
PEDECIBA INFORMÁTICA
Instituto de Computación, Facultad de Ingenieŕıa

Universidad de la República

Montevideo, Uruguay

TESIS DE MAESTRÍA
EN INFORMÁTICA

Energy-aware scheduling in
heterogeneous computing systems

Santiago Iturriaga

siturria@fing.edu.uy

Abril de 2013

Director Académico:

Sergio Nesmachnow, Universidad de la República.

Directores de Tesis:

Sergio Nesmachnow, Universidad de la República.
Bernabé Dorronsoro, Universidad de Lille.

Tribunal:

Dr. Franco Robledo, Universidad de la República, presidente.
Dr. Esteban Mocskos, Universidad de Buenos Aires.

Dr. Francisco Luna, Universidad Carlos III de Madrid, revisor.

Energy-aware scheduling in heterogeneous computing systems

Iturriaga, Santiago

ISSN 0797-6410

Tesis de Maestŕıa en Informática

PEDECIBA

Instituto de Computación - Facultad de Ingenieŕıa

Universidad de la República

Montevideo, Uruguay, abril de 2013

Energy aware scheduling in
heterogeneous computing systems

Abstract

In the last decade, the grid computing systems emerged as useful pro-
vider of the computing power required for solving complex problems.
The classic formulation of the scheduling problem in heterogeneous com-
puting systems is NP-hard, thus approximation techniques are required
for solving real-world scenarios of this problem. This thesis tackles the
problem of scheduling tasks in a heterogeneous computing environment
in reduced execution times, considering the schedule length and the
total energy consumption as the optimization objectives. An efficient
multithreading local search algorithm for solving the multi-objective
scheduling problem in heterogeneous computing systems, named ME-
MLS, is presented. The proposed method follows a fully multi-objective
approach, applying a Pareto-based dominance search that is executed
in parallel by using several threads. The experimental analysis demon-
strates that the new multithreading algorithm outperforms a set of fast
and accurate two-phase deterministic heuristics based on the traditional
MinMin. The new ME-MLS method is able to achieve significant im-
provements in both makespan and energy consumption objectives in
reduced execution times for a large set of testbed instances, while ex-
hibiting very good scalability. The ME-MLS was evaluated solving in-
stances comprised of up to 2048 tasks and 64 machines. In order to
scale the dimension of the problem instances even further and tackle
large-sized problem instances, the Graphical Processing Unit (GPU)
architecture is considered. This line of future work has been initially
tackled with the gPALS: a hybrid CPU/GPU local search algorithm for
efficiently tackling a single-objective heterogeneous computing schedul-
ing problem. The gPALS shows very promising results, being able to
tackle instances of up to 32768 tasks and 1024 machines in reasonable
execution times.

Keywords: Metaheuristic algorithms, Scheduling, Heterogeneous com-
puting, Grid computing

ii

Planificación en sistemas
heterogéneos considerando

eficiencia energética

Resumen

En la última década, los sistemas de computación grid se han convertido
en útiles proveedores de la capacidad de cálculo necesaria para la resolu-
ción de problemas complejos. En su formulación clásica, el problema de
la planificación de tareas en sistemas heterogéneos es un problema NP-
dif́ıcil, por lo que se requieren técnicas de resolución aproximadas para
atacar instancias de tamaño realista de este problema. Esta tesis aborda
el problema de la planificación de tareas en sistemas heterogéneos, con-
siderando el largo de la planificación y el consumo energético como ob-
jetivos a optimizar. Para la resolución de este problema se propone un
algoritmo de búsqueda local eficiente y multihilo. El método propuesto
se trata de un enfoque plenamente multiobjetivo que consiste en la apli-
cación de una búsqueda basada en dominancia de Pareto que se ejecuta
en paralelo mediante el uso de varios hilos de ejecución. El análisis ex-
perimental demuestra que el algoritmo multithilado propuesto supera a
un conjunto de heuŕısticas deterministas rápidas y eficaces basadas en
el algoŕıtmo MinMin tradicional. El nuevo método, ME-MLS, es capaz
de lograr mejoras significativas tanto en el largo de la planificación y
como en consumo energético, en tiempos de ejecución reducidos para
un gran número de casos de prueba, mientras que exhibe una escalabili-
dad muy promisoria. El ME-MLS fue evaluado abordando instancias de
hasta 2048 tareas y 64 máquinas. Con el fin de aumentar la dimensión
de las instancias abordadas y hacer frente a instancias de gran tamaño,
se consideró la utilización de la arquitectura provista por las unidades
de procesamiento gráfico (GPU). Esta ĺınea de trabajo futuro ha sido
abordada inicialmente con el algoritmo gPALS: un algoritmo h́ıbrido
CPU/GPU de búsqueda local para la planificación de tareas en en sis-
temas heterogéneos considerando el largo de la planificación como único
objetivo. La evaluación del algoritmo gPALS ha mostrado resultados
muy prometedores, siendo capaz de abordar instancias de hasta 32768
tareas y 1024 máquinas en tiempos de ejecución razonables.

Palabras clave: Algoritmos metaheuŕısticos, Planificación de tareas,
Computación heterogénea, Computación grid

Contents

1 Introduction 1

2 Heterogeneous computing scheduling problem 7
2.1 Scheduling problems . 7
2.2 Heterogeneous computing systems . 8

2.2.1 Energy-aware heterogeneous computing systems 9
2.3 Energy-aware heterogeneous computing scheduling problem 9

2.3.1 Problem formulation . 10
2.3.2 Models for heterogeneous computing systems 12
2.3.3 Problem instances . 14

2.4 Algorithms for solving the heterogeneous computing scheduling problem . 16
2.4.1 Enumerative algorithms . 16
2.4.2 Linear programming based algorithms 16
2.4.3 List-scheduling algorithms . 17
2.4.4 Metaheuristic algorithms . 18

2.5 Summary . 19

3 Metaheuristic algorithms 21
3.1 Introduction . 21
3.2 Stochastic search . 22
3.3 Local search methods . 23

3.3.1 An example of a local search based metaheuristic: the ILS algorithm 25
3.4 Multi-objective optimization . 26

3.4.1 Evaluation metrics for multi-objective optimization 28
3.4.2 An example of a multi-objective metaheuristic solver: the PAES

algorithm . 31
3.5 Summary . 32

4 Related work 33
4.1 Single-objective energy-aware scheduling 33
4.2 Multi-objective energy-aware scheduling using a single-objective approach 35
4.3 True multi-objective energy-aware scheduling 39
4.4 Summary . 41

5 ME-MLS: a true multi-objective algorithm for the ME-HCSP 43
5.1 Algorithm design . 43
5.2 Problem encoding . 46
5.3 Population initialization . 47

iii

iv CONTENTS

5.4 Archiving algorithm . 48
5.4.1 Fast Greedy Ad-hoc Archiving (FGAA) 49
5.4.2 Adaptive Grid Archiving (AGA) 49

5.5 Embedded Local search . 51
5.5.1 The general schema of the PALS algorithm 51
5.5.2 rPALS algorithm for the HCSP . 52
5.5.3 ME-rPALS algorithm for the ME-HCSP 54

5.6 Implementation details . 57
5.7 Summary . 57

6 Experimental analysis 59
6.1 Execution platform . 59
6.2 Problem instances . 59
6.3 Methods for baseline comparison . 60

6.3.1 Linear programming relaxation . 60
6.3.2 List-scheduling heuristics . 62

6.4 Parameter setting experiments . 64
6.5 Pseudo-random number generator analysis 64
6.6 Results and discussion . 66

6.6.1 Solution quality . 66
6.6.2 Multi-objective optimization metrics 72
6.6.3 Summary . 77

6.7 Computational efficiency analysis . 80
6.8 Summary . 81

7 Scheduling very large problem scenarios 83
7.1 GPU computing . 83
7.2 gPALS: a rPALS-based GPU scheduler for the HCSP 85

7.2.1 Initialization heuristics . 88
7.3 Experimental analysis of the gPALS algorithm 89

7.3.1 HCSP instances . 89
7.3.2 Implementation details and execution platform 89
7.3.3 Results and discussion . 89

7.4 Summary . 98

8 Conclusions and future work 99
8.1 Conclusions . 99
8.2 Future work . 101

A Publications by the author 103

Bibliography 104

List of Figures

2.1 Scheduling function example of 10 tasks assigned to 4 machines. 11

3.1 Pareto front representation. 27

3.2 Pareto front examples. 28

3.3 Distances computed for the IGD metric (d(v, PF)). 29

3.4 Distances to the extremes dem and distances between consecutive solutions
dv, computed for the Spread metric. 30

3.5 Union of all the hypercubes computed for the Hypervolume metric. 31

5.1 Diagram of the ME-MLS algorithm. 45

5.2 Encodings for in-memory representation of HCSP schedules. 47

5.3 Example of an AGA grid for a bi-objective minimization problem. 51

6.1 Performance analysis of the ME-MLS using the rand r function. 65

6.2 Average execution times of the ME-MLS algorithm comparing different
PRNG using different number of parallel threads. 66

6.3 Average ME-MLS improvements over the MinMin-based heuristics. 71

6.4 Approximated Pareto front computed by the ME-MLS algorithms after
30 independent executions solving two instances of dimension 1024×32. . 78

6.5 Approximated Pareto front computed by the ME-MLS algorithms after
30 independent executions solving two instances of dimension 2048×64. . 79

6.6 Speedup for the two variants of the ME-MLS algorithm. 81

7.1 CUDA architecture. 84

7.2 CUDA memory model. 85

7.3 Schema of the gPALS algorithm. 86

7.4 Contribution of each stage to the execution time for each gPALS version
and each problem dimension studied. 91

7.5 Evolution of the makespan value during a typical execution of gPALSMCT

and gPALSMMDD for a 8192×256 dimension instance. The makespan
computed by MinMin is shown as a reference baseline for the comparison. 92

7.6 Evolution of the makespan value during a typical execution of gPALSMCT

and gPALSMMDD for a 16384×512 dimension instance. The makespan
computed by MinMin is shown as a reference baseline for the comparison. 94

7.7 Average makespan improvements over MinMin for the two versions of
gPALS. 94

7.8 Average execution time improvements of gPALSMCT and gPALSMMDD

with respect to MinMin. 96

v

List of Tables

2.1 Hardware considered in the EMC model 15

4.1 Summary of the reviewed related works. 42

6.1 Execution times of the ME-MLS algorithm comparing different PRNG
using different number of parallel threads. 65

6.2 ME-MLS makespan and energy consumption improvements over the best
MinMin-based heuristic and lower bound relative quality gap for the 512×16
dimension instances. 68

6.3 ME-MLS makespan and energy consumption improvements over the best
MinMin-based heuristic and lower bound relative quality gap for the 1024×32
dimension instances. 69

6.4 ME-MLS makespan and energy consumption improvements over the best
MinMin-based heuristic and lower bound relative quality gap for the 2048×64
dimension instances. 70

6.5 ME-MLS makespan improvements summary over the best MinMin-based
heuristic. 71

6.6 ME-MLS energy consumption improvements summary over the best MinMin-
based heuristic. 71

6.7 ME-MLS multi-objective metrics for the 512×16 dimension instances. . . 74

6.8 ME-MLS multi-objective metrics for the 1024×32 dimension instances. . . 75

6.9 ME-MLS multi-objective metrics for the 2048×64 dimension instances. . . 76

6.10 Summary of ME-MLS multi-objective quality metrics. 77

6.11 Summary of ME-MLS multi-objective diversity metrics. 77

6.12 Speedup values for the ME-MLSFGAA and ME-MLSAGA algorithms. . . . 80

7.1 Makespan and execution time comparison of MinMin and both gPALS
versions for the 8192×256 dimension instances. 92

7.2 Makespan and execution time comparison of MinMin and both gPALS
versions for the 16384×512 and 32768×1024 dimension instances. 93

7.3 Wall-clock time (in seconds) required for each gPALS algorithm to com-
pute a schedule with the same makespan than the schedule computed by
MinMin, and compared with the MinMin average execution time. 95

7.4 Average makespan improvements and acceleration over MinMin for both
gPALS versions. 97

7.5 Average makespan improvements over MinMin comparison of both gPALS
versions against the cellular EA by Pinel et al. (2013). 97

vii

viii LIST OF TABLES

7.6 Average execution time comparison of both gPALS versions against the
cellular EA by Pinel et al. (2013). 97

List of Algorithms

1 General framework for the stochastic search method 23
2 Pseudo-code of a local search algorithm 24
3 Pseudo-code of the ILS algorithm . 25
4 Pseudo-code of the PAES algorithm . 31
5 Pseudo-code of each thread in the ME-MLS algorithm 44
6 Pseudo-code of the generic Pareto-based TestAddToArchive() function . . 46
7 Pseudo-code of the MCT heuristic . 48
8 Pseudo-code of the rMCT heuristic . 48
9 Pseudo-code of the AGA algorithm . 50
10 Pseudo-code of the PALS algorithm . 52
11 Pseudo-code of the rPALS algorithm for the HCSP 53
12 Pseudo-code of the ME-MLS local search algorithm 55
13 Linear programming relaxation model of the ME-HCSP for minimizing

the makespan objective function . 61
14 Linear programming relaxation model of the ME-HCSP for minimizing

the total energy consumption objective function 61
15 Pseudo-code of the MinMin heuristic . 63
16 Pseudo-code of the gPALS algorithm for the HSCP 85
17 Pseudo-code of the neighborhood search for the GPU 87
18 Pseudo-code of each thread of the pMinMin/DD heuristic 88

ix

Chapter 1

Introduction

Heterogeneous computing (HC) systems usually comprise a large number of heteroge-
neous computing resources which are able to work cooperatively. In the last decade, het-
erogeneous computing systems have emerged as useful providers of the computing power
needed to solve complex problems arising in many areas of application. Since their emer-
gence, heterogeneous computing systems have become larger and larger mainly because
of the ever demanding scientific community and the information technology industry, and
thanks to the fast increase of computing power and the rapid development of high-speed
networking. Despite continued technological improvements, computing resources fail to
keep up with demand, specially with the scientific community demand. No matter the
state-of-the-art of the computing technology, the scientific community always demands
more computing power in order to perform bigger simulations, obtain more precise re-
sults, or model wider realities. In this regard, heterogeneous computing systems provide
a mean to tackle problems of increased complexity by enabling a large-scale collaboration
of distributed computing resources (Foster and Kesselman, 2003).

In current distributed HC systems, efficiently scheduling tasks to be executed on the
available resources of the computing infrastructure is a key problem in order to make the
most of the available computing power. The goal of the scheduling problem is to assign
tasks to computing resources satisfying some specific efficiency criteria, usually related
to the total execution time of a bunch of tasks, but frequently also considering other
relevant objectives such as resource utilization, energy consumption, quality of service,
etc.

Traditional scheduling problems are NP-hard (Garey and Johnson, 1979), thus classic
exact methods are not useful in practice to solve large instances of such problems. Many
deterministic scheduling heuristics have been proposed, but usually they do not scale
appropriately when solving large dimension instances. This motivated the use of non-
deterministic heuristics and metaheuristics in order to tackle scheduling problems. These
non-deterministic approaches have proven to be able to compute efficient schedules in
reasonable execution time for a wide range of dimension instances (Nesmachnow et al.,
2010; Pinel et al., 2013; Xhafa et al., 2008b).

In recent years, energy consumption has become a major concern in large data centers.
Electricity costs have increased so much that engineers from Google’s data centers warned
that if power consumption continues to grow, electricity costs would overtake hardware
costs by a large margin (Barroso, 2005).

1

2 Introduction

Google is not the only one concerned by electricity costs, according to Amazon (Hamil-
ton, 2009) the energy-related costs represent approximately 42% of the total budget in
a computing center when considering a 15 years amortization; 19% of the energy-related
budget is dedicated to direct computing power consumption, and the remaining 23% of
the energy-related budget is dedicated to indirect cooling-related infrastructure. Pro-
cessors are the main consumers of energy in such systems, but they also offer the most
flexible energy management mechanisms, by applying dynamic voltage scaling (DVS),
dynamic power management, slack sharing and reclamation, etc. (Khan and Ahmad,
2009; Kim et al., 2007; Zhu et al., 2003). Reducing processors consumption is a great
challenge, and many researchers currently focus on the development of energy-aware
scheduling algorithms for HC systems (Lee and Zomaya, 2009).

This thesis tackles the problem of scheduling tasks in HC environments considering
the schedule length and the total energy consumption as the optimization objectives.
A highly efficient multithreading population-based local search method (ME-MLS) is
proposed to find a set of accurate trade-off solutions for the proposed multi-objective
scheduling problem. ME-MLS is a population-based method that follows a fully multi-
objective approach; it does not optimize an aggregated function of the problem objectives,
but uses a Pareto-based dominance analysis instead. The two most critical components
of ME-MLS are its embedded local search procedure, and its archiving algorithm. The
local search procedure is responsible for improving the population of solutions main-
tained during the algorithm execution. On the other hand, the archiving algorithm is
responsible for choosing which of all the solutions computed by the local search are
worth maintaining during the algorithm execution. The ME-rPALS is the embedded
local search procedure proposed for the ME-MLS. The ME-rPALS was designed to be
an efficient non-deterministic local search heuristic for tackling combinatorial optimiza-
tion problems. As for the ME-MLS archiving algorithm, two different algorithms are
proposed to be used. The efficacy, efficiency, and scalability of the ME-MLS using each
of the proposed archiving algorithms were evaluated. Both variants are compared with
well-known deterministic heuristics over a large set of instances. The experimental results
show that ME-MLS is able to compute an adequate set of accurate trade-off schedules
in short execution times.

The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and
64 machines. One line of future work aims at using the GPU architecture for scaling
the dimension of the problem instances even further. The GPU architecture for general
purpose computing is an emerging technology which is able to provide the computing
power required for tackling very large problem instances. Taking advantage of the GPU
architecture, the gPALS algorithm was initially proposed. The gPALS algorithm is an
hybrid CPU/GPU local search method for tackling the problem of scheduling tasks in
HC environments considering only the schedule length as the optimization objective.
The efficacy, efficiency, and scalability of the proposed gPALS are also evaluated, but
tackling a much smaller set of HCSP instances. The gPALS is compared with well-known
deterministic heuristics and with the cellular EA proposed by Pinel et al. (2013). The
experimental results show that gPALS is able to compute accurate schedules and provide
very significant acceleration rates. These results present the GPU architecture as a very
promising architecture for tackling large-sized instances of the energy-aware scheduling
problem in heterogeneous computing systems.

3

The content of this thesis is structured as follows. The next chapter presents a brief
introduction to scheduling problems theory. It introduces heterogeneous computing sys-
tems and discusses why energy consumption is such a critical issue. It presents the
heterogeneous computing scheduling problem in energy-aware environments, it presents
some computing model for the problem, and a set of techniques for tackling it. Chapter 3
introduces metaheuristic and non-deterministic algorithms for solving NP-hard optimiza-
tion problems. The fundamentals of multi-objective optimization are introduced, along
with a set of metrics for measuring multi-objective optimization results. Finally, two lo-
cal search methods are presented, one for solving single-objective optimization problems,
and the other for solving multi-objective optimization problems. Chapter 4 reviews and
comments previous works that have recently tackled energy-aware scheduling problems.
The reviewed works are organized according to whether they tackle a single-objective
optimization problem, a multi-objective optimization problem using a single-objective
approach, or a true multi-objective optimization problem. Chapter 5 describes the ME-
MLS algorithm design details, the solution encoding, the archiving algorithms, and the
embedded local search design. Chapter 6 presents the experimental analysis and the
discussion of the reported results for the ME-MLS algorithm. It presents the execution
platform, the problem instances, the methods for computing a baseline reference, the pa-
rameter setting experiments results, the numerical results of the ME-MLS algorithm and
the comparison with the baseline reference methods. Chapter 7 addresses the problem of
scheduling very large problem scenarios. It introduces the GPU computing architecture,
and presents the gPALS, a hybrid CPU/GPU local search algorithm. An experimental
analysis is performed on gPALS for evaluating its numerical efficiency and its parallel
performance. Finally, Chapter 8 presents the conclusions and future work.

4 Introduction

Publications issued from this thesis work
The next list presents a brief summary of the publications issued from the research
performed during this thesis.

� S. Iturriaga, S. Nesmachnow, and B. Dorronsoro. A Multithreading Local Search
For Multiobjective Energy-Aware Scheduling In Heterogeneous Computing Sys-
tems. In Proceedings of the 26th European Conference on Modelling and Simulation
(ECMS), pages 497–503, Koblenz, Germany, 2012a. ISBN 978-0-9564944-4-3

This article introduces an efficient multithreading local search algorithm for solving
the multiobjective scheduling problem in heterogeneous computing systems con-
sidering the makespan and energy consumption objectives. The proposed method
follows a fully multiobjective approach using a Pareto-based dominance search
executed in parallel. The experimental analysis demonstrates that the new multi-
threading algorithm outperforms a set of deterministic heuristics based on Min-Min.
The new method is able to achieve significant improvements in both objectives in
reduced execution times for a broad set of testbed instances.

� S. Iturriaga, S. Nesmachnow, F. Luna, and E. Alba. A parallel online GPU
scheduler for large heterogeneous computing systems. In Proceedings of the 5th
High-Performance Computing Latin America Symposium (HPCLatAm), JAIIO ’12,
Buenos Aires, Argentina, 2012b

This work presents a parallel implementation on GPU for a stochastic local search
method to efficiently solve the task scheduling problem in heterogeneous computing
environments. The research community has been searching for accurate schedulers
for heterogeneous computing systems, able to run in reduced times. The parallel
stochastic search proposed in this work is based on simple operators in order to keep
the computational complexity as low as possible, thus allowing large scheduling
instances to be efficiently tackled. The experimental analysis demonstrates that
the parallel stochastic local search method on GPU is able to compute accurate
suboptimal schedules in significantly shorter execution times than state-of-the-art
schedulers.

� S. Iturriaga, S. Nesmachnow, and C. Tutté. Metaheuristics for multiobjective
energy-aware scheduling in heterogeneous computing systems. In EU/Metaheuristics
Meeting Workshop (EU/ME), Copenhaguen, Denmark, 2012c

This article reports the advances on applying metaheuristic algorithms to solve the
scheduling problem that proposes the simultaneus optimization of makespan and
energy consumption in HC systems. The proposed methods include Multithreading
Local Search (MLS), a highly efficient multiobjective local search; and two well-
known multiobjective evolutionary algorithms (MOEAs), namely NSGA-II and
SPEA2. The three methods follow a fully multiobjective approach, since they
do not optimize an aggregated function of the problem objectives, but they use
Pareto-based dominance techniques in the optimization.

5

� S. Iturriaga, S. Nesmachnow, B. Dorronsoro, and P. Bouvry. Energy efficient
scheduling in heterogeneous systems with a parallel multiobjective local search.
Computing and Informatics Journal (CAI), 2013a. Accepted on November 2012,
to appear

This article introduces ME-MLS, an efficient multithreading local search algorithm
for solving the multiobjective scheduling problem in heterogeneous computing sys-
tems. We consider the minimization of both the makespan and energy consumption
objectives. The proposed method follows a fully multiobjective approach, apply-
ing a Pareto-based dominance search that is executed in parallel by using several
threads. The experimental analysis demonstrates that the new multithreading al-
gorithm outperforms a set of fast and accurate two-phases deterministic heuristics
based on the traditional MinMin. The new ME-MLS method is able to achieve
significant improvements in both makespan and energy consumption objectives in
reduced execution times for a large set of testbed instances, while exhibiting a near
linear speedup behavior when using up to 24 threads.

� S. Iturriaga, S. Nesmachnow, F. Luna, and E. Alba. A parallel local search in
CPU/GPU for scheduling independent tasks on large heterogeneous computing
systems. Journal of Parallel and Distributed Computing (JPDC), 2013b. Submitted
on January 2013, pending acceptance

This article presents the parallel implementation on CPU/GPU of two variants
of a stochastic local search method to efficiently solve the problem of schedul-
ing independent tasks in heterogeneous computing environments. The research
community has been searching for accurate schedulers for heterogeneous comput-
ing systems, able to execute in reduced times. The parallel stochastic search on
CPU/GPU proposed in this article is based on a set of simple operators in or-
der to keep the computational complexity as low as possible, thus allowing large
instances of the scheduling problem to be efficiently tackled. The experimental
analysis demonstrates that both versions of the parallel stochastic local search
method on CPU/GPU are able to compute accurate suboptimal schedules in sig-
nificantly shorter execution times than state-of-the-art schedulers. The proposed
methods also outperform a parallel evolutionary scheduler recently published in
the literature, in terms of both efficiency and solution quality.

� S. Iturriaga, P. Ruiz, S. Nesmachnow, B. Dorronsoro, and P. Bouvry. A Parallel
Multi-objective Local Search for AEDB Protocol Tuning. In Proceedings of the 16th
International Workshop on Nature Inspired Distributed Computing, in the 27th
IEEE/ACM International Parallel & Distributed Processing Symposium, Boston,
Massachusetts, USA, 2013c. Accepted on February 2013, to appear

This work presents a stochastic local search method for efficiently solve the schedul-
ing problem in heterogeneous computing environments. The research community
has been searching for accurate schedulers for heterogeneous computing systems,
able to perform in reduced times. The stochastic search proposed in this work is
based on simple operators in order to keep the computational complexity as low as
possible, thus allowing to efficiently tackle large scheduling instances. The experi-
mental analysis demonstrates that the new stochastic local search method is able
to compute accurate suboptimal schedules in significantly shorter execution times
than state-of-the-art schedulers.

Chapter 2

Heterogeneous computing
scheduling problem

This chapter introduces the reader to scheduling problems in general, and presents both
the single-objective heterogeneous computing scheduling problem (HCSP) and the bi-
objective makespan-energy heterogeneous computing scheduling problem (ME-HCSP).
Next, the scheduling problem formulation, the models for the HC system, and the prob-
lem instances for both HCSP versions are presented. In the final sections, different exact
and approximation methods for solving the HCSP are reviewed.

2.1 Scheduling problems

Scheduling problems are combinatorial optimization problems which consist in allocating
a limited amount of resources to some activities over a period of time. Activities may be
tasks in computing environments, flight routes in an airline, patients in a hospital, etc.
Resources may be machines to execute the tasks, airplanes to fly the routes, doctors to
attend the patients, etc. (?).

The resource-constrained project scheduling problem (RCPSP) (Garey and Johnson,
1979) is a very general scheduling problem that may be used to model many other
scheduling problems. In the RCPSP formulation there are n activities i = 1, ..., n and
m renewable resources j = 1, ...,m. Each resource j has a constant amount of Rj units
of resource available. Activity i requires pi units of time to be processed, and requires
rij units of resources from its assigned resource j. A resource j is called disjunctive if
Rj = 1, otherwise it is called cumulative. If resource j is disjunctive, only one activity
at a time can be processed in j. Precedence constraints are defined between activities
such that if v precedes u it is noted v → u, then task v must be completed before
u. The problem objective is to determine the resource allocation and the starting time
(Si) for every activity i = 1, ..., n in order to minimize the maximum completion time,
constrained by the available resource units and by the defined task precedences. The
maximum completion time (or makespan) is defined as the time spent since the first task
begins execution to the moment when the last task is completed. In the aforementioned
problem the makespan can be mathematically formulated as Cmax =

n
max
i=1
{Si + pi}.

According to Leung et al. (2004), there are many different properties which can be
used to characterize a scheduling problem. For instance, an algorithm may or may not
have complete knowledge of all the activities to be scheduled beforehand.

7

8 Heterogeneous computing scheduling problem

When the algorithm has complete knowledge of the activities to be scheduled, the
problem is classified as an offline scheduling problem. On the other hand, in an on-
line scheduling problem, activities dynamically appear over time, and known activities
must be scheduled without knowledge of any possible future activities. Furthermore,
in an online scheduling problem one may not know the complete characteristics of the
activities before processing one of them, e.g. the processing time of each activity may
be unknown to the scheduler. When the complete job characteristics are available as
inputs to the scheduling algorithm, the problem is said to be clairvoyant, otherwise the
problem is called non-clairvoyant. Clairvoyant scheduling problems usually arise in en-
vironments where activities cannot be preempted, that is, environments where activities
cannot be interrupted after their execution has begun. Batch scheduling problems, such
as manufacturing scheduling, are classic clairvoyant scheduling problems. On the other
hand, non-clairvoyant scheduling problems are usually present in preemptive scheduling
problems, where activities can be interrupted and displaced in favor of others activi-
ties. Non-clairvoyant scheduling problems arise in environments like task scheduling in
operating systems.

In order to standardize the notation, Graham et al. (1979) introduced a characteri-
zation scheme for scheduling problems which follows the α|β|γ form. In this notation,
the α field details the machine infrastructure, the β field specifies the job characteristics,
and the γ entry represents the optimization criterion. For example, a problem in which
the field α has a value of 1 represents a single machine infrastructure, when α equals P
denotes m parallel identical machines, α equals Q denotes m parallel uniform machines,
etc. The second field, the β field, specifies job characteristics such as precedences, re-
lease times, preemption, etc. Finally, the γ field stands for the objective function, e.g.:
Cmax for makespan, which measures the maximum completion time; Lmax for maximum
lateness, which measures the worst violation of the due dates;

∑
wjCj for total weighted

completion time, etc. (?)

Methods for solving scheduling problems depend on the computational complexity
of the particular problem. Most scheduling problems are NP-hard (Knust and Brucker,
2006), and as such, no known algorithm is capable of solving them in polynomial time.
Because of this, exact methods are not useful in realistic scheduling problems, requiring
the use of approximate solutions algorithms in order to solve this kind of problems in rea-
sonable time. Usual approximate solutions algorithms include polynomial time approxi-
mation schemes (Leung et al., 2004) and non-deterministic heuristic approaches (Pinedo,
2008). In this context, an algorithm is said to be c-competitive if in the worst case the
computed objective function value is at most a factor c away from the optimal schedule.

2.2 Heterogeneous computing systems

A heterogeneous computing (HC) system can be seen as a virtual computer comprised
of a set of distributed heterogeneous machines that contribute their individual compu-
tational power to the computational power of the aggregated system. An HC system
can be characterized by the following features (Kshemkalyani and Singhal, 2008): i) no
common physical clock is globally available in the system, showing the inherent asyn-
chrony amongst the processors; ii) no shared memory is available in the system requiring
a message-passing communication model; iii) the comprised machines are autonomous
and heterogeneous allowing them be loosely coupled in the way that having different

2.3 Energy-aware heterogeneous computing scheduling problem 9

speeds, running different operating systems, etc.; iv) the comprised machines are geo-
graphically separated, although it is not necessary for the machines to be connected via
a wide-area network.

Heterogeneous computing systems range from small clusters of workstations (COW)
networked using a local-area network (LAN), to huge computing grids comprising thou-
sands of processors distributed on many computing centers interconnected over a wide-
area network (WAN). In many application areas, heterogeneous computing systems have
become useful providers of the computing power needed for the execution of scientific
and high performance applications (Foster and Kesselman, 2003; Zhao et al., 2008).

Many difficulties arise when using a HC system, a crucial problem to tackle in HC
systems consists in scheduling the execution of the user submitted tasks in order to
efficiently use the system resources. The efficient utilization of system resources can be
defined in many different ways and can address many different objectives, it can account
for the tasks execution times, for the quality of service of the system, for the economic
profit, for the energy consumption, etc. (Buyya, 2002; Nesmachnow et al., 2010).

2.2.1 Energy-aware heterogeneous computing systems

In the last decade, the energy consumption in many computational systems has increased
considerably and has become an expensive resource, specially in large heterogeneous
computing systems (Fan et al., 2007). This increase in energy consumption is strongly
related with Moore’s law which states that the number of transistors that can be placed
on an integrated circuit doubles approximately every 18 months; transistors consume
energy, so more transistors imply more energy consumption. Furthermore, consumed
energy is transformed into heat, requiring bigger energy-consuming cooling systems to
maintain the computing systems at an operating temperature (?).

To deal with the aforementioned energy consumption problem, two different ap-
proaches to explicitly control the consumed energy have appeared in the literature. The
first one consists in powering down some machines of the HC system when the system
is lightly loaded (Orgerie et al., 2008). The second approach makes use of the Dynamic
Voltage Scaling (DVS), a technique originally proposed by Burd et al. (2000). DVS is
included on most modern microprocessors and allows them to run at variable speeds, re-
ducing their energy consumption when running at slower speeds. Including DVS control
in scheduling algorithms researchers have been able to lower the energy consumption of
the infrastructure while meeting the usability requirements (Kim et al., 2007; Lee and
Zomaya, 2009; von Laszewski et al., 2009). Both of the aforementioned energy-saving
techniques degrade the computing performance of a HC system.

2.3 Energy-aware heterogeneous computing scheduling
problem

The more general heterogeneous computing scheduling problem (HCSP) arises when given
a set of independent tasks, we want to execute them efficiently in a heterogeneous comput-
ing system (Nesmachnow et al., 2010). In the case of the makespan-energy heterogeneous
computing scheduling problem (ME-HCSP), the efficiency of the schedule is defined in
terms of the execution time of the tasks and the energy consumption of the system. The
ME-HCSP is generalization of the RCPSP (previously stated in Section 2.1).

10 Heterogeneous computing scheduling problem

2.3.1 Problem formulation

The ME-HCSP follows a non-preemptive offline model which assumes all tasks to be
known to the algorithm at scheduling time and assumes every task to be atomic, meaning
that a task cannot be interrupted once it began its execution. In the ME-HCSP all tasks
are independent, so there is no precedence requirements between tasks. The machines
are not identical, meaning that the execution time and the energy consumption required
to execute each task varies from one machine to another. Finally, the ME-HCSP follows
an unrelated machine model in which each machine can process each task at a different
speed. The unrelated machine model defines no relationship between the execution
time of a task and its executing machine, that is, a given machine mj may be faster
than another machine mk when executing some tasks, but mj may be slower than mk

for other tasks (i.e. the execution times are unrelated with respect to the executing
machine) (Nesmachnow et al., 2012b).

The formulation of the classic HCSP targets the minimization of the makespan metric
aiming to reduce the time required to execute a set of tasks (Nesmachnow et al., 2010).In
this work, we tackle the makespan-energy heterogeneous computing scheduling problem
(ME-HCSP), a variation of the classic HCSP in which the minimization of the makespan
metric and the minimization total energy consumption of the system are both optimized.

The mathematical model of ME-HCSP considers the following elements:

� A heterogeneous computing system is composed of a set of heterogeneous machines
P = {m1, . . . ,mM}, each machine performing at a certain processing speed and
energy consumption.

� A collection of tasks T = {t1, . . . , tN} to be executed on the system.

� An execution time function ET : T × P → R+, where ET (ti,mj) is the time
required to execute task ti on machine mj .

� An energy consumption function EC : T × P → R+, where EC(ti,mj) is the
energy required to execute task ti on machine mj .

� An idle energy consumption function ECidle : P → R+, being ECidle(mj) the
energy that machine mj consumes per time unit when it is in idle state.

� A scheduling function f : T → P , which states that task ti is to be executed by
machine mj only if f(ti) = mj .

The ME-HCSP aims at finding the scheduling function f that simultaneously min-
imizes the makespan (Cmax) and the total energy consumption (E). The total energy
consumption considers the energy consumed by the machines, both when executing tasks
and when in idle state. The makespan objective is defined in Equation 2.1 and the total
energy consumption is defined in Equation 2.2.

Cmax = max
mj∈P

Cj , with Cj =
∑
ti∈T :

f(ti)=mj

ET (ti,mj) (2.1)

E =
∑
ti∈T

EC(ti, f(ti)) +

 ∑
mj∈P

(Cmax − Cj)× ECidle(mj)

 (2.2)

2.3 Energy-aware heterogeneous computing scheduling problem 11

Figure 2.1: Scheduling function example of 10 tasks assigned to 4 machines.

Although the formulation of the problem does not explicitly defines it, a very impor-
tant characteristic of every scheduler algorithm which aims to tackle the HCSP or the
ME-HCSP, is its execution time. Any of these algorithms must be able to execute in
reduced time, because the goal of both problems is to minimize the execution time of
the tasks in the system, and the execution time of the scheduling algorithm is a time
overhead in the system. According to the reviewed works in the literature, an accepted
reasonable time for the execution of the scheduling algorithm is in the order of 90 sec-
onds or less (Ko lodziej et al., 2011; Nesmachnow et al., 2012b; Xhafa, 2007; Xhafa et al.,
2008a). This is usually regarded as an adequate time span for scheduling tasks in realistic
HC systems where tasks with execution times in the order of minutes, hours, and even
days, are submitted for execution.

Figure 2.1 is a Gantt-like chart example representing a scheduling function of 10
tasks assigned to 4 machines. Note that the execution order of the tasks assigned to a
given machine is not relevant, since neither the makespan nor total energy consumption
objective functions are affected by the task ordering.

Both the makespan and the total energy consumption depend on the time required
to execute the task ti in its assigned machine mj . Despite this, both energy consumption
and makespan objectives are in conflict in heterogeneous computing systems. To show
this, suppose a subset of machines P ′ ⊂ P consume less energy per time unit than
the rest of the machine (P \ P ′). In this scenario, if we aim to minimize the energy
consumption, clearly the best schedule would be to assign all the collection of tasks T
to be executed by the machines P ′. But in this schedule the makespan objective would
suffer because only a subset of the whole computing power of the system would used
for task processing. On the other hand, if we use the whole set of machines, the total
energy consumption will suffer because of the utilization of the machines that consume
the most energy. Hence, there is a conflict between both objectives.

In the aforementioned ME-HCSP formulation, no dependency constraints are defined
between tasks so all the tasks can be executed disregarding the execution order. This
kind of programs, known as independent tasks or bag of tasks, are frequent in e-Science
applications over heterogeneous computing systems. Some examples of this kind of ap-
plications are Single-Program Multiple-Data (SPMD) applications used for multimedia

12 Heterogeneous computing scheduling problem

processing, data mining, parallel domain decomposition of numerical models for physical
phenomena, etc. Furthermore, in the ME-HCSP formulation every task is sequential,
meaning each task requires only one computational resource to be successfully executed.

This scenario might seem too restrictive, nevertheless, the are several studies
which show that sequential independent tasks are widely used in grid computing sys-
tems (Christodoulopoulos et al., 2008; Iosup and Epema, 2011; Iosup et al., 2006), thus
the ME-HCSP faced in this work is relevant in realistic distributed heterogeneous com-
puting systems.

Just like the HCSP, the ME-HCSP follows an unrelated machine model which helps
to model the heterogeneity of the system. For example, the unrelated machine model can
model scenarios where there are some machines with slow input/output (I/O) access but
with fast computing (CPU) speed, and there are other machines with fast I/O access and
slow CPU speed. In these scenarios the first class of machines will execute I/O-bound
tasks much slower than the second class of machines, but they will execute CPU-bound
tasks much faster than the second class of machines. This machine dependent task
execution time can only be modeled by using an unrelated machine model.

Using the 3-field notation from Graham et al. (1979), the ME-HCSP is denoted
R||(Cmax, E) representing a scheduling problem with m parallel unrelated machines, an
independent collection of tasks with no special characteristics, and two simultaneous
objective function (makespan and total energy consumption).

It was shown that R||Cmax is NP-hard in the strong sense (Leung et al., 2004). Since
R||Cmax is clearly reducible to R||(Cmax, E); then R||(Cmax, E) must be NP-hard in the
strong sense too.

2.3.2 Models for heterogeneous computing systems

Two different models were considered in this work, one for modeling HCSP scenarios and
one for modeling the ME-HCSP scenarios. The first one is the well known expected time
to compute (ETC) model for the HCSP introduced by Ali et al. (2000), and the second
is the energy consumption in multi-core computers (EMC) model for the ME-HCSP
proposed by Nesmachnow et al. (2012a).

The ETC model has been widely used by the research community when facing task
scheduling problems (Ucar et al., 2006; Xhafa and Abraham, 2010). The model defines
an unrelated estimation model for the execution time of a collection of tasks in a HC
system. It is assumed that an estimation of the computational requirements of each task
exists, and the computing speed of each resource in the HC system is known. This data
is stored in an ETC matrix of size number of tasks by number of machines (T × P).
Each position ETCij in the matrix details the expected time to compute the task ti in
the machine mj .

Each problem scenario in the ETC model is classified according to its dimension,
machine heterogeneity, task heterogeneity, and consistency. The model dimension defines
the number of the tasks to be scheduled and the number of machines available in the
system, the dimension is specified as num. of tasks × num. of machines (e.g. 512× 16,
1024× 32, etc.). Machine heterogeneity evaluates the variation of execution times for a
given task across the HC resources. A system with similar computing resources has low
machine heterogeneity, while high machine heterogeneity represents HC systems with
computing resources of very different computing power. Task heterogeneity represents
the variation of the tasks execution times for a given machine.

2.3 Energy-aware heterogeneous computing scheduling problem 13

In a high task heterogeneity scenario, different types of applications are submitted to
execution, from simple programs to complex tasks which require large CPU times to be
performed. On the other hand, low task heterogeneity models those scenarios where the
tasks computational requirements, and thus their execution times, are similar for a given
machine. Consistency represents the fact that some machines with special characteristics
may be more adequate to execute some jobs than others. In a consistent ETC scenario,
whenever a given machine mj executes any task ti faster than other machine mk, then
machine mj executes all tasks faster than machine mk. This corresponds to an ideal case
where the execution time of each task is mainly determined by the computational power
of each machine, and no other machine characteristics (such as local storage access times)
or external factors (such as networking connectivity speed) may affect the task execution
time. An inconsistent ETC scenario lacks of structure among the computing demands of
tasks and the computing power of machines.In this scenario, a machine mj may be faster
than another machine mk when executing some tasks, but mj may be slower than mk

for other tasks. This category represents the most generic scenario for a distributed HC
infrastructure that receives many kinds of tasks. Finally, the last consistency category
is the one of the semi-consistent ETC scenarios, this category model those inconsistent
systems that include a consistent subsystem.

The second considered model, the EMC model, was proposed by Nesmachnow et al.
(2012a). The EMC is a novel model for multi-core energy-aware HC systems which
considers both the computing time and the energy consumption, hence it is very suitable
for modeling the ME-HCSP. The model tackles two important shortcomings of previously
defined methods: (a) it accounts for the energy consumption in the system, and (b) it
models multi-core machines, a technology which nowadays is present in almost every
computing system.

The EMC model separately models the computing resources (or machines) of the HC
system, and the task workload (or just tasks). Each machine in the model is represented
by the following attributes: i) computing power (op) which represents the number of
operations a machine is able to compute in a time unit, defined by taking into account the
op value is reported by the SSJ benchmark from the Standard Performance Evaluation
Corporation (SPEC); ii) the number of processing cores (cores) of a given machine which
is the number of parallel processing cores available in that machine; iii) the minimum
energy consumption (Eidle) which is the energy consumption of a machine each time unit
when the machine is idle; and iv) the maximum energy consumption (Emax) which is the
energy consumption of a machine each time unit when the machine is processing a task.

Two methods are proposed for defining execution time requirements of a task in a
machine, the related and the unrelated method. Both methods define each task to re-
quire a given fixed number of operations (TO(ti)). The related method simplifies some
heterogeneities in the system and defines the execution time of a task ti to be directly pro-
portional to the computing power of the machine mj in which it is executed, ET (ti,mj) =
TO(ti)/[op(mj)/cores(mj)]. On the other hand, the unrelated method includes an ad-
ditional machine-specific cost deviation (AO(ti,mj)) which represents external overhead
affecting the machine (such as networking access overhead, memory limitations, etc.).
Considering this external factors, the unrelated method defines the execution time of a
task ti in a machine mj as ET (ti,mj) = [TO(ti) +AO(ti,mj)]/[op(mj)/cores(mj)].

Task workload scenarios are classified in three different heterogeneity categories, being
low heterogeneity, medium heterogeneity, and high heterogeneity.

14 Heterogeneous computing scheduling problem

Instead of synthetically generating the machine scenarios, the EMC model proposes
the generation of the scenarios based on a list of surveyed hardware which includes 64
nowadays CPUs. Table 2.1 describes the surveyed hardware.

Both the ETC model and EMC model assume the availability of complete knowledge
regarding the execution time of the tasks in the HC system. Unfortunately, it is not
practical to empirically determine the execution time of each task in each machine in a
HC system hence estimation methods are needed in order to approximate the different
execution times of a given task in the HC system. In this regard, studies have shown that
tasks execution time prediction techniques present accurate results which can be used as
inputs of a HC system scheduling algorithm (Bohlouli and Analoui, 2008; Glasner and
Volkert, 2009; Li et al., 2004; Seneviratne and Levy, 2011).

2.3.3 Problem instances

Ali et al. (2000) introduced the ETC model and proposed two different methods for
generating ETC problem scenarios, however no standard set of scenarios for the HCSP
were provided in his work. Later, Braun et al. (2001), using the ETC model introduced
by Ali et al. (2000), did generate some scenarios for the HCSP which where used in many
related works (Aggarwal et al., 2005; Ko lodziej et al., 2011; Ritchie and Levine, 2003;
Xhafa et al., 2008b). The set of scenarios generated by Braun et al. (2001) comprise 12
scenarios with every possible combination of task heterogeneity, machine heterogeneity,
and consistency, and with 512 tasks and 16 machines each scenario (dimension 512×16).
However, in the last decade, HC systems have considerably grown in size (Agarwal et al.,
2007; Hey and Trefethen, 2002; Jones, 2005; Shiers, 2007; Wilkins-Diehr et al., 2008),
and the benchmark instances generated by Braun et al. (2001) no longer model real-
sized scenarios. Because of this, Nesmachnow et al. (2010) generated an updated set
of benchmarking scenarios for the HCSP ranging from small sized HC system scenarios
including dimensions up to 1024×32; medium sized HC system scenarios with dimensions
up to 4096×128; and large sized HC system scenarios with dimensions up to 8192×256.

Nesmachnow et al. (2012a) also generated a set of EMC scenarios for the ME-HCSP.
In their work, Nesmachnow et al. (2012a) provide a set of scenarios with dimensions of
512×16, 1024×32, and 2048×64. A total of 20 machine scenarios and 40 task workloads
scenarios are provided for each scenario dimension, totaling a number of 800 ME-HCSP
different scenarios for each dimension.

2.3 Energy-aware heterogeneous computing scheduling problem 15

Table 2.1: Hardware considered in the EMC model

processor GHz cores op Eidle (W) Emax (W) op/Watt

1 AMD Opteron 2216 HE 2.4 2 47927 82 138 101.5
2 AMD Opteron 2356 2.3 4 122114 79.3 150.3 521.5
3 AMD Opteron 2376 HE 2.3 4 173163 59.5 105 1044
4 AMD Opteron 2377 EE 2.3 4 171052 36.6 86 1379
5 AMD Opteron 2380 2.5 4 154045 69 134.5 731
6 AMD Opteron 2382 2.6 4 165629 63.5 129 851
7 AMD Opteron 2384 2.7 4 169068 68.5 131.6 834.5
8 AMD Opteron 2419 EE 1.8 6 203477 37.3 89 1614
9 AMD Opteron 2425 HE 2.1 6 231108 40.2 109 1532

10 AMD Opteron 2435 2.6 6 256780 61 129.5 1350.5
11 AMD Opteron 4164 EE 1.8 6 211874 30.7 67.8 2043
12 AMD Opteron 6168 1.9 12 416178 48 131 2210
13 AMD Opteron 6174 2.2 12 459729 40.5 134.7 2481.1
14 AMD Opteron 6176 2.3 12 469103 42.8 140.7 2452.3
15 AMD Opteron 6262 HE 1.6 16 396768 35.2 106.5 2618
16 AMD Opteron 6276 2.3 16 570390 35.8 152.8 2868.3
17 AMD Opteron 8376 HE 2.3 4 153377 58 105.7 938.3
18 Intel Core i3-540 3.07 2 136634 25 61.7 1556
19 Intel Core i7 610E 2.53 2 126976 20.8 47.4 1856
20 Intel Pentium D 930 3 2 52303 105 169 190
21 Intel X3350 2.67 4 173021 68.9 119 913
22 Intel Xeon 3040 1.86 2 54479 86 117 268
23 Intel Xeon 3075 2.66 2 98472 93.7 135 431
24 Intel Xeon 5160 3 2 82084 101.8 151.5 328
25 Intel Xeon 7020 2.66 2 21521 130 208.3 61.1
26 Intel Xeon 7110M 2.6 2 37185 143.8 183 114
27 Intel Xeon E3110 3 2 118486 75.2 117 605
28 Intel Xeon E5345 2.33 4 119239 114 170.8 413
29 Intel Xeon E7330 2.4 4 126597 104.5 156.8 489
30 Intel Xeon L3360 2.83 4 183767 48.7 95 1253
31 Intel Xeon L5335 2 4 111872 107.3 146 443
32 Intel Xeon 3070 2.67 2 78928 78.8 120 405
33 Intel Xeon 5160 3 2 79576 86 129 382
34 Intel Xeon E3-1220 3.1 4 329862 22.4 92.8 3026
35 Intel Xeon E3-1260L 2.4 4 314438 17.8 55.7 4327.5
36 Intel Xeon E3-1270 3.4 4 394356 21.4 102 3265
37 Intel Xeon E3-1280 3.5 4 412077 30.9 106.2 3214
38 Intel Xeon E5420 2.5 4 143516 77.5 130 681
39 Intel Xeon E5440 2.83 4 150979 76.9 131.8 709
40 Intel Xeon E5462 2.8 4 161999 65 126 854
41 Intel Xeon E5472 3 4 137497 92.7 160.3 551.3
42 Intel Xeon E5540 2.53 4 275475 34.5 110.3 1807.5
43 Intel Xeon E7-4870 2.4 10 556330 105.8 209.3 1816
44 Intel Xeon E7-8870 2.4 10 602771 126.5 246.8 1586
45 Intel Xeon L3360 2.83 4 199707 55.2 101.9 1255.6
46 Intel Xeon L5335 2 4 100845 93.5 130 446
47 Intel Xeon L5408 2.13 4 121036 104.2 136 505
48 Intel Xeon L5410 2.33 4 144002 64.1 105 838
49 Intel Xeon L5420 2.5 4 138462 63.3 105.1 835.1
50 Intel Xeon L5430 2.67 4 152533 68.9 108.8 870.9
51 Intel Xeon L5520 2.26 4 228603 31.8 89.5 1791.5
52 Intel Xeon L5530 2.4 4 251057 32.3 89.5 1981
53 Intel Xeon L5630 2.13 4 226022 30.4 69 2118
54 Intel Xeon L5640 2.27 6 318441 35.7 96.1 2562.6
55 Intel Xeon L7345 1.86 4 89881 67.8 96.8 546
56 Intel Xeon X3220 2.4 4 143742 79.8 132 667
57 Intel Xeon X3360 2.83 4 188173 59.6 118.5 1343.8
58 Intel Xeon X3470 2.93 4 307615 38.2 120 2051.2
59 Intel Xeon X3480 3.07 4 325650 38.3 121.5 1912.9
60 Intel Xeon X5272 3.4 2 104222 93 140 450
61 Intel Xeon X5570 2.93 4 280253 41.2 122.8 1873.8
62 Intel Xeon X5670 2.93 6 443655 37.2 126.1 2656.4
63 Intel Xeon X5675 3.07 6 459263 59.9 150.4 2426.2
64 Intel Xeon X7560 2.27 8 461606 135.6 241.5 1239.6

16 Heterogeneous computing scheduling problem

2.4 Algorithms for solving the heterogeneous computing
scheduling problem

Scheduling independent non-preemptive jobs onto parallel machines to minimize the
makespan is one of the most tackled problems in scheduling theory. The aforementioned
problem is already strongly NP-hard when the jobs are to be scheduled in m identical
parallel machines (Leung et al., 2004), P ||Cmax in Graham et al. (1979) notation, hence
its not feasible to compute exact solutions for practical problem scenarios.

Some algorithms and techniques available in the literature for solving scheduling
related problems are presented in the following sections.

It is important to note that most of the following methods tackle the HCSP, and
not the ME-HCSP. This is because the classic version of the problem do not considers
energy consumption as an objective. In fact, the study of the ME-HCSP is new, and this
thesis is a significant contribution to the development and improvement of energy-saving
mechanism in HC systems.

2.4.1 Enumerative algorithms

Enumerative algorithms find exact solutions through enumerative search. Enumerative
search does not imply brute force search; usually enumerative algorithms include some
elimination rules in order to prune the search space and reduce the computational cost
of the algorithm. A number of enumerative algorithms were proposed for solving the
HCSP problem.

A brand and bound algorithm based on surrogate relaxation and duality was proposed
by van de Velde (1993) for the HCSP solving dimensions up to 60×20 in about 5 minutes
execution time. Martello et al. (1997) also proposed a branch and bound algorithm for
the HCSP solving scenarios with dimensions up to 200×5. In a more recent work, Salem
et al. (2000) also designed a branch and bound algorithm to solve HCSP scenarios with
dimension up to 40× 8 in reasonable time.

2.4.2 Linear programming based algorithms

Any NP-hard combinatorial optimization problem can be seen as an easy-to-solve prob-
lem complicated by a number of nasty side constraints (van de Velde, 1993). A candidate
strategy for solving NP-hard problems is to relax those nasty side constraints and tackle
the easier to solve resulting relaxed problem. A common relaxation in MILP prob-
lems consists in applying a linear programming relaxation which consists in replacing
the integrality constraints with weaker non-integer conditions so the resulting linear pro-
gramming (LP) problem is solvable in polynomial time. This way, near-optimal solutions
for the HCSP problem can be computed by rounding optimal LP relaxations.

Lenstra et al. (1990) proposed a polynomial time 2-competitive linear programming
relaxation based algorithm, and further shows that there is no approximation algorithm
better than 3/2-competitive for the HCSP (R||Cmax). The previous approach was ex-
tended by Shmoys and Tardos (1993) introducing an improved rounding technique and
showing that there is a polynomial time 2-competitive approximation algorithm to si-
multaneously minimize the weighted completion time sum and the makespan objectives.

2.4 Algorithms for solving the heterogeneous computing scheduling problem 17

2.4.3 List-scheduling algorithms

Several polynomial time approximation heuristics have been proposed for solving the
HCSP. One of the most used family of such methods is the one of list-scheduling heuristics
which can be characterized as a class of constructive heuristics (Kwok and Ahmad, 1999).
Constructive heuristics generate solutions from scratch by adding predefined solution
components to an initially empty solution. This is done until a solution is complete or
some other stopping criteria is satisfied (Blum and Roli, 2008). List-scheduling methods
work by assigning priorities to tasks based on a particular criteria, sorting the list of
tasks by priority and assigning each task to a machine in decreasing order until all tasks
are assigned. There are many list-scheduling heuristics devised to solve the HCSP, some
of them are detailed next.

� Minimum Completion Time (MCT) considers the set of tasks sorted in an arbitrary
order. Then, it assigns each task to the machine with the minimum execution time
for that task (Braun et al., 2001).

� MinMin greedily picks the task that can be completed the soonest. The method
starts with a set U of all unmapped tasks, calculates the MCT for each task in
U for each machine, and assigns the task with the minimum overall MCT to the
machine that executes it faster. The mapped task is removed from U , and the
process is repeated until all tasks are mapped (Ibarra and Kim, 1977).

� MaxMin is very similar to MinMin. The method starts with a set U of all unmapped
tasks, calculates the MCT for each task in U for each machine, and assigns the
task with the maximum overall MCT to the machine that executes it faster. The
mapped task is removed from U , and the process is repeated until all tasks are
mapped (Ibarra and Kim, 1977).

� Duplex is a combination of the MinMin and MaxMin heuristics. The Duplex
heuristic performs both MinMin and MaxMin heuristics, and then uses the best
solution (Freund et al., 1998).

� Sufferage identifies the task that, if not assigned to a certain host, will suffer the
most. The Sufferage value is computed as the difference between the best MCT
of the task and its second-best MCT, and this method gives precedence to those
tasks with high Sufferage value. Then, it assigns them to the machines that can
complete these tasks at the earliest time (Maheswaran et al., 1999).

� Longest Job to Fastest Resource-Shortest Job to Fastest Resource (LJFR-SJFR)
initially assigns a number of the longest tasks, equal to the number of available ma-
chines, to the fastest available machines (application of the LJFR heuristic). Then,
for each remaining tasks the LJFR heuristic or SJFR heuristic are applied alterna-
tively. The SJFR assigns the shortest task to the fastest available machine (Xhafa
and Abraham, 2008).

Furthermore, two variants of the previously defined heuristics have been used in this
work to generate initial solutions for the algorithms proposed in this work in order to
solve the ME-HCSP:

� Randomized Minimum Completion Time (rMCT) is a randomized version of MCT,
randomly sorting the task collection before applying the MCT algorithm.

18 Heterogeneous computing scheduling problem

� pMinMinDD or parallel MinMin with domain decomposition, is an multi-threading
version of the MinMin algorithm. It applies a domain decomposition strategy
splitting the tasks domain T into n equally sized sub domains T1, ..., Tn, then
it computes the solution for the n subproblems Ti × P applying the Min-Min
heuristic and computing n sub-schedules f1, ..., fn. Finally, the n sub-schedules are
aggregated into the final schedule f = f1∪...∪fn. The implementation makes use of
a pool of threads in order to compute each sub-domain schedule in parallel. (Canabé
and Nesmachnow, 2012).

The rMCT algorithm provides diversity to the classic MCT algorithm and helps to
avoid some ill conditioned scenarios due to some arbitrary task ordering. The pMin-
MinDD algorithm tries to alleviate the fact that the MinMin algorithm has a O(n3)
execution order; because of its cubic execution order, MinMin can be non-practical when
solving very large problem scenarios.

2.4.4 Metaheuristic algorithms

As defined by Gendreau and Potvin (2010), metaheuristics are solution methods that or-
chestrate an interaction between local improvement procedures and higher level strategies
to create a process capable of escaping from local optima and performing a robust search
of a solution space. Broadly speaking, metaheuristics methods can be characterized as
approximate iterative methods designed to solve optimization problems making few or
no assumptions about the problem being solved.

There are many metaheuristics methods available in the literature. Some of them
can be characterized in the following classes (Brownlee, 2011): i) Local Search-based
methods such as Stochastic Hill Climbing (Forrest and Mitchell, 1992), Iterated Local
Search (ILS) (Stützle, 1999), Guided Local Search (Voudouris, 1998), Greedy Random-
ized Adaptive Search (GRASP) (Feo and Resende, 1989), Tabu Search (TS) (Glover,
1986), etc.; ii) Evolutionary Algorithms based in the evolution of the species such as
Generic Algorithm (GA) (Goldberg, 1989), Genetic Programming (Koza, 1992), Evo-
lution Strategies (Rechenberg, 1973), Differential Evolution (Storn and Price, 1997),
Memetic Algorithm (MA) (Moscato, 1989), etc.; iii) Physical Algorithms inspired in
physical processes such as Simulated Annealing (SA) (Kirkpatrick et al., 1983), Grav-
itational Search Algorithm (GSA) (Rashedi et al., 2009), etc.; iv) Swarm Algorithms
inspired in the collective intelligence of swarms such as Particle Swarm Optimization
(PSO) (Eberhart and Kennedy, 1995), Ant Colony (ACO) (Dorigo and Gambardella,
1997), etc.

A number of these metaheuristics have been used for solving scheduling problems
in HC systems. Abraham et al. (2008) proposed various metaheuristics for solving the
HCSP: GA, SA, PSO, and ACO algorithms for scenarios with dimensions up to 1000×100
were tackled. Izakian et al. (2009b) devised a PSO-based algorithm for solving the
HCSP, minimizing the makespan problem objective, using the ETC model proposed by
Braun et al. (2001), and solving the scenarios dimension of up to 1024 × 16. Most
metaheuristics work by iteratively improving a starting solution, sometimes called initial
solution, thus many applied metaheuristics make use of some constructive heuristic. In
the work by Izakian et al. (2009b), the MinMin list-scheduling algorithm was used in
order to compute an initial solution which was used as input for the PSO-based algo-
rithm. The results computed with the proposed PSO-based algorithm were compared

2.5 Summary 19

against the results computed by a pure PSO algorithm and a GA. More recently, Sub-
ashini and Bhuvaneswari introduced a GA-based and a PSO-based algorithms for solving
the HCSP (Subashini and Bhuvaneswari, 2011a,b), both considering the simultaneous
minimization of the makespan and the total sum of the completion time of each task
(flowtime), using the ETC model and solving the scenarios proposed by Braun et al.
(2001).

Krömer et al. (2009) designed a differential evolution algorithm for the HCSP in order
to minimize makespan and flowtime using the ETC computing model. Experiments
were conducted tackling the scenarios proposed by Braun et al. (2001), and a set of
list-scheduling heuristics such as MaxMin, Sufferage, and MinMin were used to compute
initial solutions for the problem. Later, Krömer et al. (2011) also presented a differential
evolution algorithm for the HCSP implemented in Graphic Processing Units (GPU).
Again it used the ETC model and solved the instances proposed by Braun et al. (2001).
With the additional computing power provided by the GPU, Krömer et al. (2011) was
able to improve the results computed in Krömer et al. (2009).

Nesmachnow and Iturriaga (2011) proposed a CHC evolutionary algorithm hybridized
with a local search algorithm for solving the HCSP with the additional consideration of
some economic related quality of service metric. The ETC model was adopted, the MCT,
MinMin, and Sufferage algorithms were used to compute initial solutions, and scenarios
with dimensions up to 4096 × 128 were tackled. Nesmachnow et al. (2012b) proposed
a local search for solving the HCSP using the ETC model and solving instances with
dimensions up to 4096 × 128 in less than 6 seconds. Pinel et al. (2013) introduced a
cellular GA implemented for the GPU for solving the HCSP in order to minimize the
makespan objective using the ETC model. In his work, Pinel et al. (2013) also presented
a implementation of the MinMin algorithm for the GPU and used it to compute some
initial solutions for the problem. With the proposed algorithms, Pinel et al. (2013) was
able to solve scenarios with dimensions up to 65536× 2048.

2.5 Summary

This chapter defined the term heterogeneous computing system and presented the prob-
lem of scheduling independent tasks in energy-aware HC systems. The ME-HCSP was
mathematically defined and characterized in the general scheduling problem notation
proposed by Graham et al. (1979). The EMC model proposed by Nesmachnow et al.
(2012b) and a set of real-world sized scenarios were reviewed and will be adopted in the
following chapters in order to tackle the ME-HCSP. Finally, a small survey of different
methods to tackle the HCSP is presented. First, some exact enumerative algorithms are
reviewed. Then a collection of polynomial time approximation methods are presented:
some based on linear programming relaxations, some based on list-scheduling algorithms,
and last, some single-objective and multi-objective non-deterministic metaheuristics are
introduced.

Next, in chapter 3, a comprehensive introduction to metaheuristics methods is pre-
sented. After that, in Chapter 4, a complete survey of recent metaheuristic methods for
solving the ME-HCSP is detailed.

Chapter 3

Metaheuristic algorithms

This chapter introduces metaheuristic algorithms. First, some general notions about
metaheuristic algorithms are presented and a classification criterion for metaheuristic
algorithms is detailed. Then, stochastic optimization fundamentals are described and a
general framework for a stochastic search method is reviewed. After that, local search al-
gorithms are introduced as one of the most successful general approaches when tackling
hard combinatorial optimization problems. Some notions of multi-objective optimiza-
tion are discussed along with the increased complexity when dealing with more than
one objective function. Two well-known metaheuristic algorithms are described to ex-
emplify the main features of single-objective and multi-objective optimization: the It-
erated Local Search (ILS) (Stützle, 1999) and the Pareto Archived Evolution Strategy
(PAES) (Knowles and Corne, 2000).

3.1 Introduction

The concept of metaheuristic algorithm was initially introduced by Glover (1986).
Broadly speaking, metaheuristics are methods for solving optimization problems but
there is no commonly accepted definition for the term metaheuristic. According to Os-
man and Laporte (1996),“a metaheuristic is formally defined as an iterative generation
process which guides a subordinate heuristic by combining intelligently different concepts
for exploring and exploiting the search space, learning strategies are used to structure
information in order to find efficiently near-optimal solutions” for an optimization prob-
lem. The search space of an optimization problem is the space defined by all the feasible
solutions of that optimization problem.

The following are some fundamental properties which characterize metaheuris-
tics (Blum and Roli, 2003): i) metaheuristics are strategies that guide the search process;
ii) the goal is to efficiently explore the search space in order to find near-optimal solutions;
iii) techniques which constitute metaheuristic algorithms range from simple local search
procedures to complex learning processes; iv) metaheuristic algorithms are approximate
and usually non-deterministic; v) they may incorporate mechanisms to avoid getting
trapped in confined areas of the search space; vi) the basic concepts of metaheuristics
permit an abstract level description; vii) metaheuristics are not problem-specific; viii)
metaheuristics may make use of domain-specific knowledge in the form of heuristics that
are controlled by the upper level strategy.

21

22 Metaheuristic algorithms

There are many ways to classify metaheuristic algorithms depending on their char-
acteristics. One of the most widely used classification criterion is based on whether the
metaheuristic is population-based, or trajectory-based (Blum and Roli, 2008). This clas-
sification takes into account the number of solutions being considered at the same time
by the algorithm. Algorithms iteratively improving one solution at a time are called
trajectory methods, such as: Tabu Search (TS), Greedy Randomized Adaptive Search
Procedure (GRASP), Iterated Local Search (ILS), Variable Neighborhood Search (VNS),
etc. On the other hand, population-based algorithms describe an iteration over a set of
solutions taking all of them into account simultaneously. Some examples of such methods
are: Genetic Algorithm (GA), Evolutionary Strategy (ES), Particle Swarm Optimization
(PSO), Ant Colony Optimization (ACO), etc.

Other classification criteria are nature-inspired metaheuristics vs. non-nature in-
spired, based on the origins of the metaheuristic; or memory-based vs. memory-less
methods, based on whether the method use some kind of learning technique of if it just
use the current state of the search in order to determine the next action; etc.

3.2 Stochastic search

Stochastic search is a crucial technique used on most metaheuristics. Not every meta-
heuristic applies a non-deterministic approach; however, the incorporation of pseudo-
random behavior into a metaheuristic algorithm is rather the usual than the excep-
tional (Blum and Roli, 2003). According to Glover (1986):

“In the face combinatorial complexity, there must be freedom to depart from the
narrow track that logic single-mindedly pursues, even on penalty of losing the guar-
antee that a desired destination will ultimately be reached. (’Ultimately’ may be
equivalent to ’a day before doomsday’ from a practical standpoint.)

In brief, effective strategies for combinatorial problems can require methods that for-
mal theorems are unable to justify. That is not to say such methods lack ’structure’.
Complete flexibility has its parallel in complete randomization, which is scarcely a
useful basis for complex problem solving. Methods that are ’intelligently flexible’
lie in some yet-to-be-defined realm to which theorems (of the familiar sort) do not
apply, yet which embraces enough structure to exclude aimless wandering.”

Most stochastic optimization methods consist of two different phases (Telega, 2007):
i) a global phase or exploration phase, where the objective function is evaluated in dif-
ferent sections of the search space in order to identify promising sections of the space
which might contain near-optimal solutions; and ii) a local phase or exploitation phase,
where the previously identified promising sections are thoroughly searched in order to
yield one or more near-optimal solutions.

Although stochastic methods do not have strict convergence guarantees, in many
cases they have proven to compute accurate solutions, and are practical methods to
tackle problems that are (currently or forever) out of the reach of theoretically correct,
rigorous methodology (Pardalos and Romeijn, 2002). Because of the lack of strict conver-
gence guarantees, one of the capital questions when applying a stochastic search method,
is when to stop searching for better solutions to avoid the wasting of computational re-
sources. Many methods were proposed in the literature for determining the stopping
criterion (Safe et al., 2004). These methods can be classified into: static stopping crite-
ria or dynamic stopping criteria.

3.3 Local search methods 23

Static stopping criteria are stopping criterion that do not change during the progres-
sion of an iterative optimization algorithm, e.g. timespan stopping criterion or iteration
count stopping criterion. In this regard, studies where performed for some metaheuristics
in order to find upper bounds for the number of iterations necessary to ensure finding
an optimal solution with a prescribed probability (Studniarski, 2010).

On the other hand, the dynamic stopping criteria or online stopping criteria are
techniques which aim to analyze different progress indicators during the progression of
an iterative optimization algorithm in order to detect the convergence of the algorithm,
when this happens the algorithm is stopped. Convergence detection is not trivial matter
when dealing with multiple objectives, hence several progress indicators were proposed
in this regard (Wagner et al., 2011).

A general framework for describing a stochastic search method was presented by
Gendreau and Potvin (2010). In this framework, S is a finite search space and f is
the objective function. A stochastic search method is an iterative algorithm which in
iteration t, uses a memory Mt and a list Lt of solutions s ∈ S. The list Lt contains
new candidate solutions for the optimization problem, and the list L+

t contains the pairs
(s, f(s)),∀s ∈ Lt. The algorithm proceeds as shown in Algorithm 1.

Algorithm 1 General framework for the stochastic search method

1: initialize M1 according to some rule
2: for iteration t = 1, 2, ...,until some stopping criterion is satisfied do
3: determine list Lt as a function g(Mt, zt) of Mt of random influence zt
4: determine objective function values f(s) of all s ∈ Lt and form a list L+

t containing
the pairs (s, f(s))

5: determine new memory content Mt+1 as a function h(Mt, L
+
t , z′t) of the current

Mt, of the list of solution-value pairs L+
t , of random influence z′t

6: end for

The general stochastic search method starts by generating an initial solution, e.g.
using some constructive heuristic. Then, the method iterates until some stopping cri-
terion is met. The stopping criterion defined in line 2 can depend on (Mt, L

+
t) if the

algorithm make use of a dynamic stopping criterion. In this formalism, zt and z′t repre-
sents vectors of pseudo-random numbers that are used by the stochastic algorithm. The
function g(Mt, zt) in line 3 specifies the list of new candidate solutions, and the function
h(Mt, L

+
t , z

′
t) in line 5 specifies the new content of the memory.

The functions g(Mt, zt) and h(Mt, L
+
t , z′t) may use any information on the problem

instance. The important special case where g and h are only allowed to use the knowledge
of the search space S and of the problem type, but not the knowledge of the concrete
problem instance, is denoted as black-box optimization (Droste et al., 2006). The black-
box optimization approach is the most interesting formulation since it provides a generic
approach for solving the optimization problem.

3.3 Local search methods

Local search algorithms are one of the most successful general approaches for finding high
quality solutions for hard combinatorial optimization problems in reasonable time (Hoos
and Stützle, 2004).

24 Metaheuristic algorithms

According to Blum and Roli (2008), in an optimization problem where S is the search
space of the problem, the neighborhood structure of a solution is defined as follows.

Definition 1. A neighborhood structure is a function N : S → 2S that assigns to
every s ∈ S a set of neighbors N (s) ⊆ S. N (s) is called the neighborhood of s.

According to the previous definition, solution s′ is a neighbor of the solution s if s′

can be obtained by applying the function N to s, that is s′ ∈ N (s). Often, neighborhood
structures in combinatorial optimization problems are implicitly defined by specifying the
changes that must be applied to a solution s in order to generate all its neighbors. A well-
known neighborhood structure in combinatorial optimization problems is the k-exchange
neighborhood (Aarts and Lenstra, 1997). The k-exchange neighborhood can be defined as
follows: given a solution represented as a sequence, the k-exchange neighborhood is the
neighborhood obtained by exchanging k elements in the sequence.

A local search algorithm starts from some initial solution s and iteratively tries to
replace the current solution s by a better solution s′ in an appropriately defined neighbor-
hood N (s) of the current solution. At each iteration, a local search procedure performs
a search for a candidate solution s′ within the neighborhood N (s), and evaluates the
various neighboring solutions. The procedure either accepts or rejects the candidate so-
lution s′ as the next schedule to move to, based on a given acceptance-rejection criterion.
A high level local search algorithm is sketched in Algorithm 2.

Algorithm 2 Pseudo-code of a local search algorithm

1: s← GenerateInitialSolution()
2: while stopping criterion is not satisfied do
3: s′ ← SearchNeighbor(N (s))
4: if s′ satisfies acceptance criterion then
5: s← s′

6: end if
7: end while
8:

9: return s

The local search algorithm starts by generating an initial solution. The fastest way
for generating an initial solution is often to generate it at random, but—if possible— the
initial solution should be a quality solution for the problem. Because of this, function
GenerateInitialSolution() in line 1 usually makes use of a constructive method, such as
the list-scheduling heuristic methods presented in Section 2.4.3 for the HCSP, in order
to generate a feasible solution from scratch.

After the initial solution is generated, the algorithm starts to iterate until some
stopping criterion is met. Each iteration, the algorithm first searches the cur-
rent neighborhood using the function SearchNeighbor(N (s)) in line 3. The function
SearchNeighbor(N (s)) can be implemented in several ways, being the two most typi-
cal ones: first-improvement or best-improvement. A first-improvement function searches
the neighborhood N (s) and returns the first solution that is better than s. On the
other hand, a best-improvement function exhaustively explores the neighborhood and
returns the best solution in the neighborhood. If the solution s′ found by the function
SearchNeighbor(N (s)) satisfies some acceptance criterion, then the solution s is replaced
by the new solution s′.

3.3 Local search methods 25

Both the definition of the neighborhood structure N and the implementation of the
SearchNeighbor(N (s)) are critical issues in the design of a local search.

Generally, the larger the neighborhood structure the more solutions are explored in
each iteration, potentially leading to better quality solutions and improving the chances
of finding a better final solution. On the other hand, the larger the neighborhood the
longer it will take to compute the search in the neighborhood structure each iteration.
This additional computing cost may impact prohibitively in the execution time of the
algorithm when solving real-world scenarios (Gendreau and Potvin, 2010).

3.3.1 An example of a local search based metaheuristic: the ILS algo-
rithm

Iterated Local Search (ILS) is a well-known metaheuristic originally proposed by Stützle
(1999) which iteratively builds a sequence of solutions generated by an embedded local
search heuristic with a multi-start technique. Multi-start techniques were proposed as a
way to include some exploring capabilities to neighborhood search methods by simply ap-
plying the search methods from multiple random initial solutions. In the ILS algorithm,
the multi-start technique is applied making use of a random perturbation mechanism.
The perturbation mechanism is applied to the current solution before applying the em-
bedded local search heuristic with the hope of: i) re-starting the local search from a
quality solution and ii) escaping the basin of attraction of the local minimum where the
current solution is. Algorithm 3 shows the pseudo-code of the ILS algorithm (Hoos and
Stützle, 2004).

Algorithm 3 Pseudo-code of the ILS algorithm

1: s← GenerateInitialSolution()
2: s← LocalSearch(s)
3: while stopping criterion not met do
4: s′ ← Perturbation(s)
5: s′ ← LocalSearch(s′)
6: if AcceptanceCriterion(s, s′) then
7: s← s′

8: end if
9: end while

10:

11: return s

The ILS algorithm starts by generating an initial solution s (line 1). The embedded
local search procedure is applied to the generated solution s in order to obtain a locally
optimal solution. After that, the main iteration loop is repeated until the stopping con-
dition in met (lines 3–8). Each iteration of the main loop consists of three major stages:
i) a random perturbation is applied to the current solution s, obtaining a perturbed
solution s′ (line 4); ii) the embedded local search is applied to the perturbed solution s′,
obtaining a new locally optimal solution (line 5); finally, iii) an acceptance criterion is
used in order to determine from which of the two local optima the process continues, s
or s′ (lines 6–8).

The perturbation mechanism is a key element in the ILS schema. If the perturbation
does not perturb enough the current solution, the local search might not be able to escape

26 Metaheuristic algorithms

the basin of attraction of the local minimum where the current solution is. On the other
hand, if the perturbation is too strong, the perturbed solution might lose all its quality
properties and the procedure would be similar to a random re-start. In order to deal with
this problem, in the ILS algorithm both the Perturbation and the AcceptanceCriterion
functions, may maintain a search history in order to dynamically adapt the algorithm
during the search. For example, if the same local optima is repeatedly encountered, the
Perturbation function could apply stronger perturbations, and the AcceptanceCriterion
function could be more prone to accept worse quality solution, in order to escape the
local minimum which is stagnating the search.

3.4 Multi-objective optimization

Many real world optimization problems have two or more objectives which are to be
optimized simultaneously. In these multi-objective optimization problems (MOP), some
objectives are usually in conflict with each other, hence improving the quality of one
objective means degrading the quality of at least one of the other objectives (Coello et al.,
2010). In a single-objective optimization problem, the optimization goal is represented
by a unique objective function. On the other hand, in a MOP the optimization goal is
represented by a vector of objective functions, each objective described by a different
function in the vector of functions. The most general formulation for a multi-objective
optimization problem is defined in Equation 3.1.

optimize F (x) = (f1(x), ..., fn(x))

with x ∈ S
(3.1)

In the previous formulation, n is the number of objectives, x is a vector of decision
variables of the form x = (x1, ..., xk), S is the search space of feasible solutions, and each
function fi(x) is an objective function to be minimized or maximized.

Since some objectives in a MOP are usually in conflict, there is not a single best
solution as in a single-objective optimization problem. Optimizing a MOP involves find-
ing several solutions, called Pareto optimal solutions, which represent the best possible
trade-off values among all the MOP objectives.

When considering the most general case in which all objectives are equally impor-
tant it is assumed that a solution s is preferable to another solution s′ only if s is at
least as good as s′. Then, the best trade-off solutions must be considered equally good
solutions since their representing vectors cannot be completely ordered. Because in this
formulation the preference for one Pareto optimal solution cannot be asserted over the
other Pareto optimal solutions, the decision of determining which solution to choose as
the single final solution of the considered MOP must not be part of the problem solv-
ing. The problem solving method should compute as many Pareto optimal solutions
as possible and leave the choosing of the final solution to an external decision making
procedure (often a human decision maker) (Coello et al., 2006; Deb, 2001). In order to
define the concept of Pareto optimal solution, first the concept of dominance between
solutions must be defined.

Definition 2. It is said that a solution y = (y1, ..., yk) dominates a solution z =
(z1, ..., zk), in a minimization context, if and only if ∀i ∈ [1...n], fi(y) ≤ fi(z) and ∃i ∈
[1...n] such that fi(y) < fi(z).

3.4 Multi-objective optimization 27

Figure 3.1: Pareto front representation.

Definition 3. A solution x∗ ∈ S is a Pareto optimal solution (or non-dominated
solution) if and only if there is no solution x ∈ S such that x dominates x∗.

The set all of the Pareto optimal solutions of a MOP is named Pareto optimal set
(P ∗), and the set of the objective functions values defined by the Pareto optimal set in
the function space is known as the Pareto optimal front (PF ∗). Approximation methods,
such as metaheuristic algorithms, are not expected to compute the Pareto optimal set
when solving a MOP. Instead, an approximation algorithm will compute a Pareto ap-
proximation set (P), which is not the optimal set of trade-off solutions for the problem,
but the best trade-off solutions the algorithm could find. This P set projected into the
function space is known as the Pareto approximation front (PF). It is worth noting that
even though there is only one Pareto optimal set for a problem, there are many Pareto
approximation set, one for each approximation method the problem is tackled with.

Figure 3.2 represents a Pareto front of a bi-objective minimization problem. In this
figure solutions x1, x2, and x3 belong to the set P , but solution x4 does not. It can be
shown that neither x1, x2, nor x3 are dominated by any other solutions, that is @j ∈ S
such that f1(j) ≤ f1(xi) and f2(j) ≤ f2(xi), for i = 1, 2, 3. For example f1(x2) ≤ f1(x1)
but f2(x2) � f2(x1). On the other hand, solution x4 is non-dominated with respect
to x1 and x3, but it is clearly dominated by solution x2 since f1(x2) ≤ f1(x4) and
f2(x2) ≤ f2(x4), hence x4 /∈ P .

When tackling a MOP, two goals must be considered simultaneously: to compute
accurate solutions for every objective function, and to maintain diversity in the computed
solutions in order to adequately sample the Pareto front. The former desired goal, to
optimize as much as possible every objective function of the MOP, is certainly a desired
goal when tackling any optimization problem. The later desired goal is related to the need
of having an external decision making procedure. When tackling a MOP, usually one does
not have a priori information about the criteria used by the decision making procedure.
Because of this, the set of computed solutions must be as diverse as possible in order
to allow the decision making procedure to select an accurate a posteriori solution (Deb,
2001). Figure 3.2a and 3.2b show examples of computed solutions not considering both
accuracy and diversity as simultaneous goals when tackling a bi-objective minimization
problem.

28 Metaheuristic algorithms

(a) Computed solutions are accurate but di-
versity is poor

(b) Computed solutions maintain diversity
but their accuracy is poor

(c) Computed solutions are accurate and di-
verse

Figure 3.2: Pareto front examples.

Figure 3.2c present an accurate set of Pareto solutions which are uniformly distributed
along the optimal Pareto front of the problem.

In the field of multi-objective optimization problems, metaheuristic methods have
become increasingly popular and were applied to solve many real world problems (Nes-
machnow et al., 2010). In particular, population-based metaheuristics present the advan-
tage of simultaneously working with a set of possible solutions in each iteration allowing
these methods to naturally consider the concept of Pareto solutions set (Coello et al.,
2010).

3.4.1 Evaluation metrics for multi-objective optimization

An important task when proposing a method for solving an optimization problem is
to be able to compare the results computed by the proposed method with the results
computed by other similar methods. Evaluating the results computed by a method for
solving a MOP is not an easy task, since the solution to a MOP is a set of trade-off
solutions rather than a single value.

Several performance metrics have been proposed for evaluating the computed so-
lutions of a MOP. These metrics can be classified according to whether they are
convergence-based metrics (or efficacy metrics), diversity-based metrics (or diversity
metrics), or hybrid metrics. (Coello et al., 2010). Efficacy metrics provide a measure
of accuracy of the computed solution set and the closeness of the obtained Pareto ap-
proximation front (PF) with respect to the Pareto optimal front (PF ∗). Some examples
of efficacy metrics are: error ratio (Van Veldhuizen, 1999), generational distance (Van
Veldhuizen, 1999), ε-indicator (Zitzler et al., 2003), etc.

3.4 Multi-objective optimization 29

Figure 3.3: Distances computed for the IGD metric (d(v, PF)).

Diversity metrics provide a measure of the uniformity of the distribution of the
obtained solutions set. Some examples of diversity metrics are: spacing (Schott, 1995),
spread (Deb, 2001), etc. Finally, Hybrid metrics consider both quality and diversity
simultaneously. Some examples of hybrid metrics are: hypervolume (Zitzler and Thiele,
1998), R-metrics (Knowles and Corne, 2002), etc. The following efficacy metrics will be
used in this work during the experimental analysis:

– Number of non-dominated solutions (ND). This is one of the most simple quality
metric, it accounts for the number of (different) non-dominated solutions found by
each algorithm. Clearly, a higher number of non-dominated solutions is better for
the diversity measure of the computed solutions set.

– Inverted generational distance (IGD). The IGD metric (Zitzler et al., 2003) is de-
fined as the (normalized) sum of the distances between the non-dominated solutions
in the Pareto approximation front (PF) and a set of uniformly distributed solu-
tions in the Pareto optimal front (PF ∗). The set ˜PF ∗ is the normalization of the
set PF ∗, and the set P̃F is the normalization of the set PF . The formulation of
the IGD metric is as follows:

IGD =

√∑
v∈ ˜PF ∗ d(v, P̃F)2

| ˜PF ∗|
(3.2)

In the previous formulation d(v, PF) represents the minimum Euclidean distance
between the vector v and the solutions in PF . The closer PF is to PF ∗, the
lower the value of IGD. Figure 3.3 shows an example all the d(v, PF) distances
computed for a bi-objective minimization problem.

The following diversity metric will be used in this work in the experimental analysis:

– Spread. The Spread metric was initially proposed by Deb (2001), and is calculated
measuring the sum of the relative distance between consecutive solutions in the
non-dominated set and also including information about the extreme solutions of
the true Pareto front (PF ∗). The Spread metric is defined as follows:

Spread =

∑
m∈M dem +

∑
v∈PF |dv − d̄|∑

m∈M dem + |PF | × d̄
(3.3)

30 Metaheuristic algorithms

Figure 3.4: Distances to the extremes dem and distances between consecutive solutions
dv, computed for the Spread metric.

In the previous formulation, M is the set of objective functions and dem is the
distance between the extreme solutions of PF ∗ and PF corresponding to the m-
th objective function. The distance dv can be taken as the consecutive Euclidean
distance between the i-th and the (i + 1)-th solutions in the PF set. Finally d̄ is
the mean of all of the dv distances. Figure 3.4 shows the distances to the extremes
dem and the distances between consecutive solutions dv, computed for the Spread
metric for a bi-objective minimization problem.

Smaller values of Spread mean a better distribution of non-dominated solutions in
the calculated Pareto front.

Finally, the relative hypervolume hybrid metric is also used during the experimental
analysis. The relative hypervolume metric is defined as follows:

– Relative hypervolume (RHV). The relative hypervolume was initially proposed by
Zitzler and Thiele (1998) and calculates the ratio of the volume covered by the
PF set and the PF ∗ set for problems where all objectives are to be minimized.
Lets first define hypervolume (HV). For each solution i ∈ PF , a hypercube vi is
constructed with a reference point W and the solution i as the diagonal corners of
the hypercube. The reference point W does not have to be a feasible solution, and
can simply be found by constructing a vector of the worst objective function values.
Then, the hypervolume can be calculated as the union of all the hypercubes, as
shown in Equation 3.5. Figure 3.5 shows the union of all the hypercubes computed
for the HV metric for a bi-objective minimization problem.

HV (PF) = volume

(⋃
i∈PF

vi

)
(3.4)

Considering the former definition, the relative hypervolume can be defined as:

RHV =
HV (PF)

HV (PF ∗)
(3.5)

Larger values of RHV indicate a more efficient and better distributed set of non-
dominated solutions in the calculated Pareto front.

3.4 Multi-objective optimization 31

Figure 3.5: Union of all the hypercubes computed for the Hypervolume metric.

3.4.2 An example of a multi-objective metaheuristic solver: the PAES
algorithm

Pareto archived evolution strategy (PAES) is a metaheuristic for solving multi-objective
optimization problems (Knowles and Corne, 2000). Their creators argue that PAES may
represent the simplest possible nontrivial algorithm capable of generating diverse solution
for a MOP. Different variants of PAES have been proposed, in its simplest form, PAES
is a trajectory-based local search metaheuristic which makes use of an external archive
of solutions in order to store all the non-dominated solutions found during its execution.
The simplest version of the PAES algorithm is outlined in Algorithm 4.

Algorithm 4 Pseudo-code of the PAES algorithm

1: s← GenerateInitialSolution()
2: A = {s}
3: while stopping condition is not met do
4: s′ ← Mutate(s)
5: if s dominates s′ then
6: /* discard s′ */
7: else if s′ dominates s then
8: AddToArchive(A,s′)
9: s← s′

10: else if s′ is dominated by a ∈ A then
11: /* discard s′ */
12: else
13: TestAddToArchive(A,s′)
14: s← SelectWorkingSolution(A)
15: end if
16: end while

The PAES algorithm is comprised of three parts: the candidate solution generator,
the solution acceptance function, and the archive of non-dominated solutions. The algo-
rithm starts by generating an initial solution (line 1), it sets the initial solution as the
working solution, and inserts it into the archive A (line 2). Then the algorithm iterates
while the stopping criterion is not met. Each iteration the algorithm first performs a
mutation of s and produces the candidate solution s′ (line 4).

32 Metaheuristic algorithms

The Mutate(s) function is a simple random mutation that perturbs s randomly in
order to generate s′. The candidate solution s′ is then tested according to the acceptance
function as follows: i) the candidate solution s′ is discarded if it is dominated by the
working solution s or by any solution in the archive A (line 6 and 11); ii) on the contrary,
if s′ dominates s, the working solution s is replaced by the candidate solution s′ and s′

is also inserted into the archive A (lines 8–9); iii) finally, if the candidate solution s′

neither dominates nor is dominated by any solution s∗ ∈ {s} ∪ A (i.e. all the solutions
are equally good), then the candidate solution is tested to be added to the archive A and
a new working solution is selected from the archive (lines 13–14).

A crucial part of PAES is the archive of non-dominated solutions. Because of perfor-
mance issues, the archive of non-dominated solutions is size-bounded so only a limited
number of solutions can be stored in the archive. It is not a trivial task to decide which
solutions to store in the archive when the number of non-dominated solutions exceeds
the maximum size of the archive. This crucial part is taken into account in function
TestAddToArchive(A,s′) in line 13. Suppose the archive is at its full capacity and a
new non-dominated solution s′ is found, then the function TestAddToArchive(A,s′) can
yield to discard the solution s′ and not to include it in the archive A (even though is s′

is non-dominated), or to discard some non-dominated solution currently in A in order
to make room for solution s′. To this purpose a new crowding procedure called adap-
tive grid algorithm (AGA) was introduced as part of the PAES algorithm (Knowles and
Corne, 2000). AGA is a novel archiving algorithm which guarantees to maintain the
best solutions for each individual objective function in a MOP while at the same time
storing a diverse set of non-dominated solutions. AGA will be thoughtfully described
in Section 5.4, since it has been adopted into the local search methods proposed in this
work for tackling the ME-HCSP.

3.5 Summary

This chapter presented a general notion on metaheuristics, its characteristics, and some
classification criteria. The chapter also introduced the basis of stochastic optimization
and presented a framework for intelligently flexible stochastic methods. It showed the
relevance of local search methods in the exploitation phase of a metaheuristic and intro-
duced the extended complexity of multi-objective optimization problems. It showed the
applicability of metaheuristic methods on intractable combinatorial optimization prob-
lems, and the benefits of population-based metaheuristics when tackling multi-objective
optimization problems. Finally, the ILS and PAES metaheuristics were described as
examples of simple stochastic optimization methods. ILS is one of the most well-known
stochastic local search based metaheuristic, and PAES is arguably the simplest nontrivial
multi-objective metaheuristic which can compute accurate results for a MOP.

Next chapter will present a review of the most recent works that tackle the energy-
aware scheduling problem in HC system.

Chapter 4

Related work

This chapter presents a review of the most recent works that have tackled variants of
the energy-aware scheduling problem in HC environments. The chapter is organized as
follows. In Section 4.1, those works tackling single-objective variants of the ME-HCSP
are reviewed. In these works, the approaches usually consider energy consumption either
as the objective function or as a problem constraint. The works reviewed in Section 4.2
formulate the ME-HCSP variants as multi-objective problems but use a single-objective
approach in order to tackle them. These approaches convert the problem into a single-
objective problem by using techniques such as aggregation of the objective functions or
objective function prioritization. Finally, works reviewed in Section 4.3 formulate and
tackle the ME-HCSP variants as true multi-objective problems.

4.1 Single-objective energy-aware scheduling

This section will present a review of some of the most recent works tackled as a single-
objective variant of the ME-HCSP. In most of these works, the total energy consump-
tion is considered as the unique problem objective function and some constraints are
considered in order to guarantee a minimum system performance. The most recent
single-objective related works are reviewed next.

Kim et al. (2007) proposed two online power-aware scheduling algorithms for schedul-
ing a set of independent tasks (also known as bag-of-tasks) in order to minimize the
total energy consumption. The problem formulation considers deadline constraints for
the tasks, and makes use of a power management strategy using Dynamic Voltage and
Frequency Scaling (DVFS) techniques. The proposed algorithm is based on the Ear-
liest Deadline First (EDF) list-scheduling algorithm previously proposed by Dertouzos
(1974). The experimental analysis was performed tackling dimensions of up to 16000
tasks and 32 machines, using machine scenarios and task workloads synthetically gener-
ated. Both algorithms were able to reduce energy consumption with little degradation
of missing deadlines when comparing with the EDF.

Zhang et al. (2010) studied the offline scheduling problem considering a scenario com-
prised of a bag-of-tasks. In this, work six two-phase heuristics were proposed in order
to minimize the total energy consumption while satisfying tasks deadlines constraints.
The algorithm relies on a DVFS-enabled environment in order to manage the energy
consumption. The experimental analysis is performed by tackling scenarios with dimen-
sions up to 1000 tasks and 20 machines, and the computed results of the six proposed

33

34 Related work

heuristics are compared with each other. Unfortunately, the proposed heuristics were
not compared against any well-known heuristic.

Rizvandi et al. (2010) studied the problem of offline scheduling precedence-
constrained tasks in order to minimize the energy consumption subject to tasks deadlines.
The energy management in this work is achieved using a DVFS approach. The algorithm
proposed by Rizvandi et al. (2010) is a heuristic algorithm based on the SRDVFS algo-
rithm previously proposed by Kimura et al. (2006). Two sets of task graphs were tackled:
randomly generated and real-world applications. Two real-world applications were used
in the experiments, the LU decomposition and the Gauss-Jordan applications (Simunic
et al., 2001). Scenarios with dimensions up to 500 tasks and 32 machines were generated
using these task graphs, and the results were compared with the ones computed by the
SRDVFS algorithm and by three different list-scheduling algorithms. The experiments
showed the improved accuracy of the proposed algorithm.

Five offline scheduling algorithms for the minimization of the energy consumption
considering makespan and tasks deadlines constraints were proposed by Apodaca et al.
(2011). All of the proposed algorithms make use of DVFS mechanism for power manage-
ment. Three of the proposed algorithms are metaheuristic-based: a Tree Search heuristic,
based on the works by Wu et al. (2000) and Upadhyaya and Lata (2008); a Genetic Algo-
rithm (GA), based on the works by Hartmann (2002) and Rahmani and Vahedi (2008);
and a Tabu Search heuristic, based on the works by Zbigniew and Fogel (2000), Braun
et al. (2001), and Lam et al. (2008). The remaining of the proposed algorithms are
two two-phase list-scheduling heuristics: a MinMin-based heuristic and MinMax-based
heuristic. These list-scheduling heuristics are used for comparison and to initialize the
previously mentioned metaheuristic-based algorithms. Also a lower bound for the energy
consumption objective is provided in order to compare the performance of the proposed
algorithms. For the experimental analysis, scenarios were synthetically generated con-
sidering dimensions up to 4000 tasks and 25 machines. The results of the experimental
analysis show the GA-based heuristic as the most accurate approach, achieving the lowest
expected energy consumption while also meeting the problem constraints.

Zhu et al. (2011) proposed a novel scheduling strategy named energy-efficient elastic
(3E) for online energy-aware scheduling a bag-of-tasks in a DVFS-enabled scenario. The
proposed 3E strategy aims at minimizing the energy consumption with makespan as a
secondary objective and considering tasks deadlines constraints. For the experimental
analysis, a set of scenarios with dimension of 512 tasks and 128 machines were generated
and three list-scheduling algorithms were proposed for comparison. The experimental
results show that the 3E strategy outperforms the three list-scheduling algorithms pro-
posed for comparison.

Ma et al. (2012) proposed an offline energy-aware list-scheduling approximation al-
gorithm considering deadline constraints. The problem objective consists in minimizing
the total energy consumption tackling a bag-of-tasks scenario. The energy management
in this work follows an idle machine approach, considering a lower energy consumption
when a machine is not computing a task. A lower bound for the problem is computed
using Integer Linear Programming (ILP), and results are also compared with the EDF
algorithm. The hardware specification parameters from 20 real-world servers were used
for generating the machine scenarios. Scenarios with dimensions up to 100 tasks and 20
machines were generated in order to validate the algorithm. An online scheduling exten-
sion of the proposed algorithm is discussed and some initial experiments are performed

4.2 Multi-objective energy-aware scheduling using a single-objective approach 35

using a log trace from the Argonne National Laboratory (ANL) Intrepid system, which
was obtained from the Parallel Workload Archive (PWA). The ANL Intrepid system
comprises a total of 163,840 computing cores with a theoretical computing performance
of 557 TFlops, and the traces used contain accounting records from January 2009 to
September 2009. Experimental results show that the offline version of proposed algo-
rithm consumes 5% more energy than the computed lower bound, while the online version
of the proposed algorithm improves the results computed by the EDF algorithm.

The work by Young et al. (2012) studied the problem of online scheduling a bag-
of-tasks applications in an HC system in order to maximize the number of accepted
tasks considering tasks deadlines and total energy consumption as constraints. A set of
five heuristics using DVFS techniques were proposed in this work in order to tackle the
problem. Two of the heuristics include a filtering mechanism to limit the set of feasible
assignments the heuristic may use. For the experimental analysis, a set of scenarios
considering dimensions of up to 1000 tasks and 8 machines where synthetically generated.
Simulation results show that appropriate filtering mechanisms compute adequate results
and are able to improve the performance heuristic algorithms performance.

In this section, a review of some of the most recent works tackling a single-objective
problem variant of the ME-HCSP was presented. As previously stated, most of these
works consider the total energy consumption as the unique problem objective function.
In order to guarantee a minimum system performance threshold, these approaches con-
sider some constraints such as maximum makespan, tasks deadlines, etc. Regarding the
energy-aware approach, usually a DVFS technique is used in these works, although the
work by Ma et al. (2012) which consider a low energy consumption idle state approach.
Also, both online and offline schedulers were equally proposed for tackling the ME-HCSP
variants in the reviewed works. As for the dimension of the scenarios tackled in these
works, when considering the online scheduler approach, the higher dimension tackled was
comprised of 16000 tasks and 32 machines; and when considering the offline scheduler
approach, the higher dimension tackled was comprised of 4000 tasks and 25 machines.
Most of the reviewed works designed simple heuristic methods for solving their proposed
problem variants, such as list-scheduling heuristics. The only exception in the reviewed
literature is the work by Apodaca et al. (2011) which designed three metaheuristics and
two list-scheduling heuristics. In this work the proposed GA metaheuristic outperformed
both of the proposed list-scheduling heuristics; but although the GA proved to be more
accurate, it also required a considerably longer execution time than the list-scheduling
heuristics.

4.2 Multi-objective energy-aware scheduling using a
single-objective approach

The works reviewed in this section formulate the ME-HCSP variants as multi-objective
problems but tackle the problem using a single-objective approach. Most of the reviewed
literature used this approach, this is because the ME-HCSP is naturally a multi-objective
optimization problem but single-objective optimization problems are significantly sim-
pler to tackle. In order to tackle multi-objective problems as single-objective problem,
techniques such as objective functions aggregation or objective functions prioritization,
are used. The objective functions prioritization technique simply prioritizes one ob-
jective function over the others, and aims at optimizing the most important objective

36 Related work

function, leaving the other objective functions as a secondary optimization goal. On the
other hand, the objective functions aggregation technique optimizes an auxiliary objec-
tive function usually defined as the weighted sum of the objective functions. The most
recent works which tackle multi-objective ME-HCSP variants using a single-objective
approach, are reviewed next.

Kim et al. (2008) introduced several online multi-objective list-scheduling heuris-
tics for scheduling tasks with deadlines and priorities, considering high-, medium-, and
low-priority tasks. The problem is solved for an ad-hoc grid environment with limited
battery capacity, in which DVFS techniques are used for power management. The prob-
lem does not follow a true multi-objective approach. Instead, the problem objectives are
prioritized, being the primary goal to complete as many high-priority tasks by their dead-
lines as possible, and the secondary goal to maximize the sum of the weighted priorities
of medium- and low-priority tasks completed by their deadlines. Seven list-scheduling
heuristics are proposed in this work. For the experimental analysis, instances of dimen-
sion 50 tasks and 10 machines were used and the seven heuristics were compared with
each other. The results of the experimental analysis show that the proposed algorithms
based on the MinMin and Sufferage heuristics computed the most accurate results, but
they required significantly longer execution time.

An offline two-phase scheduling heuristic was proposed by Lee and Zomaya (2009)
for minimizing both makespan and energy consumption while considering precedence-
constrained tasks. The energy management in this work is achieved using a DVFS
approach. For the experimental analysis, both randomly generated tasks and real-world
tasks were considered. Three real-world applications were used for the experimental anal-
ysis: the Laplace equation solver (Wu and Gajski, 1990), the LU-decomposition (Lord
et al., 1983), and Fast Fourier Transformation (Cormen et al., 1990). Instances with
dimensions up to 600 tasks and 64 machines were tackled and the results were compared
with the previously proposed HEFT algorithm (Topcuoglu et al., 2002) and DBUS algo-
rithm (Bozdag et al., 2006). The results of the experimental analysis showed the proposed
algorithm is able to compute makespan metrics at least as accurate as HEFT and DBUS,
and clearly outperforms both HEFT and DBUS when considering energy consumption.
In this regard, it is important to note that neither HEFT nor DBUS consider energy
consumption as a optimization objective.

Li et al. (2009) proposed an online energy-aware scheduler based on the MinMin list-
scheduling heuristic in order to minimize makespan and energy consumption, the latter
considering a low energy consumption of machines when in idle state. Again, a true multi-
objective approach was not followed in this work as the proposed scheduler computes
only one compromise solution considering both problem objectives. The experimental
analysis was performed using instances of dimensions up to 10000× 128. The proposed
heuristic matched MinMin in makespan accuracy, and computed an energy reduction of
up to 47%, again comparing to MinMin.

Khan and Ahmad (2009) developed an offline energy-aware grid scheduler based on
the concept of Nash Bargaining Solution (NBS) from cooperative game theory. The
proposed heuristic aims to simultaneously minimize the energy consumption and the
makespan metric, subject to the constraints of task deadlines and architectural require-
ments. The energy management in this work is achieved using a DVFS approach. Even
though the problem is formulated as a multi-objective problem, the approach for tack-
ling the problem is not multi-objective. The proposed NBS approach aims at finding

4.2 Multi-objective energy-aware scheduling using a single-objective approach 37

the Bargaining Point which is defined as the most suitable Pareto optimal solution. The
experimental analysis was performed using dimensions up to 4370 tasks and 16 machines.
Compared to an extension of the MinMin heuristic, the proposed algorithm showed an
improvement of up to 22% in the makespan objective, and a reduction of up to 24% in
the energy consumption objective.

Shekar and Izadi (2010) studied the problem of offline scheduling precedence-
constrained tasks in DVFS-enabled machines in order to minimize both makespan and
energy consumption. The authors propose an algorithm which is an extension of the
Dynamic Level Scheduling (DLS) list-scheduling algorithm previously proposed by Sih
and Lee (1993). For the experimental analysis, scenarios of dimension up to 200×5 were
randomly generated. The results of the experimental analysis show that the proposed
algorithm outperforms the algorithm originally proposed by Sih and Lee (1993).

A novel Adaptive Power-Aware Scheduling (APAS) strategy was proposed by Zhu
et al. (2010). The proposed strategy tackles the problem of online scheduling a bag-of-
tasks in a DVFS-enabled environment in order to simultaneously minimize the energy
consumption and maximize the number of accepted deadline-constrained tasks. The
APAS strategy is a two-phase heuristic comprised of two algorithms: the APAS1 and
the APAS2. The former algorithm is responsible for assigning computational resources to
arriving tasks, while the latter algorithm dynamically adjusts the voltage of each machine
in order to minimize the energy consumption. The experimental analysis was performed
tackling scenarios with dimensions up to 2048 tasks and 128 machines. The computed
results were compared with the ones computed by two greedy heuristics: SLVL and
SHVL (Yu and Prasanna, 2002). The experiments show that the proposed algorithms
have competitive results, specially when tackling higher dimension scenarios with high
arrival rates.

Garg et al. (2011) proposed a set of five list-scheduling heuristics to tackle the problem
of online scheduling a set of independent deadline-constrained tasks in order to minimize
the energy consumption and maximize the profit. The profit objective considers the
CPU computing time to be charged by the minute, thus maximizing the profit implies
maximizing the infrastructure utilization rate. The energy consumption objective relies
in DVFS mechanisms for energy management. The set of proposed heuristics is com-
prised of two heuristics for energy consumption minimization, two heuristics for profit
maximization, and the remaining heuristic which tackles both objectives simultaneously.
To estimate the performance of the proposed algorithms, lower and upper bounds for the
energy consumption and the profit are presented. Workload traces from the Lawrence
Livermore National Laboratory (LLNL) Thunder system were used for the experimen-
tal analysis, containing accounting information comprising January 2007 to June 2007.
For the experimental analysis, a set of eight real-world computing centers were consid-
ered and the first week of the workload traces was used. The experiments show that
the proposed algorithms were able to compute schedules with only a 1% deviation from
the upper bound of profit. Also, when considering a DVFS-enabled environment, the
experiments showed an average reduction in energy consumption of 33%.

An offline two-phase energy-aware heuristic for grid scheduling was proposed by Pinel
et al. (2011). The heuristic has two phases, in the first phase it applies the MinMin
heuristic in order to find schedules with good makespan, in the second phase it applies
a local search algorithm to further exploit the results computed during the first phase.
The approach considers an ETC model extended with energy consumption consideration.

38 Related work

Instances of dimensions up to 512 tasks and 16 machines where used for the experimental
analysis. The proposed method was able to compute schedules with similar quality to
those computed by a Cellular Evolutionary Algorithm previously proposed by Alba and
Dorronsoro (2008) for the same problem, while also reducing the execution time and
significantly improving the MinMin schedules.

Ko lodziej et al. (2011) developed two genetic-based energy-aware scheduling algo-
rithms using DVFS for energy reduction. Both offline and online scenarios were con-
sidered, each one of them comprised of a set of independent tasks, and tackling the
bi-objective scheduling problem of minimizing the makespan metric and the average
energy consumption. The proposed algorithms do not follow a true multi-objective ap-
proach, but consider makespan as being the primary objective and energy consumption
as the secondary one. The approach considers a ETC-based model extended with energy
consumption consideration. Each solution of the initial population is generated either
using the MCT heuristic, the LJFR-SJFR heuristic, or a random initialization. Two dif-
ferent acceptance criterion where used, one for each of the proposed algorithm. The first
algorithm uses an elitist acceptance criterion in which only the best solutions remain in
the population. The second algorithm uses a struggle mechanism in which new solutions
are accepted by replacing a part of the population by the most similar individuals, if the
new solutions improve the old ones. In the experimental analysis both algorithms are
compared tackling scenarios of dimensions up to 4096 tasks and 256 machines, and exe-
cuting for at most 40 seconds time. Both approaches achieved a considerable reduction
in energy consumption when comparing against the initialization heuristics.

Diaz et al. (2011) evaluated three online list-scheduling heuristics for the minimization
of the makespan objective and the total energy consumption objective considering a bag-
of-tasks scenario. As the previous related work, the proposed heuristics make use of an
extended ETC model in order to consider energy consumption using DVFS mechanisms
for energy consumption management. The experimental analysis was performed using
instances of dimension 512 tasks and 16 machines. Experiments results show that the
proposed heuristics match MinMin in accuracy but with reduced execution time.

The article by Lindberg et al. (2012) introduced a set of eight heuristics for offline task
scheduling in order to minimize makespan and the total energy consumption objectives,
considering deadline and memory constraints. The set of proposed heuristics is com-
prised of six greedy list-scheduling heuristics and two genetic-based algorithms, neither
of which followed a true multi-objective approach. The approach considers a ETC model
extended with energy consumption consideration, making use of a DVFS mechanism
for energy management. The experimental analysis was performed tackling scenarios of
dimensions up to 1000 tasks and 16 machines for the two genetic-based heuristics, and
up to 100000 tasks and 16 machines for the remaining greedy heuristics. Experimental
results showed that the MinMin-based and the MaxMin-based list-scheduling algorithms
where able to compute the most accurate solutions. The proposed genetic algorithm
required considerably longer execution times than the six greedy list-scheduling heuris-
tics. When solving the 1000×16 dimension instances, the fastest of the proposed genetic
algorithms requires in average 38.5 minutes of execution time. On the other hand, the
slowest of the proposed list-scheduling heuristic is able to solve the 100000×16 dimension
instances in 21.2 seconds.

4.3 True multi-objective energy-aware scheduling 39

Sharifi et al. (2013) recently proposed PASTA: a power-aware solution for scheduling
precedence-constrained tasks on heterogeneous computing resources. This work tackles
the problem of offline scheduling precedence-constrained tasks in order to optimize the
dual objective of minimizing the makespan metric and reducing the total energy con-
sumption. PASTA is a two-phase algorithm which follows a idle machine energy strategy,
considering a lower energy consumption when a machine is in idle state. For the experi-
mental analysis, scenarios of dimensions up to 100 tasks and 20 machines were generated
using task graphs of real-world applications such as: Gaussian Elimination (GE), Fast
Fourier Transformation (FFT), LIGO, Epigenomics, and Montage workflows (Bharathi
et al., 2008). The computed results were compared with the ones computed by the HEFT
algorithm. Experimental results showed that PASTA produced schedules with approxi-
mately 20% longer makespan but with approximately 60% less energy consumption than
HEFT’s schedules. As previously stated, the HEFT algorithm does not consider energy
consumption as a optimization objective.

This section presented a review of recent works which tackled multi-objective ME-
HCSP variants using a single-objective problem approach. The reviewed works use tech-
niques such as objective functions aggregation or objective functions prioritization, in
order to tackle multi-objective problems as single-objective problems. As in the previous
section, the DVFS technique is the most used energy-aware approach, although there are
also a few works which consider a low energy consumption idle state approach. Both on-
line and offline schedulers were proposed in the reviewed works, tackling online scenarios
of up to 10000 tasks and 128 machines; and offline scenarios of up to 4096 tasks and 256
machines. Most of the reviewed works designed simple heuristic algorithmic solutions;
although, when compared to the previous section, a greater number complex algorithmic
solutions are applied, such as GA-based and LS-based methods.

4.3 True multi-objective energy-aware scheduling

The works reviewed in this section formulate the ME-HCSP variants as multi-objective
problems and also design true multi-objective algorithmic approaches which compute a
complete set of Pareto solution. The most recent works considering this approach are
briefly summarized below.

A cooperative approach to solve the offline energy-aware scheduling problem was
introduced by Mezmaz et al. (2011). This work proposed a parallel bi-objective hybrid
genetic algorithm, improved with the energy-aware heuristics previously proposed by Lee
and Zomaya (2011). The proposed approach considers precedence-constrained tasks and
aims to minimize the makespan and the energy consumption, the latter using DVFS
techniques. It follows a true multi-objective approach, and computes a complete Pareto
front for the problem and reporting the hypervolume metric. Instances of dimensions
up to 120 tasks and 64 machines were considered during the experimental analysis, and
improvements of up to 12% for the makespan objective and up to 47% for the energy
consumption objective were reported when comparing the proposed GA-based algorithm
with the heuristics proposed by Lee and Zomaya (2011).

The work by Pecero et al. (2011) applied an offline bi-objective GRASP-based
scheduling algorithm to minimize both makespan and the total energy consumption,
while considering precedence-constrained tasks and inter-task communication costs. The
proposed method builds a feasible solution using a greedy evaluation function, and uses

40 Related work

a post-processing bi-objective local search method to improve the quality of the com-
puted solution and to generate a set of Pareto solutions following a true multi-objective
approach. The experimental analysis was performed tackling scenarios with dimensions
up to 88 tasks and 32 machines and comparing the results computed by the proposed
algorithm against the ones computed by a HEFT-based list-scheduling algorithm. Im-
provements of up to 7.78% for the makespan objective and up to 10.47% for the total
energy consumption objective were reported.

Kessaci et al. (2011) proposed an online multi-objective genetic algorithm (MO-GA)
for scheduling a set of independent tasks in order to minimize the energy consumption, to
minimize the carbon dioxide emissions (CO2), and to maximize the profit. The problem
is subject to deadline-constrained tasks and relies in a DVFS-enabled infrastructure for
its energy management. The genetic algorithm makes use of an external archive of non-
dominated solutions in order to maintain the Pareto set of solutions. The decision making
procedure is included as an integral part of the proposed solution, hence the algorithm
provides only one final solution based on the selection parameters provided by the user.
The author also proposes a greedy list-scheduling heuristic for population initialization
which is also used as a reference baseline. One or two elements of the initial population
are initialized using the greedy list-scheduling heuristic, while the rest of the population
is generated randomly. The experimental analysis was performed using realistic workload
traces of the LLNL from the Thunder cluster comprising accounting information from
January 2007 to June 2007, and from RIKEN Integrated Cluster of Clusters (RICC)
comprising accounting information from June 2010 to August 2010. The tasks workload
is executed in a infrastructure comprised by 8 clusters (each ranging from 250 up to 2600
CPU), using a scheduling cycle of 50 seconds. The experimental results show that, when
compared with the greedy list-scheduling heuristic, the MO-GA algorithm is able to
reduce the energy consumption by 29.4%, the CO2 emission by 26.3%, and to increment
the profit by 3.6%. The authors did not evaluate the intermediate Pareto set desirable
properties, hence some aspects of the proposed MO-GA were not analyzed.

Friese et al. (2012) studied the trade-offs between minimizing makespan and mini-
mizing energy consumption when tackling offline scheduling problems in HC systems.
The work considers a set of independent tasks and a idle-machine energy-aware strategy,
which assumes a machine consumes less energy when it is in idle state. An extended
ETC model is used for the problem, with the aggregation of machine energy consump-
tion. The well-known NSGA-II (Deb et al., 2002) metaheuristic is applied to solving the
problem, and two heuristics are used for population initialization: i) a MinMin heuris-
tic for makespan minimization, and ii) an MCT-based heuristic for energy consumption
minimization. Experimental analysis was performed tackling scenarios with dimensions
of 1000 tasks and 50 machines. The computed results show that NSGA-II is able to
optimize the initial population and provide a well defined Pareto front. Again, as in
the previous related work, the Pareto set desirable properties are not evaluated. Vari-
ous figures are presented in this work, showing the solution computed by the MinMin
heuristic, and several Pareto fronts computed by the NSGA-II metaheuristic. Although
no numerical results are presented, the presented figures clearly show that the NSGA-
II metaheuristic matches the accuracy of the MinMin heuristic when considering the
makespan objective function, and is able to outperform the accuracy of the MinMin
heuristic when considering the energy consumption objective function.

4.4 Summary 41

The true multi-objective approach, despite being the most formally correct approach,
is the least used approach for tackling ME-HCSP in the reviewed literature. This is be-
cause true multi-objective approaches have significantly higher computing requirements
than single-objective approaches. The higher computing requirements has a considerable
impact on the dimension of the scenarios which can be successfully tackled; the highest
dimension scenarios tackled in the reviewed literature using this approach were com-
prised of only 1000 tasks and 50 machines. As for the algorithmic approaches, all of the
reviewed works in this section designed complex algorithmic solutions, such as GA-based,
or GRASP-based algorithms. This contrasts with the previous sections, where simple
algorithmic solutions were preferred.

4.4 Summary

The energy-aware scheduling problem in heterogeneous systems is clearly a multi-
objective problem. In its simplest formulation the problem must consider the energy
consumption of the infrastructure and some system performance metric (e.g. makespan,
task acceptance ratio, etc.). Taking this into consideration, there are three popular ap-
proaches in the literature to tackle energy-aware scheduling problems in heterogeneous
systems.

The first approach consists in formulating the problem as a single-objective problem
considering the other objective as a constraint. That is, either to maximize the perfor-
mance of the system subject to a maximum energy consumption budget, or to minimize
energy subject to a minimum system performance threshold.

The second approach consists in formulating the problem as a multi-objective prob-
lem, but tackling the problem as a single-objective problem. This can be done either by
aggregating the energy consumption and system performance objectives into one unique
weighed objective function, or by prioritizing one of the objectives.

The final approach is to formulate and tackle the problem as a multi-objective prob-
lem, computing a complete set of Pareto of trade-off solutions for the problem.

Most of the reviewed energy-aware scheduling works propose a list-scheduling heuris-
tic and either tackle a single-objective optimization problem, or a multi-objective problem
using a single-objective approach. This is usually because metaheuristic algorithms tend
to require greater computational cost than greedy list-scheduling heuristics. On the other
hand, the true multi-objective approach has been significantly less tackled; and when it
is tackled, population-based metaheuristic algorithms are the preferred applied methods.
This is because the additional computing cost of population-based metaheuristic algo-
rithms is outweighed by their ability to compute a complete and accurate Pareto set in
just one algorithm execution.

Regarding the energy management techniques, the main trend in energy-aware sched-
ulers proposed in the related literature is to apply energy management methods within
the computing elements (Ko lodziej et al., 2012). In the literature we can find two differ-
ent strategies for energy management: the active strategy, and the passive strategy. In
the active strategy, the energy management decision parameters are embedded into the
algorithmic approach. The most popular of these approaches use DVFS levels in order
to actively lower the energy consumption of each machine in the system.

42 Related work

The passive strategy relies on hardware embedded energy saving features in order
to support a machine low-energy state when the machine is idle; a machine is automat-
ically considered to be in idle state when no computing task is assigned to it. These
hardware-embedded energy-saving features are proprietary technologies and their effi-
ciency depends on the hardware specification, for example AMD provides the Optimized
Power Management technology in the Opteron processor family (Conway and Hughes,
2007), Intel provides the SpeedStep technology in Xeon/i7 processor family (Anshumali
et al., 2010), etc.

As a final summary, Table 4.1 presents a brief outline of the works reviewed in this
chapter.

Table 4.1: Summary of the reviewed related works.

Author/s (year)
Energy Algorithmic Max. instance
control method dimension
strategy (tasks×machines)

P
ro

b
le

m
o
p

ti
m

iz
a
ti

o
n

a
p

p
ro

a
ch

S
in

gl
e-

ob
je

ct
iv

e Kim et al. (2007) active EDF-based 16000×32
Zhang et al. (2010) active Two-phase heuristic 1000×20

Rizvandi et al. (2010) active List-scheduling 500×32
Apodaca et al. (2011) active GA, TS, Tree search 4000×25

Zhu et al. (2011) active EDF-based 512×128
Ma et al. (2012) passive List-scheduling 100×60

Young et al. (2012) active List-scheduling 1000×8

M
u

lt
i-

ob
je

ct
iv

e
as

si
n

gl
e-

ob
je

ct
iv

e

Kim et al. (2008) active MinMin-based 50×10
Lee and Zomaya (2009) active Two-phase heuristic 600×64

Li et al. (2009) passive MinMin-based 10000×128
Khan and Ahmad (2009) active NBS 4370×16
Shekar and Izadi (2010) active DLS-based 200×5

Zhu et al. (2010) active Two-phase heuristic 2048×128
Garg et al. (2011) active List-scheduling 119849×8
Pinel et al. (2011) passive Local search 512×16

Ko lodziej et al. (2011) active GA 4096×256
Diaz et al. (2011) active List-scheduling 512×16

Lindberg et al. (2012) active List-scheduling 100000×16
Sharifi et al. (2013) passive Two-phase heuristic 100×50

M
u

lt
i-

ob
je

ct
iv

e Mezmaz et al. (2011) active GA-based 120×64
Pecero et al. (2011) active GRASP-based 88×32
Kessaci et al. (2011) active MO-GA 119849×8
Friese et al. (2012) passive NSGA-II 1000×50

The next chapter will present the main algorithmic contribution of this thesis: the
ME-MLS algorithm; a novel local search based heuristics for tackling the ME-HCSP. The
ME-MLS is a parallel population-based metaheuristic which uses a true multi-objective
approach and computes a complete Pareto set of trade-off solutions. The energy-aware
approach proposed in the ME-MLS algorithm follows a passive strategy, considering
the maximum and minimum machine energy consumption provided by the hardware
manufacturer specification. Following this approach, a machine with assigned workload
is assumed to operate at its peak performance, consuming the maximum energy detailed
in its hardware specification. Conversely, a machine with no workload is assumed to be in
idle state with the embedded energy saving technology keeping the energy consumption
at its minimum specified value.

Chapter 5

ME-MLS: a true multi-objective
algorithm for the ME-HCSP

This chapter presents the main algorithmic contribution of this thesis, the ME-MLS
algorithm. The ME-MLS algorithm is a parallel population-based local search meta-
heuristic for tackling the ME-HCSP using a true multi-objective approach. The pro-
posed algorithm aims at computing an accurate and diverse set of Pareto solutions for
the ME-HCSP, while at the same time requiring reduced execution time.

This chapter is organized as follows. First, the general schema of the ME-MLS
is described in order to present a general overview of the algorithm. The in-memory
problem solution encoding is presented next, along with the population initialization
heuristic. After that, two archiving algorithms for the ME-MLS are detailed. The design
of the proposed embedded local search for the ME-MLS algorithm is presented. Finally,
some implementation details are stated.

5.1 Algorithm design

The general outline of the ME-MLS algorithm is strongly based on the PAES algorithm,
which was previously presented in Section 3.4.2. As previously stated, the ME-MLS
algorithm aims at computing an accurate and diverse set of Pareto solutions in reduced
execution time.

In order to compute a set of Pareto solutions, the ME-MLS algorithm maintains a
size-bounded population of non-dominated solutions (or elite solutions). To guarantee
the elite population to be as diverse as possible, an efficient archiving algorithm is applied.
The archiving algorithm guarantees a diverse set of solutions avoiding biasing the search
toward any of the two objectives of the ME-HCSP.

The ME-MLS makes use of an embedded Pareto-based local search heuristic for com-
puting accurate solutions, iteratively improving the solutions in the elite population. In
order for the local search algorithm to consider both ME-HCSP objectives, two different
optimization strategies were designed: the makespan optimization strategy, and the en-
ergy optimization strategy. The makespan strategy focuses on improving the makespan
objective function, while the energy strategy focuses on improving the total energy con-
sumption objective function. Both strategies are applied during the algorithm execution.

A shared-memory parallel implementation is proposed in the design of the ME-MLS
algorithm in order to maintain a reduced execution time.

43

44 ME-MLS: a true multi-objective algorithm for the ME-HCSP

This parallel implementation allows the ME-MLS to simultaneously improve multiple
solutions from the population, taking advantage of modern multi-core architectures. The
algorithm makes use of a pool of threads following a peer model, where no thread per-
forms a master role, reducing the algorithm synchronization requirements. Algorithm 5
presents the logic of each thread in the ME-MLS algorithm.

Algorithm 5 Pseudo-code of each thread in the ME-MLS algorithm

Require: S size-bounded population of elite solutions
1: sinit ← GenerateInitialSolution()
2: S ← S ∪ {sinit}
3: SynchronizationBarrier()
4: while stopping criterion is not satisfied do
5: LockPopulation()
6: s← Choose a random solution from S
7: s′ ← Clone s solution
8: UnlockPopulation()
9: g ← Choose a random strategy (makespan or energy)

10: i← Random number of iterations (1 ≤ i ≤ THREAD IT)
11: repeat
12: for 0→ i do
13: s′ ← LocalSearch(g, s′)
14: end for
15: if s′ dominates s then
16: TryLockPopulation()
17: if population is locked then
18: TestAddToArchive(S, s′)
19: UnlockPopulation()
20: search ends ← true
21: else
22: i← Random number (1 ≤ i ≤ THREAD IT/REWORK FACTOR)
23: search ends ← false
24: end if
25: else
26: search ends ← true {discard s′}
27: end if
28: until search ends
29: end while

Each thread starts by generating an initial solution sinit using some fast non-
deterministic heuristic algorithm (line 1). It is important for the initialization algorithm
to be non-deterministic in order to generate a diverse set of solutions for the initial pop-
ulation. After generating an initial solution, each thread adds its generated solution into
the population and synchronizes itself with all the other threads in the thread pool (lines
2–3). Once the initial solutions are generated, all the threads start the main loop of the
algorithm.

Every iteration, each thread starts by locking the population in order to gain exclusive
access to it. Once the population is locked, the thread locking the population randomly
chooses and clones a solution from the population, s→ s′ (lines 5–8).

5.1 Algorithm design 45

Figure 5.1: Diagram of the ME-MLS algorithm.

The locking thread unlocks the population and randomly chooses a search strategy
g (either makespan or energy) and a random number of iterations i, bounded by the
THREAD IT parameter, for the local search (lines 8–10).

A strategy-dependent local search is applied i-times to the cloned solution s′ hoping
to improve it (lines 12–14). If the local search does not improve the solution s′, i.e. the
cloned solution s′ does not dominate the original solution s, then the cloned solution
s′ is discarded and the current outer loop iteration finishes (line 26). Otherwise, if the
solution s′ dominates the solution s, then the function TestAddToArchive() is executed
(line 18).

The function TestAddToArchive(), also known as archiving algorithm, must determine
if the solution s′ should be added to the size-bounded population S or not. An exclu-
sive lock on the population must be issued in order to execute the TestAddToArchive()
function, but a different locking approach is proposed this time because the TestAd-
dToArchive() function can be quite computing intensive. This time each thread queries
for a population lock, if the lock is granted, then the function TestAddToArchive() is
executed. If the population is already locked by another thread, the threads which failed
to lock the population will choose a reduced random number of additional local search
iterations (line 22). These reduced additional local search iterations are bounded by
the THREAD IT parameter, and aim at providing further improvements to the solution s′

while the population lock is not available. Once the additional local search iterations are
performed, the thread queries for the population lock hoping this time the lock would
be granted. If the population lock is still not granted, then another reduced number
of additional local search iterations is chosen, and the inner loop of the search repeats
itself until the lock is granted (lines 11–28). Figure 5.1 shows the general schema of the
ME-MLS algorithm.

The ME-MLS algorithm uses a size-bounded Pareto-based approach for storing the
solutions in the population, storing only non-dominated solutions. In population-based
algorithms, the population must be size-bounded for the algorithm to efficiently compute
an accurate solution set (Knowles and Corne, 2003).

46 ME-MLS: a true multi-objective algorithm for the ME-HCSP

The problem of dealing with size-bounded populations in multi-objective optimization
algorithms has been throughly studied, and a number of archiving algorithms have been
proposed for the implementation of the TestAddToArchive() function (Deb et al., 2002;
Knowles and Corne, 2000; Zitzler et al., 2001). A pseudo-code of the generic Pareto-
based TestAddToArchive() function is shown in Algorithm 6. The function starts by
performing a non-dominance test between the candidate solution s′ and every solution
already in the population. If s′ is dominated by any solution in the population, then s′

is promptly discarded (line 2). If s′ dominates one or more solution in the population,
then the dominated solutions are discarded and s′ is added to the population (lines 4–5).
Finally, if s′ do not dominates nor is dominated by any solution in the population, then
all solutions are non-dominated and thus s′ is added into the population. In this latter
case, special care must be taken since the population is bounded in size. If the population
exceeds its maximum capacity with the inclusion of the solution s′, then one solution
in S or s′ itself must be discarded according to some criteria. In order to be effective,
this criteria must address the diversity of the Pareto set, defined as one goal of the true
multi-objective problem solving approach (lines 7–10).

Algorithm 6 Pseudo-code of the generic Pareto-based TestAddToArchive() function

Require: S size-bounded population of solutions
s′ solution to be tested for its inclusion into S

1: if s′ is dominated by any s ∈ S then
2: /* discard s′ */
3: else if s′ dominates any s ∈ S then
4: S ← S \ {solutions dominated by s′}
5: S ← S ∪ {s′}
6: else
7: S ← S ∪ {s′}
8: if |S| > MAX POPULATION SIZE then
9: Discard the exceeding solution from S according to some criteria

10: end if
11: end if

Two different versions of the ME-MLS algorithm were devised, depending on the
archiving algorithm used: i) a fast greedy ad-hoc archiving algorithm and ii) the Adaptive
Grid Archiving (AGA) algorithm proposed by Knowles and Corne (2000). Both archiving
algorithms will be presented in detail in Section 5.4.

5.2 Problem encoding

Two well-known structures are proposed in the related literature for the in-memory
encoding of the HCSP schedules, the machine-oriented encoding and the task-oriented
encoding (Nesmachnow et al., 2010).

The machine-oriented encoding makes use of a bi-dimensional matrix representation
to maintain one array of tasks for each machine. Each array contains the tasks assigned
to be executed by the corresponding machine. For efficiency reasons the bi-dimensional
structure is allocated statically in the ME-MLS algorithm, hence for encoding a schedule
of up to N tasks and M machines, the bi-dimensional matrix should be N ×M in size.

5.3 Population initialization 47

(a) Machine-oriented encoding (b) Task-oriented encoding

Figure 5.2: Encodings for in-memory representation of HCSP schedules.

The task-oriented encoding uses a uni-dimensional array representation. Each bucket
in the array represents a task, and stores the value of the machine in which that task is
to be executed. Again, for efficiency reasons the encoding structure is allocated statically
in the ME-MLS algorithm, requiring an array of size N in order to encode schedules of
up to N tasks.

Given a scenario of dimension 9 × 4, comprised by P = {m1,m2,m3,m4} and T =
{t1, t2, ..., t9}. Suppose a schedule s is to be encoded in memory with the following
tasks-to-machine assignments: m1 ← {t1, t5, t9}, m2 ← {t3, t2}, m3 ← {t6}, and m4 ←
{t8, t4, t7}. Figure 5.2a shows the schedule s encoded using a matrix machine-oriented
encoding, and Figure 5.2b shows the schedule s encoded using a vector task-oriented
encoding

ME-MLS maintains in memory a multi-structure comprising both a machine-based
and a task-based encoding for schedules. This multi-structure allows ME-MLS to ef-
ficiently access the tasks assigned to a given machine in O(1) via the machine-based
encoding; and given a certain task, locate the machine to which is assigned also in O(1)
via the task-based encoding.

5.3 Population initialization

The initialization mechanism is a sensitive matter in the design of a metaheuristic algo-
rithm. Providing a quality starting population, will most certainly improve the overall
algorithm outcome. A good initialization mechanism should provide a diverse and ac-
curate set of solutions. But because the ME-MLS aims at requiring reduced execution
times, a good initialization mechanism for the ME-MLS should also be a fast mechanism.

Considering these properties, the rMCT list-scheduling heuristic, a randomized ver-
sion of the MCT heuristic, is proposed for seeding the ME-MLS initial population.

The MCT is a simple heuristic which works by greedily minimizing the total com-
puting time of the machine in which each task is scheduled. The scheduling is built one
task at a time ti, i = 1...n, assigning the task ti to the machine mj with the minimum
completion time ctij . Algorithm 7 shows the pseudo-code of the MCT heuristic.

48 ME-MLS: a true multi-objective algorithm for the ME-HCSP

Algorithm 7 Pseudo-code of the MCT heuristic

Require: N number of tasks to be scheduled
M number of available machines

1: for i = 1→ N do
2: L← ∅
3: for j = 1→M do
4: ctij ← completion time of task ti in machine mj

5: L← L ∪ {ctij}
6: end for
7: Schedule task ti into the machine index mj with the minimum ctij ∈ L.
8: end for

The rMCT is a randomized version of the MCT. The rMCT heuristic randomly
chooses a starting task ts, a direction step (+1 or −1), and proceeds just as the MCT
heuristic. Algorithm 8 shows the pseudo-code of the rMCT heuristic.

Algorithm 8 Pseudo-code of the rMCT heuristic

Require: N number of tasks to be scheduled
M number of available machines

1: s← Choose random starting task subindex
2: d← Choose random starting direction step (d ∈ {+1,−1})
3: for i′ = 1→ N do
4: L← ∅
5: i← (s+ d× i′) mod N
6: for j = 1→M do
7: ctij ← completion time of task ti in machine mj

8: L← L ∪ {ctij}
9: end for

10: Schedule task ti into the machine mj with the minimum ctij ∈ L
11: end for

The randomization provided by the rMCT heuristic, is used by the initialization
mechanism to provide accurate and hopefully diverse starting schedules.

The MCT algorithm is not a among the most accurate list-scheduling heuris-
tics (Braun et al., 2001), but is a very efficient heuristic. Both MCT and rMCT al-
gorithms present a complexity order of O(M × N) ∼ O(n2), hence both are very fast
algorithms and present very good scalability behavior.

5.4 Archiving algorithm

The elite population in ME-MLS is limited in size, so an archiving algorithm is required
when the maximum size of the population is reached and the algorithm computes a
new non-dominated solution. Two archiving methods were considered for the ME-MLS
algorithm: a Fast Greedy Ad-hoc Archiving (FGAA) technique, and the Adaptive Grid
Archiving (AGA) technique.

5.4 Archiving algorithm 49

5.4.1 Fast Greedy Ad-hoc Archiving (FGAA)

This technique makes use of heuristic knowledge regarding the makespan and energy
consumption metrics, and provides two basic archiving properties: i) it always inserts
the newly found non-dominated schedules into the population, helping to prevent a
stagnation situation; and ii) those schedules that compute the minimum value in at
least one of the problem objective functions are never replaced. The algorithm works as
follows. When the population is full, a schedule currently in the population is selected to
be replaced based on a distance function, defined as the sum of the relative improvements
of each objective metric.

The FGAA algorithm is a simple method that allows the local search procedure in
ME-MLS to perform efficiently. On the other hand, the simple procedure in FGAA is
not especially conceived to maintain high diversity in the population. When using the
FGAA technique in the ME-MLS algorithm we will refer to ME-MLSFGAA algorithm.

5.4.2 Adaptive Grid Archiving (AGA)

The AGA technique was initially proposed as the archiving strategy for the PAES al-
gorithm, proposed by Knowles and Corne (2000) and further formalized by Knowles
and Corne (2003). The AGA algorithm works as follows. When the archive is not full,
all non-dominated solutions are archived. When the archive is full, the algorithm tests
which solution should be discarded based on how crowded together are the solutions in
the archive. In order to compute the crowding of the solutions in the archive, the objec-
tive space is divided into hypercubes which define a multi-dimensional grid. In order to
maintain diversity in the archive, the algorithm balances the density of non-dominated
solutions in each one of the hypercubes. Each time a new solution s′ is to be added,
the grid location of s′ in the solution space is determined. If the grid location of the
new solution does not match with the most crowded hypercube, a solution belonging
to that most crowded hypercube is removed and the new solution is inserted into the
archive. However, to guarantee the archive maintains the Pareto front extreme solutions,
all solutions which are extremal on any objective function are protected from removal.
The multi-dimensional grid defined by the hypercubes must be constantly adapted in
position and size, in order for the grid to cover all the archived solutions. Algorithm 9
presents the pseudo-code of the AGA algorithm.

The AGA algorithm starts by updating the boundaries of the adaptive grid (lines 1–
4). After the grid is adapted to the current solutions in the archive, a dominance test is
performed on the solution to be added to the archive. If the new solution s′ is dominated
by some existing solutions in the archive, then s′ is discarded (lines 6–8). Otherwise,
exactly one of the following cases can occur:

� If the new solution s′ dominates some existing solutions in the archive, then all the
dominated solutions are discarded and the new solution s′ is added to the archive
(lines 9–12).

� Otherwise, if the new solution s′ is non-dominated with respect to S and the archive
is full, then the new solution s′ is added to the archive only if it extends the bound-
aries of the grid (lines 13–16), or if it is not located in the most crowded hypercube
(lines 16–19). In both cases, a solution from the most crowded hypercube is re-
moved in order to make room in the archive for the new solution s′.

50 ME-MLS: a true multi-objective algorithm for the ME-HCSP

� Last, if the new solution s′ is non-dominated with respect to S and the archive
is not at its full capacity, then the new solution s′ is added to the archive (lines
22–24).

Algorithm 9 Pseudo-code of the AGA algorithm

Require: K set of objectives in the MOP
S archive of non-dominated solutions
s′ new non-dominated solution

1: for all k ∈ K do
2: ubk ← Compute the upper bound value of k for all s ∈ S
3: lbk ← Compute the lower bound value of k for all s ∈ S
4: Re-calculate grid boundaries for dimension k
5: end for
6: if s′ is dominated by some s ∈ S then
7: /* discard s′ */
8: else
9: if s′ dominates some s ∈ S then

10: Discard all s ∈ S dominated by s′

11: S ← S ∪ {s′}
12: else if |S| = MAX ARCHIVE SIZE then
13: if s is outside grid boundaries then
14: Discard a solution from the most crowded hypercube
15: S ← S ∪ {s′}
16: else if s is not in the most crowded hypercube then
17: Discard a solution from the most crowded hypercube
18: S ← S ∪ {s′}
19: else
20: /* discard s′ */
21: end if
22: else
23: S ← S ∪ {s′}
24: end if
25: end if

Figure 5.3 shows an example of an AGA grid for a bi-objective minimization problem.
It can be seen that some hypercubes are more crowded than others. If the archive is full,
the solutions which fit in the most crowded hypercubes will be the first candidates to be
discarded when new solutions are found.

The AGA strategy guarantees three very desirable properties for multi-objective op-
timization algorithms: i) it maintains solutions at the extremes of all objectives, ii) it
maintains solutions in all of the Pareto occupied regions, and iii) it distributes the re-
maining solutions evenly among the Pareto regions. When using the AGA replacement
technique in the ME-MLS algorithm we will refer to the ME-MLSAGA algorithm.

5.5 Embedded Local search 51

Figure 5.3: Example of an AGA grid for a bi-objective minimization problem.

5.5 Embedded Local search

The ME-MLS embedded local search is strongly based on the rPALS algorithm, which
was originally proposed by Nesmachnow et al. (2012b) for tackling the HCSP. The rPALS
algorithm, in turn, is based on the PALS algorithm by Alba and Luque (2007), which
was proposed for the DNA fragment assembly problem. In order to fully describe the
ME-MLS embedded local search, the already mentioned PALS and rPALS algorithms
must be presented first.

5.5.1 The general schema of the PALS algorithm

The PALS algorithm (Alba and Luque, 2007) aims to be a very efficient local search
heuristic for computing near-optimal solutions for large instances of hard to solve prob-
lems. It is based on the 2-opt heuristic proposed by Lin and Kernighan (1973), an
heuristic originally proposed for solving the traveling salesman problem (TSP) (Korte
and Vygen, 2007). Algorithm 10 shows the pseudo-code of the PALS algorithm pro-
posed by Alba and Luque (2007).

In the PALS algorithm, N is the set of permutable elements of a solution. The
algorithm starts by generating an initial working solution s using the GenerateInitial-
Solution() method (line 1). The algorithm evaluates the permutation of every tuple of
elements (i, j), using the CalculateDelta(s, i, j) method, and maintains the evaluated
permutations in the set L (lines 4–11). This δ-value represents a relative estimation
measure of how much a given permutation of elements would improve a solution. It is
worth noting that the algorithm only considers permutations which might improve the
working solution (δ ≥ 0). Then, the algorithm selects a permutation from the set , and
applies the selected permutation to the working solution s (lines 13–14).

52 ME-MLS: a true multi-objective algorithm for the ME-HCSP

Algorithm 10 Pseudo-code of the PALS algorithm

Require: N is the set of permutable elements in a solution
1: s← GenerateInitialSolution()
2: repeat
3: L← ∅
4: for all i ∈ N do
5: for all j ∈ N/j 6= i do
6: δ ← CalculateDelta(s, i, j)
7: if δ ≥ 0 then
8: L← L ∪ {(i, j, δ)}
9: end if

10: end for
11: end for
12: if L 6= ∅ then
13: (i, j, δ)← Select best movement from L
14: s← Apply the movement defined by the tuple (i, j)
15: end if
16: until no changes are applied to s

The algorithm iterates as long a it is able to find a permutation with a δ-value capable
of improving s. The calculation of the δ-value of a permutation is a key issue in PALS.
The δ-value is an estimate improvement measure and should not compute the problem
objective function. Instead, a much more computationally efficient measure should be
used.

5.5.2 rPALS algorithm for the HCSP

Nesmachnow et al. (2012b) proposed rPALS, a randomized variant of PALS for solving
the HCSP using the ETC computing model. According to the HCSP formulation, we
have a collection of tasks T that have to be scheduled on a collection of machines P .
The goal in the HCSP is to minimize the total length of the schedule (or makespan).
Refer to Section 2.3.1 for a complete formulation of the HCSP, and Section 2.3.2 for a
formulation of the ETC computing model.

The rPALS algorithm improves the PALS algorithm for tackling the HCSP, two of
the most remarkable improvements of rPALS are its stochastic nature and the multiple
neighborhoods approach.

Regarding the former improvement, experiments showed that the original PALS al-
gorithm does not scale efficiently when solving large HCSP scenarios. To tackle this
problem, the deterministic approach in PALS was replaced by a stochastic approach in
rPALS. Instead of evaluating all the possible permutations, rPALS only evaluates a ran-
dom subset of the whole set of permutations. Because of the reduced size of the evaluated
subset of permutations, rPALS is able to scale up to tackle real-world scenarios while
maintaining reasonable execution times.

The second remarkable improvement in rPALS is the introduction of multiple search
neighborhood structures. The rPALS algorithm uses two neighborhood structures simul-
taneously, the swap neighborhood structure and the move neighborhood structure.

5.5 Embedded Local search 53

The neighborhood structures for the rPALS algorithm are defined as follows:

� The swap neighborhood structure is defined by the swap of tasks operation, which
swaps the assigned execution machines of a pair of tasks. For example, given
two tasks t1 and t2 which are scheduled to be executed by machines m1 and m2

respectively. When the swap operator is applied, the tasks are swapped and task
t1 ends being scheduled to be executed in machine m2 and task t2 being executed
by machine m1.

� The move neighborhood structure is defined by the operation of moving a task
from one machine to another. When the move operation is applied to the task
t and the machine m, then the task t is re-assigned from its currently assigned
execution machine to the machine m.

These two neighborhood structures are randomly applied during the search. The
multiple search neighborhood structures increased the accuracy of the solutions computed
by rPALS. Algorithm 11 presents the pseudo-code of the rPALS algorithm for the HCSP.

Algorithm 11 Pseudo-code of the rPALS algorithm for the HCSP

1: s← GenerateInitialSolution()
2: while stopping criterion is not satisfied do
3: L← ∅
4: m← Choose a random machine
5: n← Choose a random neighborhood structure (swap or move)
6: if n is swap neighborhood then
7: while RAND MAX TASKS is not reached do
8: t← Choose a random task assigned to m in s
9: mswap ← Choose a random machine (m 6= mswap)

10: Tswap ← Select RAND MAX TASK SWAP tasks from mswap in s
11: for all tswap ∈ Tswap do
12: δ ← CalculateDeltaswap(s, t, tswap)
13: if δ ≥ 0 then
14: L← L ∪ {(t, tswap, δ)}
15: end if
16: end for
17: end while
18: else if n is move neighborhood then
19: mmove ← Choose a random machine (m 6= mmove)
20: Tmove ← Select RAND MAX TASK MOVE tasks from mmove in s
21: for all tmove ∈ Tmove do
22: δ ← CalculateDeltamove(s, tmove,m)
23: if δ ≥ 0 then
24: L← L ∪ {(tmove,m, δ)}
25: end if
26: end for
27: end if
28: s← Apply the swap/move in L with the best δ-value
29: end while

54 ME-MLS: a true multi-objective algorithm for the ME-HCSP

The rPALS algorithm starts by generating an initial solution s using some list-
scheduling algorithm (line 1). In the work by Nesmachnow et al. (2012b) the MCT
algorithm is used for the initial solution generation. After generating the initial working
solution, the algorithm enters its main loop until some stopping criterion is satisfied.
Each iteration, the algorithm randomly selects a machine m ∈ P and randomly selects
a neighborhood structure n ∈ {swap,move} (lines 3–4).

If the swap neighborhood structure is selected (n = swap), the algorithm starts an
inner loop and iterates a number of times defined by the RAND MAX TASKS parameter.
Each iteration, a task t is randomly chosen from the tasks assigned to be executed by
the machine m in solution s. For each task t, a destination machine mswap is randomly
selected and a set of target tasks Tswap are also randomly selected from the tasks assigned
to machine mswap in s (|Tswap| ≤ RAND MAX TASK SWAP). The δ-value is calculated for the
swapping of each task t with every task tswap ∈ Tswap. If the swap improves the working
solution, then it is included in the set L of candidate movements (lines 7–17).

If the move neighborhood is selected (n = move), then a destination machine mmove is
randomly selected and a set of tasks Tmove are randomly selected from the tasks assigned
to machine mmove in s (|Tmove| ≤ RAND MAX TASK MOVE). The δ value is calculated for
the moving of every task in Tmove into the machine m. If the move improves the working
solution, then it is included in the set L (lines 19–25).

Last, the movement in L with the best δ-value is applied to the current solution
s. Results showed that the rPALS algorithm is an accurate and efficient algorithm for
tackling the HCSP.

5.5.3 ME-rPALS algorithm for the ME-HCSP

The ME-rPALS is a novel local search algorithm for tackling the ME-HCSP. It is strongly
based on the rPALS algorithm and was specifically design to be used as the ME-MLS
embedded local search.

Several improvements to the original rPALS were introduced in the ME-rPALS al-
gorithm in order to tackle the ME-HCSP. The most notable modification in ME-rPALS
with respect to the rPALS algorithm is the introduction of a second objective function:
the total energy consumption objective function. The rPALS algorithm was designed
for the HCSP, hence it considers only one objective function; on the other hand, the
ME-rPALS must consider two objective functions in order to successfully tackle the
ME-HCSP. For this purpose, two different optimization strategies were designed: the
makespan optimization strategy, and the energy optimization strategy. The makespan
strategy focuses on improving the makespan objective function, while the energy strat-
egy focuses on improving the total energy consumption objective function. Algorithm 12
presents the pseudo-code of the ME-MLS embedded local search.

The local search algorithm receives the solution to be improved s and the improving
search strategy g (makespan or energy) as input arguments. The ME-MLS algorithm
starts by randomly selecting a machine msrc. In order to increase the accuracy of the
algorithm, the method for randomly choosing the machine msrc does not follow a uniform
distribution. Instead, if the selected optimization strategy g is the makespan strategy,
then with high probability the machine msrc will be selected among the machines with
the longest computing time; else if the selected optimization strategy g is the energy
strategy, then with high probability the machine msrc will be selected among the ma-
chines consuming the most energy.

5.5 Embedded Local search 55

Algorithm 12 Pseudo-code of the ME-MLS local search algorithm

Require: s solution to be improved
g search strategy applied to improve s

1: L← ∅
2: msrc ← Choose a random machine from s
3: Tsrc ← Select SRC TASK NHOOD tasks from msrc

4: for all tsrc ∈ Tsrc do
5: n← Choose a random neighborhood structure (swap or move)
6: if n is swap neighborhood then
7: mdst ← Choose a random machine from s (mdst 6= msrc)
8: Tdst ← Select DST TASK NHOOD tasks from mdst

9: for all tdst ∈ Tdst do
10: (δmakespan, δenergy)← CalculateDeltaswap(s, tsrc, tdst)
11: if δmakespan ≥ 0 or δenergy ≥ 0 then
12: L← L ∪ {(tsrc, tdst, δmakespan, δenergy)}
13: end if
14: end for
15: else if n is move neighborhood then
16: Mdst ← Choose DST MACH NHOOD machines (msrc /∈Mdst)
17: for all mdst ∈Mdst do
18: (δmakespan, δenergy)← CalculateDeltamove(s, tsrc, mdst)
19: if δmakespan ≥ 0 or δenergy ≥ 0 then
20: L← L ∪ {(tsrc,mdst, δmakespan, δenergy)}
21: end if
22: end for
23: end if
24: if g is makespan strategy then
25: s← Apply swap/move in L with the best δmakespan value
26: else if g is energy strategy then
27: s← Apply swap/move in L with the best δenergy value
28: end if
29: end for

After msrc is chosen, a set of tasks Tsrc from the ones assigned to be executed by
machine msrc is selected (lines 2–3).

For each task tsrc ∈ Tsrc, the algorithm randomly chooses a neighborhood structure
n to perform the search (line 5). The ME-rPALS algorithm makes use of the same neigh-
borhood structures as the rPALS algorithm, but choosing one neighborhood structure for
each task tsrc is a significant modification when comparing to the rPALS algorithm. In
the rPALS algorithm only one neighborhood structure n is selected each outer iteration,
hence the set L in rPALS may contain improvements found either using the swap or the
move neighborhood structure, but not both. The ME-rPALS algorithm allows the set L
to simultaneously have improvements found using the swap and the move neighborhood
structures, hence allowing both neighborhoods to compete with each other during the
search procedure. If the swap neighborhood structure is selected (n = swap), the algo-
rithm randomly selects a machine mdst and a set of tasks Tdst from the tasks assigned
to mdst (lines 7–8).

56 ME-MLS: a true multi-objective algorithm for the ME-HCSP

The δ-value tuple is calculated for the swapping of the previously selected task tsrc
and each task tdst ∈ Tsrc (lines 9–13). The algorithm only accepts into the set L the
swapping of tasks which improve at least one of the objective functions (lines 11–13).
Similarly, if the move neighborhood is selected (n = move), the algorithm randomly
selects a set of destination machines Mdst (line 16). The δ-value tuple is calculated for
the moving of the task tsrc to each of the machines mdst ∈ Mdst (lines 17–22). Again,
the algorithm only accepts moving of tasks which improve at least one of the objective
functions (lines 19–21).

If the search strategy g is the makespan strategy, then the swap or move with the best
δmakespan is applied to the working solution s. Else, if g is the energy search strategy,
then the swap or move with the best δenergy is applied to s (lines 24–28).

The CalculateDeltaswap(s, tsrc, tdst) and CalculateDeltamove(s, tsrc,mdst) functions are
a key part of the algorithm and provide a measure of how useful a given movement is. In
order to fully define both CalculateDelta() functions, a set of auxiliary functions must
be defined first. Let etc(ti,mj) be a function that, given a task ti and a machine mj ,
returns the time required by mj to successfully execute ti. Let ct(mj) be a function
which, given a machine mj , returns the time required by mj to successfully execute all
its assigned tasks (i.e.

∑
etc(ti,mj) for all ti assigned to mj). Let emax(mj) be the

amount of energy per time unit that machine mj consumes when it is executing some
task, and let eidle(mj) be the amount of energy per time unit that machine mj consumes
when it is in idle state.

The CalculateDeltaswap(s, tsrc, tdst) computes the tuple (δmakespan, δenergy) as follows.
Suppose tsrc and tdst are being swapped, let msrc be the machine to which tsrc is cur-
rently assigned and let mdst be the machine to which tdst is currently assigned. Let
CTsrc be equal to ct(msrc), and CTdst be equal to ct(mdst). Let CT ′src be the compute
time of the machine msrc after applying the given movement (i.e. CT ′src = ct(msrc) −
etc(tsrc,msrc) + etc(tdst,msrc)). And finally, let CT ′dst be the compute time of the ma-
chine mdst after applying the given movement (i.e. CT ′dst = ct(mdst) − etc(tdst,mdst) +
etc(tsrc,mdst)). The δmakespan-value for the CalculateDeltaswap() is defined making use of
the CalculateDeltamakespan(CTsrc, CTdst, CT

′
src, CT

′
dst) function which is defined in Equa-

tion 5.1. On the other hand, the δenergy-value for the CalculateDeltaswap() is defined mak-
ing use of the CalculateDeltaenergy(CTsrc, CTdst, CT

′
src, CT

′
dst) function which is defined

in Equation 5.2

As for the CalculateDeltamove(s, tsrc,mdst) function. Suppose tsrc is to be moved
to mdst, let msrc be the machine to which tsrc is currently assigned. Again,
let CTsrc be equal to ct(msrc), and let CTdst be equal to ct(mdst). Let CT ′src
be the compute time of the machine mx after applying the movement, which
this time is equal to CT ′src = ctsrc − etc(tsrc,msrc). Let CT ′dst be the com-
pute time of the machine mdst after applying the movement, CT ′dst = ctdst +
etc(tsrc,mdst). Again, using these new definitions, the δmakespan-value for the
CalculateDeltamove() is defined by the CalculateDeltamakespan(CTsrc, CTdst, CT

′
src, CT

′
dst)

in Equation 5.1; and the δenergy-value for the CalculateDeltaswap() is defined by the
CalculateDeltaenergy(CTsrc, CTdst, CT

′
src, CT

′
dst) in Equation 5.2

CalculateDeltamakespan(CTx, CTy, CT
′
x, CT

′
y) =

(CT ′x −max(CTx, CTy)) + (CT ′y −max(CTx, CTy) (5.1)

5.6 Implementation details 57

CalculateDeltaenergy(CTx, CTy, CT
′
x, CT

′
y) =

(CTsrc − CT ′src)× (emax(src)− eidle(src)) +

(CTdst − CT ′dst)× (emax(dst)− eidle(dst)) (5.2)

5.6 Implementation details

ME-MLS is implemented in GNU C++ 4.6. Special care has been taken to avoid heavy
C++ constructs like classes, interfaces, or polymorphism, in order to minimize the code
execution overhead.

The multithreading support is provided by the GNU POSIX thread library 2.13.
High level parallel multithreading libraries, such as OpenMP, were avoided in order to
gain fine grain control over the synchronization mechanisms.

5.7 Summary

This chapter presented the ME-MLS algorithm, a true multi-objective method for com-
puting a set of Pareto schedules which provide an accurate set of trade-off solutions for
the ME-HCSP in reduced execution times. The ME-MLS algorithm heavily relies on a
PALS-based embedded local search in order to compute accurate ME-HCSP schedules,
while an archiving algorithm maintains a diverse set of Pareto solutions.

The next chapter will present the results computed by the experimental analysis
performed on the ME-MLS algorithms. It will present a comparison between the ME-
MLSAGA and ME-MLSFGAA archiving algorithms, as well as comparisons between dif-
ferent pseudo-random number generators, and an efficiency analysis of the algorithm.

Chapter 6

Experimental analysis

This chapter presents the comprehensive experimental analysis performed to evaluate the
ME-MLS algorithm. The first sections presents the execution platform and the problem
instances used in the experiments. After that, two additional techniques for solving the
ME-HCSP are introduced in order to provide some results for baseline comparison. The
first technique uses a linear programming relaxation approach to compute lower bound
values for the problem, and the second technique uses list-scheduling heuristics to com-
pute an accurate solution for the problem. A set of parameter settings experiments were
performed for tunning the algorithm parameters, the next section presents the best pa-
rameters reported in these experiments. The following section presents the evaluation of
three different pseudo-random number generators (PRNG) for improving the computa-
tional efficiency of the ME-MLS. In the main section, a comprehensive set of performed
experiments are detailed in order to analyze: i) the quality of the solutions computed
by the ME-MLS, and ii) the efficacy and diversity of the Pareto front computed by the
ME-MLS computes. In addition, the final section presents a computational efficiency
analysis of the ME-MLS algorithm.

6.1 Execution platform

The experimental analysis was performed on a 24-core Magny-Cours AMD Opteron Pro-
cessor 6172, 2.1GHz, 24 GB RAM, running 64-bits CentOS 5.1 Linux, from the Cluster
FING infrastructure (infrastructure web site: http://www.fing.edu.uy/cluster).

6.2 Problem instances

A set comprised of 792 ME-HCSP instances was generated to evaluate the ME-MLS
algorithm. Each instance describes a machine scenario and a set of tasks workload. The
machine scenario represents the underlying computing infrastructure, and the workload
represents the work to be executed by the computing infrastructure. None of the comput-
ing models reviewed in the related literature represents adequately the ME-HCSP. The
ETC model proposed by Ali et al. (2000) does not considers the infrastructure energy
consumption, and the EMC model proposed by Nesmachnow et al. (2012a) considers a
multi-core architecture infrastructure, which is not defined in the ME-HCSP as it is for-
mulated in this thesis. Hence, the instances for the experimental analysis were generated
using a hybrid ETC+EMC computing model.

59

http://www.fing.edu.uy/cluster

60 Experimental analysis

The task workloads were synthetically generated using the methodology proposed by
Ali et al. (2000), since it is a well-renowned methodology which was applied in various
works in the related literature. On the other hand, the machine scenarios were generated
using real-world data and following the methodology proposed by Nesmachnow et al.
(2012a) in order to consider machine energy consumption in the problem scenario.

Three different instance dimensions were used in the experimental analysis (number
of tasks × number of machines): 512×16, 1024×32, and 2048×64. For each dimension,
11 different scenarios and 24 tasks workloads were generated. Half of the tasks workloads
were generated using the configuration parameters proposed by Ali et al. (2000), and the
remaining half where generated using the configuration parameters proposed by Braun
et al. (2001). Combining all these scenarios and workloads, a total of 264 ME-HCSP
instances per dimension, that model realistic small- and medium-sized HC infrastructures
were constructed for the experimental analysis.

6.3 Methods for baseline comparison

Two different approaches are proposed in order to provide a baseline reference for com-
paring the results computed by the ME-MLS algorithm. The first approach is based
on linear programming relaxation techniques; for this approach two different linear pro-
gramming formulations are constructed, one for each objective of the ME-HCSP. The
second approach is based on a set of list-scheduling heuristic, four different MinMin-based
heuristic are designed considering various combinations of the ME-HCSP objective func-
tions.

6.3.1 Linear programming relaxation

Linear programming relaxation is a well-known technique for relaxing the integrality
constraints of an integer programming NP-hard optimization problem with weaker non-
integer conditions. Its goal is to transform the NP-hard problem into a linear program-
ming problem, solvable in polynomial time (Knust and Brucker, 2006).

Consider an optimization problem where the objective function f(x) is to be mini-
mized. Suppose S to be the set of feasible solution of this problem, so that every feasible
solution of the problem x ∈ S. If a linear programming relaxation technique is applied
to this problem, then the set of feasible solution for the original problem S is relaxed
into a new set S̄, with S ⊆ S̄.

Suppose x∗ ∈ S is the optimal solution to the original problem, and x̄∗ ∈ S̄ is the
optimal solution to the relaxed problem. The optimal solution for the relaxed problem
x̄∗ presents two important properties. First, x̄∗ it is (most often) not a feasible solution
for the original problem (i.e. x̄∗ /∈ S), since the integrality constraints of the original
problem do not hold on the solutions for the relaxed problem. On the contrary, any
solution for the original problem it is in fact a feasible solution for the relaxed problem,
because S ⊆ S̄. Second, the original problem is a sub-problem of the relaxed problem,
hence the optimal solution x̄∗ ∈ S̄ solves the problem as least as optimally as the optimal
solution x∗ ∈ S (i.e. f(x̄∗) ≤ f(x∗)).

The quality gap between the optimal solution for the relaxed problem, and the opti-
mal solution for the original problem, is known as the integrality gap, and it is defined
as: gap = f(x∗)− f(x̄∗).

6.3 Methods for baseline comparison 61

The integrality gap is always greater or equal to zero, hence the objective function
evaluation of the optimal solution for the relaxed problem can be considered a lower
bound for the objective function evaluation of the original problem.

The ME-HCSP is formulated as a non-preemptive scheduling problem, hence the
task-to-machine assignment decision variables are constrained to be integral. In the
linear programming relaxation of the ME-HCSP, the integrality constraints on the task-
to-machine assignment decision variables are relaxed, and the problem is transformed into
a preemptive scheduling problem. In the resulting preemptive scheduling problem, any
task can be interrupted during its execution, relocated to a different executing machine,
and its execution can be resumed at a later time; all of this without considering any
additional context switch execution costs.

Two separate linear programming relaxations are proposed for the ME-HCSP, one
for each objective function. Algorithm 13 and 14 present the model formulation of the
relaxed problems using the mathematical programming language AMPL (Fourer et al.,
1990).

Algorithm 13 Linear programming relaxation model of the ME-HCSP for minimizing
the makespan objective function

1: set TASK;
2: set MACHINE;
3: param ETC{t in TASK, m in MACHINE};
4: var x{t in TASK, m in MACHINE} ≥ 0;
5: var Makespan ≥ 0;
6: var MCT{m in MACHINE} ≥ 0;
7: minimize f : Makespan;
8: s.t. Task is assigned{t in TASK}: sum{m in MACHINE} x[t,m] == 1;
9: s.t. MCT def{m in MACHINE}: MCT[m] = sum{t in TASK} x[t,m] * ETC[t,m];

10: s.t. Makespan def{m in MACHINE}: Makespan ≥ MCT[m];

Algorithm 14 Linear programming relaxation model of the ME-HCSP for minimizing
the total energy consumption objective function

1: set TASK;
2: set MACHINE;
3: param ETC{t in TASK, m in MACHINE};
4: param ENERGY MAX{m in MACHINE};
5: param ENERGY IDLE{m in MACHINE};
6: var x{t in TASK, m in MACHINE} ≥ 0;
7: var Makespan ≥ 0;
8: var MCT{m in MACHINE} ≥ 0;
9: minimize f :

sum{t in TASK, m in MACHINE} x[t,m] * ETC[t,m] * ENERGY MAX[m] +
sum{m in MACHINE} (Makespan - MCT[m]) * ENERGY IDLE[m];

10: s.t. Task is assigned{t in TASK}: sum{m in MACHINE} x[t,m] == 1;
11: s.t. MCT def{m in MACHINE}: MCT[m] = sum{t in TASK} x[t,m] * ETC[t,m];
12: s.t. Makespan def{m in MACHINE}: Makespan ≥ MCT[m];

62 Experimental analysis

Both models consider two sets of elements: the set of tasks (TASK) and the set
of machines (MACHINE). Also, both models include the expected time to compute
(ETC) parameter, a matrix with TASK ×MACHINE elements, containing for each
task its expected compute time value in each machine. Additionally, the model for
minimizing the total energy consumption objective function includes the parameters
ENERGY MAX and ENERGY IDLE, which represent the energy consumption by
time unit of each machine in each energy consumption state. Both models have the
variables x, Makespan, and MCT . The x variable represent the task-to-machine as-
signment, and is the only true decision variable of the model, the remaining Makespan
and MCT variables are auxiliary variables for modeling the problem. The Makespan
variable represents the makespan metric value of the schedule, and the machine compute
time (MCT) variable represents the local makespan of each machine. The objective
function to be minimized in each model is defined exactly as it is defined in the ME-
HCSP formulation. Finally, three constraints (s.t. or subject to sentences) are defined for
each model. The Task is assigned constraint is the only true constraint of the model,
and it asserts that each task in TASK is executed completely. The MCT def and
Makespan def constraints are auxiliary constraints for asserting that the MCT and
Makespan auxiliary variables hold their true value.

The GNU Linear Programming Kit (GLPK) was used for solving the models pre-
sented in Algorithms 13 and 14 for each of the previously detailed generated problems
instances. The revised simplex method was applied when solving the linear programming
models for all of the problem instances.

The computed lower bounds (LB) for each objective function of the ME-HCSP, are
useful to determine the accuracy of the results achieved using the ME-MLS algorithm.
In order to measure the accuracy of the ME-MLS, the relative gap metric (rgap) is
proposed. Given the objective function f , being valueME−MLS the value of f for a given
solution computed by ME-MLS, and being valueLB the optimal value of f for the relaxed
problem. Then, the relative gap metric between the ME-MLS given solution and the LB
is defined as shown in Equation 6.1.

rgap =
valueME−MLS − valueLB

valueLB
(6.1)

6.3.2 List-scheduling heuristics

In order to provide a feasible baseline reference for comparing the results computed by
the ME-MLS algorithms, a set of list-scheduling heuristics based on the MinMin list-
scheduling heuristic (Luo et al., 2007) were proposed.

MinMin heuristic for the HCSP

The MinMin list-scheduling heuristic is considered to be one of the most accurate heuris-
tics for solving the HCSP, outperforming many other deterministic heuristics (Izakian
et al., 2009b). The pseudo-code of the MinMin heuristic is presented in Algorithm 15.

The MinMin heuristic works by greedily picking the task that can be completed the
soonest, taking into account the current machine assignments. The algorithm starts with
a set U of all the unmapped tasks and a set of available machines P . For every task t ∈ U
it computes the completion time cttm of the task t when assigned to each machine m ∈ P .

6.3 Methods for baseline comparison 63

Algorithm 15 Pseudo-code of the MinMin heuristic

Require: N number of tasks to be scheduled
M number of available machines

1: U ← all tasks {set of unassigned tasks, |U | = N}
2: while U 6= ∅ do
3: L← ∅
4: for each task ti ∈ U do
5: for j = 1→M do
6: ctij ← completion time of task ti in machine mj

7: L← L ∪ {ctij}
8: end for
9: end for

10: ct∗ij ← get the assignment with minimum completion time in L
11: Assign task ti to machine mj

12: Remove task ti from L
13: end while

The task-to-machine assignment with the minimum overall completion time is ap-
plied, and the assigned task is removed from U . The process is repeated until all tasks
are mapped and the set U is empty.

The MinMin heuristic presents three nested loops in its design, hence its execution

complexity is in the order of O
(
(N+1)×N

2 ×M
)
∼ O

(
N2×M

2

)
∼ O

(
1/2× n3

)
∼ O(n3).

Its O(n3) execution order makes the MinMin heuristic unusable for seeding the initial
population. The MinMin heuristic is suitable for tackling small- to medium-sized sce-
narios, but may yield an excessive computing time when tackling large-sized scenarios.

MinMin-based heuristics for the ME-HCSP

MinMin uses a two-phase optimization strategy, depicted by the nested for cycle in lines
4–6 of Algorithm 15, where two different optimal assignments are selected (line 10 and
13). In the MinMin heuristic, both optimal assignments are chosen according to the same
minimization criterion, the minimum completion time criterion. In order to consider the
bi-objective scenario of the ME-HCSP, four MinMin versions were defined by alternating
the minimization criterion in each phase.

The first version minimizes the completion time in both phases (i.e. the classic Min-
Min heuristic); the second version minimizes the energy consumption objective in both
phases; in the remaining versions the minimization objectives are alternated to be in the
first phase or the second phase. The Min notation is used when minimizing the comple-
tion time and the uppercase MIN notation when minimizing the energy consumption.
Thus, the four versions of the MinMin heuristic are:

� MinMin: minimizes completion time in both phases.

� MINMIN : minimizes energy consumption in both phases.

� MinMIN : first minimizes completion time, and energy consumption second.

� MINMin: first minimizes energy consumption, and completion time second.

64 Experimental analysis

6.4 Parameter setting experiments

The goal of this work is to efficiently solve the ME-HCSP, thus a fixed 10 seconds
execution time stopping criterion is used for the ME-MLS algorithm. This time stopping
criterion is significantly lower than the execution time of metaheuristics in the related
literature, which range from 40 seconds to 90 seconds (Ko lodziej et al., 2011; Nesmachnow
et al., 2012b). For the speedup evaluation of ME-MLS, the stopping criterion was set to
6 million iterations.

In order to provide statistical significance to the results and considering the stochastic
nature of the proposed algorithm, 30 independent ME-MLS executions were performed
on each instance. Each execution was performed using 24 threads, the maximum number
of cores available in the computing platform.

A configuration analysis was performed using the 512×16 dimension instances in or-
der to find the best values for the configuration of the ME-MLS algorithm parameters.
Three sets of parameters of the ME-MLS algorithm were considered for the configura-
tion analysis: the general schema parameters, the AGA parameters, and the ME-rPALS
parameters. The general schema considered parameters are: the number of local search
operations applied per iteration (THREAD IT), and the re-work factor (REWORK FACTOR) (see
Algorithm 5). Only one parameter was considered for the AGA parameters set, the
population size parameter (MAX ARCHIVE SIZE) (see Algorithm 9). The ME-rPALS con-
sidered parameters are used for defining the neighbourhood size in the local search:
SRC TASK NHOOD, DST TASK NHOOD, and DST MACH NHOOD (see Algorithm 12).

The candidate values for the parameter settings study were: MAX ARCHIVE SIZE

∈ {30,34,38}, THREAD IT ∈ {500,650,800}, SRC TASK NHOOD ∈ {24, 28, 32}, DST TASK NHOOD

∈ {16, 20, 24}, DST MACH NHOOD ∈ {8, 12, 16}, and REWORK FACTOR ∈ {10, 14, 18}. The
best results were obtained with the following configuration POP SIZE=34, THREAD IT=650,
SRC TASK NHOOD=28, DST TASK NHOOD=16, DST MACH NHOOD=16, and REWORK FACTOR=14.

6.5 Pseudo-random number generator analysis

In order to improve the computational efficiency of the proposed ME-MLS algorithm,
three different Pseudo-Random Number Generators (PRNG) are analyzed. The PRNG
is usually a significant time-consuming function in an iterative stochastic optimization
method (Nesmachnow et al., 2011), hence improving the computational efficiency of the
PRNG is a key issue for the ME-MLS to compute schedules in reduced execution time.
A performance analysis was carried out in order to determine the relative contribution
of the PRNG to the execution time of the ME-MLS algorithm when using the stan-
dard reentrant random function (rand r) from the GNU standard C library. Figure 6.1
presents a the relative time contribution of the rand r function after 5000 iterations.
The reported results show that the rand r function is the second most time consuming
function of the ME-MLS algorithm, contributing with 18.2% of the total execution time.
This results suggest that it is worth to study different PRNG to determine if significant
reductions in the execution time can be obtained.

The performance of the ME-MLS was evaluated using three different PRNG: the
reentrant random function (rand r), and the reentrant 48-bit double-precision random
function (drand48 r), both provided by the GNU standard C library; and the external
Mersenne Twister (MT) generator (Matsumoto and Nishimura, 1998).

6.5 Pseudo-random number generator analysis 65

Figure 6.1: Performance analysis of the ME-MLS using the rand r function.

Each method was studied by executing 15 independent executions with different number
of parallel threads and using a stopping criterion of 6 million iterations. Table 6.1 reports
the average and standard deviation values for the execution times versus the number of
parallel threads, for each random number generation method.

Table 6.1: Execution times of the ME-MLS algorithm comparing different PRNG using
different number of parallel threads.

number execution time (s)
of threads rand r drand48 r MT

1 31.5±0.24 38.2±0.24 31.1±0.10
2 35.2±1.68 65.0±3.26 29.1±1.17
4 39.4±1.59 26.0±1.09 8.3±0.35
6 18.0±0.79 31.5±2.12 6.6±0.26
8 19.1±0.47 15.4±0.70 4.2±0.18

10 19.6±0.58 14.7±0.71 3.6±0.12
12 19.5±0.67 9.4±0.41 2.8±0.12
14 19.6±0.53 10.3±0.34 2.6±0.06
16 20.1±0.82 7.4±0.39 2.1±0.08
18 20.2±0.87 7.2±0.22 2.0±0.09
20 19.7±0.57 5.7±0.18 1.7±0.05
22 12.2±0.50 5.7±0.14 1.6±0.04
24 12.3±0.36 4.6±0.10 1.3±0.04

The results in Table 6.1 show that the MT function is the best choice for signif-
icantly reducing the execution time of ME-MLS. Henceforth, all the experiments will
be performed making use of the MT function for generating pseudo random numbers.
Figure 6.2 graphically summarizes the results of the execution times of the ME-MLS for
the three PRNG studied.

66 Experimental analysis

Figure 6.2: Average execution times of the ME-MLS algorithm comparing different
PRNG using different number of parallel threads.

6.6 Results and discussion

This section presents and discusses the experimental results obtained in the evaluation
of the ME-MLS scheduling algorithm.

This section starts by comparing the quality of the solutions computed by both of
the ME-MLS algorithm variants, and the solutions computed by the proposed baseline
reference comparison methods. In this first (most simple) comparison, the best com-
puted solutions for each objective function of the ME-HCSP are compared separately,
considering the objectives as being unrelated.

Then, a set of multi-objective optimization metrics are considered in order to evaluate
the two variants of the proposed ME-MLS algorithm. Several evaluation metrics are
considered for targeting both of the main goals of multi-objective optimization: i) the
convergence of the computed solutions to the Pareto front, which depicts the efficacy or
accuracy of the computed solutions; and ii) the correct sampling of the different trade-off
solutions, which is represented by the diversity of the computed solutions (Deb, 2001).

6.6.1 Solution quality

The solution quality analysis compares the quality of the extremal solutions computed
by the ME-MLSAGA and the ME-MLSFGAA algorithms, with the solutions computed by
the proposed baseline reference methods.

The computed results for the proposed instances are reported grouping them by
instance model, consistency type, and heterogeneity class. Each group consists of 11
different machine scenarios, each of which was independently solved 30 times. For each
group, the best and average (avg) improvements are reported, for comparing the ME-
MLS computed results with the MinMin-based heuristic which performed the best for
the objective function and problem instance combination.

6.6 Results and discussion 67

The average relative gap (avg rgap) is reported for each group, for comparing the ME-
MLS computed results with the calculated lower bound for each instance.

In order to determine which ME-MLS algorithm performed better, a statistical anal-
ysis was performed over the improvement results computed by the ME-MLSAGA and the
ME-MLSFGAA algorithms. First, the Kolmogorov-Smirnov (K-S) test was applied to
check whether the metric values follow a normal distribution or not. The values for the
D statistic by the K-S test indicated that the results for ME-MLSAGA and ME-MLSFGAA

are not normally distributed. As a consequence, the non-parametric Kruskal-Wallis sta-
tistical test was performed with a confidence level of 95%, to compare the distributions
of the improvements computed by ME-MLSAGA and ME-MLSFGAA. Each result is em-
phasized in bold font when a given ME-MLS variant is always better than the other
one in the 11 problem instances solved for each instance model, consistency type, and
heterogeneity class.

Table 6.2 reports the makespan and total energy consumption for the 512×16 di-
mension instances. The results show that both ME-MLS variants outperform the best
MinMin-based heuristic with makespan improvements of up to 24.4% and total energy
consumption improvements of up to 15.6%. Both ME-MLSAGA and ME-MLSFGAA are
able to compute similar schedules with no significant differences between them. The
average relative gap for the makespan objective ranges from 1.6% up to 10.5%, and a
much tighter range of 2.3% up to 6.7% for the total energy consumption objective.

Table 6.3 reports similar results for the 1024×32 dimension instances. Again, no ME-
MLS variant outperforms the other in neither objective. The results show that both ME-
MLS variants outperform the best MinMin-based heuristic with makespan improvements
of up to 27.3% and total energy consumption improvements of up to 16.1%. The average
relative gap for the makespan objective ranges from 3.1% up to 11.9%, and a range of
2.4% up to 8.0% for the total energy consumption objective.

Table 6.4 reports the computed results for the 2048×64 dimension instances. The
computed results show that the ME-MLSFGAA algorithm computes slightly better sched-
ules than ME-MLSAGA algorithm for a number of instances. Also, for a reduced num-
ber of instances, neither ME-MLSAGA nor ME-MLSFGAA were able to match the best
MinMin-based heuristic accuracy with their computed the average makespan results.
Despite this, both ME-MLS variants still outperform the best MinMin-based heuristic
by a significant margin in the whole average of the 2048×64 dimension instances. The
best MinMin-based heuristic is outperformed by both ME-MLS variants with makespan
improvements of up to 29.1% and total energy consumption improvements of up to
15.6%. The average relative gap for the makespan objective ranges from 5.2% up to
27.6%, and a range of 4.2% up to 12.6%, for the total energy consumption objective.

The reported results show that, both ME-MLS algorithms, compute the best im-
provements on both objectives when solving the inconsistent type of instances, while
considerably smaller improvements are computed when solving the consistent and semi-
consistent type of instances. This demonstrate that the inconsistent type of instances are
the harder to solve for the MinMin-based heuristics. Figure 6.3 summarizes the average
improvements by dimension when comparing ME-MLS to each MinMin-based heuristic.
It can be seen that the MinMin, the MinMIN and the MINMIN are very accurate and
competitive heuristics, outperforming the MINMin heuristic by a large margin.

68 Experimental analysis

Table 6.2: ME-MLS makespan and energy consumption improvements over the best
MinMin-based heuristic and lower bound relative quality gap for the 512×16 dimension
instances.

m
a
k
es
p
a
n
im

p
ro
v
em

en
ts

model
consis- hetero- ME-MLSAGA ME-MLSFGAA

tency geneity best avg avg rgap best avg avg rgap

Ali

cons.

high high 12.9% 9.4% 3.6% 12.3% 9.1% 4.0%
high low 14.0% 9.5% 3.7% 13.5% 9.2% 4.0%
low high 10.9% 8.3% 2.9% 10.9% 8.4% 2.8%
low low 10.9% 4.1% 10.4% 11.2% 4.0% 10.5%

incons.

high high 21.4% 13.9% 4.1% 21.3% 13.9% 4.1%
high low 24.4% 18.7% 4.6% 24.2% 18.7% 4.7%
low high 23.5% 16.9% 3.6% 23.5% 16.9% 3.6%
low low 18.5% 12.0% 6.7% 17.6% 11.8% 6.8%

semi.

high high 15.9% 12.1% 4.7% 15.9% 11.9% 5.0%
high low 15.5% 11.6% 5.3% 15.4% 11.3% 5.6%
low high 16.9% 14.1% 3.5% 16.8% 14.1% 3.5%
low low 12.8% 7.4% 10.2% 12.5% 7.3% 10.4%

Braun

cons.

high high 11.7% 9.5% 3.5% 11.6% 9.2% 3.8%
high low 5.5% 3.8% 2.2% 5.4% 3.8% 2.3%
low high 10.3% 8.0% 4.6% 10.5% 7.8% 4.8%
low low 5.9% 5.0% 1.6% 5.9% 5.0% 1.6%

incons.

high high 23.5% 15.6% 3.9% 23.8% 15.5% 4.0%
high low 11.8% 7.6% 3.0% 12.1% 7.6% 3.0%
low high 17.8% 13.0% 3.9% 17.5% 12.9% 4.0%
low low 7.6% 5.8% 2.4% 7.6% 5.9% 2.3%

semi.

high high 18.8% 15.1% 3.7% 18.7% 14.9% 4.0%
high low 7.7% 5.8% 2.3% 7.5% 5.8% 2.4%
low high 16.9% 13.2% 3.7% 17.1% 13.2% 3.7%
low low 10.1% 7.3% 1.9% 10.0% 7.4% 1.9%

en
er
g
y
co
n
su
m
p
ti
o
n
im

p
ro
v
em

en
ts

model
consis- hetero- ME-MLSAGA ME-MLSFGAA

tency geneity best avg avg rgap best avg avg rgap

Ali

cons.

high high 9.5% 4.4% 5.5% 9.7% 4.4% 5.5%
high low 9.5% 5.1% 6.3% 9.5% 5.2% 6.3%
low high 9.3% 5.3% 3.9% 9.2% 5.2% 4.0%
low low 10.7% 7.4% 3.1% 10.7% 7.4% 3.1%

incons.

high high 12.6% 6.9% 4.0% 12.6% 6.9% 4.0%
high low 15.0% 10.0% 4.6% 14.8% 10.0% 4.6%
low high 15.5% 9.1% 3.5% 15.6% 9.2% 3.5%
low low 12.2% 7.0% 4.3% 11.7% 7.0% 4.4%

semi.

high high 8.6% 5.1% 5.1% 8.6% 4.9% 5.3%
high low 7.9% 3.9% 6.4% 7.8% 3.7% 6.6%
low high 10.2% 7.5% 3.5% 10.1% 7.5% 3.5%
low low 8.5% 6.7% 3.7% 8.9% 6.7% 3.6%

Braun

cons.

high high 9.7% 6.3% 5.5% 10.0% 6.2% 5.6%
high low 5.3% 2.3% 3.1% 5.2% 2.3% 3.1%
low high 8.3% 4.1% 6.7% 8.3% 4.2% 6.6%
low low 5.5% 3.2% 2.6% 4.7% 3.1% 2.7%

incons.

high high 13.4% 7.9% 3.8% 13.6% 7.9% 3.9%
high low 7.0% 3.7% 3.0% 7.2% 3.7% 3.0%
low high 10.3% 6.6% 3.8% 10.5% 6.5% 4.0%
low low 4.3% 2.8% 2.4% 4.4% 2.8% 2.3%

semi.

high high 12.8% 8.9% 4.3% 12.5% 8.8% 4.5%
high low 6.4% 3.8% 2.7% 6.3% 3.7% 2.8%
low high 11.1% 7.6% 4.4% 10.9% 7.7% 4.4%
low low 7.2% 4.9% 2.4% 7.3% 4.9% 2.5%

6.6 Results and discussion 69

Table 6.3: ME-MLS makespan and energy consumption improvements over the best
MinMin-based heuristic and lower bound relative quality gap for the 1024×32 dimension
instances.

m
a
k
es
p
a
n
im

p
ro
v
em

en
ts

model
consis- hetero- ME-MLSAGA ME-MLSFGAA

tency geneity best avg avg rgap best avg avg rgap

Ali

cons.

high high 9.7% 7.3% 4.4% 10.5% 7.1% 4.7%
high low 8.7% 7.2% 5.0% 9.7% 6.7% 5.5%
low high 10.8% 8.7% 3.7% 11.3% 9.0% 3.5%
low low 6.8% 2.3% 9.2% 7.0% 2.6% 8.9%

incons.

high high 23.9% 14.6% 6.2% 24.3% 14.6% 6.3%
high low 24.3% 16.6% 6.4% 24.5% 16.6% 6.5%
low high 26.9% 17.7% 5.2% 27.3% 17.6% 5.3%
low low 25.4% 11.1% 11.7% 24.0% 11.0% 11.9%

semi.

high high 14.4% 11.3% 6.9% 14.3% 11.1% 7.2%
high low 13.1% 10.6% 7.1% 13.3% 10.4% 7.4%
low high 15.0% 11.1% 6.9% 15.1% 11.2% 6.9%
low low 10.5% 6.8% 11.3% 10.6% 6.6% 11.5%

Braun

cons.

high high 8.8% 6.2% 4.4% 9.1% 6.1% 4.6%
high low 10.1% 7.6% 4.6% 10.3% 7.5% 4.8%
low high 8.5% 6.0% 4.6% 8.7% 5.8% 4.9%
low low 10.5% 9.0% 3.5% 11.3% 9.3% 3.1%

incons.

high high 23.6% 19.1% 6.0% 23.3% 19.0% 6.1%
high low 22.3% 14.8% 6.2% 22.5% 14.7% 6.3%
low high 22.9% 16.9% 6.3% 23.0% 16.8% 6.5%
low low 22.3% 16.5% 5.0% 22.0% 16.5% 5.0%

semi.

high high 16.7% 12.0% 7.8% 16.6% 11.7% 8.2%
high low 14.7% 11.5% 7.5% 14.5% 11.4% 7.6%
low high 15.6% 11.9% 7.8% 15.5% 11.6% 8.2%
low low 14.9% 12.1% 5.9% 14.8% 12.3% 5.7%

en
er
g
y
co
n
su
m
p
ti
o
n
im

p
ro
v
em

en
ts

model
consis- hetero- ME-MLSAGA ME-MLSFGAA

tency geneity best avg avg rgap best avg avg rgap

Ali

cons.

high high 9.6% 5.9% 6.0% 10.0% 6.2% 5.7%
high low 8.9% 5.6% 7.1% 9.2% 5.4% 7.3%
low high 9.9% 7.8% 4.0% 9.8% 7.3% 4.5%
low low 11.4% 8.9% 2.4% 11.4% 8.8% 2.4%

incons.

high high 13.9% 6.7% 6.1% 14.3% 6.7% 6.2%
high low 13.5% 7.6% 6.3% 13.7% 7.6% 6.4%
low high 15.8% 9.3% 5.0% 16.1% 9.2% 5.1%
low low 15.8% 7.0% 6.7% 15.2% 7.0% 6.7%

semi.

high high 6.9% 4.5% 6.8% 7.6% 4.3% 7.1%
high low 6.5% 3.3% 6.7% 6.0% 3.2% 6.9%
low high 8.2% 4.9% 5.6% 7.6% 4.6% 5.9%
low low 7.7% 5.8% 3.9% 7.6% 5.8% 4.0%

Braun

cons.

high high 9.3% 5.7% 6.1% 10.3% 6.3% 5.3%
high low 9.4% 6.0% 6.6% 9.8% 6.3% 6.4%
low high 7.9% 4.4% 6.1% 8.0% 4.7% 5.9%
low low 11.3% 8.8% 3.9% 11.0% 8.5% 4.2%

incons.

high high 13.8% 9.7% 5.9% 13.5% 9.6% 6.0%
high low 12.0% 6.8% 6.1% 12.1% 6.7% 6.2%
low high 13.1% 8.2% 6.2% 13.2% 8.0% 6.4%
low low 12.4% 8.5% 4.8% 12.1% 8.5% 4.8%

semi.

high high 9.1% 4.2% 7.3% 9.6% 3.8% 7.8%
high low 7.0% 3.1% 7.1% 6.7% 2.8% 7.5%
low high 6.3% 4.0% 7.7% 6.9% 3.7% 8.0%
low low 9.4% 6.6% 4.3% 9.6% 6.4% 4.6%

70 Experimental analysis

Table 6.4: ME-MLS makespan and energy consumption improvements over the best
MinMin-based heuristic and lower bound relative quality gap for the 2048×64 dimension
instances.

m
a
k
es
p
a
n
im

p
ro
v
em

en
ts

model
consis- hetero- ME-MLSAGA ME-MLSFGAA

tency geneity best avg avg rgap best avg avg rgap

Ali

cons.

high high 7.2% 5.0% 6.9% 8.5% 5.7% 6.1%
high low 6.2% 4.2% 6.6% 7.7% 5.2% 5.5%
low high 6.8% 4.5% 7.8% 7.6% 6.3% 5.9%
low low 3.4% -1.0% 13.8% 4.8% 1.1% 11.4%

incons.

high high 27.4% 21.8% 8.5% 27.3% 21.6% 8.7%
high low 25.6% 18.8% 8.9% 25.5% 18.6% 9.2%
low high 22.1% 15.8% 8.3% 21.7% 15.9% 8.2%
low low 14.7% 3.7% 27.6% 14.3% 3.8% 27.3%

semi.

high high 11.8% 9.2% 11.2% 13.6% 9.2% 11.2%
high low 10.9% 8.5% 10.5% 13.6% 8.6% 10.4%
low high 9.7% 7.5% 10.1% 10.1% 8.6% 8.7%
low low 5.3% -1.4% 24.0% 5.7% -0.7% 23.2%

Braun

cons.

high high 7.2% 4.7% 6.9% 8.1% 5.4% 6.0%
high low 7.6% 6.2% 5.2% 7.8% 6.4% 4.9%
low high 7.4% 5.0% 6.6% 8.8% 5.6% 5.9%
low low 6.4% 4.3% 7.6% 8.0% 6.0% 5.7%

incons.

high high 24.7% 15.5% 8.9% 24.6% 15.2% 9.3%
high low 29.1% 21.2% 8.4% 28.9% 20.9% 8.7%
low high 24.2% 18.2% 8.7% 23.7% 17.9% 9.1%
low low 26.9% 19.4% 8.1% 26.9% 19.5% 7.9%

semi.

high high 10.9% 8.3% 10.7% 12.8% 8.4% 10.7%
high low 12.7% 9.9% 9.0% 13.0% 10.3% 8.4%
low high 12.7% 10.1% 10.1% 13.9% 10.0% 10.1%
low low 14.6% 10.8% 10.3% 15.5% 12.2% 8.7%

en
er
g
y
co
n
su
m
p
ti
o
n
im

p
ro
v
em

en
ts

model
consis- hetero- ME-MLSAGA ME-MLSFGAA

tency geneity best avg avg rgap best avg avg rgap

Ali

cons.

high high 9.4% 4.6% 10.0% 11.1% 6.8% 7.5%
high low 9.2% 4.6% 8.7% 10.7% 6.5% 6.4%
low high 12.7% 9.9% 4.8% 12.7% 9.4% 5.3%
low low 12.9% 9.3% 4.6% 13.3% 9.2% 4.7%

incons.

high high 14.1% 10.2% 8.2% 14.8% 10.0% 8.4%
high low 14.3% 8.6% 8.6% 14.3% 8.4% 8.9%
low high 11.1% 7.6% 6.9% 11.0% 7.5% 7.0%
low low 10.0% 4.1% 12.6% 10.0% 4.1% 12.5%

semi.

high high 6.1% 2.1% 11.1% 7.8% 2.3% 10.9%
high low 7.4% 2.8% 9.7% 7.3% 2.5% 10.0%
low high 7.7% 5.8% 5.8% 7.3% 5.2% 6.5%
low low 11.2% 9.2% 4.2% 11.2% 9.1% 4.3%

Braun

cons.

high high 9.9% 5.3% 8.8% 10.8% 7.3% 6.5%
high low 9.5% 6.6% 8.5% 10.4% 8.3% 6.5%
low high 9.9% 4.8% 9.4% 11.7% 7.0% 6.9%
low low 13.9% 10.1% 4.7% 13.8% 9.6% 5.3%

incons.

high high 12.4% 6.1% 8.6% 12.1% 5.8% 9.0%
high low 15.6% 9.8% 8.2% 15.5% 9.6% 8.5%
low high 13.1% 7.8% 8.3% 12.4% 7.4% 8.8%
low low 14.1% 9.6% 6.9% 14.4% 9.6% 6.9%

semi.

high high 7.3% 2.6% 10.7% 8.2% 2.9% 10.4%
high low 7.7% 4.5% 9.4% 8.8% 4.5% 9.4%
low high 8.7% 3.6% 9.9% 9.8% 3.5% 9.9%
low low 11.0% 8.0% 6.4% 11.1% 7.5% 7.0%

6.6 Results and discussion 71

Figure 6.3: Average ME-MLS improvements over the MinMin-based heuristics.

Table 6.5: ME-MLS makespan improvements summary over the best MinMin-based
heuristic.

dimension
ME-MLSAGA ME-MLSFGAA

best avg avg rgap best avg avg rgap

512×16 24.4% 10.3% 4.2% 24.2% 10.2% 4.3%
1024×32 26.9% 11.2% 6.4% 27.3% 11.1% 6.5%
2048×64 29.1% 9.6% 10.2% 28.9% 10.1% 9.6%

Tables 6.5 and 6.6 summarize the the total average relative gap for each dimension
with respect to the calculated lower bound, and the total average and best improve-
ments, again comparing each ME-MLS algorithm with the best MinMin-based heuris-
tic. The results show the best average makespan objective improvements are computed
when solving the 1024×32 dimension instances, while the average energy consumption
objective improves as the instance dimension increases. The best improvement on the
average energy consumption objective is computed when solving the 2048×64 dimension
instances. Regarding the calculated lower bound, the results demostrate that the average
rgap increases for both objectives as the instance dimension increases, showing there is
potentially more room for improvements as the dimension of the instances increases.

Table 6.6: ME-MLS energy consumption improvements summary over the best MinMin-
based heuristic.

dimension
ME-MLSAGA ME-MLSFGAA

best avg avg rgap best avg avg rgap

512×16 15.5% 5.9% 4.1% 15.6% 5.8% 4.2%
1024×32 15.8% 6.4% 5.8% 16.1% 6.3% 5.9%
2048×64 15.6% 6.6% 8.1% 15.5% 6.8% 7.8%

72 Experimental analysis

6.6.2 Multi-objective optimization metrics

In this section, the ME-MLSAGA and ME-MLSFGAA algorithms are compared with each
other studying a set of multi-objective optimization metrics for the Pareto front approx-
imations computed by each algorithm. Each multi-objective optimization metric used
for the comparison can be classified either as a efficacy metric, a diversity metric, or an
hybrid metric, depending on the multi-objective optimization goal it measures.

The efficacy metrics evaluate the convergence towards the Pareto front. We consider
in this work two quality metrics: the number of (different) non-dominated solutions found
for each algorithm (ND); and the Inverted Generational Distance (IGD), defined as the
normalized sum of the distances between the non-dominated solutions in the Pareto
front found by the algorithm and a set of uniformly distributed points in the true Pareto
front. Smaller values of IGD mean a better approximation to the Pareto front. The
reported IGD-value is normalized with respect to the best IGD-value computed between
ME-MLSAGA and ME-MLSFGAA, i.e. IGDvalue = IGDvalue

IGDbest
.

The diversity metrics measure the distribution of the computed non-dominated so-
lutions, evaluating the correct sampling of the target Pareto front. We consider in this
work the Spread metric for evaluating the diversity of the computed results.. The spread
metric includes information about the extreme points of the true Pareto front in order
to compute the spacing between the points of the Pareto front. Smaller values of spread
mean a better distribution of non-dominated solutions in the calculated Pareto front. As
with the IGD metric, the reported Spread-value is normalized with respect to the best
Spread-value computed between ME-MLSAGA and ME-MLSFGAA.

The hybrid metrics measure both the convergence and the correct sampling of the
target Pareto front. We consider in this work the Relative Hypervolume (RHV) hybrid
metric. RHV is defined as the ratio of the volume covered by the Pareto front computed
by the algorithm and the volume covered by the true Pareto front (in the objective
functions space). Larger values of RHV indicate a closer convergence to the true Pareto
front and a better sampling of non-dominated solutions in the calculated Pareto front.

Some of the aforementioned metrics require the true Pareto front of each problem in-
stance to be computed, which is unknown for the studied ME-HCSP instances. For those
cases, the true Pareto front was approximated by gathering all the non-dominated solu-
tions computed using both ME-MLS variants considering the 30 independent executions
performed for each algorithm.

In order to determine the significance of the comparison, a statistical analysis was
performed over the results for each algorithm, metric, and problem instance solved.
First, the Kolmogorov-Smirnov (K-S) test was applied to check whether the metric val-
ues follow a normal distribution or not. The values for the D statistic by the K-S
test indicated that the results for ME-MLSAGA and ME-MLSFGAA are not normally
distributed. As a consequence, the non-parametric Kruskal-Wallis statistical test was
performed with a confidence level of 95%, to compare the distributions for ME-MLSAGA

and ME-MLSFGAA. For each metric and heterogeneity class, the best algorithm and
the number of problem instances in which it is the best with 95% confidence (i.e. the
computed pairwise p-value is below 5×10−2) is also reported in the best95% column. The
result is emphasized in bold font when a given algorithm variant is always better than
the other one in the 11 problem instances solved for each instance model, consistency
type, heterogeneity class, and problem dimension.

6.6 Results and discussion 73

Table 6.7 reports the computed results for the considered metrics for the 512×16
dimension instances. The reported results show that the ME-MLSAGA algorithm out-
performs the ME-MLSFGAA algorithm in the ND metric results, but does not provide
significant results on all of the eleven machine scenarios for any of the instance model,
consistency type, and heterogeneity class. When comparing the IGD metric, the ME-
MLSAGA algorithm outperforms ME-MLSFGAA algorithm on the computed results for
the consistent and semi-consistent type of instances, while the ME-MLSFGAA algorithm
prevails when considering the inconsistent type of instances. But again, without signif-
icant results on all the eleven machine scenarios. Similar results are reported for the
Spread and RHV metrics, ME-MLSAGA slightly prevails when considering the consistent
and semi-consistent type of instances, and ME-MLSFGAA when considering the incon-
sistent type of instances.

Table 6.8 reports the computed results for the considered metrics for the 1024×32
dimension instances. The results show that the ME-MLSAGA algorithm outperforms
the ME-MLSFGAA algorithm in the ND metric for the computed results, this time with
significant confidence for most of the consistent and semi-consistent type of instances.
The ME-MLSAGA also significantly outperforms the ME-MLSFGAA when comparing the
results computed by the IGD and the RHV metrics for the consistent and semi-consistent
type of instances. On the contrary, the Spread metric shows a much even behavior,
showing very similar results to the ones computed for the 512×16 dimension instances.
It is worth noting that, so far, the ME-MLSFGAA algorithm was unable to significantly
outperform the ME-MLSAGA algorithm in all of the eleven machine scenarios for any of
the evaluated instance model, consistency type, and heterogeneity class,

Table 6.9 reports the computed results for the considered metrics for the 2048×64
dimension instances. The ME-MLSAGA algorithm continues to outperform the ME-
MLSFGAA algorithm in the results computed for every considered metric for the consis-
tent and semi-consistent type of instances. Further increasing the differences previously
computed for the 1024×32 dimension instances.

The results demonstrate that ME-MLSAGA outperforms ME-MLSFGAA in terms of
both efficacy and diversity metrics when solving consistent and semi-consistent type of
instances, specially when solving the largest ME-HCSP dimension instances. On the con-
trary, even though ME-MLSFGAA computes slightly better results than ME-MLSAGA

when solving the inconsistent type of instances, this difference is not significant and
ME-MLSFGAA is unable to clearly outperform ME-MLSAGA in any case. Furthermore,
because of the low number of computed non-dominated solutions (ND), neither of the
ME-MLS algorithms are able to adequately sample the Pareto front of the inconsistent
type of instances. Tables 6.10 and 6.11 report the average and standard deviation sum-
mary results for both ME-MLS variants, regarding the problem dimension for the efficacy
and diversity metrics, respectively. The experiments demonstrate that, in average, the
results computed by ME-MLSFGAA are competitive when solving the 512×16 dimension
instances, but ME-MLSFGAA rapidly starts to lag behind in efficacy and diversity as the
dimension of the instances increases. On average, ME-MLSAGA was able to find Pareto
fronts with better diversity and covering properties than ME-MLSFGAA when tackling
instances of dimensions 1024×32 and 2048×64, as it is demonstrated by the values of all
the considered metrics.

74 Experimental analysis

Table 6.7: ME-MLS multi-objective metrics for the 512×16 dimension instances.

model
consis- hetero- ND IGD (normalized)

tency geneity AGA FGAA best95% AGA FGAA best95%

Ali

cons.

high high 8.33±2.47 4.11±1.43 AGA 10/11 1.00±0.27 1.44±0.18 AGA 6/11

high low 8.02±2.65 4.20±1.39 AGA 8/11 1.00±0.15 1.46±0.33 AGA 5/11

low high 6.67±2.42 3.82±1.20 AGA 10/11 1.00±0.18 1.52±0.28 AGA 8/11

low low 2.84±1.54 2.49±1.12 FGAA 3/11 1.00±0.20 1.04±0.19 FGAA 1/11

incons.

high high 2.06±1.15 2.20±1.21 FGAA 1/11 1.02±0.14 1.00±0.13 none

high low 2.50±1.53 2.35±1.22 none 1.00±0.09 1.02±0.11 none

low high 2.37±1.43 2.47±1.40 none 1.00±0.12 1.00±0.11 FGAA 1/11

low low 1.60±0.87 1.53±0.77 none 1.00±0.09 1.04±0.12 FGAA 1/11

semi.

high high 6.03±2.56 3.99±1.38 AGA 6/11 1.00±0.18 1.19±0.19 FGAA 4/11

high low 5.91±2.72 4.07±1.39 AGA 4/11 1.00±0.12 1.23±0.22 AGA 3/11

low high 4.64±2.11 3.48±1.29 AGA 6/11 1.00±0.13 1.05±0.16 AGA 2/11

low low 2.50±1.21 2.21±1.00 AGA 2/11 1.00±0.17 1.05±0.15 FGAA 2/11

Braun

cons.

high high 6.63±3.06 3.75±1.50 AGA 7/11 1.00±0.17 1.42±0.25 AGA 5/11

high low 6.18±3.30 3.36±1.50 AGA 8/11 1.00±0.27 1.45±0.29 AGA 6/11

low high 6.64±3.03 3.84±1.56 AGA 7/11 1.00±0.16 1.28±0.26 AGA 5/11

low low 6.02±3.10 3.21±1.21 AGA 7/11 1.00±0.25 1.48±0.21 AGA 7/11

incons.

high high 2.14±1.36 2.19±1.26 none 1.00±0.18 1.04±0.16 FGAA 1/11

high low 1.99±1.15 1.78±1.00 AGA 1/11 1.02±0.20 1.00±0.15 none

low high 2.15±1.26 2.23±1.23 none 1.00±0.20 1.08±0.23 none

low low 1.83±1.06 1.80±0.93 none 1.09±0.18 1.00±0.19 none

semi.

high high 6.44±2.39 3.85±1.35 AGA 7/11 1.00±0.14 1.31±0.23 FGAA 4/11

high low 6.62±2.35 3.66±1.27 AGA 9/11 1.00±0.25 1.52±0.15 AGA 7/11

low high 6.75±2.38 3.95±1.33 AGA 10/11 1.00±0.13 1.28±0.23 AGA 5/11

low low 6.02±2.39 3.75±1.22 AGA 7/11 1.00±0.21 1.35±0.20 AGA 5/11

model
consis- hetero- Spread (normalized) RHV

tency geneity AGA FGAA best95% AGA FGAA best95%

Ali

cons.

high high 1.00±0.04 1.07±0.09 AGA 5/11 0.85±0.06 0.79±0.07 AGA 6/11

high low 1.00±0.05 1.04±0.06 FGAA 4/11 0.82±0.08 0.78±0.08 AGA 5/11

low high 1.00±0.05 1.20±0.12 AGA 6/11 0.89±0.05 0.85±0.06 AGA 6/11

low low 1.01±0.08 1.00±0.08 FGAA 2/11 0.82±0.09 0.81±0.08 none

incons.

high high 1.00±0.01 1.00±0.01 FGAA 1/11 0.76±0.10 0.76±0.09 none

high low 1.00±0.03 1.00±0.03 none 0.73±0.10 0.73±0.11 none

low high 1.00±0.01 1.00±0.01 AGA 1/11 0.78±0.10 0.78±0.10 FGAA 1/11

low low 1.00±0.03 1.00±0.04 FGAA 5/11 0.74±0.11 0.72±0.10 AGA 1/11

semi.

high high 1.00±0.05 1.01±0.05 AGA 1/11 0.81±0.08 0.78±0.08 FGAA 4/11

high low 1.00±0.10 1.04±0.09 AGA 2/11 0.79±0.10 0.76±0.09 AGA 4/11

low high 1.00±0.08 1.05±0.07 FGAA 4/11 0.85±0.07 0.84±0.06 none

low low 1.01±0.07 1.00±0.08 AGA 1/11 0.79±0.08 0.78±0.08 FGAA 2/11

Braun

cons.

high high 1.00±0.08 1.02±0.10 none 0.84±0.07 0.79±0.08 AGA 5/11

high low 1.00±0.10 1.08±0.08 AGA 5/11 0.91±0.04 0.88±0.04 AGA 5/11

low high 1.00±0.09 1.04±0.06 AGA 3/11 0.80±0.09 0.77±0.09 AGA 5/11

low low 1.00±0.13 1.11±0.09 AGA 7/11 0.92±0.03 0.91±0.03 AGA 5/11

incons.

high high 1.00±0.01 1.00±0.01 FGAA 1/11 0.78±0.10 0.77±0.09 FGAA 1/11

high low 1.00±0.05 1.01±0.05 AGA 5/11 0.84±0.07 0.84±0.07 none

low high 1.00±0.01 1.00±0.01 AGA 1/11 0.79±0.10 0.78±0.10 none

low low 1.00±0.01 1.00±0.01 AGA 2/11 0.88±0.06 0.89±0.06 none

semi.

high high 1.00±0.07 1.02±0.06 none 0.84±0.07 0.80±0.07 FGAA 4/11

high low 1.00±0.05 1.10±0.08 AGA 5/11 0.90±0.04 0.87±0.04 AGA 5/11

low high 1.00±0.05 1.05±0.06 AGA 5/11 0.83±0.06 0.81±0.06 AGA 4/11

low low 1.00±0.05 1.14±0.11 AGA 5/11 0.91±0.04 0.90±0.04 AGA 2/11

6.6 Results and discussion 75

Table 6.8: ME-MLS multi-objective metrics for the 1024×32 dimension instances.

model
consis- hetero- ND IGD (normalized)

tency geneity AGA FGAA best95% AGA FGAA best95%

Ali

cons.

high high 9.98±0.22 4.44±1.31 AGA 11/11 1.00±0.22 2.33±0.32 AGA 11/11

high low 9.99±0.09 4.16±1.38 AGA 11/11 1.00±0.16 2.56±0.30 AGA 10/11

low high 8.67±1.48 3.63±1.01 AGA 11/11 1.00±0.20 3.22±0.19 AGA 11/11

low low 5.90±1.90 2.92±0.84 AGA 10/11 1.00±0.29 1.50±0.36 AGA 5/11

incons.

high high 3.28±2.05 2.88±1.45 FGAA 1/11 1.00±0.13 1.05±0.10 AGA 1/11

high low 3.17±2.03 2.68±1.36 none 1.00±0.12 1.05±0.16 none

low high 2.50±1.48 2.39±1.29 AGA 1/11 1.00±0.09 1.08±0.14 none

low low 1.62±0.81 1.60±0.83 none 1.00±0.16 1.03±0.14 none

semi.

high high 9.85±0.60 4.26±1.32 AGA 11/11 1.00±0.20 2.01±0.19 AGA 10/11

high low 9.96±0.26 4.52±1.20 AGA 11/11 1.00±0.16 2.00±0.22 AGA 10/11

low high 5.73±1.83 3.42±0.98 AGA 11/11 1.00±0.12 1.44±0.20 AGA 6/11

low low 3.59±1.59 2.67±1.00 AGA 5/11 1.00±0.21 1.08±0.17 AGA 2/11

Braun

cons.

high high 9.98±0.16 4.14±1.23 AGA 11/11 1.00±0.15 2.26±0.35 AGA 11/11

high low 9.95±0.43 4.72±1.35 AGA 11/11 1.00±0.15 2.42±0.27 AGA 10/11

low high 9.96±0.42 4.75±1.30 AGA 11/11 1.00±0.21 2.28±0.33 AGA 11/11

low low 8.56±1.49 3.63±0.99 AGA 11/11 1.00±0.18 2.97±0.31 AGA 11/11

incons.

high high 2.80±1.58 2.66±1.42 AGA 1/11 1.00±0.09 1.03±0.11 AGA 1/11

high low 3.20±1.80 3.09±1.54 FGAA 1/11 1.00±0.10 1.05±0.11 none

low high 3.13±1.83 2.89±1.37 AGA 1/11 1.00±0.12 1.11±0.11 AGA 1/11

low low 2.81±1.71 2.44±1.37 AGA 1/11 1.02±0.15 1.00±0.14 none

semi.

high high 9.90±0.58 4.53±1.13 AGA 11/11 1.00±0.22 2.13±0.35 AGA 9/11

high low 9.85±0.71 4.91±1.20 AGA 11/11 1.00±0.12 2.20±0.18 AGA 9/11

low high 9.91±0.50 4.83±1.15 AGA 11/11 1.00±0.15 2.07±0.30 AGA 11/11

low low 6.61±1.74 3.52±0.96 AGA 11/11 1.00±0.16 1.94±0.29 AGA 8/11

model
consis- hetero- Spread (normalized) RHV

tency geneity AGA FGAA best95% AGA FGAA best95%

Ali

cons.

high high 1.00±0.07 1.29±0.13 AGA 9/11 0.86±0.05 0.75±0.07 AGA 10/11

high low 1.00±0.08 1.17±0.13 AGA 7/11 0.84±0.05 0.72±0.08 AGA 10/11

low high 1.00±0.05 1.39±0.14 AGA 10/11 0.92±0.03 0.81±0.05 AGA 11/11

low low 1.00±0.07 1.00±0.07 AGA 2/11 0.90±0.04 0.89±0.04 AGA 3/11

incons.

high high 1.00±0.03 1.00±0.03 none 0.75±0.11 0.74±0.10 AGA 1/11

high low 1.00±0.04 1.00±0.04 AGA 1/11 0.76±0.10 0.75±0.10 none

low high 1.00±0.02 1.00±0.03 AGA 1/11 0.77±0.09 0.75±0.09 none

low low 1.00±0.02 1.00±0.02 FGAA 6/11 0.69±0.12 0.69±0.12 none

semi.

high high 1.00±0.05 1.06±0.09 AGA 6/11 0.83±0.06 0.75±0.07 AGA 7/11

high low 1.00±0.04 1.17±0.05 AGA 9/11 0.83±0.07 0.74±0.07 AGA 10/11

low high 1.00±0.06 1.14±0.12 AGA 4/11 0.85±0.06 0.82±0.06 FGAA 4/11

low low 1.00±0.06 1.00±0.08 none 0.84±0.09 0.82±0.10 FGAA 1/11

Braun

cons.

high high 1.00±0.05 1.21±0.13 AGA 7/11 0.86±0.05 0.77±0.06 AGA 10/11

high low 1.00±0.06 1.32±0.15 AGA 8/11 0.85±0.05 0.74±0.07 AGA 8/11

low high 1.00±0.05 1.36±0.11 AGA 10/11 0.86±0.05 0.76±0.06 AGA 10/11

low low 1.00±0.04 1.40±0.14 AGA 10/11 0.91±0.03 0.82±0.05 AGA 11/11

incons.

high high 1.00±0.02 1.00±0.02 FGAA 2/11 0.75±0.10 0.74±0.11 AGA 1/11

high low 1.01±0.02 1.00±0.02 none 0.75±0.10 0.74±0.10 none

low high 1.00±0.03 1.01±0.03 AGA 1/11 0.76±0.10 0.74±0.10 none

low low 1.00±0.01 1.01±0.01 none 0.78±0.10 0.77±0.09 AGA 1/11

semi.

high high 1.00±0.04 1.17±0.05 AGA 10/11 0.83±0.07 0.72±0.07 AGA 8/11

high low 1.00±0.04 1.23±0.10 AGA 11/11 0.85±0.06 0.76±0.06 AGA 7/11

low high 1.00±0.02 1.22±0.05 AGA 9/11 0.81±0.07 0.71±0.07 AGA 10/11

low low 1.00±0.06 1.25±0.13 AGA 7/11 0.89±0.04 0.85±0.04 AGA 8/11

76 Experimental analysis

Table 6.9: ME-MLS multi-objective metrics for the 2048×64 dimension instances.

model
consis- hetero- ND IGD (normalized)

tency geneity AGA FGAA best95% AGA FGAA best95%

Ali

cons.

high high 10.00±0.00 5.25±0.92 AGA 11/11 1.00±0.16 2.02±0.35 AGA 11/11

high low 10.00±0.05 5.20±0.99 AGA 11/11 1.00±0.17 2.08±0.17 AGA 10/11

low high 9.09±1.19 3.72±1.10 AGA 11/11 1.00±0.11 3.15±0.24 AGA 11/11

low low 8.02±1.63 3.66±1.18 AGA 11/11 1.00±0.24 1.41±0.18 AGA 6/11

incons.

high high 4.55±2.51 3.40±1.48 AGA 4/11 1.00±0.21 1.14±0.12 AGA 3/11

high low 4.80±2.47 3.41±1.41 AGA 4/11 1.00±0.21 1.18±0.19 FGAA 3/11

low high 3.08±1.58 2.88±1.38 AGA 1/11 1.00±0.23 1.02±0.22 none

low low 1.34±0.64 1.35±0.63 none 1.06±0.19 1.00±0.18 none

semi.

high high 10.00±0.05 4.78±1.16 AGA 11/11 1.00±0.15 2.74±0.33 AGA 11/11

high low 10.00±0.05 4.61±1.10 AGA 11/11 1.00±0.15 2.96±0.44 AGA 11/11

low high 7.81±1.75 3.40±0.99 AGA 11/11 1.00±0.22 2.38±0.31 AGA 9/11

low low 3.22±1.71 2.79±1.19 AGA 4/11 1.12±0.18 1.00±0.16 none

Braun

cons.

high high 10.00±0.00 5.19±0.93 AGA 11/11 1.00±0.18 2.07±0.27 AGA 11/11

high low 10.00±0.00 5.18±0.92 AGA 11/11 1.00±0.24 2.07±0.22 AGA 11/11

low high 10.00±0.00 5.23±0.87 AGA 11/11 1.00±0.25 1.90±0.18 AGA 11/11

low low 9.49±0.86 4.03±1.16 AGA 11/11 1.00±0.26 2.79±0.30 AGA 11/11

incons.

high high 4.41±2.29 3.34±1.39 AGA 3/11 1.00±0.16 1.21±0.12 AGA 4/11

high low 4.73±2.61 3.45±1.47 AGA 4/11 1.00±0.14 1.21±0.16 AGA 3/11

low high 4.87±2.47 3.35±1.42 AGA 6/11 1.00±0.19 1.24±0.21 AGA 4/11

low low 3.32±1.70 3.00±1.42 AGA 2/11 1.05±0.18 1.00±0.14 FGAA 1/11

semi.

high high 10.00±0.00 4.58±1.15 AGA 11/11 1.00±0.25 2.43±0.13 AGA 11/11

high low 10.00±0.05 4.68±1.09 AGA 11/11 1.00±0.17 2.82±0.27 AGA 10/11

low high 10.00±0.05 4.89±0.99 AGA 11/11 1.00±0.23 2.83±0.22 AGA 11/11

low low 7.70±1.75 3.42±0.99 AGA 11/11 1.00±0.28 2.23±0.32 AGA 11/11

model
consis- hetero- Spread (normalized) RHV

tency geneity AGA FGAA best95% AGA FGAA best95%

Ali

cons.

high high 1.00±0.06 1.47±0.19 AGA 10/11 0.82±0.04 0.76±0.08 AGA 7/11

high low 1.00±0.06 1.45±0.15 AGA 10/11 0.83±0.04 0.77±0.07 AGA 8/11

low high 1.00±0.07 1.35±0.13 AGA 10/11 0.88±0.03 0.81±0.06 AGA 11/11

low low 1.00±0.06 1.17±0.16 AGA 5/11 0.82±0.06 0.84±0.04 FGAA 7/11

incons.

high high 1.01±0.05 1.00±0.06 none 0.79±0.09 0.77±0.09 AGA 3/11

high low 1.01±0.04 1.00±0.05 FGAA 1/11 0.78±0.09 0.75±0.09 FGAA 3/11

low high 1.00±0.04 1.01±0.03 FGAA 1/11 0.78±0.10 0.78±0.09 none

low low 1.00±0.01 1.00±0.01 FGAA 7/11 0.67±0.12 0.69±0.11 none

semi.

high high 1.00±0.04 1.51±0.11 AGA 11/11 0.82±0.06 0.65±0.09 AGA 10/11

high low 1.00±0.05 1.53±0.12 AGA 11/11 0.82±0.06 0.64±0.09 AGA 9/11

low high 1.00±0.05 1.21±0.11 AGA 9/11 0.87±0.05 0.80±0.06 AGA 8/11

low low 1.02±0.07 1.00±0.06 none 0.73±0.11 0.77±0.12 AGA 4/11

Braun

cons.

high high 1.00±0.05 1.46±0.14 AGA 10/11 0.83±0.04 0.76±0.07 AGA 9/11

high low 1.00±0.03 1.44±0.08 AGA 8/11 0.86±0.03 0.78±0.07 AGA 8/11

low high 1.00±0.05 1.48±0.13 AGA 10/11 0.83±0.04 0.76±0.07 AGA 10/11

low low 1.00±0.08 1.43±0.12 AGA 10/11 0.88±0.02 0.81±0.05 AGA 11/11

incons.

high high 1.01±0.04 1.00±0.05 none 0.77±0.10 0.73±0.09 none

high low 1.00±0.05 1.00±0.06 AGA 1/11 0.79±0.09 0.76±0.09 AGA 3/11

low high 1.00±0.04 1.00±0.05 FGAA 1/11 0.78±0.10 0.73±0.10 AGA 4/11

low low 1.00±0.02 1.01±0.03 FGAA 2/11 0.78±0.10 0.79±0.09 none

semi.

high high 1.00±0.08 1.46±0.14 AGA 9/11 0.79±0.06 0.64±0.10 AGA 10/11

high low 1.00±0.06 1.60±0.13 AGA 11/11 0.84±0.05 0.67±0.07 AGA 9/11

low high 1.00±0.06 1.64±0.14 AGA 11/11 0.84±0.06 0.65±0.08 AGA 10/11

low low 1.00±0.05 1.17±0.09 AGA 8/11 0.86±0.05 0.81±0.06 AGA 8/11

6.6 Results and discussion 77

Table 6.10: Summary of ME-MLS multi-objective quality metrics.

dimension
ND IGD (normalized)

AGA FGAA AGA FGAA

512×16 4.70±2.23 3.10±0.87 1.00±0.08 1.20±0.13

1024×32 6.70±3.20 3.57±0.92 1.00±0.26 1.62±0.21

2048×64 7.35±2.90 3.95±0.99 1.00±0.27 1.71±0.27

Table 6.11: Summary of ME-MLS multi-objective diversity metrics.

dimension
Spread (normalized) RHV

AGA FGAA AGA FGAA

512×16 1.00±0.09 1.04±0.06 0.83±0.05 0.81±0.05

1024×32 1.00±0.10 1.13±0.09 0.82±0.06 0.76±0.05

2048×64 1.00±0.09 1.25±0.16 0.81±0.05 0.75±0.06

Summarizing, the study indicates that the AGA replacement strategy is a useful
choice to improve the efficacy and diversity of the schedules found by the ME-MLS
algorithm, significantly improving over the FGAA replacement technique regarding the
two main goals in multi-objective optimization.

6.6.3 Summary

This section presented two different approaches for comparing the ME-MLSAGA and the
ME-MLSFGAA algorithms: a solution quality comparison was presented in Section 6.6.1,
and a multi-objective comparison was presented in Section 6.6.2.

When considering the consistency type of the tackled instances, the study shows
there is a trade-off between objective function improvement and Pareto front sampling.
The solution quality comparison analysis shows that both ME-MLS algorithms are able
to archive the largest improvements when solving the inconsistent type of instances,
achieving more moderated improvements for the consistent and semi-consistent type of
instances. At the same time, the multi-objective comparison shows that neither ME-
MLS algorithm is able to adequately sample the Pareto front of the inconsistent type of
instances, while the ME-MLSAGA algorithm samples correctly the Pareto front of both
consistent and semi-consistent type of instances. When comparing with each other, the
solution quality comparison analysis demonstrated that the ME-MLSFGAA algorithm is
able to compute extremal schedules with slightly better makespan and total energy con-
sumption values than the ME-MLSAGA algorithm, specially for the largest ME-HCSP
dimension instances. On the other hand, the multi-objective comparison demonstrated
that the ME-MLSAGA algorithm is able to compute a more accurate and more diverse
Pareto front than the ME-MLSFGAA algorithm, again specially for the largest ME-HCSP
dimension instances. This results are exemplified in the Pareto front approximations sam-
ples in Figures 6.4 and 6.5. In these figures it can be clearly seen that the ME-MLSFGAA

algorithm is able to compute better extremal schedules, while the ME-MLSAGA is able
to compute schedules with better diversity and better covering properties.

78 Experimental analysis

(a) Instance generated using the model by Ali et al. (2000) with a consistent structure, low
task heterogeneity, and high machine heterogeneity

(b) Instance generated using the model by Braun et al. (2001) with a consistent structure,
low task heterogeneity, and low machine heterogeneity

Figure 6.4: Approximated Pareto front computed by the ME-MLS algorithms after 30
independent executions solving two instances of dimension 1024×32.

6.6 Results and discussion 79

(a) Instance generated using the model by Braun et al. (2001) with a semi-consistent struc-
ture, low task heterogeneity, and high machine heterogeneity

(b) Instance generated using the model by Braun et al. (2001) with a consistent structure,
high task heterogeneity, and high machine heterogeneity

Figure 6.5: Approximated Pareto front computed by the ME-MLS algorithms after 30
independent executions solving two instances of dimension 2048×64.

80 Experimental analysis

6.7 Computational efficiency analysis

A speedup analysis was performed for both ME-MLSAGA and ME-MLSFGAA algorithms
in order to study the behavior of the execution time of the algorithms when using different
numbers of threads. The speedup evaluation was performed using a 1024×32 dimension
instance, performing 30 independent executions of each version of the algorithm, and
using a stopping criterion of 6 million iterations. Table 6.12 presents the speedup analysis
results for ME-MLSAGA and ME-MLSFGAA, respectively.

Table 6.12: Speedup values for the ME-MLSFGAA and ME-MLSAGA algorithms.

threads
ME-MLSFGAA ME-MLSAGA

time (s) speedup time (s) speedup

1 30.5±1.45 1.0 33.7±2.03 1.0

2 29.7±1.34 1.0 17.2±0.76 2.0

3 11.4±0.48 2.7 16.1±0.60 2.1

4 8.4±0.30 3.6 8.8±0.44 3.8

5 7.9±0.37 3.9 7.2±0.38 4.7

6 6.4±0.17 4.7 6.9±0.21 4.9

7 4.7±0.16 6.5 5.7±0.19 5.9

8 4.2±0.16 7.2 4.6±0.15 7.3

9 4.1±0.14 7.4 4.0±0.16 8.4

10 3.6±0.13 8.4 3.9±0.16 8.6

11 3.0±0.09 10.0 3.6±0.10 9.5

12 2.8±0.09 10.7 3.1±0.15 10.9

13 2.8±0.10 11.0 2.9±0.08 11.6

14 2.6±0.09 11.7 2.8±0.12 12.0

15 2.3±0.06 13.3 2.6±0.10 13.2

16 2.1±0.07 14.5 2.3±0.08 14.6

17 2.1±0.08 14.4 2.2±0.08 15.1

18 2.0±0.07 15.0 2.2±0.10 15.0

19 1.8±0.05 17.0 2.1±0.09 15.9

20 1.7±0.07 18.1 1.9±0.10 17.4

21 1.7±0.06 18.3 1.9±0.07 18.1

22 1.6±0.05 19.1 1.9±0.10 18.1

23 1.4±0.05 21.2 1.8±0.07 18.8

24 1.4±0.03 22.4 1.7±0.06 20.2

Figure 6.6 graphically summarizes the results of the speedup analysis when using
up to 24 threads executing on the 24 cores available in the Magny-Cours experimental
computing platform used.

The study shows that both ME-MLSAGA and ME-MLSFGAA algorithms have a near
linear speedup behavior. The efficiency results in Table 6.12 demonstrates that ME-
MLSAGA is the most efficient and scalable algorithm: it achieves a speedup of 22.4 when
using 24 threads, while ME-MLSFGAA obtains a speedup of 20.2.

6.8 Summary 81

Figure 6.6: Speedup for the two variants of the ME-MLS algorithm.

6.8 Summary

This chapter presented a comprehensive experimental evaluation of the ME-MLS al-
gorithm. The execution platform and the problem instances used for the experiments
were presented. Two different techniques for computing baseline reference results were
detailed. The first technique makes use of a linear programming relaxation technique,
and provides a lower bound for each of the considered instances was calculated. The
second technique makes use of four MinMin-based list-scheduling heuristics in order to
compute accurate reference solutions. Two different versions of the ME-MLS algorithm
were evaluated, the ME-MLSAGA and the ME-MLSFGAA. When comparing to the best
MinMin-based heuristic, both versions demonstrated to compute average makespan im-
provements of approximately 10%, and energy consumption improvements of approxi-
mately 6%. On the other hand, the ME-MLSAGA algorithm proved to compute a more
accurate and evenly distributed Pareto front than the ME-MLSFGAA algorithm, spe-
cially for some type of instances. Finally, the computational efficiency analysis showed
the ME-MLSAGA algorithm to have a better scalability behavior than the ME-MLSFGAA,
achieving an upper speedup value of 22.4 and 20.2 respectively.

Chapter 7

Scheduling very large problem
scenarios

This chapter tackles the problem of solving very large problem scenarios for the single-
objective HCSP. Previous work demonstrated that the rPALS algorithm is an accurate
and efficient scheduler for tackling the HCSP (Nesmachnow et al., 2012b). Because
of its proven capabilities, the rPALS was further extended with the use of the GPU
architecture. The result of this further work is the gPALS algorithm: a hybrid rPALS-
based algorithm designed for the CPU/GPU architecture.

First, a brief introduction to GPU computing is presented. After that, the gPALS
algorithm is detailed, and the results of the experimental evaluation of the gPALS al-
gorithm are reported and analyzed. Finally, the gPALS algorithm is compared with
a hybrid CPU/GPU cellular EA proposed by Pinel et al. (2013), also for tackling the
HCSP.

7.1 GPU computing

Graphics Processing Unit (GPU) devices were originally designed to exclusively perform
graphic processing operations, allowing the Central Process Unit (CPU) to focus on the
remaining general purpose computations. The GPU architecture specializes in massive
parallel computation, and nowadays GPU devices are comprised of hundreds of paral-
lel processing computing cores which are able to provide a considerably large aggregate
computing power. In the last decade, the concept of General-Purpose Graphics Process-
ing Unit (GPGPU) has gained increased popularity and hardware manufacturers have
made a large effort in order to enable the execution of general purpose applications in
the GPU architecture.

The first GPUs used for general-purpose computing were programmed using graphic-
oriented programming interfaces such as OpenGL and DirectX (Fernando, 2004). Later,
the applications for GPU were developed in assembly language for each device model,
having very limited to none portability. More recently, high-level languages were devel-
oped to fully exploit the capabilities of the GPU architecture. In 2007, NVIDIA intro-
duced the Compute Unified Device Architecture (CUDA) (Sanders and Kandrot, 2010),
a software architecture for managing the GPU as a parallel computing device without
requiring to map the data and the computation into a graphic-oriented programming
interface.

83

84 Scheduling very large problem scenarios

CUDA extends the C language, and it is available since devices of the family GeForce
8 Series onwards. Three software layers are used in CUDA to communicate with the
GPU (see Figure 7.1): a low-level hardware driver that performs the CPU-GPU data
communications, a high-level runtime that provides the basic programming interfaces,
and a set of general purpose libraries such as CUBLAS for linear algebra and CUFFT
for Fourier transforms calculation.

Figure 7.1: CUDA architecture.

The CUDA architecture is built around a scalable array of multiprocessors, each one
having eight scalar processors, one multithreading unit, and a shared memory chip. The
multiprocessors are able to efficiently create, manage, and execute a massive number
of parallel threads. The threads are grouped into blocks, each block having up to 512
threads, and each block being executed in a single multiprocessor of the GPU device.
Furthermore, the blocks are grouped into grids. Only one grid can be executed at a time,
and each time a CUDA application calls a grid to be executed in the GPU device, all the
blocks in the given grid are scheduled to be executed by the available multiprocessors.

When a multiprocessor receives a block to be executed, it groups the threads of the
block into sets of 32 consecutive threads called warps. All the threads in a warp are
able to execute a single instruction at a time, so the best efficiency is achieved when
the 32 threads in the warp execute the same instruction over different data. Otherwise,
the warp serializes the threads. When a block finishes its execution, the multiprocessor
becomes idle and waits for the next block to be scheduled.

The threads are able to store and access application data using different memory
spaces, the three most important of these memory spaces are: the per-thread registers
memory, which is private to each thread; the per-block shared memory, which is shared
between all the threads in the same block; and the per-application global memory of the
GPU device, which is globally accessible by any thread in the application. The registers
memory provides the fastest access rate of all the memory spaces, but it is also the one
with the smallest storage capacity. The global memory has the slowest access rate, but
the largest storage capacity. Finally, the shared memory provides a compromise between
access rate and storage capacity. Minimizing the access to the slower memory spaces is
a very important feature to achieve high efficiency in GPU computing. Figure 7.2 shows
the previously described CUDA memory model.

7.2 gPALS: a rPALS-based GPU scheduler for the HCSP 85

Figure 7.2: CUDA memory model.

7.2 gPALS: a rPALS-based GPU scheduler for the HCSP

The emergence of general purpose GPU computing has opened new promising lines of
research. Indeed, this new technology will help to address larger problem scenarios in
reasonable wall-clock times. This is precisely the main design goal of gPALS, a hybrid
CPU/GPU parallel implementation of rPALS. In gPALS, the neighborhood evaluation of
the embedded local search is massively parallelized and migrated to the CUDA architec-
ture; while the higher level schema of the rPALS algorithm is executed in the traditional
CPU architecture. Algorithm 16 shows the pseudo-code of the higher level schema of
gPALS algorithm which is executed by the CPU architecture.

Algorithm 16 Pseudo-code of the gPALS algorithm for the HSCP

1: s← GenerateInitialSolution()
2: while stopping condition not met do
3: M ← Massively parallel neighborhood evaluation applied to s
4: s← Apply the best movement from M
5: s ← Apply the rest of the movements in M in random order, only if they do not

modify an already-modified machine
6: end while
7:

8: return s

The method starts by generating an initial schedule s (line 1). Each iteration, a
neighborhood evaluation is performed in the GPU in order to find a set of candidate
movements for improving current schedule s (line 3). The logic of this neighborhood
evaluation is described in Algorithm 17. The neighborhood evaluation returns a set
M with the best movements found by the neighborhood evaluation in the GPU. The
movement m∗ ∈ M , which improves the most the current schedule s, is always applied
(line 4). The remaining movements in M are applied in random order as long as they do
not undo a previously applied movement (line 5). Figure 7.3 presents the general schema
of the gPALS algorithm.

86 Scheduling very large problem scenarios

Figure 7.3: Schema of the gPALS algorithm.

The neighborhood evaluation on the GPU is organized in blocks, each block performs
an independent neighborhood evaluation in a randomly selected neighborhood. During
the search, all the threads in the same block collaborate with each other to find the
best perturbation in the assigned neighborhood. Algorithm 17 presents the neighbor-
hood search performed by each thread on the GPU in order to find a set of candidate
perturbations for improving a given schedule.

First, each block selects a neighborhood structure: swap or move (line 2). These
neighborhood structures are identical to the ones defined for the rPALS algorithm. Af-
ter selecting the neighborhood structure, each thread in the block randomly selects the
source and destination elements to modify (line 4 for the swap neighborhood structure,
and lines 10–11 for the move neighborhood structure). Each thread evaluates one move-
ment of the assigned neighborhood structure and computes the δ-value for it using the
CalculateDeltaswap(s, tsrc, tdst) and CalculateDeltamove(s, tsrc,mdst) functions (line 5 and
line 12). The movement and the δ-value of each thread are added to the set Mi, which is
stored in the shared memory of the block i (line 7 and line 14). After that, a synchroniza-
tion operation is performed among all the parallel threads within the block i (line 17).
Once the threads of the block are synchronized, a parallel reduction operation is applied
to find the best movement—i.e. the one with the best δ-value—(line 19). Finally, the
best movement in Mi is returned to the higher level schema of gPALS in the CPU (see
Algorithm 16).

7.2 gPALS: a rPALS-based GPU scheduler for the HCSP 87

Algorithm 17 Pseudo-code of the neighborhood search for the GPU

Require: s the current schedule to be improved
1: Shared Mi ← ∅ {shared among all the threads in the block i}
2: Shared n← Choose neighborhood structure (swap or move)
3: if n is swap then
4: tsrc, tdst ← Choose two random tasks (tsrc 6= tdst)
5: δ ← CalculateDeltaswap(s, tsrc, tdst)
6: if δ ≥ 0 then
7: Mi ←Mi ∪ {(tsrc, tdst, δ)}
8: end if
9: else if n is move then

10: tsrc ← Choose a random task
11: mdst ← Choose a random machine
12: δ ← CalculateDeltamove(s, tsrc,mdst)
13: if δ ≥ 0 then
14: Mi ←Mi ∪ {(tsrc,mdst, δ)}
15: end if
16: end if
17: SynchronizationBarrier() {synchronizes all threads in the block}
18:

19: mbest
i ← Parallel reduce Mi to find best movement in the block i

20: return mbest
i

Both CalculateDeltaswap(s, tsrc, tdst) and CalculateDeltamove(s, tsrc,mdst) functions
are defined as their counterparts functions defined for the ME-rPALS local search, but
considering only the makespan objective function (see Section 5.5.3).

Problem encoding

Two well-known structures for in-memory encoding of HCSP schedules were previ-
ously presented: the task-oriented encoding and the machine-oriented encoding (see
Section 5.2).

When using the machine-oriented encoding, the HCSP schedule is stored in a N ×
M -sized matrix. Lets suppose a 32-bit (4-byte) integer value (int) is used for task
representation. Representing a schedule of dimension 32768×1024 would require a total
memory of (32768× 1024× 4) bytes = 128 Mb. On the other hand, the task-oriented
encoding uses only a vector of size N for encoding a HCSP schedule, requiring only
(32768× 4) bytes = 128 Kb of memory for encoding a HCSP schedule.

The memory footprint of a schedule using the machine-oriented encoding is consid-
erably larger than the one using the task-oriented encoding. This larger footprint can
impact negatively in the algorithm performance, because of the time required to allo-
cate and update such a large memory structure. Since the reduced execution time is a
primary concern when designing the gPALS algorithm, the task-oriented encoding was
chosen as the only in-memory encoding of HCSP schedules in the gPALS algorithm.

88 Scheduling very large problem scenarios

7.2.1 Initialization heuristics

The gPALS algorithm requires a method for generating an initial solution. Taking this
into consideration, two different versions of gPALS have been devised depending on the
method for generating the initial solution: i) gPALSMCT , which uses MCT heuristic for
generating the initial task schedule; and ii) gPALSMMDD, which uses the pMinMin/DD
heuristic for generating the initial task schedule.

The MCT heuristic was previously presented in Section 5.3, while the pMinMin/DD
heuristic is presented next.

pMinMin/DD heuristic

The pMinMin/DD heuristic is a parallel MinMin heuristic with domain decomposition.
The MinMin list-scheduling heuristic is considered to be one of the most accurate heuris-
tics for solving the HCSP (Izakian et al., 2009a), but its design presents some scalability
issues. The MinMin list-scheduling heuristic was previously introduced in Section 6.3.2
and it was shown that its execution time follows a O(n3) growth behavior.

In order to alleviate the computing requirement of the MinMin heuristic, the pMin-
Min/DD heuristic was devised by Canabé and Nesmachnow (2012). The pMinMin/DD
applies a domain decomposition strategy, splitting the set of tasks T into p equally sized
sub-groups T1, ..., Tp. Then it computes the solution for each of the p sub-problems Th
applying the Min-Min heuristic and computing p sub-schedules f1, ..., fp. Finally, the p
sub-schedules are aggregated into the final schedule f = f1∪ ...∪fp. Its naturally parallel
design makes it simple to implement using a multithreading approach, computing each
sub-domain schedule concurrently. The pseudo-code of the pMinMin/DD heuristic is
presented in Algorithm 18.

Algorithm 18 Pseudo-code of each thread of the pMinMin/DD heuristic

Require: N number of tasks to be scheduled
M number of available machines
p number of sub-problems

1: Uh ← Th {set of unassigned tasks, |Th| = N
p }

2: while Uh 6= ∅ do
3: Lh ← ∅
4: for each task ti ∈ Uh do
5: for j = 1→M do
6: ctij ← completion time of task ti in machine mj

7: Lh ← Lh ∪ {ctij}
8: end for
9: end for

10: ct∗ij ← get the assignment with minimum completion time in Lh

11: Assign task ti to machine mj

12: Remove task ti from Lh

13: end while

As the MinMin heuristic, the pMinMin/DD heuristic also presents three nested loops

in its design, hence its execution complexity is in the order of O
(
(N/p+1)×N/p

2 ×M
)
∼

O
(
N2×M
2×p2

)
∼ O

(
n3

2×p2

)
∼ O(n3).

7.3 Experimental analysis of the gPALS algorithm 89

In the long run, the pMinMin/DD heuristic presents the same complexity growth
behavior as the MinMin heuristic, but a refined analysis shows a slower complexity
growth thanks to the 1/p2 multiplier. Depending on the number of sub-problems p,
this slower complexity growth could enable the pMinMin/DD heuristic to tackle much
larger scenarios than the MinMin heuristic, while at the same time maintaining reduced
execution times.

7.3 Experimental analysis of the gPALS algorithm

This section starts by introducing the set of HCSP instances and the computational plat-
form used to evaluate the proposed gPALS algorithms. After that, the results computed
by both gPALS algorithms are reported, and compared with the results computed by
the MinMin heuristic. Finally, the results are summarized and compared with the ones
computed using the cellular EA scheduler reported in the work by Pinel et al. (2013).

7.3.1 HCSP instances

To evaluate the proposed gPALS method, a specific set of 60 HCSP instances was used.
These instances were randomly generated following the range based methodology pro-
posed by Ali et al. (2000), and they were previously employed to evaluate the cellular
EA scheduler for heterogeneous computing systems in the work by Pinel et al. (2013).

The proposed HCSP instances model realistic large-sized heterogeneous computing
infrastructures. Three problem dimensions were studied in the experimental analysis of
gPALS: (tasks×machines) 8192×256, 16384×512, and 32768×1024. These dimensions
are larger than the ones usually tackled in the related literature, with the exception of
the previously mentioned work by Pinel et al. (2013). For each comparison purposes, the
gPALS was evaluated using the same instances proposed by Pinel et al. (2013). Pinel
et al. (2013) generated a set of 20 instances for each dimension using the parametrization
values suggested by Braun et al. (2001), all of which are publicly available.

7.3.2 Implementation details and execution platform

Both implementations of the gPALS algorithm were implemented in the C language,
using the standard stdlib library and compiled with GNU C compiler 4.4.5 and the
CUDA compiler 3.0. For efficiently generating pseudo-random numbers in the GPU
architecture, the massively parallel Mersenne Twister for Graphic Processors (MTGP)
library is used (Saito, 2010).

The experimental analysis was performed in a Bull B505 server with two six-core
Intel Xeon CPU L5640 processor at 2.27GHz, 24 GB RAM, using a CentOS Linux
operative system and a NVIDIA Tesla M2090 GPU device. The experimental platform
is hosted as part of the HPC facility of the University of Luxembourg (platform website:
https://hpc.uni.lu/).

7.3.3 Results and discussion

This section presents the experimental results obtained during the evaluation of the
proposed gPALS methods. First, the numerical efficacy obtained when solving realistic
HCSP instances is studied in detail, presenting a comparative analysis (regarding both

90 Scheduling very large problem scenarios

the final results and the makespan evolution) between the two versions of gPALS and
the MinMin heuristic. After that, the parallel efficiency of the proposed gPALS methods
is studied, by comparing their execution times against the execution time required by
the MinMin list scheduling heuristic. Finally, the summary presents a comparison of the
makespan values and the computational efficiency with the results obtained using the
cellular evolutionary scheduler proposed by Pinel et al. (2013).

Two different stopping criteria have been used in the gPALS algorithm during its
experimental evaluation. In the numerical efficiency experiments, gPALS was configured
for using a fixed numerical effort stopping criterion: the algorithm stops when 30 seconds
of execution time have elapsed. This condition has been set to study the improvements
in the solution quality achieved when running the proposed methods for a fixed execu-
tion time. On the other hand, in the parallel performance analysis of gPALS, a fixed
solution quality stopping criterion was used: the algorithm stops when it reaches a task
schedule with a lower makespan than the schedule computed by the MinMin heuristic.
This experimental setting has been devised to analyze the acceleration in the required
execution time when computing a solution with the same quality than the one computed
by MinMin.

The gPALS method is comprised of several stages: i) load : loading the scheduling
scenario from the instance file in disk; ii) initialize: computing the initial solution in CPU
using either MCT or pMinMin/DD; iii) initialize GPU : initializing the GPU device; iv)
copy : transferring the data from the CPU memory to the GPU memory; and v) PALS :
performing the stochastic local search on CPU/GPU.

As an example, Figure 7.4 presents the absolute (values) and relative (bars) contri-
butions of each stage to the total execution time for both gPALS versions. The time
values were averaged per each problem dimension studied, when running the proposed
algorithms until computing a schedule with similar makespan than the one computed
by the MinMin list-scheduling heuristic. The total time indicates the wall-clock time for
each gPALS method (i.e. the sum of the execution times for every stage).

Numerical efficiency

The numerical efficiency evaluation compares the total execution time and the accuracy
of the two gPALS algorithms with the MinMin heuristic. For comparing the accuracy,
the average and standard deviation of the computed makespan values are reported, con-
sidering the results from 30 independent executions performed for each algorithm and
problem instance. For the execution time comparison, the time required to load the
scheduling scenario from the instance file in disk is not considered, since it is exactly
the same for all the compared algorithms. Thus, the reported execution time includes
the time to compute the initial solution, the initialization of the GPU device, the time
to transfer the data to the GPU, and the 30 wall-clock seconds to execute each PALS
method.

In order to determine the statistical confidence of the results, the Kruskal-Wallis
statistical test was performed to analyze the distributions of the results computed by
each studied version of gPALS for each problem instance and dimension. The best
results for each metric and problem instance are marked in bold font when the p-value
computed in the correspondent pair-wise Kruskal-Wallis test is below 5× 10−2 (meaning
a statistical confidence of the results greater than 95%).

7.3 Experimental analysis of the gPALS algorithm 91

Figure 7.4: Contribution of each stage to the execution time for each gPALS version and
each problem dimension studied.

The experimental results in Tables 7.1, and 7.2 clearly point out that gPALSMMDD

is the algorithm that computed the most accurate solutions. This situation occurs con-
sistently for the three instances sizes tackled during the evaluation.

It is important to note the relevance of the makespan improvement values, given
the experimental conditions. Maintaining a fixed execution time for PALS execution,
the average makespan improvement values show that, the larger the instance dimension,
the better the improvement. That is, for search spaces very much larger, the more the
gPALS is able to improve over the MinMin result.

Figure 7.5 displays the evolution of the makespan values in a typical execution of
both gPALS algorithms when solving a representative HCSP instance with dimension
8192×256. Two comparisons are presented, Figure 7.5a shows the makespan evolution in
terms of the number of iterations of the algorithm, and Figure 7.5b shows the makespan
evolution in terms of the wall-clock execution time of the GPU PALS algorithm. The
makespan obtained by MinMin is also included in the graphics as a baseline for the
comparison. The MCT heuristic computes a better initial solution than the pMinMin/D
heuristic, but the gPALSMCT algorithm reaches a stagnation condition much faster than
the gPALSMMDD heuristic. Despite the faster stagnation condition, the advantage pro-
vided by its initial solution allows the gPALSMCT algorithm to match the MinMin ac-
curacy in around 1000 iterations, while the gPALSMMDD heuristic requires around 2000
iterations to match the same accuracy value. Both gPALS versions outperform MinMin
after just about one single second of computation time. This shows the suitability of the
proposed local search algorithms for efficiently addressing large-sized instances of the
HCSP.

92 Scheduling very large problem scenarios

Table 7.1: Makespan and execution time comparison of MinMin and both gPALS versions
for the 8192×256 dimension instances.

81
92
×

2
56

d
im

en
si

on
in

st
an

ce
s

instance
makespan execution time (s)

MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD

1 1845.2 1831.6±1.9 1711.9±0.9 15.0 38.6±0.7 39.4±0.5

2 1889.9 1863.5±1.7 1740.2±1.2 15.0 38.7±0.4 39.3±0.4

3 1894.3 1831.6±1.7 1716.6±1.3 14.8 38.7±0.4 39.4±0.5

4 1890.1 1866.6±1.6 1743.3±1.1 14.9 38.8±0.6 39.4±0.5

5 1859.6 1843.1±2.1 1725.4±1.0 14.9 38.7±0.6 39.5±0.6

6 1863.4 1827.8±1.6 1715.2±1.1 14.9 39.0±0.6 39.3±0.7

7 1897.3 1859.9±1.7 1737.2±1.2 14.9 38.8±0.6 39.5±0.5

8 1874.5 1852.9±1.7 1738.2±1.1 15.3 38.9±0.6 39.4±0.5

9 1871.5 1855.5±1.5 1731.1±1.2 15.0 38.7±0.5 39.3±0.5

10 1865.9 1864.1±2.2 1742.4±1.1 15.0 38.8±0.6 39.3±0.5

11 1840.7 1823.8±1.8 1710.4±1.3 14.8 38.6±0.6 39.3±0.7

12 1867.3 1838.0±2.0 1723.7±0.9 14.9 38.7±0.7 39.2±0.6

13 1895.4 1867.6±2.0 1745.2±1.4 14.9 38.4±0.6 39.3±0.5

14 1884.8 1843.9±2.0 1727.9±1.0 14.9 38.8±0.5 39.1±0.6

15 1851.0 1825.7±2.2 1709.0±1.5 14.9 38.7±0.7 39.2±0.6

16 1846.3 1839.0±1.9 1722.9±1.1 15.1 38.8±0.5 39.3±0.6

17 1874.7 1818.9±1.6 1708.4±0.8 15.0 38.6±0.6 39.2±0.7

18 1862.8 1856.7±2.0 1736.6±1.0 14.6 38.6±0.5 39.2±0.6

19 1892.5 1854.8±1.7 1734.1±0.8 14.9 38.5±0.7 39.4±0.5

20 1869.0 1852.4±1.8 1731.6±0.9 14.9 38.8±0.6 39.2±0.6

(a) Makespan vs. iterations (b) Makespan vs. GPU wall-clock time

Figure 7.5: Evolution of the makespan value during a typical execution of gPALSMCT

and gPALSMMDD for a 8192×256 dimension instance. The makespan computed by
MinMin is shown as a reference baseline for the comparison.

7.3 Experimental analysis of the gPALS algorithm 93

Table 7.2: Makespan and execution time comparison of MinMin and both gPALS versions
for the 16384×512 and 32768×1024 dimension instances.

16
38

4
×

5
12

d
im

en
si

on
in

st
a
n

ce
s

instance
makespan execution time (s)

MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD

1 1934.1 1887.2±1.2 1777.6±0.8 110.7 40.7±0.6 47.5±0.6

2 1940.5 1892.5±1.4 1781.1±0.5 110.6 40.8±0.7 47.2±0.6

3 1949.0 1893.1±1.2 1783.2±0.9 110.6 40.6±0.5 47.4±0.5

4 1922.0 1888.3±1.2 1777.9±0.6 110.7 40.8±0.6 47.5±0.5

5 1904.1 1869.4±1.2 1757.9±0.6 111.2 40.6±0.7 47.4±0.5

6 1901.7 1885.8±1.3 1771.8±0.6 111.4 40.8±0.6 47.4±0.6

7 1945.5 1899.8±1.3 1786.8±0.7 111.3 40.9±0.6 47.6±0.5

8 1903.8 1876.7±1.6 1768.4±0.7 111.3 40.6±0.8 47.5±0.6

9 1937.3 1895.2±1.4 1782.8±0.6 111.1 40.8±0.6 47.3±0.5

10 1935.7 1878.2±1.3 1771.3±0.5 110.7 40.8±0.5 47.3±0.8

11 1937.4 1900.8±1.2 1786.6±0.6 110.8 40.7±0.8 47.4±0.6

12 1916.2 1870.6±1.8 1762.4±0.5 110.9 40.8±0.6 47.4±0.6

13 1911.8 1885.6±1.2 1770.4±0.7 110.7 40.7±0.6 47.5±0.6

14 1927.6 1898.2±1.7 1784.0±0.7 110.8 40.6±0.7 47.7±0.7

15 1944.4 1899.2±1.2 1787.3±0.6 110.5 40.5±0.7 47.4±0.5

16 1939.5 1888.4±1.8 1776.2±0.8 110.8 40.5±0.7 47.4±0.6

17 1933.6 1880.6±1.2 1765.7±0.6 111.3 40.8±0.5 47.5±0.5

18 1929.5 1887.9±1.3 1776.5±0.7 111.3 40.8±0.7 47.4±0.6

19 1910.8 1879.2±1.1 1765.5±0.6 111.2 40.7±0.8 47.5±0.5

20 1941.0 1893.0±1.4 1780.8±0.6 111.1 40.7±0.7 47.5±0.6

32
76

8
×

1
02

4
d

im
en

si
on

in
st

an
ce

s

instance
makespan execution time (s)

MinMin gPALSMCT gPALSMMDD MinMin gPALSMCT gPALSMMDD

1 1996.2 1940.6±1.8 1847.5±2.0 839.8 49.6±0.7 139.7±7.2

2 1979.0 1933.2±1.5 1840.9±2.4 838.8 49.5±0.7 137.3±6.0

3 1980.7 1933.5±1.9 1837.3±1.9 842.5 49.8±0.9 137.8±8.0

4 1982.8 1942.6±1.7 1846.8±2.2 841.7 49.8±0.7 139.3±6.8

5 1971.9 1930.4±1.9 1834.1±2.6 845.3 49.6±0.6 139.2±5.8

6 1973.4 1927.2±2.1 1832.4±2.4 834.6 49.3±0.6 137.5±8.2

7 1991.0 1939.7±1.9 1844.6±2.1 837.4 49.6±0.6 137.3±6.6

8 1991.8 1936.5±1.9 1838.2±2.6 843.2 49.4±0.7 138.9±6.9

9 1994.8 1942.9±1.7 1848.1±2.6 838.4 49.5±0.7 128.3±6.8

10 1997.1 1936.2±1.8 1838.6±2.4 839.3 49.6±0.6 136.7±6.7

11 1975.8 1929.0±1.6 1832.0±1.6 840.4 49.6±0.7 128.3±8.0

12 1974.2 1925.0±1.8 1828.2±2.1 838.7 49.5±0.7 138.6±7.0

13 1978.6 1928.4±1.5 1834.7±2.0 843.1 49.6±0.8 128.3±8.7

14 1988.1 1939.8±2.0 1840.7±2.1 841.8 49.5±0.8 138.0±8.0

15 1972.1 1931.5±2.0 1834.5±1.9 844.0 49.7±0.7 128.3±5.5

16 1979.3 1926.9±1.8 1830.5±3.0 834.9 49.5±0.6 139.5±7.0

17 1991.8 1930.4±1.6 1831.0±2.7 837.6 49.5±0.6 135.8±8.1

18 1986.8 1937.5±1.5 1841.6±2.2 842.7 49.5±0.7 138.4±8.4

19 1975.2 1927.5±2.0 1829.8±2.0 838.8 49.7±0.6 137.7±6.3

20 1991.7 1932.3±2.0 1836.3±1.9 840.0 49.4±0.6 140.6±5.0

94 Scheduling very large problem scenarios

(a) Makespan vs. iterations (b) Makespan vs. GPU wall-clock time

Figure 7.6: Evolution of the makespan value during a typical execution of gPALSMCT

and gPALSMMDD for a 16384×512 dimension instance. The makespan computed by
MinMin is shown as a reference baseline for the comparison.

Figure 7.6 shows the evolution of the makespan values with respect to the num-
ber of iterations, and the execution time of the gPALS algorithm for a representative
16384×512-sized instance. All the previous claims hold as well, but requiring the gPALS
algorithm more iterations and longer execution time, to match the MinMin heuristic
makespan value.

Figure 7.7 graphically summarizes the average makespan improvements over the Min-
Min results for the two versions of gPALS and each problem dimension studied in this
article.

Figure 7.7: Average makespan improvements over MinMin for the two versions of gPALS.

7.3 Experimental analysis of the gPALS algorithm 95

Table 7.3: Wall-clock time (in seconds) required for each gPALS algorithm to compute a
schedule with the same makespan than the schedule computed by MinMin, and compared
with the MinMin average execution time.

inst.
8192×256 dimension 16384×512 dimension 32768×1024 dimension

(MinMin avg.: 15 s) (MinMin avg.: 111 s) (MinMin avg.: 840 s)
gPALSMCT gPALSMMDD gPALSMCT gPALSMMDD gPALSMCT gPALSMMDD

1 5.50±0.17 5.65±0.02 7.30±0.06 14.26±0.06 16.24±0.09 105.69±0.09
2 5.15±0.02 5.64±0.03 7.26±0.03 14.29±0.17 16.22±0.09 105.67±0.09
3 4.89±0.02 5.65±0.02 7.15±0.26 14.28±0.06 16.26±0.10 105.71±0.10
4 5.20±0.04 5.65±0.06 7.54±0.04 14.26±0.06 16.26±0.11 105.71±0.11
5 5.38±0.07 5.64±0.02 7.52±0.04 14.24±0.06 16.20±0.09 105.65±0.09
6 5.05±0.03 5.69±0.07 8.39±0.15 14.24±0.05 16.21±0.10 105.66±0.10
7 5.03±0.02 5.65±0.03 7.35±0.03 14.26±0.05 16.26±0.12 105.71±0.12
8 5.22±0.03 5.67±0.03 7.76±0.05 14.25±0.06 16.21±0.11 105.66±0.11
9 5.37±0.06 5.67±0.04 7.38±0.04 14.23±0.05 16.25±0.12 105.70±0.12

10 7.60±1.10 5.67±0.05 7.19±0.03 14.26±0.08 16.22±0.10 105.67±0.10
11 5.33±0.05 5.68±0.03 7.49±0.03 14.23±0.06 16.17±0.10 105.62±0.10
12 5.11±0.02 5.68±0.07 7.34±0.02 14.22±0.06 16.24±0.12 105.69±0.12
13 5.16±0.02 5.66±0.03 7.77±0.05 14.27±0.05 16.22±0.13 105.67±0.13
14 5.00±0.02 5.67±0.02 7.64±0.04 14.29±0.13 16.25±0.14 105.70±0.14
15 5.16±0.03 5.69±0.02 7.34±0.04 14.25±0.06 16.21±0.10 105.66±0.10
16 5.97±0.47 5.65±0.02 7.26±0.03 14.30±0.08 16.25±0.13 105.70±0.13
17 4.91±0.02 5.67±0.03 7.24±0.03 14.23±0.06 16.21±0.12 105.66±0.12
18 6.49±0.90 5.66±0.02 7.38±0.03 14.25±0.04 16.22±0.11 105.67±0.11
19 5.03±0.02 5.64±0.04 7.61±0.05 14.29±0.07 16.24±0.10 105.69±0.10
20 5.35±0.05 5.67±0.05 7.30±0.06 14.29±0.07 16.25±0.13 105.70±0.13

Parallel performance

Table 7.3 compares the wall-clock time of gPALSMCT and gPALSMMDD against the
MinMin execution time, for the proposed HCSP instances. In the acceleration experi-
ments, the reported wall-clock time accounts for the whole execution time, including the
time required to load the instance from persistent storage into main memory.

For the following experiments, both gPALS methods use the fixed solution quality
stopping criterion. This stopping criterion stops the gPALS algorithm execution when
it computes a solution makespan value which at least matches the makespan value com-
puted by the MinMin heuristic. This stopping criterion is considered in order to analyze
the acceleration in the execution time to compute a solution with the same quality than
the one computed by MinMin.

The first clear claim regarding the wall-clock times presented in Table 7.3, is that
both gPALS versions match the quality of the MinMin computed solution in significantly
reduced execution time. The larger the instance, the higher the reduction in the execution
times. This can be explained by the ill O(n3) execution time growth presented by the
MinMin heuristic. Indeed, MinMin requires roughly 15, 110, and 840 seconds to build
a solution for 8192×256, 16384×512, and 32768×1024 instances, respectively, whereas
gPALSMCT and gPALSMMDD need 8, 12, and 20 seconds, and 9, 18, and 110 seconds,
respectively. These differences can be clearly seen in Figure 7.8, which displays the
average execution time improvements over all the instances of the same size reached by
gPALSMCT and gPALSMMDD.

96 Scheduling very large problem scenarios

Figure 7.8: Average execution time improvements of gPALSMCT and gPALSMMDD with
respect to MinMin.

The execution time improvements reported in Figure 7.8 refers to the acceleration
or the reduction in the execution time of an algorithm that runs in a parallel computing
platform (in this case the gPALS algorithm executing in CPU/GPU) with respect another
one that executes sequentially (in this case, the MinMin heuristic executing in CPU).

For the smallest instance considered, the two gPALS algorithms perform roughly
the same, with execution time improvements of 2.78× and 2.65×. However, as the
dimension of the tackled instance increases, MinMin requires more time to complete, i.e.
it does not scale well. On the contrary, the gPALS algorithms do scale properly, specially
gPALSMCT , which has been able to reach an execution time improvement of 51.76× for
the largest dimension instance.

This significant difference in the execution time improvement factor for the largest
instances of both gPALS methods is due to the computational time required by the
initialization heuristic. As previously stated, MCT is a fast method which present a

O(n2) execution time growth, while pMinMin/DD presents a O
(
n3

p2

)
execution time

growth, taking longer to build a solution and reducing the execution time improvement
of gPALSMMDD.

Summary: comparison against MinMin

Table 7.4 summarizes the average improvements over the makespan values computed
using the MinMin list-scheduling heuristic, and the execution time acceleration over
MinMin for each gPALS version and each instance dimension tackled.

The results in Table 7.4 demonstrate that the studied methods offer different trade-
off solutions for the scheduling problem in heterogeneous computing environments. The
gPALSMMDD algorithm is clearly the best scheduling algorithm for the 8192×256 di-
mension, with 7.72% of makespan improvement and 2.65× acceleration over MinMin.
For the largest dimensions instances the choice is not so clear.

7.3 Experimental analysis of the gPALS algorithm 97

Table 7.4: Average makespan improvements and acceleration over MinMin for both
gPALS versions.

dimension

avg. makespan improvement acceleration

(over MinMin) (over MinMin)

gPALSMCT gPALSMMDD gPALSMCT gPALSMMDD

8192×256 1.37%±0.83% 7.72%±0.73% 2.78× 2.65×
16384×512 2.13%±0.53% 7.91%±0.49% 14.88× 7.78×
32768×1024 3.24%±0.30% 8.18%±0.32% 51.76× 7.95×

Table 7.5: Average makespan improvements over MinMin comparison of both gPALS
versions against the cellular EA by Pinel et al. (2013).

dimension

avg. makespan improvement

(over MinMin)

gPALSMCT gPALSMMDD cellular EA

8192×256 1.37%±0.83% 7.72%±0.73% 6.75%±0.73%

16384×512 2.13%±0.53% 7.91%±0.49% 6.05%±0.57%

32768×1024 3.24%±0.30% 8.18%±0.32% 5.19%±0.34%

On one hand, the gPALSMCT algorithm computes slightly better schedules signifi-
cantly faster when compared with the MinMin scheduler—up to 51.76× for dimension
32768×1024—. On the other hand, the gPALSMMDD algorithm computes significantly
better schedules slightly faster than the MinMin scheduler, computing schedules with up
to 8.18% makespan reductions over MinMin with an acceleration of 7.95×.

Comparison against the cellular EA by Pinel et al. (2013)

Tables 7.5 and 7.6 present a comparison of both gPALS versions against the results
reported by Pinel et al. (2013) when tackling the same problem using a cellular EA.
Table 7.5 compares the average makespan values and Table 7.6 compares the average
execution time for each method.

The results in Table 7.5 shows that gPALSMMDD clearly improves upon the state-
of-the-art algorithms from the literature. These improvements have emerged not only in
the quality of the computed schedules, but specially in the execution time required to
compute them.

Table 7.6: Average execution time comparison of both gPALS versions against the cel-
lular EA by Pinel et al. (2013).

dimension
avg. execution time (s)

gPALSMCT gPALSMMDD cellular EA

8192×256 38.7±0.6 39.3±0.6 1630.3±5.6

16384×512 40.7±0.6 47.4±0.6 4382.3±16.4

32768×1024 49.6±0.7 136.3±7.1 8088.3±58.3

98 Scheduling very large problem scenarios

Indeed, gPALSMMDD has achieved an increasing improvement rate over MinMin
that grows up to 8.18% for the largest instance considered in this work (32768×1024).
As discussed above, the largest the instance, the higher the improvement. The cellular
EA, however, has reached its best improvement over MinMin in the smaller instance
(8192×256) and the trend is just the opposite: the largest the instance, the smaller
the improvement. It is worth noting that the cellular EA has clearly outperformed
gPALSMCT (though the differences get very tight as the instances become larger).

Regarding the execution times reported in Table 7.6, the benefits of any of the two
gPALS versions are conclusive. Both methods have an execution times in the range of a
few dozen seconds (136 seconds at most), whereas the cellular EA requires 1630 seconds
(more than 27 minutes) and 134 minutes (more than 2 hours) for the smallest instance
and the largest instances, respectively. In all cases, the execution time of gPALS is always
below 2.5% the execution time of the cellular EA.

7.4 Summary

This chapter introduced the topic of GPU computing, and presented gPALS, an hybrid
CPU/GPU implementation of a randomized local search procedure for addressing large-
size instances of the HCSP. A thorough experimental analysis was performed in order
to evaluate the numerical efficiency and the parallel performance of the algorithm. The
experimental analysis showed that the gPALS algorithm is able to outperform the Min-
Min list-scheduling heuristic, both in accuracy and in execution time. The numerical
efficiency analysis reported quality improvements of up to 8.17%, when using the pMin-
Min/D initialization heuristic. The parallel performance analysis demonstrated that the
proposed algorithm, using the MCT initialization heuristic, is able to provide acceleration
rates of up to 51.6× when comparing with the MinMin heuristic. Finally, the accuracy
and execution time of both gPALS versions were compared with the cellular EA pro-
posed by Pinel et al. (2013). The results of this comparison showed the gPALSMMDD

algorithm as the best compromise algorithm, computing the most accurate solutions and
reporting very competitive execution times.

Chapter 8

Conclusions and future work

This chapter presents the conclusions of the work on addressing scheduling problems
on heterogeneous computing environments in a reduced execution time. It also briefly
details the main lines of future work for improving the current results.

8.1 Conclusions

This thesis tackled the problem of scheduling tasks in a heterogeneous computing envi-
ronment in reduced execution times, considering both the schedule length and the total
energy consumption as the optimization objectives.

In the last decade, heterogeneous computing systems have emerged as useful providers
of the computing power needed to solve complex problems arising in many areas of ap-
plication. Since their emergence, heterogeneous computing systems have become larger
and larger mainly because of the ever demanding scientific community, and thanks to
the fast increase of computing power and the rapid development of high-speed network-
ing. Recently, energy consumption has become a major concern in large data centers.
Processors are the main consumers of energy in such systems, and frequently they also
offer the most flexible energy management mechanisms, by applying dynamic voltage
scaling (DVS), dynamic power management, slack sharing and reclamation, etc. (Khan
and Ahmad, 2009; Kim et al., 2007; Zhu et al., 2003). Reducing processors consumption
is a great challenge, and researchers currently focus on the development of energy-aware
scheduling algorithms for HC systems (Lee and Zomaya, 2009).

In order to model this reality, a formulation for the Makespan-Energy Heterogeneous
Computing Scheduling Problem (ME-HCSP) was presented, based on the well-known
Heterogeneous Computing Scheduling Problem (HCSP). The ME-HCSP describes the
problem which arises in heterogeneous computing environments (such as computing grids
or clusters) where both the energy consumption of the infrastructure, and the task sched-
ule length, are critical. The ME-HCSP was categorized in the scheduling theory using
the notation by Graham et al. (1979), and two different computing models in the re-
lated literature were detailed. Different techniques for tackling scheduling problems,
such as enumerative algorithms, linear programming based algorithms, list-scheduling
algorithms, and metaheuristic algorithms, were surveyed in the related literature.

99

100 Conclusions and future work

Metaheuristic algorithms proved to be very accurate methods for solving scheduling
problems, usually outperforming other methods reviewed in the literature. The efficacy
and efficiency of local search metaheuristics make them the most appealing methods for
rapidly and accurately solving optimization problems.

An exhaustive survey of recent works tackling energy-aware scheduling problems was
presented. The survey shows that only a few recent works used a true multi-objective
approach, most of the works avoid this kind of approach and instead introduce simplifi-
cations for tackling the problem as a single-objective problem.

The lack of true multi-objective approaches motivated the design of a true multi-
objective ME-HCSP scheduling algorithm, considering both accuracy and efficiency. The
efficiency is a capital issue when designing tasks scheduling algorithms for computing
environments. The scheduling procedure must be able to rapidly assign incoming tasks
to idle computing resources, otherwise the computing system would end up wasting
computing cycles. The designed algorithm for tackling such problem, the ME-MLS, is
a population-based local search metaheuristic. It achieves the much needed efficiency
with a multithreading design which exploits the aggregated computing power of modern
multi-core architectures. The ME-MLS, is based on Pareto dominance, and it works on
a population of non-dominated schedules that are iteratively improved by applying the
ME-rPALS local search algorithm. The ME-rPALS local search algorithm is a critical
part of the ME-MLS, and was specifically designed for the ME-MLS. The ME-rPALS
is based on the PALS (Alba and Luque, 2007) and rPALS (Nesmachnow et al., 2012b),
two local search algorithms with proven results when tackling the HCSP. Two different
variants of the ME-MLS were implemented, the ME-MLSFGAA algorithm and the ME-
MLSAGA, the former using a very simple archiving method designed for the ME-MLS,
and the latter using the AGA archiving method (Knowles and Corne, 2003).

For the experimental evaluation of the ME-MLS algorithm, a lower bound for the
problem instances was computed using a linear programming relaxation technique, and
four different MinMin-based list-scheduling heuristics were devised for computing base-
line reference values. In order to demonstrate the efficient performance of the algorithm,
a reduced time stopping criterion of only 10 seconds was set in the experimental evalu-
ation, allowing the ME-MLS to perform almost online scheduling. Both algorithm were
evaluated using a large set of ME-HCSP instances representing small- and medium-sized
heterogeneous computing systems. The efficacy and efficiency of both algorithms was
evaluated and the results were statistically compared with each other. Comparing with
each other, the experimental evaluation shows that ME-MLSAGA offers a better overall
performance than ME-MLSFGAA. Comparing with the proposed MinMin-based algo-
rithms, the experimental analysis shows that both ME-MLS algorithms outperforms the
best MinMin-based heuristic for every instance, with average improvements of up to
11.2% for the makespan and up to 6.8% for the energy consumption. A performance
analysis was performed on both ME-MLS algorithms, and the results shows that the two
ME-MLS variants have a promising scalability behavior.

The ME-MLS algorithm was evaluated using instances comprised of up to 2048 tasks
and 64 machines. In order to further escalate the dimension of the tackled problem
instances, the GPU architecture was explored. For initially addressing this challenge the
gPALS, a hybrid CPU/GPU massively parallel local search method, was designed for
solving the single-objective HCSP.

8.2 Future work 101

The gPALS is based on the ME-rPALS local search, previously proposed for the ME-
MLS algorithm, but modified in order to take advantage of the additional computing
power provided by the GPU architecture. The gPALS was evaluated solving instances
comprised of up to 32768 tasks and 1024 machines in less than 30 seconds of execution
time. Two different versions of the gPALS algorithm were proposed, depending on the
initialization algorithm. The gPALSMCT makes use of the MCT heuristic for its initial-
ization, and the gPALSMMDD makes use of the pMinMin/D heuristic. Both versions
were statistically compared with each other, with the well-known MinMin heuristic, and
with the cellular EA proposed by Pinel et al. (2013).

The experimental evaluation of the gPALS algorithm demonstrates that both gPALS
implementations are able of compute better makespan values than MinMin in all of
the studied instances. Comparing with each other, the gPALSMMDD algorithm proved
to be the best method between the two gPALS implementations, obtaining significant
improvements (up to 8.18%) with respect to MinMin. These reductions in the makespan
obtained by gPALSMMDD have taken a wall clock time of 30 seconds, which represent a
factor of almost 8× in the computational efficiency with respect to the MinMin scheduler.
The gPALSMCT computed schedules significantly faster than both gPALSMMDD and
MinMin, achieving execution time improvements up to 51.76× with respect to MinMin,
but obtaining improvements of only up to 3.24%. Comparing with the cellular EA
proposed by Pinel et al. (2013), the gPALSMMDD also is able to compute solutions
with improved quality in much reduced execution time. This demonstrates that the
new gPALSMMDD algorithm is an accurate and very efficient scheduler for the proposed
HCSP instances.

8.2 Future work

The aggregate computing power provided by the GPU architecture seems promising, but
the additional time required to initialize the GPU device make it unusable for small- and
medium-sized scenarios. Hence, the pure CPU-based algorithmic solution should not be
discarded, and two lines of future work presents for improving the proposed schedulers:
the CPU-based scheduler, and the hybrid CPU/GPU scheduler.

For the CPU-based line of work, the main effort is focused on improving the ME-
MLS algorithm, to make it more efficient, more accurate, and to increase the diversity
of the non-dominated solutions computed by the algorithm. Regarding the ME-MLS
accuracy improvement, work is needed for integrating the proposed ME-MLS algorithm
into well-known multi-objective EA. The multi-objective EA would provide the diversity
mechanisms required to compute higher quality Pareto solutions.

For the GPU-based line of work, there is much more work to do, as the GPU is
a much younger architecture. The main effort is focused on designing ME-gPALS, a
multi-objective version of gPALS for the energy-aware ME-HCSP. Then, as in the CPU-
based line of work, the ME-gPALS should be integrated into a hybrid CPU/GPU multi-
objective EA.

To improve the experimental evaluation of the CPU-based and the GPU-based sched-
ulers, a line of work involves comparing the computed results with the results computed
by well-known multi-objective EA, such as NSGA-II (Deb et al., 2002) and SPEA2 (Zit-
zler et al., 2001). Although these methods are much slower than the ME-MLS, this
comparison should provide a reference framework for the computed Pareto front.

102 Conclusions and future work

The final line of research relates to the ME-HCSP formulation. Work is to be done
in order to formulate a problem which models a more realistic scenario. The EMC
computing model proposed by Nesmachnow et al. (2012a) should be fully adopted in
order to consider multi-core architecture machines in the computing environment. An
online version of the problem should be formulated, and online instances which consider
tasks arrival times should be constructed. And finally, parallel complex tasks should
be considered, in order to model tasks such as multithreading applications, and MPI
applications.

Appendix A

Publications by the author

This appendix presents a list of all the publications by the author.

International Journals

� S. Nesmachnow and S. Iturriaga. Multiobjective grid scheduling using a domain
decomposition based parallel micro evolutionary algorithm. International Journal
of Grid and Utility Computing (IJGUC), 2013. Accepted on January 2012, to
appear.

� S. Iturriaga, S. Nesmachnow, B. Dorronsoro, and P. Bouvry. Energy efficient
scheduling in heterogeneous systems with a parallel multiobjective local search.
Computing and Informatics Journal (CAI), 2013a. Accepted on November 2012,
to appear.

� S. Iturriaga, S. Nesmachnow, F. Luna, and E. Alba. A parallel local search in
CPU/GPU for scheduling independent tasks on large heterogeneous computing
systems. Journal of Parallel and Distributed Computing (JPDC), 2013b. Submitted
on January 2013, pending acceptance.

International conferences

� S. Garćıa, S. Iturriaga, and S. Nesmachnow. Scientific computing in the Latin
America-Europe GISELA grid infrastructure. In Proceedings of the 4th High-
Performance Computing Latin America Symposium (HPCLatAm), JAIIO ’11,
pages 48–62, Córdoba City, Argentina, 2011

� S. Garćıa, S. Iturriaga, S. Nesmachnow, M. da Silva, M. Galnarés, G. Rodriguez,
and G. Usera. Developing parallel applications in the GISELA grid infrastructure.
In Proceedings of the Joint GISELA-CHAIN Conference, COMETA ’12, pages 9–
16, Mexico City, Mexico, 2012.

� S. Nesmachnow and S. Iturriaga. Multiobjective Scheduling on Distributed Hetero-
geneous Computing and Grid Environments Using a Parallel Micro-CHC Evolu-
tionary Algorithm. In Proceedings of the 6th International Conference on P2P, Par-
allel, Grid, Cloud and Internet Computing (3PGCIC), pages 134–141, Barcelona,
Spain, 2011

103

104 Publications by the author

� S. Iturriaga, S. Nesmachnow, and B. Dorronsoro. A Multithreading Local Search
For Multiobjective Energy-Aware Scheduling In Heterogeneous Computing Sys-
tems. In Proceedings of the 26th European Conference on Modelling and Simulation
(ECMS), pages 497–503, Koblenz, Germany, 2012a. ISBN 978-0-9564944-4-3.

� S. Iturriaga, S. Nesmachnow, F. Luna, and E. Alba. A parallel online GPU
scheduler for large heterogeneous computing systems. In Proceedings of the 5th
High-Performance Computing Latin America Symposium (HPCLatAm), JAIIO ’12,
Buenos Aires, Argentina, 2012b.

� S. Iturriaga and S. Nesmachnow. Solving Very Large Optimization Problems (Up
to One Billion Variables) with a Parallel Evolutionary Algorithm in CPU and GPU.
In Proceedings of the Sixth International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC), pages 267–272, Victoria, Canada, 2012. ISBN
978-1-4673-2991-0.

� S. Iturriaga, P. Ruiz, S. Nesmachnow, B. Dorronsoro, and P. Bouvry. A Parallel
Multi-objective Local Search for AEDB Protocol Tuning. In Proceedings of the 16th
International Workshop on Nature Inspired Distributed Computing, in the 27th
IEEE/ACM International Parallel & Distributed Processing Symposium, Boston,
Massachusetts, USA, 2013c. Accepted on February 2013, to appear.

International workshops

� S. Iturriaga, S. Nesmachnow, and C. Tutté. Metaheuristics for multiob-
jective energy-aware scheduling in heterogeneous computing systems. In
EU/Metaheuristics Meeting Workshop (EU/ME), Copenhaguen, Denmark, 2012c.

National conferences

� S. Iturriaga, D. Garat, and G. Moncecchi. Restauración automática de acentos
ortográficos en adverbios interrogativos. In Proceedings of the XII Argentine Sym-
posium on Artificial Intelligence (ASAI), JAIIO ’11, pages 108–119, Córdoba City,
Argentina, 2011.

� S. Iturriaga and S. Nesmachnow. Bi-objective scheduling in heterogeneous grid
computing systems using a parallel micro evolutionary algorithm. In Proceedings
of the XLIII Brazilian Symposium of Operational Research (SBPO), pages 1618–
1629, São Paulo, Brazil, 2011.

Bibliography

E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization. John
Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997. ISBN 0471948225.

A. Abraham, H. Liu, C. Grosan, and F. Xhafa. Nature inspired meta-heuristics for grid
scheduling: single and multi-objective optimization approaches. Metaheuristics for
Scheduling in Distributed Computing Environments, pages 247–272, 2008.

A. Agarwal, M. Ahmed, A. Berman, B. Caron, A. Charbonneau, D. Deatrich, R. Des-
marais, A. Dimopoulos, I. Gable, L. Groer, R. Haria, R. Impey, L. Klektau, C. Lind-
say, G. Mateescu, Q. Matthews, A. Norton, W. Podaima, D. Quesnel, R. Simmonds,
R. Sobie, B. S. Arnaud, C. Usher, D. Vanderster, M. Vetterli, R. Walker, and M. Yuen.
GridX1: A Canadian computational grid. Future Generation Computer Systems, 23
(5):680–687, 2007. ISSN 0167-739X.

M. Aggarwal, R. D. Kent, and A. Ngom. Genetic Algorithm Based Scheduler for Com-
putational Grids. In Proceedings of the 19th International Symposium on High Perfor-
mance Computing Systems and Applications, HPCS ’05, pages 209–215, Washington,
DC, USA, 2005. IEEE Press. ISBN 0-7695-2343-9.

E. Alba and B. Dorronsoro. Cellular Genetic Algorithms, volume 42 of Operations Re-
search/Computer Science Interfaces. Springer-Verlag, 2008. ISBN 978-0-387-77609-5.

E. Alba and G. Luque. A New local search algorithm for the DNA fragment assembly
problem. In C. Cotta and J. van Hemert, editors, Proceedings of the 7th European
Conference on Evolutionary Computation in Combinatorial Optimization, volume 4446
of Lecture Notes in Computer Science, pages 1–12. Springer-Verlag, 2007.

S. Ali, H. Siegel, M. Maheswaran, S. Ali, and D. Hensgen. Task Execution Time Modeling
for Heterogeneous Computing Systems. In Proceedings of the 9th Heterogeneous Com-
puting Workshop, HCW ’00, pages 185–, Washington, DC, USA, 2000. IEEE Press.
ISBN 0-7695-0556-2.

K. Anshumali, T. Chappell, W. Gomes, J. Miller, N. Kurd, and R. Kumar. Circuit And
Process Innovations to Enable High-Performance, and Power and Area Efficiency on
the Nehalem and Westmere Family of Intel processors. Intel Technology Journal, 14
(3), 2010.

J. Apodaca, D. Young, L. Briceno, J. Smith, S. Pasricha, A. A. Maciejewski, H. J. Siegel,
S. Bahirat, B. Khemka, A. Ramirez, and Y. Zou. Stochastically robust static resource
allocation for energy minimization with a makespan constraint in a heterogeneous com-
puting environment. In Proceedings of the 9th IEEE/ACS International Conference

105

106 BIBLIOGRAPHY

on Computer Systems and Applications, AICCSA ’11, pages 22–31, Washington, DC,
USA, 2011. IEEE Press. ISBN 978-1-4577-0475-8.

L. A. Barroso. The Price of Performance. Queue, 3(7):48–53, Sept. 2005. ISSN 1542-7730.

S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi. Character-
ization of scientific workflows. In Proceedings of the 3rd Workshop on Workflows in
Support of Large-Scale Science, WORKS ’08, pages 1–10, 2008.

C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

C. Blum and A. Roli. Hybrid Metaheuristics: An Introduction. In C. Blum, M. Aguilera,
A. Roli, and M. Sampels, editors, Hybrid Metaheuristics, volume 114 of Studies in
Computational Intelligence, pages 1–30. Springer-Verlag, 2008. ISBN 978-3-540-78294-
0.

M. Bohlouli and M. Analoui. Grid-HPA: Predicting Resource Requirements of a Job in
the Grid Computing Environment. International Journal of Computer Science, 3(3):
137–141, 2008. ISSN 13064428.

D. Bozdag, U. Catalyurek, and F. Ozguner. A task duplication based bottom-up schedul-
ing algorithm for heterogeneous environments. In Proceedings of the 20th International
Parallel and Distributed Processing Symposium, IPDPS ’06, pages 12–, 2006.

T. Braun, H. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys, B. Yao, D. Hensgen, and R. Freund. A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous distributed computing
systems. Journal of Parallel and Distributed Computing, 61(6):810–837, 2001.

J. Brownlee. Clever Algorithms: Nature-Inspired Programming Recipes. Lulu Enterprises,
2011. ISBN 9781446785065.

T. Burd, T. Pering, A. Stratakos, and R. Brodersen. A dynamic voltage scaled micropro-
cessor system. In Proceedings of the Solid-State Circuits Conference (ISSCC), Digest
of Technical Papers, pages 294–295, 466. IEEE Press, 2000.

R. Buyya. Economic-based Distributed Resource Management and Scheduling for Grid
Computing. PhD thesis, Monash University, 2002.

M. Canabé and S. Nesmachnow. Parallel implementations of the MinMin heterogeneous
computing scheduler in GPU. CLEI Electronic Journal, 15(3):1–11, 2012.

K. Christodoulopoulos, V. Gkamas, and E. A. Varvarigos. Statistical Analysis and Mod-
eling of Jobs in a Grid Environment. Journal of Grid Computing, 6(1):77–101, 2008.

C. Coello, G. Lamont, and D. Veldhuizen. Evolutionary Algorithms for Solving Multi-
Objective Problems. Springer-Verlag, Secaucus, NJ, USA, 2006. ISBN 0387332545.

C. Coello, C. Dhaenens, and L. Jourdan. Advances in Multi-Objective Nature Inspired
Computing. Springer-Verlag, 1st edition, 2010. ISBN 364211217X, 9783642112171.

BIBLIOGRAPHY 107

P. Conway and B. Hughes. The AMD Opteron northbridge architecture. Micro, IEEE,
27(2):10–21, 2007.

T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press,
Cambridge, MA, USA, 1990. ISBN 0-262-03141-8.

K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience
Series in Systems and Optimization. John Wiley & Sons, Inc., 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):
182–197, 2002. ISSN 1089-778X.

M. L. Dertouzos. Control Robotics: The Procedural Control of Physical Processes.
In Proceedings of the International Federation for Information Processing (IFIP)
Congress, pages 807–813, 1974.

C. Diaz, M. Guzek, J. Pecero, G. Danoy, P. Bouvry, and S. Khan. Energy-aware fast
scheduling heuristics in heterogeneous computing systems. In Proceedings of the Inter-
national Conference on High Performance Computing and Simulation (HPCS), pages
478–484, 2011.

M. Dorigo and L. Gambardella. Ant colony system: a cooperative learning approach to
the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1
(1):53–66, 1997. ISSN 1089-778X.

S. Droste, T. Jansen, and I. Wegener. Upper and Lower Bounds for Randomized Search
Heuristics in Black-Box Optimization. Theory of Computing Systems, 39(4):525–544,
2006. ISSN 1432-4350.

R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Proceedings
of the 6th International Symposium on Micro Machine and Human Science, MHS ’95,
pages 39–43, 1995.

X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-sized
computer. In Proceedings of the 34th annual international symposium on Computer
architecture, ISCA ’07, pages 13–23, New York, NY, USA, 2007. ACM Press. ISBN
978-1-59593-706-3.

T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters, 8(2):67–71, Apr. 1989. ISSN 0167-
6377.

R. Fernando, editor. GPU Gems: Programming Techniques, Tips and Tricks for Real-
Time Graphics. Addison-Wesley, Inc., Boston, 2004.

S. Forrest and M. Mitchell. Relative Building-Block Fitness and the Building Block
Hypothesis. In L. D. Whitley, editor, Proceedings of the 2nd Workshop on Foundations
of Genetic Algorithms, pages 109–126. Morgan Kaufmann Publishers, Inc., 1992. ISBN
1-55860-263-1.

I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, 2003. ISBN 1558609334.

108 BIBLIOGRAPHY

R. Fourer, D. M. Gay, and B. W. Kernighan. A modeling language for mathematical
programming. Management Science, 36(5):519–554, 1990. ISSN 0025-1909.

R. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen,
E. Keith, T. Kidd, M. Kussow, J. Lima, et al. Scheduling resources in multi-user,
heterogeneous, computing environments with SmartNet. In Proceedings of the 7th
Heterogeneous Computing Workshop, HCW ’98, pages 184–199. IEEE, 1998.

R. Friese, T. Brinks, C. Oliver, H. Siegel, and A. Maciejewski. Analyzing the Trade-offs
Between Minimizing Makespan and Minimizing Energy Consumption in a Heteroge-
neous Resource Allocation Problem. In Proceedings of the 2nd International Confer-
ence on Advanced Communications and Computation, INFOCOMP ’12, pages 81–89,
Venice, Italy, 2012.

S. Garćıa, S. Iturriaga, and S. Nesmachnow. Scientific computing in the Latin America-
Europe GISELA grid infrastructure. In Proceedings of the 4th High-Performance Com-
puting Latin America Symposium (HPCLatAm), JAIIO ’11, pages 48–62, Córdoba
City, Argentina, 2011.

S. Garćıa, S. Iturriaga, S. Nesmachnow, M. da Silva, M. Galnarés, G. Rodriguez, and
G. Usera. Developing parallel applications in the GISELA grid infrastructure. In Pro-
ceedings of the Joint GISELA-CHAIN Conference, COMETA ’12, pages 9–16, Mexico
City, Mexico, 2012.

M. Garey and D. Johnson. Computers and intractability. Freeman Publishers, Inc., 1979.
ISBN 0716710447.

S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya. Environment-conscious scheduling
of HPC applications on distributed Cloud-oriented data centers. Journal of Parallel
and Distributed Computing, 71(6):732–749, 2011. ISSN 0743-7315. Special Issue on
Cloud Computing.

M. Gendreau and J.-Y. Potvin. Handbook of Metaheuristics. Springer-Verlag, 2nd edition,
2010. ISBN 1441916636, 9781441916631.

C. Glasner and J. Volkert. A Three-Phase Adaptive Prediction System of the Run-Time
of Jobs Based on User Behaviour. In Proceedings of the International Conference on
Complex, Intelligent and Software Intensive Systems, CISIS ’09, pages 886–891, 2009.

F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, 13(5):533–549, 1986. ISSN 0305-0548.

D. Goldberg. Sizing Populations for Serial and Parallel Genetic Algorithms. In Pro-
ceedings of the 3rd International Conference on Genetic Algorithms, pages 70–79, San
Francisco, USA, 1989. ISBN 1-55860-066-3.

R. Graham, E. L. J. Lawler, and A. Kan. Optimization and Approximation in Deter-
ministic Sequencing and Scheduling: a Survey. Annals of Discrete Mathematics, 5:
287–326, 1979.

J. Hamilton. Cooperative expendable micro-slice servers (CEMS): low cost, low power
servers for internet-scale services. In Proceedings of the 4th Biennial Conference on
Innovative Data Systems Research (CIDR), California, USA, 2009.

BIBLIOGRAPHY 109

S. Hartmann. A self-adapting genetic algorithm for project scheduling under resource
constraints. Naval Research Logistics (NRL), 49(5):433–448, 2002. ISSN 1520-6750.

T. Hey and A. E. Trefethen. The UK e-Science Core Programme and the Grid. Future
Generation Computer Systems, 18(8):1017–1031, 2002. ISSN 0167-739X.

H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Applications. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, USA, 2004. ISBN 1558608729.

O. Ibarra and C. Kim. Heuristic algorithms for scheduling independent tasks on non-
identical processors. Journal of the ACM (JACM), 24(2):280–289, 1977.

A. Iosup and D. Epema. Grid Computing Workloads. Internet Computing, 15(2):19–26,
2011. ISSN 1089-7801.

A. Iosup, C. Dumitrescu, D. Epema, H. Li, and L. Wolters. How are Real Grids Used?
The Analysis of Four Grid Traces and Its Implications. In Proceedings of the 7th
IEEE/ACM International Conference on Grid Computing, GRID ’06, pages 262–269,
Washington, DC, USA, 2006. IEEE Press. ISBN 1-4244-0343-X.

S. Iturriaga and S. Nesmachnow. Bi-objective scheduling in heterogeneous grid comput-
ing systems using a parallel micro evolutionary algorithm. In Proceedings of the XLIII
Brazilian Symposium of Operational Research (SBPO), pages 1618–1629, São Paulo,
Brazil, 2011.

S. Iturriaga and S. Nesmachnow. Solving Very Large Optimization Problems (Up to
One Billion Variables) with a Parallel Evolutionary Algorithm in CPU and GPU. In
Proceedings of the Sixth International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC), pages 267–272, Victoria, Canada, 2012. ISBN 978-1-
4673-2991-0.

S. Iturriaga, D. Garat, and G. Moncecchi. Restauración automática de acentos or-
tográficos en adverbios interrogativos. In Proceedings of the XII Argentine Symposium
on Artificial Intelligence (ASAI), JAIIO ’11, pages 108–119, Córdoba City, Argentina,
2011.

S. Iturriaga, S. Nesmachnow, and B. Dorronsoro. A Multithreading Local Search For
Multiobjective Energy-Aware Scheduling In Heterogeneous Computing Systems. In
Proceedings of the 26th European Conference on Modelling and Simulation (ECMS),
pages 497–503, Koblenz, Germany, 2012a. ISBN 978-0-9564944-4-3.

S. Iturriaga, S. Nesmachnow, F. Luna, and E. Alba. A parallel online GPU scheduler for
large heterogeneous computing systems. In Proceedings of the 5th High-Performance
Computing Latin America Symposium (HPCLatAm), JAIIO ’12, Buenos Aires, Ar-
gentina, 2012b.

S. Iturriaga, S. Nesmachnow, and C. Tutté. Metaheuristics for multiobjective energy-
aware scheduling in heterogeneous computing systems. In EU/Metaheuristics Meeting
Workshop (EU/ME), Copenhaguen, Denmark, 2012c.

S. Iturriaga, S. Nesmachnow, B. Dorronsoro, and P. Bouvry. Energy efficient scheduling
in heterogeneous systems with a parallel multiobjective local search. Computing and
Informatics Journal (CAI), 2013a. Accepted on November 2012, to appear.

110 BIBLIOGRAPHY

S. Iturriaga, S. Nesmachnow, F. Luna, and E. Alba. A parallel local search in CPU/GPU
for scheduling independent tasks on large heterogeneous computing systems. Journal
of Parallel and Distributed Computing (JPDC), 2013b. Submitted on January 2013,
pending acceptance.

S. Iturriaga, P. Ruiz, S. Nesmachnow, B. Dorronsoro, and P. Bouvry. A Parallel Multi-
objective Local Search for AEDB Protocol Tuning. In Proceedings of the 16th Interna-
tional Workshop on Nature Inspired Distributed Computing, in the 27th IEEE/ACM
International Parallel & Distributed Processing Symposium, Boston, Massachusetts,
USA, 2013c. Accepted on February 2013, to appear.

H. Izakian, A. Abraham, and V. Snasel. Comparison of Heuristics for Scheduling In-
dependent Tasks on Heterogeneous Distributed Environments. In Proceedings of the
International Joint Conference on Computational Sciences and Optimization, volume 1
of CSO ’09, pages 8–12, Washington, DC, USA, 2009a. IEEE Press. ISBN 978-0-7695-
3605-7.

H. Izakian, A. Abraham, and V. Snášel. Metaheuristic Based Scheduling Meta-Tasks in
Distributed Heterogeneous Computing Systems. Sensors, 9(7):5339–5350, 2009b.

B. Jones. An Overview of the EGEE Project. In C. Türker, M. Agosti, and H.-J. Schek,
editors, Peer-to-Peer, Grid, and Service-Orientation in Digital Library Architectures,
volume 3664 of Lecture Notes in Computer Science, pages 1–8. Springer-Verlag, 2005.
ISBN 978-3-540-28711-7.

Y. Kessaci, M. Mezmaz, N. Melab, E. Talbi, and D. Tuyttens. Parallel Evolutionary
Algorithms for Energy Aware Scheduling. In Intelligent Decision Systems in Large-
Scale Distributed Environments. Springer-Verlag, 2011. ISBN 978-3-642-21270-3.

S. Khan and I. Ahmad. A Cooperative Game Theoretical Technique for Joint Opti-
mization of Energy Consumption and Response Time in Computational Grids. IEEE
Transactions on Parallel and Distributed Systems, 20:346–360, 2009.

J.-K. Kim, H. Siegel, A. Maciejewski, and R. Eigenmann. Dynamic Resource Manage-
ment in Energy Constrained Heterogeneous Computing Systems Using Voltage Scaling.
IEEE Transactions on Parallel and Distributed Systems, 19:1445–1457, 2008.

K. Kim, R. Buyya, and J. Kim. Power Aware Scheduling of Bag-of-Tasks Applications
with Deadline Constraints on DVS-enabled Clusters. In Proceedings of the 7th IEEE
Press Symposium on Cluster Computing and the Grid, pages 541–548, 2007.

H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi. Emprical study on Reducing
Energy of Parallel Programs using Slack Reclamation by DVFS in a Power-scalable
High Performance Cluster. In Proceedings of the IEEE Press Conference on Cluster
Computing, pages 1–10, 2006.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing.
Science, 220(4598):671–680, 1983.

J. Knowles and D. Corne. On metrics for comparing nondominated sets. In Proceedings
of the Congress on Evolutionary Computation, volume 1 of CEC ’02, pages 711–716,
2002.

BIBLIOGRAPHY 111

J. Knowles and D. Corne. Properties of an adaptive archiving algorithm for storing
nondominated vectors. IEEE Transactions on Evolutionary Computation, 7(2):100–
116, april 2003. ISSN 1089-778X.

J. D. Knowles and D. W. Corne. Approximating the Nondominated Front Using the
Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2):149–172, 2000.
ISSN 1063-6560.

S. Knust and P. Brucker. Complex Scheduling. Springer-Verlag, 2006. ISBN 3540295453.

J. Ko lodziej, S. U. Khan, and F. Xhafa. Genetic Algorithms for Energy-Aware Scheduling
in Computational Grids. In Proceedings of the International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, 3PGCIC ’11, pages 17–24, Washington,
DC, USA, 2011. IEEE Press. ISBN 978-0-7695-4531-8.

J. Ko lodziej, S. U. Khan, and A. Zomaya. A Taxonomy of Evolutionary Inspired Solutions
for Energy Management in Green Computing: Problems and Resolution Methods. In
J. Ko lodziej, S. U. Khan, and T. Burczynski, editors, Advances in Intelligent Modelling
and Simulation, volume 422 of Studies in Computational Intelligence, pages 215–233.
Springer-Verlag, 2012. ISBN 978-3-642-30153-7.

B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer-
Verlag, 4th edition, 2007. ISBN 3540718435, 9783540718437.

J. R. Koza. Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge, MA, USA, 1992. ISBN 0-262-11170-5.

P. Krömer, V. Snášel, J. Platoš, A. Abraham, and H. Izakian. Scheduling Independent
Tasks on Heterogeneous Distributed Environments by Differential Evolution. In Pro-
ceedings of the International Conference on Intelligent Networking and Collaborative
Systems, INCOS ’09, pages 170–174. IEEE, 2009.

P. Krömer, J. Platoš, V. Snášel, and A. Abraham. An implementation of differential evo-
lution for independent tasks scheduling on GPU. Hybrid Artificial Intelligent Systems,
pages 372–379, 2011.

A. D. Kshemkalyani and M. Singhal. Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, New York, NY, USA, 1st edition, 2008.
ISBN 0521876346.

Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs
to multiprocessors. ACM Computer Surveys, 31(4):406–471, 1999.

Y. Lam, J. Coutinho, and W. Luk. Integrated Hardware/Software Codesign for Het-
erogeneous Computing Systems. In Proceedings of the 4th Southern Conference on
Programmable Logic, pages 217–220, 2008.

Y. Lee and A. Zomaya. Minimizing Energy Consumption for Precedence-Constrained
Applications Using Dynamic Voltage Scaling. In Proceedings of the 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, CCGRID ’09, pages
92–99, 2009.

112 BIBLIOGRAPHY

Y. Lee and A. Zomaya. Energy Conscious Scheduling for Distributed Computing Systems
under Different Operating Conditions. IEEE Transactions on Parallel and Distributed
Systems, 22:1374–1381, 2011.

J. Lenstra, D. Shmoys, and É. Tardos. Approximation algorithms for scheduling unre-
lated parallel machines. Mathematical Programming, 46:259–271, 1990. ISSN 0025-
5610.

J. Leung, L. Kelly, and J. Anderson. Handbook of Scheduling: Algorithms, Models,
and Performance Analysis. CRC Press, Inc., Boca Raton, FL, USA, 2004. ISBN
1584883979.

H. Li, D. Groep, J. Templon, and L. Wolters. Predicting job start times on clusters.
In Proceedings of the IEEE Press Symposium on Cluster Computing and the Grid,
CCGrid 2004, pages 301–308, 2004.

Y. Li, Y. Liu, and D. Qian. A Heuristic Energy-aware Scheduling Algorithm for Hetero-
geneous Clusters. In Proceedings of the 15th International Conference on Parallel and
Distributed Systems, pages 407–413, 2009.

S. Lin and B. W. Kernighan. An Effective Heuristic Algorithm for the Traveling-Salesman
Problem. Operations Research, 21(2):498–516, 1973.

P. Lindberg, J. Leingang, D. Lysaker, S. Khan, and J. Li. Comparison and analysis of
eight scheduling heuristics for the optimization of energy consumption and makespan
in large-scale distributed systems. The Journal of Supercomputing, 59(1):323–360,
2012.

R. E. Lord, J. S. Kowalik, and S. P. Kumar. Solving Linear Algebraic Equations on an
MIMD Computer. Journal of the ACM (JACM), 30(1):103–117, 1983. ISSN 0004-5411.

P. Luo, K. Lü, and Z. Shi. A revisit of fast greedy heuristics for mapping a class of
independent tasks onto heterogeneous computing systems. Journal of Parallel and
Distributed Computing, 67(6):695–714, 2007.

Y. Ma, B. Gong, R. Sugihara, and R. Gupta. Energy-efficient deadline scheduling for
heterogeneous systems. Journal of Parallel and Distributed Computing, 72(12):1725–
1740, 2012. ISSN 0743-7315.

M. Maheswaran, S. Ali, H. Siegal, D. Hensgen, and R. Freund. Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous computing systems. In
Proceedings of the 8th Heterogeneous Computing Workshop, HCW ’99, pages 30–44,
1999.

S. Martello, F. Soumis, and P. Toth. Exact and approximation algorithms for makespan
minimization on unrelated parallel machines. Discrete Applied Mathematics, 75(2):
169–188, 1997. ISSN 0166-218X.

M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Com-
puter Simulation, 8(1):3–30, 1998.

BIBLIOGRAPHY 113

M. Mezmaz, N. Melab, Y. Kessaci, Y. Lee, E. G. Talbi, A. Zomaya, and D. Tuyttens. A
parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud com-
puting systems. Journal of Parallel and Distributed Computing, 71(11):1497–1508,
2011.

P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts:
Towards Memetic Algorithms. Technical Report C3P Report 826, California Institute
of Technology, 1989.

S. Nesmachnow and S. Iturriaga. Multiobjective Scheduling on Distributed Heteroge-
neous Computing and Grid Environments Using a Parallel Micro-CHC Evolutionary
Algorithm. In Proceedings of the 6th International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), pages 134–141, Barcelona, Spain, 2011.

S. Nesmachnow and S. Iturriaga. Multiobjective grid scheduling using a domain decom-
position based parallel micro evolutionary algorithm. International Journal of Grid
and Utility Computing (IJGUC), 2013. Accepted on January 2012, to appear.

S. Nesmachnow, H. Cancela, and E. Alba. Heterogeneous computing scheduling with
evolutionary algorithms. Soft Computing, 15:685–701, 2010. ISSN 1432-7643.

S. Nesmachnow, F. Luna, and E. Alba. Time Analysis of Standard Evolutionary Algo-
rithms as Software Programs. In Proceedings of the 11th International Conference on
Intelligent Systems Design and Applications, pages 271–276, Córdoba, Spain, 2011.

S. Nesmachnow, B. Dorronsoro, J. E. Pecero, and P. Bouvry. Energy-aware scheduling
on multicore heterogeneous grid computing systems. Submitted to Journal of Grid
Computing, 2012a.

S. Nesmachnow, F. Luna, and E. Alba. An Efficient Stochastic Local Search for Heteroge-
neous Computing Scheduling. 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops and PhD Forum, 0:593–600, 2012b.

A.-C. Orgerie, L. Lefevre, and J.-P. Gelas. Save Watts in Your Grid: Green Strategies
for Energy-Aware Framework in Large Scale Distributed Systems. In Proceedings of
the 14th IEEE Press Conference on Parallel and Distributed Systems, ICPADS ’08,
pages 171–178, 2008.

I. H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations
Research, 63:511–623, 1996. ISSN 0254-5330.

P. Pardalos and H. Romeijn. Handbook of Global Optimization. Number 2 in Nonconvex
Optimization and Its Applications. Springer-Verlag, 2002. ISBN 9781402006326.

J. Pecero, P. Bouvry, H. Huacuja, and S. Khan. A Multi-objective GRASP Algorithm
for Joint Optimization of Energy Consumption and Schedule Length of Precedence-
Constrained Applications. In Proceedings of the 9th IEEE Press Conference on De-
pendable, Autonomic and Secure Computing (DASC), pages 510–517. IEEE, 2011.

M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer-Verlag, 3rd edi-
tion, 2008. ISBN 0387789340, 9780387789347.

114 BIBLIOGRAPHY

F. Pinel, J. Pecero, P. Bouvry, and S. U. Khan. A two-phase heuristic for the schedul-
ing of independent tasks on computational grids. In Proceedings of the International
Conference on High Performance Computing and Simulation (HPCS), pages 471–477,
2011.

F. Pinel, B. Dorronsoro, and P. Bouvry. Solving very large instances of the schedul-
ing of independent tasks problem on the GPU. Journal of Parallel and Distributed
Computing, 73(1):101–110, 2013.

A. M. Rahmani and M. A. Vahedi. A Novel Task Scheduling in Multiprocessor Systems
with Genetic Algorithm by Using Elitism Stepping Method. INFOCOMP Journal of
Computer Science, 7(2):58–64, 2008.

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi. GSA: A Gravitational Search Al-
gorithm. Information Sciences, 179(13):2232–2248, 2009. ISSN 0020-0255. Special
Section on High Order Fuzzy Sets.

I. Rechenberg. Evolution strategy: optimization of technical systems according to princi-
ples of biological evolution. Number 15 in Problemata. Frommann-Holzboog, Stuttgart-
Bad Cannstatt, 1973.

G. Ritchie and J. Levine. A fast, effective local search for scheduling independent jobs in
heterogeneous computing environments. In Proceedings of the 22nd Workshop of the
UK Planning and Scheduling Special Interest Group, pages 178–183, 2003.

N. B. Rizvandi, J. Taheri, A. Y. Zomaya, and Y. C. Lee. Linear Combinations of DVFS-
Enabled Processor Frequencies to Modify the Energy-Aware Scheduling Algorithms.
In Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing (CCGrid), pages 388–397, 2010.

M. Safe, J. Carballido, I. Ponzoni, and N. Brignole. On Stopping Criteria for Genetic
Algorithms. In A. Bazzan and S. Labidi, editors, Advances in Artificial Intelligence,
volume 3171 of Lecture Notes in Computer Science, pages 405–413. Springer-Verlag,
2004. ISBN 978-3-540-23237-7.

M. Saito. A Variant of Mersenne Twister Suitable for Graphic Processors. Computing
Research Repository (CoRR), 2010. URL http://arxiv.org/abs/1005.4973.

A. Salem, G. Anagnostopoulos, and G. Rabadi. A Branch-and-Bound Algorithm for Par-
allel Machine Scheduling Problems. In Proceedings of the Harbour, Maritime and Mul-
timodal Logistics Modeling and Simulation Workshop, pages 88–93, Portofino, Italy,
2000. Society for Computer Simulation International (SCS).

J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley, Inc., 1st edition, 2010. ISBN 0131387685,
9780131387683.

J. R. Schott. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm
Optimization. Master’s thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1995.

http://arxiv.org/abs/1005.4973

BIBLIOGRAPHY 115

S. Seneviratne and D. C. Levy. Task profiling model for load profile prediction. Future
Generation Computer Systems, 27(3):245–255, 2011. ISSN 0167-739X.

M. Sharifi, S. Shahrivari, and H. Salimi. PASTA: a power-aware solution to scheduling
of precedence-constrained tasks on heterogeneous computing resources. Computing,
95:67–88, 2013. ISSN 0010-485X.

V. Shekar and B. Izadi. Energy aware scheduling for DAG structured applications on
heterogeneous and DVS enabled processors. In Proceedings of the International Green
Computing Conference, pages 495–502, 2010.

J. Shiers. The Worldwide LHC Computing Grid. Computer Physics Communications,
177(1–2):219–223, 2007. ISSN 0010-4655.

D. B. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming, 62(3):461–474, 1993. ISSN 0025-5610.

G. Sih and E. Lee. A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed
Systems, 4(2):175–187, 1993. ISSN 1045-9219.

T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. De Micheli. Dynamic voltage
scaling and power management for portable systems. In Proceedings of the Design
Automation Conference, pages 524–529, 2001.

R. Storn and K. Price. Differential Evolution - A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4):
341–359, 1997. ISSN 0925-5001.

M. Studniarski. Stopping Criteria for Genetic Algorithms with Application to Multiob-
jective Optimization. In R. Schaefer, C. Cotta, J. Ko lodziej, and G. Rudolph, editors,
Parallel Problem Solving from Nature, PPSN XI, volume 6238 of Lecture Notes in
Computer Science, pages 697–706. Springer-Verlag, 2010. ISBN 978-3-642-15843-8.

T. Stützle. Local Search Algorithms for Combinatorial Problems: Analysis, Improve-
ments, and New Applications. Dissertationen zur Küntlichen Intelligenz. Infix, 1999.
ISBN 9783896012203.

G. Subashini and M. Bhuvaneswari. Non Dominated Particle Swarm Optimizatio for
Scheduling Independent Tasks on Heterogeneus Distributed Environments. Interna-
tional Journal of Advances in Soft Computing and Its Applications, 3(1), 2011a. ISSN
2074-8523.

G. Subashini and M. Bhuvaneswari. NSGA-II with Controlled Elitism for Scheduling
Tasks in Heterogeneous Computing Systems. International Journal of Open Problems
in Computer Science and Mathematics (IJOPCM), 4(1), 2011b. ISSN 1998-6262.

H. Telega. Two-phase stochastic global optimization strategies. In Foundations of Global
Genetic Optimization, volume 74 of Studies in Computational Intelligence, pages 153–
197. Springer-Verlag, 2007. ISBN 978-3-540-73191-7.

116 BIBLIOGRAPHY

H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Transactions on Parallel and Dis-
tributed Systems, 13(3):260–274, 2002. ISSN 1045-9219.

B. Ucar, C. Aykanat, K. Kaya, and M. Ikinci. Task assignment in heterogeneous com-
puting systems. Journal of Parallel and Distributed Computing, 66(1):32–46, 2006.
ISSN 0743-7315.

S. Upadhyaya and S. Lata. Task allocation in distributed computing vs distributed
database systems: A comparative study. International Journal of Computer Science
and Network Security, 8(3):338–346, 2008.

S. L. van de Velde. Duality-Based Algorithms for Scheduling Unrelated Parallel Machines.
INFORMS Journal on Computing, 5(2):192–205, 1993.

D. A. Van Veldhuizen. Multiobjective evolutionary algorithms: classifications, analyses,
and new innovations. PhD thesis, Air Force Institute of Technology, 1999.

G. von Laszewski, L. Wang, A. Younge, and X. He. Power-aware scheduling of virtual
machines in DVFS-enabled clusters. In Proceedings of the IEEE Press Conference on
Cluster Computing and Workshops, pages 1–10, 2009.

C. Voudouris. Guided Local Search — an Illustrative Example in Function Opti-
misation. BT Technology Journal, 16(3):46–50, 1998. ISSN 1358-3948.

T. Wagner, H. Trautmann, and L. Mart́ı. A Taxonomy of Online Stopping Criteria for
Multi-Objective Evolutionary Algorithms. In R. Takahashi, K. Deb, E. Wanner, and
S. Greco, editors, Evolutionary Multi-Criterion Optimization, volume 6576 of Lecture
Notes in Computer Science, pages 16–30. Springer-Verlag, 2011. ISBN 978-3-642-
19892-2.

N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, and S. Pamidighantam. TeraGrid
Science Gateways and Their Impact on Science. Computer, 41(11):32–41, 2008. ISSN
0018-9162.

M.-Y. Wu and D. Gajski. Hypertool: a programming aid for message-passing systems.
IEEE Transactions on Parallel and Distributed Systems, 1(3):330–343, 1990. ISSN
1045-9219.

M.-Y. Wu, W. Shu, and H. Zhang. Segmented Min-Min: A Static Mapping Algorithm
for Meta-Tasks on Heterogeneous Computing Systems. In Proceedings of the Hetero-
geneous Computing Workshop, pages 375–385, 2000.

F. Xhafa. A Hybrid Evolutionary Heuristic for Job Scheduling on Computational Grids.
In A. Abraham, C. Grosan, and H. Ishibuchi, editors, Hybrid Evolutionary Algorithms,
volume 75 of Studies in Computational Intelligence, pages 269–311. Springer-Verlag,
2007. ISBN 978-3-540-73296-9.

F. Xhafa and A. Abraham. Metaheuristics for Scheduling in Distributed Computing
Environments. Studies in Computational Intelligence. Springer-Verlag, 2008. ISBN
9783540692607.

BIBLIOGRAPHY 117

F. Xhafa and A. Abraham. Computational models and heuristic methods for Grid
scheduling problems. Future Generation Computer Systems, 26(4):608–621, 2010. ISSN
0167-739X.

F. Xhafa, E. Alba, and B. Dorronsoro. Efficient batch job scheduling in Grids using
cellular memetic algorithms. Journal of Mathematical Modelling and Algorithms, 7(2):
217–236, 2008a.

F. Xhafa, J. Carretero, E. Alba, and B. Dorronsoro. Design and evaluation of tabu
search method for job scheduling in distributed environments. In Proceeding of the
IEEE Press Symposium on Parallel and Distributed Processing, IPDPS ’08, pages 1–8.
IEEE, 2008b.

B. Young, J. Apodaca, L. Briceño, J. Smith, S. Pasricha, A. Maciejewski, H. Siegel,
B. Khemka, S. Bahirat, A. Ramirez, and Y. Zou. Deadline and energy constrained
dynamic resource allocation in a heterogeneous computing environment. The Journal
of Supercomputing, pages 1–22, 2012. ISSN 0920-8542.

Y. Yu and V. Prasanna. Power-aware resource allocation for independent tasks in het-
erogeneous real-time systems. In Proceedings of the 9th International Conference on
Parallel and Distributed Systems, pages 341–348, 2002.

M. Zbigniew and D. Fogel. How to solve it: modern heuristics. Springer-Verlag, 2000.

L. M. Zhang, K. Li, and Y.-Q. Zhang. Green Task Scheduling Algorithms with Speeds
Optimization on Heterogeneous Cloud Servers. In Proceedings of the IEEE/ACM
International Conference on Green Computing and Communications & International
Conference on Cyber, Physical and Social Computing, GREENCOM-CPSCOM ’10,
pages 76–80, Washington, DC, USA, 2010. IEEE Press. ISBN 978-0-7695-4331-4.

Y. Zhao, I. Raicu, and I. Foster. Scientific Workflow Systems for 21st Century, New
Bottle or New Wine? In IEEE Congress on Services - Part I, pages 467–471, 2008.
ISBN 978-0-7695-3286-8.

D. Zhu, R. Melhem, and B. Childers. Scheduling with Dynamic Voltage/Speed Adjust-
ment Using Slack Reclamation in Multiprocessor Real-Time Systems. IEEE Transac-
tions on Parallel and Distributed Systems, 14:686–700, 2003.

X. Zhu, C. He, Y. Bi, and D. Qiu. Towards Adaptive Power-Aware Scheduling for
Real-Time Tasks on DVS-Enabled Heterogeneous Clusters. In Proceedings of the
IEEE/ACM International Conference on Green Computing and Communications &
International Conference on Cyber, Physical and Social Computing, GREENCOM-
CPSCOM ’10, pages 117–124, 2010.

X. Zhu, C. He, and J. Wang. Energy-efficient elastic scheduling in heterogeneous com-
puting systems. In Proceedings of the 30th IEEE Press Performance Computing and
Communications Conference (IPCCC), pages 1–8, 2011.

E. Zitzler and L. Thiele. Multiobjective Optimization Using Evolutionary Algorithms
- A Comparative Case Study. In Proceedings of the 5th International Conference on
Parallel Problem Solving from Nature, PPSN V, pages 292–304, London, UK, UK,
1998. Springer-Verlag. ISBN 3-540-65078-4.

118 BIBLIOGRAPHY

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In K. C. Giannakoglou, D. T.
Tsahalis, J. Périaux, K. D. Papailiou, and T. Fogarty, editors, Proceedings of the
Evolutionary Methods for Design Optimization and Control with Applications to In-
dustrial Problems Conference, EUROGEN ’01, pages 95–100, Athens, Greece, 2001.
International Center for Numerical Methods in Engineering (CIMNE).

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Transactions
on Evolutionary Computation, 7(2):117–132, 2003. ISSN 1089-778X.

	Introduction
	Heterogeneous computing scheduling problem
	Scheduling problems
	Heterogeneous computing systems
	Energy-aware heterogeneous computing systems

	Energy-aware heterogeneous computing scheduling problem
	Problem formulation
	Models for heterogeneous computing systems
	Problem instances

	Algorithms for solving the heterogeneous computing scheduling problem
	Enumerative algorithms
	Linear programming based algorithms
	List-scheduling algorithms
	Metaheuristic algorithms

	Summary

	Metaheuristic algorithms
	Introduction
	Stochastic search
	Local search methods
	An example of a local search based metaheuristic: the ILS algorithm

	Multi-objective optimization
	Evaluation metrics for multi-objective optimization
	An example of a multi-objective metaheuristic solver: the PAES algorithm

	Summary

	Related work
	Single-objective energy-aware scheduling
	Multi-objective energy-aware scheduling using a single-objective approach
	True multi-objective energy-aware scheduling
	Summary

	ME-MLS: a true multi-objective algorithm for the ME-HCSP
	Algorithm design
	Problem encoding
	Population initialization
	Archiving algorithm
	Fast Greedy Ad-hoc Archiving (FGAA)
	Adaptive Grid Archiving (AGA)

	Embedded Local search
	The general schema of the PALS algorithm
	rPALS algorithm for the HCSP
	ME-rPALS algorithm for the ME-HCSP

	Implementation details
	Summary

	Experimental analysis
	Execution platform
	Problem instances
	Methods for baseline comparison
	Linear programming relaxation
	List-scheduling heuristics

	Parameter setting experiments
	Pseudo-random number generator analysis
	Results and discussion
	Solution quality
	Multi-objective optimization metrics
	Summary

	Computational efficiency analysis
	Summary

	Scheduling very large problem scenarios
	GPU computing
	gPALS: a rPALS-based GPU scheduler for the HCSP
	Initialization heuristics

	Experimental analysis of the gPALS algorithm
	HCSP instances
	Implementation details and execution platform
	Results and discussion

	Summary

	Conclusions and future work
	Conclusions
	Future work

	Publications by the author
	Bibliography

