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ALGEBRAIC kk-THEORY AND THE KH-ISOMORPHISM

CONJECTURE

E. ELLIS AND E. RODRÍGUEZ CIRONE

Abstract. We relate the Davis-Lück homology with coefficients in Weibel’s
homotopy K-theory to the equivariant algebraic kk-theory using homotopy
theory and adjointness theorems. We express the left hand side of the assembly
map for the KH-isomorphism conjecture introduced by Bartels-Lück in terms
of equivariant algebraic kk-groups.

1. Introduction

Algebraic kk-theory was introduced in [8] in order to show how methods from
K-theory of operator algebras can be applied in a completely algebraic setting. The
definition of algebraic kk-theory was motivated by the works [9] and [17] on Kas-
parov’s KK-theory introduced in [21]. An equivariant version of the algebraic kk-
theory was introduced in [13]. We can write a dictionary between Kasparov’s KK-
theory and algebraic kk-theory. Kasparov’s KK-theory of separable C∗-algebras is
the major tool in noncommutative topology. It is a common generalization both of
topological K-homology and topological K-theory as an additive bivariant functor.
Let A and B be separable C∗-algebras. The groups KK∗(A,B) are defined such
that

KK∗(C, B) ∼= Ktop
∗ (B) and KK∗(A,C) ∼= K∗

hom(A).

Here Ktop
∗ (B) denotes the topological K-theory groups of B and K∗

hom(A) the
K-homology groups of A. The Kasparov groups KK(A,B) = KK0(A,B) for
separable C∗-algebras A and B form the set of morphisms A → B in a category
KK. The composition in KK is given by the Kasparov product. The category
KK admits a triangulated category structure and there is a canonical functor k :
C∗-Alg → KK which is homotopy invariant, C∗-stable and split-exact. Moreover,
k is universal for these properties. Similarly algebraic kk-theory is a bivariant K-
theory on Algℓ, the category of algebras over a commutative ring ℓ. For ℓ-algebras
A and B the groups kk∗(A,B) are defined such that

kk∗(ℓ, A) ∼= KH∗(A).

Here KH∗(A) denotes Weibel’s homotopy K-theory groups. We can consider a
triangulated category kk whose objects are the ℓ-algebras and whose morphisms
are the elements of kk(A,B) = kk0(A,B). There exists a canonical functor j :
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2 E. ELLIS AND E. RODRÍGUEZ CIRONE

Algℓ → kk such that j is stable with respect to matrices, polynomial homotopy
invariant and excisive. Moreover, j is universal for these properties.

Let G be a (discrete) group. The equivariant Kasparov’s KK-theory is a bi-
variant K-theory defined on G-C∗-Alg, the category of separable C∗-algebras with
an action by automorphisms of G. There exists a triangulated category KKG and
a functor j : G-C∗-Alg → KKG that is universal for the properties: stable with
respect to compact operators on ℓ2(G × N), continuous homotopy invariant and
split exact. The equivariant algebraic kk-theory is a bivariant K-theory defined
in GAlgℓ, the category of ℓ-algebras with an action of G. There exists a functor
j : GAlgℓ → kkG universal for the properties: G-stable, polynomial homotopy in-
variant and excisive. In the algebraic setting there are versions of the Green-Julg
Theorem, the adjointness between induction and restriction functors and the Baaj-
Skandalis duality. Let K be a finite group whose order is invertible in ℓ and let
A ∈ KAlgℓ. The Green-Julg Theorem gives us a natural isomorphism

ψGJ : kkK∗ (ℓ, A)
∼=
−→ kk∗(ℓ, A⋊K) = KH∗(A⋊K). (1.1)

Let H ≤ G. The adjunction between the induction and restriction functors gives
us a natural isomorphism

ψIR : kkG∗ (Ind
G
H(B), A)

∼=
−→ kkH∗ (B,ResHG (A)), B ∈ HAlgℓ, A ∈ GAlgℓ. (1.2)

Let H be a finite subgroup of G with 1
|H| ∈ ℓ. Notice that

IndGH(ℓ) = ℓ(G/H) =
⊕

G/H

ℓ.

Combining the isomorphisms (1.1) and (1.2) we obtain an isomorphism

ψ : kkG∗ (ℓ
(G/H), A)

∼=
−→ KH∗(A⋊H).

Can we express KH∗(A⋊G) as a kkG-group? If G is finite with 1
|G| ∈ ℓ the answer

is positive; see (1.1). In this paper we go deep into this question. We consider the
KH-isomorphism conjecture introduced in [3] and we write the left hand side of this
conjecture in terms of kkG-groups. One motivation to do this is to formulate in the
algebraic context techniques used in some proofs of the Baum-Connes conjecture
with coefficients.

The Baum-Connes conjecture with coefficients is formulated in [4]. Let G be a
discrete group and let A be a separable G-C∗-algebra. Let EFin(G) denote a model
for the classifying space of G with respect to the family of finite subgroups. The
Baum-Connes property is true for the pair (G,A) if the assembly map µG,A,

µG,A : KKG
∗ (C0(EFin(G)), A) = colim

X
KKG

∗ (C0(X), A) → Ktop
∗ (A⋊G), (1.3)

is an isomorphism; here X runs over the directed set of G-compact subsets of
EFin(G). For more details about the Baum-Connes conjecture see [16].

We are looking for an assembly map similar to (1.3) with KH instead of Ktop

and algebraic kkG-groups instead of Kasparov’s KKG-groups.
For discrete groups, the Baum-Connes conjecture can also be formulated using

homotopy theory through the Davis-Lück approach [11]. Write Sp for the category
of (simplicial) spectra. Let Or(G) denote the orbit category of G: its objects
are G/H with H a subgroup of G and its morphisms are G-equivariant maps
f : G/H → G/K. Recall that an Or(G)-spectrum E is a functor E : Or(G) → Sp.
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In [11], an equivariant homology theory is constructed for each Or(G)-spectrum E.
The homology theory HG(−;E) in the category of G-simplicial sets SG is defined
as follows:

HG(−;E) : SG → Sp, HG(X ;E) = mapG(−, X)+ ⊗Or(G) E(−). (1.4)

Let F be a family of subgroups of G and let EFG be a model of the classifying
space of G with respect to F , i.e. a G-simplicial set such that

(EFG)
H

=

{

contractible if H ∈ F ,
∅ if H /∈ F .

Let p : EF (G) → ⋆ be the projection to the point. The assembly map associated
to (G,F ,E) is the map

HG(p) : HG(EF (G);E) → HG(⋆;E). (1.5)

We remark that in the original construction of [11] topological spectra are used
instead of simplicial spectra. In our work we use that Sp is a combinatorial category
(see Lemma C.2) and that holds for simplicial spectra. In [7, Section 2] it is proved

that TopG is Quillen equivalent to SG and that it is equivalent to work with assembly
maps in the topological or in the simplicial setting. If E is the topological spectrum
Ktop
A and F = Fin then the assembly map (1.5) coincides with (1.3), see [22].
The KH-isomorphism conjecture was introduced in [3, Section 7]; see [23, Section

15.3] for the status of this conjecture. In this paper we use a particular Or(G)-
spectrum E that we proceed to describe. For a G-algebra B and G/H ∈ Or(G),
we define an algebra R(B⋊G/H) that has the properties of being natural in G/H
and kkG-equivalent to B ⋊ H ; see Sections 3.1 and 3.2. Let K be the spectrum
representing kk-theory defined by Garkusha [14]; see Section C.2 for details. The
KH-isomorphism conjecture states that for F = Fin and

E : Or(G) → Sp, E(G/H) = K(ℓ,R(B ⋊G/H)), (1.6)

the assembly map (1.5) is an isomorphism. Note that

π∗(E(G/H)) = π∗(K(ℓ,R(B ⋊G/H)) = kk∗(ℓ,R(B ⋊G/H)) = KH∗(B ⋊H).

Let KG be the spectrum representing kkG-theory defined in [25]; see Section C.2
for details. The main theorem of this work is Theorem 6.6:

Theorem 1.7 (cf. Theorem 6.6). Let G be a group such that 1
|H| ∈ ℓ for every

finite subgrup H ≤ G. Let B be a G-algebra and E be the Or(G)-spectrum defined
in (1.6). Then

HG(EFinG;E) ∼= colim
X

K
G(ℓ(X), B)

where X runs over the (G,Fin)-finite subcomplexes of EFinG.

The proof of Theorem 1.7 has two parts. Let Or(G,Fin) be the full subcategory
of Or(G) whose objects are G/H with H ∈ Fin. We consider the Or(G,Fin)-
spectrum

F : Or(G,Fin) → Sp, F(G/H) = K
G(ℓ(G/H), B),

which provides an homology theory on (G,Fin)-complexes, see details in [11]. A
(G,Fin)-complex is a G-simplicial set that is built from cells of the form G/H×∆n
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with H ∈ Fin. The first step in the proof of Theorem 1.7 is to prove that for every
(G,Fin)-complex Y we obtain:

HG(Y ;E) ∼= HG(Y ;F) (1.8)

In order to prove the above, we construct in Theorem 5.35 a zig-zag of Or(G,Fin)-
spectra:

E(G/H) = K(A,R(B ⋊G/H)) //❴❴❴ KG(A(G/H), B) = F(G/H)

The second step is to prove that

HG(Y ;F) = colimX KG(ℓ(X), B) (1.9)

where Y is a (G,Fin)-complex and X ⊆ Y is (G,Fin)-finite. This is proved in
Lemma 6.4.

The paper is organized as follows. In Section 2 we recall the adjointness theorems
from [13]. Upon composing (1.1) and (1.2) we get an isomorphism

kkG(A(G/H), B) ∼= kk(A,B ⋊H) (1.10)

for A ∈ Alg, B ∈ GAlgℓ and H a finite subgroup of G such that 1
|H| ∈ ℓ. Along this

section we give explicit descriptions of the unit and counit of this adjunction; this
is summarized in Proposition 2.10. In Section 3 we define a triangulated functor
R(−⋊G/H) : kkG → kk that is naturally isomorphic to the crossed product with
H . This allows us to replace the right-hand side of (1.10) by kk(A,R(B ⋊G/H))
and consider it as a covariant functor on Or(G). In Section 4, we prove that the
isomorphism

kkG(A(G/H), B) ∼= kk(A,R(B ⋊G/H)) (1.11)

is natural in G/H ; see Theorem 4.9. Moreover, we provide an explicit description
for the counit of this adjunction in Lemma 4.6. Section 5 is the technical core
of this work and is devoted to lifting the isomorphism (1.11) to a natural weak
equivalence of spectra. By Lemma 4.6, we can describe the isomorphism (1.11) as
the composite of the morphisms in the zig-zag (5.2). Upon replacing kk by K and
kkG by K

G we obtain a zig-zag:

K(A,R(B ⋊G/N))
(−)(G/N)

// KG(A(G/N), [R(B ⋊G/N)]
(G/N)

)

KG(A(G/N),MGB) KG(A(G/N),R
[

(B ⋊G/N)(G/N)
]

)

∼

OO

R(ζG/N )
oo

(1.12)

Here the technical difficulties arise:

(1) How to consider the spectra on the right column as covariant functors
Or(G,Fin) → Sp (or replace them by ones)?

(2) Once the previous question has been addressed, are the morphisms in (1.12)
natural in G/N?

These issues are explained with greater detail in Section 5.1. In Section 5.2 we
introduce a more convenient notation, rewriting (1.12) as:

J(t)
(−)(t) // Mt(t, t) Lt(t, t)∼

ψoo R(ζt) // KG(A(t),MGB) (1.13)



ALGEBRAIC kk-THEORY AND THE KH-ISOMORPHISM CONJECTURE 5

In Sections 5.3 and 5.4 we show how defining Or(G,Fin)-spectra as objecwise
coends provides an answer to (1). In Section 5.5 we define a morphism ϕ of
Or(G,Fin)-spectra that can be thought of as a convenient analogue to the mor-
phism (−)(t) in (1.13). In Section 5.6 we introduce a model structure on categories
of bifunctors that will allow us to build models for the homotopy coends of certain
morphisms of bifunctors. In Section 5.7 we gather the previous results and give an
answer to (2) in Theorem 5.35. In Section 6 we finally prove Theorem 1.7 and show
that the left-hand side of the assembly map for the KH-isomorphism conjecture
can be expressed in terms of equivariant algebraic kk-theory groups.

2. Adjoint theorems revisited

Throughout this text, ℓ will denote a commutative ring with unit and ⊗ will
denote the tensor product over ℓ. We will refer to ℓ-algebras simply as algebras .
An algebra with an action of a group G will be called a G-algebra. The following
lemma will be useful later on.

Lemma 2.1 ([6, Proposition 2.2.6]). Let D be a category and let F : GAlgℓ → D
be an M2-stable functor. Let B ⊆ C be an inclusion of G-algebras and let V ∈ C be
an invertible element such that V B,BV −1 ⊆ B and g · V = V for all g ∈ G. Then
the formula φV (b) = V bV −1 defines a G-algebra homomorphism φV : B → B such
that F (φV ) = idF (B).

Proof. It is easily verified that g · V −1 = V −1 for all g ∈ G and that φV defines
a G-algebra homomorphism. The rest of the proof of [6, Proposition 2.2.6] carries
over verbatim. �

If X is a set, we will write MX for the algebra of finite matrices with coefficients
in ℓ that are indexed over X ×X . Let S be a G-set and let |S| be its underlying
set. We will write MS for the ℓ-algebra M|S| endowed with the G-action defined
by g · es,t = eg·s,g·t. For any B ∈ GAlgℓ, we have an ℓ-algebra isomorphism
RS,B : (MS ⊗B)⋊G→M|S| ⊗ (B ⋊G) defined by:

RS,B((es,t ⊗ b)⋊ g) = es,g−1t ⊗ (b⋊ g)

This isomorphism is clearly natural in S with respect to injective morphisms of
G-sets and natural in B with respect to ℓ-algebra homomorphisms.

Let G+ = G
∐

{∗} and let ι : ℓ → MG+ (respectively ι′ : MG → MG+) be the
morphism induced by the inclusion {∗} ⊂ G (resp. G ⊂ G+). Let B ∈ GAlgℓ.
Recall from [13, (4.1.3)] that we have the following zig-zag of isomorphisms in kkG:

B
ι∗

∼=
// MG+ ⊗B MG ⊗B

(ι′)∗

∼=
oo (2.2)

Let G be a group and let H ⊆ G be a finite subgroup of order n such that 1
n ∈ ℓ.

By [13, Theorem 5.2.1] and [13, Theorem 6.14] we have an adjunction isomorphism

kkG(A(G/H), B) ∼= kk(A,B ⋊H) (2.3)

for any A ∈ Algℓ and any B ∈ GAlgℓ. For A ∈ Algℓ, let ϕA : A→ A(G/H) ⋊H be
the algebra homomorphism defined by:

ϕA(a) = aχH ⋊
1

n

∑

h∈H

h
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Put ηA = j(ϕA) ∈ kk(A,A(G/H) ⋊ H). We will show that ηA is a unit for the
adjunction (2.3). For B ∈ GAlgℓ, let ψB : (B ⋊ H)(G/H) → MG ⊗ B be the
G-algebra homomorphism defined by:

ψB ((b⋊ h)χwH) =
∑

p∈wH

ep,ph ⊗ p(b) (2.4)

Let εB ∈ kkG((B ⋊ H)(G/H), B) be the following composite in kkG, where the
isomorphism on the right is given by the zig-zag (2.2):

(B ⋊H)(G/H)
jG(ψB)// MG ⊗B ∼= B (2.5)

We will show that εB is a counit for the adjunction (2.3).

Lemma 2.6. For any B ∈ GAlgℓ we have (εB ⋊H) ◦ ηB⋊H = idB⋊H in kk.

Proof. It is easily verified that the following diagram in kk commutes, where all
the arrows are isomorphisms:

(MG ⊗B)⋊H

(RG,B)∗

��

(ι′)∗ // (MG+ ⊗B)⋊H

(RG+,B)∗

��

B ⋊H
ι∗oo

ι∗vv
M|G| ⊗ (B ⋊H)

(ι′)∗

// M|G+| ⊗ (B ⋊H)

Thus, the isomorphism (MG⊗B)⋊H ∼= B⋊H in kk induced by the zig-zag (2.2)
equals the composite:

(MG ⊗B)⋊H
j(RG,B) // M|G| ⊗ (B ⋊H) B ⋊H

j(e1,1⊗?)oo

To prove the lemma, it will be enough to show that the composite

B ⋊H
ϕB⋊H // (B ⋊H)(G/H) ⋊H

ψB⋊H // (MG ⊗B)⋊H
RG,B // M|G| ⊗ (B ⋊H)

and the inclusion e1,1⊗? : B ⋊ H → M|G| ⊗ (B ⋊H) induce the same morphism

in kk. Let Γ be the algebra of matrices with coefficients in B̃ ⋊ H indexed by
G × G that have only finitely many nonzero coefficients in each column and each
row. Notice that Γ is a unital algebra that containsM|G|⊗(B⋊H) as a subalgebra.
Let V =

∑

g∈G eg,g ⊗ (1 ⋊ g) ∈ Γ. We have:

[RG,B ◦ (ψB ⋊H) ◦ ϕB⋊H ](b⋊ h) =
1

n

∑

p,q∈H

ep,q ⊗ (p(b)⋊ phq−1)

= V





1

n

∑

p,q∈H

ep,q ⊗ (b⋊ h)



V −1

Moreover, 1
n

∑

p,q∈H ep,q is a conjugate of e1,1 in M|G|; see [13, Remark 3.1.11]. By

[6, Proposition 2.2.6], we have

j[RG,B ◦ (ψB ⋊H) ◦ ϕB⋊H ] = j(e1,1⊗?) : B ⋊H →M|G| ⊗ (B ⋊H),

as we wanted to prove. �

Lemma 2.7. For any A ∈ Algℓ we have εA(G/H) ◦
[

(ηA)
(G/H)

]

= idA(G/H) in kkG.
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Proof. It is easily verified that the composite

A(G/H)
(ηA)(G/H)

//
(

A(G/H) ⋊H
)(G/H) εA(G/H) // MG ⊗A(G/H) ι′ // MG+ ⊗A(G/H)

is given by:

aχwH 7→
1

n

∑

p,q∈H

ewp,wq ⊗ aχwH (2.8)

To prove the lemma, it suffices to show that the above formula induces the same
morphism as ι : A(G/H) →MG+ ⊗A(G/H), ι(aχwH) = e∗,∗ ⊗ aχwH , upon applying

jG : GAlgℓ → kkG. Let Ã be the unitalization of A and let ΓG+(Ã) be the set of

those matrices with coefficients in Ã, indexed overG+×G+, that have finitely many

nozero coefficients in each row and each column. Then ΓG+(Ã) is a G-algebra with
the usual matrix multiplication and the G-action defined by (g ·a)x,y := ag−1·x,g−1·y.
Moreover, we have inclusions of G-ℓ-algebras as follows:

MG+ ⊗A(G/H) ⊆
(

MG+ ⊗A
)G/H

⊆
(

ΓG+(Ã)
)G/H

The G-action on the right is described by

(g · f)(tH) := g · f(g−1tH),

where f : G/H → ΓG+(Ã) is a function and g ∈ G. We will show that there exists

an invertible V ∈ (ΓG+(Ã))
G/H such that the following diagram commutes, where

the horizontal morphism is given by (2.8):

A(G/H) //

ι
((

MG+ ⊗A(G/H)

φV

��
MG+ ⊗A(G/H)

(2.9)

Once this is done, the result will follow by Lemma 2.1 since jG : GAlgℓ → kkG is
M2-stable. For wH ∈ G/H , define:

VwH :=
∑

x∈wH

(

n−1
n ex,x + e∗,x + ex,∗

)

−
∑

x,y∈wH

1
nex,y +

∑

g∈G\wH

eg,g ∈ ΓG+(Ã)

Note that g · VwH = VgwH for all g ∈ G. We can picture VwH as a block diagonal
matrix having an identity block in the coordinates corresponding to g ∈ G \ wH ,
and the following block in the coordinates corresponding to elements of wH ∪ {∗}:

n−1
n − 1

n · · · − 1
n − 1

n 1

− 1
n

n−1
n · · · − 1

n − 1
n 1

...
. . .

...
...

− 1
n − 1

n · · · n−1
n − 1

n 1

− 1
n − 1

n · · · − 1
n

n−1
n 1

1 1 · · · 1 1 0





















































wH

wH
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It is easily verified that VgH is invertible with inverse given by:

V −1
wH :=

∑

x∈wH

(

n−1
n ex,x +

1
ne∗,x +

1
nex,∗

)

−
∑

x,y∈wH

1
nex,y +

∑

g∈G\wH

eg,g ∈ ΓG+(Ã)

Again, we can think of V −1
wH as a block diagonal matrix having an identity block

in the coordinates corresponding to g ∈ G \ wH , and the following block in the
coordinates corresponding to elements of wH ∪ {∗}:

n−1
n − 1

n · · · − 1
n − 1

n
1
n

− 1
n

n−1
n · · · − 1

n − 1
n

1
n

...
. . .

...
...

− 1
n − 1

n · · · n−1
n − 1

n
1
n

− 1
n − 1

n · · · − 1
n

n−1
n

1
n

1
n

1
n · · · 1

n
1
n 0

























































wH

wH

Define V ±1 : G/H → ΓG+(Ã) by V
±1(wH) := V ±1

wH . Then V, V −1 ∈ (ΓG+(Ã))
G/H

are mutual inverses and

V (MG+ ⊗A(G/H)), (MG+ ⊗A(G/H))V −1 ⊆ (MG+ ⊗A(G/H)).

Moreover, g · V = V for all g ∈ G. An easy computation shows that the triangle
(2.9) commutes. This finishes the proof. �

Proposition 2.10 (cf. [13, Theorems 5.2.1 and 6.14]). Let G be a group and let
H ⊆ G be a finite subgroup of order n such that 1

n ∈ ℓ. Then the morphisms ηA ∈

kk(A,A(G/H) ⋊H) and εB ∈ kkG((B ⋊H)(G/H), B) defined above are respectively
the unit and the counit of an adjunction:

kkG(A(G/H), B) ∼= kk(A,B ⋊H) (2.11)

Proof. It follows immediately from Lemmas 2.6 and 2.7. �

3. Crossed product with G/H

We want to show that the adjunction (2.11) is natural in G/H . The first thing
to do is to replace the right-hand side by an actual functor on Or(G,Fin).

3.1. Non unital ℓ-linear categories.

Definition 3.1. A non-unital ℓ-linear category C consists of:

(1) a set of objects obC,
(2) an ℓ-module C(x, y) for every x, y ∈ obC, and
(3) ℓ-module homomorphisms

◦ : C(y, z)⊗ C(x, y) → C(x, z) (3.2)

for every x, y, z ∈ ob C, that are associative in the obvious way.

Non-unital ℓ-linear categories with only one object can be identified with (non-
unital) ℓ-algebras. In the sequel, we will refer to non-unital ℓ-linear categories
simply as ℓ-linear categories.
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Definition 3.3. Let C and D be ℓ-linear categories. An ℓ-linear functor F : C → D
consists of a function F : ob C → obD together with ℓ-module homorphisms

Fx,y : C(x, y) → D(F (x), F (y)) (3.4)

that are compatible with the composition.

We will write Catℓ for the category whose objects are ℓ-linear categories and
whose morphisms are ℓ-linear functors.

Let C and D be ℓ-linear categories. The tensor product C ⊗ D is the ℓ-linear
category with objects ob (C)⊗ ob (D) and such that:

(C ⊗ D)((c, d), (c̃, d̃)) = C(c, c̃)⊗D(d, d̃)

Composition is defined in the usual way, using the composition laws in C and D
and the commutativity of the tensor product of ℓ-modules.

We proceed to recall some definitions from [7, Section 3]. Let C be an ℓ-linear
category. Put:

A(C) =
⊕

x,y∈obC

C(x, y)

If f ∈ A(C), write fy,x for its component in C(x, y). Then A(C) is an ℓ-algebra with
multiplication given by

(gf)y,x =
∑

z∈ob C

gy,z ◦ fz,x

Example 3.5. Let C and D be ℓ-linear categories. It is easily verified that:

A(C ⊗ D) ∼= A(C)⊗A(D)

Example 3.6. Let A ∈ Algℓ, let G be a group and let H be a subgroup. We can
regard A

(

A⋊ GG(G/H)
)

as a subalgebra of M|G/H|(A ⋊ G) using the inclusion
that sends a⋊ g ∈ HomA⋊GG(G/H)(uH, vH) to evH,uH · (a⋊ g).

A problem with A(C) is that it is not natural with respect to all ℓ-linear functors,
but only with respect to those that are injective on objects; see [7, p.1231]. To fix
this, one defines the ℓ-algebra R(C) [7, Section 3.4]. If M is an ℓ-module, write
T (M) = ⊕n≥1M

⊗n for the unaugmented tensor algebra. Put:

R(C) = T (A(C)) /〈{g ⊗ f − g ◦ f : f ∈ C(x, y), g ∈ C(y, z), x, y, z ∈ ob C}〉

This defines a functor R : Catℓ → Algℓ.

Remark 3.7. Let G be a group. One can define a G-category as an ℓ-linear
category C such that the hom-modules C(x, y) are G-modules and the composition
law (3.2) is G-equivariant, endowing C(y, z) ⊗ C(x, y) with the diagonal G-action.
If C and D are G-categories, a G-functor F : C → D is an ℓ-linear functor such that
the morphisms (3.4) are G-equivariant. These definitions give rise to a category
GCatℓ whose objects are G-categories and whose morphisms are G-functors.

If C is a G-category, then A(C) and R(C) are G-algebras in a natural way. Thus,
we have a functor R : GCatℓ → GAlgℓ.

Example 3.8. Let C be an ℓ-linear category and D ∈ Algℓ. We claim that there
is a natural morphism:

R(C ⊗D) → R(C)⊗D
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To see this, first note that there is an ℓ-linear functor C → R(C) that takes f ∈
C(x, y) to the class in R(C) of f ∈ C(x, y) ⊆ A(C) ⊆ T (A(C)). Upon tensoring this
functor with D and then applying R(−), we get the desired morphism:

R(C ⊗D) → R(R(C)⊗D) = R(C)⊗D (3.9)

If C is a G-category and D is a G-algebra, then (3.8) is a morphism of G-algebras.

Is C is an ℓ-linear category, there is a morphism p : R(C) → A(C) induced by
multiplication in A(C).

Lemma 3.10 (cf. [7, Lemma 3.4.3]). Let C be an ℓ-linear category (respectively a
G-category). Then the morphism

p : R(C) → A(C)

induces an isomorphism in kk (resp. in kkG).

Proof. The proof of [7, Lemma 3.4.3] carries on verbatim in this setting. �

Corollary 3.11. Let C ∈ Catℓ and D ∈ Algℓ (resp. C ∈ GCatℓ and D ∈ GAlgℓ).
Then the morphism

R(C ⊗D) → R(C)⊗D

of Example 3.8 is an isomorphism in kk (resp. in kkG).

Proof. It is easily verified that the following diagram commutes in Algℓ (resp. in
GAlgℓ):

R(C ⊗D) //

p

��

R(C)⊗D

p⊗idD

��
A(C ⊗D)

∼= // A(C)⊗D

Indeed, it suffices to check commutativity on the generators f ⊗ d, and this is
immediate. The result follows from Lemma 3.10. �

3.2. Crossed product with G/H. Fix G/H ∈ Or(G) and write −⋊G/H for the
functor −⋊ GG(G/H) : GAlgℓ → Catℓ. We claim that the composite functor

GAlgℓ
−⋊G/H // Catℓ

R // Algℓ
j // kk (3.12)

factors through jG : GAlgℓ → kkG. To prove this, it suffices to show that it is ex-
cisive, homotopy invariant and G-stable [13, Theorem 4.1.1]. Homotopy invariance
and G-stability follow easily from the following.

Lemma 3.13. Let H be a subgroup of G and let uH ∈ G/H. Write uH for the
conjugate uHu−1. Then the composite functor in (3.12) is naturally isomorphic to:

A 7→ j(Res
uH
G (A) ⋊ uH). (3.14)

Proof. To ease notation, we will omit Res
uH
G throughout the proof and write A⋊uH

instead of Res
uH
G (A) ⋊ uH . Let B ∈ GAlgℓ. Consider B ⋊ uH ⊆ B ⋊G/H as the

full subcategory whose only object is uH . Upon applying R to this inclusion, we
get an algebra homomorphism:

B ⋊
uH = R(B ⋊

uH) −→ R (B ⋊G/H)

Let νuH be the image of this morphism in kk. Clearly, νuH is a natural transfor-
mation from (3.14) to the composite (3.12). To finish the proof, we will show that
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νuH is an isomorphism. We claim that there is an isomorphism α that fits in the
following commutative diagram in kk:

B ⋊ uH
νuH //

·euH,uH

,,

R (B ⋊G/H)

p≃

��
A (B ⋊G/H)

≃ α

��
M|G/H|(B ⋊ uH)

Here, the bent arrow is induced by the inclusion into the (uH, uH)-coefficient and
it is an isomorphism by matrix invariance. It follows that νuH is an isomorphism
too. The isomorphism α is constructed as in the proof of [7, Lemma 3.2.6]. More
precisely, let s : G/H → G be a section of the projection such that s(uH) = u.
Write ĝ = s(gH) for g ∈ G. For b ∈ B and g ∈ homGG(G/H)(sH, tH) put:

α(b ⋊ g) = etH,sH · (ut̂−1(b)⋊ ut̂−1gŝu−1)

It is straightforward to verify that this formula defines an isomorphism of algebras
α : A (B ⋊G/H) →M|G/H|(B ⋊ uH). �

Corollary 3.15 (cf. [13, Proposition 5.1.2 and Section 6]). The composite functor
(3.12) is homotopy invariant and G-stable.

Proof. Write F : GAlgℓ → kk for the functor F = j(ResHG (−) ⋊ H). By Lemma
3.13 it suffices to show that F is homotopy invariant and G-stable. By definition,
F is the composite:

GAlgℓ
ResHG // HAlgℓ

j(−⋊H) // kk

The functor j(− ⋊ H) is homotopy invariant and H-stable by [13, Proposition

5.1.2]. The functor ResHG is easily seen to send homotopic morphisms in GAlgℓ to
homotopic morphisms inHAlgℓ. It follows that F is homotopy invariant. Recall the
definition of G-stable functor from [13, Section 3.1]. Let (W1, B1) and (W2, B2)
be G-modules by locally finite automorphisms such that card(Bi) ≤ card(N) for
i = 1, 2 and let A be a G-algebra. Then (W1, B1) and (W2, B2) are H-modules by
locally finite automorphisms and thus

ResHG (EndFℓ (W1))⊗ ResHGA→ ResHG (EndFℓ (W1 ⊕W2))⊗ ResHGA

f 7→

(

f 0
0 0

)

becomes an isomorphism upon applying j(−⋊H). It follows that F is G-stable. �

We still have to show that the composite (3.12) is excisive.

Construction 3.16. Let E : A → B → C be an extension in GAlgℓ (that splits
in GModℓ). We will to construct a triangle in kk as follows, that is natural with
respect to morphisms of extensions:

Ω(R(C ⋊G/H))
∂E⋊G/H// R(A⋊G/H) // R(B ⋊G/H) // R(C ⋊G/H)
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Let νH : j(ResHG (−)⋊H) → jR(−⋊G/H) be the natural isomorphism of Lemma

3.13. Note that j(ResHG (−)⋊H) is excisive, since ResHG sends extensions in GAlgℓ
to extensions in HAlgℓ and j(− ⋊ H) : HAlgℓ → kk is excisive [13, Proposition

5.1.2]. To simplify notation, we omit explicit mention to j and ResHG . For example,

we write A ⋊H instead of j(ResHG (A) ⋊H). We have the following commutative
diagram of solid arrows in kk, where the top row is a triangle:

Ω(C ⋊H)
∂E⋊H //

≃ Ω(νH )

��

A⋊H

≃ νH

��

// B ⋊H

≃ νH

��

// C ⋊H

≃ νH

��
Ω(R(C ⋊G/H)) //❴❴❴ R(A⋊G/H) // R(B ⋊G/H) // R(C ⋊G/H)

Define ∂E⋊G/H : Ω(R(C ⋊ G/H)) → R(A ⋊ G/H) to be the dashed arrow that
makes the left square commute. Then the bottom row becomes a triangle too.
This triangle is clearly natural with respect to the extension E . These morphisms
∂E⋊G/H make the composite (3.12) into an excisive homology theory.

Proposition 3.17. Let H be subgroup of G. Then there exists a unique triangulated

functor −⋊G/H : kkG → kk that makes the following diagram commute:

GAlgℓ

jG

��

R(−⋊G/H) // Algℓ

j

��
kkG

−⋊G/H

// kk

Moreover, for every extension E : A → B → C in GAlgℓ and every uH ∈ G/H,
the following square in kk commutes

Ω(C ⋊ uH)

Ω(νuH ) ≃

��

∂E⋊uH // A⋊ uH

νuH≃

��
Ω(R(C ⋊G/H))

∂E⋊G/H// R(A ⋊G/H)

(3.18)

Proof. The functor composite functor (3.12) is homotopy invariant and G-stable
by Corollary 3.15. Moreover, endowed with the morphisms ∂E⋊G/H defined in
Construction 3.16, it becomes an excisive homology theory. Then the existence of

−⋊G/H : kkG → kk follows from [13, Theorem 4.1.1].
To prove the assertion about (3.18), consider the following diagram in kk:

Ω(C ⋊ uH)

Ω(νuH ) ≃

��

∂E⋊uH // A⋊ uH

νuH≃

��
Ω(R(C ⋊G/H))

∂E⋊G/H//

Ω(νH )−1 ≃

��

R(A ⋊G/H)

(νH)−1≃

��
Ω(C ⋊H)

∂E⋊H // A⋊H

(3.19)

The bottom square commutes by definition of ∂E⋊G/H ; see Construction 3.16. Thus,
the commutativity of (3.18) is equivalent to that of the outer square in (3.19). We
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will see that the latter commutes since it is induced by a morphism of extensions
in Algℓ. For D ∈ GAlgℓ, let ϕu : D ⋊ uH → D ⋊H be the algebra homomorphism
defined by ϕu(a⋊ g) = u−1(a)⋊ u−1gu. We have a morphism of extensions

A⋊ uH

ϕu

��

// B ⋊ uH

ϕu

��

// C ⋊ uH

ϕu

��
A⋊H // B ⋊H // C ⋊H

that induces a morphism of triangles in kk. In particular, there is a commutative
square in kk as follows:

Ω(C ⋊ uH)

Ωj(ϕu)

��

∂E⋊uH // A⋊ uH

j(ϕu)

��
Ω(C ⋊H)

∂E⋊H // A⋊H

This square turns out to be the outer square of (3.19). To see this, it suffices to
show that j(ϕu) = (νH)−1 ◦ νuH or, equivalently, that

j(p) ◦ νH ◦ j(ϕu) = j(p) ◦ νuH (3.20)

where p : R (D ⋊G/H) −→ A (D ⋊G/H). Each side of (3.20) is induced by an
algebra homomorphism D ⋊ uH → A (D ⋊G/H). We will show that both mor-
phisms are conjugate in M|G/H|(D⋊G)—regarding A (D ⋊G/H) as a subalgebra
ofM|G/H|(D⋊G) with the inclusion of Example 3.6. A straightforward verification
shows that the left- and the right-hand sides of (3.20) are induced, respectively, by
the algebra homomorphisms λ and ρ defined by:

λ(d⋊ g) = eH,H · (u−1(d)⋊ u−1gu)

ρ(d⋊ g) = euH,uH · (d⋊ g)

Now put:

V =
∑

vH∈G/H

euvH,vH · (1 ⋊ u) ∈ Γ|G/H|(D̃ ⋊G) ⊃M|G/H|(D ⋊G)

It is easily seen that ρ = V · λ · V −1. This proves the equality (3.20) and concludes
the proof of the proposition. �

Proposition 3.21. Let G be a group. Then every morphism G/H → G/K in

Or(G) induces a (graded) natural transformation −⋊G/H → −⋊G/K of functors
kkG → kk. Moreover, these assemble into a functor − ⋊− : kkG ×Or(G) → kk.

Proof. Let f : G/H → G/K be a morphism in Or(G). Clearly, f induces a natural
transformation j ◦ R(− ⋊G/H) → j ◦ R(− ⋊G/K) of functors GAlgℓ → kk. We
will prove that this natural transformation is compatible with the excisive homology
theory structures. More precisely, let E : A → B → C be an extension in GAlgℓ.
We will prove that the following square in kk commutes:

Ω(R(C ⋊G/H))

f∗

��

∂E⋊G/H // R(A⋊G/H)

f∗

��
Ω(R(C ⋊G/K))

∂E⋊G/K // R(A⋊G/K)

(3.22)
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Supose for a moment that this square commutes. Put A = (kk)I where I is the
interval category. Then f induces a functor νf : GAlgℓ → A defined by:

D 7→ (f∗ : R(D ⋊G/H) → R(D ⋊G/K))

The commutativity of (3.22) implies that νf is a homotopy invariant and G-stable
δ-functor [27, Definition 10.6]. Thus, it factors uniquely through kkG by universal
property of kkG; cf. [27, Theorem 10.15]:

GAlgℓ
jG //

νf ))

kkG

∃! ν̄f

��✤
✤

✤

A

The functor ν̄f corresponds to the desired natural transformation. Let us now
show that (3.22) commutes. The morphism f : G/H → G/K is determined by
f(H) = uK for some u ∈ G with H ⊆ uKu−1. We have the following commutative
square of ℓ-linear categories:

A⋊G/H
f∗ // A⋊G/K

A⋊H

OO

incl // A⋊ uKu−1

OO

The bottom arrow is an inclusion of algebras. The left and right arrows are the
inclusions of the full subcategories whose only objects are H and uK, respectively.
Upon applying j ◦R : Catℓ → kk the vertical arrows become isomorphisms and we
get:

f∗ = νuK ◦ j(incl) ◦ (νH)−1 : R(A⋊G/H) −→ R(A⋊G/K)

Thus, the commutativity of (3.22) is equivalent to that of the outer square in the
following diagram in kk:

Ω(R(C ⋊G/H))

Ω(νH )−1 ∼=

��

∂E⋊G/H // R(A⋊G/H)

∼= (νH)−1

��
Ω(C ⋊H)

∂E⋊H //

Ωj(incl)

��

A⋊H

j(incl)

��
Ω(C ⋊ uKu−1)

Ω(νuK) ∼=

��

∂
E⋊uKu−1 // A⋊ uKu−1

νuK∼=

��
Ω(R(C ⋊G/K))

∂E⋊G/K // R(A⋊G/K)

Here, the bottom and top squares commute by Proposition 3.17. The middle square
commutes because it fits into the morphism of triangles induced by the inclusion
H ⊆ uKu−1. �
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4. A natural adjunction

Let G be a group and let H be a finite subgroup of G. Recall from Lemma 3.13
that there is a natural isomorphism νH : −⋊H → −⋊G/H of functors kkG → kk.
If 1

|H| ∈ ℓ, we have isomorphisms

kkG(A(G/H), B) ∼= kk(A,B ⋊H) ∼= kk(A,R(B ⋊G/H)), (4.1)

where the isomorphism on the right is induced by νH and the one on the left is that
of Proposition 2.10. In other words, there is an adjunction:

(−)(G/H) : kk kkG : −⋊G/H (4.2)

We will show that this adjunction is natural in G/H . For the rest of this paper,
we assume that G satisfies the following property:

1
|H| ∈ ℓ for every H ∈ Fin (4.3)

We will prove that for every morphism f : G/H → G/K ∈ Or(G,Fin) the
following square commutes:

kk(A,R(B ⋊G/H))
∼= //

f∗

��

kkG(A(G/H), B)

f∗

��
kk(A,R(B ⋊G/K))

∼= // kkG(A(G/K), B)

(4.4)

The commutativity of this square is not obvious a priori since the middle term of
(4.1) is not a functor on Or(G,Fin). Let α ∈ kk(A,R(B⋊G/H)) and f : G/H →
G/K in Or(G,Fin). The commutativity of (4.4) is equivalent to that of the outer
square in the following diagram in kk, where ǫG/H is the counit of (4.2):

A(G/H) α(G/H)
// [R(B ⋊G/H)]

(G/H) ǫG/H // B

A(G/K)

A(f)

OO

α(G/K)

// [R(B ⋊G/H)]
(G/K)

f∗

OO

f∗

// [R(B ⋊G/K)]
(G/K)

ǫG/K

OO

(4.5)

The square on the left clearly commutes. The commutativity of the square on the
right follows easily from the following result.

Lemma 4.6. Let G be a group satisfying (4.3). Then:

(1) For every G/H ∈ Or(G,Fin) there is a G-functor

ζG/H : (B ⋊G/H)(G/H) →MG ⊗B (4.7)

that sends (b⋊ g)χsH ∈ hom(uH, vH) = B ⊗ ℓ[vHu−1](G/H) to:

∑

p∈sHv−1

ep,pg ⊗ p(b)
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(2) For any f : G/H → G/K in Or(G,Fin), the following square in GCatℓ
commutes:

(B ⋊G/H)(G/H)
ζG/H // MG ⊗B

(B ⋊G/H)(G/K)

f∗

OO

f∗ // (B ⋊G/K)(G/K)

ζG/K

OO
(4.8)

(3) The counit ǫG/H of the adjunction (4.2) fits into the following commutative

diagram in kkG:

[R (B ⋊G/H)]
(G/H)

ǫG/H

++

R
[

(B ⋊G/H)
(G/H)

]

R(ζG/H )

��

Cor. 3.11

∼=
oo

MG ⊗B

zig-zag∼=

��
B

Proof. Let us verify that ζG/H as defined in (1) is compatible with composition.
Let f1 = (b1 ⋊ g1)χsH ∈ Hom(uH, vH) and f2 = (b2 ⋊ g2)χtH ∈ Hom(vH,wH).
We have

f2 ◦ f1 = δsH,tH(b2g2(b1)⋊ g2g1)χtH

where δsH,tH is Kronecker’s delta. Then:

ζG/H(f2 ◦ f1) = δsH,tH
∑

p∈tHw−1

ep,pg2g1 ⊗ p(b2g2(b1))

On the other hand, we have:

ζG/H(f2)ζG/H (f1) =





∑

q∈tHw−1

eq,qg2 ⊗ q(b2)









∑

p∈sHv−1

ep,pg1 ⊗ p(b1)





=
∑

p∈sHv−1

q∈tHw−1

eq,qg2ep,pg1 ⊗ q(b2)p(b1)

= δsH,tH
∑

q∈tHw−1

eq,qg2g1 ⊗ q(b2)(qg2)(b1)

The appearance of Kronecker’s delta in the last line is explained as follows: qg2 ∈
tHv−1 and p ∈ sHv−1 can be equal if and only if sH = tH . This shows that ζG/H
is indeed a well-defined functor.

Let us prove (2). The square commutes on objects since MG ⊗ B has only one
object. A morphism f : G/H → G/K is determined by f(H) = xK with x such
that H ⊆ xKx−1. Let (b⋊ g)χsK ∈ Hom(uH, vH). We have:

ζG/K (f∗ ((b⋊ g)χsK)) = ζG/K ((b⋊ g)χsK)

=
∑

p∈sK(vx)−1

ep,pg ⊗ p(b)
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On the other hand, we have:

ζG/H (f∗ ((b⋊ g)χsK)) = ζG/H





∑

tH∈f−1(sK)

(b ⋊ g)χtH





=
∑

tH∈f−1(sK)

∑

p∈tHv−1

ep,pg ⊗ p(b)

=
∑

p∈sKx−1v−1

ep,pg ⊗ p(b)

Here, the last equality follows from the fact that sKx−1 is the disjoint union of
f−1(sK). This finishes the proof of (2).

Let us prove (3). It follows from (4.1) that the counit ǫG/H of the adjunction (4.2)

equals εH ◦
[

(νH)−1
](G/H)

, where εH is the counit of (2.11). Recall the definition
of εH from (2.5). Then ǫG/H equals the following composite in kk:

[R(B ⋊G/H)]
(G/H)[(νH )−1](G/H)

// (B ⋊H)(G/H) ψ

(2.4)
// MG ⊗B

zig-zag

∼=
// B

The statement in (3) now follows from the commutativity of the following diagram,
which is straightforward — indeed, the diagram commutes in Algℓ:

[R(B ⋊G/H)]
(G/H) R

[

(B ⋊G/H)(G/H)
]Cor. 3.11oo

R(ζG/H)

��
(B ⋊H)(G/H) ψ //

(νH )(G/H)

OO 44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
MG ⊗B

Here the diagonal morphism is the one induced by the inclusion

(B ⋊H)(G/H) ⊆ (B ⋊G/H)(G/H)

as the full subcategory on the object H . This finishes the proof. �

We collect the main results of this section in the following theorem.

Theorem 4.9. Let G be a group satisfying (4.3) and let H be a finite subgroup of
G. We have an adjunction

(−)(G/H) : kk kkG : −⋊G/H

kkG(A(G/H), B) ∼= kk(A,R(B ⋊G/H))

that is natural in G/H ∈ Or(G,Fin). Moreover, the counit of this adjunction is
described by Lemma 4.6.

5. Lifting the adjunction to spectra

5.1. The primitive zig-zag. Let A ∈ Algℓ, B ∈ GAlgℓ and G/N ∈ Or(G,Fin).
By Theorem 4.9 we have an adjunction isomorphism

kkG(A(G/N), B) ∼= kk(A,B ⋊G/N) (5.1)

that is natural in G/N . Let K and KG be, respectively, the spectra representing kk-
theory and kkG-theory. These were defined in [14] and in [25]; see Section C.2 for
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details. We would like to lift the isomorphism (5.1) to a natural weak equivalence
of spectra:

K(A,R(B ⋊G/N)) //❴❴❴ K
G(A(G/N), B)

Here, we want the dashed arrow to represent a zig-zag of Or(G,Fin)-spectra in-
ducing the isomorphism (5.1) upon taking homotopy groups. As a starting point,
let us recall how to obtain this adjunction. By Lemma 4.6 (3), the isomorphism
(5.1) equals the following composite:

kk(A,R(B ⋊G/N))
(−)(G/N)

// kkG(A(G/N), [R(B ⋊G/N)]
(G/N)

)

kkG(A(G/N),MGB)

∼ =

��

kkG(A(G/N),R
[

(B ⋊G/N)(G/N)
]

)

Cor. 3.11

∼=
OO

R(ζG/N )

(4.7)
oo

kkG(A(G/N),MG+B) kkG(A(G/N), B)
∼=oo

(5.2)

The last two morphisms are easily lifted to spectra. Indeed, the G-stability zig-zag
(2.2) induces a zig-zag of weak equivalences that is clearly natural in G/N :

K
G(A(G/N),MGB)

∼ // KG(A(G/N),MG+B) K
G(A(G/N), B)

∼oo

Lifting the rest of (5.2) is somewhat more delicate. If we simply replace groups by
spectra, we get:

K(A,R(B ⋊G/N))
(−)(G/N)

// KG(A(G/N), [R(B ⋊G/N)](G/N))

KG(A(G/N),MGB) KG(A(G/N),R
[

(B ⋊G/N)(G/N)
]

)

Cor. 3.11 ∼

OO

R(ζG/N )

(4.7)
oo

(5.3)

This is what we call the primitive zig-zag. While the spectra on the left are covariant
functors on Or(G,Fin), this is not the case for those on the right. We should start
by replacing the latter by covariant functors on Or(G,Fin) if we expect a zig-zag
that is natural in G/N . In the following sections—taking the primitive zig-zag as
our model—we proceed to construct a zig-zag of spectra that depends covariantly
on G/N and that induces the isomorphism (5.1) upon taking homotopy groups.

5.2. Notation and preliminary definitions. To ease notation, the category
Or(G,Fin) will be denoted by O for the rest of this section. Its objects—the
orbit spaces corresponding to finite subgroups of G—will be denoted by letters r,
s and t.

Let C be a category and Γ be a small category. We will write B(Γ, C) for the
category CΓop×Γ of bifunctors Γop × Γ → C. Let f : Γ → Λ be a functor between
small categories. Then we can restrict along f either of the variables of a bifunctor
Λop × Λ → C, or both of them, as shown by the following commutative diagram of
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categories:

B(Λ, C)
f∗

//

f∗

��

f⋆

$$❏❏
❏
❏
❏
❏
❏
❏
❏
❏

CΛop×Γ

f∗

��
CΓop×Λ f∗

// B(Γ, C)

Here, f∗ denotes restriction of one of the variables (either the covariant or the
contravariant one) and f⋆ denotes restriction of both variables.

Define functors J ∈ SpO and M,L ∈ B(O, Sp)O by

J(t) := K(A,R(B ⋊ t))

Lt(s, r) := K
G(A(t),R[(B ⋊ r)(s)]) (5.4)

Mt(s, r) := K
G(A(t), [R(B ⋊ r)](s))

for r, s, t ∈ O. The kkG-equivalence R[(B⋊r)(s)] → [R(B ⋊ r)](s) of Corollary 3.11
induces, upon applying KG(A(t),−), a natural transformation ψ : L → M that is
an objecwise weak equivalence of spectra. With this notation, the primitive zig-zag
(5.3) becomes:

J(t)
(−)(t) // Mt(t, t) Lt(t, t)∼

ψoo R(ζt) // KG(A(t),MGB) (5.5)

5.3. Coends enter the game. Fix t ∈ O. The commutativity of (4.8) suggests
that the morphism induced by R(ζt) in (5.5) could be replaced by a morphism from
a certain coend, as we proceed to explain. If f : r → s is a morphism in O, the
following square commutes by Lemma 4.6 (2):

(B ⋊ r)(r)
ζr // MG ⊗B

(B ⋊ r)(s)

f∗

OO

f∗ // (B ⋊ s)(s)

ζs

OO

Upon applying KG(A(t),R(−)), we get a commutative diagram:

Lt(r, r)
ζr // KG(A(t),MGB)

Lt(s, r)

f∗

OO

f∗ // Lt(s, s)

ζs

OO
(5.6)

For reasons that will become clear later on (see Remark 5.16 and Lemma 5.30) we
will take coends over the slice category O/t of orbit spaces over t. We will denote
by ut the forgetful functor O/t → O. Let now f : α → β be a morphism in O/t,
where α : r → t and β : s→ t. Then (5.6) equals the square:

[(ut)
⋆Lt] (α, α)

ζr // KG(A(t),MGB)

[(ut)
⋆Lt] (β, α)

f⋆

OO

f∗ // [(ut)⋆Lt] (β, β)

ζs

OO
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By the universal property of the coend, there is a unique morphism ζ making the
following triangle commute for all objects α : r → t of O/t:

∫ O/t (ut)
⋆Lt

ζ // KG(A(t),MGB)

[(ut)
⋆Lt] (α, α)

canα

OO

ζr

CC
(5.7)

Here the vertical morphism is the structural morphism into the coend corresponding
to α. In the next section we will prove that ζ depends covariantly on t ∈ O.

5.4. Defining O-spectra as objectwise coends. Let us show that the mor-
phisms ζ of (5.7) assemble, for varying t, into a morphism of O-spectra. We first
prove some preliminary lemmas.

Lemma 5.8. Let C be a cocomplete category, f : Γ → Λ be a functor between small
categories and T ∈ B(Λ, C). Then there is a unique morphism

∫ Γ
f⋆T //

∫ Λ
T (5.9)

making the following square in C commute, for every object γ of Γ:

∫ Γ
f⋆T //

∫ Λ
T

(f⋆T )(γ, γ)

canγ

OO

T (f(γ), f(γ))

canf(γ)

OO OO

Here the vertical arrows are the structural morphisms into the coends. Moreover,
(5.9) is natural in T .

Proof. This is immediate from the universal property of coends. �

Remark 5.10. For composable functors Γ
f
−→ Λ

g
−→ Σ and T ∈ B(Σ, C), the

morphisms (5.9) clearly fit into the following commutative triangle:

∫ Γ
(g ◦ f)⋆T =

∫ Γ
f⋆g⋆T //

∫ Λ
g⋆T

��
∫ Σ

T//

Lemma 5.11. Let C be a cocomplete category and Γ be a small category. Then
there is a functor C : B(Γ, C)Γ → CΓ described as follows.

(1) Let V be an object of B(Γ, C)Γ, t ∈ Γ 7→ Vt ∈ B(Γ, C). For t ∈ Γ, we have:

C (V )(t) =
∫ Γ/t (ut)

⋆Vt

For a morphism f : t→ t′ in Γ, C (V )(f) equals the composite:

∫ Γ/t (ut)
⋆Vt

Vf //
∫ Γ/t (ut)

⋆Vt′ =
∫ Γ/t f⋆(ut′)

⋆Vt′
(5.9) //

∫ Γ/t′ (ut′)
⋆Vt′
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(2) For a morphism h : V → W in B(Γ, C)Γ, the natural transformation C (h)
has components:

∫ Γ/t (ut)
⋆Vt

∫ Γ/t (ut)
⋆ht //

∫ Γ/t (ut)
⋆Wt

Proof. The fact that the equalities in (1) indeed define a functor C (V ) ∈ CΓ boils
down to the naturality of (5.9) and Remark 5.10. The fact that C (h) is indeed a
natural transformation follows as well from the naturality of (5.9). �

Lemma 5.12. The morphism ζ defined by (5.7) is a morphism of O-spectra.

Proof. The codomain of ζ is clearly an O-spectrum. Its domain is an O-spectrum
as well; indeed, it is C (t 7→ Lt) where C is the functor of Lemma 5.11. Let f : t→ t′

be a morphism in O. We claim that following square commutes:

∫ O/t (ut)
⋆Lt

ζ //

f

��

K
G(A(t),MGB)

f

��
∫ O/t′ (ut′)

⋆Lt′
ζ // KG(A(t′),MGB)

Indeed, by the universal property of the coend, it suffices to show that the square
commutes when precomposed with the structural morphisms

[(ut)
⋆Lt] (α, α) →

∫ O/t (ut)
⋆Lt

for every object α : r → t of O/t. Upon precomposing with the latter we get the
following square, that clearly commutes:

KG(A(t),R
[

(B ⋊ r)(r)
]

)
ζr //

f

��

KG(A(t),MGB)

f

��
KG(A(t′),R

[

(B ⋊ r)(r)
]

)
ζr // KG(A(t′),MGB)

This proves the lemma. �

5.5. The morphism ϕ. In this section we define a morphism ϕ that will be part
of the natural zig-zag of Theorem 5.35. Let δ : SpO → B(O, Sp) be the functor
that adds a constant contravariant variable, defined by

δF (s, r) = F (r) (5.13)

for F ∈ SpO and r, s ∈ O. Let (ut)
∗ : B(O, Sp) → Sp(O/t)

op×O be the restriction
of the contravariant variable along the forgetful functor. Recall the definitions of
J ∈ SpO and Mt ∈ B(O, Sp) from (5.4). Define a morphism

ϕ♯ : (ut)
∗δJ → (ut)

∗Mt (5.14)

as follows. For objects r of O and α : s→ t of O/t, let

ϕ♯(α,r) : [(ut)
∗δJ ] (α, r) → [(ut)

∗Mt] (α, r) (5.15)

be the following composition:

K(A,R(B ⋊ r))
(−)(t) // KG(A(t), [R(B ⋊ r)](t))

α∗

// KG(A(t), [R(B ⋊ r)](s))
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It is easily verified that ϕ♯ is a natural transformation of bifunctors. Indeed, for
morphisms f : r → r′ in O and g : α → α′ in O/t, the following diagrams commute:

K(A,R(B ⋊ r))

ϕ♯
(α,r)

��

(−)(t)

��
ϕ♯

(α′,r)

��

KG(A(t), [R(B ⋊ r)](t))

(α′)∗

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

α∗

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

K
G(A(t), [R(B ⋊ r)](s)) K

G(A(t), [R(B ⋊ r)](s
′))

g∗
oo

K(A,R(B ⋊ r))
ϕ♯

(α,r)

**

(−)(t)

��

f∗ // K(A,R(B ⋊ r′))

(−)(t)

��

ϕ♯

(α,r′)

tt

KG(A(t), [R(B ⋊ r)](t))

α∗

��

f∗ // KG(A(t), [R(B ⋊ r′)](t))

α∗

��
KG(A(t), [R(B ⋊ r)](s))

f∗ // KG(A(t), [R(B ⋊ r′)](s))

Remark 5.16. The definition of the components of ϕ♯ (5.15) makes use of the
structural morphism α : s → t and it is not clear how to define ϕ♯ as a morphism
δJ → Mt in B(O, Sp). This is one of the reasons that motivated our choice of O/t
as the indexing category for coends.

Construction 5.17. By Remark 5.25 we have, for each t ∈ O, a pair of adjoint
functors:

(ut)! : Sp
(O/t)

op×O //oo B(O, Sp) : (ut)∗ (5.18)

Let f : t → t′ be a morphism in O and write f∗ : Sp(O/t′)
op×O → Sp(O/t)

op×O

for the restriction of the contravariant variable along f : O/t → O/t′ . Note that

f∗ ◦ (ut′)∗ = (ut)
∗ and consider the following diagram of solid arrows for F ∈ SpO

and H ∈ B(O, Sp):

B(O, Sp) ((ut′)!(ut′)
∗δF , H)

∼= //

��✤
✤

✤
Sp(O/t′)

op×O ((ut′)
∗δF , (ut′)

∗H)

f∗

��
B(O, Sp) ((ut)!(ut)∗δF , H)

∼= // Sp(O/t)
op×O ((ut)

∗δF , (ut)
∗H)

Let the dashed arrow complete the diagram to a commutative square. By the
Yoneda Lemma, the dashed arrow is induced by precomposition with a unique
morphism (ut)!(ut)

∗δF → (ut′)!(ut′)
∗δF . The latter, for varying f , assemble into a

functor O → B(O, Sp), t 7→ (ut)!(ut)
∗δF . This construction is, moreover, clearly

natural in F , so that we get a functor:

SpO // B(O, Sp)O

F ✤ // (t 7→ (ut)!(ut)
∗δF )
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Remark 5.19. Let F ∈ SpO. Later on, it will be useful to have an explicit de-
scription of the functor O → B(O, Sp), t 7→ (ut)!(ut)

∗δF mentioned in Construction
5.17. Let us first describe the bifunctor (ut)!(ut)

∗δF ∈ B(O, Sp) for fixed t ∈ O.
For r, s ∈ O we have:

[(ut)!(ut)
∗δF ] (s, r) =

∐

α∈O(s,t)

[(ut)
∗δF ] (α, r) =

∐

O(s,t)

F (r)

For a morphism f : r → r′ in O, the induced morphism f∗ = [(ut)!(ut)
∗δF ] (s, f)

equals the morphism:
∐

F (f) :
∐

O(s,t)

F (r) →
∐

O(s,t)

F (r′)

For a morphism g : s′ → s in O, the induced morphism g∗ = [(ut)!(ut)
∗δF ] (g, r) is

the unique morphism making the following triangle commute for all β ∈ O(s, t):

F (r)
canβ //

canβ◦g
**

∐

O(s,t)

F (r)

g∗
��

∐

O(s′,t)

F (r)

Now let h : t→ t′ be a morphism in O. Then the components of the induced natural
transformation h∗ : (ut)!(ut)

∗δF → (ut′)!(ut′)
∗δF are the unique morphisms making

the following triangle commute for all β ∈ O(s, t):

F (r)
canβ //

canh◦β
**

∐

O(s,t)

F (r)

h∗��
∐

O(s,t′)

F (r)

Lemma 5.20. Fix t ∈ O and let ϕ♯ : (ut)
∗δJ → (ut)

∗Mt be the morphism in

Sp(O/t)
op×O defined in (5.14). Under the adjunction (5.18), ϕ♯ corresponds to a

morphism ϕ : (ut)!(ut)
∗δJ → Mt in B(O, Sp). Explicitly, for r, s ∈ O, the com-

ponent ϕ(s,r) : [(ut)!(ut)
∗δJ ](s, r) → Mt(s, r) is the unique morphism making the

following triangle commute for every α ∈ O(s, t):

∐

O(s,t)

J(r)
ϕ(s,r) // Mt(s, r)

J(r)

canα

OO

ϕ♯
(α,r)

FF

Then the latter, for varying t, assemble into a morphism in B(O, Sp)O—where the
domain of ϕ is considered as an object of B(O, Sp)O as explained in Construction
5.17.
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Proof. Let f : t → t′ be a morphism in O. We have to show that the following
square in B(O, Sp) commutes:

(ut)!(ut)
∗δJ

ϕ //

f∗

��

Mt

f∗

��
(ut′)!(ut′)

∗δJ
ϕ // Mt′

By Remark 5.19, for r, s ∈ O, we have [(ut)!(ut)
∗δJ ](s, r) =

∐

O(s,t) J(r). Thus, it

suffices to show that the following square commutes for r, s ∈ O:
∐

O(s,t)

J(r)
ϕ //

f∗

��

Mt(s, r)

f∗

��
∐

O(s,t′)

J(r)
ϕ // Mt′(s, r)

By the universal property of the coproduct it suffices to show that this square
commutes when precomposed with every structural morphism into the coproduct
in the upper left corner. Let α ∈ O(s, t). Upon precomposing the latter square
with canα : J(r) →

∐

O(s,t) J(r) we get:

J(r)
ϕ♯

(α,r) //

ϕ♯
(f◦α,r) **

Mt(s, r)

f∗

��
Mt′(s, r)

Unravelling the definition of ϕ♯, this triangle becomes:

K(A,R(B ⋊ r))
(−)(t) //

(−)(t
′)

��

KG(A(t), [R(B ⋊ r)](t))

f∗

��

α∗

// KG(A(t), [R(B ⋊ r)](s))

f∗

��
KG(A(t′), [R(B ⋊ r)](t

′))
f∗

// KG(A(t′), [R(B ⋊ r)](t))
α∗

// KG(A(t′), [R(B ⋊ r)](s))

The square on the right clearly commutes. The one on the left commutes by Lemma
C.6. �

5.6. Model structure on categories of bifunctors. Let C be a model category
and let Γ be a small category. In this section, we endow B(Γ, C) with a model
structure that will allow us to build models for the homotopy coends of certain
morphisms of bifunctors. We will need these later on to define the morphisms
going backwards in the zig-zag of O-spectra of Theorem 5.35.

Proposition 5.21 ([24, Proposition A.2.8.2]). Let C be a combinatorial model
category and let Γ be a small category. Then there exist two combinatorial model
structures on CΓ:

• The injective model structure, denoted CΓ
inj, where weak equivalences and

cofibrations are defined objectwise.
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• The projective model structure, denoted CΓ
proj, where weak equivalences and

fibrations are defined objectwise.

We will always consider B(Γ, C) as a model category with the structure (CΓop

inj )
Γ
proj

whenever this structure exists. The model structure on B(Γ, Sp) exists for any Γ
by Lemma C.2 and Proposition 5.21.

Theorem 5.22 ([2, Theorem 4.1]). Let C be a model category and Γ be a small
category such that the model structure on B(Γ, C) exists. Then the functor

∫ Γ
: B(Γ, C) → C (5.23)

is a left Quillen functor.

Proof. This is [2, Theorem 4.1]; we sketch the proof for completeness. For c ∈ C,
define R(c) : Γop × Γ → C by:

R(c)(s, r) :=
∏

α∈Γ(r,s)

c

For morphisms f : r → r′ and g : s′ → s in Γ, let f∗ and g
∗ be the unique morphisms

making the following diagrams commute for all α ∈ Γ(r′, s) and all β ∈ Γ(r, s′):

R(c)(s, r)
f∗ //

canα◦f ,,

R(c)(s, r′)

canα

��
c

R(c)(s, r)
g∗ //

cang◦β ,,

R(c)(s′, r)

canβ

��
c

It is easily verified that R : C → CΓop×Γ is right adjoint to
∫ Γ

: CΓop×Γ → C. Thus,
proving the theorem is equivalent to showing that

R : C → B(Γ, C)

preserves fibrations and trivial fibrations. Let c → c′ be a (trivial) fibration in C.
To prove that R(c) → R(c′) is a (trivial) fibration in B(Γ, C) = (CΓop

inj )
Γ
proj, it suffices

to show that R(c)(−, r) → R(c′)(−, r) is a (trivial) fibration in CΓop

inj for every r ∈ Γ.
But the latter holds since, for every r, there is a Quillen adjunction

evr : C
Γop

inj ⇄ C : R(−)(−, r)

where evr is the evaluation at r [2, Corollary 2.3 (iii)]. Indeed, this adjunction is
Quillen since evr clearly preserves cofibrations and trivial cofibrations. �

Lemma 5.24 ([24, Proposition A.2.8.7]). Let C be a model category and let f : Γ →
Λ be a functor. Then the restriction functor f∗ : CΛ → CΓ fits into the following
Quillen adjunctions, whenever the model structures in question exist:

(1) f∗ : CΛ
inj ⇄ CΓ

inj : f∗
(2) f! : CΓ

proj ⇄ CΛ
proj : f

∗

Remark 5.25. Let C be a category with small coproducts and let Γ be a small
category. Fix t ∈ Γ and let ut : Γ/t → Γ be the forgetful functor. Then there is an
adjunction:

(ut)! : C(Γ/t)
op

CΓop

: (ut)
∗
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Moreover, the pushforward functor (ut)! can be explicitely described as follows. For
s ∈ Γ, we have:

[(ut)!F ] (s) =
∐

α∈Hom(s,t)

F (α)

For a morphism g : s′ → s in Γ, [(ut)!F ] (g) is the unique morphism making the
following squares commute, where the vertical arrows are the structural morphisms
into the coproducts:

∐

α∈Hom(s,t)

F (α)
[(ut)!F ](g) //

∐

α′∈Hom(s′,t)

F (α′)

F (β)

canβ

OO

F (g) // F (β ◦ g)

canβ◦g

OO

Lemma 5.26 (cf. [24, Lemma A.2.8.10]). Let C be a model category, Γ be a small
category, fix t ∈ Γ, and let ut : Γ/t → Γ be the forgetful functor from the slice
category. Then the following adjunctions are Quillen adjunctions, whenever the
model structures in question exist:

(1) (ut)
∗ : CΓ

proj ⇄ C
Γ/t
proj : (ut)∗

(2) (ut)! : C
(Γ/t)

op

inj ⇄ CΓop

inj : (ut)
∗

Proof. To prove (2) is a Quillen adjunction, let us show that (ut)! preserves cofi-
brations and trivial cofibrations. Recall from Remark 5.25 that, for F ∈ C(Γ/t)

op

and s ∈ Γ, we have:

[(ut)!F ] (s) =
∐

α∈Γ(s,t)

F (α)

Let η : F → F ′ be a morphism in C(Γ/t)
op

. For s ∈ Γ, (ut)!(η)(s) is the coproduct
of the morphisms:

{η(α) : F (α) → F ′(α)}α∈Γ(s,t)

If η is a cofibration (resp. a trivial cofibration) in C
(Γ/t)

op

inj , the latter are cofibrations

(resp. trivial cofibrations) in C and, thus, (ut)!(η)(s) is again a cofibration (resp.
trivial cofibration) in C. Since this holds for every s ∈ Γ, it follows that (ut)!(η) is
a cofibration (resp. a trivial cofibration) in CΓop

inj . The proof of (1) is dual to that

of (2), using the fact that

[(ut)∗F ] (s) =
∏

α∈Γ(t,s)

F (α)

for F ∈ CΓ/t and s ∈ Γ. �

Lemma 5.27 ([24, Remark A.2.8.6]). Let F : C ⇄ D : U be a Quillen adjunction
of combinatorial model categories and let Γ be a small category. Then composition
with F and U determines a Quillen adjunction

FΓ : CΓ
⇄ DΓ : UΓ

with respect to either the injective or the projective model structures.

Lemma 5.28. Let δ : SpO
proj → B(O, Sp) be the functor defined in (5.13). Then δ

is a left Quillen functor.



ALGEBRAIC kk-THEORY AND THE KH-ISOMORPHISM CONJECTURE 27

Proof. Let const : Sp → SpO
op

inj be the functor that sends a spectrum E to the
constant functor on E. Then const is left Quillen since it clearly sends cofibrations
(resp. trivial cofibrations) to cofibrations (resp. trivial cofibrations) and it has a
right adjoint (taking limit). Note that we have:

δ = (const)O : SpOproj →
[

SpOop

inj

]O

proj
= B(O, Sp)

Then δ is left Quillen by Lemma 5.27. �

Lemma 5.29. Let C be a combinatorial model category, Γ be a small category, fix
t ∈ Γ, and let ut : Γ/t → Γ be the forgetful functor from the slice category. Then
the restriction on both variables

(ut)
⋆ : B(Γ, C) → B(Γ/t, C)

is a left Quillen functor.

Proof. Consider the following commutative square:

B(Γ, C) = (CΓop

inj )
Γ
proj

(ut)
⋆

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

(ut)
∗

//

(ut)
∗

��

(CΓop

inj )
Γ/t
proj

(ut)
∗

��
[

C
(Γ/t)

op

inj

]Γ

proj

(ut)
∗

//
[

C
(Γ/t)

op

inj

]Γ/t

proj
= B(Γ/t, C)

The horizontal morphisms are left Quillen by Lemma 5.26 (1) and the vertical
morphisms are left Quillen by Lemma 5.24 and Lemma 5.27. Then (ut)

⋆ is left
Quillen as well, for being the composite of left Quillen functors. �

5.7. The natural zig-zag. In this section we finally construct a zig-zag of O-
spectra inducing (5.1) upon taking homotopy groups. We begin with the following
lemma, that shows that every O-spectrum can be canonically described as an ob-
jectwise coend.

Lemma 5.30. Let δ : SpOproj → B(O, Sp) be the functor defined in (5.13). For

F ∈ SpO and t ∈ O, the structural morphisms into the coends

F (t) = [(ut)
⋆δF ] (idt, idt) //

∫ O/t (ut)
⋆δF (5.31)

are isomorphisms. Moreover, these are natural in t ∈ O and in F ∈ SpO.

Proof. Fix t ∈ O. Since (ut)
⋆δF is constant in the contravariant variable, we have:

∫ O/t (ut)
⋆δF ∼= colim

α∈O/t

F (ut(α))

Since idt is a final object of O/t, the structural morphism

F (t) = F (ut(idt)) // colim
α∈O/t

F (ut(α))

is an isomorphism. Combining the above we get the desired isomorphism:

F (t)
∼= //

∫ O/t (ut)
⋆δF

It is easily verified that this is natural in t and in F . �
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Lemma 5.32. Let F ∈ SpO and fix t ∈ O. Let (ut)! and (ut)
∗ be the functors

that form the adjunction (5.18). Then there is a morphism of bifunctors (ut)
⋆δF →

(ut)
⋆(ut)!(ut)

∗δF described as follows. For objects α : r → t and β : s → t of O/t,
the component corresponding to the pair (β, α) is the structural morphism into the
coproduct corresponding to β:

[(ut)
⋆δF ] (β, α) = F (r)

canβ //
∐

O(s,t)

F (r) = [(ut)
⋆(ut)!(ut)

∗δF ] (β, α) (5.33)

Moreover, upon taking coend we get a morphism of spectra

∫ O/t (ut)
⋆δF //

∫ O/t (ut)
⋆(ut)!(ut)

∗δF (5.34)

that is natural in t.

Proof. The fact that the morphisms (5.33) are natural in α and β is easily verified
using the explicit description of the bifunctor (ut)!(ut)

∗δF given in Remark 5.19.
Let us now prove that (5.34) is natural in t. Let h : t→ t′ be a morphism in O.

By the universal property of the coend, it suffices to show that the outer square in
the following diagram commutes for every α : r → t in O/t:

F (r) = [(ut)
⋆δF ](α, α)

canα

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙

))

++

∫ O/t (ut)
⋆δF

h∗

��

(5.34) //
∫ O/t (ut)

⋆(ut)!(ut)
∗δF

h∗

��
∫ O/t′ (ut′)

⋆δF
(5.34)//

∫ O/t′ (ut′)
⋆(ut′)!(ut′)

∗δF

Unravelling the definitions of h∗ (see Lemma 5.11 and Remark 5.19), it is straight-

forward to verify that both ways from F (r) to
∫ O/t′ (ut′)

⋆(ut′)!(ut′)
∗δF in the dia-

gram above equal the composite:

F (r)
canh◦α //

∐

O(r,t′)

F (r)
canh◦α //

∫ O/t′ (ut′)
⋆(ut′)!(ut′)

∗δF

This finishes the proof. �

Theorem 5.35. Let q : Q
∼
−→ id and q̄ : Q̄

∼
−→ id be, respectively, cofibrant replace-

ments in B(O, Sp) and SpOproj. Then we have a zig-zag of O-spectra as follows:

∫ O/t (ut)
⋆δJ

∫ O/t (ut)
⋆δQ̄J∼

q̄oo (5.34) //
∫ O/t (ut)

⋆(ut)!(ut)
∗δQ̄J

∫ O/t (ut)
⋆Q(Mt)

∫ O/t (ut)
⋆Q(ut)!(ut)

∗δJ
ϕoo

∫ O/t (ut)
⋆Q(ut)!(ut)

∗δQ̄J

q∼

OO

q̄oo

∫ O/t (ut)
⋆Q(Lt)

q //

ψ ∼

OO

∫ O/t (ut)
⋆Lt

ζ // K(A(t),MGB)
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Moreover, upon identifying

K(A,R(B ⋊ t)) = J(t)
(5.31)
∼=

∫ O/t

(ut)
⋆δJ

and then taking homotopy groups, this zig-zag induces the isomorphism (5.1).

Proof. Let us first show that the morphisms appearing in the zig-zag are indeed
natural in t. For (5.34) this is part of Lemma 5.32 and for ζ it is Lemma 5.12. The
rest of the morphisms are natural in t because they result from aplying the functor
C of Lemma 5.11 to appropriate morphisms in B(O, Sp)O.

The morphisms in the zig-zag labeled with ∼ are indeed weak equivalences by
Ken Brown’s Lemma [18, Lemma 1.1.12]: they result from applying a left Quillen
functor to an appropriate weak equivalence between cofibrant objects. Here we

use that the functors δ, (ut)
⋆ and

∫ O/t are left Quillen by Lemmas 5.28, 5.29 and
Theorem 5.22 respectively.

The fact that the zig-zag induces (5.1) upon taking homotopy groups follows
from the commutativity of the following diagram of spectra.
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K(A,R(B ⋊ t))

canidt

��

J(t)
canidt

∼= by Lem. 5.30
//
∫ O/t (ut)

⋆δJ

(Q̄J)(t)

q̄ ∼

OO

canidt

∼= by Lem. 5.30
//

canidt

��

∫ O/t (ut)
⋆δQ̄J

q̄ ∼

OO

(5.34)

��
∐

γ∈O(t,t)

J(t)

ϕ

��

∐

γ∈O(t,t)

(Q̄J)(t)
canidt //q̄oo

∫ O/t (ut)
⋆(ut)!(ut)

∗δQ̄J

[

Q(ut)!δQ̄J
]

(t, t)

q ∼

OO

q̄

��

canidt //
∫ O/t (ut)

⋆Q(ut)!(ut)
∗δQ̄J

q ∼

OO

q̄

��
[Q(ut)!δJ ] (t, t)

ϕ

��

canidt //
∫ O/t (ut)

⋆Q(ut)!(ut)
∗δJ

ϕ

��
Mt(t, t) (QMt)(t, t)

canidt //q

∼
oo

∫ O/t (ut)
⋆Q(Mt)

(QLt)(t, t)
canidt //

ψ ∼

OO

q

��

∫ O/t (ut)
⋆Q(Lt)

ψ ∼

OO

q

��
Lt(t, t)

canidt //

ψ

∼

TT

ζt ++

∫ O/t (ut)
⋆Lt

ζ

��

KG(A(t),MGB)

q

∼

\\
(−)(t)

��

Upon taking homotopy groups, the morphisms labeled with ∼ in the diagram above
become isomorphisms and can be inverted. The zig-zag equals the morphism in the
top row followed by the composite of the morphisms in the rightmost column. By
Lemma 4.6 (3), the composite of the bent morphisms on the left equals, upon taking
homotopy groups, the isomorphism (5.1). �

6. Equivariant homology with coefficients in kkG-theory

Lemma 6.1. Let A be an algebra, B be a G-algebra and X be a (G,Fin)-complex.
Then there exists a morphism of spectra

αX : HG(X ;KG(A(−), B)) → K
G(A(X), B) (6.2)

that is natural in X and that is an isomorphism for X = G/H.

Proof. Let E : Or(G,Fin) → Sp be a functor and X be a (G,Fin)-complex. By
Lemma A.4, Lemma A.1 and the fact that coends and smash products commute
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with colimits, we have:

HG(X ;E) =

∫ G/H

XH
+ ∧E(G/H)

∼=

∫ G/H (

colim
G/K×∆n↓X

G/K ×∆n

)H

+

∧E(G/H)

∼=

∫ G/H

colim
G/K×∆n↓X

(G/K ×∆n)H+ ∧E(G/H)

∼= colim
G/K×∆n↓X

∆n
+ ∧

∫ G/H

(G/K)H+ ∧E(G/H)

∼= colim
G/K×∆n↓X

∆n
+ ∧HG(G/K;E)

∼= colim
G/K×∆n↓X

∆n
+ ∧E(G/K)

Thus, to construct the morphism (6.2) it suffices to define compatible morphisms

∆n
+ ∧K

G(A(G/K), B) → K
G(A(X), B) (6.3)

for every f : G/K ×∆n → X . Define (6.3) as the composite:

∆n
+ ∧KG(A(G/K), B)

(C.4) // KG(A(G/K×∆n), B)
f∗ // KG(A(X), B)

The compatibility of these morphisms is immediate from the naturality of (C.4) in
G/K. To see that the induced morphism (6.2) is an isomorphism for X = G/H ,
note that in this case the identity of X ∼= G/H ×∆0 is a final object among those
G/K×∆n ↓ X . Then, in this case, taking colimit overG/K×∆n ↓ X boils down to
evaluating at the final object idG/H×∆0 and the result follows from Lemma C.3. �

Lemma 6.4. Let A be an algebra and B be a G-algebra. For every (G,Fin)-
complex Y there is a natural weak equivalence of spectra:

HG(Y ;KG(A(−), B))
∼
−→ colim

X⊆Y
(G,Fin)-finite

K
G(A(X), B)

Proof. For every (G,Fin)-complex Y we have that

Y ∼= colim
X⊆Y

(G,Fin)-finite

X. (6.5)

From Lemma 6.1 there exist morphims of spectra αX that are natural in X . Since
homology commutes with filtered colimits, we have a morphism of spectra induced
by the αX :

βY = colimαX : HG(Y ;KG(A(−), B)) → colim
X⊆Y

(G,Fin)-finite

K
G(A(X), B)
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Let us prove that the morphism βY is a weak equivalence. It suffices to show that
αX is a weak equivalence for every (G,Fin)-finite X . We are going to prove the
latter following these steps:

(a) X = G/H for H ∈ Fin
(b) X = G/H ×∆n for H ∈ Fin and n ∈ N

(c) X =

m
⊔

i=1

G/Hi ×∆n for Hi ∈ Fin and m,n ∈ N

(d) X any (G,Fin)-finite complex

The first step is proved in Lemma 6.1. If X = G/H ×∆n we obtain the following
diagram:

HG(G/H ×∆n;KG(A(−), B)) //

π∗

��

KG(A(G/H×∆n), B)

π∗

��
HG(G/H ;KG(A(−), B)) // KG(A(G/H), B)

The left vertical arrow is an equivalence by homotopy invariance of the equivari-
ant homology theory. The right vertical arrow is a weak equivalence because
A(G/H×∆n) ∼= A(G/H) ⊗A∆n

and by homotopy invariance of kkG∗ (−, B).

Consider X =

m
⊔

i=1

G/Hi ×∆n and write E = KG(A(−), B). Note that this step

follows from the previous one because:

HG(X ;E) ∼=

n
⊕

i=1

HG
∗ (G/Hi ×∆n;E))

kkG(A(X), B) ∼=

n
⊕

i=1

kkG∗ (A
(G/Hi×∆n), B)

αX = ⊕αG/Hi×∆n

Let us assume that αX is a weak equivalence for every (G,Fin)-finite X complex
of dimension n− 1. Consider X obtained as the following pushout diagram:

n
⊔

i=1

G/Hi × ∂∆n //

� _

��

Xn−1� _

��n
⊔

i=1

G/Hi ×∆n // X

By Lemma B.2, upon applying the functor A(−) we obtain the following Milnor
square:

A(
⊔n

i=1 G/Hi×∂∆
n) A(Xn−1)oo

A(
⊔n

i=1G/Hi×∆n)

OOOO

A(X)

OOOO

oo
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Then

...

��

...

��
HG

∗ (
⊔n
i=1G/Hi × ∂∆n,E)

��

α⊔n
i=1

G/Hi×∂∆n

// kkG∗ (A
(
⊔n

i=1G/Hi×∂∆
n), B)

��
HG

∗ (
⊔n
i=1G/Hi ×∆n,E)⊕HG

∗ (Xn−1,E)

��

α⊔n
i=1

G/Hi×∆n⊕αXn−1

// kkG∗ (A
(
⊔n

i=1 G/Hi×∆n), B)⊕ kkG∗ (A
(Xn−1), B)

��
HG

∗ (X,E)

��

αX // kkG∗ (A
(X), B)

��
H∗−1(

⊔n
i=1G/Hi × ∂∆n,E) //

��

kkG∗−1(A
(
⊔n

i=1 G/Hi×∂∆
n), B)

��
...

...

The left column is given by Mayer-Vietoris sequence for HG(−;E) and the right
column is given by excision of kkG; see Lemma B.5. By induction, α⊔

n
i=1 G/Hi×∂∆n

and αXn−1 are isomorphisms. By step (c), α⊔
n
i=1G/Hi×∆n is an isomorphism. We

conclude by the Five Lemma that αX is an isomorphism. �

Theorem 6.6. Let G be a group satisfying (4.3). Let A be an algebra, B be a
G-algebra and Y be a (G,Fin)-complex. Then there is a natural isomorphism

HG
∗ (Y ;K(A,R(B ⋊−))) ∼= colim

X⊆Y
(G,Fin)-finite

kkG∗ (A
(X), B)

induced by a natural zig-zag of spectra.

Proof. Define E,F : Or(G,Fin) → Sp by:

E(G/N) = K(A,R(B ⋊G/N))

F(G/N) = K
G(A(G/N), B)

By Theorem 5.35, there is a zig-zag of Or(G,Fin)-spectra

E //❴❴❴ F (6.7)

that induces the isomorphism (5.1) upon taking homotopy groups. Moreover, the
morphisms in (6.7) going backwards are objectwise weak equivalences of spectra.
Let Y be a (G,Fin)-complex. After applying HG(Y ;−) to (6.7) we get a zig zag
of spectra:

HG(Y ;E) //❴❴❴ HG(Y ;F) (6.8)

Here the morphisms going backwards are weak equivalences by [11, Lemma 4.6].
Upon taking homotopy groups, we get an homomorphism:

HG
∗ (Y ;E) // HG

∗ (Y ;F) (6.9)



34 E. ELLIS AND E. RODRÍGUEZ CIRONE

This morphism is clearly natural in Y . Moreover, we claim that it is an isomor-
phism. The assertion holds for Y = G/N since, in this case, it is the isomorphism
(5.1). Now continue as in the proof of Lemma 6.4: the case Y = G/H×∆n follows
from homotopy invariance and the general case follows from excision considering
the skeletal filtration of Y ; see also [11, Theorem 6.3 (2)]. Finally, combine (6.9)
with Lemma 6.4:

HG
∗ (Y ;K(A,R(B ⋊−)))

(6.9)

∼=
// HG

∗ (Y ;KG(A(−), B) ∼=
// colim

X⊆Y
(G,Fin)-finite

kkG∗ (A
(X), B)

This finishes the proof. �

Appendix A. G-Simplicial sets

Let G be a group. We recall some definitions and properties of the G-simplicial
sets. A G-simplicial set X is a simplicial set with a (left) action of G. We write
SG for the category of G-simplicial sets with equivariant morphisms. Every G-
simplicial set X has a skeletal filtration such that the n-skeleton sknX is obtained
from skn−1X upon attaching cells of the form G/H×∆n for H ∈ Or(G). Let F be
a nonempty family of subgroups of G closed under conjugation and subgroups — we
are interested in the family Fin of finite subgroups. A G-simplicial set X is called
a (G,F)-complex if X can be built from cells of the form G/H ×∆n with H ∈ F .
The (G,F)-complexes are the cofibrant objects for a certain model structure on
SG; see [7, Proposition 2.3]. A (G,F)-complex X is called (G,F)-finite if X can
be built from a finite number of cells of the form G/H ×∆n with H ∈ F . In the
rest of this section we gather some technical results that are used in Section 6.

Lemma A.1. Let G be a group and let Sc ⊂ S denote the full subcategory of
connected simplicial sets. Let G/H,G/K ∈ Or(G) and X,Y ∈ Sc. Then there is a
natural isomorphism:

homSG(G/H ×X,G/K × Y ) ∼= homOr(G)(G/H,G/K)× homS(X,Y )

In other words, the full subcategory of SG whose objects are G/H ×X with G/H ∈
Or(G) and X ∈ Sc is equivalent to the product category Or(G) × Sc.

Proof. Let f : G/H × X → G/K × Y be a morphism in S
G. By connectedness,

there is a unique coset uK such that there exists a dashed arrow completing the
following diagram into a commutative square:

∐

G/H

X
f //

∐

G/K

Y

X

canH

OO

h //❴❴❴❴❴ Y

canuK

OO

Call the dashed arrow h. Moreover, it follows from the equivariance of f that
g(tH) = tuK defines a morphism g : G/H → G/K. Conversely, every pair (g, h) ∈
homOr(G)(G/H,G/K) × homS(X,Y ) defines a unique G-equivariant morphism f
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making the following squares commute for all t:

∐

G/H

X
f //

∐

G/K

Y

X

cantH

OO

h // Y

cang(tH)

OO

It is easily verified that both constructions are mutually inverse. �

Lemma A.2. Let F be a family of subgroups of G and let ψ : Y → X be a morphism
of G-simplicial sets. If X is a (G,F)-complex then Y is a (G,F)-complex too.

Proof. Let σ ∈ Yn; it is easily verified that Stab(σ) ⊆ Stab(ψ(σ)) ∈ F . �

Lemma A.3. Let G be an infinite group, let H ⊆ G be a subgroup, let X be a
(G,Fin)-complex and let K be a finite simplicial set. Then every G-equivariant
morphism ψ : G/H × K → X is proper, i.e. ψ−1(L) is a finite simplicial set for
every finite sub-simplicial set L ⊆ X.

Proof. First of all notice that H ∈ Fin by Lemma A.2. Let L ⊆ X be a finite
simplicial set and suppose that ψ−1(L) is not finite. Then there is an infinite
number of non-degenerate simplices in ψ−1(L) ⊆ G/H × K. Since every non-
degenerate simplex of G/H×K has dimension ≤ d := dimK, there exists 0 ≤ p ≤ d
such that there is an infinite number of non-degenerate p-simplices in ψ−1(L). Let
{gi, i ∈ I} ⊆ G be a system of representatives for the cosets in G/H ; notice that
I is infinite because H is finite. Every non-degenerate p-simplex of G/H × K is
of the form (giH,σ) for some i ∈ I and some non-degenerate p-simplex σ of K.
Since K has finitely many non-degenerate p-simplices, there exist a non-degenerate
p-simplex σ ofK and an infinite subset J ⊆ I such that {(giH,σ), i ∈ J} ⊆ ψ−1(L).
Then

{ψ(giH,σ), i ∈ J} ⊆ Lp.

Since Lp is a finite set, replacing J by a smaller but still infinite subset, we can
assume without loss of generality that there is τ ∈ Lp such that ψ(giH,σ) = τ for
every i ∈ J . Fix i0 ∈ J . Then

gi0ψ(H,σ) = ψ(gi0H,σ) = τ = ψ(giH,σ) = giψ(H,σ)

for every i ∈ J and it follows that {g−1
i gi0 , i ∈ J} ⊆ Stab(ψ(H,σ)) ∈ Fin; this is a

contradiction since J is infinite. �

Lemma A.4. Let G be a group, K ⊂ G be a subgroup and X be a G-simplicial
set. Then:

XK ∼= colim
G/H×∆n↓X

(G/H ×∆n)K

Proof. There is a natural morphism:

colim
G/H×∆n↓X

(G/H ×∆n)K → XK (A.5)

Let us prove that it is surjective. Let σ ∈ (XK)p = (Xp)
K and put H := Stab(σ);

note that we have K ⊂ H . Let f : G/H×∆p → X be the G-equivariant morphism
determined by (H, ιp) 7→ σ. Since (H, ιp) ∈ (G/H × ∆p)K , we have that σ =
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fK(H, ιp), showing that σ is in the image of (A.5). We still have to prove that
(A.5) is injective. Let us first show that every p-simplex of

colim
G/H×∆n↓X

(G/H ×∆n)K (A.6)

is represented by one of the form (L, ιp) ∈ (G/L×∆p)K . Let f : G/H×∆n → X be
a G-equivariant morphism and let (gH, τ) be a p-simplex of (G/H ×∆n)K . Then
K ⊂ gHg−1 and τ = τ∗(ιp) for some non decreasing function τ : [p] → [n]. The
commutativity of the following triangle implies that (gH, τ) and (gH, ιp) represent
the same simplex of (A.6):

(gH, τ) G/H ×∆n f // X

(gH, ιp)
❴

OO

G/H ×∆p

id×τ∗

OO

f◦(id×τ∗)

@@

Write L := gHg−1 and note that there is a G-equivariant bijection β : G/H → G/L
determined by β(H) = g−1L. The commutativity of the following triangle implies
thata (gH, ιp) and (L, ιp) represent the same simplex of (A.6):

(gH, ιp)
❴

��

G/H ×∆p

∼=β×id

��

f◦(id×τ∗) // X

(L, ιp) G/L×∆p

@@

Now let (L, ιp) and (M, ιp) represent two p-simplices of (A.6) having the same
image σ ∈ (XK)p under (A.5). Put S := Stab(σ) and note that L,M ⊂ S. The
commutativity of the following diagram shows that (L, ιp) and (M, ιp) represent
the same simplex of (A.5):

(L, ιp)
❴

��

G/L×∆p

�� ��
(S, ιp) G/S ×∆p // X

(M, ιp)
❴

OO

G/M ×∆p

@@OO

This finishes the proof. �

Appendix B. A Mayer-Vietoris sequence in bivariant algebraic

K-theory

Definition B.1. A Milnor square of G-algebras is a pullback square

A //

��

B

f

��
C // D

where f is surjective and has a G-linear section.
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Lemma B.2. Let A be an algebra. Let X be a finite (G,Fin)-complex and let Xn

be the n-skeleton of X. Since X is a (G,Fin)-complex there is a pushout

⊔r
i=1G/Hi × ∂∆n //

��

Xn−1

��
⊔r
i=1G/Hi ×∆n // Xn

(B.3)

of G-simplicial sets with Hi ∈ Fin for all i. Then all the morphisms appearing in
(B.3) are proper and this diagram induces a Milnor square of G-algebras:

A(
⊔r

i=1 G/Hi×∂∆
n) A(Xn−1)oo

A(
⊔r

i=1G/Hi×∆n)

OO

A(Xn)

OO

oo

(B.4)

Proof. The vertical morphisms in (B.3) are proper because they are inclusions of
simplicial sets; the horizontal morphisms in (B.3) are proper by Lemma A.3. Then
we can apply A(−) to get a commutative diagram of G-algebras like (B.4); it is easily
verified that this is a pullback of G-algebras. Write i : ∂∆n → ∆n for the inclusion.
By [8, Lemma 3.1.2 and Proposition 3.1.3], the morphism i∗ : A∆n

→ A∂∆
n

admits
a linear section. Then the left vertical morphism in (B.4) admits a G-linear section,
since it identifies with

⊕

i

idℓ(G/Hi) ⊗ i∗ :
⊕

i

ℓ(G/Hi) ⊗A∆n

−→
⊕

i

ℓ(G/Hi) ⊗A∂∆
n

by [7, 9.3.4]. �

Lemma B.5. Let E be a G-algebra. Then every Milnor square of G-algebras

A //

��

B

��
C // D

induces a long exact Mayer-Vietoris sequence:

kkG∗ (D,E) // kkG∗ (B,E)⊕ kkG∗ (C,E) // kkG∗ (A,E) // kkG∗−1(D,E)

Proof. It follows from excision in kkG [13, Theorem 4.1.1] and from the argument
explained in [10, Theorem 2.41]. �

Appendix C. The model category of spectra and spectra

representing bivariant K-theory

C.1. The stable model category of spectra. In this section we recall the defi-
nition of the stable model category of spectra and discuss some of its properties.

Definition C.1 ([5, Definition 2.1]). A spectrum X is a sequence of pointed sim-
plicial sets X0, X1, X2, . . . together with pointed morphisms S1 ∧Xn → Xn+1 for
all n, called bonding maps. Here, S1 = ∆1/∂∆1. A morphism of spectra f : X → Y
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is a sequence of pointed morphisms fn : Xn → Y n that commute with the bonding
maps:

S1 ∧Xn

S1∧fn

��

// Xn+1

fn+1

��
S1 ∧ Y n // Y n+1

We write Sp for the category of spectra and morphisms of spectra.

We endow Sp with its stable model structure, which we proceed to describe; see
[5, Section 2] and [19, Section 3] for details:

• Let X be a spectrum and let m ∈ Z. The m-th stable homotopy group of
X is defined as:

πm(X) = colim
k

πm+k(X
k)

A morphism of spectra f : X → Y is a weak equivalence if πm(f) is an
isomorphism for all m ∈ Z.

• A morphism of spectra f : X → Y is a fibration if fn : Xn → Y n is a
fibration of simplicial sets for all n.

• A morphism of spectra is a cofibration if it has the left lifting property with
respect to trivial fibrations.

Lemma C.2. The stable model structure on Sp is combinatorial.

Proof. Recall from [12, Definition 2.1] that a model category is combinatorial if it is
cofibrantly generated and its underlying category is locally presentable. The stable
model structure on Sp is cofibrantly generated by [19, Definition 3.3 and Corollary
3.5]. We have to show that the underlying category is locally presentable. We claim
that Sp is locally finitely presentable. By [1, Theorem 1.11], to prove this claim we
have to show that Sp has a strong generator formed by finitely presentable objects.
By [1, Example 1.12], the set {∆m : m ≥ 0} is a strong generator for S formed
by finitely presentable objects. Since the forgetful functor S∗ → S commutes with
filtered colimits, the latter is easily seen to imply that {∆m

+ : m ≥ 0} is a strong
generator for S∗ formed by finitely presentable objects. For n ≥ 0, let Fn : S∗ → Sp
be the left adjoint to evaluation at n. Explicitely, for a pointed simplicial set X , let
Fn(X) be the spectrum whose level k is (S1)∧(k−n)∧X if k ≥ n and ∗ otherwise. The
bonding maps are the obvious ones. It is easily verified that {Fn(∆m

+ ) : m,n ≥ 0}
is a strong generator for Sp formed by finitely presentable spectra. �

C.2. Bivariant K-theory spectra. In this section we recall the definitions of
spectra representing kk-theory [14, Theorem 9.8] and kkG-theory [25, Theorem
5.3.11].

Let C denote either Algℓ or GAlgℓ. For two objects A and B of C, the bivariant
K-theory space of the pair (A,B) [26, Definition 4.10] is defined as the fibrant
simplicial set:

K (A,B) := colim
n

ΩnEx∞HomC(J
nA,B∆)

This definition is equivalent to the original one given in [14, Section 4]. By [14,
Theorem 5.1] there is a natural isomorphism of simplicial sets:

K (A,B) ∼= ΩK (JA,B)
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Thus, we have an Ω-spectrum K(A,B) defined by the sequence:

K (A,B), K (JA,B), K (J2A,B), . . .

The spectrum K(A,B) (denoted by Kunst(A,B) in [14]) represents a universal bi-
variant K-theory introduced by Garkusha that is excisive, homotopy invariant but
matrix-unstable [14, Comparison Theorem B]. Different matrix-stabilizations can
be perfomed in order to obtain spectra representing kk- and kkG-theories:

(1) Stabilization by finite matrices. For two objects A and B of C put

Kf(A,B) := colim
n

K(A,MnB)

where the transition maps are induced by the inclusion MnB → Mn+1B
into the upper left corner. These spectra represent a universal bivariant
K-theory that is excisive, homotopy invariant and stable by finite matrices
[14, Theorem 9.8]; see [14, Section 9] and [25, Section 5.1] for details.

(2) Stabilization by finite matrices indexed on an infinite set. Let X be an
infinite set. For two objects A and B of C put [25, Definition 5.2.21]:

KX (A,B) := Kf (A,MXB)

The spectra KX (A,B) represent a universal bivariant K-theory that is ex-
cisive, homotopy invariant and MX -stable [25, Theorem 5.2.22]. For any
X , Weibel’s homotopy K-theory KH is the functor represented by the base
ring ℓ [25, Theorem 5.2.20]. For X = N, this theory coincides with kk.

(3) G-stabilization. Let G be a group and let X = G×N. For two G-algebras
A and B put:

K
G(A,B) := KX (MGA,MGB)

These spectra represent kkG-theory [25, Theorem 5.3.11].

Lemma C.3 (cf. [25, Section 4.4]). Let Sf ⊂ S denote the full subcategory of
finite simplicial sets. Let G be a group, X be an infinite set, G/K ∈ Or(G,Fin),
A,B ∈ GAlgℓ and S ∈ Sf . Then, for E ∈ {K,Kf ,KX ,K

G}, there is a morphism
of spectra

S+ ∧ E(A(G/K), B) → E(A(G/K×S), B) (C.4)

that is natural in A, B, G/K and S. Moreover, for S = ∆0 this is an isomorphism.

Proof. It suffices to prove the Lemma for E = K: the case E = Kf follows from this
upon taking colimit over the inclusions MnB → Mn+1B and the rest of the cases
follow from the latter upon replacing A and B with appropriate matrix algebras.

Let us prove the case E = K. We will define (C.4) levelwise. At level p ≥ 0, we
have to define a morphism of simplicial sets:

S+ ∧ K (Jp(A(G/K)), B) → K (Jp(A(G/K×S)), B) (C.5)

Let us describe it in dimension q ≥ 0. A q-simplex of S+ ∧ K (Jp(A(G/K)), B) is
represented by a pair (σ, α) where σ is a q-simplex of S and α is a q-simplex of
K (Jp(A(G/K)), B). Let α be represented by a G-algebra homomorphism

α : Jp+v(A(G/K)) → B(Iv×∆q,∂Iv×∆q)
r
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for some v, r ≥ 0. Then the morphism (C.5) sends the pair (σ, α) to the q-simplex
of K (Jp(A(G/K×S)), B) represented by the following composite in GAlgℓ:

Jp+v
(

A(G/K×S)
)

Jp+v
(

(

A(G/K)
)S

)

clas��
[

Jp+v
(

A(G/K)
)]S

α∗

��
[

B
(Iv×∆q,∂Iv×∆q)
r

]S

σ∗

��
[

B
(Iv×∆q,∂Iv×∆q)
r

]∆q

µ
��

B
(Iv×∆q×∆q,∂Iv×∆q×∆q)
r

diag∗
��

B
(Iv×∆q,∂Iv×∆q)
r

This clearly defines a morphism (C.5) that is natural in A, B, G/K and S. Let us
now show that (C.5) is an isomorphism for S = ∆0. First note that the classifying
map

clas : Jp+v
(

(

A(G/K)
)∆0)

→
[

Jp+v
(

A(G/K)
)]∆0

is an isomorphism. Moreover, it follows from the naturality of µ that the composite
diag∗ ◦ µ ◦ σ∗ equals the obvious isomorphism:

[

B(Iv×∆q,∂Iv×∆q)
r

]∆0
∼=
−→ B(Iv×∆q,∂Iv×∆q)

r

Together, these observations imply that, for S = ∆0 and making the obvious iden-
tifications, the morphism (C.5) is the identity of K (Jp(A(G/K)), B). This finishes
the proof. �

Lemma C.6. Let A and B be two G-algebras and let f : C → D be a morphism
of G-algebras. Then the following square of spectra commutes:

KG(A,B)
−⊗C //

−⊗D

��

KG(A⊗ C,B ⊗ C)

f∗

��
KG(A⊗D,B ⊗D)

f∗

// KG(A⊗ C,B ⊗D)
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Proof. Unravelling the definitions of the spectra KG, KX and Kf , it suffices to show
that the following square commutes:

K(A,B)
−⊗C //

−⊗D

��

K(A⊗ C,B ⊗ C)

f∗

��
K(A⊗D,B ⊗D)

f∗

// K(A⊗ C,B ⊗D)

At level p ≥ 0 the latter is the following square of simplicial sets:

K (JpA,B)
−⊗C //

−⊗D

��

K (Jp(A⊗ C), B ⊗ C)

f∗

��
K (Jp(A⊗D), B ⊗D)

f∗

// K (Jp(A⊗ C), B ⊗D)

(C.7)

Let q ≥ 0. Write BS
n×∆q

r instead of B
(In×∆q,∂∆n×∆q)
r to ease notation. Let α be a

q-simplex of K (JpA,B), represented by an algebra homomorphism α : Jp+nA →
BS

n×∆q

r for some n, r ≥ 0. Consider the following commutative diagram of algebras:

Jp+n(A⊗ C)
clas //

Jp+n(id⊗f)

��

Jp+n(A)⊗ C
α⊗id //

Jp+n(id)⊗f

��

BS
n×∆q

r ⊗ C

id⊗f

��

(B ⊗ C)S
n×∆q

r

(id⊗f)S
n
×∆q

r

��
Jp+n(A⊗D)

clas // Jp+n(A) ⊗D
α⊗id // BS

n×∆q

r ⊗D (B ⊗D)S
n×∆q

r

The composite of the top morphisms followed by the rightmost vertical morphism
represents the q-simplex f∗(α⊗C) of K (Jp(A⊗C), B⊗D). The leftmost vertical
morphism followed by the composite of the bottom morphisms represents the q-
simplex f∗(α ⊗D) of K (Jp(A ⊗ C), B ⊗D). The commutativity of the diagram
shows that f∗(α⊗ C) = f∗(α⊗D) and, thus, that (C.7) commutes. �
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