A confluent calculus of
macro expansion and evaluation

Ana Bove Laura Arbilla

Technical Report INCO-91-01
December 1991

Instituto de Computacion
Facultad de Ingenieria, Universidad de la Republica
Montevideo, Uruguay

A confluent calculus of macro expansion and evaluation

Ana Bove* Laura Arbillaf
bove@incouy.edu.uy arbilla@incouy.edu.uy

Instituto de Computacion
Facultad de Ingenieria, Universidad de la Republica
Montevideo, Uruguay

Abstract

Syntactic abbreviations or macros provide a powerful tool to increase the syntactic ex-
pressivity of programming languages. The expansion of these abbreviations can be modeled
with substitutions. This paper presents an operational semantics of macro expansion and
evaluation where substitutions are handled explicitly. The semantics is defined in terms of a
confluent, simple, and intuitive set of rewriting rules. The resulting semantics is also a basis
for developing correct implementations.

Keywords: Macros, explicit substitutions, rewriting semantics, programming languages.

*Supported by a scholarship of Escuela Superior Latinoamericana de Informatica, La Plata, Argentina.
tPartially supported by a PEDECIBA (Programa de Desarrollo de las Ciencias Basicas) grant.

1 Introduction

In computer science as well as in mathematics and logic, the use of abbreviations is common
practice. A typical example used in logic is [10]:

d
a<—>bzf

(a= b)A (b= a)

This means that the expression to the left of the symbol g, which we read “a if and only if b,”
is an abbreviation of the expression to its right, which we read “a implies b, and b implies a”.
In computer science this practice is not less common, though it realizes in different forms. Most
programming languages, such as C [14], Scheme [18], and many assembly languages, provide
macro definition tools.

The use of syntactic abbreviations in mathematics as well as in programming languages
has two advantages [15]. First, it allows the abstraction over repeated syntactic components,
and therefore improves the readability and clarity of programs. Second, it eases the design of
new language constructs, which can be defined by language designers and programmers. The
semantics of these constructs is straightforward because they are defined in terms of previously
defined constructs that have well understood semantics.

Syntactic abbreviations, or macros, improve the syntactic expressivity of programming lan-
guages but do not increase their semantic power [8, 17]. These abbreviations enrich assembly as
well as modern high level languages. A typical example of a syntactic abbreviation in Scheme
is let, defined by the following notational definition:

115

(let x be v in B) = ((A (x) B) v) (1)
In this definition, let, be, and in are keywords while x, v, and B are metavariables.

Syntactic abbreviations are defined over a core language of well-known semantics. Our core
language is the A—calculus with numerical constants [2].

Associated with the definition of a macro are the notions of instance and expansion. An
instance of a macro is a term having the same form as the expression appearing in the left of the
definition, where arbitrary expressions appear in the places of the metavariables. For example,

(let y be 3 in (X (2) (+ 2 v))) (2)

is an instance of the syntactic abbreviation let, where the expressions y, 3, and (A (2) (+ 2z y))
take the places of the metavariables x, v, and B, respectively.

The expansion of an instance is the core expression that results from one or more steps
of expansion. In each step, an instance is replaced by the right-hand-side of its notational
definition, where metavariables are replaced by the expressions that take their places in the
instance. For example, the expansion of (2) is:

(A (v) (A (2) (+29)) 3) (3)

Traditionally, an interpreter or compiler expands all the instances appearing in a program
before evaluation (at parsing time or even earlier when pre—processors are available). Observ-
ing that the replacement of metavariables by expressions when expanding an instance can be

modeled with substitutions, we develop a simple and intuitive operational semantics of macro
expansion using the explicit substitution calculus of Abadi et al [1]. The resulting semantics
respects the binding strategy of the core language and does not perform unwanted capture of
identifiers during expansion.

In this method, the expansion is done completely before starting execution, although some of
the expansions may be avoidable. We avoid unnecessary expansions by defining a straightforward
extension of the semantics to one that does expansion and evaluation at the same time. This
extension suggests an interpreter implementation where expansion is delayed as much as possible.
Given a lazy [11] reduction strategy for our core language, the expansion of an instance appearing
as argument in an application may never be performed if the argument is not used.

The rest of the paper is organized as follows. Section 2 informally presents notational def-
initions and introduces the main ideas behind manipulating substitutions explicitly. Section 3
presents a macro declaration language and gives a semantics of macro expansion using explicit
substitutions. In Section 4, we present a variation of this semantics that also evaluates expres-
sions. Section 5 presents conclusions, related work, and future directions of research.

2 Notational definitions and explicit substitutions

Syntactic abbreviations are introduced by notational definitions, briefly described here. In
addition, this section motivates the use of explicit substitutions to model the expansion of these
abbreviations.

2.1 Notational definitions

Notational definitions are equations of the form [g r, meaning that the expression [abbreviates
the expression r. For this reason, [is also called a syntactic abbreviation. An example of a
notational definition is equation (1).

Syntactic abbreviations are not terms of the core and contain only keywords and metavari-
ables. Expression r is formed with elements of the core language as well as previously defined
syntactic abbreviations. Syntactic abbreviations syntactically extend the core language.

A macro processor is a virtual machine that, given a set D of notational definitions and
an expression e of the core language extended with the syntactic abbreviations defined in D,
transforms every instance of an abbreviation appearing in e into its expansion, and obtains a
core expression. In Section 3, we present a formal specification of a macro processor.

2.2 Explicit substitutions

In this subsection, we show how the practice of macro expansion can be modeled through the
manipulation of ezplicit substitutions [1].
Substitutions are fundamental in the A—calculus. The classical f-rule [2]:

((Az.e1) e2) = er{es/z}

manipulates substitutions implicitly. If e; and ey are A—terms, expression ej{es/x} is not a
A—term but a notation that represents the term e; where all the free occurrences of variable z
are replaced by eo.

Abadi et al introduce a variation of the A—calculus, the Ao—calculus, where substitutions
generated by S-reductions are manipulated explicitly. Substitutions and substitution application
have a syntactic representation in the Ao—calculus. The B-rule is:!

((Az.e1) e2) = ei[{z «+ ea, ¢}]

where ¢[s] is a Ao—term denoting the term e to which substitutions s is applied, and substitution
{z < e, ¢} denotes a substitution where z is replaced by e. The empty substitution is denoted
by ¢.

Most implementations of macro expansion use an environment where each metavariable in
the left—-hand-side of a definition is associated to the subexpression that takes its place in the
instance [7]. We propose to represent these environments as ezplicit substitutions in a formal
semantics of macro expansion, as does Abadi et al in the Ao—calculus.

The use of substitutions in macro expansion is best illustrated with an example. Consider
the following definition of freeze:

freeze a g (Az.a) (4)

To obtain the expansion of the instance freeze e, for expression e, we substitute in the right—
hand-side of definition (4) the metavariable a for the expression e. This can be represented
by the expression (Az.a)[{a < e, ¢}], where {a < e, ¢} is an explicit substitution. Observe that
these are substitutions of metavariables by expressions and not of variables by expressions as in
the Ao—calculus.

This substitution on A—expressions cannot be naive, however, because if the variable z ap-
pears free in e, the A operator captures it. Abadi et al introduce in the Ao—calculus a renaming
operator (1) for avoiding this capturing. We adapt this operator so that it takes an argument x
indicating the conflicting name. The following rules are needed for expansion:

(Az.e)[s] — (Az.e[stz])
{a<e stz — {a+ etz stz}
a{a<+e s} — e
Ptz — ¢
Using these rules, the expansion of freeze =, resulting from (Az.a)[{a < z,¢}] is (Az.ztx).
The expression ztz is similar to z[f] in the Ao—calculus. Instead of composition of operators T,

we use exponents on variable names. Thus, we represent 21z with 2!, (z1z)tz with 22 , and so
on. With our notation, the above expansion takes the form of (Az.z!).

3 Macro expansion semantics

In this section, we formalize the ideas of Section 2, and present an operational semantics of
macro expansion over the core language.

'We slightly modify the syntax.

Syntactic domains:

a,b € Meta (Metavariables)
u,w,z € Var (Variables)
num,n,m,m’ € Nat (Natural numbers)
b € Bool={t,f} (Booleans)

y € MetaU Var

MetaN Var = VarN Nat = MetaN Nat = ()
Syntax of Ay:

e = num | z" | (Az.e) | (e €)
Syntax of L:
pu=Dr st MV(r)=10 Pgm
d = 1Zn Ndef
Il v=y |yl Lhs
r o= num | z" | a | (Az.r) | (Aar) | (r 7) | (Lr) Rhs
D :=¢€¢|dD LNdef
Lr == r | r Lr LRhs

Figure 1: Languages syntax.

3.1 The core language

The syntax of the core language, A,, is in Figure 1. Language A, is the language of the A
calculus with numbers [2] where variables that are not binding instances are labeled. A variable
has a name and an exponent. The exponent defines its distance (number of X\ operators that
bind a same named variable) from its binding instance. For example, the expression:

Az.Qw.(Az.((z° z') w?))))
would be written in the A—calculus as:

Au.Aw.(Az.((z u) w))))

The use of exponents in variable names efficiently implements the a—conversion, as does de
Bruijn technique [4], but the use of names improves legibility. In this paper, sometimes z° will
be denoted as z.

3.2 The macro definition language

We define language £ as A, enriched with notational definitions and instances of macros. The
syntax of £ is in Figure 1. We use a different font for metavariables, to distinguish them from

variables. The symbol € denotes the empty string and MV(r) denotes the set of metavariables
appearing in expression r.

A program p (€ Pgm) is a list D (€ LNdef), possibly empty, of notational definitions followed
by an expression that does not contain metavariables.

Notational definitions are as described in Section 2. A notational definition d (€ Ndef) is
enclosed within square brackets ([]). The left-hand-side expression [(€ Lhs) is a list of variables
and metavariables. The right-hand-side expression r (€ Rhs) is a natural number, a variable,
a metavariable, a functional abstraction, an application, or a list of expressions of Rhs between
angle brackets (()). Users may introduce fresh identifiers in the right hand side of macro
definitions. Names appearing in the left hand side that are not metavariables are keywords. For
instance, in the definition of freeze, z is a fresh identifier and freeze a keyword. We treat fresh
identifiers and keywords as variables for convenience.

Functional abstractions bind variables and metavariables. Angle brackets enclose an instance
of a syntactic abbreviation.

An example of a valid program is:

[let x be v in gL ((Ax.B) v)] (Az.(Aw.(let u be x in (u w))))

containing notational definition (1). The body of the program contains an instance of let.

To simplify our study, we restrict the set of notational definitions as follows. Let dy--- d,
be the list of definitions of a program, and Iy --- [, and be 7y --- r, their respective left and
right-hand—sides. The following conditions must hold:

1. (non-recursive) e 7y is an expression of the core language A,.

e 7, j =2...n, is formed with expressions of A, and instances of
definitions d; where i < j.

2. (linear) A metavariable appears only once in a left—-hand-side. Formally,

for any I, = wi ... wp, h=1...n. (i #jAw;,w; € Meta = w; # w;)

3. (unambiguous) The set of notational definitions does not contain two left-hand-sides that
are equal modulo a renaming of the metavariables.

Two left-hand-sides I, = wy ... wy, and lp = uy ... Uy, where h # k are equal modulo a
renaming of metavariables iff: Vi=1...m (w; = u; V w;,u; € Meta)

4. No new metavariables are introduced by the rhs: MV(r,) C MV(l)), h=1...n

3.3 Instance and instance substitution
Before we can formally state the operational semantics of macro expansion in an expression of

language L, we need to formally define the notions of macro instance and instance substitution.

d
Definition 1 (Instance) An expression (ty...t,) is an instance of a macro definition [l 2 T,
where | = wy ... Wy, if the following conditions hold:

o (w; € Varnt; € Var) = t; = w;
e w;, € Meta = t; € Rhs
d
We define a function Z7 : Rhs x Ndef — Boolean such that Z7((Lr),1 ¥ r

d
instance of [Ef r, and false otherwise.

) is true if (Lr) is an

df

Definition 2 (Instance Substitution) Given [r], where | = wy...w, and (Lr) =

d
(t1...tm) an instance of [l g r|, we define the instance substitution s as follows:
s =A{w; < t; s.t. w; € Meta}

The instance substitution s relates the metavariables in [to the corresponding expressions in

d
(Lr). We also write instance substitutions as S({(Lr),!l g r). Given an instance substitution s,
the expression {a < 7, s} denotes the substitution {a - r} Us.

3.4 Operational semantics

The operational semantics of macro expansion is given by a function ezpan that maps correct
programs to A,—terms. A correct program is an expression D r € Pgm, where D is a list of
notational definitions, with the restrictions mentioned in subsection 3.2, and r is an expression
where every (Lr)-subexpression is an instance of a definition in D; this is:

V (Lr) appearing in r (3 d € D s.t. Z?((Lr),d))
The expan function is defined through a rewriting system =g as follows:
expan(D r) =e it Dr=%De and e isan E-normal form

where =7, is the reflexive transitive closure of relation = g, defined in Figure 2. An expression e
is an E-normal-form if there does not exist ¢’ such that e=p €' [2]. For a general introduction
to rewriting systems and their properties see [12, 2, 13].

As we show later, the = g relation is Church—Rosser; this is:

Vazy.(3z. z=5 ¢ A 2=5 y) = (Fu. =5 u A y=73; u)

and noetherian (there is no infinite sequence e1=p es=pg ...=g e,=pg ...). Thus, expan is
a total function. We also prove that the set of E—normal forms is the language A, ; therefore,
expan expands all macro instances in the program.

For defining the = g relation, we extend the syntax of language £ to manipulate substitutions
explicitly. The extended syntax is in Figure 2.

In the rules, the set D of notational definitions of a program is implicit; so, we write r =g r’
for the rule D r =g D r’. The set of rewriting rules consists of three groups: the substitu-
tion introduction rule, substitution elimination rules, and the rules for the shift operation on
substitutions and expressions.

Rule Intro formalizes the expansion of macro instances using Definitions 1 and 2 and explicit
substitutions.

Among the substitution elimination rules, rules ', = to E) . explain how substitutions
operate on A\-abstractions and deserve detailed explanation. In general, the substitution enters
the scope of the identifier (binding instance) bound by the X operator. There are three different
cases. First, when the binding instance is a variable z, the exponents of all free occurrences of z
in substitution s must be updated since their distance from their corresponding binding instance
is incremented by 1; operation 12%%/ on substitution s performs this updating. Second, when
the binding instance is a metavariable a that appears in s associated to a variable ™, variable x
must take the place of a and become a binding instance. All occurrences of ™ in the substitution
must be captured because they appear replacing other metavariables of the same macro. In this
case, the use of the same names is not a coincidence but indicates the intention of capturing
according to the macro definition. On the other hand, all occurrences of z™ in the body of the
abstraction are updated as in the first case because they appear in the definition of the macro and
do not relate to the expressions that instantiate the metavariables. Other occurrences of = (with
a different exponent) in the substitution are also updated as in the first case. Operation 1400,
performs this updating on expressions. Afterwards, every occurrence of a in r must be replaced
by z. Third, when the binding instance is a metavariable that rewrites to another metavariable,
no updating is needed. This latter case occurs when instances of previously defined macros
appear in right-hand-sides of macro definitions.

The shift operation on expressions, rTxm’m"b, means: rename all free occurrences of " in r
by z" L, when n > m and b = f, and by ™ when m =n and b = t. Rules Ss,; to Seqpp give
the semantics of operator 1 on substitutions and expressions.

3.5 Properties of the semantics

We only state the properties; detailed proofs are in Appendix A.
Theorem 1 (Noetherian) The relation =g on correct programs is noetherian.
Theorem 2 (Church—-Rosser) The relation =g on correct programs is Church—Rosser.

Theorem 3 (Normal forms = A,) The set of E-normal-forms of correct programs is lan-
guage A,,.

3.6 Examples

We present two examples that illustrate the hygienic [7] manipulation of identifiers of our se-
mantics. More examples can be found in [3].

Example 1. Use of locally defined identifiers in a macro definition.

We define a macro begin as follows:

daf

[begin a b ((Az.b) a)]

The instance (begin y° z°) expands to ((Az.z') 3°) as follows:

(begin y° %) "= ((Az.b) a)[{a + ¢°, {b <+ 20 ¢}}]

2 (Anb)[{a 1 {b 2% 6}}] alfa « 4, {b < 2, ¢}}])
g (ablfa 9, (b 2%, 1112209]) affa e o, {b 2%, 41})
By (Awbl{a « 40, {b « 2%, ¢} 11a001]) 40)

B (Owblfa e 12007, {b « o0, gH1a00})) 40)

B3 (wbl{a « 501200, (b 201007, 6100 1)) 40)
B2l (wbl{b « 2012004, g1a001}]) 40)

E) (wa%a00d))

92 (Owa') 40)

Example 2. Use of global identifiers in a macro definition.
We define a macro curryf as follows:

1I=5

((f°) b)]

The instance (curryf f° z%) expands to ((f° f°) z°) as follows:

[curryf a b

(Intro)

(curryf 0 % CEEO (10) b)[{a £0, {b 0, g}}]
(Eapp) 0 0 0
2 (£9 a)[{a £°, {b 20, $}}] bl{a « O, {b < 2°, $}})
Hgw2) (19 a)[{a « 9, {b 2, $}}] bl{b « 2°, 4}])
) (79 a)[{a ¢ 1%, {b 2, ¢}}] 2*)
o) (190{a 19, (b + 2%, $}}] al{a « 19, (b + 2, 4}}]) 2°)
Epar) (79 alfa « f°, {b ¢ 40, 4}}) 2¥)
) ((f0 10y 40)

4 Mixing expansion and reduction

Traditionally macro expansion is completely done before evaluation. We explore the possibility
of mizing expansion and evaluation by adding the S—rule to relation = g.

Syntax:

=num | 2" | a | (Ax.r) | (Nar) | (r r) | (Lr

s u= ¢ | {a<rs} | sta™P

Rules:

Substitution Introduction:

Shift operator:
pramd

{a <+, s}chm’b
numTacm’ml’b
Fpgmm’ b
ac"Tacm’ml’b
£t
x”Tw”’ml’f
y e
atgmm’ b
(Az.r)tx
()t
)

)z

m,m’,b
m,m’,b
(,},.T m,m’,b

!
(Tl o m,m’,b

=E

=E

=E
=E
=E
=E

) | rls] | et

rls], if 3 d= Er € D such that
Z?((Lr),d) and s = S((Lr),d)

bls], if a#b

(Az.r[st2%/])

(Az.(r1z%)[{a < @, sta™"}]),
if a[s]:>Ea:

(Ab.r[s]), 1=

(r1fs] r2[s])

if afs

¢
{a + rtzm0b, sTacm’b}
num

" if n<m

"t if > m

y"oif z#y

Azt +1b)

a

(

(Ay.rta™m by if z gy
()\a.rTa:m’m"b)

(

TITIm,m’,b TQTLEm’m”b)

FExprs
Subst

Figure 2: Expansion System

10

Syntax:

r o= num | " | a | (Az.r) | (Mar) | (r r) | (Lr) |

rls] | rle) | rtemmh | pian
s u= ¢ | {a<rs} | sta™b

t u= ¢y | {z" 1t} | 1z

=gpr == U=p

Rules:

VarSubstitution Introduction:
((Az.ry) m9)
Unshift Eliminiation:

numlz™

(Az.r)lz™
(Ay.r)dz™
(Aa.r)lz™
(r1 ro)lx™
VarSubstitution Elimination:

num/t]

2" [¢1]

" [{x" < r,t}]

2" [{x™ < r,t}]

z"[{y" r.t}]

(Az.r)[t]

(r1 r2)t]
Shift operator on
VarSubstitutions:

¢tz

{z™ « r,t}tx

{y™ « r,t}1z

(ril{z < ro, ¢ }]) 2

num
", if n<m

" if n>m
y"

Jif x £y

a
(Az.rlz™th)
(Ay.rlz™), if z #y
(Aa.rlx™)

(

ridx™ rolaz™)

b1
{zmF1 100 f 112}
{y™ « rTxO’U’f,th}

VExprs
Subst
VarSubst

Figure 3: Expansion and Reduction System

11

[let x be v in gL ((Ax.B) v)] (let = be 1 in ((A\y.y) x)) € Pgm

((x.B) v)[{x =z, {v = 1,{B < (Ay.y), $} }}]

((Ax.B)[s] v[s])
where s = {x < z,{v + 1,{B + (A\y.y), ¢} }}

(xB)[s] VI{v + 1,{B « ()), 6}})
((Ax.B)[s] 1)

(B2 [{x &, s7a®01})) 1)
Mo.Bl{x o, s12004}]) 1)
Az.B[s12004]) 1)

Az.B[{B + ((A\y.y) =), ¢}tz"%]) 1)
Az.B[{B « ((A\y.y) =)ta®0t, ¢12®0}]) 1)
Az.((Ay-y) x)1z®%) 1)

(Az.((Ay.y) a0t 2tz®0h)) 1)
((Az.((Ay-ytz®0h) atz®01)) 1)
((Az.((Ay.y) «tz01)) 1)
((
((

(A
((
((
((
(Az.B[{v < 1{B « ((A\y-y) z),¢}}12"%]) 1)
((
((
((
((
(

Az.((Ay-y) z)) 1)
(Myy) 2){z « 1, di}])da”

continues

Az.B[{v 1129 {B « ((A\y.y) z),¢}12*0}]) 1

Not. def. omited

Az.B[{x ¢ z1z%% {v « 1.{B « ((\y.y) =), ¢}}12%1}]) 1)

Figure 4: Evaluation of a program

Adding the f—rule

12

Adding the -rule to relation =g is not trivial because rules for manipulating new operations
are needed.

The inclusion of the S-rule adds a new type of substitutions to the system (also existing
in the Ao—calculus): substitutions of variables by expressions. The elimination rules for these
substitutions force the definition of a new renaming operation analogous to shift (1).

((Ayy) 2){z < L, di}])da° (cont.)
Ayy){z < Lo} al{z < 1, ¢:}])a°
Ay-y)l{z « 1, ¢e}] 1)a”
Ayyl{z < 1, ¢} ty]) 1)4a”
Ayyl{z 119%07 ¢ity})) 1)4a®
(

(

(

(

Lo (yy)la® 1020)
Y (Oyala®) 11a0)
e (rgpda®) 1)
S (Owa))

L Gl < 1oy’
Gara) 0

(Uzg%ugl) 1

Figure 5: Evaluation of a program, continuation

a f-reduction is done, a A operator disappears; therefore, the exponent of identifiers must be
updated accordingly. The renaming unshift operator (}.) performs this updating, decreasing the
exponent of variables. The expression rlz"™ means rename every free occurrence of ™ in r by

x"~! when n > m. Specifically, the f-rule in the extended system (=gg) is:

(Az.r1) r2) =gr (ml{z < ry, ¢}])a”

The complete set of rules is in Figure 3. An example is in Figure 4.

The new system, which naturally mixes evaluation and expansion, has two advantages over
the traditional systems that expand macros and evaluate the expanded code in two different
passes. First, our system evaluates the program in one pass obtaining the same result. This
equivalence can be stated:

Dp=%e and e—*>ﬁv & Dp=Erv

where — 4 is the relation that defines the semantics of A,. Second, the expansion of some
instances may be avoided by defining a strategy of rewriting where f-rules are applied first.

13

The following example illustrates this optimization [3]:

Og-((Azy) (et u be Qwa) in (u y))))
Shn Owlylle « (et u be (waw) in (u y), })a?)
Lard (. (ylg])1a®)

Yarl (nyyla®)

Yars (ayy)

Here, the expansion of let is avoided.

4.2 Properties of the extended system

The set of = ggr-rules is not noetherian, since —4 is not noetherian in A,. But it is Church-
Rosser. Church—Rosserness follows as a corollary of strong confluence. The detailed proof is in
Appendix A.

Lemma 1 (Strong Confluence) The relation = gr on correct programs is strongly confluent:
Vaoyz.(z=>pry A =g 2) = Ju.(y =kru A 2 =%g u)
where the notation =% means zero or one steps of reduction.

Theorem 4 (Church—Rosser) The relation = ggr on correct programs is Church—Rosser.

5 Conclusions and related work

We present a language £ for defining macros over the A—calculus with numerical constants
and labeled variables (A,). A formal semantics of a macro processor, which maps £ into A, is
defined using explicit substitutions. A rewriting semantics of £ results from mixing expansion of
macros and evaluation. This semantics has three advantages. First, it is an uniform framework
for f—reduction and expansion of macro instances. Second, it is based on a well-known theory:
the A—calculus. Third, it intuitive and closely models the practice of macro expansion.

We base our macro definition language on the work by Kohlbecker [7, 15, 16]. It preserves
the expression structure of the core language, as does Kohlbecker’s, but it does not include
ellipsis or recursive macro definitions.

Work has been done in designing powerful tools for defining macros and efficient algorithms
for their expansion [5, 6, 7, 15, 16]. These works provide a good diagnosis on the problems that
must be solved at macro expansion. Kohlbecker defines hygiene in macro expansion; that is,
locally introduced identifiers should not been captured by expansion, and identifiers global to the
macro definition should not be renamed. Our systems are hygienic according to these criteria.
Clinger et al [5] developed an efficient and hygienic expansion algorithm for macro expansion.
Their algorithm also solves local macros, a case that we do not consider. However, whereas
Clinger’s algorithm renames all variables bound by procedure abstractions, our semantics keeps

14

the same variable names in all cases, because our renaming involves only the exponents. This
fact corresponds to one of the principles of notational definitions defined by Griffin [9, 10] that
says that names should be preserved.

Our formal semantics of £ is based on the Ao—calculus of Abadi et al. Two types of sub-
stitutions interact in the calculus: reduction substitutions (introduced by the application of the
f-rule), and expansion substitutions (introduced by the application of the Intro-rule). We
adapt Abadi’s shift operator to work with names of identifiers instead of de Bruijn notation and
we add rules for eliminating shift operators. Hardin et al [19] also eliminate them, although
they use de Bruijn notation.

Formal semantics of macro expansion has been studied in depth by Kohlbecker [15] and Grif-
fin [9, 10]. Kohlbecker uses a denotational framework. Our work is closer to Griffin’s. He uses
an extended typed A-calculus to encode a language comparable to our language £. Notational
definitions are encoded as new functional constants, that when applied produce the expansion
of an instance. Thus, the resulting encoding also mixes expansion and evaluation. We explicitly
manipulate substitutions to model macro expansion. Our semantics directly and dynamically
generates such substitutions from notational definitions, avoiding the need of encoding the lan-
guage. We believe our calculus that expands and evaluates expressions is closer to practice and
implementation. In addition, explicit substitutions can be used for macro expansion on other
languages.

We implemented a prototype of the = gp—system in Lazy ML where we experimented dif-
ferent evaluation strategies. Our “lazy” prototype delays macro expansion as long as possible.
Further work is to be done in sophisticating the macro definition language to include ellipsis,
recursive notational definitions (we still need a restriction that guarantee finite expansion), and
local macros. Our work provides a good basis for deepen the study of macros in programming
languages.

Acknowledgements

Thanks to Erik Crank for helping with the details of formal proofs and reading earlier drafts
of this paper, and to Matthias Felleisen for providing helpful comments during the preparation
of this work. We also thank Laurence Puel, who verified the proof of noetherianity of the =g
system. We are grateful to Juan Vicente Echagiie, who read in detail complete drafts of this
report providing helpful insight into some application and formal aspects of this work.

References

[1] M. Abadji, L. Cardelli, P.L.. Curien, and J.J. Lévy. Explicit Substitutions. Technical Report
SRC 54, Digital Equipment Corporation, Palo Alto, California, 1990.

[2] H. Barendregt. The Lambda Calculus, Its Syntaz and Semantics. North-Holland, Amster-
dam, 1981.

[3] A. Bove. Una Semdntica de Abreviaciones Sinticticas usando Sustituciones Explicitas.
Proyecto de Grado, Escuela Superior Latinoamericana de Informdtica, 1990.

15

[4]

[10]

[11]

[12]

[13]

[17]
[18]

[19]

N. De Bruijn. Lambda—calculus Notation with Nameless Dummies, a Tool for Automatic
Formula Manipulation. Indag. Mat., 34:381-392, 1972.

W. Clinger and J. Rees. Macros That Work. In Proc. 18th ACM Symposium on Principles
of Programming Languages, pages 155—-162, Orlando, 1991.

K. Dybvig, D. Friedman, and C. Haynes. Expansion-Passing Style: Beyond Conventional
Macros. In ACM Conference on Lisp and Functional Programming, pages 143-150, 1986.

Kohlbecker E., D.P. Friedman, M. Felleisen, and B. Duba. Hygienic macro expansion. In
Proc. 1986 ACM Conference on Lisp and Functional Programming, pages 151-161, 1986.

M. Felleisen. On the expressive power of programming languages. In Proc. 1990 European
Symposium on Programming. Neil Jones, Ed. Lecture Notes in Computer Science, 432,
pages 134-151, 1990.

T. Griffin. An Environment for Formal Systems. Technical Report 87-846, Department of
Computer Sciene, Cornell University, 1987.

T. Griffin. Notational definition — A formal account. In Proc. Symp. Logic in Computer
Science, pages 372-383, 1988.

J. R. Hindley and J. P. Seldin. An Introduction to Combinators and Lambda Calculus.
London Mathematics Society, 1987.

G. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems. CACM, 27(4):797-821, October 1980.

G. Huet and D. C. Oppen. Equations and Rewrite Rules: A Survey. In R. V. Book, editor,
Formal Language Theory: Perspectives and Open Problems. Academic Press, 1980.

B. W. Kernigham and D. M. Ritchie. The C Programming Language. Prentice-Hall, New
Jersey, 1978.

E. Kohlbecker. Syntactic Ezxtensions in the Programming Language Lisp. PhD thesis,
Indiana University, August 1986.

E. Kohlbecker and M. Wand. Macro-by-example: Deriving Syntactic Transformations from
their Specifications. In Proc. 14th ACM Symposium on Principles of Programming Lan-
guages, pages 77-85, 1987.

P. J. Landin. The next 700 programming languages. CACM, 9(3):157-166, 1966.

J. Rees and W. Clinger (Eds.). The revised® report on the algorithmic language Scheme.
In SIGPLAN Notices, volume 21 (12), pages 37-79, 1986.

T. Hardin and J.J. Lévy. A Confluent Calculus of Substitutions. In Japan Artificial Intel-
ligence and Computer Science Symposium, Izu, December 1989.

16

A Proofs

Theorem 1 (Noetherian) The relation =g on correct programs is noetherian.

Proof.

Program correctness assures that the Intro rule is always applicable in the presence of a
macro instance, and that the set of notational definitions follows the restrictions defined in 3.2.
We define a positive measure function f on the expressions r € FEzxprs such that for every
expansion rule r=p 7', the following condition holds:

f(r)3 f(r')

The function f is a pair defined as follows: f(r) = (fg(r), fs(r)) where the 1 relation is defined

as:

(fE(r), fs(r)3 (fe(r'), fs(r))

& felr)>fr

or fp(r) = fe(r') and fs(r) > fs(r')

The definition of the two auxiliary functions is in the following table:

r fe(r) fs(r)

(e1...€em))

where I2({e1 ... em)s I 2 1) (0, fales) +3) % fulr) (S0 fsles) +3) + fs(r)

rfs] Fio(r) * £i(5) Fs(r)+ fs(r)

num 2 2

z" 2 2

a 2 2

(Az.r) fe(r)+2 fs(r)+2

(Aa.r) fe(r)+2 fs(r)+2

(71 7"2)(fe(r) + fe(ra) +1 fs(r1) + fs(ra) +1

g™ b fe(r) 2% fs(r)

¢ P 2

fa e rs) Fo(r) + () Fs(r) + fs(s) +2

stgmmb fe(s) 2% fs(s)
Observations:

1. for all v, f(r) > (0,0).

2. f(s)3(2,2), s € Subst.

Rules Intro, £, ., and Ey . in Figure 2 are in an abbreviated form. For this proof, we
write these rules in their extended form:

(Intro) 1

df
= r]...

17

[l

df

ri[S((Lr),1;

ro)(Lr)=E

3=

r)l, it 72((Lr), 1; L

;)

(Ey,.1) (ar)[{bi < r1,...{a ¢ 1o, {bm < m, ¢} ...} .. J]=E

Azrtz2®[{br ¢ 120, ... {a ¢ 2, {bm rmt2®, ¢} ...} ...}]) where ra= 7 pz™

(Ey,.0) (Mar)[{bi < r1,...{a ¢ 1o, {bm < rm, ¢} ...} .. J]=E

(Abr[{by < 11, .. {a b, ... {bm T, ¢} ...} ...}]) where ro=gb

Let an arbitrary expansion rule be of the form r=-gr’. Tt is easy to verify that:

e For the Intro and the elimination (E) rules: fg(r) > fr(r'). For the rest of the rules (S):
fe(r) = fe(r).

e For the shift (S) rules on expressions and substitutions: fg(r) > fg(r').

We present a detailed proof only for the case of Intro; the other cases are straight forward. The

d, d,
Introruleis (e1...em)=p r[s], where Z7((e1 ... em),! 2 r), and s = S((e1...em),! g T).

fe((er...en)) = (X fr(ei) +3) * fr(r)

fe(rls]) = [fe(s)* fu(r) ;
fEES(<61 ceeem),l Ef r)) * fE(r)

"'7wjh(_6jh7¢])*fE(,r) 7hSn

I
~
=

> &
D

|
~
=
D
<
—
+
+
~
=
’«T
.
N
+
~
=
=
*
~
=
S

(
(
(fr(e
(
(

— o ,
< 1)+ .o+ frlen) +2) * fr(r)
< (feler) +...+ fe(en) + 3) * fr(r)
= fE(61...€n>)

Thus, for every rule r=pg r', f(r)3 f(r'). Since f is a positive function, the relation defined by
the = p—rules is strongly normalizing.
O

Definition 3 (Critical pair) Let Li=pg Ry, and Ly=pg Ry be two rules of =g, and let M be
a subterm of Ly at position u such that M is not a variable?. Then, (P,(Q) is a critical pair in

=E Zﬁ
1. M and Lo are unifiable.

2. The substitutions used for unification are o1, and oy such that the term N = o1(M) =
o9(Ly) does not have variables in common with L.

3. P =o01(L1)[u < o3(Ry)]

2A rule is applied when its left hand side unifies with an expression. In the unification, rule variables match
subexpressions of the given expression.

18

Ul(Ll)

Ll:)E/\LQ:ERQ

Q:O'1(R1) Pzal(Ll)[u<—02(R2)]
Figure 6: Critical Pairs.

4. Q =o1(Ry)

This concept is best illustrated in the diagram of Figure 6. For a detailed explanation of critical
pairs, we refer the reader to [12, 13].

Lemma 1 (Weakly Church Rosser) The relation =g on correct programs is weakly Church—
Rosser, this is:
Vayz.(z=p yAz=pz) = (Guz Sguly =g u)

Proof.

The proof is based on the lemma that says that a term rewriting system with no critical
pairs is WCR [12]. Two steps are needed.

First, we must prove that =g is a term rewriting system. A term rewriting system is a set
of rewriting rules such that the application of a rule does not introduce new variables. The rules
that may offer doubts are Intro, £, ., and E) .. Observe their extended forms:

e The Intro rule does not introduce new variables since the expression r appears in the set
of notational definitions, and the substitution s is built from metavariables appearing in r
and expressions appearing in (Lr).

e For rule Ey ., expression r, reduces to z". Thus x appears in 7, and n may result from
renaming operations.

e For rule £y ., the metavariable b necessarily appears in 7.

Second, considering every possible pair of rules of =g, we easily verify that there are no
critical pairs in =p.
]

Theorem 2 (Church—Rosser) The relation =g on correct programs is Church—Rosser.
Proof.
This theorem directly follows from Theorem 1 and Lemma 1.

d

Theorem 3 (E—normal forms = A,) The set of E-normal-forms of correct programs is lan-
guage A, .

19

Proof.

Program correctness assures that every macro instance in the program corresponds to a
notational definition appearing in the list of macro declarations.

¢ (=) An E—normal-form of a correct program is in A,.

Let r be an E-nf of a correct program.

1. r does not contain macro instances because if it had them, they would be eliminated

by the application of the rule Intro. If the Intro rule were applicable, r would not
be an E-nf.

. r does not contain substitutions. Substitutions are generated by the Intro-rule.

Suppose by contradiction that r contains a subexpression of the form r'[s]. If a
metavariable appears in ', it has a corresponding expression in s because r derives
from a correct program and the set of notational definitions is well-defined. It is easy
to show, by induction on the structure of 7/, that s can be eliminated whether or not
metavariables appear in 7'

. r does not contain 1 operators. By induction of the structure of r, we can prove that

any 1 operator can be eliminated.

. 7 does not contain metavariables because it does not contain substitutions and derives

from a correct program.

Thus, r does not contain metavariables, macro instances, substitutions, and 1 operators;
risin A,,.

e (<) Every expression e € A, is an E-normal-form.

An expression of A,, (see figure 2), never contains a macro instance, a substitution, or a
T-operator. Thus, no =g rule can reduce it.

O

Lemma 2 (Strong confluence) The relation =g is strongly confluent.

Proof.

The proof goes by structural induction on V Ezprs, Subst, and VarSubst.
We want to prove that:

Vorr'r" (r=gr " A r=grpr") = Ju,.(r' =wrur N ' =%r Up)

Notation: we use ' and r” for expressions that derive in one step from r, and u, for the term
to which 7’ and r” converge (see Figure 7). Rule names may appear in the arrows as well; (A)
and (B) range over rule names.

Base Cases.

When an expression is a number, an identifier, a metavariable, or an empty substitution no
rule = gpg is applicable. Thus, the theorem follows.

For terms and subtitutions listed in the following table, only one rule is applicable. Thus,
the theorem follows.

20

Notation:

Figure 7: Strong confluence.

Expression Rule

pramm b Ssmi

num Tacm’ml’b Senum

z" TIm,ml’b Sevart, S€par2; Sevars, S€vars
y" TIm,ml’b Sevars

a Tmm’m”b Semy

num]z™ Uenum

" z™ Uevar1; Ueyara
y"lz™ Ueyars

alz™ Uemy

xn[(ﬁt] Vvarl

RS SVt

Inductive Cases.

We present only the diagrams for application and macro instances. For the rest of the cases,
we reason in an analogous manner. We assume the theorem follows for expressions ry ... r,, and
prove the theorem for expressions built up from these.

21

Application. Case (1):

(r1 r2)
(A)/\ (B)
(r} r2) (r1 r5)
(B) /4)
(r r5)
Application. Case (5), rule g:
((A\z.ry) 7o)
(r1l{z < 72, ¢1}] (Az.r1) 15)

\/

(ril{z < r5. i3]I’

22

Application. Case (2):

(r1 75) (r1 73)

Application. Case (4), rule 3:

((Az.ry) m9)

8 /\(A)

(ri[{z < ro, $1}])da”
(A)

(ril{z ¢ r2, ¢ }]) 2’

Macro instance. Case (1):

(L. T)
(A)/\(B)
TieTjeeTn) {ryorierh
i~ T

(Fr)

Macro instance. Case (2):
(ri...ri...7Ty)
/\ (B)
(ri...rio..rp) (ry...rl oo
(P Upy ooy

(4)

Macro instance. Case (3), rule Intro:

(ri...ri...rp)

Intro A)

r{x1 < ri,. {x; — Tiy {xn 10, 0} (ri...rbo.orp)

(4) ﬂ

ri{xi <7, {xi 7l {xn < Ty 03}

O

Theorem 4 (Church—Rosser) The relation = gg is Church-Rosser.
Proof.

Directly follows from Lemma 2, since strong confluence implies confluence.
]

23

B A prototype in lazy ML

A prototype has been implemented in lazy ML. The source code is listed below.

Module “expand.m”

module

-- Expansion and evaluation of a program

#include "lenguaje.t"
#include "eliminst.t"

export Expand;

rec

-- Expands and evaluates a program
Expand(program(D,e)) = Expandl(D) (e) (false)

and

-- Expands and evaluates an expression. If the third parameter is true,
-- the function stops at an abstraction of a variable

Expand1 (D) (exp) (bool) =
case exp in
num(n)
var(x,n)
mvar (a)
vabs(x,e)

mvabs(a,e)
apl(el,e2)

: num(n) ||

: var(x,n) ||
: mvar(a) ||
: if bool

then vabs(x,e)
else vabs(x,Expandl(D) (e) (false)) ||

: mvabs(a,e) ||

case Expand1(D) (el) (true) in

vabs(x,e)

Expand1 (D) (eunshift (tsust(e,ct(tpar(x,0,e2),vt)), x,0))

otherwise :

end ||
sust (e, s)
tsust(e,s)
eshift(e,x,n,m,b)
eunshift(e,x,n)
eerror
ins(le)

(bool) ||
apl(Expandl (D) (el) (true) ,Expandl (D) (e2) (false))

: Expand1(D) (ElimSust (D) (e) (s)) (bool) ||

: Expand1 (D) (E1imTSust (D) (e) (s)) (bool) ||

: Expand1(D) (ExpShift (D) (e) (x) (n) (m) (b)) (bool) ||
: Expand1 (D) (ExpUnShift (D) (e) (x) (n)) (bool) ||

: eerror ||

: Expand1(D) (ElimInst (D) (ins(1le))) (bool)

24

end

and

-- Elimination of an aplication of a substitution
ElimSust (D) (exp) (st) =
case exp in

num(n) : num(n) ||
var (x,n) : var(x,n) ||
mvar (a)

case st in

Vs : eerror ||
cs(par(b,e),s) : if a =b
then e

else sust(mvar(a),s) ||
sshift(s,x,n,b) : ElimSust (D) (mvar(a)) (SustShift(s) (x) (n) (b))
end ||
vabs(x,e) : vabs(x,sust(e,sshift(st,x,0,false))) |
mvabs(a,e) :
case Expand1(D) (sust (mvar(a),st)) (false) in

var(x,n) : vabs(x,sust(eshift(e,x,0,0,false),
cs(par(a,var(x,0)),sshift(st,x,n,true)))) ||
mvar (b) : mvabs(b,sust(e,st)) ||
otherwise : eerror
end ||
apl(el,e2) : apl(sust(el,st),sust(e2,st)) |
sust(e,s) : ElimSust (D) (E1imSust (D) (e) (s)) (st) |
tsust(e,t) : ElimSust (D) (E1imTSust (D) (e) (t)) (st) |
eshift(e,x,n,m,b) : ElimSust (D) (ExpShift (D) (e) (x) (n) (m) (b)) (st) ||
eunshift(e,x,n) : ElimSust (D) (ExpUnShift (D) (e) (x) (n)) (st) ||
eerror : eerror ||
ins(1le) : ElimSust (D) (ElimInst (D) (ins(le))) (st)
end
and

-- Elimination of the shift operator over substitutions
SustShift (sust) (x) (n) (bool) =
case sust in

vs : vs ||
cs(p,s) : cs(ParShift(p) (x) (n) (bool),sshift(s,x,n,bool)) ||
sshift(s,y,m,b) : SustShift(SustShift(s) (y) (m) (b)) (x) (n) (bool)
end
and

25

-- Elimination of the shift operator over pairs of metavariables and

-- expressions

ParShift (pair) (x) (n) (bool) =

case pair in

par(a,r) : par(a,eshift(r,x,n,0,bo0l))

end

and

-- Elimination of the shift operator over expressions
ExpShift (D) (exp) (x) (m) (m1) (bool) =

case exp in
num(n)
var(y,n)

mvar (a)
vabs(y,e)

mvabs(a,e)
apl(el,e2)
sust (e, s)
tsust(e,t)
eshift(e,y,n,nl,b)
eunshift(e,y,n)
eerror
ins(le)

end

and

: num(n) ||
cifx =y

then if n < m
then var(x,n)
else if n > m
then var(x,n+1)
else if bool
then var(x,ml)
else var(x,n+1)
else var(y,n) ||

: mvar(a) ||
rifx =y

then vabs(x,eshift(e,x,m+1,mi+1,bool))
else vabs(y,eshift(e,x,m,ml,bool)) ||

: mvabs(a,eshift(e,x,m,ml,bool)) ||

: apl(eshift(el,x,m,ml,bool),eshift(e2,x,m,ml,bool)) ||

: ExpShift (D) (ElimSust (D) (e) (s)) (x) (m) (m1) (bool) ||

: ExpShift (D) (E1imTSust (D) (e) (t)) (x) (m) (m1) (bool) ||

: ExpShift (D) (ExpShift (D) (e) (y) (n) (n1) (b)) (x) (m) (m1) (bool) ||
: ExpShift (D) (ExpUnShift (D) (e) (y) (n)) (x) (m) (m1) (bool) ||

: eerror ||

: ExpShift (D) (ElimInst (D) (ins(1le))) (x) (m) (m1) (bool)

-- Elimination of var-substitutions

ElimTSust (D) (exp) (tst) =
case exp in
num(n)
var(x,n)
case tst in
vt

: num(n) ||

: var(x,n) ||

ct(tpar(y,m,e),t) : if x = y

26

then if n = m

then e

else tsust(var(x,n),t)
else tsust(var(x,n),t) ||

tsshift(t,y) : E1imTSust (D) (var(x,n)) (TSustShift (t) (y))
end ||
mvar (a) : eerror ||
vabs(x,e) : vabs(x,tsust(e,tsshift(tst,x))) |
mvabs(a,e) : eerror ||
apl(el,e2) : apl(tsust(el,tst),tsust(e2,tst)) |
sust (e, s) : E1imTSust (D) (E1imSust (D) (e) (s)) (tst) |
tsust(e,t) : E1imTSust (D) (E1imTSust (D) (e) (t)) (tst) |
eshift(e,x,n,m,b) : ElimTSust (D) (ExpShift (D) (e) (x) (n) (m) (b)) (tst) ||
eunshift(e,x,n) : E1imTSust (D) (ExpUnShift (D) (e) (x) (n)) (tst) ||
eerror : eerror ||
ins(le) : E1imTSust (D) (ElimInst (D) (ins(1le))) (tst)
end
and

-- Elimination of shift operator over var-substitutions
TSustShift (tsust) (x) =
case tsust in

vt vt ||
ct(p,t) : ct(ParTShift(p) (x),tsshift(t,x)) |
tsshift(t,y) : TSustShift(TSustShift(t) (y)) (x)
end
and

-- Elimination of the shift operator over pairs of variables and expressions
ParTShift (pair) (x) =
case pair in
tpar(y,n,e) : if y = x
then tpar(x,n+l,eshift(e,x,0,0,false))
else tpar(y,n,eshift(e,x,0,0,false))
end

and

-- Elimination of the unShift operator over expressions
ExpUnShift (D) (exp) (x) (m) =
case exp in
num(n) : num(n) ||
var (y,n) 1 if x =y
then if n < m

27

end

end

mvar (a)
vabs(y,e)

mvabs(a,e)
apl(el,e2)

sust (e, s)
tsust(e,t)
eshift(e,y,n,m,b)
eunshift(e,y,n)
eerror

ins(le)

then var(x,n)
else var(x,n-1)
else var(y,n) ||

: mvar(a) ||
rifx =y

then vabs(x,eunshift(e,x,m+1))
else vabs(y,eunshift(e,x,m)) ||

: mvabs(a,eunshift(e,x,m)) ||

: apl(eunshift(el,x,m),eunshift(e2,x,m)) |

: ExpUnShift (D) (ElimSust (D) (e) (s)) (x) (m) ||

: ExpUnShift (D) (E1limTSust (D) (e) (t)) (x) (m) ||

: ExpUnShift (D) (ExpShift (D) (e) (y) (n) (m) (b)) (x) (m) ||
: ExpUnShift (D) (ExpUnShift (D) (e) (y) (n)) (x) (m) ||

: eerror ||

: ExpUnShift (D) (ElimInst (D) (ins(le))) (x) (m)

28

Module “eliminst.m”

module

-- Elimination of an instance
#include "lenguaje.t"

export ElimInst;

rec

-- Introduction Rule
ElimInst(1d) (ins(le)) =
case 1d in
vd : eerror ||
cd(d,1) : if Inst(ins(le))(d)
then CreoSust(ins(le)) (d)
else ElimInst (1) (ins(le))
end

and

-- Returns true if the expression is an instance of the declaration,
false otherwise
Inst(ins(le)) (dec(lh,el)) = Insti(le) (1h)

and

-- Returns true if the list of expressions matches a left hand side,
false otherwise
Inst1(le) (1h) =
case le in
vl : case lh in
vlh : true ||
otherwise : false
end ||
cl(e,1) : case lh in
clh(mv,1h1) : if Match(e) (mv)
then Inst1(1) (1h1)
else false ||
otherwise : false
end
end

29

and

-- Returns true if the expression and the first parameter are both the
same identifier
-- or if the second parameter is a metavariable, false otherwise
Match(exp) (mv) =
case mv in
v(x) : case exp in
var(y,0) : if x =y
then true
else false ||
otherwise : false
end ||
m(x) : true
end

and

-- Creates the expression that results from the application of the
introduction rule
CreoSust (ins(le)) (dec(1l,r)) = sust(r,CreoSustl(le) (1))

and

-— Creates the substitution that result from the instance and the lhs
CreoSusti1(le) (1d) =
case le in
vl :vs ||
cl(e,1) : case 1d in
clh(v(x),1d1l) : CreoSust1(1)(1d1) ||
clh(m(x),1d1) : cs(par(x,e),CreoSust1(1) (1d1))
end
end

end

30

Module “print.m”

module

—-— Pretty printer functions
#include "lenguaje.t"
export ProgPrint, EPrint;
rec

-- Programs
ProgPrint (program(ldec,exp)) = LDPrint(ldec) @ EPrint (exp)

and

-- List of declarations
LDPrint (1dec) =
case ldec in
Vd . nn | |
cd(d,1d) : "{" @ DPrint(d) @ "}\n" @ LDPrint(1d)
end

and

—-- Declarations
DPrint(dec(l,r)) = LhsPrint(l) @ " = " @ EPrint(r)

and

-— Left hand sides
LhsPrint (1h) =
case lh in
vlh SR
clh(v(x),1) : "v(" @ x @ ")," @ LhsPrint(1) ||
clh(m(x),1) : "m(" @ x @ ")," @ LhsPrint(1)
end

and
-- Expressions
EPrint (exp) =

case exp in
eerror : "Error" ||

31

num(n) : "n(" @ itos(n) @ ")" ||

var(x,n) s "v("@x@"," @ itos(n) @ ")" ||
mvar (x) : "mv(" @ x @ ")" |]
apl(el,e2) : "(" @ EPrint(el) @ " " @ EPrint(e2) @ ")" ||
vabs(x,e) : "v("@x @ ")." @ EPrint(e) ||
mvabs(x,e) ¢ "mv(" @ x @ ")." @ EPrint(e) ||
sust (e, s) : "(" @ EPrint(e) @ ")" @ "[" @ SPrint(s) @ "]" ||
tsust(e,t) : "(" @ EPrint(e) @ ")" @ "[" @ TSPrint(t) @ "]" ||
eshift(e,x,n,m,b) : "(" @ EPrint(e) @ """ @ x @ "," @ itos(n) @ "," @
BoolPrint(b) @ ")" ||
eunshift (e,x,n) : "(" @ EPrint(e) @ "v" @ x @ "," @ itos(n) @ ")" ||
ins(le) : "<" @ LEPrint(le) @ ">"
end
and

-- List of expressions
LEPrint(listexp) =
case listexp in
Vl . nn | |

cl(e,le) : EPrint(e) @ "," @ LEPrint(le)

end

and

-- Pairs of metavariables and expressions
PPrint(par(x,e)) = "{mv(" @ x @ ")" @ "," @ EPrint(e) @ "}"

and

—- Substitutions
SPrint (sust) =
case sust in
VS . nn | |

cs(p,s) : PPrint(p) @ "," @ SPrint(s) |
sshift(s,x,n,b) : "((" @ SPrint(s) @ ")"" @ x @ itos(n) @

BoolPrint(b) @ ")"
end

and

-- Pairs of variables and expressions
TPPrint (tpar(x,n,e)) = "{v(" @ x @ "," @ itos(n) @ ")" @ "," @ EPrint(e) @ "}"

and

32

-- Var-substitutions
TSPrint (tsust) =
case tsust in
vt LN
ct(tp,ts) : TPPrint(tp) @ "," @ TSPrint(ts) ||
tsshift(ts,x) : "((" @ TSPrint(ts) @ ")"" @ x @ ")"
end

and

-— Booleans
BoolPrint(b) =
case b in
true : "TT" ||
false : "FF"
end

end

33

Module “lenguaje.m”

module

—-- Definition of the language

#define id (List(Char))

export Prog, ListDec, Dec, lhs, MV, Exp, ListExp, Sust, Par, TPar, TSust;
rec

-- Programs
type Prog = program(ListDec # Exp)

and
-- List of declarations
type ListDec = vd +
cd(Dec # ListDec)

and

-- Declaration or Notational Definition
type Dec = dec(lhs # Exp)

and

-- Left hand side (1lhs) of a declaration
type lhs = vlh +
clh(MV # 1hs)

and

-- Auxiliary definition used in lhs
type MV = v(id) +
m(id)

and

-- Expressions

type Exp = eerror +
num(Int) +
var (id # Int) +
mvar (id) +

34

apl (Exp # Exp) +

vabs (id # Exp) +

mvabs(id # Exp) +

sust (Exp # Sust) +

tsust(Exp # TSust) +

eshift (Exp # id # Int # Int # Bool) +
eunshift (Exp # id # Int) +
ins(ListExp)

and
-- List of expressions used in instances
type ListExp = vl +

cl(Exp # ListExp)

and

-- Pairs of metavariables and expressions used in substitutions
type Par = par(id # Exp)

and
—-- Substitutions used in expansion
type Sust = vs +
cs(Par # Sust) +
sshift(Sust # id # Int # Bool)

and

-- Pairs of variables and expressions used in var-substitutions
type TPar = tpar(id # Int # Exp)

and
-- Var-substitutions used in beta reduction
type TSust = vt +

ct(TPar # TSust) +

tsshift (TSust # id)

end

35

Contents
1 Introduction

2 Notational definitions and explicit substitutions
2.1 Notational definitions
2.2 Explicit substitutions. o

3 Macro expansion semantics
3.1 The core language e
3.2 The macro definition language L oL
3.3 Imstance and instance substitution o 0oL
3.4 Operational semantics Lo oL
3.5 Properties of the semantics
3.6 Examples e

4 Mixing expansion and reduction
4.1 Adding the S—rule
4.2 Properties of the extended system

5 Conclusions and related work
References
A Proofs

B A prototype in lazy ML

36

14

15

17

24

