions between firms change over
the course of the 1000 days, and that building the community matrices over this complete time period
tends to average out some of these interactions. Dividing the data up into 100-day time-slices and then
constructing community matrices preserves more of this interaction information. This implies that the
Langevin interpretation of Eq. (1) should be thought of as holding quasi-statically, with matrix J and
stationary vector v evolving on a scale longer than 100 days.
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Fig. 5. ARI for the AI
sym matrix as a function of removed weight obtained for different time-slice lengths T = 50, 100, 200, 333,

500 and 1000. Overall, the highest values are obtained for T = 100 and T = 200.

The results presented here represent a selection from a number of possibilities for constructing adja-
cency matrices that we considered. When set against a metric of reflecting the GICS industrial groups,
these alternative approaches were found to be inferior to, or at least no better than the approaches reported
above. For example, in building the adjacency matrices, we looked at taking the positive elements of the
matrix rather than the absolute value, and we looked at exchanging the order of taking the mean with
taking the absolute value or positive part. Concerning the matrix I tot we considered constructing the
individual I matrices for each time slice and then averaging. We also considered the arithmetic sym-
metrization AI + (AI)T , which gave modularity results roughly comparable with those obtained from the
AJ matrix, as well as the ‘bibliometric symmetrization’ AI(AI)T + (AI)T AI [47], which gave no evidence
of community structure. Finally, we note that we also used the classification in terms of 11 GICS industry
sectors, rather than industry groups, and obtained very similar results. This can be appreciated in Fig. 4a,
where firms in the same industry sector but different industry group are grouped in the same optimal
community, for example, financial and health care sectors.

Inspection of the community matrices [55] here shows that for every pair of species i, j matrix elements
Kij and Kji are always of the same sign. In ecological terms, these interactions represent therefore either
competition (−−) or mutualism (++) [56]. For the purposes here, this difference was not important, as
we used the absolute value of interaction strengths as basis for the adjacency matrix weights. However, for
further understanding the relationship between firms, this information would seem highly significant. The
third major class of ecological interaction is that of antagonism, where diagonally opposite elements in
the community matrix have opposite sign (+−). In ecological terms, this might represent a predator–prey
or a parasite–host interaction, and here it would indicate that one firm profits at another’s expense. These
interactions are absent in the community matrices here, as their appearance requires that the antisymmetric
component � be finite, and indeed that it dominates the symmetric component for the antagonistically-
interacting firms. However, due to its asymmetry, matrix I can model situations approaching either
commensalism (+0) or amensalism (0−), and actually we found many instances in which |Iij| and |Iji| are
very different in size. Providing an estimate for � is outside the current analysis, and will be the subject
of further investigations. At any event, the fact that we obtain sensible community detection without an
explicit consideration � implies that the effect of this component on the overall network structure is
perhaps small.
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Based on its ability to reproduce non-trivial community structure of interacting firms, we hypothesis
that the MaxEnt network approach described here may prove to be useful in elucidating further aspects
of the structure and behaviour of economic systems. As Foster [57] explains, a network formulation
is crucial to understand market dynamics, driven by positive feedbacks [58], from a complex systems
perspective upon the economy. The approach outlined here provides an empirical way of putting this
perspective on a quantitative footing. A future application is the detailed modelling of the dynamics of
the community of firms with an eye to the forecasting of future stock prices.
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