ALHSUD ASOCIACIÓN LATINOAMERICANA DE HIDROLOGÍA SUBTERRÁNEA PARA EL DESARROLLO ASSOCIAÇÃO LATINOAMERICANA DE HIDROLOGIA SUBTERRÂNEA PARA O DESENVOLVIMENTO

1984-2020

Revista Latino-Americana de Hidrogeología

EDICIÓN ESPECIAL.ISSN: 1676-0999. VERSIÓN ELECTRÓNICA

ACTUALIDAD EN LA HIDROGEOLOGÍA DE URUGUAY

INVESTIGACIÓN GEOTÉRMICA, ACUÍFERO GUARANI, ARSÉNICO, MODELADO DE FLUJO.

PRESENTE NA HIDROGEOLOGIA DA URUGUAY

INVESTIGAÇÃO GEOTÉRMICA, AQUIFERO GUARANI, ARSÊNICO, MODELAGEM DE FLUXO

Hermosillo, Sonora, México

OCTUBRE 2020

NÚMERO ESPECIAL - Octubre / 2020-03

Revista Latino-Americana de Hidrogeología

ACTUALIDAD EN LA HIDROGEOLOGÍA DE LA REPUBLICA ORIENTAL DEL URUGUAY

Rev. Lat. Am. Hidrogeol. Hermosillo, Mex. Número especial pp.1-92 Oct / 2020-03

Modelación numérica del acuífero Raigón

A. Flaquer P. Gamazo

Resumen: El Sistema Acuífero Raigón (SAR) es el recurso de agua subterránea más utilizado en Uruguay. Se localiza al sur del Departamento San José, con un área cercana a 2,300 km² y se explota, principalmente, con fines de riego y de abastecimiento. En el marco de la elaboración de un plan de gestión, se elaboró un modelo numérico de flujo que permite evaluar, con base en el conocimiento actual, el funcionamiento del acuífero y su respuesta frente a distintos futuros escenarios de explotación. Para la implementación, se utilizó el software ModelMuse, una interfaz gráfica para el modelo desarrollado por el U. S Geological Service (USGS) MO-DFLOW-2005. El mencionado modelo presenta mejoras respecto a modelos previos del SAR, al incorporar información actualizada de perforaciones con descripción geológica, y lograr una mejor

Recibido: Marzo 24, 2020 /Aceptado: Agosto 15, 2020 Publicado en línea: Octubre, 2020 © 2020

A. Flaquer

)@<

Universidad de la República, Instituto de Mecánica de los Fluidos e Ingeniería Ambiental (IMFIA-FING)-Uruguay.

E-mail de correspondencia: maflaquer@fing.edu.uy

P. Gamazo

Universidad de la República, Departamento del Agua-Centro Universitario Regional Norte (CENUR), Litoral Norte, Sede Salto-CENUR LN-Uruguay.

definición en la geometría del acuífero. Otra mejora es la implementación de la simulación de la interacción del acuífero con la red fluvial existente mediante condiciones tipo "river", eliminando las condiciones de carga constante. Sumado a lo anterior, se actualizó la demanda con base en la información de derechos otorgados. Uno de los principales aportes del trabajo realizado en el desarrollo del nuevo modelo es la implementación del primer modelo transitorio del SAR. La calibración contempló un periodo de 28 años y se realizó según niveles piezométricos relevados en el período 1986-2014, en un total de 18 perforaciones con registros históricos. Con el paso de tiempo mensual se realizó una calibración automática (problema inverso) variando los parámetros de recarga, conductividad hidráulica y coeficiente de almacenamiento. El error de ajuste obtenido fue de 3.9 m para la raíz del error cuadrático medio (RMSE) y de 5.9% para el error cuadrático medio normalizado (NRMSE).

Palabras clave: Sistema Acuífero Raigón (SAR), modelación matemática, Modflow.

Abstract: The Raigón Aquifer System (SAR) is the most widely used groundwater resource in Uruguay. It is located south of the San José Department, has an area of 2,300 km² and is operated mainly for irrigation and supply purposes. Within the framework of the development of a management plan, a numerical flow model was developed that allows evaluating, based on current knowledge, the functioning of the aquifer and its response to different future exploitation scenarios. The ModelMuse software, a graphical interface for the model

developed by the US Geological Service (USGS) MODFLOW-2005, was used for the implementation. The afore-mentioned model presents improvements over previous SAR models incorporating updated drilling information with geological description, achieving a better definition in the geometry of the aquifer. Another improvement is the implementation of the simulation of the interaction of the aquifer with the existing river net-work through "river" type conditions, eliminating constant load conditions of previous models. One of the main contributions of the work carried out in the development of the new model is the implementation of the first transient SAR model. The calibration covered a period of 28 years and was carried out based on piezo-metric levels surveyed in the period 1986-2014 in a total of 18 perforations with historical records. With a monthly time step, an automatic calibration (inverse problem) was performed by varying the refill parameters, hydraulic conductivity, and storage coefficient. The adjustment error obtained was 3.9 m for the root of the mean square error (RMSE) and 5.9% for the mean normalized square error (NRMSE).

Keywords: Raigón Aquifer System, mathematical modeling, Modflow.

INTRODUCCIÓN

Se denomina Formación Raigón a los sedimentos geológicos terciarios de arenas y gravas, depositados en los departamentos Montevideo, Canelones, San José y Colonia (Goso, 1965). Desde el punto de vista hidrogeológico, los diferentes estratos están conectados y forman acuíferos o sistemas acuíferos de magnitud local o regional que se integran en el denominado Sistema Acuífero Raigón (SAR).

El primer estudio del SAR data de mediados de la década de 1980, con la tesis doctoral de Mezmurre Haile Meskale, un estudiante de la Universidad de Quebec, Montreal (Haile-Mezkale, 1990). Esta investigación reúne toda la información dispersa hasta entonces y realiza las primeras mediciones de nivel piezométrico, además de caracterizar químicamente al acuífero.

Los estudios siguientes, llevados a cabo con financiación del Ministerios de Ganadería Agricultura y Pesca (MGAP), a través del programa PRENADER, específicamente dirigido al uso del agua en la producción agrícola, realizaron numerosos análisis fisicoquímicos del sistema. Al mismo tiempo, la Cooperación Estadounidense, a través de su Ministerio de Defensa, aportó mayor conocimiento litológico del acuífero, al construir alrededor de 15 perforaciones como parte de un programa para productores.

En 1998, un proyecto financiado con fondos CONICYT-BID y ejecutado por la Facultad de Ingeniería, realizó el primer modelo numérico del SAR, acotado al sector más productivo del acuífero, con un área de 700 km² y ubicado al este de la radial de la Ruta 3 con la Ruta 1. Sumado al modelo, el proyecto generó una base de datos de más de 300 perforaciones, además de información de relevamientos geofísicos y perfilaje de pozos para el mejoramiento del modelo conceptual.

En el año 2000, se realizó la Carta de Vulnerabilidad del SAR que cubrió toda el área del acuífero. Se aportó, además, el modelo conceptual completo, se calibró el modelo numérico monocapa en tres sectores independientes, que se sumó al bicapa ya existente en el sector este, y se evaluó la recarga total en régimen estacionario.

En 2005, con financiación del Organismo Internacional de Energía Atómica (OIEA) y liderado por la Dirección Nacional de Hidrografía (DNH), del Ministerio de Transporte y Obras Públicas (MTOP), se realizó un estudio isotópico e hidroquímico del SAR.

En 2009, mediante el Convenio de Cooperación Interuniversitario entre la Universidad de la República (UDELAR) y la Universidad Nacional Autónoma de México (UNAM), los respectivos grupos de modelación de la Facultad de Ingeniería y del Instituto de Geofísica retomaron el modelo numérico del año 2000 y lo unificaron en una sola capa acuífera, bajo el entendido de que los pozos de explotación captan siempre simultáneamente las capas que constituyen el SAR. En la calibración para régimen estacionario, se fusionaron los cuatro sectores en los que estaba dividido el modelo original.

En 2014, la Facultad de Ingeniería emprendió el proyecto FPTA 307 "Gestión Ambiental del Sistema Acuífero Raigón", en el cual se desarrolló el modelo flujo del SAR aquí presentado, calibrado en régimen transitorio para el período 1986-2014.

DESCRIPCIÓN DEL ÁREA DE ESTUDIO

El área de estudio del SAR se ubica al sur del departamento San José. El sector continuo se desarrolla entre el arroyo Pavón y los afloramientos de las rocas cristalinas, al oeste; el río San José y las rocas cristalinas, al norte; el arroyo de la Virgen y el río Santa Lucía, al este; y el río de la Plata, al sur. Totaliza un área cercana a 2,300 km² (figura 1).

Figura 1. Ubicación y límites del SAR.

El SAR es fundamental para el abastecimiento de agua para los centros poblados del departamento, las industrias, el riego, los establecimientos ganaderos y las viviendas rurales.

METODOLOGÍA

El dominio del modelo se definió con base en el modelo conceptual del acuífero, desarrollado en el proyecto INIA FPTA 307 "Gestión Ambiental del Sistema Acuífero Raigón (2016)". El acuífero fue modelado mediante una sola capa, tomando como base la Fm Camacho o Fm Fray Bentos, según sea el caso, y como techo el propio límite superior de la Fm Raigón o la Fm Libertad, cuando la misma está presente. El área a modelar se discretizó en celdas de 500 m por 500 m. La geometría del modelo se construyó según la selección de 131 pozos con información litológica confiable. Para la interpolación se ajustó un modelo esférico de semivariograma teórico al semivariograma experimental (figura 2).

Figura 2. Ajuste teórico del semivariograma, modelo esférico.

Para la definición del techo del acuífero se incorporó información de la geología de superficie, de forma de reproducir el techo en las zonas donde la Fm Raigón se encuentra aflorando. La figura 3 presenta la potencia del acuífero modelado.

El límite sur del acuífero fue modelado mediante la incorporación de una condición de carga constante que representa el nivel de descarga del acuífero en el río de la Plata. Para todas las celdas limitantes con la frontera sur del modelo, se impone una carga constante que varía dependiendo de la zona, entre las cotas 0 y 2 m.

Figura 3. Potencia del Acuífero Raigón.

Existe una red hídrica superficial de gran densidad en la zona del acuífero Raigón, con múltiples ríos, arroyos y cañadas que componen el sistema de drenaje superficial.

Figura 4. Extensión del modelo y condiciones de borde tipo ríos (celeste) y carga constante (azul).

El modelo contempla la interacción del acuífero con los principales cursos de agua de la zona, los cuales son representados mediante condiciones de borde tipo "river".

Los caudales de explotación asociados a la demanda se obtuvieron con base en la información de derechos otorgados en el acuífero. Se contempló la evolución creciente de la demanda en el tiempo para el período modelado, tomando como dato el año de aprobación del derecho de uso otorgado. Al año 2014. los derechos existentes representaban una demanda de más de 15 Hm³/año, repartidos en 343 puntos de extracción. Un año después, en 2015, el caudal de extracción alcanzaba los 20.3 Hm³/ año, repartidos en 413 puntos de extracción.

Figura 5. Caudales de explotación de derechos otorgados. Fuente DINAGUA.

La recarga fue estimada inicialmente mediante un balance hídrico en el suelo, empleando el código Visual Balan v.2.0. En las tres grandes unidades de suelo identificadas, se estimó la recarga para el período simulado.

En una primera etapa, se modeló el acuífero en estado estacionario, considerando como punto de partida la recarga promedio estimada para el período 1986-2014, definiendo un intervalo de variación del 20% respecto a los valores estimados durante la calibración. La información piezométrica utilizada para la calibración en régimen estacionario corresponde a la campaña de relevamiento piezométrico de septiembre de 2015, en el marco del proyecto INIA FPTA 307 "Gestión Ambiental del Sistema Acuífero Raigón (2016)". Las extracciones corresponden al total registrado al año 2015 en la base de DINAGUA (2007).

Figura 6. Zonas de recarga según unidades de suelo.

En una segunda etapa, se modeló el acuífero en estado transitorio, considerando un paso de tiempo mensual y un periodo de "calentamiento del modelo" de 4 años. Para la calibración (problema inverso), se consideraron como variables los parámetros recarga, conductividad hidráulica y coeficiente de almacenamiento. Para la estimación automática de los parámetros (modelación inversa), se utilizó el software UCODE 2005, el cual funciona acoplado a ModelMuse.

Figura 7. Ubicación de las perforaciones con serie de datos históricos de niveles. Fuente: DINAMIGE (2007).

La calibración se realizó con base en información de niveles, relevada por DINAMIGE desde 1986, distribuidos en 18 perforaciones en 5 zonas.

En total se cuenta con 666 datos medidos en 45 campañas. La figura 8 presenta el número de campañas realizadas por año. En el período 2009-2012 no se realizaron mediciones.

Figura 8. Nº de campañas de medición por año.

De inicio, se consideraron 4 zonas para la calibración (figura 9). La zonificación fue resultado de la interpretación de pruebas de bombeo y aforos existentes. Los valores de conductividad iniciales fueron resultado de la calibración en régimen estacionario. Durante el proceso de calibración en estado transitorio, se exploró manualmente variar el área de las distintas zonas de conductividad y se agregaron nuevas zonas.

Figura 9. Valores de conductividad hidráulica del modelo calibrado en régimen estacionario.

RESULTADOS

Como resultado de la calibración estacionaria se ajustaron 4 zonas de conductividad, presentadas en la figura 9.

El total de los estadísticos se presenta en la tabla 1. La diferencia entre los niveles calculados y los niveles observados se puede ver en la figura 10.

Figura 10. Ajuste del modelo estacionario, niveles observados vs calculados.

Tabla 1. Estadísticos de ajuste del modeloestacionario calibrado

Nº de Puntos	60
EM (m)	1.7
Máximo residual (m)	8.4
Mínimo residual (m)	-7.7
Raíz del Error Cuadrático Medio (m)	3.9
Error Cuadrático Medio Normalizado (%)	5.9

La recarga calibrada para las tres unidades de suelo consideradas se presenta en la tabla 2, mientras que el balance de masa resultante se muestra en la figura 11. Las principales salidas del modelo se producen mediante la descarga del acuífero a los arroyos y ríos modelados, la cual representa 68% de total de salida. Otro de los flujos de salida importantes, del orden de 22%, se da en la descarga al río de la Plata, mediante la condición de borde de carga constante. La extracción de los pozos representa 10% de la recarga total.

Tabla 2. Valores de recarga (mm/año) resultantes en cada zona para el modelo calibrado en régimen estacionario

Unidad de Suelo	Kiyú	Libertad	Tala Rodríguez
Recarga (mm/ año)	159	98	64

Figura 11. Balance de masa régimen estacionario.

Para el caso el modelo transitorio, se obtuvo un buen ajuste del modelo como lo muestra el gráfico de niveles piezométricos simulados y observados (figura 12) para dos de las zonas calibradas.

Figura 12. Evolución de niveles simulados (línea continua) vs niveles observados. Zona Cagancha (arriba) y Zona San Gregorio (abajo).

Para el modelo calibrado en régimen transitorio, el total de los estadísticos se presenta en la tabla 3. La diferencia entre los niveles calculados y los niveles observados (los residuales) se pueden ver en la figura 13.

Tabla 3. Estadísticos de ajuste del modelo transitorio calibrado

Nº de Puntos	633
Error Medio (m)	0.032
Máximo residual (m)	7.6
Mínimo residual (m)	-5.4
Raíz del Error Cuadrático Medio (m)	1.0
Error Cuadrático Medio Normalizado (%)	1.9

La zonificación final resultante de la calibración se muestra en la figura 14, mientras que en la tabla 4 se presentan los valores de conductividad hidráulica y coeficiente de almacenamiento asociado a cada zona.

Figura 13. Ajuste del modelo transitorio, niveles observados vs calculados.

Los valores de conductividad hidráulica resultantes varían entre 25 y 120 m/d. El rango de coeficientes de almacenamiento obtenidos es de 1x10⁻¹ a 4 10⁻⁶, lo cual es consistente con el hecho de que el acuífero se comporta en algunas zonas como libre y, en otras, como confinado.

Figura 14. Zonificación adoptada para valores de conductividad hidráulica y coeficiente de almacenamiento del modelo calibrado en régimen transitorio.

Tabla 4. Valores de conductividad hidráulica y coeficiente de almacenamiento resultantes en cada zona para el modelo calibrado en régimen transitorio

Zona	Conductividad hi- dráulica (m/día)	Coeficiente de almacenamiento
1	26	2.3e-3
2	48	9.0e-2
3	24	4.1e-6
4	90	2.3e-3
5	21	4.1e-3
6	12	4.3e-3
7	127	1.1e-1
8	87	4.1E-6

La recarga obtenida para cada zona en el período modelado se presenta en la tabla 5.

Tabla 5. Recarga (mm/año) para las distintas unidades de suelo del resultante de la calibración del modelo transitorio. Período 1986-2014

• ~		Unidad de Suelo			
Ano	Kiyú	Libertad	Tala Rodríguez		
1986-1987	154	49	30		
1987-1988	61	59	41		
1988-1989	59	67	52		
1989-1990	138	73	67		
1990-1991	188	86	86		
1991-1992	208	92	117		
1992-1993	194	85	109		
1993-1994	203	91	90		
1994-1995	198	59	81		
1995-1996	127	30	78		
1996-1997	85	22	75		
1997-1998	53	67	70		
1998-1999	170	156	75		
1999-2000	211	171	110		
2000-2001	245	178	153		
2001-2002	236	178	133		
2002-2003	207	134	106		
2003-2004	193	87	91		
2004-2005	157	91	122		
2005-2006	198	82	127		
2006-2007	200	95	133		
2007-2008	166	81	144		
2008-2009	133	73	106		
2009-2010	197	82	107		
2010-2011	207	75	101		
2011-2012	199	78	110		
2012-2013	208	92	119		
2013-2014	198	107	103		
Promedio 1986 - 2014	135	87	58		

El balance de masa para todo el modelo se muestra en la figura 15. Al igual que en el caso estacionario, las principales salidas del modelo se producen mediante los ríos simulados y la condición de carga constante que representa el río de la Plata. La extracción mediante pozos representa una pequeña fracción de la recarga. Tomando en cuenta los últimos años del período simulado (tabla 6), como período representativo de la situación actual, la extracción mediante pozos varía entre un 2.2 y un 4.2% del total de salidas, mientras que la salida por ríos y carga constante representa aproximadamente 73% y 19%, respectivamente.

Figura 15. Balance de masa modelo régimen transitorio. Período 1986-2013.

CONCLUSIONES

Para el estado de situación actual del acuífero, considerando los últimos 4 años modelados, la recarga promedio es del orden de 140 mm/ año, lo que equivale a 9.7 m³/s y representa 97% de las entradas. Del total de las salidas, la descarga al río de la Plata es de 2 m³/s (20%), mientras que para ríos y arroyos alcanza en promedio 7.6 m³/s (74%).

Al observar la zonificación de la recarga, se aprecia que en la zona de incidencia de la Fm Libertad el rango varía entre 22 y 170 mm/año, pese a su composición (principalmente limos arcillosos y arcillas) y potencia. que supera los 30 m algunas zonas. Esto puede deberse a la existencia de zonas de flujo preferencial en la Fm Libertad, con conductividades hidráulicas muy superiores a las esperadas.

Recientemente se han realizado ensayos de conductividad hidráulica en campo y laboratorio en la Fm Libertad en diferentes puntos del SAR (Musso et al., 2019). Estos autores concluyen que las diferencias en la granulometría entre en los sitios generan variaciones de la conductividad hidráulica medida en campo y laboratorio. La permeabilidad total medida en los pozos está dominada por los horizontes con

mayor conductividad hidráulica, por ende, se obtuvieron valores 100 a 1,000 veces mayores que en laboratorio, alcanzando valores superiores a 10⁻⁵ m/s.

	Entradas				Salidas		
	Entrada Alma-	Entrada	Entrada	Salida Alma-	Salida Carga	Salida	Salida
Año	cenamiento	Ríos	Recarga	cenamiento	constante	Pozos	Ríos
2010	4.2	1.1	94.7	4.8	19.3	2.2	73.7
2011	2.3	1.1	96.6	2.6	19.6	2.4	75.4
2012	0.4	1.0	98.5	5.5	18.9	3.0	72.7
2013	2.4	1.1	96.6	2.8	19.3	4.2	73.8

Tabla 6. Balance de masa modelo re	égimen transitorio. Período	o 2010-2013. Valores en %
------------------------------------	-----------------------------	---------------------------

Se realizó un modelo estacionario y un transitorio del SAR que incorpora más de 20 años de estudios hidrogeológicos sobre el sistema y 28 años de observaciones.

El modelo incluye las explotaciones y los intercambios con la densa red de drenaje superficial incorporando la simulación de los ríos como condición de tipo "river", eliminando las condiciones de carga constante, impuestas en modelos anteriores.

El presente modelo es el primero en estado transitorio del SAR y cubre un período de 28 años. El nuevo modelo del SAR tiene el potencial de ser utilizado como herramienta de gestión, ya que el mismo fue desarrollado en un software gratuito y está disponible tanto para usuarios interesados como para la administración pública.

REFERENCIAS

- Banta, E. R. (2011). ModelMate-A graphical user interface for model analysis: U.
 S. Geological Survey Techniques and Methods (6–E4).
- Barnett et al. (2012). Australian groundwater modelling guidelines. Canberra: Waterlines report, National Water Commission.

- Carretero. S. (2011). Comportamiento hidrológico de las dunas costeras en el sector nororiental de la provincia de Buenos Aires (Tesis Doctoral).La Plata, Argentina:.
- Custodio, E., & Jódar, J. (2016). Simple solutions for steady-state diffuse recharge evaluation in sloping homogeneous unconfined aquifers by means of atmospheric tracers. Journal of hidrology. June 2016 Journal of Hydrology 540. DOI: 10.1016/j.jhydrol.2016.06.035
- De los Santos, J., Menta, A., Giménez, M., Flaquer, A., Musso, M., Ramos, J., Ford, S., Gregorio, J., García, G., Bessouat, C., Herrera, G., Hernández, G., Corbo, F., & Becerra, L. (2017). Gestión Ambiental del Sistema Acuífero Mercedes (SAM).
- De los Santos, J. et al. (2009). Informe del proyecto "Modelación en régimen estacionario del Acuífero Raigón". GHS, IMFIA, Facultad de Ingeniería, UdelaR.
- De los Santos, J. et al. (2009). Informe del proyecto "Red de monitoreo del Sistema Acuífero Raigón". GHS, IMFIA, Facultad de Ingeniería, UdelaR.
- De los Santos, J. et al. (1999). Carta de Vulnerabilidad del Acuífero Raigón. DINAMA (MVOTMA)-IMFIA (FING., UdelaR).

De los Santos, J. et al. (1997). Modelación numérica del Sector Este del Acuífero Raigón. Proyecto CONICYT-BID 71/94.

DINAMA. (Julio de 2004). Guía para la toma, conservación y transporte de muestras de agua subterránea. Versión 1.

- Dirección de Suelos y Fertilizantes,M. G. A. P. (1979). Descripciones, datos físicos y Químicos de los suelos dominantes. Carta de Reconocimiento de Suelos del Uruguay, Tomo III. Apéndice. Montevideo, Uruguay.
- FCIHS. (2009). Hidrogeología. Barcelona: Comisión docente Curso internacional de Hidrología subterránea.
- Haile-Mezkale, M. (1990). Estudio Integrado de la cantidad y calidad del agua subterránea en la parte inferior de la cuenca del Santa Lucía. Uruguay: CIID.
- Harbaugh, A. W. (2005). MODFLOW-2005,
 The U. S. Geological Survey modular ground-water model-the Ground-Water
 Flow Process (6- A16). U. S. Geological Survey Techniques and Methods.
- Heinzen, W. et al. (1986). Carta Hidrogeológica del Uruguay escala 1/2.000.000 y Memoria Explicativa. Montevideo, Uruguay: DINAMIGE.
- Hill, M. (1998). METHODS AND GUIDELINES
 FOR EFFECTIVE MODEL CALIBRATION.
 U. S. GEOLOGICAL SURVEY WATER-RESOURCES INVESTIGATIONS
 REPORT 98-4005 With application to: UCODE, a computer code for universal inverse modeling, and MODFLOWP, a computer code for inverse modeling with MODFLOW.
- IGWMC. (2014). UCODE_2014 and Auxiliary Computer Codes for Universal Sensitivity Analysis, Calibration, and Uncertainty Evaluation. Recuperado de http://igwmc. mines.edu/
- MTOP, MVOTMA, MIEM, MGAP, OSE, Facultad de Ciencias. (2005). Informe del proyecto "Gestión Sostenible del Acuífero Raigón – Uruguay". Proyecto regional de cooperación técnica RLA/8/031-Manejo integrado y sostenible de

aguas subterráneas en América Latina, financiado por OIEA.

- Alfonso Flaquer Gonzalo Bango Agustin Menta. (2019). Influencia de la composición e historia geológica en las propiedades hidráulicas de la Fm. Libertad. December 2019 DOI: 10.3233/ STAL190048 Conference: XVI Congreso Panamericano de Mecánica de Suelos e Ingeniería Geotécnica At: Cancún, México.
- Plata, A. (1972). Isótopos en hidrología. Madrid: Editorial Alhambra S. A.
- Poeter, E. P., Hill, M. C., Banta, E. R., Mehl,
 S., & Steen, C. (2005). UCODE_2005
 and Six Other Computer Codes for
 Universal Sensitivity Analysis, Calibration,
 and Uncertainty Evaluation (6-A11). U.
 S. Geological Survey Techniques and
 Methods.
- USGS. (216). ModelMuse Version 3.8.1. Recuperado de
- https://water.usgs.gov/nrp/gwsoftware/ ModelMuse/ModelMuse.html
- Richard W. (2010). Healy, Estimating Groundwater Recharge. ISBN-13 978-0-511-79768-2 Editorial : Cambridge University Press; 1st Edición (8 Noviembre 2010).