
PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Reporte Técnico RT 08-06

A Certified Access Controller for JME-MIDP 2.0
enabled Mobile Devices

 Ramin Roushani Oskui Gustavo Betarte Carlos Luna

2008

A Certi ed Access Controller for JME-MIDP 2.0 enabled Mobile Devices�
Ramin Roushani Oskui; Betarte, Gustavo; Luna, Carlos
ISSN 0797-6410
Reporte Técnico RT 08-06
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República

Montevideo, Uruguay, 2008

A Certified Access Controller for JME-MIDP 2.0 enabled
Mobile Devices

Ramin Roushani Oskui1, Gustavo Betarte2, y Carlos Luna2

1FCEIA, Universidad Nacional de Rosario, Argentina
2Instituto de Computación, Facultad de Ingenieŕıa, Univ. de la República, Uruguay

Abstract. Mobile devices, like cell phones and PDAs, allow to store information and to establish
connections with external entities. In this sort of devices it is important to guarantee confiden-
tiality and integrity of the stored data as well as ensure service availability. The JME platform, a
Java enabled technology, provides the MIDP standard that facilitates applications development
and specifies a security model for the controlled access to sensitive resources of the device. This
paper describes a high level formal specification of an access controller for JME-MIDP 2.0. This
formal definition of the controller has been obtained as an extension of a specification, developed
using the Calculus of Inductive Constructions and the proof assistant Coq, of the MIDP 2.0
security model. The paper also discusses the refinement of the specification into an executable
model and describes the algorithm which has been proven to be a correct implementation of the
specified access controller.

1 Introduction

Java Micro Edition (JME) [1] is a Java enabled platform targeted at resource-constrained devices.
JME comprises two kinds of components: configurations and profiles. A configuration is composed of
a virtual machine and a set of APIs that provide the basic functionality for a particular category of
devices. Profiles further specify the target technology by defining a set of higher level APIs built on top
of an underlying configuration. This two-level architecture enhances portability and enables developers
to deliver applications that run on a range of devices with similar capabilities.

The Connected Limited Device Configuration (CLDC) [2] is a JME configuration designed for de-
vices with slow processors, limited memory and intermittent connectivity. CLDC together with the
Mobile Information Device Profile (MIDP) provides a complete JME runtime environment tailored for
devices like mobile phones and personal data assistants. MIDP defines an application life cycle, a secu-
rity model, and APIs that offer the functionality required by mobile applications, including networking,
user interface, push activation and persistent local storage. Many mobile device manufacturers have
adopted MIDP since the specification was made available. As millions of MIDP enabled devices are
deployed worldwide and the market acceptance of the specification is expected to continue to grow
steadily – the version 3.0 has recently been released, any circumvention of the application security
model would have serious consequences.

In the first version of MIDP [3], any application not installed by the device manufacturer or a
service provider runs in a sandbox that prohibits access to security sensitive APIs or functions of
the device. Although this sandbox security model effectively prevents any rogue application from
jeopardising the security of the device, it is excessively restrictive and does not allow many useful
applications to be deployed after issuance of the device. Version 2.0 of MIDP [4] introduces a new

security model based on the concept of protection domain. Each sensitive API or function on the device
may define permissions in order to prevent it from being used without authorisation. An installed MIDP
application (MIDlet) suite is bound to a unique protection domain that defines a set of permissions
granted either unconditionally or with explicit user authorisation.

In its desktop platform (JSE), the Java programming language embodies two basic security compo-
nents: the Security Manager (SM) and the Access Controller (AC). The SM is responsible for enforcing
the security policies that have been declared to protect sensitive resources. It intercepts function calls
to those resources and delivers permissions and access decision requests to the AC, which in turns
performs the access decision procedures, determinig whether the caller has the needed rights to access
the resource in question. In the case of the JSE platform, there exists a high level specification of the
access controller. The basic mechamism used for the decision procedure is that of Stack Inspection [5].
No specification is provided of the access controller for JME.

This article reports work concerning the development of a (high level) formal specification of an
access control module of JME - MIDP 2.0. In particular, a certified algorithm that satisfies the proposed
specification of an AC is described. The specification of the module has been defined as a conservative
extension of the model presented in [6,7], where a formal specification of the JME - MIDP 2.0 security
model developed using the proof-assistant Coq [8] is presented and described in detail.

The rest of the paper is organized as follows. Section 2 briefly describes the MIDP 2.0 security
model and the formal specification that has been developed. Section 3 presents the formal specification
of the access control module. In Section 4 some security properties satisfied by this specification are
stated and hints on how they were formally verified are provided. Section 5 presents the algorithm and
discusses correctness results. Finally, Section 6 concludes and describes further work.

2 The JME - MIDP 2.0 Security Model

This section presents, in the first place, an informal description of the basic components of the MIDP
2.0 security model, to proceed then to briefly describe the formal specification of this model reported
in [6,7]. Section 2.2 introduces notation that shall be used in the rest of the paper.

2.1 Informal Description of the Model

In MIDP, applications (MIDlets) are packaged and distributed as suites. A MIDlet suite can contain
one or more MIDlets and is distributed as two files, an application descriptor file and an archive file
that contains the actual classes and resources. A suite that needs access to protected APIs or functions
must declaratively request the corresponding permissions in its descriptor. MIDlet suites may request
permissions either as required or as optional.

Version 2.0 of MIDP [4] introduces a security model based on the concept of protection domain. A
protection domain can be grasped as an abstraction of the execution context of an application, and it
determines the access rights to the protected functions of the device. Each sensitive API or function
on the device may define permissions in order to prevent it from being used without authorisation.
A protection domain consists of both a set of permissions which are granted unconditionally, without
intervention of the device’s user, and a set of permissions which require authorisation from the user.
Associated to each permission is defined a mode (oneshot, session, blanket), which establishes the form
and frequency in which the autorization shall be required.

An installed MIDP application (MIDlet) suite is bound to a unique protection domain. Untrusted
MIDlet suites are bound to a protection domain with permissions equivalent to those in a MIDP 1.0
sandbox. Trusted MIDlet suites may be identified by means of cryptographic signatures and bound to
more permissive protection domains. This security model enables applications developed by trusted
third parties to be downloaded and installed after issuance of the device without compromising its
security.

The set of permissions effectively granted to a suite is determined from its protection domain, the
permissions the suite request in its descriptor and the authorisations granted by the user.

For a more detailed description of the mechanisms defined by the security model the reader is
referred to [1,2,3,4].

2.2 The Language Used

The specification has been developed using the Coq proof assistant [8], an implementation of the
Calculus of Inductive Constructions (CIC) [9]. CIC is esentially an extension of Coquand and Huet’s
Calculus of Constructions [10] with inductive definitions based on Martin- Löf type theory.

The fragments of the specification that are presented in the rest of the paper should be immediately
accesible to anyone used in classical set theory. This should work if only types and sets, as used in the
text, are uniformly interpreted as sets of the classical theory. There remain however some (hopefully
minor) mismatchings: it is used the symbol : instead of ε, this distinction can be regarded as totally
immaterial. Record types are used, just as in programming languages, as tuple sets. A record definition
has the form R = {field1 : type1, . . . , fieldn : typen}. If r is an object of type R then the projection of
fieldi is denoted r.fieldi. A type called Prop is used, of whom it is evident that must have propositions
as objects. A predicate on a set A then is grasped as a propositional function whose type is A→ Prop.
Logical operators shall be denoted as usual: (∧, ∨, ∼, →, ∀, ∃).

2.3 Formalization of the MIDP 2.0 Security Model

A specification of the kind that shall be examined here is ultimately a set (type). It is satisfied (im-
plemented) by any of its elements. The objects to be specified (midlets suites, state of the device,
events) have a number of components related in certain ways. Their structure shall be described,
giving specifications of the components and of the relations they must satisfy.

Let Permission be the total set of permissions defined by every protected API or function on the
device and Domain the set of all protection domains. As a way of referring to individual MIDlet suites,
the set SuiteID of valid suite identifiers is also introduced.

An application descriptor is represented as a record composed of two predicates, required and
optional that identify respectively the set of permissions declared as required and those declared as
optional

Descriptor = {required, optional : Permission→ Prop} (1)

A record type Suite is defined to represent installed suites, with fields for its identifier, associated
protection domain and descriptor,

Suite = {sid : SuiteID, domain : Domain, descriptor : Descriptor} (2)

Permissions may be granted by the user to an active MIDlet suite in either of three modes, only
once (oneshot), until it is terminated (session), or until it is uninstalled (blanket). Let Mode be the

enumerated set of user interaction modes, {oneshot, session, blanket}, and ≤m an order relation such
that oneshot ≤m session ≤m blanket.

The security policy on the device is represented as a constant policy of type

Policy = { allow : Domain→ Permission→ Prop,
user : Domain→ Permission→Mode→ Prop } (3)

such that allow d p holds whenever domain d grants unconditionally the permission p and user d p m
whenever domain d grants permission p with explicit user authorisation and maximum allowable mode
m (w.r.t ≤m). The permissions effectively granted to a MIDlet suite are the intersection of the per-
missions requested in its descriptor with the union of the allowed and user granted permissions.

To reason about the MIDP 2.0 security model, most details of the device state may be abstracted;
it is sufficient to specify the set of installed suites, the permissions granted or revoked to them, and
the currently active suite in case there is one. The active suite and the permissions granted or revoked
to it for the session are grouped into a record structure

SessionInfo = { sid : SuiteID,
granted, revoked : Permission→ Prop } (4)

The abstract device state is described as a record

State = { suite : Suite→ Prop,

session : option SessionInfo,
granted, revoked : SuiteID → Permission→ Prop } (5)

Some conditions must hold for an state to be a valid one. For a suite to be installed on the device,
for instance, the permissions requested in its descriptor must be a subset of the permissions defined by
the protection domain bound to the suite. A compatibility relation, o, that makes it possible to specify
this property is specified as follows

des o dom := ∀p : Permission, des.required p→ allow dom p ∨ ∃m : Mode, user dom p m (6)

therefore, the compatibility condition can be expressed with the following proposition

SuiteCompatible := ∀(s : State)(ms : Suite), s.suite ms→ ms.descriptor oms.domain (7)

For a detailed description of the validity conditions of a state the reader is referred to [6].

3 Formalization of the Access Control module

In this section we present the extensions done to the formal specification described in the previous
section so as to model the behavior of the access control module.

First, the set methodID of (method) identifiers that compose a midlet suite and the set functionID
of functions (or APIs) in a mobile device are inroduced. The definition of a Suite is extended with a
predicate that characterizes the methods that belong to that suite

Suite = { sid : SuiteID, domain : Domain, descriptor : Descriptor,
methodid : methodID → Prop } (8)

The state of the device is extended with the following predicates: one that specifies the functions or
APIs registered in the device (function), one that describes the sensitive functions registered in the
device (functionSensible), and one that models the association of a permission to a sensitive function
(funcperm)

State = { suite : Suite→ Prop, session : option SessionInfo,
granted, revoked : SuiteID → Permission→ Prop,

function, functionSensible : functionID → Prop,

funcperm : functionID → Permission→ Prop } (9)

A state now is valid whether it satisfies the conditions succinctly described in section 2.3 and the
following ones (for details see [11]):

– MIDletsAtLeastOneMethod: every installed midlet has at least one method;
– fAtLeastOnePerm: every installed sensitive function necessarily has associated a permission;
– fPermInstalledSens: if a function has associated a permission then that function must be installed

in the device and is sensitive;
– fUniquePermission: no function has associated more than one permission;
– methodInOnlyOneMidlet: all method identifier is unique, even in distinct midlets;
– permStateCoherence: if one permission was granted (revoked) to a midlet for the rest of its life

cycle, then neither could have been revoked (granted), for the rest of its life cycle, nor could have
been granted or revoked for the rest of the session. Likewise, if one permission was granted (revoked)
for the rest of the session, then neither it could have been revoked (granted), for the rest of the
session, nor could have been granted or revoked for the rest of its life cycle life; and,

– policyCompatible: if the security policy does not mention any association between the protection
domain of a suite and a certain permission then that permission can not be registered as granted
or revoked to that suite in the device.

The events related with the security are modeled in [6,7] as constructors of a type Event. Among these
events we can mention, for example, those that correspond to the installation (install) and removal
(remove) of a suite, and the permission request of the active suite active (request). The Event type
is extended with a new constructor call : methodID → functionID → Event that represents a
method call to a function of the device. The behavior of the events is specified in [6,7] in terms of
pre- and postconditions. The preconditions (Pre) are defined in terms of the device state (s), while
postconditions (Pos) are defined in terms of the before (s) and after (s’) states and an optional response
of the device. In what follows a portion of the formal definition of the pre- and postconditions of the
call event is presented and explained.

Let suite be a middlet suite, meth be a method, func be a function invoked by that method, and
dom be the protection domain associated to suite. Then, the precondition of call

Pre (call meth func) := PreCall meth ∧
(s.functionSensible func→
∃ perm : Permission, s.funcperm func perm ∧ PreRequestNone perm ∧
(∀ (ua : UserAnswer) (m : Mode),

(ua = uaAllow m→ PreRequestUserAllow perm m) ∧
(ua = uaDeny m→ PreRequestUserDeny perm))) (10)

requires in the first place (PreCall) that it should exist an active session, that suite is the active
suite and meth belongs to it. Then, if func is a sensitive function, there must exist a permission
perm associated to the function such that perm has been declared as required or optional inside the
descriptor of suite. In the case that it is not required any user intervention, the precondition specifies
(PreRequestNone) that the security policy either unconditionally allows dom to access func, or dom
specifies a user interaction mode for perm, and the user has granted a permission which is still valid.
In the case it is required user intervention and the user denies access, the precondition establishes
(PreRequestUserDeny) that dom specifies a user interaction mode for perm, and the user has not
granted any permission that is still valid. In the case where it is required user intervention and the user
allows the access the precondition additionally requires (PreRequestUserAllow) the user authorization
mode to be less, according to the order defined on permission modes, than the maximum allowed mode
specified in the security policy.

The postcondition of the call event has been formally defined in Coq as follows

Pos (call meth func) := s.functionSensible func→ ∀ perm : Permission,

(s.funcperm func perm→ PosRequestNone perm ∨
(∃ ua : UserAnswer, ∃ m : Mode,

((ua = uaAllow m) ∧ PosRequestUserAllow perm m) ∨
((ua = uaDeny m) ∧ PosRequestUserDeny perm m))) ∧
∼ s.functionSensible func→ s = s′ ∧ r = Some allowed (11)

The postcondition in the case it is not required any user intervention (PosRequestNone) essentially
specifies the response of the access controller when a call event is executed. For example, if the user
has previously allowed (denied) authorization and it is still valid then the module will respond allowing
(denying) the access to the function. If the security policy specifies that the access should be allowed
unconditionally, then the module will respond allowing permission. In the case that is required user
intervention and the user grants the permission, the specification establishes (PosRequestUserAllow)
that the response of the controller should be to allow the access. Similarly, if the permission is granted
at session level (session mode) or for the whole life cycle of the application (blanket mode), this
authorization should be registered in the device. If it is granted in oneshot mode, then the entire state of
the device remains unchanged and the controller just reacts granting the access. PosRequestUserDeny
is similar to PosRequestUserAllow but the controller shall deny the access and the update will be on
the fields that register the access denial (depending on whether the denial is for the rest of the session
or for the rest of the life cycle of the suite).

The complete formalization is available in [11].

4 Verification of Security Properties

Several security properties concerning the behavior of the access controller have been proved to be
satisfied by the access control module model. Additionally, it has been verified that the extension
is conservative, in particular the invariants satisfied by the core model, and described in [6,7], are
preserved in the extended model, including those regarding the validity of the state of the device.

The proof, for instance, that the execution of any event preserves the compatibility property of
installed midlet suites described in section 2.3, follows by first proving that the call event does not
modify the state of the device and then proceeding as shown in [7].

Due to space limitations, in what follows only two of the properties described in section 3 are
formally stated and hints are provided on how it was proved they are satisfied by a call event execution.
For the complete set of analyzed properties, including their proofs, the interested reader is referred to
[11].
Lemma permStateCoherence:

∀(s : State)(sid : SuiteID)(p : Permission)(ses : SessionInfo),

s.session = Some ses→ ses.sid = sid→
(s.granted sid p→ ∼ s.revoked sid p ∧ ∼ ses.granted p ∧ ∼ ses.revoked p) ∧
(s.revoked sid p→ ∼ s.granted sid p ∧ ∼ ses.granted p ∧ ∼ ses.revoked p) ∧
(ses.granted p→ ∼ s.granted sid p ∧ ∼ s.revoked sid p ∧ ∼ ses.revoked p) ∧
(ses.revoked p→ ∼ s.granted sid p ∧ ∼ s.revoked sid p ∧ ∼ ses.granted p)

Proof: Each of the four subproperties (propositions in the conjunction formula) is proved following a similar
strategy. In the case that no user intervention is required, either because is established by the security policy or
because the invoked function is not sensitive, the proof follows directly because the state of the device remains
unchanged. In the case that user intervention is required, the proof proceeds by performing case analysis on
the response provided by the user to the permission request (allow or deny in oneshot, session and blanket
modes).

Lemma policyCompatible:

∀(s : State)(sid : SuiteID)(p : Permission)(ses : SessionInfo),

s.session = Some ses→ ses.sid = sid→
∀ ms : Suite, s.suite ms→ ms.sid = sid→
(∼ policy.allow ms.domain p ∧ ∼ ∃ m : Mode, policy.user ms.domain p m)→
(∼ s.granted s sid p ∧ ∼ s.revoked s sid p ∧ ∼ ses.granted p ∧ ∼ ses.revoked p)

Proof: In the case that user intervention is not required, the proof follows directly because the state of the
device remains unchanged. Otherwise, the proof follows by absurdity, because a request for user intervention
would contradict the hypothesis that there is no relation in the security policy between the permission and the
protection domain of the active suite.

5 A Certified Access Controller

The high level formalization that has been described in the previous sections is appropriate and general:
it is a good setting to reason about the properties of the MIDP 2.0 security model and, in particular,
about the behavior of the access control module without conditioning possible implementations. Nev-
ertheless, in order to construct and certify an algorithm that satisfies the access control behavior that
has been specified, first the high level model has been refined into a more computationally oriented
one and then it has been proved the soundness of the refinement process. Then, the algorithm was de-
fined using the functional language of Coq and a theorem that establishes that the obtained algorithm
satisfies the concrete specification of the access controller has been formally proved with the help of
the proof assistant.

5.1 Model Refinement

The refinement of the high level specification consists in providing a representation for both the state
of the device and the events that can be directly implementable using a high level functional language.
In addition to that, the relation which specifies the behavior of the events should be refined down to
a deterministic function that computes explicitly the state transformation specified by those events.

In the high level formalizations that have previously been described, the elements that inhabit
big inductive types are those whose types contain elements of type Prop, namely the propositional
functions. For the refinement of a decidable predicate P over a finite set A, it has been adopted the
following approach: if the intended meaning of P is to characterize a set, then it shall be represented
using lists of elements of type A, as in programming languages. On the other side, if the intended
meaning is that of a decision procedure, its representation shall be a function F from A to a type
isomorphic to the type bool. Formally, a function F is said to refine a predicate P if it holds that
∀ a, P a ⇐⇒ F a = true. It should be noticed that the refinement of a predicate defined on a certain
set into a boolean function over that set is computationally safe if the predicate is decidable and in
addition its domain of definition is finite. This is the case for the predicates involved in the formal
models discussed here. The use of this refinement approach as a means to obtain a concrete model that
represents properly the abstract one can be found in [11]. A general treatment of model refinements is
discussed in [12].

To illustrate how the components of the concrete model looks like, it follows the definition of the
set CState, the concrete representation of the state of the device. Notice that concrete components of
the specification are prefixed by a (capital or small) c

CState = { csuite : list CSuite,
csession : option CSessionInfo,
cfunction, cfunctionSensible : functionID → bool,

cfuncperm : functionID → Permission,

cgranted, crevoked : SuiteID → Permission→ bool } (12)

5.2 The Algorithm

Before proceeding to describe the algorithm, it is worth remarking that in the specified model each
method inherits or gets the protection domain that has been associated to the midlet suite to which
the methods belong. Therefore, every method of a middlet suite is related to the permissions that the
protection domain embodies.

The algorithm has been built as a quite direct implementation of the specified behavior of the access
controller in the concrete model: basically, when a method invokes a protected function or API the
access controller checks that the method has the corresponding permission and that the response from
the user, if required, permits the access. If this checkup is successful, the access id granted; otherwise,
the action is denied and a security exception is launched. The complete definition of the algorithm in
Coq can be found in [11]; here it is only included a pseudo-code version. It can be noticed that its
structure is that of a case expression where the guards of the branches express properties involving
some of the following components: the state, the policy of the device, the method and the invoked
function

cAccessCtrlExe (cs : CState) (cpolicy : CPolicy) (ua : UserAnswer)(m : methodID) (f : functionID) :

CState × (option Response) :=

case (methInCurrSuite cs m) = false : (cs, None)

case (cs.cfunctionSensible f = false) : (cs, Some allowed)

case (ms.cdescriptor.crequired p ∨ms.cdescriptor.coptional p) = false : (cs, Some denied)

case cs.cgranted cs.csession.csid p = true : (cs, Some allowed)

case cs.crevoked cs.csession.csid p = true : (cs, Some denied)

case cs.csession.cgranted p = true : (cs, Some allowed)

case cs.csession.crevoked p = true : (cs, Some denied)

case cpolicy.callow ms.cdomain p = true : (cs, Some allowed)

case (cpolicy.cuser ms.cdomain p oneshot ∨ cpolicy.cuser ms.cdomain p session ∨
cpolicy.cuser ms.cdomain p blanket) = true :

{
case ua = uaAllow oneshot : (cs, Some allowed)

case ua = uaAllow session : (cs except cs.csession.cgranted p = true, Some allowed)

case ua = uaAllow blanket : (cs except cs.cgranted (cs.csession.csid) p = true, Some allowed)

case ua = uaDeny oneshot : (cs, Some denied)

case ua = uaDeny session : (cs except cs.csession.crevoked p = true, Some denied)

case ua = uaDeny blanket : (cs except cs.revoked (cs.csession.csid) p = true, Some denied))

}
case (cpolicy.cuser ms.cdomain p oneshot ∨ cpolicy.cuser ms.cdomain p session ∨

cpolicy.cuser ms.cdomain p blanket) = false : (cs, Some denied) (13)

5.3 The Certification

The certification of the algorithm that implements a correct access controller reduces to prove the
(correctness) theorem that establishes the following property: if the precondition of the call event is
satisfied by a given state, then the state resulting from executing the algorithm satisfies its correspond-
ing postcondition. Formally this is stated as follows:

Theorem Correctness:

∀ (cs cs′ : CState)(cpolicy : CPolicy)(ua : UserAnswer)

(m : methodID) (f : functionID) (r : option Response),

CPre cs cpolicy (ccallFunc m f)→
cAccessCtrlExe cs cpolicy (ccallFunc m f) ua = (cs′, r)→
CPos cs cs′ cpolicy r (ccallFunc m f).

Proof: The proof follows directly the structure of the algorithm and is constructed performing case analysis on
the conditions of the branches and makes use of several properties of the model, in particular those related to
the validity of the state of the device.

6 Conclusion and Further Work

This article reports work concerning the formal specification of the MIDP 2.0 security architecture.
A high level formalization, using the CIC and the proof assistant Coq, of the JME-MIDP 2.0 Access
Control model has been developed which extends the model reported in [6] so as to consider, for
instance, the event that represents the invocation of the device functions by an application. This
extension is shown to be conservative with respect to the security properties satified by the core model.
Additional relevant security properties satisfied by the specification of the access control module are
also stated and discussed. With the objective of obtaining a certified executable algorithm of the access
controller, the high level specification has been refined into a computationally oriented equivalent one,
and an algorithm has been constructed that is proved to satisfy that latter specification. To our
knowledge, this is an unprecedented result. For a complete and detailed description of this work the
reader is referred to [11].

The formal specification that has been developed assumes that the security policy of the device is
static, that there exists at most one active suite in every state of the device, and that all the methods
of a suite share the same protection domain. The obtained model, however, can be easily extended
so as to consider multiple active suites as well as to specify a finer relation allowing to express that
a method is bound to a protection domain, and then that two different methods of the same suite
may be bound to different protection domains. Further work, already in progress, is the study and
specification of different sort of permission models to control the access to sensitive resources of the
device, and the definition of the corresponding algorithms for enforcing the security policies derived
form those models.

References

1. Java Platform Micro Edition, http://java.sun.com/javame/index.jsp, last access: May 2008.
2. JSR 139 Expert Group: CLDC. Version 1.1. Sun Microsystems, Inc. and Motorola, Inc. (2006)
3. JSR 37 Expert Group: Mobile Information Device Profile for Java Micro Edition. Version 1.0. Sun Mi-

crosystems, Inc. (2000)
4. JSR 118 Expert Group: Mobile Information Device Profile for Java Micro Edition. Version 2.0. Sun Mi-

crosystems, Inc. and Motorola, Inc. (2002)
5. Wallach, D., Felten, E.: Understanding Java Stack Inspection. In Proceedings of the 1998 IEEE Symposium

on Security and Privacy. Oakland, CA (1998)
6. Zanella Béguelin, S.: Especificación formal del modelo de seguridad de MIDP 2.0 en el Cálculo de Con-

strucciones Inductivas. Master’s thesis, UNR Argentina (2006)
7. Zanella Béguelin, S., Betarte, G., Luna, C.: A Formal Specification of the MIDP 2.0 Security Model. In:

T. Dimitrakos et al. (eds.) FAST 2006. LNCS, vol. 4691, pp. 220-234. Springer, Heidelberg (2007)
8. The Coq Development Team: The Coq Proof Assistant Reference Manual Version V8.1 (2006)
9. Coquand, T., Paulin-Mohring, C.: Inductively Defined Types. In Per Martin-Löf and Grigori Mints, editors,

Conference on Computer Logic, volume 417 of LNCS, pages 50-66. Springer-Verlag (1988)
10. Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation, 76(2/3):95-120,

February/March (1988)
11. Roushani Oskui, R.: Especificación Formal en Coq del Módulo de Control de Acceso de MIDP 2.0 para

Dispositivos Móviles Interactivos. Master’s thesis, UNR Argentina (2008). http://nursystem.com/ramin.
roushani, last access: May 2008.

12. Spivey, J.M.: The Z Notation: A Reference Manual. International Series in Computer Science. Prentice
Hall, Hemel Hempstead, Hertfordshire, UK (1989)

http://java.sun.com/javame/index.jsp
http://nursystem.com/ramin.roushani
http://nursystem.com/ramin.roushani

