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Sofi, Agas, Andy, Mau, Mai y Fava. Agradezco también a la Comisión Académica

de Posgrado de la Universidad de la República por la financiación provista.

Por último, y no menos importante, a mi tutor Álvaro. Su profundo amor e
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RESUMEN

La generación masiva de información digital biológica da lugar a múltiples de-

saf́ıos informáticos, como su almacenamiento y transmisión. Por ejemplo, las señales

biomédicas, como los electroencefalogramas (EEG), son generadas por múltiples

sensores registrando medidas en simultáneo durante largos peŕıodos de tiempo,

generando grandes volúmenes de datos. Otro ejemplo son los datos de secuen-

ciación de ADN, en donde la cantidad de datos a nivel mundial está creciendo de

forma explosiva, lo que da lugar a una gran necesidad de recursos de procesamiento,

almacenamiento y transmisión. En esta tesis investigamos cómo aplicar técnicas de

compresión de datos para atacar este problema, en dos escenarios diferentes donde

la eficiencia computacional juega un rol importante.

Primero estudiamos la compresión de señales biomédicas multicanal. Comen-

zamos presentando un nuevo compresor de datos sin pérdida para señales multicanal,

GSC, que logra obtener niveles de compressón en el estado del arte y que al mismo

tiempo es más eficiente computacionalmente que otras alternativas disponibles. El

compresor utiliza dos nuevas implementaciones de los esquemas de codificación pre-

dictiva y de asesoramiento de expertos para señales multicanal, basadas en aritmética

de enteros. También presentamos una versión de GSC optimizada para datos de

EEG. Esta versión logra reducir significativamente los tiempos de compresión, sin

deteriorar significativamente los niveles de compresión para datos de EEG.

En un segundo escenario estudiamos la compresión de datos de secuenciación

de ADN generados por tecnoloǵıas de secuenciación por nanoporos. En este sen-

tido, presentamos dos nuevos algoritmos de compresión sin pérdida, espećıficamente

diseñados para archivos FASTQ generados por tecnoloǵıa de nanoporos. ENANO

es un compresor libre de referencia, enfocado principalmente en la compresión de

los valores de calidad de las bases. ENANO alcanza niveles de compresión en el

estado del arte, siendo a la vez más eficiente computacionalmente que otras her-

ramientas populares de compresión de archivos FASTQ. Por otro lado, RENANO es

un compresor basado en la utilización de una referencia, que mejora el rendimiento

de ENANO, a partir de un nuevo esquema de compresión de las secuencias de bases.

Presentamos dos variantes de RENANO, correspondientes a los siguientes escenar-

ios: (i) se tiene a disposición un genoma de referencia, tanto del lado del compresor

como del descompresor, y (ii) se tiene un genoma de referencia disponible solo del

lado del compresor, y se incluye una versión compacta de la referencia en el archivo

comprimido. Ambas variantes de RENANO mejoran significativamente los niveles

compresión de ENANO, alcanzando tiempos de compresión similares y un mayor

consumo de memoria.
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ABSTRACT

The massive generation of biological digital information creates various com-

puting challenges such as its storage and transmission. For example, biomedical

signals, such as electroencephalograms (EEG), are recorded by multiple sensors over

long periods of time, resulting in large volumes of data. Another example is genome

DNA sequencing data, where the amount of data generated globally is seeing ex-

plosive growth, leading to increasing needs for processing, storage, and transmission

resources. In this thesis we investigate the use of data compression techniques for

this problem, in two different scenarios where computational efficiency is crucial.

First we study the compression of multi-channel biomedical signals. We present

a new lossless data compressor for multi-channel signals, GSC, which achieves com-

pression performance similar to the state of the art, while being more computa-

tionally efficient than other available alternatives. The compressor uses two novel

integer-based implementations of the predictive coding and expert advice schemes

for multi-channel signals. We also develop a version of GSC optimized for EEG

data. This version manages to significantly lower compression times while attaining

similar compression performance for that specific type of signal.

In a second scenario we study the compression of DNA sequencing data produced

by nanopore sequencing technologies. We present two novel lossless compression al-

gorithms specifically tailored to nanopore FASTQ files. ENANO is a reference-free

compressor, which mainly focuses on the compression of quality scores. It achieves

state of the art compression performance, while being fast and with low memory

consumption when compared to other popular FASTQ compression tools. On the

other hand, RENANO is a reference-based compressor, which improves on ENANO,

by providing a more efficient base call sequence compression component. For RE-

NANO two algorithms are introduced, corresponding to the following scenarios: a

reference genome is available without cost to both the compressor and the decom-

pressor; and the reference genome is available only on the compressor side, and a

compacted version of the reference is included in the compressed file. Both algo-

rithms of RENANO significantly improve the compression performance of ENANO,

with similar compression times, and higher memory requirements.

Keywords:

Lossless data compression, Multi-channel signals, Electroencephalograms, DNA

sequencing, Nanopore sequencing, Efficient compression.
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Chapter 1

Introduction

The massive generation of biological digital information creates various computing

challenges such as its storage and transmission. For example, biomedical signals,

such as electroencephalograms (EEG) or electrocardiograms (ECG), are recorded by

multiple sensors over long periods of time, resulting in large volumes of data. An-

other example is genome DNA sequencing, in which the chemical composition of

DNA fragments is determined using High-Throughput Sequencing (HTS) technolo-

gies. For HTS technologies, the result of this process is a file with a representation of

many thousands of DNA fragments. The costs of sequencing have fallen so rapidly

that there is a broad consensus that the amount of genomic information that will

be generated in the world will see explosive growth, and, very soon, the costs of

computing infrastructure for storing and transmitting the information will exceed

those of the sequencing itself [100].

In this thesis we investigate the use of data compression techniques for this

problem. In particular, we focus on studying two different scenarios of biological

data compression, where computational efficiency is crucial.

First we study the compression of multi-channel biomedical signals, in an scenario

where processing resources are scarce due to severe restrictions on energy consump-

tion. With the advancement of technology and medicine, real-time clinical studies

recorded using wireless acquisition devices are becoming more common. In many

cases, the recording systems need to be wearable, and in turn, lightweight, which

limits the hardware and battery that can be embedded in the recording system. In

this context, efficient compression techniques that are able to run on very limited

hardware can help save energy by reducing the amount of data that needs to be

wirelessly transmitted.

In a second scenario we focus on studying the compression of DNA sequencing

data produced by HTS technologies, in particular, we focus on the compression

of data produced by nanopore sequencing technologies [93]. In this scenario, the

1



2 Chapter 1. Introduction

amount of data that needs to be compressed is massive. For example, the nanopore

sequencing device PromethION 48 can generate up to 14 TB of DNA data in less

than 72 hours1. In contrast to the previous scenario, the compression of DNA

sequencing data is usually performed in computing systems with no specific hardware

restrictions, but efficient compression methods are still thoroughly needed, due to

the large volume of data that needs to be processed. Also, the massive nature of

the data makes efficient memory management a key feature of the algorithms.

The specific types of biological data that we study are important in practical

applications, and they represent two different compression scenarios, with different

characteristics and requirements, where efficient data compression is needed. For

clarity, we address each scenario in a separate part of the thesis.

1.1 Data compression generalities

We start by giving a brief introduction to the basic concepts of data compression,

which we explore in more depth in Chapter 2. In practical terms, a data compressor

is a device that translates a certain type of data into binary strings, i.e, a stream of

0’s and 1’s, by using an encoding algorithm. The general scheme of data compression

is depicted in Figure 1.1.

Encoder Decoder Decompressed
dataOrignal data Compressed

data

Transmission

Figure 1.1: General scheme of data compression. The encoder receives certain type of data
and applies an encoding algorithm that generates a bit stream, which we call the compressed
data. The decoder receives the compressed data and applies a decoding algorithm to restore
the original data, exactly in the case of lossless compression, or approximately in the case
of lossy compression. We say that the encoder transmits data to the decoder.

If the compression is lossless, the compressor is capable of restoring the exact

original data by using a decoding algorithm on the compressed data. On the other

hand, if the compression is lossy the decoding algorithm is usually able to restore

a good approximation of the original data. In this thesis we concentrate in lossless

compression. We refer to the modules that perform encoding and decoding as the

encoder and decoder, respectively.

We say that the encoder transmits data to the decoder. This transmission can

be either through time, if the compressed data is stored to be decompressed later,

1https://nanoporetech.com/products/promethion

https://nanoporetech.com/products/promethion


1.2. Multi-channel biomedical signal compression 3

or through space, if the compressed data is transmitted to be decompressed at some

other place.

In a nutshell, the main objective of a lossless data compressor is to generate a

compressed representation of the data with the smallest possible number of bits, in

particular, fewer than the number of bits used for the the original representation of

the data. Another objective is to perform the encoding and decoding of the data as

efficient as possible, both in terms of speed and memory consumption.

1.2 Multi-channel biomedical signal compression

In Part I of the thesis we study the efficient lossless compression of multi-channel

biomedical signals. Many biomedical signals are multi-channel in nature, that is,

they are recorded from multiple sensors in parallel (channels), such as the electrodes

of an electroencephalograph or an electrocardiograph. This induces, in general,

correlation between signal samples, either in the same channel or across channels

due to, for example, the natural continuity of the signal in time. Signal compression

methods seek to exploit these temporal and spatial correlations.

A common strategy, called predictive coding, takes advantage of these correlations

by predicting each signal sample based on other previously encoded samples. The

sample itself is described to the decoder by encoding the prediction error, which

is the difference between the true sample value and the prediction that both the

encoder and the decoder calculate from previously encoded samples [60, 4, 5, 98, 15].

Other methods apply transformations to bring the signal into a form in which each

transformed channel can be efficiently compressed independently [104, 99, 25]. In

the context of low-power embedded systems, predictive coding techniques, and the

use of Golomb codes [39], are usually combined due to their algorithmic simplicity,

which results in low energy costs.

In predictive coding, the prediction method plays a fundamental role, not only

because the compression performance depends directly on how accurate the predic-

tions are, but also because the calculation of the predictions is usually one of the

most computationally expensive tasks of the compressor. Among prediction meth-

ods, common choices include linear predictors [60, 5, 70, 15], and neural networks [4].

For example, in the compressor RLS presented in [15], at each sampling time i

a prediction of the i-th sample is calculated for each channel, which is obtained as a

weighted average of a set of linear predictions following an expert advice [95] scheme.

Each prediction is calculated as a linear combination of a specific number of previous

samples from the same channel that is being predicted, and from a physically close

channel (to take advantage of the spatial correlation). These linear predictors are

adaptive; its coefficients are updated sequentially using a lattice algorithm [37] as
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the signal is compressed. This results in an algorithm that achieves excellent com-

pression results with low latency and low complexity; the time complexity grows

linearly with the number of channels and the length of the signal, and the amount

of memory required grows linearly with the number of channels.

Another algorithm that has also been used successfully for compression of

biomedical signals [55] is the MPEG-4 lossless audio encoding standard (ALS) [49].

This algorithm calculates a linear prediction error for each channel, and then the

correlation between channels is exploited by subtracting, from each prediction er-

ror of a target channel, a linear combination of the prediction errors of a reference

channel. The signal is divided into blocks, and for each block two passes are made

through the data. In the first pass, the set of target-reference channel pairs, and

the coefficients for making the linear predictions, are obtained and described to the

decoder; the data is encoded in the second pass. The prediction scheme used by

this algorithm is significantly more complex than the one proposed in [15], yet it

achieves worse compression levels for biomedical signals (EEG and ECG).

On the other hand, Free lossless audio compression1 (Flac) is a popularly used

lossless audio compression algorithm, with very low complexity. The compressor

uses linear predictive coding, with an efficient recursive method to determine a set

of prediction coefficients that fits the signal at hand. However, unlike RLS and ALS,

Flac is not specifically designed for signals with more than two channels, resulting

in significantly worse compression levels.

In this work we propose a new data compressor for multi-channel biomedical

signals, General Speck Compressor (GSC), whose general architecture is based on

the proposal in [15], which achieves compression ratios similar to the best in the

state of art, and, at the same time, is highly computationally efficient.

To build GSC, we use the encoding architecture presented in [15], proposing a

new prediction module that is significantly less complex. Specifically, we develop a

low complexity multi-channel signal linear prediction algorithm, using only integer

arithmetic, which is an extension of a single channel prediction algorithm proposed

by Speck in [97]. Furthermore, we propose an efficient implementation, using only

integer arithmetic, of the prediction scheme based on expert advice [95], which

further reduces the computational cost of calculating a prediction. The construction

of GSC is detailed in Chapter 3 of this document. We also evaluate the performance

of GSC by comparing it against RLS [15], and the audio compressors Flac and ALS,

in a series of publicly available datasets of different multi-channel biomedical signals.

We conclude that the proposed new compression algorithm achieves compression

ratios very similar to the state of the art compression ratios achieved by RLS, and

at the same time reduces execution times by practically half.

1https://xiph.org/flac/index.html

https://xiph.org/flac/index.html


1.3. DNA sequencing data compression 5

In order to achieve an even more efficient compression algorithm, in Chapter 4

we define a series of criteria that we follow to create an optimized version of GSC

for a specific type of signal, by strategically choosing a reduced subset of adaptive

linear predictors. We also propose other improvements that seek to further reduce

the computational cost of the compressor. In Chapter 5, we present a version of GSC

optimized for EEG data, called Optimized Speck Compressor (OSC), which lowers

the computational cost of the compressor by following the criteria and techniques

presented in Chapter 4. We evaluate the performance of OSC, and we show that it

manages to be almost 6x times faster than GSC, and almost 12x times faster than

the RLS compressor, in exchange for a slight decrease in compression performance.

Furthermore, despite being adjusted to characteristics of EEG data, OSC achieves

competitive compression ratios over other types of signals.

Lastly, we evaluate the trade-off between compression performance and computa-

tional efficiency of using different integer coding methods, such as adaptive Golomb

coding [39], Simple9 [3], Simple16 [108], and PForDelta [112], for the encoding of the

prediction errors generated by OSC. The results show that using faster integer coding

methods, such as Simple16 or PForDelta, which are simpler than adaptive Golomb

coding, can significantly improve the computational efficiency of the compression

algorithm, in exchange of substantially deteriorating the compression performance.

Specifically, we estimate that using Simple16 encoding, instead of adaptive Golomb

coding, can make the encoder of OSC 14.8% faster, in exchange of deteriorating the

compression performance between 13.5% and 17.9%, depending on the compressed

dataset.

1.3 DNA sequencing data compression

In Part II of the thesis we turn our focus to the efficient compression of DNA

sequencing data. In particular, we investigate compression of DNA data generated

by nanopore sequencing technologies stored in the FASTQ format [22], which is the

standard format used for DNA sequencing data storage.

A FASTQ file stores the result of a sequencing process, which consists of a set

of readings of genome fragments, called reads. In Figure 1.2 we present an example

of a read.

Figure 1.2: Example of a read. The read identifier is in the fist line, followed by the
base call sequence in the next line. The 3rd line has a ‘+’ symbol, which can be optionally
followed by a copy of the read identifier. The last line has the quality score sequence.
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Each read contains an identifier string, a base call sequence (also referred to

as base call string, or, simply read), and a quality score sequence. The identifier

string is generally a short free text segment, which identifies the read. The base call

sequence is a string of letters from the set {A,C,G,T,N}, where letters A,C,G, and

T , represent the nitrogenous bases (base-pairs) of a DNA sequence, and letter N is

a special character that represents a nitrogenous base that could not be determined.

Finally, the quality score sequence is a string of symbols, of the same length as the

base call sequence, where the i-th symbol encodes an estimated probability of the

i-th base call being correct.

The characteristics of the base call sequence and the quality score sequence

that compose each read vary depending on the technology used to perform the

DNA sequencing. For example, the HTS technologies in most common use today

are second-generation sequencing (SGS) technologies, which produce short reads (a

few hundreds base-pair long) generally of fixed length. For these technologies, the

quality of the readings is generally high, and quality scores have little correlation to

the base call sequence if any. The alphabet of the quality scores in this case ranges

from 4 values to about 40, depending on the specific technology. On the other hand,

the Single Molecule Real-Time (SMRT) sequencing technology, developed by Pacific

Biosciences (PacBio), is different in the following sense: it produces long reads

with comparatively high error rates. Similarly, the recently developed nanopore

sequencing technology, mainly driven by Oxford Nanopore Technologies (ONT), also

generates very long variable length reads (up to hundreds of thousands base-pair

long [84]) of relatively low quality. In contrast to other technologies, dependencies

between the quality score sequence and the base call sequence have been observed for

nanopore sequencing [48]. In addition, the alphabet size of the quality scores is 94

(Sanger format [22] using ASCII codes 33 to 126). Quality score sequences usually

dominate the size of a compressed file generated by compressing SGS technologies

data [80]. This is also the case for nanopore sequencing data. For example, in

our experimental results (see Section 6.3), we show that the quality score sequences

amount to 69% of the compressed size, while base call sequences and read identifiers

amount to 29% and 2%, respectively, when running SPRING [17], a state of the art

FASTQ compressor. Consequently, most of the research in DNA sequencing data

compression is primarily focused on the compression of base call and quality score

sequences.

Base call sequences are generally compressed losslessly, as the information of the

composition of the DNA sequences is of utmost importance for subsequent analysis

tasks. On the other hand, although quality scores play an important role in down-

stream analyses, it is not clear which level of resolution is needed. In the case of

SGS data, many studies [107, 82, 2] have shown that having high resolution for the
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quality scores is not always beneficial for downstream analyses tasks, such as variant

calling. For this reason, lossy compression of quality scores is common in SGS data.

In the case of nanopore sequencing data, this phenomenon has not been thoroughly

studied yet, although recent results [59] show that high resolution is not necessarily

needed. In the case of SGS sequencing data, most of the available FASTQ com-

pression algorithms offer a fully lossless compression mode for base call and quality

score sequences, and numerous tools offer an optional lossy mode for quality scores.

Many algorithms have been proposed in the literature and implemented as spe-

cific tools for compression of DNA sequencing data in the FASTQ format. Recent

surveys are available in [79, 80, 44]. These compression algorithms can be roughly

divided into two categories: reference-based methods, in which an external reference

genome is used to aid compression, and reference-free methods, in which no external

information is used. A reference genome is usually given as a file in FASTA format

(a variation of the FASTQ format that does not store quality scores [69]), which

stores the base call sequences that compose the chromosomes of a genome.

To improve the compression of the base call sequences of the FASTQ file,

reference-based methods exploit the information provided by an external reference

genome by aligning the base call sequences of the FASTQ file against the base call

sequences in the reference genome file, producing a series of alignments. Loosely

speaking, an alignment is a description of a string q in terms of a reference string r,

which describes the editing operations needed on the reference string r to produce

the string q. If the aligned string q is similar to the reference string r, then the

alignment serves as a compact representation of q. Consequently, reference-based

compression algorithms efficiently compress a base call sequence q by encoding the

alignment against the reference instead. The decoder can later reconstruct the base

call sequence q by decoding the alignment and applying the editing operations de-

scribed in it to the reference base call sequence r, which is assumed available on

the decoder side. Reference-based compression methods require access to a suitable

reference genome file, that is, a genome of the same or similar species as the one

sequenced and stored in the FASTQ file to be compressed. When such reference is

available, these methods usually achieve better compression performance (see, e.g.,

[61, 45, 9, 54, 57, 6, 42, 46, 62]) than reference-free compressors, by exploiting the

similarities between the sequenced and the reference genomes, which, for example,

in the case of human genomes exceeds 99% of the base-pairs [63].

The availability of a proper reference genome is not an uncommon scenario in

Bioinformatics. In fact, many bioinformatic analysis tasks performed on FASTQ

data, such as sequence analysis or gene expression analysis, already require a step

in their pipeline where the reads of the FASTQ file are aligned against a refer-

ence genome [66], using specialized alignment tools. Even for metagenomic or con-
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taminated samples, where several organisms that may not be known in advance

are sequenced, an appropriate reference can be readily obtained by concatenating

the genomes of the most prevalent species identified by a taxonomic classification

tool [85, 105, 56].

On the other hand, reference-free compression methods have the advantage of

being self-contained and not needing any external resource to work properly. Some

reference-free compressors [54, 7, 58, 109, 43, 71, 36, 90, 18] still obtain an artificial

reference genome by constructing and encoding a draft assembly from the reads in

the FASTQ file. Other technique that is used by some tools [40, 83, 43, 53, 19,

106, 27] consists on reordering the reads in a FASTQ file by base call sequence

similarity. This reordering can improve the performance of the compression itself,

for example, when running widespread practical compression schemes that exploit

local redundancy in the data, for example, schemes based on LZ77 [110], LZ78 [111],

Prediction by Partial Matching [21], or Burrows–Wheeler transform [14]. Some tools,

such as SPRING [17], offer the option of storing the original ordering of the reads in

the compressed file, so that the original file can be exactly recovered after decoding.

However, the ordering of the reads in the FASTQ file has no relevant biological

information, and therefore it is irrelevant to most of the subsequent analyses tasks.

Finally, there are compressors that do not apply any pre-processing to the data

prior to compression. These compressors usually rely on capturing statistical char-

acteristics of the data through context models. In a context model, a probability

distribution for a data symbol x is estimated, conditioned on the values of other

previously encoded symbols, which are referred to as the context in which x occurs.

On the decoder side, context symbols have been decoded and are available when

decoding x, so the same probability distribution for x can be determined in lock-

step with the encoder. From this estimated probability distribution, a code for the

encoding of x is determined such that symbols with larger estimated probabilities

are encoded more compactly than those with smaller estimated probabilities. For

example, in DSRC2 [89], the probability distribution estimated for a base call sym-

bol x depends on the nine bases immediately preceding x. Other compressors that

make use of context models for base call sequences compression are Fqzcomp and

Fastqz [9], and Slimfastq1.

Regarding the compression of quality score sequences, context models are usually

used [61, 9, 89, 73, 35, 78] for both lossless and lossy compression. Fqzcomp [9], in

particular, determines a context for each quality score q as a function of the three

quality scores immediately preceding q. According to [80], Fqzcomp achieves the

best quality score compression performance among an extensive collection of lossless

compressors. In terms of lossy compression of quality scores, many algorithms have

1https://sourceforge.net/projects/slimfastq/

https://sourceforge.net/projects/slimfastq/
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been proposed. These methods can be roughly divided into two categories: hori-

zontal and vertical methods. Horizontal methods [81, 61, 24, 73, 17] sequentially

compress each sequence of quality scores individually, independently of the rest of

the sequences. These methods usually perform some form of quantization to each

individual quality score, and have the objective of minimizing a distortion measure,

such as the mean squared error. Horizontal methods have the advantage of being

reference-free. On the other hand, vertical methods [101, 7, 41] jointly quantize

the quality scores of bases that are mapped to the same position in an alignment.

Therefore, these methods are generally reference-based, and require a previous data

aligning step. The main objective of vertical methods is to minimize the effects of

the loss of information on downstream applications, such as variant calling. This is

usually done by heavily quantizing regions of high consensus among bases that are

mapped to the same position of the reference, and using a higher precision for quality

scores of bases with less consensus. In the case of [10], it mixes both strategies.

Most of the compression algorithms introduced above are optimized for SGS

data. As such, they obtain their best performance when applied to genomic files

containing short reads of fixed length, and many fail to work on data containing

reads of variable length, or on data produced by other sequencing technologies [32].

However, data produced by nanopore technologies is becoming increasingly popular,

as the long reads have the potential to decrease the ambiguity associated to short

reads, and help in the detection of large structural variants, including copy num-

ber variants (CNVs), medium- and large-sized insertions and deletions (INDELs),

duplications, inversions, and translocations, among others [64, 96, 51].

FASTQ compressors like LFastqC [1], SPRING [17], and Genozip [62], offer

support for compression of long variable length reads generated by nanopore se-

quencing. In the case of LFastqC, the authors report the compression performance

of LFastqC for two nanopore FASTQ files. However, this compressor failed in most

of the datasets that we tested. In the case of SPRING, the long read compression

support is included for completeness, and it is not a specific target of the tool, which

uses mainly the general lossless compressor BSC1 in this case. The more recent work

Genozip presents a compression tool capable of compressing nanopore FASTQ files,

which offers both a reference-free mode and a reference-based mode. However, our

experiments have shown that, when running both methods on nanopore FASTQ

data, the reference-free mode consistently outperforms the reference-based mode,

and the reference-based mode fails to compress some of the tested datasets (results

of these experiments are presented in Chapter 7).

In this thesis we concentrate in lossless compression for nanopore sequencing

data. We leave lossy compression of nanopore quality scores as an interesting chal-

1http://libbsc.com/

http://libbsc.com/
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lenge for future work. In this sense, we present two novel lossless compressors for

FASTQ files generated by nanopore sequencing technologies. First, in Chapter 6, we

introduce ENANO, which is a lossless reference-free compressor especially designed

for nanopore sequencing FASTQ files, which mainly focuses on the compression of

the quality score sequences. As we previously mentioned, the quality scores domi-

nate the size of compressed FASTQ files. Specifically, to compress the quality score

sequences, ENANO uses a context model algorithm combined with arithmetic cod-

ing [86]. The context model used for encoding each quality score is determined as

a function of the two previously compressed quality scores and a set of surround-

ing base-pairs (6 by default), which exploits the statistical dependencies between

the base call and quality score sequences. ENANO offers two modes, Maximum

Compression and Fast, which trade-off compression efficiency and speed.

We test ENANO, SPRING, and the general compressor pigz (used as a baseline

reference), on several publicly available nanopore datasets. The results show that

the proposed algorithm consistently achieves the best compression performance (in

both modes) on every considered nanopore dataset, with an average improvement

over pigz and SPRING of 24.7% and 6.3%, respectively. In addition, in terms of

encoding and decoding speeds, ENANO is 2.9x and 1.7x times faster than SPRING,

respectively, with memory consumption up to 0.2 GB.

Next, in Chapter 7, we introduce RENANO, a reference-based lossless FASTQ

data compressor, which is specifically tailored to compress FASTQ files gener-

ated with nanopore sequencing technologies. RENANO builds on the compressor

ENANO by improving the compression of the base call sequence portion of the

FASTQ file, and leaving the other parts of ENANO intact. Two novel reference-

based compression algorithms are introduced, contemplating different scenarios: in

the first scenario, a reference genome is available without cost to both the compres-

sor and the decompressor; in the second, the reference genome is available only on

the compressor side, and a compacted version of the reference is transmitted to the

decompressor as part of the compressed file.

To evaluate the proposed algorithms, we compare RENANO against ENANO,

and to the compressor Genozip, on several publicly available nanopore datasets. In

the first scenario considered, RENANO improves the base call sequences compres-

sion of ENANO by 39.8%, on average, over all the datasets. As for total compression

(including the other parts of the FASTQ file), the average improvement is 12.7%.

In the second scenario considered, the base call compression improvements of RE-

NANO over ENANO range from 15.2% to 49.0%, depending on the coverage of the

compressed dataset, while in terms of total size, the improvements range from 5.1%

to 16.5%. We also show that RENANO consistently outperforms the compressor

Genozip in both scenarios.
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At the time of writing this thesis document, two new pre-prints with compres-

sion methods for nanopore sequencing data were published, NanoSpring [74] and

CoLoRd [59]. In the case of NanoSpring, the authors propose a reference-free com-

pression method only for base call sequences, and compare it against both ENANO

and RENANO. The results show that NanoSpring achieves better compression of

base call sequences when compared against ENANO, but it is significantly out-

performed by RENANO. Also, in terms of computational efficiency, both ENANO

and RENANO are faster than NanoSpring and consume less memory. CoLoRd is

a state-of-the-art reference-free full FASTQ compression algorithm with a quality

score compression module inspired by ENANO, and an optional reference-based

mode.

1.4 Contributions

Most of the work detailed in this document was developed within the framework of a

series of research projects funded by Comisión Sectorial de Investigación Cient́ıfica

of the Universidad de la República.

Regarding the compression of multi-channel biomedical signals, the main results

of this work were published in [31] (specifically in sections III and V) with a signifi-

cantly lower level of detail than in this document. In [31] there is also a description

of hardware implementations of the algorithms, which were developed by other team

members. The idea of using Speck’s prediction algorithm as a starting point for the

construction of the General Speck Compressor was promoted by Dr. Gadiel Seroussi,

at the beginning of the project. The use of fixed predictors described in Section 5.3

of this thesis was also developed from preliminary ideas within the project team.

The author of this document had a leading role in the design, implementation and

evaluation of the other algorithms, which are presented in Part I of this thesis.

Regarding the compression of nanopore sequencing data, preliminary results of

this work were published in [32], and the main results in [33] and [34]. In these works,

Drs. Idoia Ochoa and Gadiel Seroussi participated in technical discussions related to

the design and implementation of the compression algorithms. Drs. Pablo Smircich

and José Sotelo-Silveira contributed with the validation of biological aspects, and

the applicability of the algorithms. The author of this thesis had a leading role in

the design, implementation and evaluation of all the algorithms presented in Part II.

1.5 Summary of document structure

The rest of this document is organized as follows. In Chapter 2 we present funda-

mental concepts behind data compression, giving a brief overview of code building
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and information theory, and we present some data compression techniques that are

used throughout the document. Next, we begin Part I by presenting the construc-

tion of GSC in Chapter 3. In Chapter 4, in search of the development of an even

more efficient compressor, we study the performance of the various predictors used

by GSC on different types of signals. We conclude a series of criteria to select a

reduced set of predictors that allow the compressor to perform well on a specific

type of signal. Part I ends with Chapter 5, where we introduce OSC, a version of

GSC optimized for EEG, using the criteria developed in Chapter 4.

Part II of the thesis begins with Chapter 6, where we present ENANO, a lossless

reference-free nanopore sequencing FASTQ data compressor, that achieves state of

the art compression performance by exploiting the correlation between base call and

quality score sequences. Then, in Chapter 7, we present RENANO, which expands

ENANO with two novel reference-based compression algorithms for compressing

base call sequences.

Finally, in Chapter 8, we present some conclusions obtained from this work, and

we propose some directions for future lines of work.



Chapter 2

An introduction to data

compression

In this chapter we review some fundamental concepts on which data compression

relies. The objective is to give a brief overview about the construction of codes and

Information Theory, which allows us to understand the data compression techniques

that we will use throughout the document.

Informally, lossless data compression consists of converting some input data (a

source file, a sequence of bits) into a smaller representation, in such a way that we can

later reverse the process and recover the original data. There are multiple methods

for compressing data, which are suitable for different scenarios. However, they are all

based on the same principle, that is, they all compress data by removing redundancy.

This redundancy is manifested through some type of underlying statistical structure,

which can be exploited to obtain a more compact representation of the data.

For example, in natural language we can easily see that some letters appear

more frequently than others; in English for instance, the most common letter is the

letter E. It is no coincidence that the Morse code, used to encode the letters of the

alphabet using the symbols dot and dash, assigns the shortest possible code (a single

dot) to the letter E. This is because Morse code exploits the redundancy that exists

in the language by assigning shorter codes to more frequent letters (E, T, I), and

longer codes to less frequent letters (Q, X, Z), in order to transmit as few symbols

as possible for a typical message.

The intuitive idea of encoding most probable events with less symbols and rare

events with more symbols has been used throughout history to compress data. How-

ever, it was not until 1948, when Claude Shannon presented his work A Mathematical

Theory of Communication [94], that a mathematical theory was developed, called

Information Theory, which establishes the theoretical bases for data compression.

Next we present some of the most important concepts and conclusions reached by

13



14 Chapter 2. An introduction to data compression

Shannon in his work. Specifically, in Section 2.1 we formalize the problem and give

a brief introduction to coding and compression. Then, in Section 2.2 we present

the adaptive coding technique in the context of statistical modeling, and discuss the

implications of model complexity. Finally, in Section 2.3 we give a summary of the

concepts presented throughout the chapter.

2.1 Information sources and codes

Let us consider an information source that produces messages to be transmitted

through a communication system. In the context of this thesis, we think of such

information source as a system that produces messages, symbol by symbol, where

each symbol is drawn randomly from a discrete alphabet X , according to a certain

probability distribution that may depend, in general, on previously generated sym-

bols. In other words, we model an information source as a discrete-time discrete-

state stochastic process. Depending on the characteristics of the system, we can

choose among different classes of stochastic processes. For example, in a memory-

less source, we model the symbols as generated independently, randomly, and identi-

cally distributed (i.i.d). If successive symbols are presumably related to each other,

the sequence can be modeled as a Markov process.

Now, suppose we want to encode the messages generated by an information

source as a sequence of binary symbols to be transmitted through a communication

channel. A code, C ∶ X → {0,1}∗, assigns a code word, which is a finite binary string

(a sequence of bits) to each symbol of the source alphabet, X . Naturally, we want the

code to be uniquely decodable, that is, that any binary sequence that arises from a

concatenation of code words, C(x1)C(x2)...C(xn), uniquely determines the original

sequence of source symbols, x1, x2, ..., xn. In this sense, a simple way of building

a uniquely decodable code is by building a prefix-free code, where no code word is

a prefix of another code word. It is easy to see that a prefix-free code is uniquely

decodable, as decoding a bit stream amounts to reading the stream progressively,

from left to right, replacing each code word found with its corresponding symbol. As

an example, suppose we have a source alphabet X = {x1, x2, x3}. The code defined

as C(x1) = 0, C(x2) = 10, C(x3) = 11, is prefix-free and, therefore, it is uniquely

decodable. Although there are uniquely decodable codes that are not prefix-free,

for any of them there is always another code with the same code lengths that is

prefix-free. Therefore, in practice, the codes that are generally used are prefix-free

(see, e.g., [23]).

For data compression we are interested in codes with an average code word length

as small as possible. In other words, given an information source, we want to build
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a uniquely decodable code C that minimizes the expected length of C(X),

Ep[l(X)] = ∑
x∈X

p(x)l(x), (2.1)

where Ep[ ⋅ ] denotes expectation with respect to the probability distribution p, and

l(x) denotes the length of C(x).
In this context, there are some questions that naturally arise. Given the proba-

bilistic law that governs an information source, what is the minimum of (2.1)? Is it

possible to build a code that achieves this minimum?

Shannon showed that the entropy of a source is the fundamental limit for data

compression. For a random variable X, which takes values on the discrete alphabet

X , with a probability distribution p, the entropy of X is defined as

H(X) = Ep[ − log2 p(X)] = − ∑
x∈X

p(x) log2 p(x), (2.2)

where we let p(x) log2 p(x) = 0 for p(x) = 0. The entropy is a lower bound for the

expected number of bits required to describe an occurrence of X. In other words,

every uniquely decodable code, C(X), satisfies H(X) ≤ Ep[l(X)].
Notice that H(X) only depends on the probability distribution of X but not on

the specific values of the elements of the alphabet. For example, Figure 2.1 shows the

entropy of a random variable X, which takes values on a binary alphabet X = {x,x′}
with probabilities p(x) = θ, and p(x′) = 1 − θ, as a function of θ.
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Figure 2.1: Entropy of random variable X that takes two possible values with probabilities
θ and 1 − θ, respectively.

The maximum value of the entropy occurs when the events are equally likely and
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it descends to zero as the probability mass concentrates in one of the two events. In

fact, this phenomenon generalizes to larger finite alphabets. For a random variable

X that takes values on a finite alphabet X , of size ∣X ∣, with a probability distribution

p, the maximum value of H(X) is log2(∣X ∣), which is attained when p is uniform,

and we get to H(X) = 0 as the probability mass concentrates in a single symbol

x with p(x) = 1. Intuitively this makes sense, as when most of the probability is

concentrated in a small number of symbols, we can assign short code words to those

specific symbols, thus decreasing the overall expected code length.

However, even if we know in advance the probability distribution that governs

a source of information, it is not immediately apparent how to design a code that

achieves an expected length close to the entropy of the source. Consider the following

example. We toss a coin in the air as many times as necessary until we get the first

tails and we record how many heads in a row came out. We set ourselves the

objective to design a uniquely decodable code to encode the number of consecutive

heads obtained, using the least number of bits on average. Intuitively, we propose

the following code: write a 0 each time the coin flip is heads, and write a 1 when

we get tails. Then, decoding the number of heads amounts to counting the number

of zeros until we observe the first one. For example, if 3 heads came out in a row

and then tails, the corresponding code word is 0001. It is easy to see that this

code is prefix-free, and therefore uniquely decodable, since all the code words have

a single one at the end and they all have a different length. In fact, the proposed

code is known as unary encoding, an encoding that assigns to each natural n a code

word that is comprised of n consecutive zeros and a trailing one, so that the length

of the code word is l(n) = n + 1. Now we ask, is this unary code a good code to

use in this example? To find an answer using the concepts introduced by Shannon,

we have to define a probabilistic model for the information source. In this case,

we model the experiment as a random variable X that takes values over the set of

natural numbers, N, with a probability distribution p, where p(n) is the probability

of obtaining n heads in a row and then tails. If the coin is balanced, that is, the

probability that the coin flip is heads is equal to the probability that it is tails, then

p(n) = (1/2)n+1. Hence, we have − log2 p(n) = n + 1 = l(n), so from equations (2.2)

and (2.1) we obtain H(X) = Ep[l(X)], which implies that the unary code is optimal

in this case.

Notice that in this example we are able to verify the optimality of the proposed

code based on the assumed perfect knowledge of the probabilistic law that governs

the information source. In fact, given a probabilistic model, there are coding schemes

such as Shannon coding [94], Huffman coding [47], or arithmetic coding [86], which

yield close to optimal codes. However, in most real data compression scenarios,

including the ones we address in this thesis, we do not have access to an exact
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probability distribution for the data in advance. Consequently, designing a good

data compressor amounts, in essence, to estimating a good statistical model for the

information source, and combining it with a proper coding scheme.

2.2 Statistical modeling and adaptive coding

Statistically modeling an information source may be a complex task. A common

approximation to this problem is to make a general assumption of the statistical

model structure, based on prior knowledge or experimental observations letting some

model parameters undefined, which are estimated from the data at compression time.

For example, let us return to the coin toss example, and suppose that the coin may

be unbalanced, that is, that one of the outcomes, heads or tails, may be more likely

than the other. Although we do not know exactly how unbalanced the coin is, we can

generally model an unbalanced coin toss by considering the probability of getting

heads as a parameter, θ, 0 < θ < 1. Even if the value of θ is a priori unknown, the

model seems to correctly capture the statistical structure of the unbalanced coin

toss. With this model, the experiment of tossing the coin in the air as many times

as necessary until we get the first tails, and then recording how many heads in a

row came out, can be modeled as a random variable X that takes values over the

naturals, with a geometric probability distribution, p, parameterized by θ, where

p(n) = θn(1−θ), n ∈ N. Note that the example of the balanced coin is a specific case

where the parameter θ is 1/2. Figure 2.2 graphically shows the geometric distribution

over the natural numbers for θ = 3/4. The geometric distribution is characterized
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Figure 2.2: Geometric probability distribution over natural numbers for θ = 3/4.

by being strongly concentrated in a few values (the naturals closest to 0), which,
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a priori, tells us that the information source is highly compressible. For arbitrary

values of θ the construction of an optimal code is obtained using Golomb codes [39].

In general, once a statistical model is established for the data, we need to adjust

the parameters of the model to the specific data we want to compress. In this

sense, there are different strategies we can follow. In a two-pass scheme, the data

is first scanned to estimate the values of the parameters that best adjust to the

data. This parameter values are encoded and then, in a second pass, the data itself

is encoded using a coding scheme adjusted to those parameters. For example, for

the encoding of consecutive heads count in successive repetitions of the unbalanced

coin toss experiment, in a first pass through the data we can empirically determine

the total number of heads, nh, and of tails, nt, and calculate an estimation of θ as

θ̂ = nh

nh+nt
, which is encoded in first place. Then, in a second pass, we encode each

heads count using a Golomb code that is optimal for the value θ̂. This strategy

can yield good results, but has the disadvantage of requiring access to the data in

advance.

On the other hand, in adaptive coding schemes the parameters of the model

are sequentially adjusted as the data is being encoded/decoded. For example, in the

unbalanced coin toss example, during encoding/decoding we can adaptively maintain

an estimator, θ̂(i), which is calculated from the outcomes up to the i-th run of heads.

Then, when encoding/decoding the (i + 1)-th run, we use an optimal Golomb code

for the value θ̂(i), which is estimated by both the encoder and the decoder. This

scheme has the advantage of being capable of adapting to statistical changes in the

data, as well as being compatible with online compression applications.

The complexity of the chosen statistical model plays a crucial role, as it deter-

mines the number of parameters that need to be adjusted. Larger models can po-

tentially capture more complex statistical dependencies than simpler models, which

may result in better compression performance. However, since the model parameters

are adjusted from the same data that is compressed (simultaneously), large models

may suffer from a large model cost [88], which may render a poor compression per-

formance in small data sets. Additionally, implementations of large complex models

can have demanding memory requirements. Consequently, designing an efficient

compression algorithm requires finding a balance in the trade-off between under and

over-fitting of the underlying probabilistic model.

2.3 Summary

In this chapter we briefly explored the basic concepts behind data compression,

including the concept of an information source characterized by a probability distri-

bution over an alphabet, and the concept of code. We explained that there is a limit
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for data compression called entropy, which depends on the probability distribution

that governs the information source, and we saw that there are codes with expected

code lengths very close to entropy. We also observed that, intuitively, when the

probability mass concentrates in few elements of the alphabet, the entropy is low

and thus the data can be highly compressed. Finally, we discussed the importance

of designing a good statistical model for the data, and how model complexity can

have implications on the efficiency of adaptive coding algorithms.

In the rest of the thesis we use the principles described in this chapter as a basis

for modeling and compressing data in the different compression scenarios that we

investigate.
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Part I

Multi-channel biomedical

signals data compression
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Chapter 3

General Speck Compressor

In the first part of the thesis we investigate the efficient compression of multi-channel

biomedical signals in a scenario where processing resources are scarce, and there

are severe restrictions on energy consumption. In this sense, in this chapter we

present the construction of an efficient multi-channel signal compressor, the General

Speck Compressor (GSC), which is based on integer arithmetic, and which combines

various strategies to achieve compression performance comparable with the state of

the art, while being computational efficient.

The rest of the chapter is organized as follows: in sections 3.1 and 3.2 we describe

the general compression techniques in which our compressor is based on. Specifically,

in Section 3.1 we describe the sequential predictive coding scheme in the context of

multi-channel signals, and in Section 3.2 we explain the expert advice technique for

combining the predictions from a set of predictors into a single prediction. Next, in

Section 3.3 we describe the RLS algorithm presented in [15], which uses predictive

coding and expert advice to perform multi-channel signal compression, to achieve

state of the art compression performance. Taking this algorithm as a starting point,

in Section 3.4 we present GSC and describe an efficient implementation of it. Finally,

in Section 3.5, we evaluate the performance of GSC in terms of compression and

speed, by comparing it to other compressors for multi-channel signals, on a series of

publicly available multi-channel signal datasets.

3.1 Sequential predictive coding for multi-channel sig-

nals

Multi-channel signals arise in various scenarios where samples are obtained simul-

taneously from multiple sensors with certain frequency along time. Some examples

are the signal recorded by a set of seismographs, the signal recorded by a set of

microphones in a recording room, and the signal recorded by multiple electrodes

23
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on an EEG system. Let us picture the following example: suppose a patient in a

hospital has 3 sensors, s1, s2, s3, attached to their body, which monitor their body

temperature, blood oxygen level, and blood pressure, respectively. If the sensors

perform synchronized measurements, in regular time intervals, we can model the

sequence of values obtained by the sensors as a 3-channel signal, where the measure-

ments obtained by each sensor correspond to a channel, whose signal consists of the

sequence of measurements made.

Generalizing, when we have a signal of C discrete time channels, C > 1, we denote

the (scalar) sample obtained from the i-th channel, at time n, as xi(n), n ≥ 1, and

we refer to the vector (x1(n), . . . , xC(n)) as the sample vector at instant n. Also,

we define xi(n) = xi(1), . . . , xi(n) as the sequence comprised of the first n samples

from channel i. We assume that all scalar samples are quantized to an integer value

in a finite interval X .

Returning to the example, we have that the signal obtained by the sensor s1

from time 1 to time 10, that is, the sequence of recorded temperatures, is x1(10) =
x1(1), . . . , x1(10), while the vector sample, i.e., the temperature, blood oxygen level,

and blood pressure, at time 10, is (x1(10), x2(10), x3(10)).

In this context, sequential predictive coding is a scheme that has been proven

effective for efficiently encoding multi-channel signals. We describe how it works

next.

In the sequential predictive coding scheme, as its name indicates, each time

a vector sample is obtained, each of its scalar samples xi(n) is encoded from a

prediction x̂i(n). The prediction x̂i(n) is calculated sequentially for each sample

xi(n), and this sample is described to the decoder through the encoding of the

prediction error, εi(n) ≜ xi(n) − x̂i(n). The sequence of sample descriptions is

causal, that is, the order in which the samples are described and the definition of

the prediction x̂i(n) are such that x̂i(n) only depends on samples that are encoded

before xi(n). Then, a decoder can sequentially calculate the prediction x̂i(n) from

the previous samples, decode εi(n), and add both values to reconstruct the original

sample xi(n).

Encoding the prediction error εi(n), instead of directly encoding the sample

xi(n), has the benefit that if the predictions are accurate, the absolute values of the

prediction errors tend to be close to zero, with histograms that resemble two-sided

geometric distributions. Therefore, the sequence of prediction errors can be highly

compressed using adaptive Golomb codes [39], which have been proven to be optimal

for two-sided geometric distributions [75].

The prediction x̂i(n) is calculated as a function of previously encoded samples,

that is
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x̂i(n) = fi(x1(n), ...,xi−1(n),xi(n − 1), ...,xC(n − 1)), (3.1)

where, assuming that the channels are numbered in the order in which they are

encoded, the prediction is calculated from the sequences of samples xj(n) of all

channels j with j < i, and the sequences of samples xj(n− 1) of the channels j such

that i ≤ j ≤ C. Thus, for calculating x̂i(n) we make use of all the information that

is available to both the encoder, and the decoder, at the time of encoding/decoding

xi(n). Algorithm 1 describes the general sequential predictive coding scheme.

Algorithm 1: General multi-channel sequential predictive coding scheme
for sequences of N samples from C channels.

Input : Sequences of N samples from C channels, xi(N), where 1 ≤ i ≤ C
Output: Encoding of the prediction errors εi(n), where 1 ≤ i ≤ C, and

1 ≤ n ≤ N
1 for n = 1, . . . ,N do
2 for i = 1, . . . ,C do
3 x̂i(n) = fi(x1(n), ...,xi−1(n),xi(n − 1), ...,xC(n − 1))
4 εi(n) = xi(n) − x̂i(n)
5 Encode εi(n)
6 end

7 end

Returning to the patient example, in time n a vector sample is obtained

(x1(n), x2(n), x3(n)). If we encode the samples in the order that the channels are

numbered, to encode x2(n) the prediction error ε2(n) is calculated from the predic-

tion x̂2(n) = f2(x1(n),x2(n − 1),x3(n − 1)). Note that, since channel 1 is encoded

before channel 2, the decoder has access to the sample x1(n) at the time of decoding

x2(n), even though both scalar samples belong to the same vector sample. Later,

in Section 3.3, we show that using samples that belong to the same vector sample,

that is, samples from the present time, can significantly improve the predictions and,

thus, achieve better compression results.

3.2 Prediction with expert advice

The concept behind the expert advice prediction method is based on a process that

we naturally go through when having to make a decision. Occasionally, when we

are in doubt about choosing among several options, we resort to consulting different

experts, which give us advice on what to choose. Then we evaluate the various

responses and make a decision. Usually, the opinions of the experts carry different
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weights for us, as we tend to give more importance to those opinions that come from

sources that we believe are more qualified to weigh on the matter. Expert advice

poses an analogous situation, where the decision we need to make is what to predict

for the next sample x̂i(n). To do this, we consult a set of predictors (the experts),

obtaining the prediction that each one would make. Once the predictions are in

place, they are weighted averaged to obtain the final prediction, where the weight of

each prediction depends on the previous success rate of the corresponding predictor

(how qualified the expert is).

Formalizing this concept, if we have a finite set of predictors P, the expert

advice method proposes to calculate the prediction x̂i(n) as a weighted average

of the predictions ẋpi (n) of each predictor p of the set. Specifically, we define the

prediction of sample xi(n) of channel i at time n as,

x̂i(n) =
⎢⎢⎢⎢⎢⎣

1

Wi(n)
∑
p∈P

µpi (n)ẋ
p
i (n)

⎤⎥⎥⎥⎥⎥
, (3.2)

where ⌊⋅⌉ denotes rounding to the nearest integer within the quantization interval

X , µpi (n) is a decreasing exponential function of the sequential quadratic prediction

errors accumulated up to time instant n − 1 for the predictor p of channel i, and

Wi(n) = ∑p∈P µpi (n) is a normalization factor. If the weights µpi (n) are exponential

functions of the sequential quadratic prediction errors, the authors in [95] demon-

strated that the quadratic prediction error per-sample of this predictor is asymp-

totically as small as the minimum quadratic prediction error among all predictors

belonging to P.

In other words, expert advice allows us to asymptotically achieve a performance

as good as the performance we would have obtained if we had known in advance

which of the predictors of the set is the one that obtains the best average prediction

accuracy. It is important to note that the greater the number of predictors, the

slower the rate of convergence of the performance of the general predictor by expert

advice to that of the best individual predictor. In addition, the greater the number

of predictions, the greater the complexity of the algorithm, which results in worse

computational efficiency.

3.3 An initial approach to compression of multi-channel

biomedical signals

In this section we describe the multi-channel biomedical signals compression algo-

rithm RLS [15], which we take as a starting point for the construction of GSC. This

algorithm achieves excellent compression results on EEG and ECG data, while being
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computationally efficient. Next we explain how it works.

The RLS compression algorithm combines sequential predictive coding with ex-

perts advice. In Section 3.1, we generally defined the prediction, x̂i(n), of the se-

quential predictive coding scheme, as a function of all previously encoded samples.

It usually happens that the further two samples are separated in time, or the more

separated in space are the sensors that recorded them, the lower the correlation

between them, which makes each of little help to predict the other. For this reason,

in order to achieve simple models, it is beneficial to use predictors that predict from

a certain limited number of nearby samples in time and space. When a predictor

uses samples from up to d previous sampling times it is said to be a predictor of

order d.

In [15] the authors propose to use for each channel i, 1 ≤ i ≤ C, a set of predictors

P, which are combined with the expert advice method. For p ∈ P, we let x̂pi (n) be a

linear prediction of some finite order, denoted dp, which linearly combines: the most

recent dp samples of channel i; the most recent dp samples of a channel ` recorded

by a sensor physically close to the sensor of channel i, which is called the parent or

helper channel of i; and the current sample of channel `, which is encoded before

xi(n). Hence, the prediction x̂pi (n) is defined as,

x̂pi (n) =
dp

∑
k=1

ai,kxi(n − k) +
dp

∑
k=0

bi,kx`(n − k) , (3.3)

where 1 ≤ i, ` ≤ C, i ≠ `, and ai,k and bi,k are real coefficients.

From experimental tests carried out by adjusting the coefficients using least

squares, the authors of [15] observe that a predictor of order dp that uses an ap-

propriate helper channel, together with the present time sample, yields similar or

even better results than a predictor of order 2dp that makes its prediction using the

past samples from all the channels. This suggests that by taking advantage of the

samples from a physically close channel, and from its present sample, a large part

of the spatial and temporal correlation between channels can be captured.

As the sequence of encodings must be causal with respect to the predictor, not

all predictions x̂i(n) can depend on a sample from time n, so an encoding order

that meets the causality constraint must be defined for the samples. The authors

propose a way of ordering the channels that, in addition to satisfying the causality

restriction, minimizes the sum of the physical distances between the electrodes of the

channels i and `, where ` is the helper of i, in all channels i, except for the channel

whose sample is the first to be described. The rationale behind this is that the

correlation between the signals from two electrodes tends to increase as the physical

distance between them decreases.

To define an order in which to describe the channels, the authors propose to use a
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tree, T , whose set of vertices is the set of channels, {1, . . . ,C}. An arbitrary channel

r is distinguished as root, and an orientation is assigned to the edges of T such

that there is a single directed path from r to each vertex of T . Since a tree has no

cycles, the edges of T induce a causal sequence of sample descriptions, for example,

by ordering the edges of T , e1, . . . , eC−1, in order of depth. T is called the encoding

tree. Specifically, in the context where the electrode positions are known, T is the

minimum spanning tree of the complete graph whose set of vertices is {1, . . . ,C},

and each edge (i, j) is weighted with the physical distance between the electrodes of

the channels i, j. In other words, the sum of the distances between the electrodes of

the channels i, j, on all the edges (i, j) of T , is minimum among all possible coding

trees. Note that, since T depends on the acquisition system but not on the signal

samples, this order of description can be determined beforehand. The sample xr(n)
is predicted from the samples up to time n − 1 of the channels r, i, where (r, i) is

the edge e1; all other predictions, x̂i(n), i ≠ r, depend on the sample at time n of

the channel ` and the past samples of the channels `, i, where (`, i) is an edge of T .

Algorithm 2 summarizes the encoding process proposed in [15].

Algorithm 2: Encoding algorithm proposed in [15] with an encoding tree
for sequences of N samples from C channels.

Input : Sequences of N samples from C channels, xi(N), where 1 ≤ i ≤ C,
and the encoding tree T

Output: Encodings of the prediction errors εi(n), where 1 ≤ i ≤ C, and
1 ≤ n ≤ N

1 for n = 1, . . . ,N do
2 Let (r, i) be the edge e1 of T
3 x̂r(n) = fr(xr(n − 1),xi(n − 1))
4 εr(n) = xr(n) − x̂r(n)
5 Encode εr(n)
6 for k = 1, . . . ,C − 1 do
7 Let (`, i) be the edge ek of T
8 x̂i(n) = fi(xi(n − 1),x`(n))
9 εi(n) = xi(n) − x̂i(n)

10 Encode εi(n)
11 end

12 end

To complete the description of the encoder proposed in [15], we must define the

prediction functions, fi, 1 ≤ i ≤ C, which are used in the steps 3 and 8 of Algorithm 2.

For a predictor p, of order dp, the authors define api (n) = {ai,k(n), bi,k(n)} as

the set of coefficients, ai,k, bi,k, which, when substituted in (3.3), minimize the total
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quadratic prediction error up to time n,

Epi (n) =
n

∑
j=1

λn−j(xi(j) − x̂pi (j))
2
, (3.4)

where λ, 0 < λ < 1, is an exponential decay factor. This parameter has the effect

of preventing Epi (n) from growing without limit with n, and of assigning a greater

weight to more recent samples, which makes the prediction algorithm adapt more

quickly to statistical changes of the signal.

A sequential linear predictor p, of order dp, uses the coefficients api (n − 1) to

predict the value of the sample at time n as

ẋpi (n)=
dp

∑
k=1

ai,k(n−1)xi(n−k) +
dp

∑
k=0

bi,k(n−1)x`(n−k) , (3.5)

and, after observing xi(n), updates the set of coefficients from api (n − 1) to api (n),
and proceeds to perform the next sequential prediction.

This determines a total weighted sequential absolute prediction error defined as

Epi (n) =
n

∑
j=1

λn−j ∣xi(j) − ẋpi (j)∣ . (3.6)

Note that each prediction ẋpi (j) in (3.6) is calculated with a set of model parameters,

api (j − 1), which only depends on the samples that are described before xi(j) in

Algorithm 2. These model parameters vary, in general, with j (note the difference

with (3.4) where the coefficients involved in the calculation of x̂pi (j) are fixed).

The authors propose to use a lattice algorithm [37] to efficiently calculate api (n)
from api (n − 1) simultaneously for all possible model orders d, up to a predefined

maximum order P . Thus, in the proposed encoding algorithm, the set of experts P
is defined as the set formed by all the adaptive sequential linear predictors p, whose

orders dp satisfy that, 0 ≤ dp ≤ P . The final prediction, using expert advice, is then

defined for i ≠ r using the prediction function

fi(xi(n − 1),x`(n)) =
⎢⎢⎢⎢⎢⎣

1

Wi(n)
∑
p∈P

µpi (n)ẋ
p
i (n)

⎤⎥⎥⎥⎥⎥
, (3.7)

with

µpi (n) = exp{ − 1

c
Epi (n − 1)} , (3.8)

where Epi (n−1) is defined in (3.6), and c is a constant that depends on the quantiza-

tion interval X [95]. Note that in (3.8) the weight is exponential in the accumulated

absolute error instead of the accumulated quadratic error as in [95]; this responds
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to a slight improvement in the prediction performance observed empirically in [15].

In summary, the work in [15], presents the design of an encoder that combines

sequential predictive coding, and expert advice, to achieve an efficient compression

algorithm. The experts used are adaptive linear predictors, which use a fixed num-

ber of past samples obtained from channels physically close to each other, and which

take special advantage of using samples from the present time. To define the en-

coding order of the samples, a coding tree is built (offline) that allows to satisfy the

causal encoding restrictions of the channels, and also minimizes the physical distance

between them when taken in pairs. In order to sequentially adapt the coefficients

of the predictors, a lattice algorithm is used that allows to calculate efficiently, and

simultaneously, for all the orders d, 0 ≤ d ≤ P , the coefficients at time n from the

coefficients at time n− 1. Finally, the final prediction function of each sample is de-

fined as the weighted mixture of all predictions by expert advice, where the weight

assigned to each predictor is an exponentially decreasing function of its absolute

prediction errors.

3.4 General Speck Compressor

The encoder presented in Section 3.3 strategically combines a set of techniques that

allow to achieve excellent compression results while being of low algorithmic com-

plexity. In this section we present GSC, a low complexity compressor whose general

architecture is based on the algorithm RLS proposed in [15]. GSC considerably

improves the computational efficiency of RLS without significantly hindering the

compression performance.

To achieve this, we tackle a key point of the proposed coding architecture, which

is the calculation of predictions. To start, in the Section 3.4.1, we present a low

complexity adaptive linear prediction algorithm for multi-channel signals, which is

an extension of a single-channel prediction algorithm proposed in [97]. This linear

predictor is extremely simple and is implemented using exclusively integer arith-

metic. Then, in Section 3.4.2, we propose an efficient implementation of the expert

advice algorithm, which also operates entirely with integer arithmetic.

3.4.1 A multi-channel extension of the Speck algorithm

In [97], Speck introduces a digital image compression algorithm that uses adaptive

linear predictors. The algorithm can easily be adapted to encode single-channel

signals; however, its extension to multi-channel signals is not trivial. In this section

we explain the algorithm proposed in [97], and then propose an extension for multi-

channel signals.
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A single-channel linear predictor p, of order dp, for a sample xi(n) as a function

of past samples of the same channel i, xi(1) . . . xi(n − 1), has the form

ŝpi (n) =
dp

∑
k=1

ai,kxi(n − k) , (3.9)

where ai,k are real coefficients, 1 ≤ k ≤ dp. The Speck algorithm defines ai,k = âi,k/K
as a rational number, where âi,k are integer coefficients, 1 ≤ k ≤ dp, and K is an

integer normalization constant (usually a power of two, so that division by K can

be carried out by a bit-shift operation). This definition is very convenient from

a practical implementation perspective, since the coefficients admit a simple fixed

point representation, where the precision is given by the value of K.

The coefficients âi,k are sequentially adapted by comparing the prediction ŝpi (n)
with the actual value of the sample, xi(n). The initialization and adaptation meth-

ods of the coefficients for single-channels are the following:

• Initialization: Coefficients âi,k are initialized as

âi,k =K /dp +
⎧⎪⎪⎨⎪⎪⎩

1, k ≤K mod dp ,

0, otherwise ,
(3.10)

where K/dp and K mod dp denote the quotient and the remainder of the

integer division, respectively.

• Adaptation: Let εpi (n) = xi(n) − ŝ
p
i (n) be the prediction error at time n, and

sgn(εpi (n)) its sign, where sgn(εpi (n)) is equal to 1 when εpi (n) > 0, 0 when

εpi (n) = 0, and −1 otherwise. If εpi (n) = 0, no adaptation is performed; other-

wise, the coefficients âi,k associated with the largest and smallest of the last

dp (signed) samples, xi(n − k),1 ≤ k ≤ dp, are decremented and incremented

respectively by sgn(εpi (n)); ties are decided by some fixed policy, for exam-

ple, choosing the coefficient with smallest index. Note that when adding or

subtracting the sign of the error to a coefficient âi,k, we are adjusting the real

coefficient ai,k implicitly by a value of δ = 1/K.

The initialization and update procedures explained above ensure that the coeffi-

cients ai,k add up to one for every channel i; however, it is worth noting that some of

them can take negative values and therefore the prediction ŝpi (n) is not necessarily

an average of the past samples.

Recall from Section 3.3 that, in the scheme proposed in [15], the prediction ẋpi (n)
for channel i depends on the dp most recent samples of channel i, the most recent

dp samples of the helper channel `, and the current sample of channel `. Therefore,
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we have that

ẋpi (n) =
dp

∑
k=1

ai,kxi(n − k) +
dp

∑
k=0

bi,kx`(n − k), (3.11)

where ai,k y bi,k are real (adaptive) coefficients.

To adapt Speck’s algorithm to multi-channel signals, the initialization and adap-

tation procedures could be directly extended to the concatenation of the samples

from the two channels, (xi(n − k) ∶ k = 1, . . . , dp) and (x`(n − k) ∶ k = 0, . . . , dp).
However, we observe that this direct adaptation results in poor performance when

the mean values of channels i and ` differ significantly. On the other hand, when ap-

plying the procedures on zero-centered versions of the channels, the results obtained

are remarkably good.

To obtain zero-centered versions of the channels, we subtract from each channel

an estimation of its moving average, x̄i(n), given by

x̄i(n) = (1 − β)x̄i(n − 1) + βxi(n), (3.12)

where β is a parameter in range 0 < β < 1. The calculation in (3.12) corresponds to

an exponentially weighted moving average, where the influence of each sample on the

mean decreases exponentially with time. The value of β determines the magnitude

of the exponential decay, so that the greater the value of β, the faster the decay over

time of the influence that each sample has on the moving average.

The computation of x̄i(n) can be efficiently implemented using only integer arith-

metic. For this, we define an auxiliary variable αi(n) ∆= β−1x̄i(n) and rewrite (3.12)

as

αi(n) = β−1x̄i(n − 1) − x̄i(n − 1) + xi(n)
= αi(n − 1) − x̄i(n − 1) + xi(n).

(3.13)

The recursion 3.13 allows to sequentially calculate αi(n) by simply performing

an addition and a subtraction operation from αi(n − 1). Also, by choosing β as a

negative power of two, β = 2−b, we get x̄i(n) = αi(n) ≫ b, where ≫ denotes the

bit-shift operation to the right.

Defining zi(n) = xi(n) − x̄i(n − 1), we rewrite (3.11) as

ẋpi (n) = x̄i(n − 1) + ∑
dp
k=1 âi,kzi(n − k) +∑

dp
k=0 b̂i,kz`(n − k)

K
,

where âi,k and b̂i,k are coefficients that are initialized and adapted following the

Speck procedure applied to the concatenation of the zero-centered samples of the

channels i, `. This completes our definition of the prediction computation for the

multi-channel extension of the Speck algorithm. In the sequel, we refer to a predictor
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that uses the Speck efficient adaptation algorithm, single-channel or multi-channel,

as single-channel Speck predictor or multi-channel Speck predictor, respectively.

3.4.2 An efficient implementation of the expert advice scheme

Expert advice is a well studied method with a strong theoretical justification [95].

Recalling equation (3.7), the final prediction of a sample is calculated as a weighted

average of the outputs of a set of predictors P working in parallel,

x̂i(n) =
⎢⎢⎢⎢⎢⎣

1

Wi(n)
∑
p∈P

µpi (n)ẋ
p
i (n)

⎤⎥⎥⎥⎥⎥
,

where µpi (n) is a positive weight that decays exponentially with the average of the

absolute values of the prediction errors of a predictor p at time n, and Wi(n) =
∑p∈P µpi (n) is a normalization factor. Next we propose a variant inspired by these

same operating principles, focused on computational efficiency.

We define ēpi (n) as the average of the absolute values of the prediction errors of

predictor p of channel i at time n, estimated using the same method and parameters

as in (3.12), on the sequence of the absolute values of the past errors of predictor p,

i.e, the sequence of ∣εpi (j)∣ with j < n. For the sake of computational efficiency, we

calculate the weight corresponding to a predictor p using a base-2 exponential func-

tion with a positive exponent, which can be implemented with a low computational

cost operation, such as the left bit-shift. Specifically, we define

µpi (n) = 1{smax≥ci(n)ēpi (n)} × 2smax−ci(n)ēpi (n) , (3.14)

where 1{smax≥ci(n)ēpi (n)} is the indicator function that is 1 when smax ≥ ci(n)ēpi (n)
and 0 otherwise, smax is a positive integer constant, and ci(n) a scaling factor that

is adjusted in each step according to the performance of the predictors, as explained

later. The factor ci(n) is defined as a negative power of 2, ci(n) = 2−bi(n), bi(n) ∈ N,

such that we are able to perform the operation through a right bit-shift.

Equation (3.14) uses the average of the absolute errors, ēpi (n), as a way of as-

sessing the performance of each predictor. As a predictor p makes less accurate

predictions, ēpi (n) grows, the value smax − ci(n)ēpi (n) decreases, and the same hap-

pens with the weight attributed to predictor p. In particular, when ci(n)ēpi (n) > smax

the weight assigned to the predictor is 0. We use the variable ci(n) to adjust the

total sum of the weights, Wi(n), within a preestablished range [Wmin,Wmax]. Keep-

ing Wi(n) in a narrow range prevents performance differences between predictors

from fading out due to lack of numerical precision. In practice, we observe that this

forces the algorithm to weight predictors whose average errors are similar, but not

the same, with different weights, which results in better compression levels.
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If Wi(n) falls below the lower limit, Wmin, we increment the value of bi(n), which

translates into a decrease of ci(n) and thus an increment of the weights (see (3.14)).

Similarly, if Wi(n) is larger than Wmax, the value of bi(n) is decreased. In summary,

the update procedure of bi(n) with respect to Wi(n) is defined as

bi(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

bi(n) + 1, if Wi(n) <Wmin,

bi(n) − 1, if Wi(n) >Wmax and bi(n) > 0.

This procedure is repeated until Wi(n) is within the desired range or bi(n) = 0.

This definition ensures that there is always at least one predictor with a positive

weight, and that the total sum of the weights is in the desired range, except when

the value bi(n) = 0 is reached . This condition only occurs when the average of

absolute error values for all predictors is so small that Wi(n) exceeds Wmax. Notice

that this implies that even for bi(n) = 0, i.e, ci(n) = 1, the performance of all the

predictors is exceptionally good and, thus, the weighting of the predictors is of little

importance for the final prediction.

Notice that the proposed version of the expert advice presented only uses integer-

based arithmetic and bit-shift operations, which results in a lower computational

complexity compared to the algorithm used in [15].

After defining the Speck predictors, and the new integer-based implementation

of the expert advice algorithm, we conclude the definition of the prediction module

of GSC, by defining what predictors make up the set P. We start by defining a

parameter P , which establishes the maximum order of all the predictors used in

P. For the root channel r, P is composed of P single-channel Speck predictors of

order d, 1 ≤ d ≤ P . For each channel i other than r, whose helper channel is `, P is

composed of P single-channel Speck predictors, one for each order d, 1 ≤ d ≤ P , and

P multi-channel Speck predictors, one for each order d, 1 ≤ d ≤ P , which predict

samples of channel i using channel ` as a helper. We use the notation GSC-x to

refer to a GSC with maximum order P = x.

3.5 Experimental evaluation of GSC

To evaluate the performance of GSC, described in Section 3.4, we run the com-

pressor on multiple publicly available datasets of different types of multi-channel

biomedical signals, and compare it to other compressors that achieve state of the

art results. In addition, we evaluate the compressors on a seismic dataset, which,

although not biomedical, is usually modeled with similar statistical tools. In Section

3.5.1, we describe the specific metrics used to evaluate compressor performance. In

Section 3.5.2 we describe the datasets used and the experimentation environment.

In Section 3.5.3 we specify the compressors used and their settings. Finally, in
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Section 3.5.4, we present the obtained results.

3.5.1 Compression performance metrics used for evaluation

For each dataset, we encode and decode each file individually, and calculate the

compression ratio, measured in bits per sample (bps), defined as CR = L/N , where N

is the total sum of the number of scalar samples present in all the files in the dataset,

and L is the sum of the sizes in bits of all compressed files in the dataset. Note

that lower values of CR indicate better compression performance. To facilitate the

comparison between compression ratios, we define the percentage relative difference

of CR2 with respect to CR1, as CR2−CR1

CR1
× 100. Negative values of this measure

indicate that CR2 is better than CR1, while positive values indicate that CR2 is

worse.

As a measure of encoding and decoding speed we take the average time, in

microseconds (µs), that the compressor takes to process a scalar sample, using the

same computer system for all experiments. We call this measure encoding time per

scalar sample (ETPS) and we calculate it as ETPS = Tc/N , where Tc is the sum

of the compression times of all the files of the dataset. Similarly, we calculate the

decoding time per scalar sample (DTPS) by dividing the sum of the decoding times

for all files, Td, by the number of scalar samples decoded from the dataset, N . All

time measurements include those for reading and writing files.

3.5.2 Datasets and experimentation environment

Here we present the datasets used in our experiments, specifying characteristics of

the equipment, and procedure, used for acquisition.

• Phys-a and Phys-b [38, 92] (BCI2000 instrumentation system): 64-channel

EEG, at 160Hz, and 12 bps, of 109 subjects using the BCI2000 system. The

dataset consists of 1308 2-minute recordings of subjects imagining the per-

formance of motor tasks (Phys-a), and 218 1-minute calibration recordings

(Phys-b).

• BCI-a and BCI-b [30] (BCI Competition III, 1 dataset IV): 118-channel EEG,

at 1000Hz, and 16 bps, of 5 subjects imagining the performance of motor tasks

(BCI-a). The average duration of the 8 recordings in the dataset is 39 minutes,

with a minimum of at least 13 minutes and a maximum of at least 50 minutes.

BCI-b is a 100Hz subsampled version of BCI-a.

1http://bbci.de/competition/iii/

http://bbci.de/competition/iii/
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• Comp [8] (BCI Competition IV 1): 59-channel EEG, at 1000Hz, and 16 bps,

of 7 subjects imagining the performance of motor tasks. The dataset consists

of 14 recordings of different duration, ranging from 29 to 41 minutes, with an

average duration of 35 minutes.

• Neur [26]: 31-channel EEG, at 1000Hz, and 16 bps, of 15 subjects performing

classification and image recognition tasks. The dataset consists of 373 record-

ings with an average duration of 3.5 minutes, a minimum of 3.3 minutes, and

a maximum of 5.5 minutes.

• ECG [38, 11] (Physikalisch-Technische Bundesanstalt (PTB) Diagnostic ECG

dataset): Standard 12-lead ECG2, at 1000Hz, and 16 bps. This dataset con-

sists of 549 recordings taken from 290 patients, with an average duration of

1.8 minutes, a minimum of 0.5 minutes, and a maximum of 2 minutes. For

each of the files in the dataset, the derivations i, ii, v1...v6 were extracted to

form 8-channel signals, since the remaining 4 are linear combinations of the

other ones.

• MGH [38, 103] (The Massachusetts General Hospital / Marquette Foundation

(MGH / MF) Waveform dataset): 8-channel recordings, at 360 Hz, and 16 bps,

recording different biomedical critical care signals. Specifically, 3 channels are

used for ECG, one for blood pressure, one for pulmonary arterial pressure, one

for central venous pressure, one for respiratory impedance, and one for CO2

airway waveforms. Recordings vary between 12 and 86 minutes and are on

average one hour long.

• Sism [16] (Southern California Earthquake Center, Caltech.dataset): Data

from the Arizona sensor network (181 channels, 1Hz sample rate, at 32 bps)

and the Baja California sensor network (64 channels, sampling rate 100Hz).

The test dataset consists of 12 files from each network, each consisting of an

hour long logs taken at time 0:00 each month between September 2013 and

August 2014.

In summary, we have seven EEG signal datasets, one ECG signal dataset, one

dataset that is a combination of different biomedical critical care signals, and one

dataset of seismological data. To ease the testing compression and execution times,

all files were converted to flat binary format, which can be directly input to all the

evaluated compressors.

1http://bbci.de/competition/iv/
2Cardiac leads are the recording of the difference in electrical potentials between two points,

either between two electrodes (bipolar lead) or between a virtual point and an electrode (monopolar
leads).

http://bbci.de/competition/iv/
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All tests were performed on the same desktop computer (Intel i7, single thread,

3.4GHz), with operating system Ubuntu version 14.04.

3.5.3 Evaluated compressors and their configurations

To evaluate the performance of the proposed compressor we compare it with pub-

licly available implementations of other compression algorithms in the state of the

art, including RLS [15]. We use the same configuration parameters as in [15]; in

particular we take P = 7, which is equivalent to 8 multi-channel predictors of order d,

0 ≤ d ≤ 7. In general we refer to the RLS compressor configured with the parameter

P = x as RLS-x; in this case we use the RLS-7 compressor.

Both RLS and GSC require a previously determined encoding tree to establish

the order in which the channels are encoded for each dataset. For the EEG datasets

we use the minimal spanning trees described in the Section 3.3. In the ECG dataset,

each of the leads (channels) measures the voltage between two electrodes along a

certain direction vector. To build the coding tree, following the same criteria as

in [15], we calculate the minimum spanning tree by taking the angles between the

direction vectors as distances. For the MGH dataset, we manually built a coding

tree by observing the shapes of the graphs of the signals produced by the different

biomedical sensors, joining channels in the tree if their signals subjectively seemed to

be correlated to the naked eye. Lastly, for the seismic dataset we used a minimum

spanning tree, taking the physical distance between the sensors as measure. For

all trees, the root channel is arbitrarily determined, as experimental tests performed

in [15] indicate that the choice of the root channel does not have a significant impact

on the performance of the compressor.

Another compressor we use for evaluation is the reference implementation1 of the

multi-channel audio lossless compression algorithm MPEG-4 audio lossless coding

standard [49] (MP4-ALS), which supports 216 channels, and resolutions up to 32

bps. The algorithm has been applied before on biomedical signals, achieving good

results [55]; for EEG MP4-ALS obtains better compression ratios than specialized

algorithms [99, 25] evaluated on the same datasets. For our tests, MP4-ALS was

configured with the command line parameter -z3, which is the one that experimen-

tally achieved the best results, maintaining a balance between compression ratio and

encoding speed.

Lastly, we use the Free Lossless Audio Codec2 (Flac), a compressor which is

also built for the lossless compression of audio signals. Flac supports multi-channel

encoding of up to 8 channels, and resolutions of up to 24 bps. However, most of the

1http://www.nue.tu-berlin.de/menue/forschung/projekte/beendete_projekte/mpeg-4_

audio_lossless_coding_als
2https://xiph.org/flac/index.html

http://www.nue.tu-berlin.de/menue/forschung/projekte/beendete_projekte/mpeg-4_audio_lossless_coding_als
http://www.nue.tu-berlin.de/menue/forschung/projekte/beendete_projekte/mpeg-4_audio_lossless_coding_als
https://xiph.org/flac/index.html
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datasets used in our tests have files with more than 8 channels. In order to run Flac

on this datasets, each file is divided into multiple smaller files with 8 channels each,

and one with 8 or fewer channels. Regarding the seismic dataset Sism, as it has a

32-bit resolution, it is not possible to get results for Flac. For all tests, we run Flac

with the command line parameter --best, which optimizes the compression ratio.

For GSC, we set the maximum order P = 8 (GSC-8). For the Speck predictors

we set the parameter K = 27, and for the exponential decay of the channel averages

we use β = 2−7. As configuration parameters of the expert advice algorithm we use

smax = 12, Wmin = 1, Wmax = 2smax−1, and for the calculation of the average absolute

errors, ēpi (n), we set β = 2−7.

3.5.4 Results and analysis of the performance of GSC

In Table 3.1 we present the results of executing the compressors GSC-8, RLS-7, MP4-

ALS and Flac, on the datasets presented in Section 3.5.2. For each dataset, and each

compressor, the table shows the compression ratio obtained, measured in bits per

sample (bps), and the encoding and decoding times per scalar sample, measured in

µs. The table also shows, in parenthesis, the percentage relative difference between

the CR of each compressor and the CR of RLS-7.

The first thing we observe is that the RLS-7 compressor consistently achieves the

best compression results over all datasets. The next best compressor is GSC-8, which

in the BCI-b dataset equals the compression ratio obtained by RLS-7. Specifically,

the maximum percentage relative difference in compression ratio of GSC-8 with

respect to RLS-7 is 5.0% (for the Neur dataset), while the average percentage relative

difference over all datasets is 1.6%.

On the other hand, if we compare the compression ratios of GSC-8 against MP4-

ALS, and Flac, we see that GSC-8 consistently achieves better results. In the case of

MP4-ALS, the average percentage relative difference with respect to RLS is 11.1%,

while for Flac it is 23.5%.

Regarding encoding speed, Flac is considerably faster than the rest of the com-

pressors, with an ETPS of 0.09 ± 0.03µs. The next fastest compressor is GSC-8,

which is around 5x times slower, with an ETPS of 0.45±0.03µs. However, compared

to RLS-7 and MP4-ALS, GSC-8 is considerably faster. Specifically, it is almost twice

as fast as RLS-7, which has an average ETPS of 0.87± 0.06µs, and more than twice

as fast as MP4-ALS which has an average ETPS of 1.05 ± 0.05µs.

For the RLS-7 and GSC-8, the encoding and decoding speeds are practically

the same; this is because their compression and decompression architectures are

symmetric (the encoding and decoding processes carry a similar computational load).

However, both MP4-ALS and Flac have an asymmetric architecture, resulting in

the decoding speed faster than the encoding speed (especially in the case of Flac).



3.5. Experimental evaluation of GSC 39

Table 3.1: Compression ratios and encoding and decoding time per scalar sample for
GSC-8, RLS-7, MP4-ALS, and Flac compressors, on the datasets presented in Section 3.5.2.
The percentage relative difference of the CRs of GSC-8, MP4-ALS and Flac with respect to
that of RLS-7 is shown in parentheses.

Dataset Compressor CR (bps) ETPS (µs) DTPS (µs)

Phys-a

GSC-8 4.79 (1.9) 0.47 0.47
RLS-7 4.70 0.93 0.92

MP4-ALS 5.57 (18.5) 1.06 1.06
Flac 6.31 (34.3) 0.11 0.02

Phys-b

GSC-8 4.93 (2.9) 0.47 0.48
RLS-7 4.79 0.93 0.93

MP4-ALS 5.72 (19.4) 1.07 1.09
Flac 6.85 (43.0) 0.12 0.02

Comp

GSC-8 5.45 (0.6) 0.46 0.47
RLS-7 5.42 0.92 0.91

MP4-ALS 5.90 (8.9) 1.06 1.00
Flac 6.40 (18.1) 0.08 0.01

Neur

GSC-8 3.76 (5.0) 0.45 0.45
RLS-7 3.58 0.89 0.89

MP4-ALS 3.86 (7.8) 1.07 1.07
Flac 4.45 (24.3) 0.07 0.01

BCI-a

GSC-8 5.29 (1.5) 0.47 0.47
RLS-7 5.21 0.92 0.92

MP4-ALS 5.82 (11.7) 1.06 1.07
Flac 6.37 (22.3) 0.08 0.01

BCI-b

GSC-8 6.93 (0.0) 0.47 0.48
RLS-7 6.93 0.93 0.92

MP4-ALS 7.99 (15.3) 1.07 0.88
Flac 8.71 (25.7) 0.08 0.02

ECG

GSC-8 4.80 (0.4) 0.43 0.44
RLS-7 4.78 0.81 0.81

MP4-ALS 5.07 (6.1) 1.09 1.09
Flac 5.45 (14.0) 0.09 0.02

MGH

GSC-8 2.65 (1.5) 0.43 0.43
RLS-7 2.61 0.96 0.97

MP4-ALS 2.82 (8.0) 1.00 0.98
Flac 2.77 (6.1) 0.07 0.01

Sism

GSC-8 7.75 (0.8) 0.48 0.48
RLS-7 7.69 0.95 0.94

MP4-ALS 8.03 (4.4) 1.04 1.05
Flac - - -

Specifically, for these datasets Flac the average DTPS of Flac is 0.01±0.01µs, which

means its decompression process is more than 4x times faster than its compression

process.

From these results, we conclude that the proposed compressor, GSC-8, man-

ages to significantly improve the encoding and decoding speeds compared to RLS-7.

Specifically, the ETPS and DTPS values show that GSC-8 is almost twice as fast as

RLS-7. Furthermore, as expected, the decrease in computational cost achieved by

simplifying GSC-8 prediction module results in a degradation in compression ratios
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Figure 3.1: Average ETPS vs. average compression ratio, for the different compression
algorithms.

compared to RLS. However, the results show that the compression ratios obtained

by GSC-8 are still highly competitive.

Figure 3.1 illustrates the advantages and disadvantages of each of the evaluated

compression algorithms. The figure shows for each compressor a point in the plane

that represents the average compression ratio on the X axis, and the ETPS on the

Y axis. Both measurements are averaged across all datasets. In this graph, the

optimal value is at the point (0,0), and the values of both metrics deteriorate as

we move away from the axes. We can easily see that the MP4-ALS compressor is

significantly outperformed in terms of compression ratio and speed by GSC-8. Flac

is the compressor that achieves the best encoding speed by a wide margin, but its

compression ratio is considerably worse than all other compressors. In terms of the

balance between compression speed and compression ratio, we can say that GSC-8

offers an excellent trade-off.
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Analysis of the performance of

the predictors of GSC

As we explained in Section 3.3, in general, we do not know, a priori, what predictors

from P will perform better than others. Expert advice is responsible for differenti-

ating which predictors are performing well from those that are not, and weights the

prediction of each predictor based on its previous performance. Therefore, the set

P should include various predictors of different orders, so that, ideally, there is at

all times a predictor that accurately predicts the samples of the signal.

However, increasing the number of predictors of different orders can lead to high

execution times, and does not always improve compression levels. For example, for

d1 < d2, it is easy to see that any linear predictor of order d1 is a special case of one

of order d2 (simply set to zero the coefficients of order larger than d1). Therefore, a

predictor of order d1 would be, in principle, redundant with respect to one of order

d2, and not having it would make the compression process more efficient.

On the other hand, taking into account that the predictors are adaptive, and that

the statistical characteristics of a signal can vary over time, not always the same

predictors have the best performance. For example, low-order predictors adapt faster

to the characteristics of the signal than high-order ones, since less coefficients need

to be adjusted. Therefore, low-order predictors usually perform better in moments

where the statistical characteristics of the signal are changing. At the same time,

higher-order predictors are able to capture statistical regularities of more complex

signals compared to low-order predictors, and therefore achieve better results when

they have the time to adapt to the signal.

In order to optimize the execution time of GSC, and, at the same time, achieve

good compression results, it is key to determine how many predictors to use in the

expert advice algorithm, and the orders of these predictors. A large number of

predictors covers many possible different types of signals. Fewer predictors, on the

41
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other hand, require less execution time in predicting and adjusting coefficients.

For the construction of a more efficient compressor, we intend to find a balance

between the two conditions, strategically choosing a reduced subset of predictors

to improve execution times, keeping the predictors that show the best performance

for the type of signal we want to compress. In addition, as mentioned, the larger

the number of predictors the slower the convergence rate of the performance of

the weighted predictor to that of the best predictor in P, which implies that an

excessively large number of predictors could lead to poor compression performance.

Next, in Section 4.1, we present a brief analysis of the impact of the number

of predictors on the execution time and compression performance of GSC. Then, in

Section 4.2, we define a set of metrics for the purpose of evaluating the performance of

each predictor within the expert advice algorithm. Finally, in Section 4.3, we present

the results of evaluating these metrics on each type of signal from each dataset, and

determine a way forward for the construction of a more efficient compressor.

4.1 Analysis of the impact of the number of predictors

on execution time and compression performance

As a first step, we analyze the impact of reducing the number of predictors on

execution time and compression ratios. Specifically, we compare the performance

between the compressor GSC-8 (16 predictors) and GSC-2 (4 predictors).

Table 4.1: Compression ratios, and encoding and decoding time per scalar sample, for
GSC-8 and GSC-2, on the datasets presented in Section 3.5.2. The percentage relative
difference of the compression ratio of GSC-2 with respect to GSC-8 is shown in parentheses.

Dataset Compressor CR (bps) ETPS (µs) DTPS (µs)

Phys-a
GSC-8 4.79 0.47 0.47
GSC-2 4.87 (1.7) 0.12 0.12

Phys-b
GSC-8 4.93 0.47 0.48
GSC-2 4.99 (1.2) 0.13 0.13

Comp
GSC-8 5.45 0.46 0.47
GSC-2 5.70 (4.6) 0.12 0.12

Neur
GSC-8 3.76 0.45 0.45
GSC-2 4.33 (15.2) 0.12 0.12

BCI-a
GSC-8 5.29 0.47 0.47
GSC-2 5.70 (7.8) 0.12 0.12

BCI-b
GSC-8 6.93 0.47 0.48
GSC-2 7.06 (1.9) 0.12 0.13

ECG
GSC-8 4.80 0.43 0.44
GSC-2 4.92 (2.5) 0.12 0.13

MGH
GSC-8 2.65 0.43 0.43
GSC-2 2.91 (9.8) 0.11 0.12

Sism
GSC-8 7.75 0.48 0.48
GSC-2 8.43 (8.8) 0.13 0.13
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Table 4.1 shows the compression ratios, and the average encoding and decoding

times, for GSC-8 and GSC-2. We observe that the compression ratios of GSC-2 are

worse than those of GSC-8 in each of the datasets, with the largest relative difference

being 15.2%, in the Neur dataset, while the smallest difference is of 1.2% on the

Phys-b dataset. These results show that compression ratios can vary considerably

depending on the set of predictors available to GSC. On the other hand, with only 4

predictors, similar results are achieved on the Phys-b dataset, which indicates that

we can achieve good compression performance without the 12 additional predictors

of GSC-8. If we look at the encoding and decoding times, GSC-2 is between 3x

and 4x times faster than GSC-8 on each of the datasets, which represents a very

significant improvement.

Indeed, using the profiling tool gprof 1 we determined that GSC-8 spends approx-

imately 91% of the execution time making predictions and updating the predictors,

while for GSC-2, the prediction and update functions spend approximately 73% of

the execution time.

The comparison of execution times on the datasets, and the different profiling

results between compressors GSC-8 and GSC-2, indicate that reducing the number

of predictors leads to a significant improvement in execution time. On the other

hand, the compression results suggest that if the predictors are chosen strategically,

the compression results may not deteriorate considerably, as in the case of dataset

Phys-b.

4.2 Definition of metrics for evaluating the performance

of the predictors in expert advice

To evaluate the performances of the predictors in the expert advice algorithm we

define a series of metrics that allow to measure the performance of a specific predictor

in the algorithm. Expert advice assigns to each predictor p, of each channel i, in time

n, a weight µpi (n) that is proportional to the average of absolute prediction errors

of the predictor obtained in the recent past samples, as explained in Section 3.4.2.

If the predictor p of the channel i has weight µpi (n), in time n, then we say that

its percentage influence on the prediction ẋpi (n) is

upi (n) =
µpi (n) ∗ 100

∑p∈P µpi (n)
. (4.1)

Using the percentage influence upi (n) as an indicator of the performance of the

predictor, instead of directly using the absolute prediction error average, has the

1https://sourceware.org/binutils/docs/gprof/
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advantage of being independent of the scale of error values, which may be different

for each test file.

To evaluate the performance of a predictor p over time on a channel, we use the

average percentage influence defined as

ūpi (n) =
1

n

n

∑
j=1

upi (j).

For a file a with na vector samples taken from a set C(a) of channels we define

the average percentage influence of a predictor p on file a as

ūp(a) = 1

∣C(a)∣ ∑i∈C(a)
ūpi (na).

Similarly, for a dataset b that has a set of files A(b), we define the average

percentage influence of a predictor p on dataset b as

ūp(b) = 1

∣A(b)∣ ∑a∈A(b)
ūp(a).

We can use the average percentage influence on a dataset as a guide to de-

cide which predictors perform better than others for a certain type of signal. In

this sense, to define a reduced set of predictors we want to choose the predictors

with the highest average percentage influence. Moreover, we could speculate that

if two predictors have similar average percentage influences, they could be perform-

ing similar predictions, and, therefore, we could discard one of them. However, the

direct comparison between average percentage influences can be misleading, since

two predictors can have the same average percentage influence by achieving good

performances at different times. In that case, it would be convenient to use the two

predictors, since they complement each other.

To have a better understanding of the relation between the average percentage

influences of the predictors, we define the influence distance between predictors,

which is calculated from the absolute difference between the percentage influences

of two predictors. Specifically, given a pair of predictors (p, q), we define the distance

between them for a channel i in time n as

dp,qi (n) = ∣upi (n) − u
q
i (n)∣,

where upi (n) and uqi (n) are the average percentage influences of the predictors in time

n, as defined in (4.1). The average influence distance over time between predictors
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p, q on channel i, is defined as

d̄p,qi (n) = 1

n

n

∑
j=1

dp,qi (j).

The average influence distance between predictors p, q on a file a, is defined as

d̄p,q(a) = 1

∣C(a)∣ ∑i∈C(a)
d̄p,qi (na),

and finally, the average influence distance between predictors p, q on a dataset b

is defined as

d̄p,q(b) = 1

∣A(b)∣ ∑a∈A(b)
d̄p,q(a).

Combining the information provided by the average percentage influence of each

predictor with the average influence distance between the predictors allows us to

build a better picture of how each predictor performs on each dataset.

4.3 Analysis of the percentage influences and distances

For each dataset detailed in Section 3.5.2, we carry out a series of measurements to

evaluate the performance of each predictor of GSC-8 compressor on each dataset.

Specifically, for each of the 8 single-channel predictors s(i), 1 ≤ i ≤ 8, and for each of

the 8 multi-channel predictors m(j), 1 ≤ j ≤ 8, we calculate the average percentage

influence on each dataset, and the average influence distance between each predictor

and the rest. To make the results easier to read, in each graph we assign a color to

each predictor of the compressor. To the single-channel predictors we assign a color

gradient that goes from yellow to orange, with yellow being the color of s(1) and

orange being the color of s(8). To the multi-channel predictors we assign a color

gradient that goes from fuchsia to light blue, with fuchsia being the color of m(1)

and light blue being the color of m(8). In addition, for each predictor, the graphs

represent the standard deviation between files of a dataset as the distance that exists

between the average value (the top of the bar) and any of the two horizontal lines

that are above or below it.

4.3.1 Results for EEG signals

In Figure 4.1 we present a bar graph that shows, in order from highest to lowest, the

average percentage influence of each predictor of the compressor GSC-8 on the Comp

EEG signal dataset. To start, notice that the predictors that have a higher average

percentage influence are the multi-channel predictors, to the extent that the worst

multi-channel predictor, m(1), has an average percentage influence approximately 4
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Figure 4.1: Average percentage influence of each predictor of compressor GSC-8 on the
Comp EEG dataset, ordered from highest to lowest.

units above the best single-channel predictor, s(8). We could anticipate this, since

the good compression results achieved by GSC-8 are partly due to the fact that

multi-channel predictors exploit the high correlation between channels in order to

make better predictions.

However, this does not imply that single-channel predictors are not important.

For example, it could happen that in some pairs of channels the correlation is very

high, while in others it is very low, and, in the latter, the single-channel predictors

are indispensable.

Continuing with the analysis of Figure 4.1, both in single-channel and multi-

channel predictors, the average percentage influence increases with prediction order

until a certain order in which the growth slows down. In the case of single-channel

predictors, the performance does not seem to improve significantly after order 5,

while for the multi-channel predictors, there does not seem to be significant im-

provements beyond order 4 (in both cases the improvements are considerably less

than 1 percentage point, and, in the multi-channel case, the performance deterio-

rates as the order grows). As we see later, this behavior also occurs on the other

datasets. When the average percentage influence of the predictors of a specific type

(single or multi-channel), stops growing considerably from certain order d on, we

say that d is a threshold order.

On the other hand, we observe that the standard deviations of the average per-

centage influence follow a relatively regular pattern for all the predictors, from which
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we conclude that, although we are observing an average of the results on different

files, in general the performance of the predictors is similar on files of the same

dataset.

The threshold order predictor appears to be a predictor that adequately cap-

tures the statistical characteristics of the signal, and such that all the higher order

predictors show a similar performance. To reinforce this hypothesis, we analyze the

average influence distance between the threshold order predictor, both for single and

multi-channel, and the others predictors. In the case of the Comp dataset, we select

the threshold predictors m(4) for multi-channel, and s(5) for single-channel.

Figure 4.2 shows the average influence distances of the threshold order multi-

channel predictor m(4) with respect to the other predictors, where, by definition,

the average influence distance with itself is 0. The average influence distance of the

multi-channel predictors ranging from order 3 to 8, differ from the multi-channel

predictor of order 4 by less than 1 in all cases.
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Figure 4.2: Average influence distance between predictor m(4) and the rest of the predic-
tors of compressor GSC-8 on the Comp EEG dataset, ordered from lowest to highest.

In Figure 4.3 we show the average influence distances of the single-channel pre-

dictor of threshold order, s(5), with respect to the other predictors, and we observe

a very similar behavior to that of the multi-channel case. The average influence

distances of single-channel predictors of order greater than 5 are always less than 1

with respect to s(5).

We also observe that, for both single and multi-channel, the standard devia-

tions of the influence distances for the predictors of order greater than the threshold
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Figure 4.3: Average influence distance between predictor s(5) and the rest of the predictors
of compressor GSC-8 on the Comp EEG dataset, ordered from lowest to highest.

are relatively small. This seems to indicate that predictors with similar average per-

centage influence have similar performances, which means that with fewer predictors

(discarding predictors of order higher than the threshold) we could achieve similar

results in terms of compression.

The results obtained for the rest of the EEG signal datasets are similar to those

obtained for Comp, in the sense that multi-channel predictors show better per-

formance than single-channel predictors and, furthermore, in all the datasets we

observe that from a certain threshold order onwards, both in single-channel and

multi-channel, the average percentage influence of the predictors does not vary con-

siderably. However, in the Neur dataset the results show some different behaviors.

If we look at Figure 4.4, we observe that not all multi-channel predictors surpass

all single-channel predictors in average percentage influence. Specifically, all single-

channel predictors of order 3 onwards outperform multi-channel predictors of order

1 and 2.

This observation becomes more interesting in light of the results presented in

the Table 4.1 for the compressors GSC-8 and GSC-2. In the Neur dataset, the

compression ratio obtained by GSC-2 (of predictors s(1), s(2), m(1), and m(2)) is

0.57 bps above that of GSC-8, which represents a percentage relative difference of

15.2% in compression ratio. This significant deterioration may be due to the fact

that GSC-2 does not have a predictor with a performance close to the threshold order

predictor, which in this case is m(3) for multi-channel and s(4) for single-channel.
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Figure 4.4: Average percentage influence of each predictor of GSC-8 on the Neur EEG
dataset, ordered from highest to lowest.

However, if we look at the results reported in Table 4.1 for the Comp dataset, the

compression ratio of GSC-2 differs from that of GSC-8 by 0.25 bps, which represents

a percentage relative difference of 4.6%, which is significantly less in relative terms

than the decline seen on Neur. This makes sense, since predictors m(2) and s(2),

which are present in GSC-2, have average percentage influences closer to those of

the threshold order predictors (see Figure 4.1).

The rest of the EEG signal datasets present similar results to those of the Comp

dataset. In the case of Phys-a, Phys-b, and BCI-a, the multi-channel predictors

outperform the single-channel predictors widely, and the average percentage influ-

ence stabilizes at threshold order 4 for multi-channel, and threshold order 4 for

single-channel.

The only EEG dataset where the average percentage influence does not stabilize

from a certain order onwards is the BCI-b dataset. What we observe is that the

average percentage influence, both for single-channels and multi-channels, increases

considerably until order 3, and then decreases. From a brief analysis of the data,

we can speculate that this phenomenon may be due to the fact that there are many

channels that frequently present measurement saturation (sudden jumps in the value

of the samples to the top of the measurement scale), which may significantly affect

predictors of order greater than 3. To better understand the reason behind this

phenomenon, a more in-depth study should be performed in the future.
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4.3.2 Results for ECG, biomedical critical care, and seismic signals

In the case of ECG, the results are similar to those of EEG. In Figure 4.5 we

observe that all the multi-channel predictors present better results than the single-

channel predictors, and that the average percentage influence increases with the

order until it stabilizes. In the case of single-channel the average percentage influence
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Figure 4.5: Average percentage influence of each predictor of compressor GSC-8 on the
ECG dataset, ordered from highest to lowest.

stabilizes from threshold order 4 onwards, and in multi-channel we could practically

say that it stabilizes from threshold order 2 onwards. Looking at the differences

in compression ratio between GSC-2 and GSC-8 in Table 4.1, we notice that the

compression ratio of GSC-2 is greater than that of GSC-8 by a difference of 0.12

bps, which represents a relative difference of 2.5%. This slight deterioration may

be due to the fact that predictors m(1) and m(2) also belong to GSC-2, and yield

good results in terms of average percentage influence, with m(2) being the threshold

order predictor. On the side of the single-channel predictors, the predictor s(2) has

an average percentage influence relatively lower than that of threshold order 4, which

would mean that having the predictor s(4) instead of s(2) could lead to compression

ratio improvements.

In Figure 4.6 we present the results of the average percentage influence of each

predictor of GSC-8 on the seismology dataset. For the seismic signal, the results

are completely different from those obtained for EEG and ECG. The predictors

that show the best performance are single-channel, although some multi-channel
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Figure 4.6: Average percentage influence of each predictor of compressor GSC-8 on the
Sism seismology dataset, ordered from highest to lowest.

predictors, especially the higher order ones, have relatively large average percentage

influences. This indicates that the correlation between paired channels seems to

be less significant for this type of signals. However, this phenomenon may not be

homogeneous across all channel pairs in the coding tree, as there could be pairs

of channels with high correlation, leading to an increase in the average percentage

influence of the multi-channel predictors. This could be explained by the particular

characteristics of this dataset, in which there are very close sensors (in the same

geographical location), which record different types of measurements, and others

very far from each other. Again, this could be the subject of further study in the

future.

In contrast to the results obtained for EEG and ECG datasets, we do not ob-

serve that the average percentage influence stabilizes at any order, but it grows

steadily with the order. In future work, tests with more predictors, and of a higher

order, could be carried out. In addition, it would be interesting to try matching the

channels of the files with a criteria other than sensor closeness. There are other char-

acteristics such as the angles at which the seismographs are positioned, that could

allow channels to be associated in pairs with greater correlation between them.

Finally, in Figure 4.7 we present the results on the MGH dataset, which consists

of files of critical care biomedical signals.

In this case, the results show that the single-channel predictors perform better,

in general, than the multi-channel predictors, although the average percentage influ-
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Figure 4.7: Average percentage influence of each predictor of compressor GSC-8 on the
MGH dataset, ordered from highest to lowest.

ences of the latter are significant. As in the seismology dataset, it could happen that

there is large correlation between certain channels, and not in others. Unlike the

results in seismology, both in single-channel and multi-channel predictors, the aver-

age percentage influences stabilize from a threshold order onwards. In the case of

multi-channel, it could be said that the threshold order is 2, while in single-channel,

there is a steady improvement with the order, but that it is no longer significant

from the threshold order 6 onwards.

4.3.3 Results on short blocks

In order to understand which are the best performing predictors when facing changes

in the statistical behavior of a signal, we calculate the average percentage influences

on short fragments of sample files. This allows us to visualize what predictors achieve

the best results with less adaptation time, since in the analysis of average percentage

influence on an entire file, the adaptation moments may be few, and the information

on which predictors have the best performance during those moments is lost in the

average.

Although the adaptation speed in sporadic situations may not be of utmost

relevance in offline file compression systems, it may be important in real time trans-

mission systems.

To perform this analysis, we divide each file from each dataset into multiple files
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of 1000 vector samples each, and then we calculate the average percentage influence

for each predictor on each dataset. We refer to the results obtained for each dataset

as by-block results.

Figure 4.8 shows the results of the average percentage influence by blocks ob-

tained for the Comp dataset. As expected, the lowest order predictors, in this case

both for single-channels and multi-channels, are the ones with the best performance.

It is interesting to note that the average percentage influence decreases rapidly as

the orders of the predictors grow. This is because the higher order predictors re-

quire a greater number of updates to adapt to the signal. For this reason, it is

essential to have low-order predictors in the expert advice algorithm if we want to

have predictors with relatively good performance at all times.
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Figure 4.8: Average percentage influence of each predictor of GSC-8 on the Comp dataset,
divided into files of 1000 vector samples, ordered from highest to lowest.

Another interesting fact is that for the Comp dataset, the low order multi-channel

predictors also show good performance in the by-block results. Given the way multi-

channel predictors are constructed, a single-channel predictor of the same order

has fewer coefficients to be updated, and yet, due to the high correlation between

channels, low-order multi-channel predictors rapidly achieve superior results.

The by-block results are different for the dataset Neur. Figure 4.9 shows the

by-block results for the Neur dataset and, unlike the results obtained for Comp, all

the single-channel predictors show better results than the multi-channel predictors.

This may be due to the fact that in the Neur dataset the multi-channel predictors

require many more samples than in Comp to adjust their coefficients to the statistical
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Figure 4.9: Average percentage influence of each predictor of GSC-8 on the Neur dataset,
divided into files of 1000 vector samples, ordered from highest to lowest.

behaviour of the signal. However, once the coefficients are adjusted the multi-channel

predictors outperform the single-channel predictors (see Figure 4.4).

4.4 Criteria for selecting predictors for the expert ad-

vice algorithm

The analysis presented throughout this chapter contributes elements that help to

understand how to improve the execution times of GSC by selecting a subset of

predictors.

In the experiments we observe that, for all signal types, decreasing the number

of predictors in the compressor deteriorates compression ratios, but considerably im-

proves execution times. Specifically, lowering the number of predictors from 16 to 4

reduces execution times between 3 and 4 times, while compression ratios deteriorate

by a magnitude that depends on the chosen predictors.

Our analysis of the average percentage influence and the average influence dis-

tance indicates that for the different types of signals there are certain predictors

that perform better than others. Specifically, the performance of the predictors,

both for single-channel and multi-channel, is similar from a certain threshold order

onwards. Consequently, choosing threshold order predictors, both for single-channel

and multi-channel, seems like a good option for minimizing the deterioration in

compression performance.
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On the other hand, for the set of predictors to perform well at all times, the

results on files of 1000 samples per channel show that the low-order predictors, both

single-channel and multi-channel, perform considerably better than the high-order

predictors when only 1000 adaptation samples are available.

In light of this analysis, we determine a series of general criteria to follow to

select a subset of predictors that manages to improve execution times, and, at the

same time, minimize the deterioration in compression levels.

• Select both single-channel and multi-channel predictors - Although

multi-channel predictors show better overall performance, single-channel pre-

dictors achieve better performance when the channels of the multi-channel

predictor have low correlation between them.

• Select threshold order predictors - Threshold order predictors attain a

performance similar to that of the predictors of higher orders, and, therefore,

the latter are not necessary.

• Select low-order predictors - When facing changes in the statistical be-

havior of the signal, the predictors that show the best performance are the

low-order predictors.
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Chapter 5

Speck compressor optimized for

EEG signals

In this chapter we describe the construction of a compressor optimized for EEG

signals, based on GSC, which we call Optimized Speck Compressor (OSC). In Sec-

tion 5.1 we apply the criteria established in Section 4.4 to determine the set of

predictors used by OSC in the expert advice algorithm. Then, in Section 5.2, we

further optimize the compressor by proposing a selective parameter update process.

In Section 5.3 we define a new compressor, called FC, which uses a set of fixed predic-

tors (non-adaptive), which are significantly less complex than the Speck predictors.

We use FC as a basis for comparison with OSC. In Section 5.4, we present the re-

sults of running the new compressors on the datasets presented in Section 3.5.2, and

we compare these results to those reported in Section 3.5. Finally, in Section 5.5

we evaluate the trade-off between compression performance and computational ef-

ficiency of different integer coding methods for the prediction errors generated by

OSC on the datasets presented in Section 3.5.2.

5.1 Selection of predictors

To choose what predictors to use in the expert advice algorithm we follow the criteria

proposed in 4.4. The criteria suggests including single-channel and multi-channel

predictors, both of high order (threshold) and low order. We decide to choose a set

of 4 predictors: a multi-channel low-order predictor, a multi-channel threshold order

predictor, a single-channel low-order predictor, and a single-channel threshold order

predictor.

The threshold order of the multi-channel predictors for an EEG dataset is either

3 or 4 depending on the dataset. Since, in the long run, threshold predictors perform

similarly to higher-order predictors, we decide to use the predictor m(4). For the

57
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single-channel, threshold order is either 4 or 5. For the sake of computational perfor-

mance, we choose the predictor s(4), as having a single-channel and a multi-channel

predictor of the same order, which is a power of two, simplifies various calculations

within the Speck update algorithm.

We choose s(1) as the low-order single-channel predictor, since it is the single-

channel predictor that achieves the best results on short blocks of 1000 samples, in

all EEG datasets. Furthermore, predictor s(1) is very robust as it is not adaptive

(it always predicts that the next sample will coincide with the last observed sample

of the channel).

Finally, we choose m(2) as a multi-channel low-order predictor, since it is an

adaptive predictor that contributes something substantially different from s(1) while

being able to adapt its coefficients considerably faster than m(4).

In summary, for OSC we use the following 4 predictors:

• Fixed predictor of order one, where x̂i(n) = xi(n − 1).

• Single-channel Speck predictor of order 4.

• Multi-channel Speck predictor of order 2.

• Multi-channel Speck predictor of order 4.

5.2 Selective parameters update

As we recall from Section 4.1, a significant portion of the computation time of GSC

is spent updating the adaptive parameters, such as the coefficients of the Speck

predictors, and the weights in the expert advice algorithm. At the same time,

we observe that the adaptive parameters tend to stabilize after a while, changing

only when the statistical behavior of the signal is significantly altered. To avoid

unnecessary updates, we monitor the overall scheme performance, and update the

coefficients of Speck predictors and/or weights of the expert advice algorithm when

we observe significant performance deterioration.

For the Speck predictors, we update the coefficients of each predictor of a channel

i only when ei(n) > ēi(n), where ei(n) ≜ ∣εi(n)∣ is the absolute value of the prediction

error of channel i at time n, and ēi(n) is an average of the absolute values of the

prediction errors of channel i at time n, estimated using the same method and

parameters as in Section 3.12, over the sequence ei(j), j < n.

On the other hand, we observe that once the predictors stabilize, the weights

attributed to the predictions by the expert advice algorithm usually do not change,

even for long periods of time. Based on this observation, if an update of the weights

takes place at time n, the next update is evaluated T (n) samples afterwards, where
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T (n) is defined as follows. For n = 1 the weights are updated, and we define T (1) = 1.

Then, if the update of weights is evaluated at time n, n > 1, and none of the weights of

the predictors are modified, then T (n) = min{2T (n−1), Tmax}, where Tmax is a con-

stant. Otherwise, if some of the weights are modified, then T (n) = max{T (n−1)
4 ,1}.

At time n+T (n) we evaluate if a new update is performed. Essentially, the waiting

time between updates, T (n), grows exponentially up to a pre-established maximum,

Tmax, as long as no weight changes. In the event that any change in the weights is

detected, the waiting time decreases even faster.

5.3 Fixed predictors

As an even simpler alternative to Speck predictors, we implement a prediction mod-

ule that uses only fixed predictors. Fixed predictors have the advantage that pre-

dictions are calculated with static coefficients (not with an adaptive weight system).

Therefore, there is no updating process, offering a simple and fast prediction calcu-

lation in exchange of less accurate predictions, and, consequently, lower compression

levels.

Each fixed predictor p presented below is conceptually based on a simple geo-

metric extrapolation.

• Fixed predictor of order one, defined as x̂i(n) = xi(n − 1), i.e., predict that

x̂i(n) is equal to the last observed sample from channel i.

• Fixed predictor of order two, defined as x̂i(n) = 2xi(n − 1) − xi(n − 2), i.e.,

predict that (n, x̂i(n)) lies on the line passing through (n − 2, x̂i(n − 2)) and

(n − 1, x̂i(n − 1)).

• Fixed predictor of order three, defined as x̂i(n) = 3xi(n − 1) − 3xi(n − 2) +
xi(n − 3), i.e., predict that (n, x̂i(n)) lies on the parabola passing through

(n − 3, x̂i(n − 3)), (n − 2, x̂i(n − 2)), and (n − 1, x̂i(n − 1)).

• Multi-channel fixed predictor, defined as x̂i(n) = xi(n − 1) + x`(n) − x`(n − 1),
where xi(n − 1) is the last sample of channel i, and x`(n) and x`(n − 1) are

the last two samples of the helper channel `, determined using the coding tree

described in Section 3.3, i.e, predict that (0, n, x̂i(n)) lies on the plane passing

through (0, n−1, x̂i(n−1)), (1, n−1, x̂`(n−1)), and (1, n, x̂`(n)). This predictor

is inspired by the JPEG-LS image compression standard [102].

We build FC by substituting the fixed predictors for the Speck predictors in

OSC.
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5.4 Evaluation and analysis of OSC on EEG signals

Table 5.1 presents the results of running the FC and OSC on the EEG datasets

described in Section 3.5.2, together with the results obtained for the compressors

GSC-8, RLS-7, MP4-ALS, and Flac, on the same datasets. For OSC we use the

Table 5.1: Compression ratios, and encoding and decoding time per scalar sample, for
OSC, FC, GSC-8 RLS-7, MP4-ALS and Flac compressors on the EEG signal datasets. In
parenthesis, the percentage relative difference of OSC and FC with respect to GSC-8 is
shown.

Datasets Compressor CR (bps) ETPS (µs) DTPS (µs)

Phys-a

OSC 4.81 (0.4) 0.08 0.09
FC 5.08 (6.1) 0.06 0.06

GSC-8 4.79 0.47 0.47
RLS-7 4.70 0.93 0.92

MP4-ALS 5.57 1.06 1.06
Flac 6.31 0.11 0.02

Phys-b

OSC 4.94 (0.2) 0.09 0.09
FC 5.18 (5.1) 0.06 0.07

GSC-8 4.93 0.47 0.48
RLS-7 4.79 0.93 0.93

MP4-ALS 5.72 1.07 1.09
Flac 6.85 0.12 0.02

Comp

OSC 5.47 (0.4) 0.08 0.09
FC 5.90 (8.3) 0.05 0.06

GSC-8 5.45 0.46 0.47
RLS-7 5.42 0.92 0.91

MP4-ALS 5.90 1.06 1.0
Flac 6.40 0.08 0.01

Neur

OSC 3.81 (1.3) 0.07 0.08
FC 4.35 (15.7) 0.05 0.06

GSC-8 3.76 0.45 0.45
RLS-7 3.58 0.89 0.89

MP4-ALS 3.86 1.07 1.07
Flac 4.45 0.07 0.01

BCI-a

OSC 5.34 (0.9) 0.08 0.08
FC 5.96 (12.7) 0.05 0.06

GSC-8 5.29 0.47 0.47
RLS-7 5.21 0.92 0.92

MP4-ALS 5.82 1.06 1.07
Flac 6.37 0.08 0.01

BCI-b

OSC 6.97 (0.6) 0.08 0.08
FC 7.41 (6.9) 0.05 0.06

GSC-8 6.93 0.47 0.48
RLS-7 6.93 0.93 0.92

MP4-ALS 7.99 1.07 0.88
Flac 8.71 0.08 0.02

same parameter settings as for GSC-8, and in addition we define Tmax = 128. The

table also shows, in parenthesis, the percentage relative difference of FC and OSC

with respect to GSC-8.

As expected, the more complex GSC-8 outperforms both FC and OSC in terms
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of compression ratio, on all datasets, which means that RLS-7 continues to achieve

the best compression ratio results on all the datasets. Specifically, the maximum

percentage relative difference of the compression ratio of OSC with respect to GSC-8

is 1.3%, for the Neur dataset, while in the rest of the datasets the percentage relative

difference is less than 1%, being 0.6% the average among all the datasets.

On the other hand, the results obtained by FC show that the average percentage

relative difference of FC with respect to GSC-8 is 9.13%, significantly higher than

that obtained for OSC. This shows how the use of predictors that are too simple

has a significant impact on compression performance.

In terms of ETPS and DTPS, OSC is much faster than GSC-8 and RLS-7,

and even faster for encoding than Flac (ETPS). OSC reaches an encoding time per

sample of 0.08±0.01 µs, a time almost 6x times faster than that of GSC-8, 0.46±0.01

µs, and almost 12x times faster than RLS-7, 0.91 ± 0.02 µs.

To graphically compare OSC against other compressors, in Figure 5.1 we show,

for each compressor, a point on the plane that represents the compression ratio on

the X axis, and the ETPS on the Y axis. Both measurements are averaged over
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Figure 5.1: Average ETPS vs. average compression ratio of the different compression
algorithms on the EEG datasets.

all EEG datasets. The figure clearly reflects the advantage in terms of ETPS that

OSC, FC, and Flac compressors have over the rest. On the other hand, in terms of

compression ratio, the compressors that achieve the best results are RLS-7, GSC-8

and OSC. We notice that OSC achieves a good trade-off between compression ratio

and computational efficiency, significantly improving encoding time compared to

GSC-8 and RLS-7, and, at the same time, achieving very similar compression ratios.
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Table 5.2 shows the results of running OSC on non EEG signals, namely the

ECG, MGH, and Sism datasets. For the ECG dataset, the results obtained by

OSC are similar to those obtained in EEG datasets. This makes sense, since we

recall from Figure 4.5 that the predictors s(4) and m(4), which are used by OSC,

are threshold predictors for the ECG dataset. On the other hand, the results show

that on the MGH and Sism datasets OSC has a percentage relative difference with

respect to GSC-8 of 3.4% and 3.6% respectively, which are significantly larger than

the average 0.6% observed on EEG datasets. This fact is consistent with the average

percentage influences on the Sism and MGH datasets shown in figures 4.6 and 4.7,

respectively. In both Sism and MGH the single-channel predictors are the ones with

the best performance. Specifically, in MGH the single-channel threshold predictor

is s(6), which is not used by OSC, while in the Sism dataset the average percentage

influence of the predictors steadily increases with the order, being s(8) the best

performing predictor, which is not used by OSC either. However, although OSC

does not use the best performance predictors for MGH and Sism, the compressor

still achieves similar or better results than MP4-ALS and Flac.

Table 5.2: Compression ratios, and encoding and decoding time per scalar sample for
OSC GSC-8 RLS-7, MP4-ALS and Flac compressors on the ECG, critical care, and seismic
signal datasets. In parenthesis, the percentage relative difference between OSC and GSC-8
is shown.

Datasets Compressor CR (bps) ETPS (µs) DTPS (µs)

ECG

OSC 4.85 (1.0) 0.08 0.09
GSC-8 4.80 0.43 0.44
RLS-7 4.78 0.81 0.81

MP4-ALS 5.07 1.09 1.09
Flac 5.45 0.09 0.02

MGH

OSC 2.74 (3.4) 0.07 0.08
GSC-8 2.65 0.43 0.43
RLS-7 2.61 0.96 0.97

MP4-ALS 2.82 1.00 0.98
Flac 2.77 0.07 0.01

Sism

OSC 8.03 (3.6) 0.10 0.10
GSC-8 7.75 0.48 0.48
RLS-7 7.69 0.95 0.94

MP4-ALS 8.03 1.04 1.05
Flac - - -

As a last remark, we point out that the tested EEG datasets cover a wide range

of different scenarios, with sampling frequencies between 160 Hz and 1000 Hz, and

number of channels between 31 and 118. Note also that even for signals for which

OSC was not designed, like ECG, Sism, and MGH, the compressor achieves relatively

good results.
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5.5 Integer coding method for prediction errors

Another part of the compression algorithm that can be addressed to improve the

computational efficiency of OSC (and other compression algorithms) is the integer

coding method used to encode the prediction errors.

As we explain in Section 3.1, in predictive coding, if the predictions are ac-

curate, the absolute values of the prediction errors tend to be close to zero, with

histograms that resemble two-sided geometric distributions. This makes Golomb

codes an attractive choice both for its theoretical compression performance guar-

antee [75] and its computational efficiency. Adaptive Golomb coding is the integer

coding method used for the prediction errors by Flac, MP4-ALS, RLS and GSC.

However, there are integer coding methods simpler than adaptive Golomb coding,

such as Simple9 [3], Simple16 [108], and PForDelta [112], which have been shown

to achieve better results than Golomb coding on some scenarios, such as compres-

sion of longest common prefix arrays [13], both in terms of compression ratio and

computational performance. In this section we evaluate the integer coding methods

Simple9, Simple16, and PForDelta, on the sequence of prediction errors generated

by OSC for the datasets presented in Section 3.5.2. Specifically, we compare adap-

tive Golomb coding, as implemented in [15], against the integer coding algorithms

Simple9, Simple16, and PForDelta, as implemented in the high quality C++ library

FastPFor [67]1.

Table 5.3 shows the compression ratio in bits per sample and the average en-

coding time per sample obtained by each tested integer coding method, on each of

the tested datasets. The table also shows the percentage relative difference between

each of the tested methods and adaptive Golomb coding.

The results show that, as expected, adaptive Golomb coding achieves the best

compression ratios on each of the tested datasets. Among Simple9, Simple16, and

PForDelta, the method that achieves the best compression ratio on average, is Sim-

ple16, with a relative difference with respect to Golomb between 13.5% and 17.9%.

In terms of encoding speed, Simple16 is on average 71.0% faster than Golomb, while

the fastest method is PForDelta, with an average ETPS of 2.92 nanoseconds, which

is on average 77.8% faster than adaptive Golomb coding. In terms of compression

ratio PForDelta has a relative difference with respect to Golomb between 13.6% and

21.3%. Among the tested methods Simple9 achieves the worse compression ratio,

with a relative difference with respect to Golomb between 22.8% and 29.3%, and it

is slower than PForDelta, with an average ETPS of 3.02 nanoseconds, which is on

average 77,0% faster than adaptive Golomb coding.

We observe that replacing adaptive Golomb coding by methods like Simple16,

1We select method fastpfor128 of FastPFor as the implementation for PForDelta.
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Table 5.3: Compression ratios and encoding time per sample of the sequence of prediction
errors generated by OSC, for the integer coding methods adaptive Golomb, Simple9, Sim-
ple16, and PForDelta, on the datasets presented in Section 3.5.2. The percentage relative
difference of the compression ratio of each method with respect to adaptive Golomb coding
is shown in parentheses.

Dataset Compressor CR (bps) ETPS (ns)

Phys-a

Golomb 4.81 12.94
Simple9 6.22 (29.3) 3.14
Simple16 5.63 (17.0) 3.91

PForDelta 5.83 (21.2) 3.15

Phys-b

Golomb 4.94 12.84
Simple9 6.36 (28.7) 3.12
Simple16 5.70 (15.4) 3.92

PForDelta 5.83 (18.0) 3.00

Comp

Golomb 5.47 13.52
Simple9 6.95 (27.1) 3.03
Simple16 6.29 (15.0) 3.82

PForDelta 6.22 (13.7) 2.72

Neur

Golomb 3.81 11.69
Simple9 4.86 (27.6) 2.91
Simple16 4.49 (17.8) 3.21

PForDelta 4.62 (21.3) 3.28

BCI-a

Golomb 5.34 13.17
Simple9 6.84 (28.1) 3.07
Simple16 6.06 (13.5) 3.82

PForDelta 6.16 (15.4) 2.80

BCI-b

Golomb 6.97 14.90
Simple9 8.56 (22.8) 2.85
Simple16 8.22 (17.9) 4.16

PForDelta 7.92 (13.6) 2.59

and PForDelta, can improve the execution time of a compression algorithm, in ex-

change for significantly deteriorating the compression performance of the algorithm

when compared to adaptive Golomb coding.

The improvement in the overall computational efficiency of an algorithm depends

on the relative weight of the integer coding method with respect to the total com-

pression time. In our implementation of OSC, specifically, the time for encoding the

prediction errors, without considering input/output times, determined with the pro-

filing tool gprof 1, is approximately 19.0% of the execution time of the compression

algorithm. Therefore, an improvement of 77.8% in the encoding time per prediction

error of the integer coding method represents an overall improvement of 14.8% in

total compression time.

1https://sourceware.org/binutils/docs/gprof/
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Chapter 6

ENANO: Encoder for

NANOpore FASTQ files

In Part II of the thesis we turn our focus to the compression of DNA sequencing

data. Specifically, we study the efficient compression of data generated by nanopore

sequencing technologies [93] and stored in the FASTQ format [22].

In this chapter we introduce ENANO, a novel lossless compression algorithm

especially designed for nanopore sequencing FASTQ files, which mainly focuses on

the compression of the quality scores. Although ENANO can also compress FASTQ

files generated with SGS sequencing technologies1, it is not its intended use.

The rest of the chapter is organized as follows: in Section 6.1 we introduce

the general compression techniques used by ENANO. Specifically, we give a brief

description of arithmetic coding [86], and how it can be combined with context

modeling [87]. Next, in Section 6.2 we describe the compression scheme of ENANO,

where we present a novel quality score compression algorithm. Finally, in Section 6.3

we evaluate the performance of ENANO in terms of compression, speed, and memory

requirements, by comparing it against other FASTQ compressors that achieve state

of the art compression performance, on a series of publicly available datasets.

6.1 Arithmetic coding and context modeling

Arithmetic coding is a widely used general compression technique. In particular, it

has been successfully used for compression of DNA sequencing data in the FASTQ

format in, e.g,[9, 89, 17]. We describe how it works next.

Let xn1 = x1, x2, . . . , xn be a sequence of symbols to be encoded, where each

symbol xi belongs to an alphabet X . For example, the alphabet of symbols for the

base call sequences of the reads of a FASTQ file is {A,C,G,T,N}. To encode xn1 ,

1Paired-end reads from SGS data are treated as single-reads by ENANO.

67
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an arithmetic encoder receives as input a sequence of n probability distributions

over X , one for each symbol xi in position i, 1 ≤ i ≤ n, of the sequence, where

each distribution is estimated as a function of other symbols encoded before xi. In

turn, it sequentially produces a binary string, which can be losslessly decoded by

an arithmetic decoder into the original sequence xn1 , as long as it has access to the

same sequence of probability distributions. Assuming equal initial conditions for

the encoder and the decoder, this is indeed the case, as the probability distribution

for xi depends only on symbols that have been decoded before xi. If P (xn1) is

the total probability assigned, sequentially, to the sequence xn1 , then the binary

sequence produced by the encoder has length − log2 P (xn1) + O(1), which is the

shortest possible, in a well defined sense, up to an additive constant [86].

To estimate a probability distribution over X for each symbol of the sequence,

a commonly used technique is context modeling [87]. A context model assigns a

context, selected from a pre-defined finite set of contexts C, to each symbol position

i, 1 ≤ i ≤ n, as a function of symbols that are encoded before xi. Each context

from C is an abstract class grouping sequence symbols that, according to certain

probabilistic model, we expect to follow the same probability distribution. In other

words, denoting by Ci the context assigned to position i, we model symbols xi and xj

as samples drawn from the same probability distributions whenever Ci = Cj . In this

case, we say that the symbols xi and xj occur in the same context. The probability

distribution over X associated to each context of C is adaptively determined by

statistics calculated from the symbols that occur in that context, sequentially, as

the input sequence is compressed. The compressor updates the statistics associated

to the context Ci after encoding the symbol xi; the decompressor works in lockstep,

symmetrically, updating the same statistics upon decoding xi. The definition of a

context model poses the same kind of trade-off as the choice of predictors discussed

in Chapter 4. The choice of number of contexts in C is crucial for the performance of

the compression system. A number of contexts that is too small may be insufficient to

capture complex statistical dependencies in the data, leading to a poor compression

performance. An excessively large context set, on the other hand, may lead to a

large model cost, caused by context statistics dilution, which may also result in poor

compression performance. In addition, from a computational perspective, a large

context set translates, in general, into high memory consumption.

The context models that we present in the sequel are designed with this model

size optimization in mind.



6.2. Compression scheme of ENANO 69

6.2 Compression scheme of ENANO

We recall from Section 1.3 that the result of a sequencing process is a set of reads,

where each read is comprised of: an identifier string, which is a short free text

segment; a base call string (also referred to as base call sequence1); and a quality

score sequence, of the same length as the base call string. For nanopore files, the

alphabet size of the quality scores is 94, which are represented with ASCII codes 33

to 126.

Due to the different nature of read identifiers, base call strings, and quality score

sequences ENANO applies a different compression method to each part. Hereafter

we refer to these parts as streams. To compress each stream, ENANO uses context

modeling combined with arithmetic coding, as explained in Section 6.1.

For each stream of the FASTQ file, we use an especially designed context model,

which we briefly describe next.

• Read identifiers: The read identifier (ID) compression in ENANO is based

on Fqzcomp [9]. As the IDs of consecutive reads tend to share the same struc-

ture and be similar to each other, the algorithm exploits this when encoding

an ID by first describing the parts in which the current ID coincides with the

previous ID, and then describing the remaining differences. Specifically, the

algorithm first encodes the lengths of the longest prefix and suffix common to

both IDs. Each length is encoded using as context the corresponding length

in the encoding of the previous ID. The total length of the ID is also encoded

using as context the previous ID length. The part of the ID that is not covered

by the longest prefix or suffix shared with the previous ID is split into words,

delimited by a white space or a colon character. This word partition is used,

in turn, to determine a context, derived from the previous ID, for each symbol

remaining to encode in the current ID. Full details can be found in [9].

• Base call string: The sequence is modeled as a kth order Markov process,

using the previous k base calls as the context. The value of k is determined at

run-time as an input parameter of the encoder.

• Quality score sequence: We propose a novel context model that exploits the

statistical dependence among neighbor quality scores and also between qual-

ity scores and the corresponding base call string. The proposed compression

method is explained in full detail in Section 6.2.1.

To speed up the algorithm, ENANO parses and compresses the FASTQ file in

blocks. As nanopore sequencing generates reads of variable length, the sizes of

1we use the term string, which is customary for pattern matching algorithms that we apply
extensively in Chapter 7
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the blocks of the file are sequentially and dynamically determined as the reads are

parsed, so that block boundaries always fall on read boundaries, and, therefore,

blocks always contain a whole number of reads. We set the maximum block size

to 10 MB by default. Each block contains the three streams discussed above: read

identifiers, base call strings, and quality score sequences. For reasons of causality,

which will be discussed in the sequel, we assume that the base call strings are

described before the corresponding quality score sequences. For each block of the

file, the streams are encoded independently, each one with an arithmetic encoder.

Once the encoding process of each stream is finished, the output for each stream is

sequentially written into the output file, by first writing the size (in bytes) of the

encoded stream, followed by the encoded stream itself. This ensures the decoder

can successfully retrieve each encoded stream of the block, even though the sizes of

the encoded streams vary between blocks.

Once enough samples have been encoded for a given context, the small improve-

ment in compression performance obtained by updating the model does not pay off

for the computational cost involved in this update. This is due to the fact that, as

observed, the estimated probability distributions conditioned on each context tend

to stabilize. Thus, it may be advantageous to stop adaptation and freeze the dis-

tributions after processing a certain number of blocks. Aside from the complexity

advantage, fixing the probability distributions of the context models allows for easy

parallelization of the proposed encoding and decoding algorithms, as we explain in

Section 6.2.2. Therefore, ENANO operates in two modes:

• Fast mode (Fast) (default mode): The file is encoded while the statistics

are adaptively updated for each context model, for a certain number of blocks

of the file. Afterwards, the statistics are fixed, allowing for fast parallel com-

pression and decompression. The number of blocks processed before freezing

is a configurable parameter, with a default value determined experimentally,

as will be discussed in Section 6.3.2, and is signaled to the decoder.

• Max Compression mode (MC): The statistics are adaptively updated

throughout the full encoding (and decoding) of the file.

6.2.1 Quality score sequence compression

Denote by qi the quality score at position i within a read that we wish to encode,

and by bi the base call symbol at position i. We define the neighborhood of qi

as consisting of two parts: the pair Qi = (qi−1, qi−2) of quality scores immediately

preceding qi, and the `-tuple, ` ≥ 0, of base call symbols with indices closest to

i, namely, B`i = (bi−⌊(`−1)/2⌋ , . . . , bi , . . . , bi+⌈(`−1)/2⌉), with prescribed conventions for
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Figure 6.1: Example of neighbor values for qi = 18 and ` = 6.

border cases1. We refer to Qi and B`i as the quality score neighborhood and the base

call neighborhood of qi, respectively. An example for ` = 6 is shown in Figure 6.1. To

ensure successful decoding, we describe the base call string before the quality score

sequence. Thus, base call symbols at, previous to, and following position i can be

used for the base call neighborhood, and are available to the decompressor when

decoding qi.

Using the neighborhood of qi directly as a context for the encoding of qi can pro-

duce state of the art compression ratios if the compressed files are large enough [32].

However, the number of possible neighborhoods grows exponentially with `, which

can eventually lead to poor compression performance if the number of symbols en-

coded in each context is not statistically significant to estimate an accurate proba-

bility distribution of the quality scores given the context. Moreover, having a large

number of contexts directly correlates with the compressor having high memory

consumption as it has to store a probability distribution for each context. For ex-

ample, if the alphabet sizes are 5 and 94 for the base calls and the quality scores,

respectively (which is the case for nanopore FASTQ files), for ` = 6 the number of

possible neighborhoods is larger than 138 million.

Here we propose a novel neighborhood grouping algorithm that maps the neigh-

borhood of qi to a reduced set of contexts, which is able to quickly capture the

relevant information from the neighboring values to achieve state of the art com-

pression performance, while keeping memory consumption low.

6.2.1.1 Neighborhood grouping algorithm

In this section we define a neighborhood grouping algorithm that receives as input

the neighborhood values Qi = (qi−1, qi−2), and B`i , and outputs a context, Ci. We

present the steps involved in the calculation of Ci in Algorithm 3, accompanied with

a graphical representation in Figure 6.2; the arrow labels in the figure refer to step

1For i ≤ 1, we arbitrarily let qi−1 = 0 and qi−2 = 0, and bj = A for all negative values of j.
Similarly, we let bj = A for all values of j that are beyond the end of a read.
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numbers in the algorithm. We denote by ⌈x⌋ the rounding of x to the nearest integer

(rounding up in case of ties). Next, we present a brief overview of the algorithm,

followed by a detailed explanation afterwards.

Algorithm 3: Algorithm for determining the context Ci for a quality score
qi.

Input : Neighborhood values Qi = (qi−1, qi−2), and B`i
Output: The context associated with qi, Ci

1 Calculate q̂i−1 = Qbin(qi−1)
2 Calculate d̂i = Qdif(qi−2 − qi−1)
3 Let Q̂i = (q̂i−1, d̂i)
4 Get B̂`i from B`i by substituting A for N

5 Let N `
i = (B̂`i , Q̂i)

6 Retrieve the q̄N associated to N `
i

7 Retrieve the ēN associated to N `
i

8 Retrieve the ēQ̂ associated to Q̂i
9 Calculate â = Qbin(⌈q̄N ⌋)

10 Calculate r̂ = QR(ēN , ēQ̂)
11 Let Ci = (Q̂i, â, r̂)

1 6 1818

T T T AT C A CG

14 8 9

Base call string

Quality score
sequence 15 14

(1, 2, 3)

(4)

(5)

(7)

(8) (6)

(9)

(11)

(11)

(11)

(10)

Figure 6.2: Diagram of the calculation of a context, Ci, to encode qi. Each arrow is
numbered as the step it represents in Algorithm 3.
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The algorithm starts by performing a quantization of the quality score neighbor-

hood Qi. This is done through steps 1 to 3, by defining two quantization functions,

Qbin and Qdif, that map qi−1 and the difference (qi−2 − qi−1) to a reduced set of

predetermined bins, respectively. The quantized version of Qi, Q̂i, is defined as a

vector comprised of the results of both scalar quantization functions. In step 4 we

build a restricted base call neighborhood, denoted by B̂`i , by replacing every occur-

rence of N in B`i with the regular base call symbol A. Let N `
i = (B̂`i , Q̂i). Steps 6

through 10 perform a joint grouping of base call and quality score neighborhoods,

by mapping the set of possible values for N `
i into a reduced set, which we define

as the set of contexts for the encoding of quality scores. To this end, we maintain

three statistics q̄N , ēN , and ēQ̂, which are used to derive the values â and r̂ in steps

9 and 10, respectively. We define the context Ci for a quality score qi as the triplet

(Q̂i, â, r̂).
With the proposed grouping algorithm for the neighborhood values of qi the

number of contexts is constant, as it does not depend on the value of `, and the

total number of contexts in ENANO’s implementation is 7,168.

In the rest of the section, we explain each step of the algorithm in more detail.

For conciseness, we sometimes omit the sub-index i in some intermediate computa-

tions leading to Ci, when there is no risk of ambiguity.

Quantization of quality score neighborhoods (steps 1 through 3 of

Algorithm 3): The algorithm starts by quantizing Qi = (qi−1, qi−2). First, we

define a partition of the space of possible values of qi−1, namely, {0,1, . . . ,93}, into

a sequence of Q bins, with indices 0,1, . . . ,Q − 1, respectively. The value of qi−1 is

quantized in Step 1 by a function Qbin mapping qi−1 to the index q̂i−1 of the bin it

belongs to. For ENANO we choose Q = 16, with the specific bins specified in Table

6.1. Notice that each quality score in the range 0 . . .11 defines its own individual

bin. With these definitions we have, for example, Qbin(25) = 14.

Bins Quality Scores

0 . . .11 0 . . .11

12 12,13

13 14,15,16,17

14 18,19, . . . ,30

15 31,32, . . . ,93

Table 6.1: Quality score bins used for the function Qbin.

We observe, experimentally, that values of qi−1 and qi−2 that are close to each

other are much more frequent than pairs where the values are significantly different.

Therefore, rather than quantizing qi−2 independently, Step 2 quantizes the difference
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qi−2 − qi−1. We define d̂i = Qdif(qi−2 − qi−1), where Qdif ∶ [−93..93] → [0..D − 1] is

a function that maps each possible difference between quality scores to one of D

bins. For ENANO, we choose D = 7 and we define Qdif so that larger differences

are quantized more heavily. Specifically, the bins we use for Qdif in ENANO are

detailed in Table 6.2.

Bins Difference value

0 0

1 −1

2 1

3 −4,−3,−2

4 2,3,4

5 −93,⋯,−5

6 5,⋯,93

Table 6.2: Bins used for the function Qdif.

We define the quantized version of Qi, Q̂i, as the pair (q̂i−1, d̂i); this is calculated

in Step 3. In Figure 6.3 we illustrate the steps taken in Algorithm 3 to perform the

quality score neighborhood quantization.

1 6 1818

T T T AT C A CG

14 8 9

Base call string

Quality score
sequence 15 14

(1)(2)

(3) (3)

Figure 6.3: Quality score neighborhood quantization. Each arrow is numbered as the step
it represents in Algorithm 3.

Grouping of base call neighborhoods (step 4 of Algorithm 3): We re-

strict the alphabet of the base call string neighborhoods to a set of size 4, by disre-

garding letters N. Specifically, in ENANO we build a restricted base call neighbor-

hood, denoted as B̂`i , by substituting A for N in B`i . Since the frequency of the letter

N is usually insignificant compared to the frequencies of the other letters, this allows

for significantly reducing the number of neighborhoods with no significant effect on

the compression ratio. Notice that this basecall replacement is only performed on

the (previously encoded/decoded) base call string with the only purpose of neighbor-

hood grouping for quality score context determination. Thus, the original basecall
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stream is decoded without any loss of information.

Joint grouping of base call and quality score neighborhoods (steps 5

through 10 of Algorithm 3): Let N `
i = (B̂`i , Q̂i). We maintain two statistics, q̄N

and ēN , for each value of N `
i , and one statistic, ēQ̂, for each value of Q̂i. These statis-

tics are calculated using integer-only arithmetic as exponentially weighted moving

averages as in (3.12), which we recall that, for a sequence of values zn1 = z1, z2, . . . , zn,

is defined recursively as

z̄j = (1 − β)z̄j−1 + βzj , 1 ≤ j ≤ n , (6.1)

where β is a parameter, 0 < β < 1, and we let z̄0 = 0. In ENANO we use this

procedure, with β = 2−4, for the calculation of q̄N , ēN , and ēQ̂, each corresponding

to a different choice of underlying sequence zn1 .

For q̄N , the sequence zn1 is comprised of quality scores that occur under the same

quantized quality score neighborhood, Q̂i, and the same restricted base call string

neighborhood, B̂`i , i.e., quality scores qi that occur under the same value of N `
i .

The encoding (resp. decoding) algorithm maintains a table with the current value

of q̄N for each possible value of N `
i , and exactly one entry of this table is updated

using (6.1) each time a quality score is encoded (resp. decoded). Therefore, the

implementation of Step 6 in Algorithm 3 amounts to retrieving the entry of this

table that is associated to the value of N `
i defined in Step 5.

For the calculation of ēN , each value of the sequence zn1 is the absolute difference

between such a quality score, qi, and the value of q̄N associated to N `
i at the time

of the encoding (resp. decoding) of that particular quality score. Similarly to q̄N ,

the algorithm maintains a table with the current value of ēN for each possible value

of N `
i , and one of these entries is updated using (6.1) with each encoding (resp.

decoding) of a quality score. Analogously to Step 6, Step 7 consists of retrieving the

value of ēN from this table.

For the calculation of ēQ̂, a table is maintained with the current value of ēQ̂ for

each possible quantized quality score neighborhood. Each time a quality score qi

is encoded (decoded) and, subsequently, the value of ēN is calculated for N `
i , this

value of ēN is in turn averaged, taking the role of an element of the sequence zn1
in (6.1), to yield the current value of ēQ̂ for quantized quality score neighborhood

Q̂i. Step 8 of Algorithm 3 obtains ēQ̂ by looking up in this table, using the value of

Q̂i calculated in Step 3 as a key.

Our neighborhood grouping algorithm relies on quantizations of q̄N and the quo-

tient ēN
ēQ̂

, which we denote by â and r̂, respectively. In Step 9 of Algorithm 3, â is

obtained by first rounding q̄N to the nearest integer and then applying the quanti-

zation function Qbin, defined previously in this section. In Step 10, r̂ is calculated
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by a function QR(ēN , ēQ̂) ∶ R × R → [0 ∶ R − 1], defined as follows (for ENANO we

choose R = 4):

• If ēQ̂ = 0, set r̂ = 0. Notice that ēN must be zero in this case.

• Else:

– If ēN
ēQ̂

< 1
2 , set r̂ = 0.

– If 1
2 ≤ ēN

ēQ̂
< 1, set r̂ = 1.

– If 1 ≤ ēN
ēQ̂

< 2, set r̂ = 2.

– If 2 ≤ ēN
ēQ̂

, set r̂ = 3.

6.2.1.2 Memory optimization

As mentioned, nanopore FASTQ files use a much larger alphabet for quality scores,

in comparison to traditional sequencing technologies. However, our experiments

show that quality scores tend to concentrate at the lower end of the alphabet. For

example, we observe that in two of our experimental datasets, npd and hs1 (detailed

in Section 6.3.1), 98% and 63% of the quality scores concentrate in the lowest 32

quality score values, of the possible 94, respectively. We exploit this observation by

defining a fixed threshold, Tq, and encoding quality score values that are greater

than or equal to Tq in a two-step fashion. Specifically, we encode a quality score

qi by encoding, in a first step, the value min{qi, Tq} with the adaptive probability

distribution estimated for context Ci. The value Tq serves as an escape code, which

indicates that qi ≥ Tq. In this case, we complete a full description of qi by encoding

the difference qi −Tq with a global adaptive probability distribution, independent of

Ci. In Figure 6.4 we show a diagram of the proposed method.

The global model estimates the probability distribution of high quality scores

regardless of their context. This allows for a significant reduction in memory usage

as we store, for each context, a probability distribution for values in the range [0, Tq],
and we use only one global probability distribution to model all the high quality score

values. In ENANO, we set Tq = 31. This optimization did not have a negative effect

on compression performance.

6.2.2 Parallelization of the compression algorithm

We recall from Section 6.2 that the compressor, when run in Fast (default) mode,

operates in two phases: the update phase, where the statistics are adaptively up-

dated for each context model, and the fast coding phase, where the statistics are

fixed. For this purpose, in Fast mode, the encoding algorithm receives a parameter

b specifying the number of blocks used to update the statistical models during the
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Figure 6.4: Compression scheme for low and high quality score values.

update phase (32 by default), before going into the fast coding phase. To accelerate

the algorithm, we use the OpenMP1 library to run several parallel threads, each pro-

cessing blocks independently. The maximum number of threads to use is determined

by the parameter t (8 by default). We proceed to describe the two coding phases

in detail (we only describe the encoding algorithm as the decoding algorithm works

symmetrically).

6.2.2.1 Update phase

As a first step, a single block of the file is encoded. The statistical model that results

of compressing the first block is then replicated into B independent compressors,

where B is a positive integer. The B compressors are then run in parallel with t

threads, each one with a different block. Once every compressor is done, the encoded

blocks are sequentially written to the compressed file in their original order, and

the statistics of the compressors are merged into one individual general model, by

averaging their probability distributions. The general model is then replicated to

each compressor, and B new blocks are encoded. The process is repeated until b

blocks are encoded.

A lower value of B allows for better compression ratio as the b blocks are encoded

with more frequently updated models. However, the value of B determines the

1https://www.openmp.org/
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number of blocks that can be coded in parallel during the update phase, as well

as how many times the B statistical models are merged into a general model. In

ENANO we use B = 4, as we found, based on experimental results, that it offers a

good trade-off between compression performance and speed.

6.2.2.2 Fast coding phase

In the fast coding phase, the last general model calculated in the update phase is

replicated into t independent compressors. In order to speed up the compression

algorithm, the remaining part of the file is then compressed in batches of t blocks,

without updating the probability distributions of the context models. The statistical

values q̄N , ēN , and ēQ̂, used to determine the contexts for the quality score sequence,

continue to be updated during the compression of each block. However, to avoid

having dependency between the values of the statistics of different blocks, q̄N , ēN ,

and ēQ̂, are set to the last value they held in the last general model calculated, at

the beginning of the encoding of each block.

Although ENANO in its current implementation does not support random access

to specific reads, the fact that blocks are independently encoded during ENANO’s

fast coding phase sets the stage for including this feature in future versions of

ENANO. For example, ENANO could store an index table that maps each block

with the number of reads it contains and its compressed size. Then, to decode a

specific read, it would suffice to decode the index table, the blocks encoded during

the update phase, and the block that contains the read in question (if not contained

in the blocks used in the update phase).

6.3 Experimental results of ENANO

In this section we report on a set of experiments performed on a collection of datasets

of nanopore FASTQ files. The datasets are described in Section 6.3.1. In Sec-

tion 6.3.2 we analyze the impact of the parameters `, k, b, and t on the compression

performance of ENANO. In Section 6.3.3 we evaluate the performance of ENANO

by comparing it against the performance of various compression tools.

We measure the performance of a compressor on a dataset by its compression

ratio, in bits per symbol, defined analogously to Section 3.5.1. Specifically, we

compress each file of the dataset separately and calculate CR = L/N , where N

is the total size in bytes of all the files in the dataset, and L is the total size in

bytes of the compressed files. Recall that smaller values of CR correspond to better

compression performance. We also expand the definition of CR to the different

streams of the FASTQ file (ids, base call strings, and quality scores) by taking N as

the total size in bytes of the specific stream over all files in the dataset, and L as
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the total size in bytes of the compressed specific streams. To compare compression

ratios, we use the percentage relative difference, as defined in Section 3.5.1. Finally,

to compare overall performances between compressors we report simple and weighted

averages of the results, the latter computed by weighting each result by the size of its

corresponding dataset. The weighted average is highly influenced by larger datasets

and, in particular, by the specific choice of datasets available for evaluation. This

can be misleading when assessing the capability of the tools to process different

types of datasets. Hence, in the rest of this section we report both averages, but we

generally refer to the simple average when discussing and comparing the evaluated

tools, unless otherwise specified.

All experiments were conducted in a server with 80 64 bit x86 Intel Xeon CPUs,

503.5GB of RAM memory, and CentOS Linux release 7.7.1908.

6.3.1 Datasets

We evaluate our algorithm on several publicly available datasets, described in Ta-

ble 6.3.

The selected datasets cover a wide variety of organisms including human, animal,

virus, plant, fungi and bacteria. The datasets also cover different possible compres-

sion scenarios, such as having 268 GB of data in a single file (hss), or having 113

GB of data divided in 336 different files (npd).

Name Num. of files Size (GB) Tot. cov. Description

sor 4 134 94x Sorghum bicolor Tx430 [29]
bra 18 46 24x Doubled haploid canola (Brassica napus L.) [72]
lun 13 15 * Human lung bacterial metagenomic [20]
joi 9 5 * Infected orthopaedic devices metagenomic [91]
vir 10 4 * Direct RNA sequencing (HSV-1) [28]
hss 1 268 41x Human GM12878 Utah/Ceph cell line [52]
hs2 50 194 30x Human GM12878 Utah/Ceph cell line [12]1

npd 336 113 * Multiple organisms2 [32]

Table 6.3: Nanopore sequencing datasets used for evaluation. The total coverage was
estimated by dividing the size of the reads (only the nucleotide sequences) by the size of
the genome of the corresponding organism. * indicates that the coverage could not be
determined due to the metagenomic, or viral, nature of the sequenced organisms.

6.3.2 Impact of the configurable parameters on the performance of

ENANO

There are four configurable parameters that may affect the performance of ENANO:

1We selected the first 50 files from the dataset.
2The sequenced samples correspond to viruses, bacteria, fungi, humans, animals, and metage-

nomic material.
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• The order k of the Markov model used to compress the base call string (see

page 6.2). In the software implementation of ENANO, this parameter can be

set in run-time with the flag -k.

• The length of the neighbor base call string ` used to determine the quality

score context (see Section 6.2.1). In the software implementation of ENANO,

this parameter can be set in run-time with the flag -l.

• The number of blocks b used to update the statistics of the context models,

in Fast mode (see Section 6.2.2). In the software implementation of ENANO,

this parameter can be set in run-time with the flag -b.

• The maximum number of threads t used for compression and decompression.

In the software implementation of ENANO, this parameter can be set in run-

time with the flag -t.

The choice of values for the parameters k, `, and b, plays a key role in the compression

performance of the algorithm. Parameter k determines the number of contexts in

the base call string context model, while ` determines the number of neighborhoods

in the quality score sequence context model. On the other hand, the value of b

determines the number of blocks used to train the model in Fast mode. Hence,

a higher value of b generates a more extensively trained model, which, in general,

results in a better compression ratio, in exchange for higher encoding and decoding

times.

To evaluate the trade-offs between different parameter values, we run ENANO

with various parameter configurations on the npd and the hss1 datasets, as they

present two significantly different compression scenarios: npd has multiple files of

different sizes, while hss is a single large file.

In Figure 6.5 we show how the compression ratios for different components of

the FASTQ files vary with the values of the configurable parameters, on the npd

dataset on the left column, and on the hss dataset on the right column. The dashed

line shows the result for running ENANO in MC mode. For graphs 6.5c, 6.5d, 6.5e,

and 6.5f, the variation of the parameter b is represented by lines with different color

intensities. We report the results for b ∈ {8,12,16,20,24,28,32}, the lightest curve

corresponding to b = 8 and the darkest to b = 32.

The first thing we observe from Figure 6.5 is that, as expected, the MC mode

outperforms the Fast mode in every parameter configuration, as better trained mod-

els directly translate to better compression ratios. We also observe that in Fast mode

the results tend to be better as the value of b increases. We choose 32 as the default

value for b in ENANO.

1We use the first 4 million reads of the file (around 50GB of data) for testing time convenience.
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Figure 6.5: Compression ratio for read identifiers, base call strings, and quality scores,
for various parameter configurations on the npd (left) and hss (right) datasets. The dashed
lines represent the results obtained by running ENANO in MC mode. For graphs 6.5c –
6.5f, the color intensity of a continuous line represents the value of parameter b, ranging
from b = 8 (lightest) to b = 32 (darkest).

In the plots 6.5c and 6.5d we notice that for k = 7 we obtain a compression ratio

that is close to the minimum in all cases. Since, as we discuss soon, larger values

of k require larger computational resources, we choose 7 as the default value for k

in ENANO. The plots 6.5e and 6.5f show that for both npd and hss the value of

parameter ` has a significant impact on the compression ratio of quality scores. For

npd, we observe that the best compression ratio is achieved for ` = 6 in both modes

of ENANO. For hss, there is a slight compression ratio improvement for values of

` larger than 6 in MC, and almost no improvement in Fast. Again, accounting for
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Figure 6.6: Compression time of ENANO in Fast mode for the dataset npd with various
parameter configurations. The color intensity of a line represents the value of parameter b,
ranging from b = 8 (lightest) to b = 32 (darkest).
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Figure 6.7: Encoding and decoding speeds (MB/s) for ENANO’s Fast mode algorithm
with different number of threads on dataset hss.

computational resources considerations, we choose 6 as the default value for `.

In Figure 6.6 we show the compression time obtained with ENANO for the

dataset npd by fixing one of the parameters, ` or k, and letting the other vary.

Specifically, in Figure 6.6a we fix ` = 6, and in 6.6b we fix k = 7. In Figure 6.6a we

observe that for values of k larger than 6 the compression time increases significantly.

We notice a similar behaviour for values of ` larger than 5 in Figure 6.6b.

In Figure 6.7 we show the encoding and decoding speeds, in Megabytes per

second, obtained with ENANO in Fast mode (with default parameters ` = 6, k = 7

and b = 32), with different number of threads, for the dataset hss. Figures 6.7a

and 6.7b show that, for a moderate number of threads, both encoding and decoding

speeds consistently increase with the number of threads used. Clearly, the choice

of number of threads depends on the available hardware. However, there will be a

saturation of the speed as the non parallelized parts of the algorithm overtake the

parallelized ones.
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6.3.3 Comparative experimental results

We evaluate the two proposed modes of ENANO, by comparing their performance

against state of the art FASTQ compression tools, on the nanopore datasets spec-

ified in Table 6.3. Most of the FASTQ compression tools such as DSRC2 [89],

Fqzcomp [9], Fastqz [9], Slimfastq, FQC [35], LFQC [78], SCALCE [43], Quip [54],

Leon [7], and KIC [109], are not specifically designed to compress long variable

length reads and, as a consequence, they fail to execute successfully on any of the

datasets we considered for evaluation. Similarly, although [1] reports on the com-

pression performance of LFastqC for two nanopore FASTQ files, this compressor

failed in most of the datasets that we tested. Therefore, we do not report results for

these tools.

We compare our compressor to the state of the art FASTQ compression tool,

SPRING[17], which has a built-in mode for compressing long reads. In the long

read mode, SPRING separates and compresses the base call strings, quality score

sequences, and read identifiers, in blocks of a fixed number of reads. The base call

and quality score sequences are compressed using the BSC compressor1, while the

read identifiers are compressed using a specialized identifier compressor similar to

the one proposed in [9]. For our experiments, we run SPRING in the long read mode,

using the −l flag, and we set the input buffer size to 1000 reads, as recommended

by the authors of SPRING. We also compare ENANO with the general purpose

compressor pigz,2 a paralellized version of Gzip, for being widely used to compress

FASTQ files. This general compressor separates the input file into blocks of 128

Kilobytes, and compresses each block in parallel, using a combination of LZ77 [110]

and Huffman coding [47]. We run pigz in best compression mode (with flag --best).

Each compressor is configured to run with 8 threads, except for ENANO in MC

mode that runs on a single thread.

The compression ratios obtained by the evaluated tools on each dataset are

shown in Table 6.4, as well as the quality scores compression ratio for SPRING and

ENANO. The table also shows the percentage relative difference between the com-

pression ratios obtained by SPRING and ENANO, using SPRING as the reference

(thus, negative values indicate an advantage for ENANO). Finally, the last two rows

of the table show the simple and weighted averages of the results.

The results show that both modes of ENANO outperform pigz and SPRING in

all the datasets, both for total size and for quality scores. In particular, ENANO

total compression ratio is on average 6.3% better than SPRING, for Fast mode, and

6.6% for MC mode. With respect to pigz, we observe that the gain of ENANO is on

average 24.6% better in Fast mode and 24.9% better in MC mode. In terms of quality

1http://libbsc.com/
2https://zlib.net/pigz/

http://libbsc.com/
https://zlib.net/pigz/
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Dataset
Total Quality scores

pigz SPRING ENANO Fast ENANO MC SPRING ENANO Fast ENANO MC

npd 0.442 0.349 0.327 (-6.1) 0.325 (-6.7) 0.452 0.410 (-9.2) 0.406 (-10.1)
sor 0.491 0.393 0.374 (-4.8) 0.373 (-5.2) 0.544 0.505 (-7.2) 0.503 (-7.6)
bra 0.480 0.378 0.356 (-5.8) 0.356 (-6.0) 0.521 0.474 (-9.0) 0.474 (-9.0)
lun 0.508 0.404 0.382 (-5.5) 0.381 (-5.6) 0.563 0.524 (-7.0) 0.523 (-7.2)
joi 0.469 0.368 0.329 (-10.7) 0.327 (-11.1) 0.532 0.485 (-8.8) 0.485 (-8.8)
vir 0.496 0.385 0.355 (-8.0) 0.354 (-8.1) 0.531 0.478 (-10.0) 0.477 (-10.1)
hss 0.538 0.472 0.452 (-4.4) 0.449 (-5.0) 0.709 0.670 (-5.5) 0.669 (-5.8)
hs2 0.513 0.416 0.397 (-4.6) 0.397 (-4.7) 0.596 0.560 (-6.2) 0.559 (-6.3)

S. average 0.492 0.396 0.371 (-6.3) 0.370 (-6.6) 0.556 0.513 (-7.9) 0.512 (-8.1)

W. average 0.504 0.418 0.398 (-4.9) 0.396 (-5.3) 0.598 0.558 (-6.8) 0.556 (-7.1)

Table 6.4: Compression ratio for all the compressors on all the dataset, and percentage rel-
ative difference with respect to SPRING (in parenthesis). The table also shows compression
ratios of quality scores for ENANO’s modes and SPRING, and the simple (S.) and weighted
(W.) averages of the results. Best results for each dataset are bold-faced.

score compression, ENANO improves SPRING compression ratios by an average of

7.9% in Fast, and 8.1% in MC. When comparing the two modes of ENANO, we

observe, as expected, that MC mode achieves the best compression ratio in all

datasets, although the difference with the Fast mode is relatively small. Given the

gain in running time obtained with the Fast mode (see Section 6.3.3.1), ENANO is

run in Fast mode by default.

In Figure 6.8 we show a graphical representation of the percentage relative dif-

ference improvement of ENANO in Fast mode over SPRING, both for total and

quality score compression ratios, over the various datasets.
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Figure 6.8: Compression ratio improvement of ENANO in Fast mode over SPRING in
each dataset, expressed as a percentage relative difference.

For completeness of the results, in Table 6.5 we show the read identifiers and base

call strings compression results for SPRING and for the two modes of ENANO. The

table also shows the percentage relative difference between SPRING and ENANO

modes.

With respect to read identifiers compression, the results in Table 6.5 show that

both modes of ENANO outperform SPRING in most datasets, except for two, sor

and bra. In these datasets ENANO in MC mode, and SPRING, achieve the same
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Dataset
Read identifiers Base call strings

SPRING ENANO Fast ENANO MC SPRING ENANO Fast ENANO MC

npd 0.167 0.149 (-11.0) 0.118 (-29.7) 0.247 0.247 (-0.3) 0.246 (-0.4)
sor 0.053 0.198 (275.0) 0.053 (0.0) 0.244 0.245 (0.3) 0.245 (0.3)
bra 0.059 0.139 (133.3) 0.059 (0.0) 0.237 0.238 (0.6) 0.238 (0.6)
lun 0.484 0.301 (-37.8) 0.294 (-39.2) 0.243 0.241 (-0.6) 0.241 (-0.6)
joi 0.463 0.287 (-38.0) 0.267 (-42.3) 0.191 0.177 (-7.0) 0.177 (-7.0)
vir 0.468 0.270 (-42.3) 0.252 (-46.2) 0.235 0.236 (0.2) 0.236 (0.2)
hss 0.525 0.344 (-34.5) 0.133 (-74.6) 0.234 0.236 (0.8) 0.235 (0.1)
hs2 0.472 0.309 (-34.7) 0.276 (-41.6) 0.236 0.236 (-0.1) 0.236 (-0.1)

S. average 0.337 0.250 (26.3) 0.182 (-34.2) 0.233 0.232 (-0.8) 0.232 (-0.8)

W. average 0.351 0.268 (29.8) 0.155 (-41.5) 0.238 0.239 (0.2) 0.238 (-0.0)

Table 6.5: Comparison of compression ratios obtained for read identifiers and base call
strings with SPRING and ENANO, on all the datasets, and percentage relative difference
(in parenthesis). The table also shows the simple (S.) and weighted (W.) averages of the
results. Best results for each part of the FASTQ file and each dataset are bold-faced.

compression ratio, while ENANO in Fast mode is worse. For base call strings, the

compression performance of ENANO and SPRING is similar; the absolute values of

the percentage relative differences are lower than 1% for most datasets, except for

joi, where both ENANO modes are 7% better than SPRING.

For visualization of the results, in Figures 6.9 and 6.10, we show a graphical com-

parison of the compression ratios obtained with the evaluated compressors. Specif-

ically, in Figure 6.9 we show, for each compressor, the average of the compression

ratios obtained by that compressor on each dataset. In addition, for SPRING and

ENANO these results are presented for each FASTQ file component separately.
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Figure 6.9: Average compression ratio obtained with the evaluated compressors. For
SPRING and ENANO modes we also show the average compression ratios for each FASTQ
file component separately. The Complete bars of SPRING and ENANO modes are subdi-
vided in three parts, bottom up in following order: quality scores, base call strings, and
Read IDs. The size of each subdivision is relative to the size the part occupies, on average,
in the compressed datasets.
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In Figure 6.10 we show a comparison of the compression ratios of the different

components of the FASTQ file, between ENANO in Fast mode and SPRING, over

each individual dataset.
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Figure 6.10: Comparison of the compression ratios of ENANO in Fast mode vs SPRING
in each of the datasets, for each of the components of the FASTQ file.

6.3.3.1 Running time

In Table 6.6 we show the total encoding and decoding times for each compressor on

each dataset. The results show that ENANO’s Fast mode is the fastest encoder in

all the datasets, except for lun where SPRING is faster. In terms of decoding, pigz

is the fastest, followed by ENANO in Fast mode, except for lun where SPRING is

faster than ENANO.

Dataset
pigz SPRING ENANO Fast ENANO MC

enc dec enc dec enc dec enc dec

npd 1:14:57 0:09:49 0:43:14 0:30:46 0:20:52 0:25:30 1:13:15 1:51:16
sor 1:40:51 0:13:54 1:08:25 0:36:59 0:16:07 0:19:21 1:40:53 2:03:16
bra 0:34:04 0:04:19 0:20:04 0:12:20 0:06:58 0:07:33 0:34:27 0:42:02
lun 0:09:31 0:01:28 0:05:35 0:03:39 0:05:59 0:05:43 0:12:14 0:15:27
joi 0:02:17 0:00:25 0:02:01 0:01:10 0:00:43 0:00:57 0:03:37 0:04:20
vir 0:02:27 0:00:24 0:01:50 0:01:08 0:01:05 0:01:07 0:03:35 0:04:24
hss 4:03:30 0:23:57 2:04:18 1:33:52 0:36:49 0:51:49 3:24:17 4:22:58
hs2 2:17:53 0:18:41 1:21:24 1:01:49 0:33:02 0:33:00 2:36:46 3:12:09

Table 6.6: Encoding and decoding times (in h:mm:ss format) for all the compressors on all
the datasets. Best results, for each dataset, both for encoding and decoding, are bold-faced.

In Figure 6.11 we show, for each compressor, the total compression and decom-

pression speeds, measured in MB per second, calculated as the accumulated size of

all the datasets divided by the total time required to compress and decompress all

files in all datasets, respectively.
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Figure 6.11: Total compression and decompression speeds over all the nanopore datasets
for the different compressors.

The compression speed of ENANO in Fast mode is 108 MB/s, which is 2.9x times

faster than SPRING’s 37 MB/s, and 5.0x times faster than pigz’s 22MB/s. In terms

of decoding speed, pigz is the fastest with 176 MB/s, while ENANO’s 90 MB/s are

1.7x times faster than SPRING’s 55 MB/s. In Fast mode, ENANO is 5.0x and 5.3x

times faster than in MC mode in encoding and decoding, respectively.

6.3.3.2 Memory requirements

In Table 6.7 we show the maximum memory required by each compressor during the

encoding and decoding processes on all the files of each dataset. The results show

that ENANO, in any mode, generally requires less memory than SPRING, while

pigz is the most efficient in terms of memory for each dataset. We also observe that

ENANO’s memory usage is much lower in MC mode than in Fast. This happens

because ENANO Fast mode runs multiple compressors in parallel, each one with

their own buffers and statistical models.

Dataset
pigz SPRING ENANO Fast ENANO MC

enc dec enc dec enc dec enc dec

npd 7 1 1222 1214 208 221 43 39
sor 7 1 3252 3215 208 222 43 39
bra 7 1 1166 1203 211 226 42 38
lun 7 1 363 411 213 224 41 38
joi 7 1 200 191 204 219 41 38
vir 9 1 254 259 205 219 42 38
hss 7 1 8720 8743 214 226 45 40
hs2 9 1 848 869 221 232 61 52

Maximum 9 1 8720 8743 221 232 61 52

Table 6.7: Maximum memory usage in MB registered during the encoding and decoding
processes, for all the compressors, on all the files of each dataset. Lowest memory usage, for
each dataset, both for encoding and decoding, are bold-faced.
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(a) Encoder memory vs. file size.
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(b) Decoder memory vs. file size.

Figure 6.12: Encoding and decoding maximum memory consumption versus file size, for
pigz, SPRING, and ENANO on the npd dataset.

Notice that ENANO’s maximum memory consumption, for both encoding and

decoding, varies minimally between datasets. This occurs because ENANO’s mem-

ory consumption does not depend on the size of the input file. In Figure 6.12 we

show the encoding and decoding maximum memory consumption for pigz, SPRING,

and ENANO versus the size of the processed file, for all the files in the npd dataset.

The results show that, while pigz’s and ENANO’s memory consumption are almost

constant, SPRING’s memory consumption varies considerably with the sizes of the

files, both in compression and decompression. As SPRING uses a fixed number of

reads per block, and nanopore reads have long variable sizes, the final sizes of the

blocks can vary widely between blocks, which can ultimately have great impact on

the memory consumption. This is not the case for pigz and ENANO, as they use

blocks of fixed size.



Chapter 7

RENANO: a REference-based

compressor for NANOpore files

In Chapter 6 we presented ENANO, a lossless compression algorithm especially

designed for nanopore FASTQ files, introducing a novel quality score sequence com-

pression algorithm that exploits the specific characteristics of nanopore data. In

this chapter we focus on further improving the compression of nanopore FASTQ

files by addressing, specifically, the compression of the base call strings. In this note

we introduce RENANO, a lossless nanopore FASTQ data compressor that builds

on ENANO, introducing two novel reference-based compression algorithms for base

call strings.

We build RENANO by replacing the base call strings compression scheme of

ENANO with one of two novel reference-based compression algorithms introduced

in Section 7.1, denoted by RENANO1 and RENANO2, while keeping the processing

of the other streams intact. The two variants of RENANO thus constructed are

complete FASTQ file compression schemes. However, since the rest of the chapter

deals only with the compression of base call strings, we will slightly abuse terminol-

ogy and use RENANO1 and RENANO2 also to refer specifically to the compression

algorithms for base call strings. For RENANO1, which we present in Section 7.1.2,

we assume that a reference genome is available without cost to both the compressor

and the decompressor. On the other hand, RENANO2, presented in Section 7.1.3,

does not require a reference genome on the decompression side.

The rest of the chapter is organized as follows. Section 7.1 introduces basic

notation, terminology, and tools and, as mentioned, describes the two proposed

reference-based base call string compression algorithms. Section 7.2 presents ex-

perimental results, and comparisons of RENANO to ENANO and to the scheme

Genozip of [62].

89
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7.1 Compression scheme of RENANO

In this section we present RENANO1 and RENANO2, two novel long-read base

call string compression algorithms that use the alignment information (against a

reference sequence) to improve compression. The general idea behind the proposed

compression schemes is to encode a large portion of each base call string as a series

of alignments to a reference genome, such that the alignments can be described

more compactly than the raw base call string, thus yielding better compression.

For both schemes, we assume that a reference sequence (e.g., a genome) in FASTA

format is available on the compressor side. For RENANO1, we consider the scenario

in which the reference sequence is also available without cost to the decompressor,

while for RENANO2 we consider the scenario in which the reference sequence is not

available to the decompressor, but a compacted version of that sequence is stored

as part of the compressed output, thus incurring a code length cost. In both cases,

we assume that the alignment information is obtained from an available alignment

tool, such as Minimap2 [68], which generates a file in PAF format. Note that even

though the current implementation of our compressor expects a PAF file as input,

the algorithm could readily be adapted to other formats if they become popular in

the future. Finally, both algorithms assume the base call strings are stored in the

widely used FASTQ format [22].

Both of the presented compression algorithms take the alignment information

generated by the alignment tool and transform it to an internal representation,

which, together with the reference sequence, allows for perfect reconstruction of

the original base call strings. The ability to encode the internal representation of

alignments compactly is at the core of the schemes. In Section 7.1.1 we present the

general notations and definitions needed to formalize the proposed internal align-

ment representation. Sections 7.1.2 and 7.1.3 describe RENANO1 and RENANO2,

respectively, in detail. Finally, Section 7.1.4 provides specific details on how the PAF

formatted output of Minimap2 [68] is transformed into our internal representation.

7.1.1 Notations and definitions

Let Σ = {A,C,G,T,N} be the alphabet of base calls, where {A,C,G,T} represent

the DNA nucleotides, and N represents an undetermined base call. For a symbol

b ∈ Σ, b̄ is its complementary nucleotide, that is, Ā = T, C̄ = G, Ḡ = C, and T̄ = A,

and for symbol N we define N̄ = N . We say that a string s = s1s2...sn, si ∈ Σ, is a

base call string of length ∣s∣ = n, and define its reverse complement as s̄ = s̄ns̄n−1...s̄1.

We also use the notation s[i ∶ j] = si...sj , to denote a substring of length j − i + 1,

starting at position i and ending at position j; if j < i, we let s[i ∶ j] be the empty

string, denoted by λ. For a base call string s and d ∈ {0,1}, we define the strand
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function π(s, d) as π(s, d) = s if d = 0, and π(s, d) = s̄ if d = 1. We refer to d as the

strand direction indicator of π(s, d).
We define an encoding transformation, φ, as a sequence of K + 1 transformation

steps that converts a base call string, s, into another base call string, φ(s), where K

is a positive integer. The first K transformation steps construct a string s′, starting

from s′ = λ, while scanning two input strings: s, and an additional (given) string I.

Each such transformation step is represented by a triplet of non-negative integers,

(I, S,M), that can be interpreted as driving three elementary string operations on

s′, in order:

1. append a copy of the next I symbols from string I to s′;

2. skip the following S symbols of s;

3. append a copy of the next M symbols from s to s′.

The (K + 1)-th, and final, step of the encoding transformation consists of

applying the strand function to the constructed string s′, obtaining the result

φ(s) = π(s′, d), given a strand direction indicator value d. More specifically, we

let φ = ({(Ik, Sk,Mk)}1≤k≤K , I, d), where each triplet (Ik, Sk,Mk) is comprised of

an insertion length Ik, a skip length Sk, and a match length Mk; I is the insertions

base call string of φ, with length ∣I ∣ = ∑Kk=1 Ik; and d is the strand direction indicator.

We always apply φ(s) to strings s of length equal to ∑Kk=1 (Sk +Mk). Algorithm 4

summarizes the encoding transformation process. An example of the application of

Algorithm 4 is shown in Figure 7.1.

Algorithm 4: Convert string s into string φ(s).

Input : String s, and φ = ({(Ik, Sk,Mk)}1≤k≤K , I, d)
Output: String φ(s)

1 Let s′ = λ
2 Let i = j = 1
3 for k = 1 to k =K do
4 Get (Ik, Sk,Mk) from φ
5 Append I[i ∶ i + Ik − 1] to s′

6 i = i + Ik
7 j = j + Sk
8 Append s[j ∶ j +Mk − 1] to s′

9 j = j +Mk

10 end
11 return π(s′, d)
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A G C C C CC CG GGG T TTTA A AA

G C C CC CG CGG T TTA A AC C

GAA

TA

C G T CC TG CCG A GAG G TA G A G CT

G C

Figure 7.1: Constructing φ(s) by executing Algorithm 4 with inputs: s, and encoding

transformation φ = (((0,0,4), (3,0,5), (0,5,3), (1,1,5)),I = CGCC, d = 1). Notice that

when an insertion length or a match length is 0, no symbols are appended to s′ from I or
s, respectively. Also, if the strand direction indicator is d = 0, then φ(s) = s′.

A reference genome is usually composed of multiple base call strings; for example,

in the case of the human genome there is at least one base call string for each

chromosome. Therefore, we represent a reference genome as an ordered set, R =
{rk}1≤k≤∣R∣, of base call strings. Now, let q be a read base call string, and let r ∈R be

a reference base call string. We define an atomic alignment between q and r, denoted

α(q, r), as an encoding transformation from a substring of r to a substring of q. More

specifically, we let α(q, r) = (i, j, i′, j′, φ), where φ is an encoding transformation such

that φ(r[i′ ∶ j′]) = q[i ∶ j]. Finally, we define a full alignment between q and R, as a

sequence of atomic alignments A(q,R) = {αt(q, rkt)}1≤t≤LA
, where kt is the index of

a reference string in R, and LA is the length of (i.e., number of atomic alignments in)

A(q,R). We consistently use the same subscript t of an atomic alignment αt(q, rkt)
to denote all of its components, i.e., αt(q, rkt) = (it, jt, i′t, j′t, φt). In Figure 7.2 we

show an example of a full alignment.

Figure 7.2: Example of a full alignment A(q,R) = {α1(q, r1), α2(q, r2), α3(q, r2)}, between
a base call string q and a set of reference base call strings R = {r1, r2}.

We refer to a full alignment A(q,R) as non-overlapping, if none of the aligned

substrings of q overlap (such as the one shown in Figure 7.2). Notice that the

atomic alignments in the example do not cover the whole read q, a situation that
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may also occur in the general case. We refer to segments of q not covered by A(q,R)
as unaligned. Later on, we will discuss how these segments are dealt with in our

algorithms.

7.1.2 RENANO1: A reference-dependent compression and decom-

pression scheme

In this section we present RENANO1, an algorithm that compresses the base call

strings of a FASTQ file assuming that the set of reference strings R is available to

both the compressor and the decompressor. We further assume that the full align-

ment A(q,R) for each base call string q against the set of reference strings R is

available during the compression stage. In practice, this means that we assume an

alignment tool has been run on the base call strings in the file against the set of

reference strings R, and that A(q,R) has been derived from the alignment infor-

mation obtained (details on how this is done are provided in Section 7.1.4). For

convenience, we also assume the atomic alignments in A(q,R) = {αt(q, rkt)}1≤t≤LA

to be non-overlapping (as exemplified in Figure 7.2). Again in Section 7.1.4, we

show that any full alignment can be transformed to satisfy this assumption.

As discussed in Section 7, RENANO builds over its predecessor ENANO [33],

which parses and compresses the FASTQ file in blocks that always contain a whole

number of reads. For consistency, our algorithm compresses the sequence of read

base call strings contained in a block of the FASTQ file, denoted by Q = q1,⋯, q∣Q∣,
independently of the base call strings contained in other blocks. This makes the

compression scheme compatible with the parallelization strategy implemented in

ENANO.

Recall from Section 7.1.1 that, given an atomic alignment αt(q, r) = (i, j, i′, j′, φ),
we can reconstruct the substring q[i ∶ j] = φ(r[i′, j′]) by executing Algorithm 4

with inputs φ and r[i′, j′]. As we have access to the reference string r during

decompression, encoding the atomic alignment αt(q, r) suffices to describe q[i ∶ j].
Extending this idea, RENANO1 compresses the aligned substrings of a read base

call string q by encoding the full alignment A(q,R), while the unaligned parts of q

are encoded as raw base call strings, as in ENANO. We now proceed to describe the

compression scheme in detail.

7.1.2.1 The encoding algorithm

To encode Q, we split the various elements of the representations of its read base

call strings qi, i.e, the aligned substrings represented in A(qi,R) and the unaligned

substrings, into separate sequences, which we call streams. We refer to the stream

values that comprise a representation of any of these elements as its stream rep-
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resentation. To help improve compression performance, the streams are designed

so that each stream gathers parts of the representations that we expect to be cor-

related. The streams, in turn, are encoded independently. Different streams may

contain different types of data. In particular, as described in more detail below, we

will have streams comprised of raw base call symbols, streams comprised of binary

symbols, and streams comprised of non-negative integers. For each stream S of the

latter, we define a parameter ηS that determines the bit size representation of the

integers, where ηS is, for convenience, assumed to be a positive multiple of 8. The

values of these parameters used in our experiments are discussed later in Section

7.2.3. Specifically, we define the following streams:

• B: base call strings stream used to encode individual raw base call symbols (A,

C, G, T, N), which include: the unaligned base call strings, and the insertion

base call strings I that are part of the encoding transformations.

• L: base call string lengths stream used to store the non-negative integer ∣q∣,
i.e., the length of each read basecall string q, using an ηL-bit representation.

• Q: full alignment sizes stream used to store the non-negative integers LA,

using an ηQ-bit representation.

• S: starting position increments stream for aligned substrings of q, i.e., the

non-negative integers it − it−1, with the convention i0 = 0, using an ηS-bit

representation.

• E : lengths stream for aligned substrings of q, i.e., the non-negative integers

zt = jt − it + 1, using an ηE -bit representation.

• U : aligned reference string identity indexes stream used to store the non-

negative integers rkt , using an ηU -bit representation.

• S ′: aligned reference substring starting positions stream, which stores the

non-negative integers i′t, using an ηS′-bit representation.

• D: strand direction indicator stream, which stores the binary values of dt ∈
{0,1}.

• N : insertion lengths stream that stores the non-negative integers Ik, using an

ηN -bit representation.

• K: skip lengths stream, which stores the non-negative integers Sk, using an

ηK-bit representation.

• M: match lengths stream used to store the non-negative integers Mk, using

an ηM-bit representation.
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For convenience, we define S = {B,L,Q,S,E ,U ,S ′,D,N ,K,M} as the set of all

the proposed streams.

Algorithm 5: Encode a sequence of read base call strings.

Input : Sequence of read base call strings Q = q1,⋯, q∣Q∣, full alignment
A(qi,R) of each qi in Q

Output: An encoding of Q is output to a bit stream F
1 Let S = {B,L,Q,S,E ,U ,S ′,D,N ,K,M} be a set of empty streams
2 Output a ηF -bit representation of the non-negative integer ∣Q∣ to F
3 for i = 1 to i = ∣Q∣ do
4 Incorporate a stream representation of qi into S using Algorithm 6 (see

Section 1.2.1.1) with qi and A(qi,R) as inputs
5 end
6 foreach stream S ∈ S do
7 Generate an encoding X of S as explained in Section 1.2.1.2
8 Let nX be the length of X, in bytes. Output a ηF -bit representation of

nX to F
9 Output X to F

10 end

In Algorithm 5 we present the general compression scheme for a sequence of base

call strings Q = q1,⋯, q∣Q∣. The algorithm receives Q as input together with a full

alignment A(qi,R) for each qi in Q, and generates an encoding of Q that is output

to a bit stream F . All the streams in S are initialized as empty sequences in Step

1. In Step 2, the algorithm outputs the number of read base call strings in Q, so

that the decoder can retrieve how many read base call strings are encoded into the

streams. In Step 3, the algorithm loops over each base call string qi, splitting a

representation of qi into the various streams in S by running Algorithm 6, which we

discuss in Subsection 1.2.1.1. Then, the loop in Step 6 encodes the content of each

stream S in S. To this end, in Step 7, S is encoded using compression techniques

that we present later in Subsection 1.2.1.2. Next, the encoding of the stream is

output to F preceded by its length (in bytes). This ensures that the decoder can

access each stream separately. Both numbers output in steps 2 and 8 are encoded

as ηF -bit integers, where ηF is an implementation parameter discussed in Section

7.2.3. We now proceed to describe steps 4 and 7 of the algorithm in detail.

1.2.1.1 Splitting the representation of each base call string into separate

streams (Step 4 of Algorithm 5).

To generate a stream representation of an individual read base call string q, we
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use Algorithm 6.

Algorithm 6: Describe a full alignment A(q,R) and the needed parts of
base call string q using the streams in S.

Input : Read base call string q, full alignment A(q,R)
Output: Updated streams in S

1 Append the string length ∣q∣ to stream L
2 Append the number of atomic alignments LA to stream Q
3 Sort the atomic alignments in A(q,R) in increasing order of it
4 Let i = 1
5 for t = 1 to t = LA do
6 if i < it then
7 Append raw base call string q[i ∶ it − 1] to stream B
8 end
9 i = it

10 Append reference string index kt to stream U
11 Append a stream representation of αt(q, rkt) to the streams in S using

Algorithm 7 (see below)
12 i = jt + 1

13 end
14 if i ≤ ∣q∣ then
15 Append base call string q[i ∶ ∣q∣] to stream B
16 end

The algorithm starts by appending the length of q to stream L (Step 1), and the

number of atomic alignments in A(q,R) to stream Q (Step 2). A representation

of q is incorporated into the streams progressively, scanning q from start to end as

the algorithm iterates over the atomic alignments in A(q,R), which are previously

sorted in increasing order of it (Step 3). The variable i, initialized to i = 1 in Step 4,

maintains the starting position of the portion of q that remains to be incorporated

into the stream representation. In Step 5, the algorithm loops over each atomic

alignment in A(q,R). Each iteration starts by checking, in Step 6, if the current

value of i is smaller than the starting position of the current atomic alignment, it.

If so, then q[i ∶ it − 1] is an unaligned substring of q, which is directly appended to

stream B in Step 7. The index kt of the reference string of the current atomic align-

ment, αt(q, rkt), is appended to the stream U in Step 10, followed by an execution

of Algorithm 7, which appends a representation of αt(q, rkt) itself to the streams

in S. The iteration ends by updating the value of i to the next position yet to be

represented, i = jt + 1. By the end of the loop in Step 5, every symbol in q has been

represented as part of either a raw base call string in Step 7 or an atomic alignment

in Step 11, with the possible exception of the trailing symbols in an unaligned suffix
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of q, which are incorporated in Step 15.

Notice that the starting and ending positions of the unaligned substrings are

not explicitly described, as they are fully determined by the starting and ending

positions of the atomic alignments, together with the total length of q.

To generate a stream representation of each atomic alignment αt(q, rkt), we use

Algorithms 7 and 8.

Algorithm 7: Generate a stream representation of an atomic alignment.

Input : Full alignment A(q,R) and index t ≥ 1 of an atomic alignment
αt(q, rkt) in A(q,R)

Output: A representation of αt(q, rkt) is appended to the streams in S
1 Let δ = it − it−1 /* recall that i0 = 0 */

2 Append δ to stream S
3 Append z = jt − it + 1 to stream E
4 Append the reference starting index i′t to stream S ′
5 Append the insertions base call string I of φt to stream B
6 Append the strand direction indicator d of φt to stream D
7 foreach (Ik, Sk,Mk) ∈ φt do
8 Run Algorithm 8 (see below) with triplet (Ik, Sk,Mk) as input

9 end

Algorithm 7 starts by appending a differential representation of the starting

position of the aligned substring, it, to stream S (Step 2). With this representation,

the positions it are implicitly determined by the successive differences, it − it−1,

which are stored in S (recall that by convention, i0 = 0, and hence the difference

is well defined for all t ≥ 1). Since A(q,R) is sorted in increasing order of it, these

differences are non-negative and, in general, with a high frequency of relatively low

values, which we exploit to achieve efficient compression. In Step 3, the length of

the aligned substring, z = jt− it+1, is appended to stream E . We choose to store the

length of the substring instead of its ending position, as this also generally results

in a high frequency of relatively low values. Step 4 appends the starting position of

the reference substring, i′t, to stream S ′, and the following steps generate a stream

representation of the encoding transformation φt. In Steps 5 and 6, the insertions

base call string I and the strand direction indicator d are appended to streams B
and D, respectively. We do not store the length of the insertions base call string I,

as it can be calculated as the sum of the insertion lengths, ∣I ∣ = ∑Kk=1 Ik. Finally,

in Step 7, the algorithm loops through every triplet of the encoding transformation,

and incorporates its stream representation into S using Algorithm 8.

We observed, empirically, that most of the values that typically compose triplets

(I, S,M) lie within a narrow range of small non-negative integers, with, possibly, a
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Algorithm 8: Recursively generate a stream representation of a triplet
(I, S,M), with constrained-length operations.

Input : Triplet (I, S,M)
Output: A representation of (I, S,M) is appended to the streams in S

1 if I > TN then
2 Run Algorithm 8 with triplet (TN ,0,0) as input
3 Run Algorithm 8 with triplet (I − TN , S,M) as input

4 else if S > TK then
5 Run Algorithm 8 with triplet (0, TK,0) as input
6 Run Algorithm 8 with triplet (I, S − TK,M) as input

7 else if M > TM then
8 Run Algorithm 8 with triplet (I, S, TM) as input
9 Run Algorithm 8 with triplet (0,0,M − TM) as input

10 else
11 Append I, S, and M to streams N , K, and M, respectively
12 end

few outliers. For this reason, it is convenient to choose small values for the bit size

parameters ηN , ηK, and ηM, used to represent I, S, and M in the streams N , K, and

M, respectively. These parameters, in turn, determine thresholds, TN = 2ηN − 1 for

insertion lengths, TK = 2ηK −1 for skip lengths, and TM = 2ηM −1 for match lengths.

Since a stream S, for S ∈ {N ,K,M}, does not admit a single-value representation

of an operation length larger than the threshold TS , every triplet (I, S,M) with

such an operation length is divided by Algorithm 8 into a sequence of triplets,

with trimmed operation lengths that do satisfy these constraints. This substitute

sequence represents a combination of string operations that produce the same result

as the original operations represented by (I, S,M).
Algorithm 8 proceeds recursively. If an operation length, say I, is larger than

the corresponding threshold, TN , then the algorithm is recursively invoked for two

triplets. One of them represents a single insertion of maximal length, TN . The

other represents the remaining operations, in this case an insertion of length I −TN
together with the original skip and match operations, of lengths S and M , respec-

tively. Skip and match lengths exceeding the thresholds TK and TM, respectively,

are handled analogously. Since an invocation of the algorithm for triplets (I, S,M)
having at least one value exceeding the corresponding threshold produces recur-

sive calls for triplets (I ′, S′,M ′), where at least one of I ′, S′,M ′ is strictly smaller

than I, S,M , respectively (and none of them is larger), then eventually no operation

length exceeds its threshold, and the algorithm generates a stream representation of

(I, S,M) directly in Step 11, with no further recursive calls.
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As a last comment regarding Algorithm 7, notice that j′t is not explicitly rep-

resented in any stream. Nevertheless, the length, z′, of the reference substring is

implicitly determined by the skip and match lengths of the encoding transformation,

z′ =
K

∑
k=1

(Sk +Mk) ,

where K is the number of transformation steps. The value of j′t, in turn, can be

calculated as j′t = i′t+z′−1. We also notice that the number of transformation steps,

K, is not explicitly represented either; we show later in Section 1.2.2.1 that it can

be reconstructed by the decoder from the streams in S.

1.2.1.2 Encoding the streams (Step 7 of Algorithm 5).

The algorithms described so far construct a set S of streams of various data types,

from which, given the reference stringsR, the base call strings in the original FASTQ

file can be fully reconstructed. To complete a compression algorithm, we must

encode these streams, as efficiently as possible, into bitstreams.

To encode each stream we combine context modeling with arithmetic encoding,

as explained in Section 6.1. Specifically, to encode a base call symbol from stream

B, we use the previous k base call symbols as the context. For the strand direction

indicator stream, D, we directly encode each binary value dt ∈ {0,1} as a single

bit, as experiments show that the strand direction indicators are close to uniformly

distributed. The remaining streams are comprised of sequences of non-negative

integers of various representation sizes. We use the same method to encode each

such stream. To encode an η-bit integer stream, where η is a multiple of 8, we split

the bit representation of each integer of the stream into η
8 bytes. We encode each

byte separately, starting from the least significant to the most significant byte, using

a specific context for each of the η
8 byte positions. In other words, all the least

significant bytes of the integers in the stream are encoded in the same context, all

the second least significant bytes are encoded in the same separate context, and so

forth. Since, as mentioned, these non-negative integer sequences tend to concentrate

towards the lower end of their range, the higher order bytes end up being highly

compressible, and there is little penalty in over-estimating the selected integer size

η for each stream.

7.1.2.2 The decoding algorithm

In Algorithm 9 we present the general decompression scheme that decodes the se-

quence of base call strings Q = q1,⋯, q∣Q∣ given the set of reference base call strings

R and the compressed file, accessed through an input bitstream, F . Notice that,
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as the encoding and decoding algorithms work in lockstep, at any stage of the de-

coding process, the decoder knows exactly what stream to read from and how much

information it needs from it.

Algorithm 9: Decode the sequence of read base call strings in a block of

the FASTQ file.

Input : Set of reference base call strings R, input stream F

Output: Sequence of read base call strings Q = q1,⋯, q∣Q∣
1 Let Q be an empty sequence

2 Let S = {B,L,Q,S,E ,U ,S ′,D,N ,K,M} be a set of empty streams.

3 Retrieve the number of encoded read base call strings from F into nQ

4 foreach stream S ∈ S do

5 Retrieve the length in bytes, nX , of the encoding of S from F

6 Retrieve nX bytes from F into X

7 Decode S from X

8 end

9 for i = 1 to i = nQ do

10 Reconstruct qi using Algorithm 10 (see Section 1.2.2.1) with S and R as

inputs

11 Append qi to Q

12 end

13 return Q

Algorithm 9 reverses the steps of Algorithm 5. It starts by initializing Q as an

empty sequence in Step 1 and all the streams in S as empty streams in Step 2. The

contents of both Q and S are constructed in subsequent steps. First, the number of

base call strings to be decoded and added to Q, nQ, is obtained from F in Step 3.

Next, each stream in S is decoded individually. This is done by retrieving the length,

in bytes, of the encoding of the stream in Step 5, followed by the encoding itself in

Step 6, which is decoded in Step 7. Once the streams in S are decoded in Step 10,

the algorithm reconstructs each of the read base call strings of Q from its stream

representation by running Algorithm 10 with S and R as inputs. Next, we describe

Step 10 in more detail.

1.2.2.1 Reconstructing read base call strings (Step 10 of Algorithm 9).

Algorithm 10 reconstructs a base call string q from its stream representation in S
and the set of reference strings R.

Algorithm 10 reverses the steps of Algorithm 6. In the algorithm, q is initialized

to an empty string in Step 1, and it is reconstructed progressively, appending symbols
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Algorithm 10: Reconstruct base call string q.

Input : Reference strings R, set of streams S
Output: Read base call string q

1 Let q = λ and i = 1
2 Retrieve the number of symbols to be added to q from L into nq
3 Retrieve the number of atomic alignments LA from Q
4 for t = 1 to t = LA do
5 Retrieve reference string index kt from U
6 Retrieve it from S
7 if i < it then
8 Extend q by retrieving q[i ∶ it − 1] from B
9 end

10 Reconstruct αt(q, rkt) = (it, jt, i′t, j′t, φt) by retrieving jt, i
′
t, j

′
t, and φt

using Algorithm 11 (see below) with it and S as inputs
11 Extend q by executing Algorithm 4 to obtain q[it ∶ jt] from φt, and

rkt[i′t ∶ j′t]
12 Let i = jt + 1

13 end
14 if i ≤ nq then
15 Extend q by retrieving q[i ∶ nq] from B
16 end
17 return q

up to length nq (obtained in Step 2). The variable i, initialized in Step 1, maintains

the position of the next symbol to be added to q. In Step 3, the algorithm retrieves

the number of atomic alignments LA that encode substrings of q, and loops over

each atomic alignment in Step 4. Each atomic alignment αt(q, rkt) = (it, jt, i′t, j′t, φt)
is retrieved in a two stage fashion. Firstly, kt and it are obtained in Steps 5 and 6,

respectively, of Algorithm 7. The index it is used to determine, in Steps 7–9, the

length of an eventual unaligned string that may precede the atomic alignment. The

remaining components of the atomic alignment, i.e., jt, i
′
t, j

′
t, and φt, are retrieved

in a second stage by calling Algorithm 11 in step 10 with it and S as inputs.

Algorithm 11 reverses the steps of Algorithm 7. Notice that, during the re-

construction process, we do not have direct access to the number of transformation

steps, K, of the encoding transformation φ. However, the length of a string resulting

from applying φ to a reference string equals the sum of the lengths of the insertion

and match operations in φ. Therefore, for the length of the aligned substring, z,

retrieved in Step 1, we have

z =
k=K
∑
k=1

(Ik +Mk) .
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Algorithm 11: Retrieve an atomic alignment from its stream representa-
tion in S.

Input : Starting position it, and set of streams S
Output: Atomic alignment (it, jt, i′t, j′t, φt)

1 Retrieve z from E
2 Let jt = it + z − 1
3 Retrieve the reference starting index i′t from S ′
4 Let z1 = 0, j′t = i′t − 1, k = 1,I = λ
5 repeat
6 Retrieve Ik from stream N
7 Retrieve Sk from stream K
8 Retrieve Mk from stream M
9 Add (Ik, Sk,Mk) to φ

10 Retrieve Ik base calls from B and append them to I
11 Let j′t = j′t + Sk +Mk

12 Let z1 = z1 + Ik +Mk

13 Let k = k + 1

14 until z1 = z
15 Retrieve strand direction indicator d from D
16 return (it, jt, i′t, j′t, φt)

Consequently, the loop in Step 5 retrieves triplet operations, accumulating the

lengths of the insertion and match operations in z1, until z1 reaches z.

7.1.3 RENANO2 : a reference-dependent compression scheme,

with a reference-independent decompression scheme

In this section we present RENANO2, a variation of RENANO1 that makes the de-

compression process independent of the set of reference base call stringsR. The main

idea is to create a new artificial reference string, r′, composed of carefully selected

parts of the set of reference base call strings R and encode it in the compressed file.

The atomic alignments associated to the read base call strings are then modified to

align against r′ instead of the original strings in R. At that point, we can compress

the read base call strings of the FASTQ file by applying the same encoding scheme

presented in Section 7.1.2.1, with R = {r′}. Subsequently, we can decode the read

base call strings by first decoding r′, followed by applying the decoding scheme of

Section 7.1.2.2, again with R = {r′}. Notice that, since R consists of a single ref-

erence string, the index rkt of each alignment is unnecessary and, thus, RENANO2

omits the encoding of the aligned reference string identity indexes stream U .

To create the new reference string r′, we start by analyzing the full alignments

A(q,R) obtained against the full reference set R. We are interested in keeping
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the parts of the reference base call strings in R that are deemed useful for the

compression of the read base call strings q. More concretely, we first say that an

atomic alignment, αt(q, rkt) = (it, jt, i′t, j′t, φ), uses a position h of rkt if i′t ≤ h ≤ j′t.
Naturally, the positions of a reference string rk that are useful for compression are

those that are actually used by atomic alignments, and we would like to discard

positions that are not used by any atomic alignment. Moreover, taking into account

that describing r′ incurs a coding cost, positions used by only one atomic alignment

are not beneficial for compression either, as both the raw base call symbol for that

position in the reference r′ and the alignment information need to be encoded.

We empirically observe that good compression results are obtained by keeping the

positions of the reference base call strings that are used by at least two atomic

alignments, with no significant improvement for larger thresholds. Consequently, we

say that h is a surviving position of rk if it is used by at least two atomic alignments.

We define the new reference r′ as the concatenation of the bases in surviving positions

of the reference strings. Figure 7.3 shows an example of the proposed construction

of r′.

Figure 7.3: Example of the construction of an artificial reference string r′. The top
row represents the original reference strings r1 and r2. The bottom row represents the
constructed new reference r′. The three middle rows represent reference substrings, rkt[i′t ∶
j′t], used by the atomic alignments. The string r′ is constructed by concatenating the bases
in surviving positions (condensed in four segments, o1, o2, o3, and o4, marked in blue) of r1
and r2. Not-surviving positions (marked in gray) are discarded. In the reference substrings
of the atomic alignments, the substrings that correspond to surviving positions are marked
in blue, while substrings that correspond to not-surviving positions are marked in red.

Clearly, r′ can be constructed in a single pass through all atomic alignments, by

keeping count of the number of uses of each position of rj , 1 ≤ j ≤ ∣R∣. Moreover,

as a byproduct of this construction, we can obtain a mapping ψ that maps each

surviving position h of rj to its corresponding position, ψ(j, h), in r′.

Once the new reference string r′ is built, RENANO2 generates a binary encoding,

denoted by Enc(r′), using the same technique proposed for encoding the stream

of base call strings B in Section 1.2.1.2. The algorithm then stores Enc(r′) into

the compressed file by outputting a fixed-size binary representation of its length

∣Enc(r′)∣, followed by Enc(r′) itself. Clearly, this process can be reversed on the
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decoder side, giving the decoder access to r′.
To generate the artificial reference r′, we made use of the information in the

atomic alignments, which were aligned against the original reference strings in R.

However, the decoder has access to r′, but not to R. Therefore, before being de-

scribed to the decoder, each atomic alignment, αt(q, rkt) = (it, jt, i′t, j′t, φt), must be

modified to align against r′. If the atomic alignment uses no surviving positions (see

r1[i′4 ∶ j′4] in Figure 7.3), it is fully discarded and removed from its respective full

alignment. Otherwise, the atomic alignment is assigned a new reference substring

of r′, r′[i′′t ∶ j′′t ], with i′′t = ψ(kt, hi) and j′′t = ψ(kt, hj), where hi and hj are the

smallest and largest surviving positions used by αt(q, rkt), respectively. In addition,

φt is modified so that q[it ∶ jt] = φt(r′[i′′t ∶ j′′t ]), taking into account that some posi-

tions of the original reference substrings are no longer present in r′. Specifically, all

triplet operations (Ik, Sk,Mk) where a portion of the match or skip operations refers

to not-surviving positions, are transformed: match operations are transformed into

insertion operations, and the portions of skip operations that lie on not-surviving

positions are removed. If during this process a triplet operation (Ik, Sk,Mk) ends

up with a value of Mk = 0, and it is not the last triplet of the encoding transforma-

tion, then the triplet is merged with the next triplet operation, (Ik+1, Sk+1,Mk+1),
resulting in a single triplet operation (Ik + Ik+1, Sk + Sk+1,Mk+1).

At first sight, it may seem that the construction of r′ requires loading all the

atomic alignments into memory at once. In practice, however, we can build r′ by

loading, initially, only the information of the atomic alignments strictly required to

determine the surviving positions, that is, the indexes of the aligned substrings kt,

i′t and j′t. The remaining information of each atomic alignment is loaded only at the

time of its encoding, where also the transformation of φt is performed.

7.1.4 Alignment Information

In this section, we describe the format in which the alignment information is provided

to RENANO1 and RENANO2, and how we construct, for each base call string q in

the FASTQ file, a full alignment A(q,R) (as defined in Section 7.1.1, in our internal

representation) against the set of reference sequences R.

To obtain the alignment information of a specific FASTQ file against a reference

genome, our software implementation of RENANO receives an input text file in

PAF format, typically used for nanopore sequence alignment. Each line of a PAF

file, which represents an alignment between a query base call string and a target

base call string, consists of a list of TAB-delimited fields. For our application, each

query base call string is a portion of a read base call string of a FASTQ file to be

compressed, and each target base call string is a portion of a base call string of a

reference genome, stored in a FASTA file. In Table 7.1 we describe the fields that
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are relevant to RENANO1 and RENANO2. Most fields are identified by position,

with the only exception of the field labeled cs, which is identified through a tag at

the beginning of the field.

Field Type Description

1 string Query string name
3 int Query start coordinate
4 int Query end coordinate
5 char ‘+’ if query/target on the same strand; ‘-’ if opposite
6 string Target string name
8 int Target start coordinate on the original strand
9 int Target end coordinate on the original strand
cs string Base-alignment string in cs format

Table 7.1: Fields of the PAF alignment format relevant to RENANO1 and RENANO2.

Our implementation reads and parses the input PAF file, line by line, to generate

full alignments for each base call string q of the FASTQ file. The first field in each line

of a PAF file is the sequence identifier of the read base call string in the FASTQ file.

This read base call string, together with the starting and ending positions in fields

3 and 4 of the PAF file line, respectively, determine the query base call string of the

alignment represented by this line. Each read base call string of a FASTQ file, q, may

participate in zero or more alignments; each one is represented by a separate line in a

PAF file, all of which bear the same sequence identifier of q in the first field. If a read

base call string q has no associated alignments, then A(q,R) is set to an empty list,

and LA = 0. Otherwise, for each line in the PAF file where q is the query string, we

build an atomic alignment αt(q, rkt) = (it, jt, i′t, j′t, φt). Recall from Section 7.1 that

RENANO1 assumes that the atomic alignments of a full alignment A(q,R) are non-

overlapping, that is, that the aligned substrings, q[it ∶ jt], of the atomic alignments

in A(q,R) do not overlap. However, this condition is not necessarily satisfied by the

alignments extracted from the PAF file. Consequently, we first create an auxiliary

full alignment Ā(q,R) by parsing every atomic alignment associated to q in the PAF

file, and we later use Ā(q,R) to generate a non-overlapping full alignment A(q,R).
To generate an atomic alignment αt(q, rkt) = (it, jt, i′t, j′t, φt) from a line of the

PAF file, we use the values in fields 3 and 4 to determine the aligned q substring,

q[it ∶ jt], where it is the value in field 3 and jt is the value in field 4. We also use

the values in fields 6, 8, and 9, to determine the reference substring of the atomic

alignment, rkt[i′t ∶ j′t], where the index of the reference substring kt is determined

by the name of the target string in field 6, and fields 8 and 9 determine i′t and j′t,
respectively. Finally, to determine the encoding transformation φt, we use field 5

and the cs tag. Field 5 indicates if the alignment is between the original query

string and the target string, in which case the value is ‘+’, or if it is between the
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reverse complement of the query string and the target string, in which case the

value is ‘-’. We use this field to determine the strand direction indicator d of φt,

such that d = 0 if field 5 is ‘+’, and d = 1 if field 5 is ‘-’. Finally, the cs field has

a base-alignment string, called cs-string, which encodes the difference between the

query string and the target string, as a sequence of string operations, which include:

matches, insertions, substitutions (single nucleotide polymorphisms), and deletions.

For more information on cs-strings we refer the reader to the Supplementary Data

of [68]. We use Algorithm 12 to process the cs-string, and obtain the triplet se-

quence {(Ik, Sk,Mk)}1≤k≤K and the insertions base call string, I, of an encoding

transformation φt, such that q[it ∶ jt] = φt(rkt[i′t ∶ j′t]).

The value of input d determines if the cs-string alignment utilizes the original

query string, or its reverse complement. Thus, in Step 1, the algorithm starts by

defining the auxiliary string q′ = π(q[it ∶ jt], d), which is used to build the insertions

base call string. In Step 2, the algorithm initializes the insertions base call string

I as the empty string, and the triplet sequence T as an empty sequence. The

triplet operations and the insertions base call string are progressively constructed

by scanning the cs-string and q′ from start to end as the algorithm iterates over the

cs-string operations, appending triplets to T and base call strings to I as necessary.

The variable i, initialized to i = 1 in Step 3, maintains the starting position of the

portion of q′ that remains to be processed. The auxiliary variable I represents the

insertion length value of the next triplet to be appended, while S represents the skip

length value of the next triplet to be appended. Both variables are initialized to 0

in Step 3.

In Step 4, the algorithm loops over each operation, X, in the cs-string, and

takes a different action depending on the type of operation being processed. If the

operation is an insertion, the algorithm adds the length of the operation, L, to the

current insertion length, I (Step 7), and appends the corresponding inserted base

calls, q′[i ∶ i +L − 1], to string I (Step 8). The algorithm proceeds to adjust the

value of index i accordingly (Step 9). If the operation is a deletion, the algorithm

adds the deletion length L to the current skip length S, in Step 11. We interpret

a substitution operation as a combination of an insertion and a deletion both of

length 1. Therefore, for this kind of operations, the algorithm adds 1 to the value

of I (Step 13), appends the base call in position i of q, q′[i ∶ i], to I (Step 14), and

adds 1 to the current skip value S (Step 15). The index i is adjusted accordingly in

Step 15. Finally, if the operation is a match, the algorithm checks, in Step 17, if the

match length L is greater than a minimum match length threshold parameter, mL.

If it is, the triplet (I, S,L) is appended to T , and the variables I and S are reset to

0, in steps 18 and 19, respectively. Otherwise, the match operation is interpreted

as an insertion and a deletion, both of length L. Hence, the algorithm adds L to
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Algorithm 12: Obtain the sequence of triplet operations and the insertions
base call string, from a cs-string, the aligned substring of q, and the strand
direction indicator d.

Input : cs-string, base call substring q[it ∶ jt], strand direction indicator d
Output: Sequence of triplets {(Ik, Sk,Mk)}1≤k≤K , and insertions base call

string I
1 Let q′ = π(q[it ∶ jt], d)
2 Let I = λ be an empty string, and T = {} an empty sequence
3 Let i = 1, I = 0, and S = 0
4 foreach operation X in the cs-string do
5 Let L be the length of operation X
6 if X is an insertion then
7 I = I +L
8 Append q′[i ∶ i +L − 1] to I
9 i = i +L

10 else if X is a deletion then
11 S = S +L
12 else if X is a substitution then
13 I = I + 1
14 Append q′[i ∶ i] to I
15 i = i + 1, S = S + 1

16 else if X is a match then
17 if L >mL then
18 Append (I, S,L) to T
19 I = 0, S = 0

20 else
21 I = I +L, S = S +L
22 Append q′[i ∶ i +L − 1] to I
23 end
24 i = i +L
25 end

26 end
27 if I > 0 or S > 0 then
28 Append (I, S,0) to T

29 end
30 return T and I
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both I and S (Step 21), and appends string q′[i ∶ i +L − 1] to I (Step 22). Index

i is adjusted accordingly in Step 24. As a last step, if there is a remaining triplet

operation that has yet to be appended to T , that is, if I or S are greater than zero,

the corresponding triplet is appended to T (Step 28).

The parameter mL regulates the trade-off between the cost of encoding a poten-

tially long sequence of atomized small matches, against the cost of encoding fewer

insertion operations, which however incur an additional cost of encoding extra sym-

bols in the insertions base call string. The effect of this parameter on compression

performance is studied in Section 7.2.3, where we choose a default value for it.

Once the alignments in the PAF file associated to a base call string q are

parsed and transformed into an auxiliary full alignment sequence Ā(q,R) =
{αt(q, rkt)}1≤t≤LĀ

, we generate a non-overlapping full alignment, A(q,R), by ex-

ecuting Algorithm 13 with Ā(q,R) as input.

Algorithm 13: Generate a non-overlapping full alignment A(q,R).
Input : Auxiliary full alignment Ā(q,R) = {αt(q, rkt)}1≤t≤LĀ

obtained
from the PAF file.

Output: Non-overlapping full alignment A(q,R)
1 Sort sequence Ā(q,R) = {αt(q, rkt)}1≤t≤LĀ

in decreasing order of jt
2 Let A(q,R) = {α1(q, rk1)}
3 Let ı̂ = i1
4 for t = 2 to t = LĀ do
5 if jt < ı̂ then
6 Append αt(q, rkt) to A(q,R)
7 ı̂ = it
8 else if it < ı̂ then
9 ̂t = ı̂ − 1

10 Obtain φ′t, such that q[it ∶ ̂t] = φ′t(rkt[i′t ∶ j′t]), by modifying φt
11 Append atomic alignment αt(q, rkt) = (it, ̂t, i′t, j′t, φ′t) to A(q,R)
12 ı̂ = it
13 end

14 end
15 return A(q,R)

The algorithm starts by sorting the sequence of atomic alignments, Ā(q,R) =
{αt(q, rkt)}1≤t≤LĀ

, in decreasing order of jt (Step 1). In Step 2, the sequence

A(q,R) is initialized with the first atomic alignment of the sorted sequence,

A(q,R) = {α1(q, rk1)}. The algorithm progressively appends atomic alignments

to A(q,R), such that A(q,R) always holds a non-overlapping sequence of atomic

alignments. Notice that A(q,R) is initialized as a non-overlapping sequence, as it



7.1. Compression scheme of RENANO 109

Figure 7.4: Example of a full alignment, Ā(q,R) = {αt(q, rkt)}1≤t≤LĀ
, obtained from a

PAF file with overlapping between aligned q substrings, q[it ∶ jt]. The segments in the top
box (pink) represent the original overlapping q substrings, while the segments in the bottom
box (green) represent the result of running Algorithm 13 with Ā(q,R) as input.

contains a single atomic alignment. An example of a sequence of overlapping atomic

alignments, sorted in decreasing order of jt, is presented in the top (pink) box in

Figure 7.4.

The variable ı̂, initialized to ı̂ = i1 in Step 3 of the algorithm, maintains the

starting position of the last atomic alignment appended to A(q,R). In Step 4, the

algorithm loops over the remaining atomic alignments in Ā(q,R), and checks, in

Step 5, if the ending position of the current atomic alignment, jt, is smaller than

ı̂. If so, the current alignment does not overlap with the alignments in A(q,R) (as

it < jt), and it is directly appended to A(q,R) in Step 6, while ı̂ is updated to

ı̂ = it, in Step 7. Otherwise, if jt is greater or equal than ı̂, there is overlapping

between q[it ∶ jt] and A(q,R). In this case, the algorithm checks, in Step 8, if it

is smaller than ı̂. If so, the prefix q[it ∶ ı̂ − 1] of q[it ∶ jt] does not overlap with

A(q,R) and, thus, an atomic alignment for this portion of q is added to A(q,R)
(see the yellow portions of the examples q[i2 ∶ j2] and q[i3 ∶ j3] in Figure 7.4).

First, the variable ̂t is initialized to ̂t = ı̂ − 1 in Step 9, which is the ending of

the non-overlapping portion of q[it ∶ jt]. The algorithm then proceeds to construct

φ′t, such that q[it ∶ ̂t] = φ′t(rkt[i′t ∶ j′t]), in Step 10, by modifying φt. Specifically,

the parts of the triplet sequence and the insertions base call string of the encoding

transformation φt that operate from position ı̂ to jt are discarded. In Step 11, the

modified version of the atomic alignment, αt(q, rkt) = (it, ̂t, i′t, j′t, φ′t), is appended

to A(q,R), and ı̂ is updated to ı̂ = it in Step 12. Notice that, if it is greater or equal

than ı̂, i.e., if the condition in Step 8 is not satisfied, then q[it ∶ jt] fully overlaps with

A(q,R) in which case it is discarded (see example q[i4 ∶ j4] in Figure 7.4). Finally,

A(q,R) is returned in Step 15. In Figure 7.4, the bottom (green) box shows the

result of executing Algorithm 13 with the auxiliary full alignment in the top (pink)

box as input.
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7.2 Experimental results of RENANO

In this section we report on experiments performed on a collection of datasets of

nanopore FASTQ files. We describe the datasets in Section 7.2.1. In Section 7.2.2 we

explain how we generate the input PAF files that are necessary to run the proposed

compression algorithms. In Section 7.2.3 we discuss the default values used for

various algorithm parameters of RENANO1 and RENANO2. Finally, in Section

7.2.4 we evaluate the performance of RENANO1 and RENANO2 by comparing

them against other compression tools.

To measure the performance of a compressor on a dataset, we compress each file

of the dataset separately and calculate the compression ratio, CR, as defined in Sec-

tion 6.3. To compare compression ratios, we use the percentage relative difference,

as defined in Section 3.5. Finally, to compare overall performance between compres-

sors we report simple and weighted averages of the results over the test datasets, the

latter computed by weighting each result by the size of its corresponding dataset.

All experiments were conducted on a server with 80 64 bit x86 Intel Xeon CPUs,

503.5GB of RAM memory, and CentOS Linux release 7.7.1908.

7.2.1 Datasets

We evaluate the proposed algorithms on a collection of publicly available datasets,

described in Table 7.2. The collection includes a metagenomic dataset (last entry

in the table), which stores the result of sequencing a collection of genetic material

from a mixed community of microbes.

Name Num. Files Total size (GB) Description

hss 1 268 Human GM12878 Utah/Ceph cell line [52]
bra 18 46 Brassica napus L. [72]
sor 4 134 Sorghum bicolor Tx430 [29]
fly 1 17 Drosophila ananassae [76]
yst 5 6 Saccharomyces cerevisiae S288C [50]
mic 1 12 Microbial community (metagenomic) [65]

Table 7.2: Nanopore sequencing datasets used for evaluation.

The selected datasets cover a variety of dissimilar organisms including human,

plant, animal, fungi, and bacteria. In the case of non-metagenomic datasets, for each

dataset we obtained a reference genome file from the NCBI database [77], from which

we extract the reference base call strings used in our algorithms. The metagenomic

bacterial dataset, mic, demonstrates a scenario in which we do not know in advance

the species that are present in the sequenced samples. For this case, we propose

a pipeline of operations for constructing a reference sequence. It consists of per-

forming a taxonomic classification of the dataset reads, and then concatenating the
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reference genomes of the most prevalent organisms in the dataset. Several tools are

available for the taxonomic classification step, such as FALCON [85], Kraken2 [105],

and Centrifuge [56]. Specifically, the proposed pipeline identifies the most prevalent

species in a FASTQ file by running and analyzing the output of Kraken2, down-

loads the corresponding reference genomes directly from the NCBI database, and

concatenates these genomes into a single FASTA file, which serves as the reference

sequence for compression.

In Table 7.3 we present the total size of the read base call strings in each dataset,

the identification string of the reference genome file associated to the dataset (except

for the metagenomic dataset), the total size of the reference base call strings of the

genome, and the coverage of the dataset (total and average per file).

Name Total reads sz. (Mbp) Reference ID Ref. sz. (Mbp) Tot. cov. Avg. cov. per file

hss 132931 GCF 000001405.39 3272 41x 41x
bra 23038 GCF 000686985.2 976 24x 1x
sor 66488 GCF 000003195.3 709 94x 23x
fly 8363 GCF 003285975.2 217 39x 39x
yst 3177 GCF 000146045.2 12 265x 53x
mic 6169 metagenomic∗ 61 101x 101x

Table 7.3: Read base call string information of the different datasets and their associated
reference genomes. The total sizes of the read base call strings and the reference strings are
presented in mega base-pairs (Mbp). The total coverage is calculated by dividing the total
number of base call symbols in the dataset reads by the number of base call symbols in the
strings of the reference genome. The average coverage per file was calculated by dividing
the total coverage of the dataset by the corresponding number of files. ∗The reference
sequence used for the microbial metagenomic dataset was constructed by first performing
a taxonomic classification of the dataset reads, followed by concatenating the references of
the most prevalent organisms.

The datasets cover different possible compression scenarios, such as having 268

GB of human data in a single file (hss), with 41x coverage, or having 46 GB of plant

data distributed in 18 files (bra), with 1x average coverage per file, or having 12 GB

of microbial metagenomic data in a single file, with 101x coverage.

7.2.2 PAF files generation

For our experiments, we generate PAF files with Minimap2 [68], a state of the art

sequence alignment tool for long reads. We run Minimap2 with the FASTQ file

we want to compress and the proper reference genome file as inputs. In turn, the

tool outputs the result of aligning each base call string of the FASTQ file against

the reference genome, in PAF format. Specifically, we execute Minimap2 with the

following configuration options:

• -x map-ont : an option that sets the configuration of the tool to be optimized

for reads generated with nanopore technologies. This option is recommended.
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• --cs: an option that makes the tool perform base-alignment between the

aligned sections of the read base call strings and the reference strings. The

base-alignment is expressed as a cs-string. This option is necessary, as the

base-alignment information is needed for our algorithms.

• --secondary=no: an option that makes the tool output only primary align-

ments. This prevents the tool from outputting multiple alignments for the

same sections of the read base call strings. This option is recommended.

7.2.3 Algorithm parameters

In this section we specify the values of the parameters used in our implementations.

First, we address the sizes of integers in the streams defined in Section 7.1.2.1. The

following values were used in our experiments, but can eventually be modified as they

are easily re-configurable: ηL = 24, ηQ = 8, ηS = 24, ηE = 24, ηU = 16, ηS′ = 32, ηN =
16, ηK = 16, and ηM = 16.

Furthermore, in Algorithm 12, we introduce the minimum match length thresh-

old, mL. This parameter determines which match operations in the base-alignment

cs-strings are interpreted as match operations when transformed into the triplets

of encoding transformations described in Section 7.1.1, and which ones are disre-

garded and interpreted as an insertion. To determine the default value of mL, first

we evaluate its impact on the compression performance of RENANO1, by running

the algorithm with different values of mL, ranging from mL = 1 to mL = 6, on the

datasets specified in Table 7.2. The compression results for the base call strings of

each dataset are shown in Table 7.4.

Dataset mz = 1 mz = 2 mz = 3 mz = 4 mz = 5 mz = 6

hss 0.118 0.117 0.118 0.119 0.120 0.122
bra 0.141 0.141 0.142 0.143 0.145 0.147
sor 0.161 0.160 0.161 0.162 0.164 0.167
fly 0.118 0.117 0.118 0.119 0.121 0.123
yst 0.174 0.173 0.173 0.174 0.175 0.177
mic 0.158 0.159 0.160 0.161 0.162 0.164

Table 7.4: Reads base call strings compression ratio of RENANO1, with different values
of minimum match length mL. Best results for each dataset are bold-faced.

The results show that the best compression performance for most of the tested

datasets is obtained at mL = 2, which we set as the default value in RENANO1 and

RENANO2 (the minimum is rather shallow, though, so the precise choice of value

is not critical).
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7.2.4 Comparative experimental results

In this section we evaluate RENANO1 and RENANO2 by comparing their perfor-

mance against ENANO, and Genozip, a recently developed compression tool that

can be used for nanopore data and offers both reference-based and reference-free

compression modes.

To evaluate the performance of RENANO1 and RENANO2 against ENANO,

we run each compressor on the datasets specified in Table 7.2. Each compressor is

configured to run in its default configuration (see Section 7.2.3 for RENANO and [33]

for ENANO). The read base call strings and total compression ratios obtained on

each dataset are shown in Table 7.5.

Dataset
Read base call strings Total

ENANO RENANO1 RENANO2 ENANO RENANO1 RENANO2

hss 0.236 0.117 (-50.3) 0.123 (-47.8) 0.452 0.393 (-13.0) 0.396 (-12.4)
bra 0.238 0.141 (-40.7) 0.202 (-15.2) 0.355 0.307 (-13.6) 0.337 (-5.1)
sor 0.245 0.160 (-34.6) 0.171 (-30.3) 0.374 0.332 (-11.3) 0.337 (-9.9)
fly 0.242 0.117 (-51.5) 0.123 (-49.0) 0.354 0.292 (-17.3) 0.295 (-16.5)
yst 0.236 0.173 (-26.9) 0.178 (-24.7) 0.297 0.266 (-10.4) 0.269 (-9.6)
mic 0.244 0.159 (-35.0) 0.162 (-33.8) 0.407 0.364 (-10.5) 0.365 (-10.2)

S. average 0.240 0.145 (-39.8) 0.160 (-33.5) 0.373 0.326 (-12.7) 0.333 (-10.6)

W. average 0.239 0.133 (-44.4) 0.146 (-39.2) 0.415 0.362 (-12.6) 0.368 (-11.1)

Table 7.5: Read base call strings and total compression ratios (CR) for ENANO,
RENANO1, and RENANO2, on all the datasets. The percentage relative difference of
RENANO1, and RENANO2with respect to ENANO are shown in parenthesis. The table
also shows the simple (S.) and weighted (W.) CR averages. Best results for each dataset are
bold-faced.

The results show that both RENANO1 and RENANO2 outperform ENANO

for all the datasets. In particular, the best result for each dataset is achieved by

RENANO1. For read base call strings compression, RENANO1 shows improvements

relative to ENANO ranging from 26.9% (in yst) to 51.5% (in fly), with an average

improvement of 39.8% over all the datasets. As for total compression, the improve-

ments range from 10.4% (in yst) to 17.3% (in fly), with an average improvement

of 12.7%. RENANO2 also consistently improves over ENANO. For read base call

strings, the improvements range from 15.2% (in bra) to 49.0% (in fly), while in terms

of total size, the improvements range from 5.1% (in bra) to 16.5% (in fly).

Compared to RENANO1, RENANO2 achieves similar compression results in the

datasets with high coverage per file (hss 41x, sor 23x, fly 39x, and yst 53x), with a

relative percentage deterioration with respect to RENANO1 ranging from 2.9% (in

yst) to 6.9% (in sor). In the case of dataset bra, where the average coverage per

file is 1x, the relative percentage deterioration between RENANO2 and RENANO1

reaches 43.3%. This is due to RENANO2 directly benefiting from having multiple

atomic alignments that use the same sections of the reference strings, which is less
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likely to happen in files with low coverage. However, even for the dataset bra, which

has an average coverage per file as low as 1x, RENANO2 improves the compression

of the read base call strings by 15.2% relative to ENANO, which leads to a total

compression improvement of 5.1%. We also notice that for the metagenomic dataset,

mic, for which we constructed a reference sequence following the pipeline described

in Section 7.2.1, both RENANO1 and RENANO2 improve the base call strings

compression performance of ENANO by 35.0% and 33.8%, respectively.

In Tables 7.6 and 7.7 we show the total compression and decompression times

(in h:mm:ss format) and speeds (in MB/s), respectively, for each algorithm on each

dataset. All the algorithms were run in multi-threading environments, using eight

threads in each run.

Dataset
Total compression time (h:mm:ss) Total decompression time (h:mm:ss)

ENANO RENANO1 RENANO2 ENANO RENANO1 RENANO2

hss 0:37:09 0:49:56 0:51:24 0:52:55 0:49:40 0:51:19
bra 0:05:26 0:11:32 0:08:30 0:07:40 0:07:52 0:09:34
sor 0:13:09 0:14:51 0:17:34 0:19:45 0:19:15 0:20:33
fly 0:01:41 0:03:23 0:02:08 0:02:30 0:02:19 0:02:26
yst 0:00:49 0:01:33 0:01:00 0:01:05 0:01:05 0:01:06
mic 0:01:16 0:01:20 0:01:33 0:01:53 0:01:48 0:01:51

Table 7.6: Encoding and decoding times (in h:mm:ss format) for ENANO, RENANO1,
and RENANO2, on all the datasets. Best results, for each dataset, both for encoding and
decoding, are bold-faced.

Dataset
Compression speed (MB/s) Decompression speed (MB/s)

ENANO RENANO1 RENANO2 ENANO RENANO1 RENANO2

hss 120 90 87 84 90 87
bra 142 67 91 101 98 81
sor 169 150 127 113 116 108
fly 168 83 132 113 122 116
yst 131 70 107 99 100 97
mic 162 153 133 109 114 111

S. average 149 102 113 103 107 100

W. average 139 105 101 95 100 94

Table 7.7: Encoding and decoding speeds in MB/s for ENANO, RENANO1, and
RENANO2, on all the datasets. The table also shows the simple (S.) and weighted (W.)
averages of the results. Best results, for each dataset, both for encoding and decoding, are
bold-faced.

The results show that ENANO is the fastest compressor for all the datasets, while

RENANO1 is on average the fastest decompressor. Specifically, during compression

ENANO was 1.3x and 1.4x times faster on average than RENANO1 and RENANO2,

respectively. During decompression, RENANO1 was 1.05x and 1.1x times faster on

average than ENANO and RENANO2, respectively.
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In table 7.8 we show the maximum memory required by each compressor during

the encoding and decoding processes on all the files of each dataset.

Dataset
Max. compression memory use (GB) Max. decompression memory use (GB)
ENANO RENANO1 RENANO2 ENANO RENANO1 RENANO2

hss 0.220 3.723 10.399 0.231 3.441 3.790
bra 0.210 1.187 1.539 0.226 1.182 0.868
sor 0.214 0.943 2.998 0.227 0.923 0.933
fly 0.210 0.441 1.134 0.225 0.439 0.410
yst 0.205 0.240 0.345 0.223 0.238 0.238
mic 0.342 0.432 0.701 0.304 0.370 0.345

Maximum 0.342 3.723 10.399 0.304 3.441 3.790

Table 7.8: Maximum memory usage (in GB) registered during the encoding and decoding
processes, for all the compressors, on all the files of each dataset. Lowest memory usage, for
each dataset, both for encoding and decoding, are bold-faced.

The results show that ENANO is the most efficient in terms of memory for all

considered datasets, both for compression and decompression. This is in part due

to RENANO1 and RENANO2 having to load a reference genome file into memory

during the encoding and decoding processes (in the case of RENANO2 the artificial

reference is loaded during decoding). Also, in the case of RENANO2, to generate

the artificial reference during encoding, the algorithm needs to load information of

each atomic alignment obtained from the PAF file, which makes the memory usage

grow with the number of alignments. However, even for the alignment of the hss

file of 286 GB, the memory usage is of 10.4 GB, which is manageable by a personal

computer with 16 GB of RAM.

We also compare RENANO1 and RENANO2 against the tool Genozip [62], which

has two modes: a reference-free compression mode (which we refer a to as Gen),

and a reference-based compression mode (which we refer to as Gen-ref ). For this

comparison we run the selected tools on the nanopore datasets specified in Table

7.2. We execute both modes of Genozip configured to maximize compression (i.e., in

their default configurations). In the case of the reference-based compression mode,

we use the reference genome files presented in Table 7.3. In Table 7.9 we present

the read base call strings, and total, compression ratios obtained by running both

modes of Genozip, RENANO1, and RENANO2, on the selected datasets.

With respect to the results obtained by the two modes of Genozip, the reference-

free mode achieved better results than the reference-based mode in all the datasets.

Note also that the reference-based mode failed to compress the hss and the sor

datasets. Therefore, to evaluate the performance of RENANO1 and RENANO2 we

compare them against the reference-free mode of Genozip (Gen).

The results show that both RENANO1 and RENANO2 significantly outperform

Genozip in each of the datasets. Specifically, regarding read base call strings com-
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File from
Read base call strings Total

Gen Gen-ref. RENANO1 RENANO2 Gen Gen-ref. RENANO1 RENANO2

hss 0.233 - 0.117 (-49.5) 0.123 (-46.9) 0.476 - 0.393 (-17.5) 0.396 (-16.9)
bra 0.236 0.282 0.141 (-40.2) 0.202 (-14.5) 0.370 0.400 0.307 (-17.2) 0.337 (-9.0)
sor 0.244 - 0.161 (-34.0) 0.171 (-30.1) 0.390 - 0.332 (-14.8) 0.337 (-13.6)
fly 0.244 0.282 0.117 (-51.9) 0.123 (-49.4) 0.385 0.400 0.292 (-24.0) 0.295 (-23.2)
yst 0.236 0.286 0.173 (-27.0) 0.178 (-24.8) 0.313 0.339 0.266 (-14.8) 0.269 (-14.0)
mic 0.244 0.281 0.159 (-34.9) 0.162 (-33.7) 0.417 0.435 0.364 (-12.6) 0.365 (-12.3)

S. average 0.240 0.283 0.145 (-39.6) 0.160 (-33.2) 0.392 0.394 0.326 (-16.8) 0.333 (-14.8)

W. average 0.237 0.282 0.133 (-43.7) 0.146 (-38.6) 0.435 0.400 0.362 (-16.8) 0.368 (-15.3)

Table 7.9: Read base call strings, and total, compression ratios for both modes of Genozip,
RENANO1, and RENANO2, on all the datasets. The percentage relative difference of
RENANO1 and RENANO2 with respect to Gen is presented in parenthesis. Best results
for each dataset are bold-faced. The table also shows the simple (S.) and weighted (W.)
averages of the results. The symbol ‘-’ indicates the tool failed to compress the dataset.

pression, RENANO1 and RENANO2 improve on Genozip by 40.5% and 33.1% on

average, respectively, and in total compression by 17.7% and 15.3% on average,

respectively.

To summarize, in Figure 7.5 we show a comparison of the base call sequences

CR obtained by RENANO1, RENANO2, ENANO, and Genozip, on the datasets

specified in Table 7.2. For the results of RENANO2 we also represent the space

used for the compressed reference as the dashed area of the bars.
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Figure 7.5: CR of each compressor on each tested dataset. The dashed area of the bars
for RENANO2 represents the space used for the compressed reference.

The results show that both RENANO1 and RENANO2 significantly outperform

the previous compressors.
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Conclusions and Future work

We investigated the use of efficient compression techniques for two different scenarios

of biological data compression, where computational efficiency is crucial.

In Part I, we studied the efficient compression of multi-channel biomedical sig-

nals, in an scenario where processing resources are scarce due to severe restrictions

on energy consumption. In this sense, in Chapter 3 we developed GSC, a lossless

multi-channel signal compressor based on the architecture proposed in [15], which re-

duces computational costs by using a simplified integer-arithmetic based prediction

module. The obtained results show that the proposed module effectively reduces

the complexity of the prediction algorithm, which results in better encoding and

decoding times, without considerably hindering compression performance. The sim-

plification of the prediction module was performed through the use of an algorithm

proposed by Speck in [97]. Although the algorithm showed excellent results in prac-

tice for biomedical multi-channel signals, there does not exist any analysis of its

performance. In this sense, a theoretical analysis of the performance of a Speck

predictor remains an open problem, and a promising direction for further research.

From our experiments we observed that both the quantity and the order of the

predictors used in the expert advice algorithm played a fundamental role in the

computational cost of the algorithm. In this regard, in Chapter 4, we analyzed the

performance of the predictors in the expert advice algorithm, and defined a series

of criteria to be followed to create an optimized version of GSC for a specific type

of signal.

Following the proposed criteria, in Chapter 5 we built OSC, a lossless multi-

channel compressor optimized for EEG signals, by selecting a reduced set of pre-

dictors for the expert advice algorithm, and applying a series of selective updating

techniques for the adaptive coefficients. We showed that OSC achieves a good trade-

off between compression ratio and computational efficiency, by testing it on a series

of EEG datasets, which cover a considerable number of different scenarios, contem-

117
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plating sampling frequencies that vary between 160 and 1000 Hz, and number of

channels that vary between 31 and 118. Specifically, we showed that OSC is sig-

nificantly faster than GSC while achieving similar compression performance. For

signals for which OSC was not designed, like seismographic or ECG signals, the

compressor still performs well, even better than other popular multi-channel com-

pression algorithms like MP4-ALS and Flac, although the gap with GSC is more

notorious. These results reflect that, in general, a priori knowledge of a specific type

of signal can improve both the compression and the computational performance of

a compressor specifically designed for this kind of data.

Regarding the practical applicability of the proposed algorithms, in [31] a soft-

ware implementation of OSC was embedded in a wireless electroencephalograph

prototype, leading to significant improvement in the overall energy consumption of

the instrument.

As a line of future research, it would be interesting to further investigate the ap-

plicability of GSC on other types of multi-channel signals, by constructing optimized

compressors following the criteria presented in Chapter 4.

In Part II of the thesis we turned our focus to the compression of DNA sequenc-

ing data produced by HTS technologies, in particular, to the compression of data

produced by nanopore sequencing technologies. In this sense, in Chapter 6, we pre-

sented ENANO, a lossless compression algorithm especially designed for nanopore

sequencing FASTQ files, with its main focus being on the compression of the qual-

ity scores, which dominate the size of the compressed files. The results of testing

ENANO showed that the proposed algorithm consistently achieves the best compres-

sion performance on every considered nanopore dataset against the compressors pigz

and SPRING. In addition, in terms of encoding and decoding speeds, ENANO was

significantly faster than SPRING, respectively, with a low memory consumption.

In line with the results obtained for biomedical signals, we managed to achieve

state of the art performance, both in terms of compression and computational effi-

ciency, by exploiting prior knowledge of a specific type of data, in this case of data

generated by nanopore sequencing.

Recent work [59], has shown that the lossy compression of nanopore sequencing

quality scores does not significantly affect (and sometimes even improves) the results

obtained from some downstream bioinformatic tasks, such as variant calling. It

would be interesting to further develop this research, by investigating how the lossy

compression of quality scores can affect other bioinformatic tasks such as de novo

genome assembly. In light of this research, it would also be interesting to add a

module to ENANO for the lossy compression of quality scores sequences, and design

the module to minimize the impairment of downstream tasks. Recently, there have

been promising advancements in this line of work, which are reported in [59].



119

Lastly, in Chapter 7 we introduced RENANO, a reference-based lossless data

compressor that improves on ENANO, by providing a more efficient base call se-

quence compression component. In this regard, two compression algorithms were

introduced, corresponding to the following scenarios: a reference genome is available

without cost to both the compressor and the decompressor; and the reference genome

is available only on the compressor side, and a compacted version of the reference is

included in the compressed file. Our experimental results showed that both modes

of RENANO significantly improve the base call sequences compression of ENANO,

and consequently, the total file compression performance. We also showed that

both modes consistently outperform the recent general-purpose genomic compressor

Genozip.

An apparent drawback of the current implementation of RENANO is that it

receives the alignment information of the FASTQ file against a reference genome

as an input produced by an external tool. Recent works [74, 59] have proposed

compressors that perform their own alignment against a reference, or between the

reads of the FASTQ file, achieving good compression results, but with demanding

computational requirements. In this sense, developing an efficient internal module

of alignment for RENANO, optimized for compression, is a natural direction for

further research.
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[79] Numanagić, I. (2016). Efficient high throughput sequencing data compression

and genotyping methods for clinical environments. PhD thesis, Simon Fraser

University.
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