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Colom 11. E-08222, Terrassa, Barcelona, Spain.

2 Instituto de F́ısica, Facultad de Ciencias, Universidad de la República,
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Abstract. We study global climate networks constructed by means
of ordinal time series analysis. Climate interdependencies among the
nodes are quantified by the mutual information, computed from time
series of monthly-averaged surface air temperature anomalies, and from
their symbolic ordinal representation (OP). This analysis allows identi-
fying topological changes in the network when varying the time-interval
of the ordinal pattern. We consider intra-season time-intervals (e.g., the
patterns are formed by anomalies in consecutive months) and inter-
annual time-intervals (e.g., the patterns are formed by anomalies in
consecutive years). We discuss how the network density and topology
change with these time scales, and provide evidence of correlations be-
tween geographically distant regions that occur at specific time scales.
In particular, we find that an increase in the ordinal pattern spacing
(i.e., an increase in the timescale of the ordinal analysis), results in
climate networks with increased connectivity on the equatorial Pacific
area. On the contrary, the number of significant links decreases when
the ordinal analysis is done with a shorter timescale (by comparing
consecutive months), and interpret this effect as due to more stochas-
ticity in the time-series in the short timescale. As the equatorial Pacific
is known to be dominated by El Niño-Southern Oscillation (ENSO) on
scales longer than several months, our methodology allows constructing
climate networks where the effect of ENSO goes from mild (monthly
OP) to intense (yearly OP), independently of the length of the ordinal
pattern and of the thresholding method employed.

1 Introduction

Complex networks appear in almost all fields of science, examples being the internet,
social interactions, food webs, biochemical reactions, brain functional networks and
so forth [1–5]. Many systems lead naturally to the concept of networks of interacting
elements, where one can define nodes and assign links among them depending on the
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(in principle, very complex) features of the system under study. By using the network
approach it is then possible to extract relevant information about a system without
over simplifying it and without having to handle the full scale detailed model which
can obscure the interpretations. It also provides of a mathematical framework for
analyzing data, taking advantage of the well-known graph theory.

This is precisely the situation in the fast-developing field of climate networks.
As a novel approach to information analysis and data mining, the complex network
method has been successfully employed; several properties of the network topology
have been investigated and related to specific climate phenomena [6–16].

Since the atmosphere connects geographically far away regions through waves
and advection of heat and momentum, this long-range coupling makes the network
modeling approach of the Earth’s climate extremely attractive. By covering the Earth’
surface with a regular grid of points (nodes), and by assigning links between any
pair of nodes depending on their climate interdependency, the network approach has
been able to extract novel and meaningful information about the Earth climate. The
interdependency of the climate in two nodes, i and j, has been quantified in terms of
the statistical similarity of the time series of climatological variables, say surface air
temperature (SAT) anomalies, xi(t) and xj(t), recorded in nodes i and j. The usual
measures employed for this quantification are the Pearson coefficient (the absolute
value of the cross-correlation) and the mutual information.

Indeed, the authors of Ref. [14] provided a complete background for constructing
climate networks using the Pearson cross correlation and the mutual information as
measures for determining the links’ strength. Special emphasis was placed in assessing
the statistical significance of the links. Once the network was constructed, a number
of measures were used to characterize it, including edge density, clustering coefficient,
average path length, and giant component size. The application of this novel approach
to specific climatic phenomena or on specific areas in the world [17–23] has also
been successful. For example, in Ref. [19] the authors showed a connection between
the climate network topology and the predictability of surface temperature in the
tropical area affected by ENSO. Two networks were constructed using data from the
El Niño and from La Niña years from the past 60 years. Comparing these networks
using graph theory measures, the authors found that the El Niño network has a lower
number of links, smaller degree distribution, lower clustering coefficient and shorter
characteristic path length than La Niña, and concluded that, because of this reduced
connectivity, the temperature field in the area was less predictable during El Niño
years. This result was verified using alternative variance temperature data.

The stability of climate networks with time was studied in Refs. [20,21]. In Ref.
[20] a climate network was constructed from daily surface temperature anomalies
and, by computing correlations over a short time window, two types of links were
identified, referred to as “blinking”, which appear and disappear, and “robust”, which
are present over long time intervals. Using this methodology the authors were able
to detect a sharp lowering of the total number of the links of the network happening
during the El Niño years, and argued that this lowering is a very sensitive method
for determining ENSO periods. Tracking the blinking links in other parts of the
globe revealed a response to “El Niño” phenomenon even in zones where the mean
temperature is not affected by it. In [21] the study was extended to examine climate
networks constructed from other daily data. Daily temperature or geopotencial height
data present high variability and are hard to predict, but the authors found long
lasting links between the nodes yielding to a robust network pattern. Part of this
robustness was attributed to the geographical regular embedding of the network;
however, physical robust coupling between different locations was also found, with the
coupling on the equator being significantly less pronounced than in the extratropics.
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Recently, two of us used the framework of nonlinear time-series analysis to con-
struct global climate networks that take into account characteristic time scales in
the climate [24]. Specifically, climate interdependencies were quantified via symbolic
analysis of monthly-averaged SAT anomalies. Two methods were employed to trans-
form anomaly time-series into symbolic sequences: ordinal patterns [25,26] and binary
representations. These symbolic transformations take into account the order in which
the anomalies occur (i.e., increasing or decreasing with respect to past and future
values), but do not take into account the magnitude of the anomaly value.

In climatological data oscillatory patterns occur, which tend to repeat from time
to time, with various time scales. Ordinal pattern time-series analysis allows selecting
specific scales, and the calculation of the mutual information of the ordinal sequence,
allows quantifying the similarity of two time-series in the selected time scale. For
example, by varying the interval covered by the pattern in an intra-season or in an
inter-annual time-scale, one can construct climate networks with different topologies
that can then be interpreted in terms of known climate processes, with shorter or
longer memory. Different network topologies were found when the symbolic pattern
was formed by comparing SAT anomalies in consecutive months (i.e., taking into
account memory effects with intra-season time-scales) and when the symbolic pattern
was formed by comparing SAT anomalies in consecutive years (i.e., taking into account
longer memory effects with inter-annual time-scales).

To quantify climate interdependencies the mutual information (MI) has been em-
ployed, which is computed from single and joint probabilities, pi, pj and pij , associated
with either the full time-series xi(t) and xj(t) of SAT anomalies in nodes i and j, or
with their ordinal representations, si(t) and sj(t).

When the full time-series are considered, the probabilities pi, pj and pij are ap-
proximated in terms of histograms computed with a certain number of bins, Nbin,
which is limited only by the length of the time series. In the symbolic approach, the
number of bins is defined by the number of possible patterns, which in turn is de-
termined by the number symbols in the ordinal pattern. If, for example, we consider
patterns formed by 3 (or 4) symbols, then there are 3!=6 (or 4!=24) possible patterns,
and this is the number of bins for computing the probabilities associated with the
symbolic sequences. We remark that even when the number of symbols in the pattern
is kept fixed (let’s say 3), the symbolic method still allows for varying the time-
interval of the pattern by considering the anomalies in 3 consecutive months (e.g.,
January, February, March; February, March, April; etc), in 3 consecutive years (e.g.,
January 2010, January 2011, January 2012; February 2010, February 2011, Febru-
ary 2012; etc.), and also in other time-scales, for example, by considering anomalies
in 3 months equally spaced covering a 1-year period (e.g., in this case the ordinal
pattern is formed by comparing SAT anomalies in Januaries, Mays, and Septembers;
Februaries, Junes and Octobers; etc.).

The goal of the present work is to extend the analysis of [24] in two ways: first, by
examining the influence of the methodology used for quantifying statistical similarity,
and second, by analyzing the influence of the criteria used for thresholding (i.e., for
disregarding the links that are not statistically significant). Regarding the first goal,
we compare the MI values computed from the full SAT time-series and from its
OP representation, covering different time intervals, and study the influence of the
number of Nbin used for computing the probabilities associated either to the full SAT
time-series or to its OP representation. Regarding the second goal, we consider two
thresholding methods, the first one is based on pre-defining the number of links in
the network (i.e., the threshold is such that it gives a network with a certain number
of links), and the second thresholding method is based on the statistical significance
of MI values, which is determined in terms of the distribution of MI values computed
from shuffled data.
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Links with mutual information values below the threshold are considered not
significant and disregarded. Here we show that for low Nbin values the number of
significant links tends to increase, as compared with larger Nbin.

This paper is organized as follows. Section 2 presents the network construction
methods, the data used and introduces the filtering techniques. Section 3 discusses
the behavior of the networks depending on the construction method employed, with
a special focus on the analysis of different time scales involved. Finally, section 4
presents conclusions and discussions.

2 Network construction

We analyze the monthly-averaged SAT anomalies (reanalysis data of the National
Center for Environmental Prediction/National Center for Atmospheric Research,
NCEP/NCAR) [27]. The anomalies are calculated as the actual temperature val-
ues minus the monthly average, and are normalized by the standard deviation. The
data cover are given on a grid over the Earth’s surface with latitudinal and longitu-
dinal resolution of 2.5◦, resulting in N = 10226 grid points or network nodes. The
data cover the period from January 1949 to December 2006, and thus, in each node,
we have a time series of 696 data points.

The climate network properties will depend on the methodology employed to infer
the presence of connections between two nodes, i.e., the procedure used to include
a particular link in the network and to filter out those correlations that may have
occurred merely by chance.

As in Refs. [15,24], to quantify climate interdependencies we use the mutual in-
formation (MI), that is a nonlinear symmetric measure computed in terms of the
probabilities, pi(m) and pj(n), that characterize the time series in two nodes, i and j,
as well as of their joint probability pij(m,n).[28–30] The time-series of temperature
anomalies in any two nodes, xi(t) and xj(t), is transformed into discrete time-series
series, si(t) and sj(t), which have Nbin possible values: s1, . . . , sNbin . This transforma-
tion is done either by using a certain number of bins or by a symbolic transformation
(as described below). Then, the probabilities of the values sm (with m = 1 . . . Nbin)
in nodes i and j are denoted as pi(m) and pj(m) (with m = 1 . . . Nbin) and are calcu-
lated in terms of the frequency of appearance of sm in the time series si(t) and sj(t).
The joint probability pij(m,n) is calculated in terms of the frequency of simultaneous
appearance of sm in si(t) and sn in sj(t).

Mij =
∑
m,n

pij(m,n) log
pij(m,n)

pi(m)pj(n)
. (1)

Mij is a measure of the degree of statistical interdependency: if the two time series
are independent, pij(m,n) = pi(m)pj(n) and Mij = 0. We calculate the mutual infor-
mation from Eq. (1) with different probabilities associated to the time-series of SAT
anomalies: the usual histogram of values (referred to as MIH), and the probabilities
of the symbolic ordinal patterns (OPs) [25], referred to as MIOPDL with D being
the length of the pattern, which will be either 3 or 4 symbols.

The OPs are calculated from the SAT time series by noting the value of a data
point relative to its neighboring values in the series. For instance, OPs of length 3 are
formed by 3 symbols in the following way: if a value (xi(2)) is higher than the previous
one (xi(1)) but lower than the next one (xi(3)), gives the pattern ’123’, the opposite
case (xi(1) > xi(2) > xi(3)) gives the pattern ’321’, etc. With 3 symbols there are 3!
= 6 different patterns. This symbolic transformation allows to detect correlations in
the sequence of values (which are not taken into account with histograms of values
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that do not take into account the order in which the values appear in the time series),
but has the drawback that does not take into account the information about the
relative magnitudes.

Ordinal patterns do not need to be constructed only with immediately adjacent
data points. We can construct them with data points that are separated in time, and
in this way we can consider different time scales. For example, a separation of 12
months allows grouping together individual months of the year, thus reducing the
dependence of the magnitude of the anomaly on the seasonal cycle.

In this paper we consider patterns of length 3 and 4 formed by:

- consecutive months (i.e., by comparing three or four consecutive values in the
time series); we refer to the MI computed in this way as MIOP3L01 and MIOP4L01
respectively;

- months in consecutive years (i.e., by comparing xi(t), xi(t+ 12), and xi(t+ 24));
we will refer to the MI computed in this way as MIOP3L12 (OPs of length 3) and
MIOP4L12 (OPs of length 4).

- equally spaced months covering a one-year period. For patterns of length 3, this
is done by comparing xi(t), xi(t + 4), and xi(t + 8); for patterns of length 4, by
comparing xi(t), xi(t + 3), xi(t + 6), and xi(t + 9). We refer to the MI computed in
these ways as MIOP3L04 and MIOP4L03 respectively.

The next step is to filter the links that are considered not significant, i.e., the links
between pairs of nodes i and j such that the Mij value is low enough to be consistent
with a random value. The detection of weak significant links requires a careful analysis
of the statistical significance of weak correlations, which is challenging task in the case
of short and noisy data (see the review by M. Paluš, Ref. [31] where tests for inferring
nonlinearity and coupling in atmospheric data, sunspot numbers and brain signals
were discussed in detail).

Fig. 1. Distribution of the mutual information values, Mij with i, j ∈ [1, N = 10226],
computed from the original time-series (black line) and from the surrogate time-series (red
line) in a double logarithmic scale. In the top row the MI is computed from Eq. (1) with
probabilities defined over 6 bins; in the bottom row, over 24 bins. The shadowed area indi-
cates the statistically significant values, which are above a threshold calculated as µ + 3σ,
with µ and σ being the mean value and the standard deviation of the distribution of Mij

values computed from surrogate data. The different methods used to compute the probabil-
ities are described in the text: histograms of values, MIH06 and MIH24 (first column); OPs
formed with consecutive months, MIOP3L01 and MIOP4L01 (second column); OPs formed
with equally spaced months covering a one-year period, MIOP3L04 and MIOP4L03 (third
column); and OPs formed with months in consecutive years, MIOP3L12 and MIOP4L12
(fourth column).
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Here we use random re-sampling to test the null hypothesis of independent time-
series, for which a Gaussian distribution of MI values is expected: we calculated the
Ms

ij values (with the supra-indice s representing surrogate data) and found they
are Gaussian-like distributed for both MIH and MIOPs (The exception is MIH with
Nbin = 6, see the top-left panel in Fig. 1; however, we verified that this distribution
is similar to the one obtained with Gaussian random numbers with small positive
mean, when the negative values are disregarded). Therefore, we computed the mean
value, µ, and standard deviation, σ, of the Ms

ij distribution and chose the significance
threshold as τ = µ+ 3σ, and a link between nodes i and j was considered significant
if the value of Mij was above τ . This criterion gives about 99.87% of confidence that
the links have MI values that could not be due to chance. In Fig. 1 the gray section
indicates the values that satisfy this condition.

The final step is to represent the network with a commonly used measure, namely,
the area-weighted connectivity (AWC)[13,15,19,24]. This is done by plotting the num-
ber of links every node has, taking into account that the nodes represent geographic
regions with different area (points near the poles representing a smaller area than
points near the equator). We plot two-dimensional maps in which the color code in-
dicates the AWC of the nodes, which is the fraction of the total area of the Earth to
which a node i is connected,

AWCi =

∑N
j Aij cos(λj)∑N

j cos(λj)
, (2)

where λi is the latitude of node i and Aij = 1 if nodes i and j are connected (i.e., if
the value of Mij is larger than τ and zero otherwise.

We remark that the AWC plots provide information about the size of the area to
which a node is connected, but do not indicate to which nodes the node is connected.
To provide some information about these connections we chose a node with large
connectivity located in the region characterized by ENSO (we refer to this node as
X) and plot in color code the value of MXj if j is connected of X, and in white if j
is not connected.

3 Results and discussion

Figures 2 and 3 present the results of the four methods of analysis, considering 6 bins
(Fig. 2) and 24 bins (Fig. 3). Ordered from top to bottom, the network was constructed
by computing the MIH (top row), the MIOP with OPs formed by consecutive months
(second row), the MIOP with OPs covering a one-year period (third row) and with
the same month in consecutive years (bottom row). Note that in order to cover a year
period, the spacing on the third row in Fig. 2 is four months (as we are using three
letters) and it is three months in Fig. 3 (which uses four letters). In both figures the
left column presents the AWC plots, and the right column, the connectivity maps.

The AWC obtained here compares well tieh that calculated in [24] (left panel,
Fig. 1), except that the network density is about double. This is explained by a
different way to calculate the significance threshold. In [24] the threshold consisted
in the largest MI value computed from shuffled data, while in Fig. 3 of this study
the threshold is defined in terms of the standard deviation of the MI distribution
calculated from shuffled data.

Considering the left column of Figs. 2 and 3, (showing the AWC plots for 6 bins/3
letters and 24 bins/4 letters respectively), one can observe highly connected spots
on the first row which are present only in some of the other three maps. See, for
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example, the highly connected green spot in the Labrador Sea, which is also seen in
the second and to a lesser extent in the third row; but is not present in the plot on
the fourth row. The Labrador Sea is one of the most important regions of deep water
formation in the north Atlantic. The formation of this water occurs in wintertime
and depends on the passage of extratropical storms that cool the surface increasing
its density. The passage of storms is in turn related to the state of the North Atlantic
Oscillation, a preferred pattern of atmospheric variability in the north Atlantic basin.
As result, there is a clear connection of the Labrador Sea with the rest of the north
Atlantic mainly on seasonal time scales and is mostly independent on ENSO activity
(see second row of Figure 2 ).

In addition, in the first row of the same Fig. 2, we can notice highly connected
areas in Africa, the equatorial Atlantic and western tropical north Atlantic which
are not present in the short-time scale networks (second row) but that are seen in
the long-time scale networks, (third and fourth rows). Thus, these connections arise
because regions are connected on inter-annual, but not on monthly or seasonal time
scales.

On interannual time scales El Niño teleconnections include a decrease of the north-
ern trade winds that reduce the heat loss in the western tropical Atlantic, as well as a
tropospheric warming over most of the tropical band, thus inducing warming over sev-
eral regions, including the equatorial Atlantic and the Indian ocean [32]. The air-sea
interaction in the equatorial Atlantic leads to inter-annual modes of variability which
can interact constructively or not with the anomalies induced by El Niño, resulting
in less number of links compared to those in the Indian ocean [33]. Therefore, the
OP symbolic method allows to see how the network topology is modified by climate
processes acting on different time scales.

In spite of the fact that we have used the same significance criterion for the
four networks presented above, the network density (defined as ρ = number of links
present in the network over the total possible number of links, which is equal to
10226× 10225/2 because the network is symmetric and self-links are not included) is
significantly different. Other climate network construction methods that are based on
quantifying global similarities or interdependencies in time-series (using, e.g., MIH or
cross-correlation as a similarity measures) lack this capability and are therefore not
suitable for uncovering climate phenomena that take place in specific time scales.

On interannual time scales ENSO also influences climate over the northeastern
Pacific and the south Pacific, including the Antarctic Peninsula, probably through
the propagation of Rossby waves (Figure 2, last row). The latter Pacific link has been
recently suggested as the mechanism responsible for the temperature trend in the
Antarctic Peninsula during the last 30 years [34].

According to these results the tropical region becomes connected on seasonal time
scales, while the extratropics become connected to the equatorial Pacific only when
considering interannual time scales. These teleconnection patterns evidence the prop-
agation of Kelvin and Rossby waves from the equatorial Pacific on different time
scales. While the overall picture is similar in Figs. 2 and 3, it is clear that the use
of 6 bins represents more adequately the known atmospheric processes, probably due
to the shortness of the time series that prevents weak links to be declared significant
when using 24 bins to calculate the mutual information.

To analyze the influence of the significance criterion, in Figs. 4 and 5 we present
the networks when the threshold to define the links is such that all the networks have
the same number of links.We have chosen a density of links of 0.027%, because all the
networks presented in Fig. 2 and 3 have a density equal or larger than this value. This
is the approach used in [24]. In this previous work, it was found that the short-time
scale network MIOP4L01 was more uniformly connected than the year-time scale
network MIOP4L12. The present analysis confirms this result and extends it to the
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case where the density depends on the significance test (Figs 2 and 3). This suggests
that on short time scales there is no dominant phenomenon that interconnects remote
regions. Instead, temperature anomalies seem to be governed by regional patterns of
atmospheric internal variability.

4 Conclusions

We have studied different aspects of the global climate associated to short time scales
(of a few months) and to longer time scales (of a few years) using the frameworks
of climate networks and nonlinear time-series analysis. The goal was to examine the
influence on the network topology of i) the methodology used for quantifying the
degree of statistical similarity in two nodes, and ii) the significance criteria used for
thresholding, to define the links.

We employed the mutual information calculated from probabilities that were de-
fined over i) a small number of bins (6, Figs. 2 and 4), and ii) a large number of bins
(24, Figs. 3 and 5); also, the probabilities were computed directly from histograms of
SAT anomaly values, and from the symbolic, ordinal representation of the anomaly
time series. This was done in order to compare the dependence of the network topolo-
gies on the number of letters of the ordinal representation.

The latter method allowed considering different time-scales when transforming
the anomalies time series into ordinal patterns. We also considered the influence of
thresholding, and defined the threshold i) in terms of surrogate data (significance
test) (Figs. 2, 3) and ii) to obtain a network with a given link density (Figs. 4, 5).
As the equatorial Pacific is known to be dominated by ENSO on scales longer than
several months, our method allows us to obtain networks where the effect of ENSO
goes from mild (monthly OP) to intense (yearly OP) independently of the number of
letters used for the ordinal patterns and of the thresholding method.

We have found that an increase in the ordinal pattern spacing (therefore an in-
crease in the timescale), generates a growth of the connectivity on the equatorial Pa-
cific area (figures 2–5, left column, rows 2–4). We have also found that this increase
in connectivity is associated with an increase on the teleconnections from points sit-
uated on this area. (right column of the same figures). This result is consistent with
previous work [24].

We also observe that the number of significant links is smaller when the ordinal
patterns are constructed with a shorter timescale (by comparing consecutive months)
and interpret this effect as due to more stochasticity in the time-series in the short
timescale. We find that, when the networks are set at a fixed link density (figures 4,
5) the networks – constructed with 6 and with 24 bins respectively – are remarkably
similar. We argue that 24 bins show a tradeoff of resolution versus data length, equiv-
alent to the 6 bins MI, but more flexible in its essence as its statistical significance can
be increased by the use of filtering techniques, better estimators or longer time series.
Moreover, our results indicate that the significance of the links in climate networks
should be carefully examined in order to avoid disregarding weak but significant links.

A main goal of our work was to try to determine an optimal thresholding method-
ology, resulting in climate networks that i) contain only truly relevant connections
(and the links that represent random correlations are filtered) and ii) do not disregard
the weak links that are significant (i.e., the links representing statistically significant
deviations from random correlations are not filtered). While in [24] the significance
threshold used was the maximum MI value obtained from shuffled time-series, here
we considered a more “tolerant” threshold (the mean value plus 3 standard devia-
tions of the MI distribution) that results in networks with a higher number of links,
as compared to those in [24]. While in this way we risk including links that are not
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significant, the networks obtained are consistent with those in [24] and we found that,
by increasing the number of links, we obtained networks that display in more detail
the complexity of the atmospheric teleconnections. Another conclusion of our work
is that, since Figs. 4 and 5 are very similar, for a fixed link density the main features
of the network are independent of the bin number used for computing the mutual
information, which confirms the robustness of the climate networks constructed with
this thresholding methodology.
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Fig. 2. AWC (left column) and connectivity maps (right column) using the different methods
of network construction described in the text, computing the probabilities with 6 bins and
using the significance threshold τ = µ+ 3σ to define the links. The methods are: histograms
of anomaly values MIH (top row); OPs formed with three consecutive months (second row);
OPs formed with three equally spaced months covering a one-year period (third row); and
OPs formed with three months in consecutive years (bottom row).
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Fig. 3. As Fig. 2 but the probabilities are calculated with 24 bins: histograms of anomaly
values MIH (top row); OPs formed with four consecutive months (second row); OPs formed
with four equally spaced months covering a one-year period (third row); and OPs formed
with four months in consecutive years (bottom row). In order to better compare the AWC
plots, we have used the same color scale as in the left column in Fig. 2.
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Fig. 4. As Fig.2 but with the threshold τ chosen such that the networks have the same link
density (0.03%).
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Fig. 5. As Fig.3 but with the threshold τ chosen such that the networks have the same link
density (0.03%). In order to better compare the AWC plots, we have used the same color
scale as in the left column in Fig. 4.


