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Abstract

We solve an optimal stopping problem where the underlying diffusion is Brow-
nian motion on R with a positive drift changing at zero. It is assumed that the drift
µ1 on the negative side is smaller than the drift µ2 on the positive side. The main
observation is that if µ2 − µ1 > 1/2 then there exists values of the discounting
parameter for which it is not optimal to stop in the vicinity of zero where the drift
changes. However, when the discounting gets bigger the stopping region becomes
connected and contains zero. This is in contrast with results concerning optimal
stopping of skew Brownian motion where the skew point is for all values of the
discounting parameter in the continuation region.
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1 Introduction
1.1 Motivation. Optimal stopping problems for one-dimensional diffusions is a
much studied topic and there exists a variety of methods for finding solutions. Dur-
ing recent decade some interest has been focused on cases where the underlying
diffusion has exceptional points such as: sticky points; skew points; discontinuities
in the infinitesimal variance and/or drift. The main observation in the presence
of sticky points is that the smooth fit does not in general hold (see for instance
Crocce [8], Crocce and Mordecki [9], and Salminen and Ta [22]). If the diffusion
has skew points then it is possible that in the vicinity of such a point it is not op-
timal to stop for any value of the discounting parameter, as was found by Álvarez
and Salminen [1] and also by Presman [19]. Explicit solutions of optimal stopping
problems when the underlying diffusion has discontinuous coefficients have not,
to our best knowledge, been encountered in the literature. Many of the methods to
solve optimal stopping problems do not, however, exclude such diffusions. This
is, in particular, the case in the approach based on excessive functions, see, e.g.,
Salminen [21], Dayanik and Karatzas [10], Christensen and Irle [5], and Crocce
and Mordecki [9]. Also the approach via variational inequalities and free bound-
ary problems, see Lamberton and Zervos [12] and Ruschendorf and Urusov [20],
does not seem to require continuity of the diffusion coefficients. However, our
main motivation for the present work is to study how the stopping set changes as a
function of the discounting parameter when, in our case, the drift is discontinuous.

1.2 Diffusions and the optimal stopping problem. Consider a non-terminating
and regular one-dimensional (or linear) diffusion X = {Xt : t ≥ 0} in the sense
of Itô and McKean [11] (see also Borodin and Salminen [4]). The state space ofX
is denoted by I, an interval of the real line R with left endpoint a = inf I and right
endpoint b = sup I, where −∞ ≤ a < b ≤ ∞. The notations m and S are used
for the speed measure and the scale function, respectively, ofX.Moreover, for r ≥
0 let ϕr and ψr denote the decreasing and increasing, respectively, fundamental
solutions of the generalized ODE (see [4] II.10 p.18)

d

dm

d

dS
u = ru. (1)

Let Px stand for the probability measure associated with X when starting from
x, and by Ex the corresponding mathematical expectation. Denote byM the set
of all stopping times with respect to {Ft : t ≥ 0}, the usual augmentation of
the natural filtration generated by X. Given a non-negative lower semicontinuous
reward function g : I → R and a discount factor r ≥ 0, consider the optimal
stopping problem consisting of finding a function Vr and a stopping time τ∗ ∈M,
such that

Vr(x) = Ex[e−rτ
∗
g(Xτ∗)] = sup

τ∈M
Ex[e−rτg(Xτ )]. (2)

The value function Vr and the optimal stopping time τ∗ constitute the solution of
the problem.

1.2 References. After the classical works of McKean [13], Taylor [24] and Merton
[14] there has been, in recent times, an important effort to characterize optimal
stopping problems with one sided solutions, i.e. such that the optimal stopping
time is a threshold stopping time, usually of the form

τ∗ = inf{t ≥ 0: X(t) ≥ x∗},
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for some critical x∗. In this situation, we say that the problem has a one-sided so-
lution. Villeneuve [25] gives sufficient conditions to have threshold optimal strate-
gies, Arkin [2] gives necessary and sufficient conditions for Itô diffusions with
C2 payoffs functions to have one sided solutions, whereas Arkin and Slastnikov
[3] and Crocce and Mordecki [9] give also necessary and sufficient conditions in
different and more general diffusion frameworks. For more general Markov pro-
cesses Mordecki and Salminen [15], Christensen et al. [7], and Christensen and
Irle [6] propose verification results for one sided solutions, but also for problems
where the optimal stopping time is of the form

τ∗ = inf{t ≥ 0: X(t) /∈ (x∗, x
∗)}.

In this second situation is it is said that the problem has a two sided solution. For
general reference of the theory of optimal stopping, see the books by Shiryaev [23]
and by Peskir and Shiryaev [18].

1.3 Present study. In this paper we are interested to understand situations where
the stopping region is disconnected due to the behavior of the underlying stochastic
process and not due to the properties of the payoff function. Such a case has been
found in [1] with skew Brownian motion as the underlying. The idea is to study the
shape of the continuation set as a function of the discount parameter r. To depart,
we consider a model where the solution of the optimal stopping problem is trivial
in cases r = 0 (no stopping) and r = ∞ (immediate stopping), and describe the
stopping set as a function of r as r increases from 0 to ∞. When isolated con-
tinuation intervals appear when r increases we say that a shape transition occurs.
Such intervals are called bubbles, for the definition, see Section 2

The rest of the paper is organized as follows. In Section 2 we present some
preliminary general results mainly on optimal stopping for diffusions. In Section
3 the Brownian motion with broken drift as the solution of a stochastic differential
equation is introduced and its main characteristics are analyzed. In Section 4 we
solve the optimal stopping problem of the Brownian motion with broken drift with
reward x 7→ (1 + x)+. In particular, it is seen that if the discontinuity in the drift
is big enough a shape transition in the continuation region occurs.

2 Preliminary results
From the general theory of Markovian stopping problems, the optimal stopping
time τ∗ in (2), if such a time exists, can be characterized (see Theorem 3, Section
3.3 in [23]) as the first entrance time into the stopping set

S(r) = {x ∈ I : Vr(x) = g(x)}, (3)

where we have indicated the dependence on the discounting parameter r ≥ 0. The
complement of S(r), i.e., C(r) = I \ S(r) is called the continuation set.

Proposition 1. Let 0 ≤ r1 < r2 be two discounting parameters and consider the
corresponding OSPs as given in (2). Then

Vr1(x) ≥ Vr2(x) for all x ∈ I, (4)

and
S(r1) ⊆ S(r2). (5)
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Proof. Let τ be a fixed stopping time. Then

e−r1τg(Xτ ) ≥ e−r2τg(Xτ ),

and taking the suprema yields (4). Using the characterization of the stopping set in
(3) we obtain now that if x ∈ S(r1) then x ∈ S(r2) resulting to (5).

We recall next the smooth fit theorem from [21], [17], [22]. To fix ideas and to
focus on the case studied below, the theorem is formulated here for a left boundary
point of the stopping region S(r).

Theorem 1. Let z be a left boundary point of S(r), i.e., [z, z + ε1) ⊂ S(r) and
(z − ε2, z) ⊂ C(r) for some positive ε1 and ε2. Assume that the reward function
g and the fundamental solutions ϕr and ψr are differentiable at z. Then the value
function Vr in (2) is differentiable at z and it holds V ′(z) = g′(z).

Since the value function V is bigger than the reward g on the continuation set
C(r) we introduce the following terminology.

Definition 1. A bounded open intervall (x1, x2) ⊆ C(r) is called a bubble if
x1, x2 ∈ S(r).

In [1] it is seen that for skew Brownian motion and a large class of reward functions
one can find a lower bound r0 for the discounted parameter r such that for all r ≥
r0 there is a bubble (containing the skew point). This is, in particular, true for the
reward function g(x) = (1+x)+, i.e., no matter how big is the discounting it is not
optimal to stop at the skew point. In the present paper we study the appearance and
the disappearance of a bubble for a Brownian motion with positive drift changing
at the origin. We define this process - which we call a Brownian motion with
broken drift - in the next section.

To make the presentation more self-contained, we display a result from [1], see
Lemma 2 therein, which is used to verify that a candidate solution of OSP (2) is
indeed the value function. This is essentially Corollary on p. 124 in [23].

Proposition 2. Let A ⊂ I be a nonempty Borel subset of I and

HA = inf{t ≥ 0 : Xt ∈ A}.

Assume that the function

V̂ (x) := Ex
[
e−r HAg(XHA)

]
is r-excessive and dominates g. Then V̂ coincides with the value function of OSP
(2) and HA is an optimal stopping time.

The following technical result is needed in the proof of Proposition 8.

Proposition 3. Let hr1 , r1 > 0, be an r1-excessive function and {hr ; r1 ≤ r <
r2}, r1 < r2, a sequence of functions such that hr is r-excessive , Assume that
hr ≤ hr1 for r ≥ r1 and limr↑r2 hr(x) =: hr2(x) exists for all x. Then hr2 is
r2-excessive.
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Proof. Consider

Ex
[
e−r2thr2(Xt)

]
= Ex

[
lim
r↑r2

e−rthr(Xt)
]

= lim
r↑r2

Ex
[
e−rthr(Xt)

]
≤ lim
r↑r2

hr(x)

= hr2(x),

where in the second step we use the dominated convergence theorem which is
applicable since e−rthr ≤ e−r1thr1 and

Ex
[
e−r1thr1(Xt)

]
≤ hr1(x) <∞.

3 Brownian motion with broken drift
Consider a diffusion

X(t) = x+

∫ t

0

µ(X(s))ds+W (t),

where

µ(x) =

{
µ1, for x < 0,

µ2, for x ≥ 0,

and 0 ≤ µ1 < µ2. The speed measure of this diffusion is given by

m(dx) =

{
2e2µ1xdx, for x < 0,

2e2µ2xdx, for x > 0,

while the scale function is

S(x) =

{
1

2µ1
(1− e−2µ1x), for x < 0,

1
2µ2

(1− e−2µ2x), for x ≥ 0.

We call the diffusion {Xt : t ≥ 0} a Brownian motion with broken drift, and re-
mark that in the literature one can also find a diffusion called the Brownian motion
with alternating drift (also the bang-bang Brownian motion), see [4] p. 128 and
references therein. Notice that the scale function is differentiable everywhere with
the derivative

S′(x) =

{
e−2µ1x, for x < 0,

e−2µ2x, for x ≥ 0.

We find next the fundamental solutions for r > 0. Introduce

λ−1 = −
√
µ2
1 + 2r − µ1 < 0, λ+

1 =
√
µ2
1 + 2r − µ1 > 0,

λ−2 = −
√
µ2

2 + 2r − µ2 < 0, λ+
2 =

√
µ2

2 + 2r − µ2 > 0.
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The decreasing fundamental solution is

ϕr(x) =

{
A1 exp(λ

−
1 x) +A2 exp(λ

+
1 x), for x < 0,

exp(λ−2 x), for x ≥ 0,
(6)

where the constants A1 and A2 are determined so that ϕr is differentiable at 0.
Hence,

A1 =
λ+
1 − λ

−
2

λ+
1 − λ

−
1

=
λ+
1 − λ

−
2

2
√
µ2
1 + 2r

> 0, A2 =
λ−2 − λ

−
1

λ+
1 − λ

−
1

=
λ−2 − λ

−
1

2
√
µ2
1 + 2r

< 0.

Observe that A1 +A2 = 1. Analogously, the increasing solution is

ψr(x) =

{
exp(λ+

1 x), for x < 0,
B1 exp(λ

+
2 x) +B2 exp(λ

−
2 x), for x ≥ 0

(7)

with

B1 =
λ+
1 − λ

−
2

λ+
2 − λ

−
2

=
λ+
1 − λ

−
2

2
√
µ2
2 + 2r

> 0, B2 =
λ+
2 − λ

+
1

λ+
2 − λ

−
2

=
λ+
2 − λ

+
1

2
√
µ2
2 + 2r

< 0.

The above stated properties A1 > 0, B1 > 0, and A2 < 0 are easily seen
from the explicit expressions for λ+

i , λ
−
i , i = 1, 2. For B2 < 0 notice that

µ 7→
√
µ2 + 2r − µ is decreasing when µ > 0. In Figure 1 we have visualized

ϕr and ψr when r = 3, µ1 = 1, µ2 = 10.

−2 0 2 4 6

0
1

2
3

4

−0.2 −0.1 0.0 0.1 0.2 0.3

0
1

2
3

4

Figure 1: The functions ψr (left) and ϕr (right), for r = 3, µ1 = 1, µ2 = 10.

4 Solution of the optimal stopping problem
We analyze the optimal stopping problem (2) for the broken-drift diffusion intro-
duced above and the reward function g(x) = (1 + x)+, i.e.,

sup
τ∈M

Ex
[
e−rτg(Xτ )

]
. (8)

The main issue is to show that there are values on µ1 and µ2 such that, for some
values on r, the continuation region is disconnected and contains 0, i.e., the point
where the drift changes. However, letting here r to increase makes the continuation
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region connected and then 0 is in the stopping set. This situation is different from
the one studied in [1] where the skew point 0 is for all values of r and the skewness
parameter β > 1/2 in the continuation set.

Clearly, it follows from the assumption 0 ≤ µ1 < µ2 that X(t) → +∞ as
t → +∞. Consequently, to make OSP (2) non-trivial we assume that r > 0.
Because g(x) = 0 for x ≤ −1 it holds (−∞,−1) ⊂ C(r). Notice also that the
smooth fit theorem applies for all values of r, i.e., the value function meets the
reward smoothly at every boundary point between C(r) and S(r).

For the analysis to follow, we define (cf. [21])

G−(x) :=
(
ψ′r(x)(x+ 1)− ψr(x)

)
/S′(x) (9)

G+(x) :=
(
ϕr(x)− (1 + x)ϕ′r(x)

)
/S′(x), (10)

and their derivatives with respect to the speed measure for x > −1 and x 6= 0 are
given by

G′−(x) = m(x)
d

dm
G−(x) = m(x)ψr(x)

(
r(1 + x)− d

dm

d

dS
(1 + x)

)
= m(x)ψr(x)

{
r(1 + x)− µ1, x < 0,

r(1 + x)− µ2, x > 0,
(11)

and, similarly,

G′+(x) = m(x)ϕr(x)

{
µ1 − r(1 + x), x < 0,

µ2 − r(1 + x), x > 0,
(12)

where we have used that the fact that ϕr and ψr solve the differential equation

d

dm

d

dS
u = ru.

The functions G− and G+ are used to check the excessivity of a proposed value
function. An alternative way is to evoke the generalization of the Ito formula
developed in Peskir [16].

Proposition 4. In case 0 < r ≤ µ1 ≤ µ2 the continuation region for OSP (8) is
given by

C(r) = (−∞, c),
where c = c(r) > 0 is the unique solution of the equation

ψ′r(x)(x+ 1)− ψr(x) = 0. (13)

Proof. We show first that equation (13) has a unique positive solution. For this
consider for x > −1 the function G− defined in (9). Since S′(x) > 0 for all x the
claim is equivalent with the statement that G− has a unique positive zero. In fact,
we prove a bit more; namely that G− attains the global minimum at x0 := (µ2 −
r)/r > 0, is negative and decreasing for x ≤ x0, is increasing for x > x0, and
has, therefore, a unique zero. Analyzing G′− as given in (11), it is straightforward
to deduce, since 0 < r ≤ µ1 ≤ µ2, the claimed properties of G−. Let

Hc := inf{t : Xt ≥ c},

6



where c is the unique solution of (13), and define

V̂ (x) := Ex
[
e−rHcg(XHc)

]
=


ψr(x)

ψr(c)
g(c), x ≤ c,

g(x), x ≥ c.
(14)

If V̂ is an r-excessive majorant of g it follows from Proposition 3 that V̂ is the
value function of OSP (8). The excessivity can be checked with the method based
on the representation theory of excessive functions (cf. [21] Section 3). This boils
down to study for x 6= −1 the functions

IV (x) :=
(
ψ′r(x)V̂ (x)− ψr(x)V̂ ′(x)

)
/S′(x), (15)

DV (x) :=
(
ϕr(x)V̂

′(x)− V̂ (x)ϕ′r(x)
)
/S′(x). (16)

Clearly, IV (x) = 0 for x ≤ c and increasing for x > c. Notice that IV = G−
on [c,+∞). Studying the derivative (with respect to the speed measure) of DV it
is easily seen that DV is positive and decreasing to 0 on [c,+∞). Consequently,
IV and DV induce a (probability) measure which represent V̂ proving that V̂ is
r-excessive. To prove that V̂ is a majorant of g consider for −1 < x < c

V̂ (x) ≥ g(x) ⇔ ψr(x)

g(x)
≥ ψr(c)

g(c)
.

The right hand side of this equivalence holds since the derivative of x 7→ ψr(x)/g(x)
is G− which is negative for −1 < x < c, as is shown above.

In case µ1 = µ2 it is well-known (see [24], and [21] where the problem is
solved using the representation theory of the excessive functions) that S(r) =
[c,+∞) with c = c(r) as in Proposition 4, i.e.,

c =
1

λ+
1

− 1.

Consequently, it is expected that if µ2 is relatively close to µ1 the stopping region
is of this form for all values of the discounting parameter r; in other words, there
is no bubble. This is indeed the case and the exact formulation is as follows.

Proposition 5. In case 0 ≤ µ1 ≤ µ2 ≤ µ1 + 1
2

the continuation region for the
OSP (8) is given by

C(r) = (−∞, c),
where c = c(r) is the unique solution of equation (13):

ψ′r(x)(x+ 1)− ψr(x) = 0.

As r increases from 0 to +∞ then c(r) decreases monotonically from +∞ to −1.
In particular, c(r) = 0 for r = µ1 +

1
2
.

Proof. If r ≤ µ1 (and µ1 > 0) the statement is the same as in Proposition 4.
We assume next that r ≥ µ2. The proof in this case is very similar to the proof
of Proposition 4. It can be proved that G− attains the global minimum at x1 :=
(µ1 − r)/r < 0, is negative and decreasing for x ≤ x1, is increasing for x > x1,
and has, therefore, a unique zero. Consequently, this root can be taken to be an
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optimal stopping point c = c(r) and the analogous function V̂ as in (14) can be
proved to be the value of OSP (8). Finally, assume µ1 < r < µ2. In this case, G−
has a local maximum at 0, which is negative since

G−(0) = ψ′r(0)− ψr(0) = λ+
1 − 1 < 0 ⇔ r < µ1 + 1/2.

Hence, equation (13) has a unique positive root and the proof can be completed as
in the previous cases.

Finally, we study the situation 0 ≤ µ1 < µ1 +
1
2
< µ2. The main observation

is that there exists a bounded interval such that if r is in this interval then the
continuation set has a bubble. The first result concerns the localization of a possible
bubble, and is perhaps intuitively obvious. Anyway, we present its proof since
the result is needed when proving Proposition 8 below which characterizes the
continuation (and the stopping) set in the present case.

Proposition 6. Assume r > 0 is such that (c1(r), c2(r)) is a bubble. Then it holds
that 0 ∈ [c1(r), c2(r)), and there exists at most one bubble.

Proof. Let G− and G+ be given as in (9) and (10), respectively. Since g, ϕr and
ψr are differentiable everywhere we may apply (4.7) Theorem in [21] p. 95 to
deduce that c1 = c1(r) and c2 = c2(r) satisfy

G−(c1) = G−(c2),

G+(c1) = G+(c2).

Moreover, G− and G+ are positive, non-decreasing and non-increasing , respec-
tively, on (c1−ε, c1]∪ [c2, c2+ε) ⊆ S(r) for some ε > 0. Studying these explicit
expressions of G′− and G′+ given in (11) and (12), respectively, we conclude that
necessarily c1 ≤ 0 < c2, as claimed.

Recall that the principle of smooth fit holds for our stopping problem. Hence,
it is enlightening to investigate which “good” candidates satisfying the smooth fit
principle cannot be value functions since they fail to be excessive. The following
result shows that for µ1+

1
2
≤ r < µ2 there exist smooth fit (at 0) functions which

are harmonic on R− but which are not r-execessive.

Proposition 7. For r ≥ µ1 +
1
2

there exist A and B such that the function

F (x) :=

{
A exp(λ+

1 x) +B exp(λ−1 x), x ≤ 0,

1 + x, x ≥ 0,
(17)

satisfies the principle of smooth fit at 0, i.e., F ′(0−) = F ′(0+) = 1. The function
F is r-harmonic (and positive) on (−∞, 0) but not r-excessive if r < µ2. For
r < µ1 + 1

2
the coefficient B is negative and the function F (x) → −∞ as

x→ −∞ (and the function is not r-excessive).

Proof. We study only the case r = r0 := µ1 +
1
2

and leave the details of the other
cases to the reader. In this case λ+

1 =
√
µ2
1 + 2r − µ1 = 1, and, obviously,

F (x) :=

{
exp(x), x ≤ 0,

1 + x, x ≥ 0,

8



satisfies smooth fit at 0. Consequently, F is r0-harmonic (and positive) on (−∞, 0)
and it remains to prove that F is not r0-excessive. For this, consider the represent-
ing function (this corresponds G− in (9))

x 7→
(
ψ′r0(x)F (x)− ψr0(x)F

′(x)
)
/S′(x).

The claim is that this function is not non-decreasing. Indeed, take derivative with
respect to the speed measure to obtain

d

dm

( (
ψ′r0(x)F (x)− ψr0(x)F

′(x)
)
/S′(x)

)
= F (x)

d

dm

d

dS
ψr0(x)− ψr0(x)

d

dm

d

dS
F (x)

= ψr0(x)

{
0, x < 0,

r0(1 + x)− µ2, x > 0.

Since r0 < µ2 this derivative is negative, e.g., for small positive x-values; there-
fore, F is not r0-excessive.

Remark 1. From Proposition 5 and 8 we may conclude that if r ≥ µ2 (r ≤
µ1+1/2) then the problem is one-sided and the optimal stopping point is negative
(positive). Notice that the smooth fit function F in (17) could be excessive for
r ≥ µ2 but since the optimal stopping point is negative F is not the smallest
excessive majorant of the reward.

Next proposition can be seen as our main result concerning OSP (8). It is
proved that if r ∈ (µ1 + 1/2, µ2) but is “close to” µ2 then C(r) has a bubble.
However, the bubble disappears when r becomes bigger than µ2 or tends to µ1 +
1/2. We give a complete description of C(r) although there is some overlap with
Proposition 5.

Proposition 8. In case 0 ≤ µ1 < µ1 +
1
2
< µ2 there exists r0 ∈ (µ1 + 1/2, µ2)

with the following properties:

(i) If r ∈ [r0, µ2) the continuation region is given by

C(r) = (−∞, c1) ∪ (c2, c3),

where ci = ci(r), i = 1, 2, 3, are such that c3 > 0 ≥ c2 ≥ c1 > −1. In
particular, for r = r0 it holds c1 = c2 < 0.

(ii) If r ≥ µ2 the continuation region is given by

C(r) = (−∞, c−),

where c− = c−(r) < 0 is the unique solution of (13). In particular, for
r = µ2

c−(µ2) =
1

λ+
1 (µ2)

− 1 = (
√
µ2
1 + 2µ2 + µ1 − 2µ2)/2µ2 < 0. (18)

(iii) If r < r0 the continuation region is given by

C(r) = (−∞, c+),

where c+ = c+(r) > 0 is the unique solution of (13).
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Proof. The proof of (ii) is as the proof of Proposition 5 when r ≥ µ2. Notice,
however, that in the present case c(r) < 0 for all r ≥ µ2. We consider next (iii) in
case r ≤ µ1 +

1
2
. Studying the derivative of G− and the value of G− at zero it is

seen, as in the proof of Proposition 4, that equationG−(x) = 0 has for r < µ1+
1
2

one (and only one) root ρ = ρ(r) > 0. In case r = µ1 + 1
2

there are two roots
ρ1 = ρ1(r) = 0 and ρ2 = ρ2(r) > 0. Proceeding as in the proof of Proposition
4 it is seen that the stopping region is as claimed with c+ = ρ if r < µ1 +

1
2

and
c+ = ρ2 if r = µ1 + 1

2
. Assume now that there does not exist a bubble for any

r ∈ [µ1 + 1
2
, µ2]. Then for all r ∈ [µ1 + 1

2
, µ2] we can find c = c(r) such that

S(r) = [c,+∞). Knowing that c(r) > 0 for r = µ1+
1
2

and c(r) < 0 for r = µ2

we remark first there does not exists r such that c(r) = 0. Indeed, by Theorem 1
the value should satisfy the smooth fit principle at 0 but from Proposition 7 we
know that such functions are not r-excessive. Next, using S(r1) ⊆ S(r2) for
r1 < r2 (cf. Proposition 1) it is seen that r 7→ c(r) is non-increasing, and has,
hence, left and right limits. Consquently, there exists a unique point r̂ such that

ĉ+ := lim
r↑r̂

c(r) > 0 and ĉ− := lim
r↓r̂

c(r) < 0.

Under the assumption that there is no bubble the value function is of the form given
in (14), i.e.,

Vr(x) =

{
ψr(x)

1+c(r)
ψr(c(r))

, x ≤ c(r),
1 + x, x ≥ c(r).

(19)

= Ex
(
e−rHc (1 +XHc)

)
,

where Hc := inf{y : Xt ≥ c(r)}. Letting in (19) r ↑ r̂ yields by Proposition 3
an r̂-excessive function which by Proposition 2 is the value of the corresponding
OSP (8). Similarly, letting r ↓ r̂ yields an r̂-excessive function which should also
be the value of the same OSP. However, the functions are clearly different and
since the value is unique we have reached a contradiction showing that there exists
at least one bubble. Evoking Proposition 6 completes the proof.

Remark 2. The fact that there is a bubble when r < µ2 but “close” to µ2 would
also follow if we can prove that G− has a unique negative zero. Notice that G−
in this case is not monotone around 0. This would then imply the exisistence of a
bubble if we can verify that the local minimum on (0,+∞) is positive. However,
we have not been able to show this. Numerical calculations with some parameter
values give evidence that the local minimum on (0,+∞) is indeed positive.

Remark 3. For r < r0 we have the value function (cf. (14))

Vr(x) =

{
ψr(x)

1+c+
ψr(c+)

, x ≤ c+,
1 + x, x ≥ c+.

(20)

Since c+ > 0 it holds Vr(0) > g(0), and, hence, (1 + c+)/ψr(c+) > 1. Conse-
quently,

V ′r (0) = λ+
1

1 + c+
ψr(c+)

> 1,

because also λ+
1 > 1 for r > µ1 + 1

2
. Moreover, V ′r (x) → 0 as x → −∞, and

there exists a unique point a = a(r) such that V ′r (a) = 1. From Proposition 8 we
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know that the bubble appears as r increases and takes the value r0. Therefore, we
may describe the value function Vr0 to be of the form in (20) satisfying the smooth
fit at c+(r0) > 0 and also at another point a(r0) < 0 which is a tangent point
with the reward.
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