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ON THE K-THEORY OF Z-CATEGORIES.

EUGENIA ELLIS AND RAFAEL PARRA

Abstract. We relate the notions of Noetherian, regular coherent and regular
n-coherent category for Z-linear categories with finite objects with the corre-
sponding notions for unital rings. We use this relation to obtain a vanishing
negative K-theory of Z-linear categories.

1. Introduction

Let C be a small Z-linear category. Associated to C there exists a ring

A(C) =
⊕

a,b∈obC

homC(a, b).

With the natural sum and multiplication, A(C) is a ring with with local units, which
is unital if and only if obC is finite. There exists a weak equivalence between the
spectrum of the algebraic K-theory of C and the spectrum of the algebraic K-theory
of A(C), see [7, Sec. 4.2]. Thus the K-theory groups of C and A(C) coincides.

We consider the category Fun(Cop,Ab) of contravariant functors from C to Ab.
Using Yoneda Lemma we embed C into Fun(Cop Ab) with the purpose to do ho-
mological constructions in Fun(Cop,Ab) which a prior make no sense in C. Yoneda
Lemma is used to define Noetherian additive categories or regular coherent additive
categories, see [3]. Following this idea we extend in Section 3 the notion of regular
n-coherence from rings with unit to small Z-linear categories.

As is shown in [5, Corollary 2.14] an object F : Cop → Ab is of type FPn if and
only if there exists an exact sequence

Pn → · · · → P1 → P0 −→ F → 0

where Pi is finitely generated and projective for every 0 ≤ i ≤ n. We say that C
is right n-coherent if the category Fun(Cop,Ab) is n-coherent in the sense of [5,
Definition 4.6]. In other words C is right n-coherent if and only if the objects of
type FPn in Fun(Cop,Ab) coincide with the objects of type FP∞. If C is right
n-coherent, we say that C is regular if every object F : Cop → Ab of type FPn has
a finite projective dimension. We prove in Proposition 2.7 that this homological
property of C also holds for C⊕. We show in Proposition 2.9 that an additive
category C is right regular n-coherent if and only if the following conditions hold in
C:

i) Every morphism in C with a pseudo (n− 1)-kernel has a pseudo n-kernel.
ii) For every morphism f : x → y in C with pseudo ∞-kernel there exists k ∈ N

and α : xk−1 → xk−1 making the following diagram commute:
1
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xk

0

""❊
❊❊

❊❊
❊❊

❊❊

fk // xk−1

α

��

fk−1 // xk−2

fk−2 // · · · · · ·
f2 // x1

f1 // x
f // y

xk−1

fk−1

;;✈✈✈✈✈✈✈✈✈

We see in Proposition 3.5 that the category Fun(Cop,Ab) is equivalent to Mod-
A(C), where Mod-A(C) denotes the category of unital right modules. Let C be
a Noetherian or an n-coherent category. Is the ring A(C) also Noetherian or n-
coherent? We answer this question in the case that A(C) has unit or equivalently
when C has finite objects. We prove in Proposition 3.9 that C is a Noetherian (n-
coherent or regular n-coherent) Z-linear category with finite objects if and only if
A(C) is a Noetherian (strong n-coherent or n-regular and strong n-coherent) ring
with unit.

A new way to obtain information about the K-theory of a Z-linear category is
obtained. In Section 4 we prove that if D = C, D = C⊕ or D = colimf∈F Cf with C
or Cf a regular Z-linear category with finite object then Ki(D) = 0, ∀i < 0. We also
prove that if D = C, D = C⊕ or D = colimf∈F Cf with C or Cf a regular coherent
Z-linear category with finite object then K−1(D) = 0. In Proposition 4.6 we obtain
a generalization of [10, Thm 3.2].

2. Modules over Z-linear categories

A Z-linear category is a category C such that for every two objects a, b ∈ C, the
set of morphisms homC(a, b) is an abelian group, and for any other object c ∈ C,
the composition

homC(b, c)× homC(a, b) → homC(a, c)

is a bilinear map. Throughout this paper we assume that Z-linear categories C are
small, i.e. the collection of objects is a set. A Z-linear category is additive if it
has an initial object and finite products. We consider the free additive category
C⊕ as follow. The objects of C⊕ are finite tuples of objects in C. A morphism
from a = (a1, · · · , ak) to c = (c1, · · · , cm) for ai, cj ∈ C is given by m× k matrix of
morphisms in C (the composition is given by the usual row-by-columnmultiplication
of matrices),

- obC⊕ = {(c1, · · · , ck) : ci ∈ C, k ∈ N}

- homC⊕
(a, c) =

∏k

i=1

∏m

j=1 homC(ai, cj).

There is an obvious embedding C → C⊕ which maps objects and morphisms to their
associated 1-tuple. If C is a Z-linear category then C⊕ is a small additive category.

The idempotent completion Idem(C⊕) of C⊕ is defined to be the following small
additive category.

- ob(Idem(C⊕)) = {(c, p) : c ∈ obC⊕, p : c → c such that p2 = p}
- homIdem(C⊕)((c1, p1), (c2, p2)) = {w : c1 → c2 such that w = p2wp1}.

By construction C ≃ C⊕ if C is additive and C⊕ ≃ Idem(C⊕) if idempotents split in
C⊕. Recall the additive category C⊕ is equivalent to Idem(C⊕) if and only if every
idempotent has a kernel.

Example 2.1. Given a ring R, consider C = R the category which has one object
⋆ and homC(⋆, ⋆) = R. The multiplication on R gives the composition on R. The
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category C⊕ is the category whose objects are natural numbers m > 0 and the
morphisms are the matrices with coefficients in R, homC⊕

(m,n) = Mn×m(R).

Example 2.2. Let R be an associative ring with unit. If C is the category of finitely
generated free R-modules, then Idem(C) is equivalent to the category of finitely
generated projective R-modules.

2.1. Pseudo n-kernels and pseudo n-cokernels. Given a Z-linear category C
we recall that a pseudo kernel of a morphism f : x → y in C is a morphism g : k → x
with f ◦ g = 0, such that for any morphism h : c → x with f ◦ h = 0, there exists
t : c → k with g ◦ t = h. Equivalently, a morphism g : k → x in C is said to be a
pseudo kernel of f if, for any c ∈ obC, the following sequence of abelian groups is
exact

homC(c, k) → homC(c, x) → homC(c, y).

Pseudo-kernels have been introduced by Freyd [11] as weak kernels. Pseudo-
cokernels are pseudo kernels in Cop. By [15, Corollary 1.1] the categories C, C⊕
and Idem(C⊕) all have pseudo kernels or they don’t. Let us remark that any trian-
gulated or abelian category has pseudo-kernels and pseudo-cokernels.

Let n ≥ 1 and f : x → y be a morphism in C. Following [6], we say that f has a
pseudo n-kernel if there exists a chain of morphisms

xn
fn
−→ xn−1

fn−1

−−−→ xn−2 → · · ·
f2
−→ x1

f1
−→ x

f
−→ y

such that the following sequence of abelian groups is exact

homC(−, xn)
fn∗
−−→ · · · → homC(−, x1)

f1∗
−−→ homC(−, x)

f∗
−→ homC(−, y).

We denote the pseudo n-kernel by (fn, fn−1, · · · , f1). The case n = 1 gives us
the classic pseudo-kernels. For convenience, we let x0 := x. Furthermore, any
morphism f in C will be assumed to be a pseudo 0-kernel of itself. We say that f
has a pseudo ∞-kernel if there exists a chain of morphisms

· · · → xn+1
fn+1

−−−→ xn
fn
−→ xn−1 → · · ·

f2
−→ x1

f1
−→ x

f
−→ y

such that the following sequence of abelian groups is exact

· · · → homC(−, xn+1)
fn+1∗

−−−−→ homC(−, xn)
fn∗
−−→ · · ·

f1∗
−−→ homC(−, x)

f∗
−→ homC(−, y).

Pseudo n-cokernels are defined as pseudo n-kernels in Cop.

2.2. Categories of Additive Functors. The category of abelian groups will be
denoted by Ab. For any Z-linear category C, we define a left C-module as a functor
F : C → Ab. We consider natural transformations as morphisms of C-modules.
Define a right C-module as an functor F : Cop → Ab. In these categories limits and
colimits of functors are defined objectwise. Denote by Fun(Cop,Ab) the category
of right C-modules. This category is cocomplete and abelian. If c is an object of C
then there is the corresponding representable functor homC(−, c) : Cop → Ab.

Lemma 2.3. (Yoneda Lemma) Let C be any Z-linear category. Take c ∈ C and
F : Cop → Ab. Then there is a natural identification

homFun(Cop,Ab)(homC(−, c), F (−)) ∼= F (c).
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By Yoneda Lemma, the family {homC(−, c)}c∈C is a generating set of finitely
generated projective in Fun(Cop,Ab). A module M ∈ Fun(Cop,Ab) is free if it is
isomorphic to

⊕
i∈I homC(−, ai). It is free and finitely generated if I is finite.

Let R be a ring and R be the Z-linear category defined in Example 2.1. Note
that

R-Mod ∼= Fun(R,Ab)

Mod-R ∼= Fun(Rop,Ab).

2.3. Finitely n-presented objects and n-coherent categories. Let n ≥ 1 be
a positive integer. Following [5, Definition 2.1] we say that an object F : Cop → Ab

is finitely n-presented if the functors ExtiFun(Cop,Ab)(F,−) preserves direct limits for
all 0 ≤ i ≤ n− 1. Denote by FP0 to the set of finitely generated objects, then
M is an object of type FP0 if there exists a collection of objects {cj : j ∈ J} in
C for some finite set J and an epimorphism

⊕
j∈J homC(−, cj) → M . A functor

F : Cop → Ab is of type FP∞ if it is of type FPn for all n ≥ 0.

Recall that a Grothendieck category is a cocomplete abelian category, with a gen-
erating set and with exact direct limits. A Grothendieck category is locally finitely
generated (presented) if it has a set of finitely generated (presented) generators. In
other words, each object is a direct union (limit) of finitely generated (presented)
objects. A Grothendieck category is locally type FPn [5, Definition 2.3], if it has a
generating set consisting of objects of type FPn.

By [13, Example 3.2] any finitely generated projective object is of type FPn

for all n ≥ 0. Then the functor category Fun(Cop Ab) is a locally type FP∞

Grothendieck category. By the [5, Corollary 2.14] an object F : Cop → Ab is of
type FPn if and only if there exists an exact sequence

Pn → · · · → P1 → P0 −→ F → 0

where Pi is finitely generated and projective for every 0 ≤ i ≤ n.
Recall from [5, Definition 4.1] an object F : Cop → Ab is n-coherent if satisfies

the following conditions:

(1) F is of type FPn.
(2) For each subobject S ⊆ F such that S is type FPn−1 then S is also of type

FPn.

Definition 2.4. Let C be a Z-linear category and n ≥ 0. We say that C is right
(left) n-coherent if every object F : Cop → Ab (F : C → Ab) of type FPn is
n-coherent.

We say that C is right n-coherent if the category Fun(Cop,Ab) is n-coherent in
the sense of [5, Definition 4.6]. Thus by [5, Theorem 4.7], C is right n-coherent
if and only if the objects of type FPn in Fun(Cop,Ab) coincide with the objects
of type FP∞. In particular, an additive category C is Noetherian in the sense of
[3, Definition 5.2] if and only if it is 0-coherent. Note that for 1 ≤ n ≤ ∞, if C
is any small additive category, by [6, Proposition 5.4], the following conditions are
equivalent:

1) C is right n-coherent.
2) If a morphism in C has a pseudo (n−1)-kernel, then it has a pseudo n-kernel.
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Definition 2.5. Let n ≥ 0 and C be a right n-coherent Z-linear category. We say
that C is regular if every object F : Cop → Ab of type FPn has a finite projective
dimension.

Let C be a small additive category then C is regular coherent in the sense of [3,
Definition 5.2] if and only if it is right regular 1-coherent.

Example 2.6. Let C be a small additive category and n ≥ 1.

I. Additive category with kernels. By a result due to Auslander [2, Theo-
rem 2.2.b] a small additive category C with kernels is 1-coherent and every
object of type FP1 in Fun(Cop,Ab) has projective dimension at most 2.
Then C is right regular 1-coherent.

II. Von Neumann regular categories. We recall that C is called von Neu-
mann regular if for any morphism f : a → b in C there exists a morphism
g : b → a such that fgf = f . By [4, Corollary 8.1.3] C is right regular
1-coherent.

III. Locally finitely presented categories. An object c ∈ C is finitely pre-
sented if the functor homC(c,−) preserves direct limits. The category C is
locally finitely presented if every directed system of objects and morphisms
has a direct limit, the class of finitely presented objects of C is skeletally
small and every object of C is the direct limit of finitely presented objects.
Then by [12, Lemma 2.2], every locally finitely presented category is left
1-coherent.

IV. n-hereditary categories. Suppose the following two conditions hold in
C:
(a) Every morphism in C with a pseudo (n − 1)-kernel has a pseudo n-

kernel.
(b) For every morphism f : x → y in C with pseudo n-kernel (fn, · · · , f1),

there exists an endomorphism α : xn−1 → xn−1 making the following
diagram commute:

xk

0

""❊
❊❊

❊❊
❊❊

❊❊

fk // xk−1

α

��

fk−1 // xk−2

fk−2 // · · · · · ·
f2 // x1

f1 // x
f // y

xk−1

fk−1

;;✈✈✈✈✈✈✈✈✈

By [6, Theorem 5.5], C is right n-coherent and every object of type FP1 in
Fun(Cop,Ab) has projective dimension less than or equal 1. Therefore, C is
right regular n-coherent.

Due to [15, Lemma 1.1, 1.2] we have the following equivalences of categories

Fun(Cop,Ab) ≃ Fun(Cop
⊕ ,Ab) ≃ Fun(Idem(Cop

⊕ ),Ab)

It implies that C, C⊕ and Idem(C⊕) are Morita equivalents. In particular, we obtain
the following result.

Proposition 2.7. Let C be a Z-linear category. The following are equivalent:

(1) C is right regular n-coherent.
(2) C⊕ is right regular n-coherent.
(3) Idem(C⊕) is right regular n-coherent.
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Let R be a ring with unit. A finitely n-presented right R-module M is n-coherent
if every finitely (n − 1)-presented submodule N ⊆ M is finitely n-presented. The
ring R is right n-coherent if R is n-coherent as a right R-module (i.e. if each (n−1)-
presented ideal of R is n-presented). We say that R is right strong n-coherent if each
finitely n-presented right R-module is (n+1)-presented. A strong n-coherence ring
is equivalent to a n-coherence ring for n = 1, but it is an open question for n ≥ 2.
A coherent ring is a 1-coherent ring (strong 1-coherent ring) and it is regular if and
only if every finitely presented module has finite projective dimension. Motivated
by this we introduce in [10, Definition 2.9] the definition of n-regular ring. Let
n ≥ 1, a ring R is called right n-regular if each finitely n-presented right R-module
has finite projective dimension.

Corollary 2.8. Let R be a ring with unit and n ≥ 1. Then the following are
equivalent.

(1) The ring R is right strong n-coherent or right n-regular and strong n-
coherent respectively;

(2) The additive category R⊕ is right n-coherent or right regular n-coherent
respectively;

(3) The additive category Idem(R⊕) is right n-coherent or right regular n-
coherent respectively.

Let C be a small additive category. By [3, Lemma 5.8], C is right Noetherian
if and only if each object c has the following property. Consider any directed set
I and collections of morphisms {fi : ai → c}i∈I with c as target such that fi ⊆ fj
holds for i ≤ j, then there exists i0 ∈ I with fi ⊆ fi0 for all i ∈ I. Our aim is
to find out intrinsic condition of C which guarantees that Fun(Cop,Ab) is regular
n-coherent.

Proposition 2.9. Let C be a small additive category and n ≥ 1. The following are
equivalent

(1) C is right regular n-coherent.
(2) The following conditions hold in C:

i) Every morphism in C with a pseudo (n − 1)-kernel has a pseudo n-
kernel.

ii) For every morphism f : x → y in C with pseudo ∞-kernel there exists
k ∈ N and α : xk−1 → xk−1 making the following diagram commute:

xk

0

""❊
❊❊

❊❊
❊❊

❊❊

fk // xk−1

α

��

fk−1 // xk−2

fk−2 // · · · · · ·
f2 // x1

f1 // x
f // y

xk−1

fk−1

;;✈✈✈✈✈✈✈✈✈

Proof. (1 ⇒ 2) Suppose that C is right regular n-coherent. First, we note that (i)
is clear by [6, Prop 5.4]. Now suppose that f : x → y is a morphism in C with a
pseudo ∞-kernel (· · · , f3, f2, f1). Here, we let f0 := f . Thus coker(f∗) is of type
FP∞ in Fun(Cop,Ab) because there exists an exact sequence of the form

· · ·
f2∗
−−→ homC(−, x1)

f1∗
−−→ homC(−, x)

f∗
−→ homC(−, y) → coker(f∗) → 0.

There exists k ∈ N such that coker(f∗) has projective dimension ≤ k. It implies
that ker(fk−2∗) = im(fk−1∗) is projective, and therefore ker(fk−1∗) = im(fk∗) is
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projective too. Consider

· · · → homC(−, xk)

σ

** **❚❚❚
❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

fk∗ // homC(−, xk−1) → · · ·

im(fk∗)
?�

ι

OO

where ι : im(fk∗) →֒ homC(−, xk−1) and σ : homC(−, xk) ։ im(fk∗) are the canoni-
cal morphisms. There exists ι′ : im(fk∗) → homC(−, xk) and σ′ : homC(−, xk−1) →
im(fk∗) such that σ ◦ ι′ = idim(fk∗) and σ′ ◦ ι = idim(fk∗). By Yoneda Lemma and
using the same techniques [6, Theorem 5.5] there exists h : xk−1 → xk in C such
that h∗ : homC(−, xk−1) → homC(−, xk) satisfy h∗ ◦ fk∗ = ι′ ◦ σ. The morphism
α := idxk−1

−fk ◦ h satisfies the desired condition.
(2 ⇒ 1) Suppose that the affirmation (2) is satisfied for n ≥ 1. Using the

condition (2-i), we deduce that C is right n-coherent [6, Prop 5.4] and thus FPn =
FP∞. Now, for each F : Cop → Ab of type FPn we get an exact sequence of the
form

· · · → homC(−, xn) → · · · → homC(−, x1)
f1∗
−−→ homC(−, x)

f∗
−→ homC(−, y) → F → 0

where f : x → y is a morphism in C. It implies that f has a pseudo ∞-kernel,
and therefore, there is k ∈ N and an endomorphism α : xk−1 → xk−1 making the
following diagram commute:

xk

0

""❊
❊❊

❊❊
❊❊

❊❊

fk // xk−1

α

��

fk−1 // xk−2

xk−1

fk−1

;;✈✈✈✈✈✈✈✈✈

Next, we show that im(fk−1∗) = ker(fk−2∗) is a projective functor. Consider

homC(−, xk)

0

!!❈
❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

fk∗ // homC(−, xk−1)

σ

''PP
PP

PP
PP

PP
PP

α∗

��

fk−1∗ // homC(−, xk−2)

im(fk−1∗)

ι

77♥♥♥♥♥♥♥♥♥♥♥♥

homC(−, xk−1)
fk−1∗ // homC(−, xk−2)

where σ : homC(−, xk−1) → im(fk−1∗) and ι : im(fk−1∗) → homC(−, xk−2) are the
canonical natural transformations. Note that im(fk−1∗) = coker(fk∗), then there
exists unique natural transformation t : im(fk−1∗) → homC(−, xk−1) such that
t ◦ σ = α∗. Moreover, applying the same techniques [6, Theorem 5.5] we have

ι◦idim(fk−1∗) ◦σ = ι◦σ = fk−1∗ = (fk−1◦α)∗ = fk−1∗◦α∗ = fk−1∗◦t◦σ = ι◦σ◦t◦σ

which implies that
idim(fk−1∗) = σ ◦ t.

Then σ is a split epimorphism, and therefore, im(fk−1∗) is projective. �

Following [3] the category C is right regular if it is right Noetherian and right
regular coherent. This should not be confused with von Neumann regular.
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Corollary 2.10. Let C be a small additive category. The following are equivalent

(1) C is right regular.
(2) The following conditions hold in C:

i) Every object c in C has the following property. Consider any directed
set I and collections of morphisms {fi : ai → c}i∈I with c as target
such that fi ⊆ fj holds for i ≤ j. Then there exists i0 ∈ I with
fi ⊆ fi0 for all i ∈ I.

ii) For every morphism f : x → y in C with pseudo ∞-kernel there exists
k ∈ N and α : xk−1 → xk−1 making the following diagram commute:

xk

0

""❊
❊❊

❊❊
❊❊

❊❊

fk // xk−1

α

��

fk−1 // xk−2

fk−2 // · · · · · ·
f2 // x1

f1 // x
f // y

xk−1

fk−1

;;✈✈✈✈✈✈✈✈✈

In [3] another regularity in introduced due to bad behavior of regularity with
respect to infinity product. Let R be a ring with unit. The ring R is l-uniformly
regular coherent, if every finitely presented R-module M admits a l-dimensional
finite projective resolution, i.e. there exists an exact sequence

0 → Pl → Pl−1 → · · · → P0 → M → 0

such that each Pi is finitely generated and projective. This notion is generalized to
additive categories in [3, Section 6]. Let C be a Z-linear category and l ≥ 1. We say
that C is right l-uniformly regular coherent, if every object F : Cop → Ab of type
FP1 admits a l-dimensional finite projective resolution, i.e. there exists an exact
sequence

0 → Pl → Pl−1 → · · · → P0 → F → 0

such that each Pi is finitely generated and projective.
The equivalence Fun(Cop,Ab) ≃ Fun(Cop

⊕ ,Ab) implies that C is right l-uniformly
regular coherent if and only if C⊕ is right l-uniformly regular coherent. Note that,
if C is right 1-coherent and every object F : Cop → Ab of type FP1 has a projective
dimension ≤ l then C is right l-uniformly regular coherent.

Corollary 2.11. Let l ≥ 1 and let C be a small additive category. Suppose that C
is right 1-coherent. Then, the following are equivalent:

(1) C is right l-uniformly regular coherent.
(2) For every morphism f : x → y in C there exists l ∈ N, an pseudo l-kernel

(fl, fl−1, · · · , f1) of f and α : xl−1 → xl−1 making the following diagram
commute:

xl

0

""❉
❉❉

❉❉
❉❉

❉❉

fl // xl−1

α

��

fl−1 // xl−2

fl−2 // · · · · · ·
f2 // x1

f1 // x
f // y

xl−1

fl−1

;;✇✇✇✇✇✇✇✇✇
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3. The ring A(C) and the Z-linear category C

In this section we study the relation between some properties of a Z-linear cate-
gory C with the properties of a ring A(C) associated to it. We prove the categories
Fun(Cop,Ab) and Mod-A(C) are equivalent.

3.1. The ring A(C). Let C be a Z-linear category. Recall from [7]

(3.1) A(C) =
⊕

a,b∈obC

homC(a, b).

If f ∈ A(C) write fa,b for the component in homC(b, a). The following multiplication
law

(3.2) (fg)a,b =
∑

c∈obC

fa,cgc,b

makes A(C) into an associative ring, which is unital if and only if obC is finite.
Whatever the cardinal of obC is, A(C) is always a ring with local units, i.e. a
filtering colimit of unital rings.

3.2. The ZC-modules. Recall that M is a unital right A(C)-module if M ·A(C) =
M . Consider Mod-A(C) the category of unital right A(C)-modules. Let us define
functors

S(−) : Fun(Cop,Ab) → Mod-A(C) (−)C : Mod-A(C) → Fun(Cop,Ab)

Let M ∈ Fun(Cop,Ab)

S(M) =
⊕

a∈obC

M(a)

Let N ∈ Mod-A(C)
NC : Cop → Ab a 7→ N · ida .

Lemma 3.3. Let C be a Z-linear category then

A(C⊕) ∼=

∞⊕

n=1,m=1

Mn×m(A(C)).

Proof. It is straightforward from the definition. �

Lemma 3.4. If N is a unital right A(C)-module then
⊕

a∈obC

N · ida = N.

Proof. For every a ∈ obC we have N · ida ⊆ N then
⊕

a∈obC N · ida ⊆ N . Let

n ∈ N , because N is unital N = N · A(C) then n =
∑i=m

i=1 ni · fi with ni ∈ N and
fi ∈ homC(ai, bi). Let I = {a ∈ obC : a = ai, for some i = 1, . . . ,m} then

n =

i=m∑

i=1

ni · fi = (

i=m∑

i=1

ni · fi) · (
∑

a∈I

ida) = n ·
∑

a∈I

ida

We conclude N ⊆
⊕

a∈obC N · ida. �

Proposition 3.5. Let C be a Z-linear category then

S(−) : Fun(Cop,Ab) → Mod-A(C) (−)C : Mod-A(C) → Fun(Cop,Ab)

are an equivalence of categories.
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Proof. Let N ∈ Mod-A(C) and M ∈ Fun(Cop,Ab) then

S(NS) =
⊕

a∈obC

NC(a) =
⊕

a∈obC

N · ida = N

(S(M))C(c) = S(M) · idc =
⊕

a∈obC

M(a) · idc = M(c) ∀c ∈ obC

�

The abelian structure of Fun(Cop,Ab) comes from the abelian structure in Ab.

A sequence M
f
−→ N

g
−→ R is exact in Fun(Cop,Ab) if for each object c ∈ C the

sequence M(c)
f(c)
−−→ N(c)

g(c)
−−→ R(c) is exact in Ab.

Proposition 3.6. Let C be a Z-linear category then

S(−) : Fun(Cop,Ab) → Mod-A(C) (−)C : Mod-A(C) → Fun(Cop,Ab)

are exact functors.

Proof. Let M
f
−→ N

g
−→ R be an exact sequence in Mod-A(C). Let us prove MC

fC
−→

NC

gC
−→ RC is exact in Fun(Cop,Ab) showing MC(a)

fC(a)
−−−→ NC(a)

gC(a)
−−−→ RC(a)

is exact for every object a in C. By functoriality im(fC(a)) ⊆ ker(gC(a)). Let
n · ida ∈ ker(gC(a)) then

gC(a)(n · ida) = g(n) · ida = g(n · ida) = 0

then n · ida ∈ ker(g) = im(f). There exists m ∈ M such that f(m) = n · ida then

fC(a)(m · ida) = f(m · ida) = f(m) · ida = (n · ida) · ida = n · ida

then n · ida ∈ im(fC(a)). We conclude (−)C is exact.

We proceed to show that S is exact. Let M
f
−→ N

g
−→ R be an exact sequence in

Fun(Cop,Ab). Consider

S(M) =
⊕

a∈obC

M(a)
S(f)
−−−→ S(N) =

⊕

a∈obC

N(a)
S(g)
−−−→ S(R) =

⊕

a∈obC

R(a)

Similarly as above, let
∑

a∈C
xa ∈ kerS(g) then

S(g)(
∑

a∈C
xa) =

∑
a∈C

g(a)(xa) = 0 ⇒ g(a)(xa) = 0 ∀xa ∈ N(a)
⇒ xa ∈ ker g(a) = im f(a) ∀xa ∈ N(a)
⇒ ∃ya ∈ M(a) such that f(a)(ya) = xa

�

Corollary 3.7. Let C be a Z-linear category.

(1) If p : M → N is an epimorphism in Mod-A(C) then pC : MC → NC is an
epimorphism in Fun(Cop,Ab).

(2) If π : M → N is an epimorphism in Fun(Cop,Ab) then S(π) : S(M) →
S(N) is an epimorphism in Mod-A(C).

(3) (M ⊕N)C = MC ⊕NC in Fun(Cop,Ab).
(4) S(M ⊕N) = S(M)⊕ S(N) in Mod-A(C).
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Let A be a ring with local units. From [17] we recall that an A-module is quasi-
free if it is isomorphic to a direct sum of modules of the form e · A with e2 = e,
e ∈ A. Quasi-free modules over a ring with local units plays the same role as free
modules over a ring with unit. Also recall that M is a finitely generated module
if and only if it is an image of a finitely generated quasi-free module. A finitely
generated module M is projective if and only if it is a direct summand of a finitely
generated quasi-free modules. In this paper we work with A = A(C) and we say that
M is a quasi-free right A(C)-module if it is isomorphic to a finite sum of modules
ida ·A(C).

Lemma 3.8. Let C be a Z-linear category.

(1) If F is a free finitely generated module in Fun(Cop,Ab) then S(F ) is a
quasi-free finitely generated A(C)-module.

(2) If P is a projective finitely generated module then S(P ) is projective and
finitely generated.

(3) If M is a quasi-free finitely generated A(C)-module then MC is a finitely
generated free module.

(4) If P is a projective finitely generated A(C)-module then PC is projective and
finitely generated module.

Proof. (1) Consider I a finite subset of object in C such that F =
⊕

b∈I homC(−, b),
then

S(F ) =
⊕

b∈I

S(homC(−, b)) =
⊕

b∈I

idb ·A(C)

then S(F ) is a quasi-free finitely generated A(C)-module.
(2) If P is a projective and finitely generated module there exist Q such that

P ⊕Q = F with F a free module. Then S(P ) ⊕ S(Q) = S(F ) with S(F )
quasi-free and finitely generated, we conclude S(P ) is projective.

(3) IfM is a quasi-free finitely generatedA(C)-module thenM =
⊕

b∈I idb ·A(C)
with I a finite set. Note

MC(a) = M · ida = (
⊕

b∈I

idb ·A(C)) · ida =
⊕

b∈I

homC(a, b)

Then

MC =
⊕

b∈I

homC(−, b)

is a free finitely generated module in Fun(Cop,Ab).
(4) If P is a projective finitely generated A(C)-module there exist Q such that

P⊕Q = F is a quasi-free finitely generatedA(C)-module, then PC⊕QC = FC

then PC is projective and finitely generated module.
�

Proposition 3.9. Let C be a Z-linear category with finite objects and n ≥ 1.

(1) The category C is right Noetherian if and only if A(C) is right Noetherian.
(2) The category C is right n-coherent if and only if A(C) is right strong n-

coherent.
(3) The category C is regular n-coherent if and only if A(C) is right n-regular

and strong n-coherent.
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Proof. (1) Let M be a finitely generated right A(C)-module and N be a sub-
module. We have an epimorphism

A(C)⊕ . . .⊕A(C) → M

then by Corollary 3.7 the following is an epimorphism

A(C)C ⊕ . . .⊕A(C)C → MC

As A(C)C =
⊕

b∈obC homC(−, b) we obtain that MC is finitely generated.

A(C)C ⊕ . . .⊕A(C)C =
⊕

j∈J bj∈obC

homC(−, bj)

Because C is Noetherian then NC is finitely generated. We have an epimor-
phism ⊕

i∈I

homC(−, ai) → NC

then ⊕

i∈I

S(homC(−, ai)) → S(NC) = N.

Consider the projection

pi : A(C) → S(homC(−, ai)) =
⊕

c∈obC

homC(c, ai)

Taking n = #I we obtain an epimorphism

A(C)n →
⊕

i∈I

S(homC(−, ai)) → N,

then N is finitely generated.
Conversely if M ∈ Fun(Cop,Ab) is finitely generated let us show that

every subobject is also finitely generated. Take N a submodule of M .
There is an epimorphism

⊕

i∈I

homC(−, ai) → M

then we have an epimorphism
⊕

i∈I,c∈obC

homC(c, ai) =
⊕

i∈I

S(homC(−, ai)) → S(M).

We obtain that S(N) is a submodule of S(M) which is is finitely generated,
then S(N) is also finitely generated and S(N)C = N is finitely generated.

(2) Let M be a finitely n-presented right A(C)-module. Consider m0, m1, . . .,
mn ∈ N such that

A(C)mn → A(C)mn−1 → . . . → A(C)m1 → A(C)m0 → M → 0

is exact. By Proposition 3.6 the following is also an exact sequence

A(C)mn

C
→ A(C)

mn−1

C
→ . . . → A(C)m1

C
→ A(C)m0

C
→ MC → 0

AsA(C)C =
⊕

b∈obC homC(−, b) we obtain thatMC is of type FPn. Because
C is n-coherent there exist an exact sequence

· · · → Pn+1 → Pn → . . . → P1 → P0 → MC → 0



ON THE K-THEORY OF Z-CATEGORIES. 13

with Pi projective and finitely generated. Then

· · · → S(Pn+1) → S(Pn) → . . . → S(P1) → S(P0) → M → 0

is exact and by Lemma 3.8 S(Pi) is projective and finitely generated. Then
A(C) is a strong n-coherent ring.

Conversely, if F ∈ Fun(Cop,Ab) is of type FPn then S(F ) is an A(C)-
module of the type FPn. As A(C) is a strong n-coherent ring there exists
Pi projective finitely generated A(C)-modules such that

. . . → Pn → · · · → P1 → P0 −→ S(F ) → 0

Then

. . . → (Pn)C → · · · → (P1)C → (P0)C → F → 0

where (Pi)C are projective and finitely generated by Lemma 3.8(4).
(3) Let M be a finitely n-presented right A(C)-module. We can note from the

previous item that MC is of type FPn. Because C is n-regular there exist
an exact sequence

0 → Pk → Pk−1 → . . . → P1 → P0 → MC → 0

with Pi projective and finitely generated. Then

0 → S(Pk) → S(Pk−1) → . . . → S(P1) → S(P0) → M → 0

is exact and by Lemma 3.8 S(Pi) is projective and finitely generated. Then
A(C) is a n-regular and strong n-coherent ring. The conversely is similar.

�

Example 3.10. Let consider some examples of Z-linear categories with finite objects.

(1) Let R be a ring and G = Zn. Consider R̃ = R[t]
<tn>

. The category CR̃ is the
category with n objects and

homCR̃
(p, q) = R̃q−p = R

Note A(CR̃) = Mn×n(R). If R is a Noetherian ring, then A(CR̃) is also
Noetherian. By Proposition 3.9, then CR̃ is Noetherian.

(2) We recall from [8] that a ring is said to be (n, d)-ring is every n-presented
R-module has projective dimension at most d. Remark that if n ≤ n′ and
d ≤ d′, then every (n, d)-ring is also a (n′, d′)-ring.

Let R, S be a finite direct sum of fields and C be the Z-linear cate-
gory with two objects a and b such that homC(a, b) = homC(b, a) = 0,
homC(a, a) = R and homC(b, b) = S. Notice A(C) = R⊕S, by [8, Theorem
1.3 (i)] A(C) is a (0, 0)-ring and hence a Noetherian and regular coherent
ring.

(3) Let G be a finite commutative group. An associative ring R graded by G
is

R =
⊕

g∈G

Rg

such that the multiplication satisfies RgRh ⊆ Rg+h for all g, h ∈ G. A (left)
graded module over R is an R-module M together with a decomposition
M =

⊕
g∈G Mg such that RgMh ⊆ Mg+h. We denote by R-GrMod the

category of graded R-modules. The category CR is the Z-linear category
whose set of objects is {g : g ∈ G} and whose morphism groups are given
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by homCR
(g, h) = Rh−g. By [9, Lemma 2.2] there is an equivalence between

R-GrMod and the additive functor category Fun(CR,Ab).
(4) Let G be a group and F be a finite family of subgroups of G, closed by

conjugation and closed by taking subgroups. Let C = OrF (G) be the orbit
category

obC = {G/H : H ∈ F}

homC(G/H,G/K) = {f : G/H → G/K : f(gsH) = gf(sH)}

4. K-theory of Z-linear categories

Let B be a small abelian category, in [16] M. Schlichting prove that K−1(B) = 0.
When B is in addition Noetherian, then Ki(B) = 0, ∀i < 0. It was a question if the
hypothesis of Noetherian was really necessary. In [16] the conjecture that if B is a
small abelian category then Ki(B) = 0 ∀i < 0 was stated. In [14], A. Neeman shows
a counterexample of this conjecture. In [1] the authors prove that if B[t1, . . . , tn] is
abelian for every n ∈ N then Ki(B) = 0 ∀i < 0. A similar result [3, Theorem 11.1]
claims that if A is an additive category such that A[t1, . . . , tn] is coherent regular
for every n ∈ N then Ki(A) = 0 ∀i < 0. Finally [3, Corollary 11.2] state that if A
is a regular (Noetherian and coherent regular) additive category then Ki(A) = 0
∀i < 0.

In this section we have a result of vanishing negative K-theory of Z-linear cat-
egories. Recall from [7, Section 4] the definition of the K-theory spectrum of a
Z-linear category C, the K-theory spectrum of the ring A(C) and the map

(4.1) ϕ : K(C) → K(A(C))

which is a natural equivalence in C, see [7, Proposition 4.2.8].

Theorem 4.2. Let C be a Z-linear category with finite objects.

(1) If C is right regular then Ki(C) = 0 ∀i < 0.
(2) If C is right regular coherent then K−1(C) = 0.

Proof. If C is regular, then A(C) is regular by Proposition 3.9. By fundamental
theorem of K-theory Ki(A(C)) = 0 ∀i < 0. We conclude

Ki(C) ≃ Ki(A(C)) = 0 ∀i < 0.

If C is regular coherent then A(C) is a regular coherent ring. By [1, Theorem 3.30]
we obtain K−1(A(C)) = 0 then

K−1(C) ≃ K−1(A(C)) = 0.

�

Corollary 4.3. Let D = C⊕ with C be a Z-linear category with finite objects.

(1) If C is right regular then Ki(D) = 0 ∀i < 0.
(2) If C is right regular coherent then K−1(D) = 0.

Definition 4.4. A Z-linear category C is right AF-regular if there is {Cf}f∈F a
direct system of right regular Z-linear categories with finite objects such that

C = colim
f∈F

Cf

Similarly we say that C is right AF-Noetherian (AF-regular coherent) if

C = colim
f∈F

Cf
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with Ci right Noetherian (regular coherent) Z-linear categories with finite objects.

Theorem 4.5. Let C be a Z-linear category.

(1) If C is right AF-regular then Ki(C) = 0 ∀i < 0.
(2) If C is right AF-regular coherent then K−1(C) = 0.

Proof. If C = colimf∈F Cf then Ki(C) = colimf∈F Ki(Cf ). The rest of the proof
follows from Theorem 4.2. �

Using [10, Thm 3.2] and Proposition 3.9 we obtain the following result.

Proposition 4.6. Let C be a Z-linear category with finite objects. Suppose that C
is right regular n-coherent. Then

Ki(C) ≃ Ki(FPn(A(C))) i ≥ 0.
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IMERL, Facultad de Ingenieŕıa, Universidad de la República, Julio Herrera y Reissig

565, 11.300, Montevideo, Uruguay


	1. Introduction
	2. Modules over Z-linear categories
	2.1. Pseudo n-kernels and pseudo n-cokernels
	2.2. Categories of Additive Functors
	2.3. Finitely n-presented objects and n-coherent categories

	3. The ring A(C) and the Z-linear category C
	3.1. The ring A(C)
	3.2. The ZC-modules

	4. K-theory of Z-linear categories
	Acknowledgments
	References

