
Instance-based learning following
physician reasoning for assistance

during medical consultation

Mat́ıas Galnares

Maestŕıa en Informática, PEDECIBA

Universidad de la República

Montevideo – Uruguay

Noviembre de 2021

Instance-based learning following
physician reasoning for assistance

during medical consultation

Mat́ıas Galnares

Tesis de Maestŕıa presentada al Programa de

Posgrado Maestŕıa en Informática, PEDECIBA, de

la Universidad de la República, como parte de los

requisitos necesarios para la obtención del t́ıtulo de

Magister en Maestŕıa en Informática, PEDECIBA.

Directores:

Franco Simini

Sergio Nesmachnow

Director académico:

Sergio Nesmachnow

Montevideo – Uruguay

Noviembre de 2021

Galnares, Mat́ıas

Instance-based learning following physician reasoning

for assistance during medical consultation / Mat́ıas

Galnares. - Montevideo: Universidad de la República,

XV, 87 p.: il.; 29, 7cm.

Directores:

Franco Simini

Sergio Nesmachnow

Director académico:

Sergio Nesmachnow

Tesis de Maestŕıa – Universidad de la República,

Programa Maestŕıa en Informática, PEDECIBA, 2021.

Referencias bibliográficas: p. 83 – 87.

1. inteligencia computacional, 2. asistencia medica,

3. aprendizaje basado en instancias, 4. atención sanitaria,

5. sistemas de apoyo a la decisión cĺınica. I. Simini,

Franco, Nesmachnow, Sergio, . II. Universidad

de la República, Programa de Posgrado Maestŕıa en

Informática, PEDECIBA. III. T́ıtulo.

INTEGRANTES DEL TRIBUNAL DE DEFENSA DE TESIS

Antonio Daniel Mauttone Vidales

Cecilia Dias Flores

Lincoln de Assis Moura

Montevideo – Uruguay

Noviembre de 2021

iv

Acknowledgments

Countless people supported my effort on this research. Professors Franco

Simini and Sergio Nesmachnow provided invaluable feedback on my work, help-

ing me to overcome every difficulty encountered during my research.

I especially want to thank Professor Franco Simini. His courses on Medical

Informatics led me to increase my knowledge on the fascinating area of health-

care, and his encouragement to write this thesis made me confident that my

investigation was worthy of the topic.

I am indebted to my Academic Director Sergio Nesmachnow, for his con-

tinued guidance and constant support during all stages of this thesis. His

unassuming approach to research and science is a source of inspiration. This

approach is reflected by his simple but clear writing style, which is something

I hope to carry forward throughout my career.

I also thank PEDECIBA for supporting the dissemination of my research,

by partly funding a publication in an international journal.

Finally, my family deserves infinite gratitude: my father for teaching me

to fall in love with my vocation, my mother for teaching me to persevere in

every important project, and my wife for supporting me in the setbacks of my

live. To my sons I give everything, including this.

v

Do the best you can until you

know better. Then when you

know better, do better.

Maya Angelou

vi

RESUMEN

Esta tesis de maestŕıa presenta un sistema automático que modela el

conocimiento cĺınico para seguir el razonamiento médico durante una consulta

ambulatoria. Se aplica un método de aprendizaje basado en instancias para

proporcionar sugerencias durante el registro en una historia cĺınica electrónica.

El método de aprendizaje propuesto tiene en cuenta la base de conocimiento

cĺınico de cada médico, para presentar sugerencias basadas en tipos de casos

cĺınicos previamente definidos, y deducidos según una métrica de similitud

espećıficamente diseñada.

El sistema se valida en un escenario de uso real, con la participación de

estudiantes avanzados de medicina de un curso de informática médica de la

Universidad de la República, Uruguay. Los resultados demuestran que el sis-

tema propuesto es 2.5× más eficiente que una herramienta emṕırica de refer-

encia para sugerencias, y dos órdenes de magnitud más rápido que un método

de aprendizaje Bayesiano, considerando un marco de referencia de 250 tipos

de casos cĺınicos. Los resultados también demuestran que el método de apren-

dizaje es capaz de producir sugerencias en tiempos razonables, incluso cuando

se procesan grandes volúmenes de datos. Una encuesta realizada a estudi-

antes avanzados de medicina destaca que el enfoque propuesto se considera

apropiado para la práctica médica.

Esta investigación introduce una estructura formal para representar con

precisión el conocimiento cĺınico, que apoya a los principales flujos que ocurren

durante las consultas médicas. También se proporciona un marco que permite

implementar un sistema en tiempo real capaz de asistir a los médicos durante

sus consultas, y que además ayuda a reducir el tiempo de registro.

Palabras claves:

inteligencia computacional, asistencia medica, aprendizaje basado en

instancias, atención sanitaria, sistemas de apoyo a la decisión cĺınica.

vii

ABSTRACT

This Master Thesis presents an automatic system for modeling clinical

knowledge to follow physicians reasoning in medical consultation. Instance-

based learning is applied to provide suggestions when recording electronic

medical records. The proposed learning method takes into account the clin-

ical knowledge base of a physician, in order to present suggestions based on

previously-defined clinical case types, and deduced according to an ad-hoc

similarity metric.

The system is validated on a real case study involving advanced medical stu-

dents of a Medical Informatics course at Universidad de la República,Uruguay.

Results show that the proposed system is 2.5× more efficient than a base-

line empirical tool for suggestions, and two orders of magnitude faster than

a Bayesian learning method, when processing a testbed of 250 clinical case

types. Results also demostrate that the learning method is able to produce

suggestions in a reasonable time frame, even when processing large volumes of

data. A survey performed on advanced medical students highlights that the

proposed approach is considered appropriate for medical practices.

The research introduces a formal structure to accurately represent clinical

knowledge, supporting the main flows of medical consultations. A frame for

implementing a real-time system for assisting physicians during medical con-

sultations is also provided, which helps reducing the time needed to register

medical consultations.

Keywords:

computational intelligence, medical assistance, instance-based learning,

healthcare, clinical decision support systems.

viii

List of Figures

3.1 Physician model, representing a physician working independently. 20

3.2 Clinic model, representing several physicians working at the

same clinic. 20

3.3 Conceptual components of a case type. 21

3.4 Conceptual elements of a conceptual component. 22

3.5 Units of thought of a conceptual element. 22

3.6 Hierarchical division of a case type. 23

3.7 General structure to represent a case type instance. 23

3.8 Units of thought of a conceptual element. 26

3.9 Shared unit of thought, included in more than one CT. 28

3.10 Features of Health monitoring utility. 32

3.11 Chronic case type example. 34

3.12 Features of Usage reminder tool. 36

5.1 Main features of register editor. 57

5.2 Cache structure for similarity between components. The clinical

knowledge base is composed of case types, each one containing

similarity cached values of its conceptual components. 66

5.3 Use of similarity cache values. 66

6.1 Average execution time of the proposed learning method regard-

ing different CKB sizes. 71

6.2 Average execution time of the proposed learning method when

facing larger CKBs. 72

6.3 Average execution time comparison: instance-based learning

vs. Bayesian learning method. 74

ix

6.4 Average time of 50 medical students to write the notes of a

case type (continuous line). Average time according to Praxis

reports (dotted line). Both evaluations start with an empty CKB. 75

6.5 Average time of 50 medical students starting with an empty

CKB (continuous line). Average time of 50 medical students

taking advantage of a pre-loaded CKB (dotted line). 76

6.6 Best features of the proposed approach, according to the survey

performed on students. 77

x

List of Tables

2.1 Summary of related works about diagnoses-treatments sugges-

tions. 16

2.2 Summary of related works for predict or detect specific conditions. 17

3.1 Interoperability standards of health terminology. 27

6.1 Weight of conceptual component types. 70

xi

List of Acronyms

List of acronyms used in this Master Thesis.

CC Conceptual Component

CCT Chronic Case Type

CDSS Clinical Decision Support System

CE Conceptual Element

CKB Clinical Knowledge Base

CT Case Type

EMR Electronic Medical Record

LIS Laboratory Information System

MCT Multiple Case Type

PACS Picture Archiving and Communication System

PCT Partial Case Type

SOAP Subjective data, Objective data, Assessment and Plan

UT Unit of Thought

xii

Contents

List of Figures ix

List of Tables xi

List of Acronyms xii

1 Introduction 1

2 Related work 6

2.1 Support systems for general clinical use 6

2.2 Systems for specific clinical conditions 11

2.3 Praxis . 14

2.4 Summary . 15

3 Praxis Electronic Medical Records 18

3.1 Praxis approach . 18

3.1.1 Patient medical records and physician clinical knowledge 19

3.2 Modeling clinical knowledge . 20

3.2.1 Representing a case type 21

3.2.2 Units of thought . 23

3.2.3 Characteristics of conceptual elements 25

3.2.4 Characteristics of units of thought 26

3.3 Recording consultation methodology 28

3.3.1 Multiple case types . 30

3.3.2 Partial case types . 31

3.3.3 Chronic conditions . 32

3.4 Consultation assistant tools . 35

3.4.1 Usage reminder . 35

3.4.2 Simple messaging . 36

xiii

3.5 Benefits . 37

3.5.1 Benefits of PCT, MCT, CCT 37

3.5.2 Health monitoring . 38

3.5.3 Messaging and reminders 38

3.5.4 Interoperability . 38

3.5.5 Consultation accuracy 38

4 Clinical knowledge model to follow physician reasoning 39

4.1 Clinical knowledge base . 39

4.1.1 Unit of thought . 39

4.1.2 Conceptual element . 40

4.1.3 Conceptual component 41

4.1.4 Case type . 42

4.1.5 Message Agents . 43

4.2 Patient representation . 44

4.2.1 Patient structure . 44

4.2.2 Patient medical records 44

4.2.3 New medical record . 45

4.3 Consultation flows . 46

4.3.1 Starting attention of a patient 46

4.3.2 Selecting an already defined case type 46

4.3.3 Chronic patients flow . 48

4.3.4 Usual attention flow . 49

4.3.5 New case type flow . 50

4.3.6 Temporal case type flow 52

4.3.7 Multiple case types flow 52

5 Instance-based learning 56

5.1 Instance-based learning method 56

5.1.1 Register editor . 56

5.1.2 Learning method . 57

5.1.3 Using suggested case types 58

5.2 Similarity metric . 59

5.2.1 Similarity metric definition 59

5.2.2 Similarity between components 60

5.2.3 Similarity metric algorithm 61

xiv

5.3 Implementation of similarity metric 63

5.3.1 Compare units by canonical form 63

5.3.2 Zero similarity value . 63

5.3.3 Comparing with empty components 64

5.3.4 Discard non-promising candidates 64

5.3.5 Cache of previous similarity values 65

6 Experimental analysis 67

6.1 Problem instances . 67

6.1.1 Prerequisites for building case type instances 67

6.1.2 Building case type instances 68

6.2 Parameter settings of similarity weight 69

6.3 Performance evaluation . 70

6.3.1 Execution platform of performance evaluation 71

6.3.2 Execution time . 71

6.3.3 Execution time projection 72

6.3.4 Comparison with a Bayesian learning approach 72

6.4 Testing the applicability of the instance-based learning approach 75

6.4.1 Comparison with original Praxis 75

6.4.2 Improvement using a pre-loaded CBK 76

6.4.3 Survey about the proposed approach 77

6.5 Interoperability of health information 77

6.6 Summary of results . 78

7 Conclusions and future work 80

7.1 Conclusion . 80

7.2 Future work . 81

Bibliography 83

xv

Chapter 1

Introduction

The search for better medical practices is a perpetual challenge for modern

medicine. In this regard, computational intelligence has emerged as a promis-

ing subject for developing smart systems in healthcare practice (Castellano

and Casalino, 2020). Computational intelligence allows implementing auto-

matic tools, enabling physicians to provide patients with a better quality of

attention by performing early and accurate diagnosis and improving treat-

ment. Furthermore, automatic systems and technologies based on computa-

tional intelligence have proven to be useful solutions to be applied in clinical

practice. Some important advantages of intelligent automatic methods over

traditional ones include better efficiency, accuracy, and consistency, among

others. Consequently, intelligent automatic systems provide physicians with

more time for face-to-face consultation, and more time for critical tasks and

critical cases (López-Rubio et al., 2015).

A specific subject where the learning capabilities of computational intel-

ligence methods are very helpful to improve medical practice is the analysis

and processing of Electronic Medical Records (EMRs). EMRs refer to digital

records, collected by the individual medical practice, that contain the general

health information of patients (Habib, 2010). They usually consist of several

types of health data, including, but not limited to, demographics, past sur-

gical history, medical family history, social history, medication, allergies, test

results, and medical images.

Currently, the majority of medical history recording products are based on

predefined templates, which provide very limited flexibility for writing patients

medical records. Several drawbacks are identified on medical recording prod-

1

ucts. In particular, structured data entries are an obstacle to flexible writing

in medical record applications, and are disapproved by physicians, who usually

prefer writing free text (González et al., 2018). Despite the fact that physi-

cians are getting used to work with electronic medical records, they still have

difficulties dealing with long lists of pre-conceived variables, usually included

in EMR systems. Although conventional EMR systems are useful to achieve

legible, accessible, and complete documentation of medical consultations, they

also cause several difficulties for physicians who adopt them. In many cases,

physicians spend a lot of time searching for an option to record what they in-

tend to annotate. Another drawback of conventional products concern to the

alerts and suggestions they provide, which are generally based on previously

defined rules, or according to mechanisms whose behavior remains the same

throughout their operational life.

Despite the fact that medical history recording products are able to interact

with other healthcare systems, such as Laboratory Information System (LIS)

and Picture Archiving and Communication System (PACS), the dissatisfaction

of physicians with actual products is certainly an obstacle to overcome. Physi-

cians are increasingly aspiring to work with sophisticated Clinical Decision

Support System (CDSS) that facilitate their clinical practice during medical

consultations.

Relevant works have been proposed on the literature for assisting medical

professionals during their clinical activities. The works reviewed on the lit-

erature are able to detect patterns, provide recommendations, predict future

behaviors, and suggest clinical practices, among others features (Wang et al.,

2015; Klann et al., 2014; Nakai et al., 2016). In general, reviewed works provide

suggestions for diagnoses, prognoses, and treatments. There are also impor-

tant contributions from research focused on specific clinical conditions, which

take advantage of specific medical knowledge of a given area (Lin et al., 2016;

Rane, 2015; Esteban et al., 2015). Furthermore, all reviewed works contribute

to reducing error-prone steps during the clinical process.

Conventional EMR systems are template-based products that generate

poor quality data, due to long search mechanisms and excessive mandatory

fields, which often add noise to the relevant patient information (González

et al., 2018). Moreover, structured data entry systems do not take into account

the particularities of the annotations of each physician, failing to effectively

record the singularities of a medical consultation. The rigid structure of the

2

templates to be filled-in during medical consultations does not fit the reason-

ing of physicians, nor their way of thinking. The research reported in this

Master Thesis is motivated by the need to further explore new ways of captur-

ing, storing, and fostering medical reasoning. Thus, a formal proposal must

be conceived to provide an accurate tool capable of following medical reason-

ing, aiming at helping physicians during medical consultations. In this line of

work, this research presents a novel approach to represent clinical knowledge,

which supports an appropriate methodology to follow reasoning in medical

consultation. Likewise, the proposed representation does not pose formal re-

strictions to physicians, as they usually find when using common clinical data

entry systems. An instance-based learning method is also introduced to pro-

vide suggestions in order to help during the process of registering a medical

consultation.

Improvements in medical consultation assistance are achieved by taking

advantage of systems that properly manage clinical information. To improve

over medical assistance, physicians are provided with new healthcare tools,

considering that healthcare assistance during medical consultations is improved

when the physician is able to:

(i) Efficiently record all the information of a medical consultation, by re-

ducing the time spent on mere data entry in order to gain more time to

interact with the patient.

(ii) Use automatic clinical suggestions to reach an accurate diagnosis, or an

appropriate indication of treatments.

(iii) Reduce medical errors, resulting from the human condition of the pro-

fessional.

(iv) Record each medical consultation considering the special relevance of the

interoperability of clinical information.

(v) Reuse recorded information for statistical and research purposes.

Computational intelligence is applied to solve the deficiencies of current

EMRs. Machine learning methods are used to learn features from previous

registered healthcare data sets, in order to provide suggestions for diagnoses

and treatments based on information previously registered. By applying com-

putational intelligence, systems are able to automatically identify solutions of

3

similar clinical cases and subsequently incorporate the knowledge gained to

assist physicians during medical consultations. Learning methods also con-

tribute to reduce error-prone steps during the sequence of clinical tasks and

decisions. Inevitable errors of human-based clinical practice are reduced, such

as drug contraindications, medication allergies, adverse drug reactions, and

unchecked chronic issues. Furthermore, machine learning methods are able to

progressively enhance their accuracy based on feedback provided by their own

use. An effective medical informatics support system must be adapted to the

real health environment. In addition, a clinical evaluation of the usefulness

of the system in real clinical work must be considered to determine its real

capacity during clinical practice.

The proposed approach was evaluated in a case study involving advanced

medical students. Students tested the feasibility of the approach by using a

proof-of-concept prototype implementation. The performance of the proposed

learning method was satisfactory after evaluated on 250 clinical scenarios writ-

ten by the students. Results showed that the learning method was able to

produce suggestions in a reasonable time frame, even when processing large

volumes of data. The proposed instance-based learning method was compared

with a baseline empirical tool called Praxis, which is able to generate sugges-

tions for physicians during medical consultations. By considering the regis-

tration of the first 50 consultations of a physician, results showed a reduction

factor of 2.5× regarding Praxis execution time. Moreover, the instance-based

learning method significantly outperforms a Bayesian approach in terms of ef-

ficiency, due to its execution time is two orders of magnitude faster than the

Bayesian learning method. The obtained results suggest that the proposed

approach was useful to accelerate the process of taking notes, since 62% of the

medical students were able to speed up the writing time of their medical con-

sultations. A high potential impact on clinical care is projected, considering

that a survey performed on medical students showed that 73% of participants

deemed the prototype as an appropriate tool for medical practice, especially

during medical consultations.

The main contributions of the research reported in this document include:

(i) a formal structure to accurately represent clinical knowledge and support

the main flows of medical consultations; and (ii) an instance-based learning

method that helps to reduce the registration time of a medical consultation.

4

The following list summarizes the publications issued from this Master

Thesis research.

Galnares, M., Low, R., Nesmachnow, S. and Simini, F. (2018), Med-

ical reasoning oriented orthesis to ease clinical practice and record

keeping (poster). Medical Physics and Biomedical Engineering World

Congress, June 3-8, Prague, Czech Republic.

Simini, F., Galnares, M., Silvera, G., Álvarez, P., Low, R. and Or-

maechea, G. (2020). Pattern recognition to automate chronic patients

follow-up and to assist outpatient diagnostics. Pattern Recognition Tech-

niques Applied to Biomedical Problems, pages 175–195, Springer Inter-

national Publishing.

Galnares, M., Nesmachnow, S. and Simini, F (2020). Clinical knowledge

representation to follow physician reasoning. In Proceedings of Sociedad

Argentina de Bioingenieŕıa 2020 Congress, Maldonado, Uruguay.

Galnares, M., Nesmachnow, S., and Simini, F. (2021). Instance-based

learning following physician reasoning for assistance during medical con-

sultation. Applied Sciences, 11(13). Special issue: Applications of artifi-

cial intelligence in medicine practice.

The content of this Master Thesis is structured as follows. Chapter 2

presents a review of related work on learning models for assisting medical

professionals. An empirical tool called Praxis is presented in Chapter 3. The

essential features of Praxis software were deduced from several meetings with

staff directly involved in the software development. Chapter 4 describes a

model proposed for representing clinical knowledge. Several flows to address

relevant scenarios of medical consultations are also introduced by Chapter 4. A

learning method proposed for generating suggestions for physicians is detailed

in Chapter 5. Sample results from the experimental analysis are presented in

Chapter 6. Finally, Chapter 7 presents the main conclusions of the research.

5

Chapter 2

Related work

This chapter presents a review of recent works in the health area related

to Electronic Medical Record (EMR), including a description of associated

machine learning techniques to improve medical assistance. The chapter is

organized as follows. Section 2.1 comments works designed for general health

scenarios. These works are focused on improving clinical decision support

systems, using machine learning approaches. In section 2.2, works with specific

clinical proposals are reviewed. These works are designed for helping health

stakeholders on specific clinical scenarios. Section 2.3 introduces the Praxis

software, which has been studied in detail in this Thesis. Finally, section 2.4

presents a summary of the relevant works proposed on the related literature.

2.1. Support systems for general clinical use

Relevant systems with significant learning capabilities are reviewed in this

section. The systems are designed to cover different health scenarios for as-

sisting medical professionals during their clinical activities. These systems

can detect patterns and use the detected information to provide recommenda-

tions, as well as predicting future behaviors and suggesting frequent clinical

practices. In general, these systems are able to identify similar clinical cases in

order to provide suggestions for diagnoses, prognosis, and treatments. In addi-

tion, all the reviewed systems contribute to reducing error-prone steps during

the clinical process.

An EMR system with treatment recommendations based on patient similar-

ity was implemented by Wang et al. (2015). This novel system, called ISLEMR,

6

includes learning capabilities and real-time feedback by inferring patient sim-

ilarities. ISLEMR is based on Hygeia (Li et al., 2012), an EMR proposed by

researchers from Zhejiang University in China and Miyazaki University Hospi-

tal in Japan. To implement ISLEMR, a group of ad-hoc similarity metrics were

defined, which make it possible to recommend treatment plans according to

the treatments of similar patients. The similarity algorithm considers patient

diagnoses, demographic data, vital signs, structured lab test results, and can

query external clinical information systems, such as PACS, LIS, and pharmacy

systems. The patient information is used by the system to present an ordered

menu with inferred recommendations for treatment plans. Twelve thousand

hospitalizations on a hospital in Beijing, China between December 2013 and

April 2014 were analyzed during the system validation. The authors used a

precision metric that evaluates the real use of the recommended menu items.

Higher precision at first menu items indicates a better performance of the rec-

ommendation method. Precision results up to 80% were achieved for the first

10 items of the recommended menu. The proposed system was evaluated in

a real environment, a Chinese hospital with more than 10.000 outpatients per

day. However, the learning algorithm applied only considers structured data,

which implies less precision in determining similarities of clinical cases.

Decision support can also be obtained from past clinical decisions. In or-

der to improve guideline-based clinical decision support systems, Klann et al.

(2014) proposed a learning approach to generate adaptive and context-specific

treatment menus from past clinical information of patients. Each menu recom-

mends a starting point for physicians, suggesting an initial draft to treat a spe-

cific situation. The learning approach considers four domain-specific Bayesian

Networks and applies a Greedy Equivalence Search algorithm in the learn-

ing task phase. The Bayesian Networks represent four modalities: inpatient

medicine, emergency department, urgent visit clinic, and the intensive care

unit. The networks also contain 11.344 encounters by modeling the proba-

bilistic relationships among orders and diagnoses, covering typical scenarios

from different aspects of medicine. The authors evaluated the proposed sys-

tem considering a hospital simulation, which evaluated the performance of the

suggestion menus to predict clinical situations. The accuracy of the proposed

system was measured by the area under the receiver–operator curve (AUC)

(Campbell et al., 2007), which is a fundamental metric for diagnostic test

evaluation. The experimental results demonstrated the predictive capabilities

7

of the system (0.78 of average AUC), outperforming a similar association rule

mining approach, especially over less frequent cases. The proposed approach

has important potential contributions for healthcare activities; it can reduce

the workload of physicians by using recorded information to create human-

readable suggestions for treatments and diagnoses.

Another common approach is the prediction of clinical practices using

methods based on Support Vector Machines. Motivated by solving the ineffec-

tiveness of rule-based clinical decision support systems, Nakai et al. (2016) pro-

posed a novel model to assist physicians in the healthcare domain. The model

can predict next clinical practices to be prescribed on a particular patient by

using the information from previous practices of the same patient. Machine

learning was used to predict future clinical practices by applying a Linear Sup-

port Vector Machine method. The authors used detailed information of clinical

actions from Japan University Hospital to build the learning model. The in-

formation was obtained from the Diagnosis Procedure Combination/Per-Diem

Payment System of Japan, which is the standard Japanese system for medical

billing. The experimental data was divided into ten parts; one part was used

as validation data and the other parts as learning data. The prediction accu-

racy was evaluated by ten-fold cross validation. The results demonstrated the

high precision of the model when facing frequent clinical cases. However, low

precision results were obtained when dealing with less common cases.

Another novel approach is related to extracting relations in medical doc-

uments with the help of structured and semantic analysis. Barbantan et al.

(2016) proposed a medical decision support system that analyzes electronic

health information and creates a medical structured-related concept model.

To identify structured concepts, the system processes unstructured medical

records by applying natural language processing tasks followed by a semantic

analysis. The proposed solution is based on a learning approach that discovers

relations between medical concepts, using a Support Vector Machine classifier.

The experimental analysis was performed over a data set of 170 clinical doc-

uments from Beth Israel-Deaconess Medical Center, Boston, Massachusetts.

The structured information and the relations between medical concepts were

used to help diagnoses, medication predictions, and also to detect patterns

about patients health.

Shen et al. (2015) proposed a multi-agent clinical decision support sys-

tem by applying a case-based reasoning approach. Several ontological agents

8

were used to identify similar clinical cases in order to provide suggestions for

diagnoses, prognosis, and treatments. Similar cases were detected using lan-

guage analysis and an ad-hoc matching method. The system searches clinical

cases by identifying important words, terminologies, and synonyms. Further-

more, medication allergies, adverse drug reactions, coexisting diseases, and

other complications were evaluated for discarding candidate cases. Seventeen

representative cases of gastric cancer were considered for testing the proposed

system. Moreover, the authors were inspired by the work of Chau et al. (2003)

and Farinelli et al. (2003) to define a new efficiency measure for evaluating the

proposed matching method. The results showed that the system was able to

achieve a matching rate of 78.2% for illnesses with simple syndromes.

Installé et al. (2014) developed a clinical data miner software framework

for supporting clinical diagnostic. The proposed framework is composed of an

electronic Case Report Form (eCRF) system and an integrated data prepro-

cessing component. The eCRF system is based on templates and spreadsheets,

following the ideas presented in OpenClinica (Collins et al., 2020). In addi-

tion, the data preprocessing component is able to analyze data and can ap-

ply machine-learning techniques over the information gathered by the eCRF.

This system was evaluated in cases from the International Endometrial Tumor

Analysis consortium, which has more than 4000 patients. Forty-two physi-

cians were asked in a survey to evaluate their satisfaction with the framework,

and the user-friendliness of the proposed system. The survey results showed

that the system was considered user-friendly, and all physicians approved the

possibility of using it in their own future works. Moreover, the survey showed

that the integrated data preprocessing and the machine-learning techniques

reduced error-prone steps during a clinical diagnostic process.

Zieba (2014) proposed a service-oriented support decision system for di-

agnose medical problems. The architecture of the system was designed to

deal with both the problem of imbalanced distribution of clinical data and

the missing values of attributes in medical records. The proposed system is

composed of web services with learning capabilities, which deal with imbal-

anced data by implementing cost-sensitive Support Vector Machine methods.

In addition, the problem of missing values of attributes was solved by splitting

the incomplete data into complete data subsets, which were used for learning

tasks. The quality of the system was evaluated using three ontological data-

sets. The first set was obtained from the Wroclaw Thoracic Surgery Center in

9

Poland and contain information of 1.203 patients with a high ratio of unknown

attributes (45%). The second set was provided by the Institute of Oncology

in Ljubljana, Slovenia and contains data of 949 patients with 20% of missing

attributes. A third set was taken from the UCI Machine Learning Repository

(Lichman, 2013), and it is composed of 286 records with a low ratio of un-

known attributes (6%). The results demonstrated that the proposed system

was able to predict diagnosis by generating decision rules that were presented

to physicians with acceptable accuracy values.

Benmimoune et al. (2015) designed a hybrid medical platform to assist

physicians during their clinical reasoning process. In this work, two compo-

nents were identified as part of the process: a Rule-Based Reasoning (RBR)

component with rules for general clinical cases, and a Case-Based Reasoning

(CBR) component composed of clinical experiences. The proposed platform

helps physicians gathering relevant information about the patient status by

presenting an adaptive questionnaire according to each patient profile. Once

the physician registers relevant information about the patient (symptoms, med-

ical history, family history, lifestyle information), the platform uses the gath-

ered information to search for the most similar stored case, following the CBR

approach. An adaptation step is required to consider the differences between

the actual case and the most similar inferred case, and then a new case is

stored. If no similar case is found, the platform applies a RBR approach to

deduce a solution according to rules defined by medical experts. In the worst

case, the platform does not have enough data to make predictions, and there-

fore requests the physician to gather more information in order to repeat the

cycle. The authors did not report an implementation or a prototype that

proves the feasibility of their novel design on a real health environment.

Since many patients do not just have a single clinical condition, Wilk

et al. (2017) proposed a framework to assist patients in multi-morbidity con-

ditions. The proposed framework also considers patient preferences for sug-

gesting customized clinical practice guidelines. The authors improved their

previous works (Wilk et al., 2013; Michalowski et al., 2014; Wilk et al., 2014)

by modeling clinical guidelines using actionable graphs and first-order logic,

which makes it possible the simultaneous application of multiple clinical prac-

tice guidelines. Furthermore, a secondary medical knowledge component was

designed to identify adverse interactions resulting from conflicting therapies.

The logic-based framework was presented using a theoretical perspective. Two

10

multi-morbidity cases were exposed to illustrate the use of the proposed frame-

work regarding patients suffering simultaneously from chronic kidney disease,

hypertension, and atrial fibrillation. In addition, a high-level proof of concept

implementation was presented to show the feasibility of the proposed frame-

work. The authors planned to improve their work by evaluating the complete

solution of the proposed framework on a real emergency triage.

2.2. Systems for specific clinical conditions

This section presents a review of recent works designed to predict or detect

specific clinical patient conditions. These works take advantage of specific

medical knowledge to provide support for predicting or detecting a particular

disease or condition. Predicting sequences of clinical events can be easier when

the scope of the medical system is reduced to a single or a small set of clinical

conditions. Several systems are reviewed, which were proposed for helping

important and well-studied areas, such as prevailing diseases, chronic diseases,

cardiac rehabilitations, heart failures, and cancer therapies. All reviewed works

contribute to give better assistance for specific clinical cases.

Lin et al. (2016) proposed a computational prediction system for help-

ing the process of decision-making of multidisciplinary teams regarding cancer

therapies. The proposed system utilizes machine learning methods for sug-

gesting recommendations about breast cancer therapies, including chemother-

apy, endocrine therapy, and biologic-targeted therapy. A number of machine

learning methods were studied, including Support Vector Machine, Bayesian

Classifier, Multivariate Logistic Regression, Nearest Neighbors, Ripple Down

Rules and Decision Trees, in order to determine the most accurate technique

for breast cancer therapies. The proposed system was evaluated using infor-

mation provided by a tertiary cancer referral center in Sydney, Australia. The

information described clinical data of 1.065 patients from 2007–2015 who un-

derwent at least one cancer therapy. A ten-fold cross validation was applied to

compare the accuracy of the proposed methods. Moreover, the results of each

learning technique were compared with internationally accepted guidelines of

the European Society for Medical Oncology (ESMO) and the National Com-

prehensive Cancer Networks (NCCN). On the one hand, results showed that

the proposed system has similar behavior to both ESMO and NCCN guidelines

regarding the prediction of endocrine and biologic-targeted therapies. On the

11

other hand, significantly different predictions were found for chemotherapy

cases. The proposed system achieved better chemotherapy results than the

accepted therapeutic guidelines by considering non-clinicopathologic factors,

such as patient preferences and resource availability.

Rane (2015) developed a support system with the main goal of predicting

prevailing diseases at early stages. The system was designed considering several

learning techniques, including Decision Trees, Naive Bayes, Multilayer Percep-

tion Neural Network, K-Nearest Neighbors, and Support Vector Machine. All

methods were implemented using WEKA (Hall et al., 2009), a well-known

machine learning software. Regarding the experimental analysis, 316 patient

data sets were collected from expert physicians. Each data set contained 34

attributes with the most relevant patient information. The information was

divided into two categories: the training data with 190 records and the testing

data with 126 records. A ten-fold cross validation was applied to evaluate

the accuracy of the proposed system. Additionally, the Mean Absolute Error

(MAE), which considers the difference between the diagnosis-predicted values

and the diagnosis-observed values was analyzed. The results showed that all

methods had accurate prediction capabilities (accuracy 99%) and the Neural

Network obtained the minimum MAE (0.0029) among all learning techniques

studied.

A temporal latent embedding model was developed by Esteban et al. (2015)

in order to predict clinical events regarding chronic kidney diseases. In their

work, the authors studied a Markov model to represent the most recent clin-

ical information of each patient. At the same time, a Multilayer Perceptron

Neural Network analyzed the full history of patients and assigned major rel-

evance to recent information in order to predict future events. The neural

network was trained using 100.000 events of patients from Charité Hospital of

Berlin, which is a reference center in Europe for kidney diseases. In addition,

33.000 events were considered for testing purposes. The proposed model was

compared with other learning approaches, such as Nearest Neighbor methods,

Naive Bayes classifiers and Logistic Regression models by using the area under

the Precision-Recall curve (AUPRC) (Boyd et al., 2013). The experimental

results demonstrated the capability of the model for predicting kidney diseases

events (AUPRC of 0.63), outperforming all other studied learning methods.

Subirats et al. (2014) proposed a framework that integrates formal seman-

tics and clinical rules from different sources to provide specific recommenda-

12

tions for cardiac rehabilitation processes. The proposed framework integrates

Decision Trees and relevant rules obtained from literature. The rules are used

for providing prognosis and can customize patient sessions and rehabilitation

treatments. Whereas, time responses of the rehabilitation process are pre-

dicted by Decision Trees, which are implemented using WEKA. The proposed

system was evaluated using an anonymized database, containing information

of 200 patients who underwent cardiac rehabilitation at Hospital Universitario

Ramón y Cajal, in Madrid, Spain. The results showed a strong correspon-

dence between treatment recommendations and real medical practices. The

proposed framework could be improved by including dynamic rules instead of

static ones.

A decision support system was proposed by Guidi et al. (2014) to improve

the assistance of patients with heart failure, considering the importance of

cardiac problems. The proposed system implements several machine learning

techniques including Support Vector Machine, Neural Network, Fuzzy-Genetic

algorithm, Classification and Regression Tree, and Random Forest algorithms.

All methods were compared to identify the best technique for predicting the

heart failure type and the level of heart failure severity. The learning ap-

proaches were trained using an anonymized database provided by the Car-

diology Department of St. Maria Nuova Hospital, in Florence, Italy. The

database contains 136 records with information of patients with heart failure

from 2001–2008. A ten-fold cross validation was used to compare the accuracy

of all methods. The results showed that Classification and Regression Tree

was the most adequate algorithm for helping patients with heart failure. It

achieved a cross-validation accuracy of 87.6% in heart failure type predictions

and 81.8% in heart failure severity; it also provided the best human-readable

guidelines.

Chang et al. (2016) proposed six guidelines for designing an efficient CDSS

that simplifies the physician mental effort during medical consultations. The

proposed guidelines are based on a cognitive theory that considers the physi-

cian mental model (Vessey, 1991). The authors developed a prototype of CDSS

following their guidelines to demonstrate the feasibility of the approach. The

system was designed conforming to flexible clinical workflows and following

the Subjective data, Objective data, Assessment and Plan (SOAP) clinical

model (Lin et al., 2013) to fit with physician mental processes. Eight neurol-

ogy specialists from Kaohsiung Medical University Hospital in Taiwan evalu-

13

ated the CDSS by working with twelve clinical test cases. Specific metrics of

cognitive effort defined by Wang and Benbasat (2009) were taken into account

to evaluate the usability of the proposed system. The results showed that

the CDSS prototype allows time savings of 30%–50% during a typical medical

visit, and it also reduces the effort of physicians mental processes.

2.3. Praxis

Praxis Electronic Medical Records is a software for electronic medical

records, developed to streamline the entry of clinical data and improve med-

ical practice (Infor-med, 2021). Unlike other applications for capturing data

and medical information, Praxis emulates the processes that physicians follow

when they are recording clinical information. The software uses previously en-

tered information to offer recommendations for registering a new consultation,

according to the past practice of the physician user.

Each time a physician treats a new patient, Praxis uses the information

recorded in previous consultations of the same physician to recommend a set

of cases similar to the one being evaluated. The recommendation method

is based on the principle that medicine is an individual practice, and every

physician (regardless of his specialty) encounters a common pattern regarding

the frequency of treated cases, and some cases are more frequent than others.

After the physician identifies the most similar case that fits the patient

being evaluated, he can include the information of the current case. In general,

small modifications are made over Praxis recommendations, in order to record

accurate information about the new consultation. By modifying the most

similar case, the physician immediately creates a new case, which is stored in

the Praxis database and later may be used for other future cases.

The accumulation of clinical practices in the system allows physicians to

quickly register new cases, reducing writing and reading times. This method

of keeping medical records can also be used as a checklist, aiming at not forget-

ting important aspects that the physicians should verify with their patients,

according to their own criteria.

Praxis has been implemented empirically and has been gradually improved

over more than 25 years. The system also has been developed to fit with the

North American medical system. Praxis has an extensive user guide, which

helps physicians reduce the learning curve. However, there is no accurate

14

description of the software implementation. Praxis software was studied in

depth in this Master Thesis and its main features are presented in chapter 3.

As all other reviewed works, Praxis has been developed for helping physi-

cians give better assistance during medical activities. However, while other

works are focused on analyzing diverse clinical data to make recommendations

for treatments and diagnoses, Praxis produces recommendations that are based

only on information recorded by the physician who uses the system. Praxis

also focuses on speeding up writing times, instead of being an expert system

for recommending diagnoses and treatments.

The works reviewed in the literature consider past patient information in

order to present recommendations or predict specific diseases. The diagnoses-

treatments recommendations and the predictions for specific diseases of related

works reviewed could be integrated into Praxis to improve the quality of the

current version.

2.4. Summary

The analysis of related works allowed identifying several proposals apply-

ing computational intelligence and other learning-based methods for diverse

health scenarios. Most existing systems focuses on providing suggestions for

treatments and diagnoses, based on similarity metrics regarding relevant in-

formation from past medical assistance. Reviewed works are able to identify

similar clinical cases in order to provide suggestions for diagnoses, prognosis,

and treatments. Moreover, they contribute to reducing error-prone steps of

clinical processes. The approach presented in this Master Thesis contributes to

this line of research, including specific differences with existing related works:

it supports non-structured free text information to be used in the learning

process, instead of just structured information Wang et al. (2015); a more ef-

fective learning approach is applied, which outperforms a Bayesian learning

method such as the ones that have been previously used in the related litera-

ture Klann et al. (2014); suggestions are generated considering all similar case

types (of different patients), instead of just previous information of the same

patient Nakai et al. (2016); and it does not rely on complex rules based on

natural language processing, which limits the applicability of other suggestion

systems Barbantan et al. (2016).

15

Table 2.1 outlines the works reviewed in this chapter about diagnoses-

treatments recommendations, designed for general health scenarios. The table

shows the most relevant features of the works, and it also presents the methods

applied. Additionally, Table 2.2 shows the same information regarding works

for predict or detect specific clinical conditions.

Table 2.1: Summary of related works about diagnoses-treatments suggestions.

Author(s)
(year)

Method(s) Relevant features

Wang et al.
(2015)

Ad-hoc patient similarity algo-
rithm.

Menu with inferred recommen-
dations.
Real-time feedback.

Klann et al.
(2014)

Specific Bayesian Networks.
Greedy Equivalence Search.

Suggest initial drafts.
Reduce workload of physicians.

Nakai et al.
(2016)

Linear Support Vector Ma-
chine.

Use information from previous
practices.
High precision for usual cases.

Barbantan
et al. (2016)

Natural Language Processing.
Support Vector Machine classi-
fier.

Medical structured-related con-
cept model.
Detect patterns about patient
health.

Shen et al.
(2015)

Language analysis.
An ad-hoc matching method.

Suggest diagnoses, prognosis
and treatments.

Installé et al.
(2014)

Preprocessing component.
Machine-learning techniques.

Reduce error-prone steps during
diagnostics.
User-friendliness.

Zieba (2014)
Cost-Sensitive Support Vector
Machine.

Web services with learning ca-
pabilities.
Generate decision rules.

Benmimoune
et al. (2015)

Rules for generical cases.
Case-Based Reasoning compo-
nent.

Adaptive questionnary accord-
ing patient profile.

Wilk et al.
(2017)

Actionable Graphs.
First-Order Logic.

Clinical guidelines for multi-
morbidity conditions.
Considers patient preferences.

16

Table 2.2: Summary of related works for predict or detect specific conditions.

Author(s)
(year)

Method(s) Relevant features

Lin et al.
(2016)

Support Vector Machine,
Bayesian Classifier, Decision
Trees, Multivariate Logistic
Regression, Nearest Neighbors,
Ripple Down Rules.

Cancer therapies assistance.
Consider non clinicopathologic
factors.

Rane (2015)

Decision Trees, Support Vec-
tor Machine, Multilayer Percep-
tion Neuronal Network, Naive
Bayes, K-Nearest Neighbor.

Predict prevailing diseases at
early stages.

Esteban
et al. (2015)

Markov model.
Multilayer Perceptron Neural
Network.

Predict chronic kidney diseases.

Subirats
et al. (2014)

Formal semantics and clinical
rules.
Decision Trees.

Recommendations for cardiac
rehabilitations.

Guidi et al.
(2014)

Support Vector Machine,
Fuzzy-Genetic, Neural Net-
work, Random Forest, Classifi-
cation and Regression Tree.

Assistance for heart failure.

Chang et al.
(2016)

Guidelines for designing an effi-
cient CDSS.

High time savings for typical
medical visits.
Reduces physician cognitive ef-
fort.

This chapter highlighted works in which machine learning methods were

applied for general health scenarios. Those works were mainly focused on

providing suggestions for treatments and diagnoses. The chapter also presented

works that achieved accurate results for specific clinical conditions. From

a different point of view, Praxis product was introduced as a software that

incrementally builds a clinical knowledge database, in order to re-use previous

entered information, for reducing physicians writing time.

17

Chapter 3

Praxis Electronic Medical

Records

This chapter presents the main features of Praxis EMR software. In sec-

tion 3.1 the Praxis approach is introduced. Section 3.2 details the main entities

used by Praxis to model clinical knowledge. In section 3.3 the principal char-

acteristics of Praxis recording methodology are explained. Section 3.4 presents

additional tools to assist physicians during consultations. Finally, section 3.5

shows a summary of the relevant benefits of using Praxis software.

3.1. Praxis approach

Praxis is a software for electronic medical records, developed to streamline

the entry of clinical data and improve medical practice. The first version

of Praxis was developed as early as 1992 by Infor-med INC. Currently the

company is located in Argentina from where the product is supported and

enhanced exclusively for the Canadian and US markets.

Unlike current medical record products that are based on templates to

complete the task of creating medical records, Praxis allows the physician to

create new records by using information that he has previously written. This

concept reflects the reality that no two physicians practice medicine in the

same way. Each physician has an individualized way of reaching a diagnostic

hypothesis and of treating patients. In addition to the fact that the cases seen

follow a specific prevalence mix, associated with the office and specialization

of the physician.

18

To start a consultation, the physician usually relies on a similar previous

case, which is what happens mentally in medicine. The physician can modify

the initially postulated case to record accurate information about the new

consultation. By modifying a similar case, the physician eventually creates a

new case, which may be used for other future consultation meetings.

Acting according to previous experiences is a very natural way for physi-

cians to think and refer to cases: “heavy weight housewife concerned about

ecology” or “nerd male adolescent”. The freedom with which the physician

grasps a consultation visit clashes with the template approach, where a long

list of sometimes irrelevant variables are collected in series.

3.1.1. Patient medical records and physician clinical

knowledge

Praxis is designed to create problem-oriented medical records (Salmon

et al., 1996). The software uses a variation of the traditional SOAP clinical

model to record insights during a medical consultation, dividing the consulta-

tion information into different components.

Praxis makes a distinction between information recorded for each patient

(patient history), and information that reflects the physician deliberations on

clinical cases during a visit. This distinction is not possible when filling-in

simple templates, where only predefined values are expected to be recorded.

Praxis builds a Clinical Knowledge Base (CKB) for each physician, con-

taining Case Types (CTs) that the physician has recorded. This knowledge

base is completely independent from patient medical records. In other words,

Praxis accumulate the clinical knowledge of each physician independently of

the patients that the physician has evaluated.

After using a CT, all changes made are saved not only in the patient medical

record but also in the CKB. Therefore, the physician can subsequently use that

CT again with other patients. Two data sets are updated at once: the patient

medical record and the physician clinical knowledge, which is enriched every

time a new CT is recorded.

Figure 3.1 shows an example of a physician working independently, who

sees patients at his own practice. Meanwhile, Figure 3.2 shows the context of

several physicians working at the same clinic.

19

Figure 3.1: Physician model, representing a physician working independently.

Figure 3.2: Clinic model, representing several physicians working at the same
clinic.

As a natural feature, Praxis allows physicians to exchange clinical knowl-

edge. The exchange of medical knowledge allows physicians to strengthen their

knowledge base by importing CTs that have been created by other physicians.

To import a CT of other physician, an authorization step is required.

3.2. Modeling clinical knowledge

Praxis builds up a CKB for each physician, by accumulating the physician

CTs. The CTs reflect the way the physician reasons, describing different situ-

ations that arise when evaluating patients. This knowledge base is assembled

20

gradually, as the physician is faced to new CTs and records them. Following

the SOAP clinical model, a CT includes not only the subjective and objective

data that stem from the patient, but also the physician interpretation and

decisions taken to treat.

3.2.1. Representing a case type

Since a CT it is a broad concept, several entities are used to model the

knowledge it represents. For every CT, one or more Conceptual Components

(CCs) are recorded. For illustrative purposes, Figure 3.3 shows a generic struc-

ture used to represent different CCs of a CT. It also show the components of

a pharyngitis case type, presented as a case study.

(a) Case type - Conceptual component. (b) Example.

Figure 3.3: Conceptual components of a case type.

A CT is composed of different CCs. Likewise, each CC consist of different

Conceptual Elements (CEs). Figure 3.4 shows a structure representing differ-

ent CEs of a CC. In addition, an example of an objective component with two

CEs is shown, representing different anatomical regions.

Refining one step further, a CE can be subdivided into different Units of

Thought (UTs), as defined by Low (2015). Figure 3.5 illustrates a structure

representing the UTs of a CE. It also shows an example with UTs describing

a specific throat condition, in which the physician has observed white patches

and enlarged tonsils after examining a patient.

21

(a) A conceptual component with several
conceptual elements.

(b) Example.

Figure 3.4: Conceptual elements of a conceptual component.

(a) A conceptual element with several
units of thought.

(b) Example.

Figure 3.5: Units of thought of a conceptual element.

General structure of a case type

A tree like structure is used to model a clinical CT, which includes in in-

creasing hierarchy: unit of thought, conceptual element, and conceptual com-

ponent.

The hierarchical division of a case type is presented in Figure 3.6, showing

that several units of thought are grouped into conceptual elements to determine

the conceptual components of a CT. In addition, Figure 3.7 shows the general

structure to represent a CT instance.

22

Figure 3.6: Hierarchical division of a case type.

Figure 3.7: General structure to represent a case type instance.

3.2.2. Units of thought

When recording a specific CT, different UTs are saved, which later can be

reused when recording new visits. In this way, previously written texts can be

quickly and efficiently reused in order to write new CTs.

23

A UT is a statement that describes a basic clinical idea. Examples of UTs

are:

“The patient has a sore throat lasting 4 days.”

“The patient denies any nasal drainage.”

“She has a fever lasting 4 days.”

“The patient complains of severe pain lasting 4 days.”

Characteristics of UTs

Several characteristics need to be modeled to give real meaning to a UT in

a clinical context. The main characteristics of UTs are: randomness, variation,

gender, and datum.

Randomness: It is typical for many clinical statements to include some

degree of randomness. Altering a specific value of the UTs statement does not

alter the meaning of the UT. Examples of UTs that contain a random part

are:

“The patient has a sore throat lasting [6 days].”

“The patient has a sore throat lasting [5 days].”

“The patient has a sore throat lasting [1 week].”

Variation: There are semi-random variations that do not change the mean-

ing of a UT. An example of UT that contain a semi-random part is:

“The patient complains of [mild / severe] pain lasting 4 days.”

Gender: Expressing different genders does not change the meaning of a UT.

Examples of UTs that contain gender information are:

“masculine” ↔ “feminine”, “man” ↔ “woman”, “boy” ↔ “girl”, “gen-

tleman” ↔ “lady”

“The boy is experiencing normal development.” ↔ “The girl is experi-

encing normal development.”

24

Datum: This element allows discrete data to be embedded within a free text.

By using Datum, the idea represented by the UT also remains unchanged.

Datum is an object that can be embedded within any part of a free text, in

order to refer to structured information. An example of UT that contain a

datum is:

“<patient.firstName> is a person who is <patient.age> years old, who

suffers. . . ”

To represent a UT, it is necessary to create a structure capable of storing

free text, as well as referring to data that allows a level of randomness or semi-

randomness. In addition, it must support the incorporation of discrete data

through the use of Datum.

3.2.3. Characteristics of conceptual elements

A CE consist of one or more UTs that are grouped to create a broader

description. Each CE has its own characteristics that determine its features.

Default display of units

Each CE has an attribute indicating the default display mode of its UTs.

A CE can show all its UTs by default, or on the contrary it can opaque all

its units. For example, a subjective data element which describes patient

symptoms, displays its UTs as inactive. Subsequently, the physician only

activates symptoms that apply to the patient being evaluated. On the other

hand, other CEs such as pharmacological indications are displayed as active,

assuming that they apply to the consultation being evaluated.

Name and descriptors

A physician can assign a name to a CE for grouping clinical phrases under

the same identifier. Thus, when the physician wants to search for a CE that

has already been defined, the search can be simplified using only its name. An

identification by name is especially useful for labeling objective elements that

give information about a patient anatomical regions. Additionally, Praxis

suggests to create descriptors for detailing different conditions of the same

element. It suggests to define a “normal” descriptor for UTs describing the

regular condition of a certain anatomical region. On the other hand, to describe

25

the abnormal conditions, it suggests using a descriptor that is mnemonic to

the UTs. Figure 3.8 shows two examples for representing CEs that describe

conditions of an anatomical region. One example details a throat in a normal

condition and the other specifies a patient with a sore throat.

(a) Conceptual element, normal throat. (b) Conceptual element, sore throat.

Figure 3.8: Units of thought of a conceptual element.

Chronic information

CEs also have an attribute that indicates whether the element refers to

the chronic information of a patient. If a CE is marked as a patient chronic

information, later it will appear on all future patient consultations. Specifi-

cally, this attribute is used to identify CEs that describe anatomical regions of

patients suffering a chronic condition.

3.2.4. Characteristics of units of thought

The attributes of the UTs model specific contexts that may arise during

the documentation of a medical consultation.

Information unique to a consultation

In general, UTs described during a consultation are associated with the CT

determined by the physician. However, in order to describe any real patient

situation, it is necessary to consider the unique aspects that may occur during

a specific consultation. The physician must be able to define new UTs with

the ability to describe information unique to a specific consultation. When the

physician completes the consultation and saves information, the UTs defined as

26

unique to the consultation will not influence the CT, which means the clinical

knowledge base will not be updated. However, these UTs will be relevant

for writing the patient clinical record, by describing the unique aspects of the

consultation meeting.

Information unique to a patient

There are situations where it is necessary to give detailed information about

a person. For these situations, it is key to build UTs that can represent infor-

mation unique to a patient. The UTs representing specific information about

a patient will not be associated to any CT, since they contain data specific to

a particular patient. For example, when specifying a patient personal back-

ground, the physician can create UTs that are associated with the patient

being evaluated. A UT describing a personal background does not have any

relationship with the CT that the physician has chosen as a basis for his eval-

uation. Consequently, it is necessary for UTs to have an attribute indicting

whether the content refers to patient specific information.

Information exclusively for the physician

In certain situations, the physician may write text that is exclusively for his

own use. Thus, this text is not saved in the clinical records of any patient. As

an example, UTs that act as reminders, must have the attribute of information

exclusively for the physician.

Interoperability

Each UT can be associated with standard codes of health terminology.

Table 3.1 details the main associations that can be specified over UTs.

Table 3.1: Interoperability standards of health terminology.

Conceptual elements Terminology Type of association

Diagnoses ICD10, SNOMET CT Mandatory
Procedures CPT Suggested
Medications Drugs Suggested

In order to associate every UT to its corresponding terminological code, ex-

ternal services can be used to provide access to different terminological servers.

27

3.3. Recording consultation methodology

The most streamlined documentation methodology that can be applied

using Praxis consists of taking advantage of an existing CT. The consultation

of a new patient can be quickly recorded by making small changes over a similar

previously written CT. To apply this methodology, it is necessary to start with

an existing CT, which can be easily located if the physician remembers the

name of a CT. Otherwise, it will be necessary to make use of features that

help to find the closest CT, according to different search criteria.

To simplify the CT search based on the best matches of the current patient

condition, the software waits for the physician to enter the first UT, which re-

flects any of the aspects that may arise during a medical consultation. Starting

with an entered UT, the set of CTs containing it are determined. Subsequently,

Praxis orders the different CT candidates according to frequency of use, and

presents them to the physician in the form of a list. The physician may apply

additional search filters to restrict criteria even further, in order to determine

the most appropriate clinical CT to use as a basis for the new patient record.

Figure 3.9 shows an example in which a UT is included in more than one CT.

Figure 3.9: Shared unit of thought, included in more than one CT.

Just as CTs show a bell curve regarding their frequency of use, CEs and

UTs also share the same bell characteristic. Bell curves occur because CEs and

UTs have cases that appear much more often than others. Praxis considers

the frequency of use to facilitate the search process, both for the CEs and the

UTs. Every time a certain CE or UT is searched, the results are shown in

descending order according to frequency of use.

28

Once the physician selects the CT that is the most convenient as a starting

point, he can reuse the previous CT document. A previous document can be

used for remembering aspects that should not be forgotten with new patients.

A CT can be quickly and conveniently changed at any time the physician

realizes that it is not the most appropriate, and wishes to search for another

CT that matches more closely the current patient.

To complete the consultation record, the physician should save the changes

made in the selected CT. When saving a new clinical document, different

situations are identified:

it is a record of a patient with an identical clinical CT.

it is a record that has improved on the same clinical CT.

it is a record of a new clinical CT.

An identical clinical CT is detected when none of the UTs involved have

changed. Each UT is considered unchanged although its random aspects may

be altered. A new CT or an improvement on an already existing CT is detected

when any UT is changed. In this situation, the physician must specify if he is

documenting a new CT or improving an existing one.

Finally, before saving information about the patient consultation, two ac-

tions are triggered. Firstly, the clinical CT is recorded or updated in the CKB.

Secondly, the patient history is enhanced, saving all the information that the

physician has recorded during the medical consultation.

Saving records without generating knowledge

When recording a consultation, the physician documents clinical informa-

tion that describe the patient situation, and before finishing a record, the

physician CKB is updated. However, in some specific cases, it is desirable to

document a single insight about a patient, and Praxis offers the possibility of

saving the record without generating clinical knowledge. By saving without

generating clinical knowledge, the patient history will simply be enhanced by

adding the information recorded by the physician, and no CT will be updated.

This feature must be used sparingly, since when using it the ability to learn

clinical knowledge is lost.

29

3.3.1. Multiple case types

Every time the physician wants to add a new CT over another one already

selected, Praxis is capable of combining UTs of the selected CTs. The main

rules used to combine different CTs are detailed below.

Combination of disjoint elements

If a CE is present in only one of the CTs, then it is added as an element

of a multiple CT, since it cannot create any type of conflict.

Combination of common non-objective elements

This situation occurs when the same CE is present in more than one CT

assigned to a patient, and the element does not describe any objective infor-

mation about the patient. In this situation, two possibilities are determined,

according to the default display attribute of the units present in the CE.

1. If the default display attribute is inactive. All the UTs are simply joined

in order. For example, the UTs included in the subjective element of two

different CTs.

2. If the default display attribute is active. In this case, all the UTs are

joined and any UT considered repetitive is removed. For example, an

identical pharmacological indication detailed in both CTs.

Combination of common objective elements

Praxis implements a more complex technique for combining CEs included

in the objective component of a medical consultation. These CEs describe

objective information about a patient anatomical regions. In this situation,

conflicts may arise if UTs are automatically combined for different CTs. Two

options are determined: automatic combination and conflicting combination.

1. Automatic combination: If the CE representing an anatomical region

is described as normal in one CT and abnormal in another, then the

element with the abnormal descriptor attribute is assumed to be the

most relevant, and the element with the normal descriptor attribute is

discarded.

30

2. Conflicting combination: A conflicting combination occurs when the

same CE has different abnormal descriptors in more than one CT. In

this situation, Praxis is not capable of resolving the conflict, and asks

the physician for a solution.

Combining CTs

After combining several CTs to record a patient consultation, the physician

may still add new UTs that detail more information about the consultation.

Praxis includes features designed to ease the entry of more than one CT during

the same medical consultation. In particular, it provide an option to restart the

search for another CT, and lets the physician specify any UT to help finding

the next CT. For the specific situation of Multiple Case Types (MCTs), Praxis

provides a feature that lets the physician consolidate the UTs from one CT

to another. By consolidating one CT with another, the first CT selected is

changed by adding all the UTs from the second CT.

3.3.2. Partial case types

A Partial Case Type (PCT) is created when no diagnosis is specified. PCTs

are especially useful when the physician does not reach a diagnosis in the first

minutes of a consultation. For every situation in which a diagnosis is not

reached, the physician can create a PCT with the clinical information that he

can identify. In general, the patient subjective elements (what the patient says

he feels) are recorded. Moreover, other elements can be detailed, such as an

objective element that arises from a physical examination.

PCTs are highlighted every time they are displayed. This distinction allows

the physician to clearly identify the partial nature of a PCT, which makes it

extremely practical when the physician wants to search for a particular PCT.

By using a color distinction, it is visually easy to identify which CT are partial

and which are not. Like other CTs, all recorded information becomes available

after selecting the PCT and can be reused with future patients.

An example of a PCT would be a patient whom the physician only knows is

having a bad cough. At first, no other information is available that allows the

physician to conclude a differential diagnosis. In this situation, it is convenient

for the physician to rely on a previous record for a case type called “Patient

with a bad cough”. Clearly the PCT “Patient with a bad cough” will not have

31

any diagnosis associated with it. However, it will present a set of symptoms,

physical examinations or other previously recorded elements related to a pa-

tient with a bad cough. Therefore, every time the physician cannot define a

diagnosis, he can search for the PCT closest to the situation of the patient

being evaluated, or in the absence of one, create a new PCT.

After analyzing the patient and performing the relevant physical examina-

tions, all improvements should be saved on the created or edited PCT. Later,

the physician can complete the consultation as usual, reaching a specific diag-

nosis.

3.3.3. Chronic conditions

Praxis assists on improving the consultation registry of a patient suffering

from a chronic condition. In order to facilitate physician work, several features

are included for monitoring chronic conditions.

Health monitoring

A Health monitoring utility allows physicians to schedule the frequency

that a UT appears in a CT. Figure 3.10 shows the main aspects of Health

monitoring utility.

Figure 3.10: Features of Health monitoring utility.

As an example of how to use Health monitoring utility, the physician could

schedule a UT for every patient with the case type “Mellitus diabetes” indi-

cating an ophthalmologist review once a year. Health monitoring utility could

also be used to schedule the frequency of other UTs, such as a pharmacological

prescription or a specific procedure.

32

Chronic anatomical regions

Every CE that represents an anatomical region may be marked as a chronic

condition of a patient. If an element is marked as chronic, it will be perma-

nently associated with a patient. This chronic mark indicates that every time

the physician refers to the chronic anatomical region of the patient, Praxis will

recover all the chronic information that was previously detailed for the same

anatomical region.

Chronic case types

During the workday, a physician usually cares for a great number of patients

with chronic conditions. In order to address the existing specifications for

chronic patients, the physician can create a CT and then mark it as chronic.

After a CT is marked as chronic, it immediately acquires a dual identity.

The dual identity is the main feature of a Chronic Case Type (CCT). Every

CCT has two identities, one that applies when the CCT is associated with a

patient for the first time, and the other for the same patient later consultations.

The main characteristics of each one of these CCT identities will be detailed

as follows.

First identity: When a CCT is first associated with a patient, few differ-

ences exist between it and any other case type. Once the physician chooses

the CCT, he will be able to reuse all the conceptual elements of the selected

case type, including the elements describing patient current illness, physical

examinations, indicated procedures, prescribed medicines, etc. On the other

hand, as a unique characteristic, every CCT is permanently associated with

the patient. Therefore, after a CCT is first associated with a patient, it will

be suggested every time physician records a consultation for the same patient.

Second identity: The identity of a CCT changes significantly after the case

type is first used in a patient. After a conditions is identified as chronic,

it is extremely important to monitor its evolution over time. The second

identity of a CCT helps to record relevant information about the evolution of

a chronic condition. When a CCT is expressed according to its second identity,

a new component called Evolution emerges. Under this new component, the

physician must specify the UTs that reflect the evolution of the patient chronic

condition. From the moment the CCT acquires its second identity (for a given

patient), Praxis will no longer present the CE describing the patient current

33

illness. It will be assumed that monitoring of the chronic condition will be

recorded using UTs described in the Evolution component. The second identity

of a CCT has other key characteristics. Specifically, the second identity does

not inherit the conceptual elements that the physician has defined for the CCT

first identity. Therefore, when the physician uses the CCT second identity for

the first time, he will have to specify the UTs to plan the monitoring of the

patient chronic condition evolution. Figure 3.11 gives an example of a CCT in

its second identity.

Figure 3.11: Chronic case type example.

The CE that describes the patient current illness is shown as inactive in

Figure 3.11, since it is a characteristic of the first identity of the CCT. In con-

trast, the figure highlights UTs that reflect the evolution of a chronic condition,

and are exclusive to the second identity of the CCT.

34

Definition of a new chronic case type

After building a new CT, it is possible to mark it as chronic. A CT marked

as chronic acquires a dual identity and a highlighted color presentation. A

color distinction is helpful when a physician wants to locate a specific CCT to

use with a patient for the first time. When a CCT is associated with a certain

patient, every anatomical region that has been defined within the CT becomes

a chronic region for the patient, and Praxis will continue to consider it in later

consultations of the same patient.

When working with the second identity of a CCT, the physician must

specify the UTs that describe the monitoring planned for the patient chronic

condition. In addition, it may occur that after planning a specific monitoring

program, the physician wants to make a change to correct or improve the

plan. Consequently, the physician always can specify new UTs that improve

the basis of monitoring the chronic condition evolution.

In the context of the CCT second identity, an important feature is available

when specifying a new UT. When a physician adds a new UT, Health moni-

toring utility is immediately displayed. In that moment, the physician must

create a new item that determines the frequency of the recently specified UT.

As an example, the physician could plan a monitoring program that includes a

certain medicine every two months, an annual appointment with an ophthal-

mologist and a blood test every six months. In this example, the physician

should specify three UTs with their respective monitoring items, defining the

frequency of each indication. Like any other CT, when recording chronic con-

ditions, it is quite valuable to detail a large set of controls or reminders, since

same elements will be displayed for every patient with the same CCT.

3.4. Consultation assistant tools

Praxis provides tools to assist physicians during consultations. The Usage

reminder and Simple messaging tools are introduced as important features for

helping patient assistance.

3.4.1. Usage reminder

A Usage reminder is a tool that contributes to improving the quality of

medical records, using guides and timely reminders that are displayed to the

35

physician and are relevant to the CT being evaluated. For every Usage re-

minder instance, it is necessary to define the criteria in which the reminder will

be displayed to the physician. These criteria are specified by times, conditions

and situations in which the reminder can guide, remind or make recommen-

dations for the physician, to better address the consultation being evaluated.

Usage reminders are also quite useful in contexts where care goals are used.

Figure 3.12 present the main parts of the structure necessary for imple-

menting usage reminders.

Figure 3.12: Features of Usage reminder tool.

To build a Usage reminder it is necessary to specify a trigger criteria, which

can be simple or highly complex.

3.4.2. Simple messaging

Simple messaging is a communication tool that allows to send the patient

information to different members of the health team, who are involved in the

patient care. It is a messaging tool that allows the transmission of specific

information about a patient, to notify others about certain clinical aspects.

A physician can create scheduled messages by using Simple messaging tool.

This messaging tool lets the physician write a message and later decide if

he wants to send it immediately, or prefers to specify the moment that the

message will be sent to the recipient. The moments that can be defined as

sending conditions are: immediately, a specific date, at next consultation, or

at next time the clinical record of the patient is accessed.

A physician that work with the help of receptionists can define scheduled

36

messages for his helpers. Physician has features to assign tasks that reception-

ist must perform after the patient consultation is completed, such as coordi-

nating a new medical appointment. Given that the physician is also one of the

health team members, he can create messages and schedule to receive them

as well. A physician can reuse information that has already been written in a

previous message. Consequently, to create new message, it is convenient to use

another similar message as a starting point. Like a CE, a message naturally

has the ability to be associated with CTs.

3.5. Benefits

The accumulation of CTs in the CKB allows a physician to quickly reg-

ister new consultations, reducing writing and reading times. This method of

keeping medical records can also be used as a checklist, aiming at not forget-

ting important aspects that the physicians should verify with their patients,

according to their own criteria.

3.5.1. Benefits of PCT, MCT, CCT

To determine a differential diagnosis, a physician can be supported by his

own PCTs, regardless of the uniqueness or complexity of the patient situation.

In other scenarios, when patients do not arrive at a consultation with only one

type of problem, a physician may conclude multiple diagnoses for a patient

during the same consultation. For these situations, a physician can record a

consultation based on MCTs, and several rules are used to accurate combine

different case types.

Given the high frequency of chronic patients, it is especially relevant to

consider their singularities in order to streamline the recording of chronic con-

ditions. When a patient suffers a chronic condition, the physician has no

trouble finding a diagnosis that describes the patient health condition. How-

ever, the physician must be concerned with asking certain questions, verifying

specific anatomical regions and performing indications that reoccur in the pa-

tient chronic condition. When a physician uses a CCT, an immediate benefit

is that it reminds him of reoccurring aspects, which should be verified with

the patient being evaluated, and also apply to any other patient with the same

chronic condition.

37

3.5.2. Health monitoring

The Health monitoring utility allows a physician to plan the occurrence of

a UT according to a certain frequency. If the Health monitoring tool did not

exist, a UT could only be determined as present or not present in a CT. It

would not model a dynamic property that considers the variable occurrence of

a UT over time, given a certain CT.

3.5.3. Messaging and reminders

The physician can use the message tool to be reminded of certain actions

he must complete for a patient in the future. By using a message in a CT, the

same message is displayed each time the physician evaluates another patient

with the same CT.

Care goals demand physicians to detail additional information when treat-

ing certain patients with specific conditions. In this context, a reminder may

be used in a timely manner, to remind the physician not forgetting to record

the required data for fulfilling care goals.

3.5.4. Interoperability

Although Praxis places a strong focus on product usability, aiming at pro-

viding the best approach to document clinical records, it does not mean that

disregards other key requirements of health context. Such is the case of the

interoperability of information, which has a major relevance in the health area

and Medical Informatics specifically.

3.5.5. Consultation accuracy

Given the ability to reuse clinical information, re-writing texts is avoided,

since the same insights have already been recorded for other patients. After a

reasonable amount of time, Praxis will be able to anticipate a great part of the

physician thinking regarding reoccurring cases. All support is based on the

clinical knowledge learned from the physician user. As a result, the physician

can use his previous records as a checklist, to avoid forgetting certain questions

and to perform all the tasks and indications relevant to the patient condition.

Consequently, Praxis behaves as a clinical tool that helps physician practice

better medicine, and achieve quicker documentation of each consultation.

38

Chapter 4

Clinical knowledge model to

follow physician reasoning

This chapter presents a formal model proposed for representing clinical

knowledge and patient history, including medical records. Specific flows for

address medical consultations scenarios are also presented. The chapter is or-

ganized as follows. Section 4.1 presents all entities which model the clinical

knowledge of physicians. A data structure representing the most relevant in-

formation of each patient is introduced in Section 4.2. Finally, Section 4.3

presents relevant flows that can occur during medical consultations.

4.1. Clinical knowledge base

A bottom-up modeling approach is used to present the proposed clinical

knowledge model. Several entities are defined in order to specify a clinical

knowledge base which describes information of real medical case types. All

entities included in a clinical knowledge base are described in the following

subsections.

4.1.1. Unit of thought

As defined by Low (2015), a unit of thought is a statement that describes

a basic clinical idea. Let UTM a unit of thought registered by physician M.

UTM is denoted as UTM = <ptext, uqcn, uqpt, exph, terms, inuse, ctSchedule,

M>, where ptext denotes a string capable of containing structured or random

data, uqcn indicates if the unit refers to information to be used only in a unique

39

consultation, uqpt indicates if the unit refers to unique information of a specific

patient, exph indicates if the unit contains exclusive data for physician use,

terms detail associations with health terminological standards, inuse denotes if

the unit is in use during a consultation, and ctSchedule indicates the frequency

that a unit appears in a case type. A unit of thought used in a case type will

reappear each time the case type is used, unless a specific frequency is defined

by its ctSchedule attribute.

The set of all units of thought registered by physician M is denoted as

UTM
T . Let UTM

1 = <ptext1, uqcn1, uqpt1, exph1, terms1, inuse1, ctSched-

ule1, M> and UTM
2 = <ptext2, uqcn2, uqpt2, exph2, terms2, inuse2, ctSched-

ule2, M> units of thought registered by physician M. A constraint on units of

thought is defined in Eq. 4.1, implying that each basic clinical idea is repre-

sented by a unique unit of thought.

UTM
1 ∈ UTM

T

UTM
2 ∈ UTM

T

equals(ptext1, ptext2)

⇒ UTM
1 = UTM

2 (4.1)

Considering that text variations do not change the meaning of a basic

clinical idea, an ad-hoc function equals (defined in Eq. 4.2) is necessary to

identify if two phrases represent the same clinical idea. The same clinical idea

can be instanced containing both structured information and random data,

which implies that two different text strings can represent the same clinical

idea.

equals(ptext1, ptext2) =


true, if ptext1 and ptext2 describe the

same clinical idea.

false, otherwise.

(4.2)

4.1.2. Conceptual element

A conceptual element is composed of a set of units of thought grouped to

represent a broader concept. Several attributes are used to model all possible

features of a conceptual element. Let CEM a conceptual element registered by

physician M. CEM is denoted as CEM = <name, display, chron, setDesc>,

where name denotes the name of the element, display indicates the default

display mode of its units of thought, chron indicates if the element refers to

40

a chronic condition, and setDesc denotes a set of possible descriptors of the

conceptual element. The set setDesc = {[desc1, subset1(UTM
T)], ..., [desck,

subsetk(UTM
T)]} is composed by several pairs, each of one is used to model a

possible option to describe a real condition of a conceptual element.

Two constraints are defined on conceptual elements. The constraint pre-

sented in Eq. 4.3 implies that a conceptual element is identified by its name.

CEM
1 =< name1, display1, chron1, setDesc1 >

CEM
2 =< name2, display2, chron2, setDesc2 >

name1 = name2

⇒ CEM
1 = CEM

2 (4.3)

The constraint presented in Eq. 4.4 implies the uniqueness of each descrip-

tor into a conceptual element. Several units of thought can be labeled under

the same descriptor to define an identified sub set, describing a real condition

of an element.

[desc1, subset1(UTM
T)] ∈ setDesc

[desc2, subset2(UTM
T)] ∈ setDesc

desc1 = desc2

⇒ subset1(UTM
T) = subset2(UTM

T) (4.4)

4.1.3. Conceptual component

A conceptual component is composed of a set of conceptual element ref-

erences, grouped to define sections of clinical information. Each conceptual

component represents a typical clinical data section, in which a physician gen-

erally groups the information of a medical consultation.

Let CC M = <id, secType, activeElems> a conceptual component defined

by physician M, identified by its id attribute. The secType attribute is used to

represent the type of a data section, such as physical examination, medicines,

and laboratory indications. Each secType must belogs to ALL-SECTION-

TYPES set, which model all possible sections of patient medical records. The

set activeElems = {[elemName1, activeDesc1], ..., [elemNamek, activeDesck]}
indicates which descriptor is used for each conceptual element referenced in a

conceptual component.

Two constraints are defined on conceptual components domain. The con-

straint presented in Eq. 4.5 implies that a conceptual component is identified

41

by its id attribute.

CCM
1 =< id1, secType1, activeElems1 >

CCM
2 =< id2, secType2, activeElems2 >

id1 = id2

⇒ CCM
1 = CCM

2 (4.5)

A second constraint presented in Eq. 4.6 ensure the referential integrity

of names and descriptors of the active elements, referenced from a conceptual

component.

CCM =< id, secType, activeElems >

[elemName, activeDesc] ∈ activeElems

}
⇒

∃ conceptual element e,

e =< name, ..., setDesc > �
e.name = elemName ∧
∃ d ∈ setDesc,

d.desc = activeDesc

(4.6)

4.1.4. Case type

Several conceptual components can be grouped by a unique name to la-

bel a complex scenario, representing a real case type that can occur during

physician workday. Let CTM a case type registered by physician M. CTM

is denoted as CTM=<name,{CC M
1 , ..., CC M

n }, chron, chronicComponents>,

where name indicates the name of the case type, the set {CC M
1 , ..., CCM

n }
describes a specific group of conceptual components, chron indicates if the case

type is marked as chronic, and chronComponents denotes all components used

to monitor chronic conditions.

Three constraints are defined on case types domain. The constraint pre-

sented in Eq. 4.7 implies that a case type is identified by its name.

CTM
1 =< name1, chron1, comps1, chronComponents1 >

CTM
2 =< name2, chron2, comps2, chronComponents2 >

name1 = name2

⇒ CTM
1 = CTM

2 (4.7)

A second constraints presented in Eq. 4.8 implies that each conceptual

component of a case type models a different section of the clinical information.

42

CTM =< nc, {CCM
1 , ..., CCM

n }, chron, chComps >

CCM
i =< idi, secTypei, subseti) >

CCM
j =< idj , secTypej , subsetj) >

⇒
secTypei = secTypej

⇔

i=j ∀i, j ∈ {1, n}

(4.8)

A third constraints presented in Eq. 4.9 implies that each chronic concep-

tual component models a different section of chronic clinical information.

CTM =< nc, comps, true, {CCM
chron1

, ..., CCM
chronm

} >

CCM
chroni

=< idi, secTypei, subseti) >

CCM
chronj

=< idj , secTypej , subsetj) >

⇒
secTypei = secTypej

⇔

i=j ∀i, j ∈ {1,m}

(4.9)

Finally, Eq. 4.10 defines the clinical knowledge base of a physician M,

formed by all case types registered by the physician M

CKBM =
n⋃

i=1

CTM
i (4.10)

4.1.5. Message Agents

A physician can define message agents for helping communication and

attention during clinical work. A message agent is defined as ma =

<triggerCriteria, name, sender, receiver, text, codeText> where triggerCri-

teria specifies the criteria by which the message is triggered, name denotes

the name of the message agent, sender identifies the sender of the message

agent, receiver identifies the receiver of the message agent, text details the

content of the message agent, and codeText denotes associations of text with

health terminological standards.

Since a message agent can be triggered in several scenarios, a specific data

structured triggerCriteria is used to represent different types of trigger events.

The structure triggerCriteria is defined as triggerCriteria = <caseTypes,

times, condition> where caseTypes denotes an associated set of case types,

times refers to moments, and condition refers to general conditions of trigger.

When a CT is used, all message agents associated with it are triggered.

Furthermore, a message agent can be trigger by a time event, or by any other

condition, such as the age of a patient.

43

4.2. Patient representation

A data structure is used to organize the information of each patient, consid-

ering the most relevant groups of personal data sets. The proposed structure

includes medical records of patient history, and it also considers the chronic

information of each patient.

4.2.1. Patient structure

Each patient is modeled as P = <personalData, MRP , chronicElems,

chronicCaseTypes> where personalData denotes personal data (sush as pa-

tient and family background), MRP denotes all medical records of the patient

P, chronicElems indicates associations with chronic conceptual elements, and

chronicCaseTypes indicates associations with chronic case types. The chron-

icElems set is defined as chronicElems = {[elemName1, chronDesc1], ..., [el-

emNamej, chronDescj]}, and it is used to remember the descriptors of the

elements that describe chronic conditions of a patient. Additionally, the set

chronicCaseTypes={caseTypeName1, ..., caseTypeNamek} is used to remem-

ber all chronic case types associated with a specific patient P.

4.2.2. Patient medical records

The set of medical records of a patient P is denoted by MRP and con-

tains all records included in the medical history of the patient. A medical

record of patient P created at time t is denoted as mrP
t and it is defined as

mrP
t =<content,p,t>, where content is a set of [phrase, unit] pairs, each of

one includes a unit of thought associated with a clinical phrase. Consequently,

MRP= {mrP
t1

, mrP
t2

, mrP
tk
} describe the history of a patient, containing k med-

ical records.

Let mrP
t = <content,p,t> a specific patient medical record, where content

= {[phrase1, unit1], ..., [phrasen, unitn]} is composed by one or more pairs

of clinical information. A function showRecord is used to print the content of

a medical record, taking into account all phrases included in the content of a

medical record. Function showRecord only prints clinical phrases, no unit of

thought is showed.

44

4.2.3. New medical record

Let CKBM
t = {CTM

1 , CTM
2 , ..., CTM

n } the composition of the clinical

knowledge base of physician M at time t. A medical record mrP
t is generated as

a result of the interaction of physician M and patient P, during a consultation

at time t.

Since a physician usually takes a case type CTM
x as basis to record a specific

consultation, a transformation T ∗ can be applied to generate a new medical

record. Consequently, a record mrP
t = T ∗(CTM

x) is created taken into ac-

count the active information of a selected case type. The active information

of a case type is defined by the units of thought with inuse attribute in true.

Transformation T ∗: CKBM → MRP is defined as T ∗(CT) = mr, where mr is

generated by applying Algorithm 1.

Algorithm 1 New medical record of patient P

1: units ← getAllUnitsIncludedIn(CT)
2: content ← ∅
3: for unit in units do
4: if unit.inuse then
5: if not (unit.uqpt or unit.exph) then
6: itemCont ← [copyCurrentText(unit.ptext), unit]
7: content ← content

⋃
{itemCont}

8: end if
9: end if

10: end for
11: mrPt ← <content,P,t>

Algorithm 1 starts by getting all units of thought referenced in a case type

CT (line 1). The algorithm iterates over all referenced units to identify units of

thought marked with inuse attribute (lines 3–4). Besides, units marked with

uqpt or exph attribute are not taken into account for creating a new medical

record (line 5). A new data pair is created for each identified unit (line 6),

each pair includes the identified unit of thought, and a copy of its current

text presentation. All new pairs are joined to build the full content of the

consultation record (line 7). Finally, mrP
t is created as a new medical record,

containing the full description of the consultation of patient P at time t.

45

4.3. Consultation flows

This section presents different flows for address the most relevant scenarios

that arise during medical consultations. These scenarios describe usual situa-

tions of physician workday, including multiple diagnoses, and the attention of

chronic patients.

4.3.1. Starting attention of a patient

The physician starts the attention of patient P by opening a registry editor

where all the information of the new medical consultation will be recorded.

Algorithm 2 details the first steps which occur during a medical consultations.

Algorithm 2 Start attention of patient P

1: showPersonalInfo(P.personalData)
2: showChronicElementDescriptors(P.chronicElems)
3: chronicCTs ← getCaseTypesByNames(P.chronicCaseTypes)
4: if chronicCTs 6= ∅ then
5: All case types included in chronicCTs are suggested to physician
6: Physician select CTM

chron1
, ..., CTM

chronk
to be used as basis

7: CTM
merge is build by merging CTM

chron1
, ..., CTM

chronk
(Algorithm 8)

8: applyCaseType(P, CTM
merge) is called (Algorithm 3)

9: end if
10: Show message agents according its trigger conditions
11: Physician continues with patient attention

Personal information of patient P is loaded at the beginning of Algorithm 2

(line 1) in order to introduce the patient to the physician. All descriptors of

chronic elements associated with the patient are also presented, to remind the

physician the chronic characteristics of the patient being evaluated (line 2).

Furthermore, all chronic case types associated with the patient are detected

(line 3). These chronic case types are suggested to physician, who can select the

chronic case types that are appropriate to being applied into the consultation

(lines 4–9). Before physician continues with patient attention, all message

agents are evaluated, and showed according its trigger conditions (line 10).

4.3.2. Selecting an already defined case type

The selection of an already defined case type allows physician efficiently

reuse previously registered information. Algorithm 3 details how to apply a

46

case type during a medical consultation.

Algorithm 3 applyCaseType(P,CTM)

1: CTM = <name, components, chronic, chronicComponents> is selected
2: if chronic then
3: applyChronicCaseType(P, CTM) (Algorithm 4)
4: else
5: elements ← getAllElementsIncludedIn(components)
6: setUnitsInUse(elements,CTM)
7: end if
8: Show all units with isuse attribute in true
9: Highlight all units with exph attribute in true

10: Show message agents that have CTM as a trigger condition

11: procedure setUnitsInUse(elements,CTM)
12: for element in elements do
13: units ← getAllUnitsIncludedIn(elements)
14: for unit in units do
15: switch ()
16: case unit.exph:
17: unit.inuse = true
18: case isTime(unit.ctSchedule, CTM):
19: unit.inuse = true
20: case element.display ∧ isEmpty(unit.ctSchedule):
21: unit.inuse = true
22: case otherwise:
23: unit.inuse = false
24: end switch
25: end for
26: end for
27: end procedure

Algorithm 3 starts by evaluating the chronic attribute of a case type CTM

(lines 1–2). If the case type is identified as chronic, a specific method for apply-

ing a chronic case is called (line 3). Otherwise, all elements referenced in the

components attribute are determined, and its units of thought are marked as

in use according setUnitsInUse auxiliary procedure. The auxiliary procedure

encapsulates the logic of how units of thought are activated. The algorithm

continues by showing all units marked as in use, and highlighting the units

that are exclusive for physician use (lines 8–9). Finally, each message agent

that has CTM as a trigger condition is presented to the physician (line 10).

Procedure setUnitsInUse iterates over all conceptual elements of a case

47

type (line 12). All units included in each conceptual element are identified

(line 13), and each unit of thought is marked as in use according the values of

its attributes (lines 14–25).

4.3.3. Chronic patients flow

A case type CTM can be marked as a chronic case type CTM
chron at any

time. When a CTM
chron is marked as chronic, its chron attribute is activated

and its chronicComponents attribute is initialized with an empty set. The

chronic components are defined the first time that the case type is used to

monitor a chronic patient. Algorithm 4 details how a physician can apply a

chronic case type CTM
chron.

Algorithm 4 applyChronicCaseType(P, CTM
chron)

1: A CTM
chron = <name, components, true, chronicComponents> is selected

2: if name /∈ P.chronicCaseTypes then
3: elements ← getAllElementsIncludedIn(components)
4: setUnitsInUse(elements,CTM

chron)
5: else
6: if chronicComponents = ∅ then
7: Evolution component CCEvolution emerges
8: Physician defines all conceptual elements included in CCEvolution

9: CCothers can be defined to better monitor the chronic condition
10: CCsnew = CCEvolution

⋃
CCothers

11: newMonitorElems ← getAllElementsIncludedIn(CCsnew)
12: newChronUnits ← getAllUnitsIncludedIn(newMonitorElems)
13: for newChronUnit in newChronUnits do
14: Physician needs to specify the frequency of newChronUnit
15: newChronUnit.ctSchedule is updated
16: end for
17: chronicComponents ← CCsnew the chronic case type is updated
18: end if
19: elements ← getAllElementsIncludedIn(chronicComponents)
20: setUnitsInUse(elements,CTM

chron)
21: end if

Algorithm 4 analyzes if it is the first time that a chronic case type CTM
chron

is used with a patient being evaluated (lines 1–2). In that case, elements refer-

enced in usual conceptual components are determined, and its units of thought

are activated by calling setUnitsInUse procedure (lines 3–4). If CTM
chron was

used in any previous consultation of the same patient (line 6), then its chronic

48

components are taken into account each time physician decides to apply the

case type, since chronic components are used to monitor the evolution of a

chronic condition. However, the first time that CTM
chron is used to monitor the

evolution of a patient, the physician needs to define all entities that he wants

to use as monitoring items (lines 7–12). In addition, it is mandatory that

physician specify the frequency of each new unit of thought, included in an el-

ement of a chronic component (lines 13–16). All entities defined in new chronic

components are used to monitor the patient chronic condition in subsequent

consultations (line 17). Finally, the units of thought of the elements refer-

enced in chronic components are marked as in use by applying setUnitsInUse

procedure (lines 19–20).

4.3.4. Usual attention flow

During an attention flow, a physician can take advantage of an already

registered case type. Algorithm 5 shows how a case type can be used to record

a frequent medical consultation scenario.

Algorithm 5 Usual attention flow of a patient P

1: CTM ← selectSimilarCT()
2: applyCaseType(P, CTM) is called
3: Physician M define CT′M by modifying the selected CTM

4: personalInfo ← getUqptUnits(CT′M)
5: P.personalData.add(personalInfo)
6: CT′M ← removeUqptUnits(CT′M) units marked with uqpt are removed
7: mrPt ← T∗(CT′M)
8: MRP ← MRP

⋃
{mrPt }

9: chronElemts ← getAllActiveChonicElementsInludedIn(CT′M)
10: P.chronicElems.add(chronElemts)
11: if isChronic(CT′M) then
12: P.chronicCaseTypes.add(CT′M .name)
13: end if
14: CT′M ← removeUqcnUnits(CT′M) units marked with uqcn are removed
15: if CT′M is saved as an improvement then
16: CTM ← CT′M

17: CKBM is updated with the new version of CTM

18: else
19: CTM

new ← CT′M is saved as a new case type
20: CKBM ← CKBM

⋃
{CTM

new} the base is incremented
21: end if

49

In Algorithm 5, a procedure waits until the physician selects a case type and

applies it to current consultation (lines 1–2). After a case type is applied, the

physician can also make modifications in order to describe accurate information

of the entire clinical meeting (line 3). Each unit of thought marked as unique to

the patient being evaluated is stored as personal data, and is removed of current

case type (lines 4–6). The algorithm continues by applying T ∗ transformation,

which generates a new medical record for patient history. (lines 7–8). All

chronic conceptual elements used in the case type are associated with the

patient. Furthermore, if the case type is chronic, it is associated as permanent

patient data (lines 9–13). Each unit of thought marked as unique to current

consultation is removed before updating the CKBM of the physician (line 14).

To update CKBM , physician needs to specify if the current case type refers to

a new workday scenario, or it is only an improvement over previous selected

case type (lines 14–21).

Two data sets are modified after an usual attention flow, physician CKBM

and patient history, including a MRP increment.

4.3.5. New case type flow

Algorithm 6 details the flow followed by the physician when he needs to

address a new case type which is not included in his CKB.

Since there is no case type to be reused, Algorithm 6 needs to create an

empty case type in which the new workday scenario can be detailed (lines 1–2).

To define a new case type CTM
new, physician can re-use any predefined unit of

thought, and can also create units of thought specifying new clinical phrases.

Furthermore, predefined conceptual elements can be re-used and new elements

can be created (lines 3–4). Each element defined by the physician is referenced

from one clinical section. Therefore, new conceptual components are created

in order to group elements sharing the same section type (lines 5–11). It is

mandatory that physician assign a name to the new clinical case type. The

case type can also be marked as chronic, and in that case physician needs to

specify the chronic attribute of each new element, created while defining the

new case type (lines 12–21). All units of thought marked as unique to the

patient are stored as personal data, and are removed from CTM
new (lines 22–

24). Then, T ∗ transformation is applied to generate a new medical record in

patient history (lines 25–26). All chronic conceptual elements of CTM
new are

50

associated with the patient, and if the case type is chronic it is associated as a

permanent patient data (lines 27–31). Finally, all units of thought marked as

unique to current consultation are removed from the case type, and the clinical

data base of the physician is enriched, by including the new case type.

Algorithm 6 New case type flow for the attention of patient P

1: There is no CTM selected by physician
2: CTM

new ← <“new-name”, ∅, false, ∅ > is created automatically
3: Physician creates new units UTsnew and new elements CEsnew
4: Physician defines sections, by using UTsnew and CEsnew or pre-defined
5: secTypes ← ALL-SECTION-TYPES
6: newComponents ← ∅
7: for secTypei in secTypes do
8: activeElemsi ← [elementName, activeDescriptor] pairs in sectioni

9: CCnewi
← < maxCCId() + 1, secTypei, activeElemsi >

10: newComponents ← newComponents
⋃
{CCnewi

}
11: end for
12: Physician assigns a unique name to attribute name of CTM

new

13: Physician can mark CTM
new as chronic

14: if CTM
new is marked as chronic then

15: for elem in CEsnew do
16: Physician needs to specify the value of elem.chron
17: end for
18: CTM

new ← <name, newComponents, true, ∅ >
19: else
20: CTM

new ← <name, newComponents, false, ∅ >
21: end if
22: personalInfo ← getUqptUnits(CTM

new)
23: P.personalData.add(personalInfo)
24: CTM

new ← removeUqptUnits(CTM
new)

25: mrPt ← T∗(CTM
new)

26: MRP ← MRP
⋃
{mrPt }

27: chronElemts ← getAllActiveChonicElementsInludedIn(CTM
new)

28: P.chronicElems.add(chronElemts)
29: if isChronic(CTM

new) then
30: P.chronicCaseTypes.add(CTM

new.name)
31: end if
32: CTM

new ← removeUqcnUnits(CTM
new)

33: CKBM ← CKBM
⋃
{CTM

new} the base is incremented

51

4.3.6. Temporal case type flow

By applying a temporal case type, the history of patient P is updated, and

MRP set is incremented with a new patient medical record. However, there is

no change in physician CKBM . Algorithm 7 details the use of a temporal case

type.

Algorithm 7 Temporal case type flow for the attention of patient P

1: CTM ← selectSimilarCT()
2: applyCaseType(P, CTM) is called
3: Physician M define CT′M by modifying the selected CTM

4: Physician M marks CT′M as a temporal case type
5: personalInfo ← getUqptUnits(CT′M)
6: P.personalData.add(personalInfo)
7: CT′M ← removeUqptUnits(CT′M)
8: mrPt ← T∗(CT′M)
9: MRP ← MRP

⋃
{mrPt }

10: chronElemts ← getAllActiveChonicElementsInludedIn(CT′M)
11: P.chronicElems.add(chronElemts)
12: CT′M is deleted

Algorithm 7 is triggered after physician assigns a temporal mark over an

applied and modified case type (lines 1–4). As any other case type, all units

marked as unique to the patient are stored as personal data, and are removed

from the temporal case type (lines 5–7). T ∗ transformation is also applied

to create a new medical record (lines 8–9). Each chronic conceptual element

referenced in the temporal case is permanently associated with the patient

being evaluated (lines 10–11). The temporal case type is finally removed,

since it is marked to be not re-used (line 12).

4.3.7. Multiple case types flow

A physician can use more than one case type as basis during the same

medical consultation. Several rules are used to combine all conceptual com-

ponents of each case type involved. To combine conceptual components, their

active conceptual elements are accurate merged. The merge process takes into

account the active elements described in usual components, and active ele-

ments described in chronic components. Algorithm 8 details the method used

to merge different case types.

52

Algorithm 8 Multiple case types flow for the attention of patient P

1: CTM
1 ← selectSimilarCT()

2: CTM
2 ← selectSimilarCT()

3: comps1 ← getAllComponents(CTM
1)

4: comps2 ← getAllComponents(CTM
2)

5: compsmerge ← merge(comps1, comps2)
6: chronComps1 ← getAllChronicComponents(CTM

1)
7: chronComps2 ← getAllChronicComponents(CTM

2)
8: chronCompsmerge ← merge(chronComps1, chronComps1)
9: namemerge ← concat(CT1.name,CT2.name)

10: if chronCompsmerge 6= ∅ then
11: CTM

merge = <namemerge,compsmerge, true, chronCompsmerge >
12: else
13: CTM

merge = <namemerge,compsmerge, false, ∅ >
14: end if
15: CTM

merge is auto-selected
16: applyCaseType(P, CTM

merge) is called
17: Physician M define CT′Mmerge by modifying CTM

merge.
18: personalInfo ← getUqptUnits(CT′Mmerge)
19: P.personalData.add(personalInfo)
20: CT′Mmerge ← removeUqptUnits(CT′Mmerge)
21: mrPt ← T∗(CT′Mmerge)
22: MRP ← MRP

⋃
{mrPt }

23: chronElemts ← getAllActiveChonicElementsInludedIn(CT′Mmerge)
24: P.chronicElems.add(chronElemts)
25: if isChronic(CTM

1) then
26: P.chronicCaseTypes.add(CTM

1 .name)
27: end if
28: if isChronic(CTM

2) then
29: P.chronicCaseTypes.add(CTM

2 .name)
30: end if
31: CT′Mmerge is deleted

Algorithm 8 starts by identifying the conceptual components included in

each case type (lines 1–4). An ad-hoc merge function is used to combine all

identified components (line 5). Function merge it is also applied over chronic

conceptual components (lines 6–8). The algorithm continues by creating a

case type CTM
merge, which include all merged components (lines 9–14). Then,

the case type is applied and can be modified by the physician (lines 15–17).

Each unit of thought marked as unique to the patient is taken into account as

usual, it is stored as a personal data and it is removed from the clinical case

53

type (lines 18–20). Likewise, a new medical record is created by applying T ∗

transformation (lines 21–22). Each chronic conceptual element referenced in

CTM
merge is permanently associated with the patient being evaluated, as well

as any original chronic case type (lines 23–30). Finally, the used case type is

deleted after concluding the consultation (line 31).

The function used to combine conceptual elements of two different com-

ponents is detailed in Algorithm 9. The proposed merge function prioritizes

elements with abnormal descriptors, over those with normal descriptors.

Function merge starts by identifying all types of clinical data sections,

present in conceptual component parameters (line 2). The function iterates

over all identified section types, in order to create new conceptual components

(line 4). In each iteration, all elements referenced in each conceptual compo-

nent are identified by their names (lines 5–8). When an element is used in a

conceptual component, there is a pair [name, descriptor] that indicates which

descriptor is defined as active in the conceptual component. Consequently, it

is necessary to determine which descriptor is selected for an element present

in more than one conceptual component (lines 9–13). Conceptual elements of

components sharing the same section type are combined by prioritizing ab-

normal descriptors (lines 14–20). If an element is activated with abnormal

descriptors in two different conceptual components, then the units of thought

included in each descriptor are joined. All units of thought are combined in

order to define a new descriptor, describing both abnormal conditions together

(lines 21–32). If an element is only present in one conceptual component, then

its active descriptor is included as a reference into the merged conceptual com-

ponent (lines 33–38). After all iterations are concluded, the set of all merged

conceptual components are returned (line 41).

54

Algorithm 9 Merge conceptual components function

1: function merge(comps1, comps2): componentsmerge

2: secTypes ← allSectionTypes(comps1)
⋃

allSectionTypes(comps2)
3: componentsmerge ← ∅
4: for secType in secTypes do
5: compSec1 ← getComponentBySectionType(secType, comps1)
6: compSec2 ← getComponentBySectionType(secType, comps2)
7: elNames1 ← getAllNamesOfActiveElements(compSec1)
8: elNames2 ← getAllNamesOfActiveElements(compSec2)
9: elNamescommon ← {elNames1

⋂
elNames2}

10: elemDescscommon ← ∅
11: for comElemName in elNamescommon do
12: activeDesc1 ← getActiveDescriptor(comElemName, compSec1)
13: activeDesc2 ← getActiveDescriptor(comElemName, compSec2)
14: switch ()
15: case activeDesc1 = Normal ∧ activeDesc2 = Normal:
16: elemDescmerge ← activeDesc1, activeDesc1 = activeDesc2
17: case activeDesc1 = Normal ∧ activeDesc2 6=Normal:
18: elemDescmerge ← activeDesc2, only activeDesc2 it is abnormal
19: case activeDesc1 6= Normal ∧ activeDesc2 = Normal:
20: elemDescmerge ← activeDesc1, only activeDesc1 it is abnormal
21: case activeDesc1 6= Normal ∧ activeDesc2 6= Normal:
22: comElem ← getElementByName(comElemName)
23: comSetDesc ← comElem.setDesc
24: units1 ← getUnitsByDescriptor(activeDesc1,comSetDesc)
25: units2 ← getUnitsByDescriptor(activeDesc2,comSetDesc)
26: bothDescs ← concat(activeDesc1, activeDesc2)
27: unionPairDesc ← [bothDescs, units1

⋃
units2]

28: comElem.setDesc ← comElem.setDesc
⋃
{ unionPairDesc}

29: elemDescmerge ← bothDescs
30: end switch
31: elemDescscommon ← elemDescscommon

⋃
{elemDescmerge}

32: end for
33: elNamesdisj1 ← elNames1 - {elNames1

⋂
elNames2}

34: elemDescsdisj1 ← getActiveElemsByName(elNamesdisj1 , compSec1)
35: elNamesdisj2 ← elNames2 - {elNames1

⋂
elNames2}

36: elemDescsdisj2 ← getActiveElemsByName(elNamesdisj2 , compSec2)
37: elemDescsall ← elemsDescscommon

⋃
elemDescsdisj1

⋃
elemDescsdisj2

38: CCmerge = <maxCCId() + 1, secType, elemDescsall >
39: componentsmerge ← componentsmerge

⋃
CCmerge

40: end for
41: return componentsmerge

42: end function

55

Chapter 5

Instance-based learning

This chapter presents a learning method proposed to generate suggestions

for physicians. The proposed method is based on an ad-hoc similarity metric,

designed to compare the similarity between clinical case types. The chapter is

organized as follows. Section 5.1 introduces the learning method. The simi-

larity metric used by the proposed method is detailed in Section 5.2. Finally,

Section 5.3 presents the main characteristic of the metric implementation.

5.1. Instance-based learning method

An instance-based learning method is designed with the aim to provide

suggestions for physicians. The proposed method takes into account the clin-

ical knowledge base of a physician, in order to present suggestions based on

previously-defined case types. A register editor where a physician can take

advantage of the proposed instance-based learning method is also introduced.

5.1.1. Register editor

The register editor is an interface in which a physician can register a con-

sultation appointment. The register editor presents personal information of

the patient being evaluated, and includes an area for writing all details of a

medical consultation. The main features of the register editor are illustrated

in Figure 5.1, including a list of case type suggestions.

The input area of the register editor is designed with the aim of registering a

consultation in an organized structure, grouping information by clinical section

56

Figure 5.1: Main features of register editor.

types. When a physician writes in the input area, a case type CTcurrent is

automatically created, based on the information included in each section type.

As a relevant feature, a list of similar case types is included in the register

editor as suggestions for the physician. The suggested list is based on the

top best values of a similarity metric, applied to compare the information of

CTcurrent against all case types previously registered.

5.1.2. Learning method

A learning method is applied to determine the case types that best match

with the clinical scenario of the patient being evaluated, according to an ad-

hock similarity metric. A list of similar case types is suggested each time the

physician modifies the information of the patient being evaluated. The list of

similar case types is updated when introducing or removing any clinical phase

during a medical consultation.

The proposed learning method implements a lazy approach (Mitchell,

1997), since the training stage of learning is delayed until a new case type

draft must be evaluated. To evaluate a new case type draft, all previously-

defined case types are processed as training examples, and a similarity metric

is applied to determine the most similar candidates. Algorithm 10 details how

57

the instance-based learning method is implemented, seeking to suggest similar

case types.

Algorithm 10 Instance-based learning method

1: CTcurrent ← new CT(registerEditor.content)
2: CTcurrent ← removeNonMeaningfulUnits(CTcurrent)
3: CTcurrent ← removeDuplicateUnits(CTcurrent)
4: topBest ← Initialize array with t empty values
5: for CTi in CKBM do
6: similarityMetric ← similarity(CTcurrent,CTi)
7: if similarityMetric is better that worstSimilarity(topBest) then
8: topBest ← replaceWorst(topBest,CTi)
9: end if

10: end for
11: topBest ← removeEmptyValues(topBest)
12: return topBest

The learning method described in Algorithm 10 is triggered each time the

physician modifies any aspect of the consultation being evaluated. An auxil-

iary case type CTcurrent is created based on the information detailed by the

physician in his register editor (line 1). Sentences without any meaningful

word are not taken into account by the learning method (line 2). A step to

remove duplicate units of thought is applied, since a physician could write du-

plicate clinical phrases in his register editor (line 3). Moreover, an array used

to identify top best similarity metrics is initialized with empty values (line 4).

The algorithm continues by iterating over all case types included in the physi-

cian clinical knowledge base (line 5). For each iteration, the similarity between

CTcurrent and any other case type is calculated in order to update the array of

top best metrics (lines 6–9). Finally, the case types with top best metrics are

returned as suggestions to the physician (lines 11–12).

5.1.3. Using suggested case types

A physician can select a suggested case type as a basis of writing a medical

consultation. After a case type is applied, the input area of the register editor

is updated by using the information defined in the selected case type.

By using suggested case types, previously registered phases are re-used and

the time spent writing the details of a consultation is reduced. Suggested case

types can also remind physicians to verify important clinical aspects of their

58

patients. Moreover, taking advantage of previously written sentences is useful

when physicians need to address recurrent aspects of chronic patients.

5.2. Similarity metric

A similarity metric is introduced in order to compare two case types of a

clinical knowledge base. The proposed metric takes into account the similarity

between conceptual components of different case types. Consequently, the sim-

ilarity value between two case types is determined by the weighted similarities

of their conceptual components.

5.2.1. Similarity metric definition

Sadegh-Zadeh (2015) introduced the concept of diagnostic relevance, which

applies fuzzy logic to evaluate the relevance of causal events associated with

a clinical diagnosis. The proposed method is based on a similar idea, where

the concept of medical relevance is considered to evaluate the relevance of

conceptual components associated with a clinical case type.

Let compi,sec a conceptual component of case type CT i defined with sec

section type, where sec belongs to ALL-SECTION-TYPES. The set ALL-

SECTION-TYPES is introduced in chapter 4 as a set that defines all possible

clinical sections of patient medical records. The similarity between two case

types is denoted as similarity, and is defined by Eq. 5.1.

similarity(CT1, CT2) =
∑
sec

wsec×similarityCCsec(comp1,sec, comp2,sec) (5.1)

In Eq. 5.1, each wsec defines the weight of a component with sec section

type. Consequently, the conceptual components of case types influence the

similarity metric according to their sec section type. The similarity weight of

a clinical section type is determined by its medical relevance. Eq. 5.2 shows how

medical relevance is used to define the weight of each section type belonging

to ALL-SECTION-TYPES = {sec1, ..., secn}.

Wsec =
medRelevance(sec)∑secn

sec1
medRelevance(seci)

(5.2)

The medical relevance of clinical section types must be defined based on

59

background knowledge of the health area. Accurate weights of conceptual

components provide a mechanism for reducing the impact of irrelevant features

in the similarity metric (Mitchell, 1997). As an example, health-background

knowledge suggests that the section for excuse notes should weigh less than

the diagnosis section.

The following subsection presents the similarityCC function, introduced in

Eq. 5.1 for comparing two conceptual components of different case types.

5.2.2. Similarity between components

To compare conceptual components, the similarity metric takes into ac-

count the units of thought included in all elements of conceptual components.

The similarity between conceptual components is defined by Eq. 5.3, which is

aimed at comparing components sharing the same section type sec.

similarityCCsec(cc1, cc2) =

{
0, if cc1.secType 6= sec ∨ cc2.secType 6= sec

includedUTs(units(cc1), units(cc2)), otherwise
(5.3)

Function includedUTs : UT×UT → [-1,1] is applied to compare two sets

of units of thought. Eq. 5.4 presents includedUTs by considering different

scenarios.

includedUTs(units1, units2) =


0, if units1 = ∅

-1, if units1 6= ∅ ∧ units2 = ∅
max{

∑
u1∈units1

belongs(u1,units2)
|units2| , -1}, otherwise

(5.4)

If the first parameter units1 of function includedUTs is an empty set, there

is no unit of thought that can contribute as similarity data, then zero value

is returned. Another exceptional case occurs when units2 does not describe

any information. If the second parameter is an empty set, the worst value of

similarity must be returned because units1 details clinical data not considered

by units2. A complex scenario arises when function includedUTs evaluates

non-empty parameters. In that case, each unit of units1 is analyzed in order to

evaluate its inclusion into units2, and a positive weight is determined for units

that belong to both sets. In addition, a limit of maximum deference could be

applied if units1 and units2 are significantly different and units1 is bigger than

units2.

60

Function belongs for units of thought.

An auxiliary function belongs(unit, units) presented by Eq. 5.5 is required

to determine if a specific unit of thought belongs to a set of units. A unit that

contradict the ideas represented by the units set is negatively weighted.

belongs(unit, units) =

 1, if ∃ usame ∈ units �equals(unit, usame)

-1, otherwise.
(5.5)

5.2.3. Similarity metric algorithm

The metric detailed in Algorithm 11 calculates the similarity of a case type

CTcurrent regarding any other case type. To achieve the final value of the

similarity metric, Algorithm 11 needs to calculate similarity values of several

conceptual components.

Algorithm 11 starts by initializing the similarity metric with a neutral

value (line 2). Then, all section types of conceptual components included in

analyzed case types are identified (line 3). After identifying the section types

that influence the similarity metric, a relative weight factor is determined in

order to accurately weigh the influence of each identified section type (line 4).

Each section type with a positive weight of similarity is taken into account to

calculate the value of the metric (lines 5–6).

For each identified section type, the similarity of components sharing the

same section type must be calculated. A cache containing values of similarity

between conceptual components is used to improve the performance of the

proposed metric (lines 7–9). To calculate the similarity between conceptual

components, the sets of units of thought included in each component are deter-

mined. Algorithm 11 implements the rules introduced by Eq. 5.4 for calculating

the similarity between two sets of units of thought, including the general sce-

nario (lines 15–24) for non-empty sets, and exceptional scenarios (line 26 and

line 29) to address singular situations of empty sets. Moreover, the calculated

value of component similarity is cached, to be used in the future (line 31). The

partial value of the similarity metric is updated after calculating the similarity

between each pair of conceptual components. For each pair of components,

the partial similarity is affected by the similarity of the components according

to a relative weight factor (line 33).

61

Algorithm 11 Similarity metric

1: function similarity(CTcurrent, CTi)
2: similarity ← 0
3: involvedSecTypes ← sectionTypesOf(CTcurrent)

⋃
sectionTypesOf(CTi)

4: relativeWeight ← relativeWeightFactor(involvedSecTypes)
5: for sec in involvedSecTypes do
6: if sec.weight 6= 0 then
7: cachedSimilarityCC ← getSimilarityCCValueFromCache(sec, CTi)
8: if cachedSimilarityCC is hitted then
9: similarityCC ← cachedSimilarityCC

10: else
11: unitscurrent ← getUnitsBySectionType(sec,CTcurrent)
12: unitsi ← getUnitsBySectionType(sec,CTi)
13: if unitscurrent 6= ∅ then
14: if unitsi 6= ∅ then
15: includedUTs ← 0
16: for unitcurrent in unitscurrent do
17: belongs ← belongs(unitcurrent, unitsi)
18: if belongs then
19: includedUTs ← includedUTs + 1

|unitsi|
20: else
21: includedUTs ← includedUTs − 1

|unitsi|
22: end if
23: end for
24: similarityCC ← max{includedUTs, -1}
25: else
26: similarityCC ← -1
27: end if
28: else
29: similarityCC ← 0
30: end if
31: putSimilarityCCValueInCache(similarityCC,sec,CTi)
32: end if
33: similarity ← similarity + (relativeWeight * similarityCC)
34: bestRemain ← upperBound(sec, involvedSecTypes)
35: if similarity + bestRemain < worstSimilarity(topBest) then
36: invalidateSimilarityCCValuesOnCache(CTi)
37: throw discard-low-similarity
38: end if
39: end if
40: end for
41: return similarity

62

To detect low values of similarity, an upper bound is calculated in order to

determine a maximum possible value of similarity (line 34). If the similarity

between two case types is detected early as low, it is not required to calculate

its exact value. All case types with low similarity are discarded early, and their

partial values of component similarity are removed from the cache as they are

not fully calculated (lines 35–37). At last, a final value of similarity is returned

after iterating over all involved section types (line 41).

5.3. Implementation of similarity metric

The similarity metric is an essential feature of the proposed learning

method. The metric must be able to accurately compare the similarity be-

tween clinical case types, and it also needs to execute as quickly as possible.

The similarity metric is highly demanded in virtue of the lazy approach of

the learning method. Therefore, several techniques of indexing and cache are

applied for reducing the metric execution time. All optimizations implemented

to reduce the execution time of the similarity metric are presented in the

following subsections.

5.3.1. Compare units by canonical form

The operator equal for units of thought is used to determine if two different

sentences represent the same clinical idea. To implement the equal operator,

a canonical transformation is applied over the units being compared.

Two transformations are applied by comparing a pair of units of thought.

For each unit of thought, structured information and random data are re-

moved, in order to achieve the canonical form. Finally, a raw string compari-

son between both canonical forms is evaluated. Original units of thought are

identified as equals only if they coincide in their canonical form.

5.3.2. Zero similarity value

Function similarity(CT 1, CT 2) is called to calculate the similarity between

a case type CT1 and another case type CT2. Both case types are composed

by conceptual components that influence the similarity metric according to its

section type weights. However, an empty component of CT1 cannot provide

63

similarity information since it does not have associations with units of thought.

If a conceptual component of CT1 is empty, its similarity in regard to any other

component is zero. No calculation is done over the empty components of CT1,

rather all computational effort is performed over its non-empty components.

5.3.3. Comparing with empty components

All components of a case type CT1 are analyzed when calculating the simi-

larity of CT1 in regard to another case type CT2. Each conceptual component

of CT1 should be compared against a component of CT2 with the same section

type. If CT2 does not include a conceptual component with the same section

type, then a value representing the bigger difference of similarity is returned

without performing additional calculations.

5.3.4. Discard non-promising candidates

The proposed learning method is designed to suggest the best case types

that can be applied during a medical consultation. Top best case types are

identified according to best similarity metric values, and only t best case types

are presented to the physician.

The similarity function separates the first k section types from the rest of

the ALL-SECTION-TYPES set, as described in Eq. 5.6

similarity(CT1, CT2) =

secN∑
sec=sec1

wsec × similarityCCsec

=

seck∑
sec=sec1

wsec × similarityCCsec +

secN∑
sec=seck+1

wsec × similarityCCsec

≤
seck∑

sec=sec1

wsec × similarityCCsec +

secN∑
sec=seck+1

wsec

=

seck∑
sec=sec1

wsec × similarityCCsec + Rk+1
constant

(5.6)

Eq. 5.7 presents an upper bound inferred by simplifying 5.6, which can be

used for discarding case types with low similarity values.

similarity(CT1, CT2) ≤
seck∑

sec=sec1

wsec × similarityCCsec + Rk+1
constant (5.7)

64

Several component similarity values similarityCCs need to be computed to

get the final value of similarity(CT 1, CT 2). An upper bound is identified after

determining the value of similarityCC seck . After calculating the similarity of

the k-th conceptual component, it is possible to use an upper bound to discard

a case type with a low similarity value. Each case type whose upper bound of

similarity is lower than the worst element of the top best metrics is considered

a non-promising candidate, and no more computational effort is expended to

calculate its final similarity value.

5.3.5. Cache of previous similarity values

The proposed similarity metric provides a mechanism for comparing dif-

ferent case types. However, the metric is not based on case types themselves,

but on their conceptual components. Due to the high need of obtaining sim-

ilarities between conceptual components, a cache is designed for containing

pre-calculated values of component similarities. Figure 5.2 shows the struc-

ture used to maintain recent values of similarities, and how similarity values

are cached for each case type included in the clinical knowledge base of a physi-

cian. The proposed structure is able to cache the last value of similarity of all

conceptual components of each case type.

After evaluating the similarity between a specific case type in regard to

any other case type, all values of component similarities are stored in the

cache. Figure 5.3 introduces a scenario in which a “Case type A” is slightly

modified, by only changing the information described in one of its conceptual

components. Several highlighted values of component similarities are obtained

from the cache. Furthermore, a high cache hit ratio should be achieved after

re-using any other case type and applying a few modifications.

65

Figure 5.2: Cache structure for similarity between components. The clinical knowl-
edge base is composed of case types, each one containing similarity cached values of
its conceptual components.

(a) First similarity evaluation. (b) Similarity evaluation with cache.

Figure 5.3: Use of similarity cache values.

66

Chapter 6

Experimental analysis

This chapter presents the results of the experimental analysis performed

to evaluate the proposed approach. In section 6.1, the problem instances used

in the experiments are introduced, including an explanation of their building

process. The parameter settings used in the experimental evaluation are pre-

sented in section 6.2. Section 6.3 details the execution times of the proposed

learning method when solving problem instances considering different data

sizes. In section 6.4, the main results of a prototype developed for testing the

feasibility of the approach are described. Section 6.5 presents important health

terminology standards which were included to achieve clinical information in-

teroperability. Finally, section 6.6 presents a summary of the main results of

the proposed approach.

6.1. Problem instances

The source Clinical cases in primary care (Casos cĺınicos en atención pri-

maria) (Sociedad Andaluza de Medicina Familiar y Comunitaria, 2017) was

used as a basis for evaluating the proposed approach. The source is a multi-

authored publication that covers a wide range of clinical scenarios of primary

care.

6.1.1. Prerequisites for building case type instances

The collaboration of advanced medical students was requested with the

intention of registering as many clinical scenarios as possible. Students were

instructed to record the primary care scenarios described in Clinical cases

67

in primary care as new clinical CTs. In order to group all the information

recorded, it was necessary to implement procedures for exchanging clinical

CTs. The export and import procedures used to exchange CTs are detailed in

the following subsections.

Export a case type

A procedure to export a given CT was implemented. The procedure

extracts a CT from a specific clinical knowledge base CKB, and it also

anonymizes any information that refers to the person who wrote (owner) the

CT.

Import a case type

The import procedure consolidates the information of a specific CT into

a target CKB. A new CT is inserted into the target CKB, replacing any

anonymized reference of the original owner with the person who owns the

target CKB. Importing a CT is a complex procedure, which must avoid the

generation of duplicate units of thought, and has to merge the conceptual

elements of the new CT with those existing in the target CKB.

6.1.2. Building case type instances

The set of clinical cases specified in the publication Clinical cases in pri-

mary care was distributed to be evaluated by 50 advanced medical students.

Each student had to evaluate three different cases, and each clinical case was

assigned to at least one student. Furthermore, each student was instructed to

contribute two additional clinical cases, defined as variants of those presented

in the clinical source. All scenarios of primary care detailed in the clinical

source were successfully registered by the group of students, including variants

of repeated clinical scenarios. Algorithm 12 details how a single CKB was

loaded with 250 scenarios of primary care, based on information registered by

students.

Algorithm 12 starts by initializing all CKBs of the students (STUDENT-

LIST) selected for recording new CTs (lines 1–3). Each student is expected to

treat three fictitious patients suffering from one of the specific conditions of the

clinical source (lines 5–6). Moreover, two variants contributed by each student

are also registered (line 9 and line 11). Therefore, the CKB of each student

68

is enriched with five new CTs (line 7, line 10 and line 12). The algorithm

continues by initializing a single CKBall that groups all information recorded

by all students (line 14). Each registered CT is exported using the export

procedure, and the import procedure is applied to consolidate the exported

CT into the CKBall (lines 15–21). Finally, the CKBall which contains all the

250 registered CTs (five contributed by each of the 50 students) is returned

(line 22).

Algorithm 12 Building case types

1: for i = 1 to length(STUDENT-LIST) do
2: studenti ← STUDENT-LIST[i]
3: CKBstudenti ← ∅
4: for j = 1 to 3 do
5: k-index ← mod(3(i-1)+j, length(CASE-SOURCE))
6: CTij ← studenti records case number k-index of CASE-SOURCE
7: CKBstudenti ← CKBstudenti

⋃
{CTij}

8: end for
9: CTiv1

← first variant of case type included in CKBstudenti

10: CKBstudenti ← CKBstudenti

⋃
{CTiv1

}
11: CTiv2

← second variant of case type included in CKBstudenti

12: CKBstudenti ← CKBstudenti

⋃
{CTiv2

}
13: end for
14: CKBall ← ∅
15: for i = 1 to length(STUDENT-LIST) do
16: studenti ← STUDENT-LIST[i]
17: for j = 1 to 5 do
18: CTijexported ← export(j,CKBstudenti)
19: import(CTijexported, CKBall)
20: end for
21: end for
22: return CKBall

6.2. Parameter settings of similarity weight

For the purposes of the experimental evaluation, the set of clinical section

types was defined following the Uruguayan health model. The set of clini-

cal section types was defined as ALL-SECTION-TYPES = {Diagnosis, Con-

sultation reason, Current illness, Physical examination, Medication, Studies,

Procedures, Referral, Message agents, Advisors, Excuse notes, Observations}

69

The similarity weight of a clinical section type is given by its medical rele-

vance. A simple medical relevance criteria was applied to give greater weight

to the most important section types. Four levels of importance were defined in

order to consider qualitative ranges of medical relevance. The level scale used

to define medical relevance was: very important, fairly important, important,

slightly important. Table 6.1 presents the weight values of the clinical section

types used in the experimental evaluation, grouped by level of medical rele-

vance. Table 6.1 shows that the weight of the diagnosis section was defined

with a high value of W Diagnosis = 0.16. On contrary, the excuse notes section

was defined with a lower weight of W Excuses = 0.04.

Table 6.1: Weight of conceptual component types.

Very important Fairly important Important Slightly important
(weight 0.16) (weight 0.12) (weight 0.08) (weight 0.04)

Diagnosis Consultation reason Medication Message agents
Current illness Studies Advisors
Physical examination Procedures Excuse notes

Referral Observations

All weights presented in Table 6.1 influence the calculation of the similarity

metric of the learning method. Eq 6.1 shows the consistency of presented

weights to ponder the similarity metric.

secn∑
sec1

Wsec =
∑

very important

Wv +
∑

fairly important

Wf +
∑

Important

Wi +
∑

slightly important

Ws

secn∑
sec1

Wsec = 0.16 + 3 · 0.12 + 4 · 0.08 + 4 · 0.04 = 1

(6.1)

6.3. Performance evaluation

An experimental evaluation was conducted in order to analyze the lazy

nature of the proposed learning method. In the learning approach, a similar-

ity metric between clinical CTs is calculated by using all previous recorded

CTs as training examples. Since the problem-solving ability of the proposed

method is increased with each newly defined CT, it is important to analyze

the performance of the proposed learning method when faced with CKBs with

a great number of CTs.

70

6.3.1. Execution platform of performance evaluation

The execution time analysis was performed on a Intel(R) Core(TM) i7-

4700MQ CPU @ 2.40GHz, 16 GB RAM, and running 64-bits Windows 10

Pro.

6.3.2. Execution time

The efficiency of the learning method was evaluated when faced with CKBs

of different sizes. To make a realistic evaluation, the 250 CTs registered by

students were considered as input data, and the average time of 50 executions

was measured for each CKB analyzed.

Figure 6.1 presents the average execution time of the proposed method in

regard different CKB sizes. The algorithm was executed on CKBs containing

from 25 to 250 CTs.

Figure 6.1: Average execution time of the proposed learning method regarding
different CKB sizes.

Figure 6.1 shows how the size of a CKB has a direct influence on the ex-

ecution time of the proposed method. Figure 6.1 also demonstrates that the

proposed learning method is able to process 250 CTs in less than 90 millisec-

onds.

71

6.3.3. Execution time projection

In order to estimate the efficiency of the learning method when facing larger

CKBs, auxiliary CTs were generated, based on the information recorded by

the students. Although the auxiliary CTs were artificially built and do not

reflect real clinical scenarios, they can be used to evaluate the performance of

the learning method as they have the same data dimension as the CTs written

by the students. The graphic in Figure 6.2 reports the average time of the

proposed method regarding CKB sizes.

Figure 6.2: Average execution time of the proposed learning method when facing
larger CKBs.

Figure 6.2 shows that the learning method generated suggestions in less

than 1.25 seconds, even when facing larger CKBs with a great number of CTs.

Given that 3000 represents a suitable bound for the number of CTs included in

a physician CKB, the proposed method is able to produce suggestions in rea-

sonable execution times, even when processing real CKBs with several workday

scenarios.

6.3.4. Comparison with a Bayesian learning approach

To further analyze the applicability of the proposed approach, this subsec-

tion presents a comparison of the proposed instance-based learning method

72

against a Bayesian learning method, which is based on a classical algorithm

described by Mitchell (1997) for classifying text documents. To compare both

learning approaches, the computational efficiency of each method is analysed.

The implemented Bayesian learning method works under the assumption

that the occurrence probability of a word is independent of its position within

a document. Algorithm 13 details the proposed Bayesian learning method,

which suggest case types by inferring estimated probabilities.

Algorithm 13 Bayes learning method (doc)

1: examples ← getCTBasedMedicalRecords()
2: vocabulary ← distinctWords(examples)
3: positions ← all words positions in doc that contain tokens of vocabulary
4: for CTi in CKBM do
5: recordsi ← getMedicalRecords(examples, CTi)

6: P(CTi) ← |recordsi|
|examples|

7: texti ← concatAllDocuments(recordsi)
8: n ← total number of distinct word positions in text i
9: for wordk in vocabulary do

10: nk ← number of times wordk occurs in text i
11: P(wordk|CTi) ← nk+1

n+|vocabulary|
12: end for
13: end for
14: topBestBayes ← Initialize array with t empty values
15: for CTi in CKBM do
16: probBayes ← P (CTi)

∏
j∈positions P (wordj|CTi)}

17: if probBayes is greater that worstProbability(topBestBayes) then
18: topBestBayes ← replaceWorst(topBestBayes, CTi)
19: end if
20: end for
21: topBestBayes ← removeEmptyValues(topBestBayes)
22: return topBestBayes

Algorithm 13 starts by selecting all medical records that were written de-

rived from a CT (line 1). Selected medical records are examined as training

examples at the beginning of the learning task, aiming at extracting the vocab-

ulary of all words appearing in patient histories (line 2). Each word included

in the draft of the Register Editor that belongs to the previous vocabulary

is tagged with its position (line 3). Several steps are required to obtain the

probability estimates of the Bayesian approach. The first step estimates the

probability of a case type by considering its occurrence in regard of all regis-

73

tered medical records (lines 5–6). Additional steps are needed to calculate the

relative frequency of each word in relation to each case type (lines 7–12). The

algorithm continues by iterating over all case types included in the physician

CKB (line 15). For each iteration, an array of top best metrics is updated

according to greatest Bayesian probabilities (lines 16–19). Finally, to classify

a new draft of the Register Editor, top best metrics are used for returning the

most likely case types to be applied (lines 20–21).

Figure 6.3 presents a comparison between the efficiency results of the two

compared learning methods. The figure reports the average execution time of

both the Bayesian method and the instance-based method, regarding different

CKB sizes, when processing the total testbed of 250 CTs.

Figure 6.3: Average execution time comparison: instance-based learning
vs. Bayesian learning method.

The graphic in Figure 6.3 uses a logarithmic scale to highlight the differ-

ence of two orders of magnitude between the execution times of both learning

methods. The efficiency results reveal that the Bayesian learning method is

difficult to apply in practice due to high execution times, even when processing

small volumes of data. Execution time results also reaffirm the benefits of the

instance-based learning method, which significantly outperforms the Bayesian

approach in terms of efficiency.

74

6.4. Testing the applicability of the instance-

based learning approach

In order to test the applicability of the proposed approach, a prototype

was developed and deployed on Google Compute Engine (cloud.google.com/

compute), the Infrastructure as a Service component of Google Cloud Platform.

The prototype was evaluated by advanced medical students in their last year

of training at Universidad de la República, Uruguay.

6.4.1. Comparison with original Praxis

Praxis reports the average time required to write a CT starting from an

empty CKB (Low, 2015). In order to compare the proposed approach with

the original implementation of Praxis, the average time to write a CT using

the prototype was measured. Figure 6.4 illustrates both average writing times

starting from an empty CKB, by considering the medical attendance of the

first 50 patients.

Figure 6.4: Average time of 50 medical students to write the notes of a case type
(continuous line). Average time according to Praxis reports (dotted line). Both
evaluations start with an empty CKB.

Although Praxis presents shorter registering times for the first two medical

75

cloud.google.com/compute
cloud.google.com/compute

consultations, more than 50 evaluations are needed to achieve a convergence

point. The proposed approach significantly reduces registration times from the

third case registered onwards, converging quickly to less than three minutes of

writing consultations. The proposed learning method demanded 210 minutes

to register 50 consultations (i.e., 4.2 minutes per consultation), while using

Praxis requires 519 minutes (10.4 minutes per consultation). The overall time

reduction factor is 2.5×.

6.4.2. Improvement using a pre-loaded CBK

The time needed to register a medical consultation can be reduced by

using previously registered information. The average time to record a CT was

measured in a context in which medical students could use a pre-loaded CKB.

Figure 6.5 shows the average time to write a CT taking advantage of a pre-

loaded CKB containing typical workday scenarios. As a relevant result, the use

of a pre-loaded CKB implied a reduction of up to five minutes for recording the

notes of the first six medical consultations. Furthermore, a pre-loaded CKB

also accelerated the convergence to three minutes of writing consultations.

Figure 6.5: Average time of 50 medical students starting with an empty CKB
(continuous line). Average time of 50 medical students taking advantage of a pre-
loaded CKB (dotted line).

76

Regarding the scalability of the incremental processing of new case types,

results suggest a convergence towards a short write time for medical consulta-

tions, even when processing large volumes of data.

6.4.3. Survey about the proposed approach

More than 50 medical students from different editions of the Medical In-

formatics course were surveyed after using the prototype of the proposed ap-

proach. The advanced medical students have tested the prototype during

course editions from 2018 to 2020. Figure 6.6 summarizes the best features

identified by students.

Figure 6.6: Best features of the proposed approach, according to the survey per-
formed on students.

Results show that 43% of the surveyed students mentioned that the learning

curve was steep before they could benefit from the proposed learning method.

As a relevant result, more than 73% of the students considered the prototype as

an appropriate tool for medical practice, especially at medical consultations.

Moreover, 62% of the students were able to speed up writing time during

medical consultations.

6.5. Interoperability of health information

Health terminological standards were taken into account due to the rele-

vance of the interoperability of information in the Medical Informatics area. In

particular, the national drug dictionary of Uruguay and a terminology server

77

provided by the Hospital Italiano de Buenos Aires (HIBA) were integrated into

the proposed approach.

Integrating the national drug dictionary of Uruguay

A National Drug Dictionary (DNMA) is defined by Salud.uy (salud.uy) in

order to standardize the information and vocabulary for clinical and logistical

use applied to pharmaceutical and related products. DNMA acts as a standard

of drug reference terminology for the network of healthcare service providers

in Uruguay.

Access permissions were requested from the DNMA in order to import the

national dictionary of medicines into the proposed approach. Importing the

national drug dictionary helped build a functional model, in which physicians

can make pharmacological indications using a wide range of drugs.

Using the terminology server of Hospital Italiano de Buenos Aires

A terminology server allows linking the free text entered by a physician in

a medical record to different health classifications, such as ICD9-CM, ICD10,

or LOINC (González et al., 2018). The use of a terminology server allows

clinical information to be recorded in a structured form, using clinical termi-

nology standards. Terminology standards enable interoperability of clinical

information, and also allow information to be reused for other purposes, such

as clinical decision support, data analysis and research.

The proposed system is able to use the terminology server supported by

HIBA. The terminology server publishes its terminological terms grouped in

different domains. The implemented prototype has been successful in using

terminology services for the domains that cover: reasons for consultation, di-

agnoses, procedures and studies, which are required for the Uruguayan medical

records model.

6.6. Summary of results

This chapter detailed the strategy by which the instances used to evaluate

the proposed approach were generated. The generation process was not simple

and required the collaboration of advanced medical students.

78

salud.uy

The performance of the proposed learning method was analyzed when fac-

ing CKBs with several CTs. Despite the lazy nature of the proposed method,

the results showed that the learning method was able to produce suggestions

in reasonable execution times.

An evaluation was performed on a real use scenario, where some advantages

of the proposed approach over the original Praxis were observed. The results

were also better when using a pre-loaded CKB, containing typical workday

clinical scenarios. A survey performed on several advanced medical students

showed a high rate of approval of the proposed method, highlighted as an

appropriate approach for medical practice and useful at medical consultations.

As another relevant result, the use of health standards was successfully

incorporated into this Master Thesis, aimed at the interoperability of clinical

information.

79

Chapter 7

Conclusions and future work

This chapter presents the conclusions of this research and also outlines the

main lines of future work for improving current results.

7.1. Conclusion

This Master Thesis presented a novel approach to represent clinical knowl-

edge, which supports an appropriate methodology for recording medical con-

sultations. An instance-based learning method was also proposed, aiming at

providing suggestions for physicians during their medical assistance. All sug-

gestions are based on information registered by the physician during his pre-

vious medical consultations.

The potential of Praxis software to lay the groundwork for a new model of

writing medical records was identified during the review of related works. A

formal structure capable of supporting all the functionalities of original Praxis

was proposed. Different scenarios of medical consultations were also modeled

to address the diversity of situations of physician workday, including multiple

diagnoses and the attention of chronic patients.

In addition to the fact that the proposed model provides flexibility to write

free text for recording all particularities of a medical consultation, it was also

designed to support standards of health terminology and codifications. Stan-

dard codes of health terminology were successfully integrated into the proposed

model. In particular, the implemented system is able to interact with the HIBA

terminology server, and to access the national drug dictionary of Uruguay.

The approach was validated on a real case study involving 250 real instances

80

constructed by advanced medical students of Universidad de la República,

Uruguay. The students collaborated in the construction of new case types,

which were built based on a multi-authored publication that covers a wide

range of clinical scenarios of primary care.

Several indexing and caching techniques were implemented with the aim of

reducing the execution time of the learning method. In this regard, strategies

for caching similarity values and discarding non-promising candidates were suc-

cessfully applied. Optimizations to reduce the execution time of the learning

method over singular scenarios were also implemented.

The proposed instance-based learning method was able to generate sug-

gestions in reasonable execution times, even faced with large volumes of data.

For the addressed case study, a total of 62% of the advanced medical stu-

dents reduced the writing time of their consultations, which demonstrated

that the approach was useful to accelerate the registration process during clin-

ical assistance. Results of the evaluation performed in several editions of a

Medical Informatics course at Universidad de la República suggest that the

proposed approach was appropriate to follow physician reasoning, especially

during medical consultations. More than 73% of advanced medical students

surveyed approved a prototype which follows the proposed approach.

By applying the proposed approach, the physician thinking is anticipated,

especially regarding recurring scenarios. The physician can use his own pre-

vious records as a checklist, to avoid forgetting important questions and to

consider all repetitive tasks. Consequently, the proposed adaptive structure

supported by the learning method contributes to generate medical records

faster than when using mainstream EMR systems, based on rigid templates.

Overall, the proposed approach is a first step to explore new ways to foster

physician thinking, by considering information of previous similar scenarios.

The approach emulates the reasoning and evolution of physician thoughts dur-

ing patient consultations, to overcome the difficulties of template based clinical

systems, not designed with a medical approach.

7.2. Future work

The main research lines for future work are related to evaluate the proposed

system in a professional work environment of healthcare attention, with the

aim of improving the accuracy of the learning method based on professional

81

feedback. Thus, a future work line includes studying the proposed approach

with the help of professional physicians.

Another possibility for future work is related to enhance the accuracy of

the learning method by improving the comparison between clinical phrases.

To enhance comparison, accurate values of similarity between clinical phrases

must be considered, rather than simply differentiating similarity by binary

values. In addition, natural language processing will allow to implement a

more sophisticated comparison, supporting different languages. In addition,

another future work is related to creating a tool to ease the task of associating

clinical phrases (represented by units of thought) to health code standards.

The proposed learning method is based on a similarity metric which is

weighted calculated, according to the weights of the clinical sections of case

types. In the context of this Master Thesis, a simple medical relevance criteria

was applied during the experimental analysis, based only on qualitative ranges

of medical relevance. Consequently, more accurate weights of medical relevance

will allow to enhanced current results.

Integrations with external prescription applications, such as SEPEPE (Rey

et al., 2020), are additional lines for future work, since prescription applications

are able to track patients between medical consultations, which contributes to

improving healthcare.

82

Bibliography

Barbantan, I., Porumb, M., Lemnaru, C., and Potolea, R. (2016). Feature

engineered relation extraction - medical documents setting. International

Journal of Web Information Systems, 12(3):336–358.

Benmimoune, L., Hajjam, A., Ghodous, P., Andres, E., Talha, S., and Hajjam,

M. (2015). Hybrid reasoning-based medical platform to assist clinicians in

their clinical reasoning process. In 6th International Conference on Infor-

mation, Intelligence, Systems and Applications, pages 1–5.

Boyd, K., Eng, K. H., and Page, C. D. (2013). Area under the precision-recall

curve: Point estimates and confidence intervals. In Machine Learning and

Knowledge Discovery in Databases: European Conference, Part III, pages

451–466. Springer Berlin Heidelberg.

Campbell, M. J., Machin, D., and Walters, S. J. (2007). Medical Statistics: A

Textbook for the Health Sciences. Wiley.

Castellano, G. and Casalino, G. (2020). Special issue ”computational intelli-

gence in healthcare”. Electronics, 9(7).

Chang, T. M., Kao, H. Y., Wu, J. H., and Su, Y. F. (2016). Improving

physicians’ performance with a stroke cdss: A cognitive fit design approach.

Computers in Human Behavior, 54:577–586.

Chau, M., Zeng, D., Chen, H., Huang, M., and Hendriawan, D. (2003). Design

and evaluation of a multi-agent collaborative web mining system. Decision

Support Systems, 35(1):167–183.

Collins, C., Baumann, B., Krumlian, K., and Keita, L. (2020). Openclinica.

http://www.openclinica.com. Accessed 16 July 2020.

83

Esteban, C., Schmidt, D., Krompaß, D., and Tresp, V. (2015). Predicting

sequences of clinical events by using a personalized temporal latent em-

bedding model. IEEE International Conference on Healthcare Informatics,

pages 130–139.

Farinelli, A., Grisetti, G., Iocchi, L., Cascio, S. L., and Nardi, D. (2003). Design

and evaluation of multi agent systems for rescue operations. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 3138–

3143.

González, F., Otero, C., and Luna, D. (2018). Terminology services: Standard

terminologies to control health vocabulary. Yearbook of Medical Informatics,

27(01):227–233.

Guidi, G., Pettenati, M., Melillo, P., and Iadanza, E. (2014). A machine

learning system to improve heart failure patient assistance. IEEE Journal

of Biomedical and Health Informatics, 18(6):1750–1756.

Habib, J. (2010). Ehrs, meaningful use, and a model emr. Drug benefit trends,

22(4):99—-101.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten,

I. H. (2009). The weka data mining software: An update. ACM SIGKDD

Explorations Newsletter, 11(1):10–18.

Infor-med (2021). Praxis web. http://www.praxisemr.com. Accessed 1 April

2021.

Installé, A., Van Den Bosch, T., De Moor, B., and Timmerman, D. (2014).

Clinical data miner: An electronic case report form system with integrated

data preprocessing and machine-learning libraries supporting clinical diag-

nostic model research. Journal of Medical Internet Research, 16(10):e28.

Klann, J., Szolovits, P., Downs, S., and Schadow, G. (2014). Decision support

from local data: Creating adaptive order menus from past clinician behavior.

Journal of Biomedical Informatics, 48:84–93.

Li, J.-S., Zhang, X.-G., Chu, J., Suzuki, M., and Araki, K. (2012). Design

and development of emr supporting medical process management. Journal

of Medical Systems, 36(3):1193–1203.

84

Lichman, M. (2013). Uci machine learning repository.

http://archive.ics.uci.edu/ml. Accesed 16 July 2020.

Lin, C.-T., McKenzie, M., Pell, J., and Caplan, L. (2013). Health care provider

satisfaction with a new electronic progress note format: SOAP vs APSO

format. JAMA Internal Medicine, 173(2):160–162.

Lin, F. P. Y., Pokorny, A., Teng, C., Dear, R., and Epstein, R. J. (2016).

Computational prediction of multidisciplinary team decision-making for ad-

juvant breast cancer drug therapies: a machine learning approach. BMC

Cancer, 16(1):929.

López-Rubio, E., Elizondo, D. A., Grootveld, M., Jerez, J. M., and Luque-

Baena, R. M. (2015). Computational intelligence techniques in medicine.

Computational and Mathematical Methods in Medicine, pages 1–2.

Low, R. (2015). The theory of praxis concept processing. Technical report,

Infor-Med Corporation.

Michalowski, M., Wilk, S., Tan, X., and Michalowski, W. (2014). First-order

logic theory for manipulating clinical practice guidelines applied to comorbid

patients: a case study. American Medical Informatics Association Annual

Symposium proceedings, 2014:892–898.

Mitchell, T. (1997). Instance-base learning. In Machine Learning, chapter 8.

McGraw-Hill.

Nakai, T., Takemura, T., Sakurai, R., Fujita, K., Okamoto, K., and Kuroda,

T. (2016). Prediction of clinical practices by clinical data of the previous

day using linear support vector machine. In Innovation in Medicine and

Healthcare 2015, pages 3–13. Springer International Publishing.

Rane, A. L. (2015). Clinical decision support model for prevailing diseases to

improve human life survivability. In International Conference on Pervasive

Computing, pages 1–5.

Rey, G., Alzugaray, M., Vico, S., Vega, C., and Simini, F. (2020). SEPEPE:

Pregnancy follow-up prescription app. In 22o Congreso de Bioingenieŕıa,

SABI 2020. SABI.

85

Sadegh-Zadeh, K. (2015). Handbook of Analytic Philosophy of Medicine.

Springer Publishing Company, Incorporated.

Salmon, P., Rappaport, A., Bainbridge, M., Hayes, G., and Williams, J. (1996).

Taking the problem oriented medical record forward. Proceedings: a confer-

ence of the American Medical Informatics Association. AMIA Fall Sympo-

sium, pages 463–7.

Shen, Y., Colloc, J., Jacquet-Andrieu, A., and Lei, K. (2015). Emerging

medical informatics with case-based reasoning for aiding clinical decision

in multi-agent system. Journal of Biomedical Informatics, 56:307–317.

Sociedad Andaluza de Medicina Familiar y Comunitaria (2017). Casos cĺınicos

en atención primaria. Fundación Sociedad Andaluza de Medicina Familiar

y Comunitaria.

Subirats, L., Ceccaroni, L., Maroto, J. M., De Pablo, C., and Miralles, F.

(2014). Medical-treatment recommendation and the integration of process

models into knowledge-based systems. In 6th International Conference on

Agents and Artificial Intelligence, pages 491–498.

Vessey, I. (1991). Cognitive fit: A theory-based analysis of the graphs versus

tables literature. Decision Sciences, 22(2):219–240.

Wang, W. and Benbasat, I. (2009). Interactive decision aids for consumer

decision making in e-commerce: The influence of perceived strategy restric-

tiveness. MIS Quarterly: Management Information Systems, 33(2):293–320.

Wang, Y., Tian, Y., Tian, L., Qian, Y., and Li, J. (2015). An electronic

medical record system with treatment recommendations based on patient

similarity. Journal of Medical Systems, 39(5):55.

Wilk, S., Michalowski, M., Michalowski, W., Rosu, D., Carrier, M., and

Kezadri-Hamiaz, M. (2017). Comprehensive mitigation framework for con-

current application of multiple clinical practice guidelines. Journal of

Biomedical Informatics, 66:52–71.

Wilk, S., Michalowski, M., Tan, X., and Michalowski, W. (2014). Using first-

order logic to represent clinical practice guidelines and to mitigate adverse

interactions. In 6th International Workshop Knowledge Representation for

Health Care, pages 45–61. Springer International Publishing.

86

Wilk, S., Michalowski, W., Michalowski, M., Farion, K., Hing, M. M., and

Mohapatra, S. (2013). Mitigation of adverse interactions in pairs of clinical

practice guidelines using constraint logic programming. Journal of Biomed-

ical Informatics, 46(2):341–353.

Zieba, M. (2014). Service-oriented medical system for supporting decisions

with missing and imbalanced data. IEEE Journal of Biomedical and Health

Informatics, 18(5):1533–1540.

87

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Related work
	Support systems for general clinical use
	Systems for specific clinical conditions
	Praxis
	Summary

	Praxis Electronic Medical Records
	Praxis approach
	Patient medical records and physician clinical knowledge

	Modeling clinical knowledge
	Representing a case type
	Units of thought
	Characteristics of conceptual elements
	Characteristics of units of thought

	Recording consultation methodology
	Multiple case types
	Partial case types
	Chronic conditions

	Consultation assistant tools
	Usage reminder
	Simple messaging

	Benefits
	Benefits of PCT, MCT, CCT
	Health monitoring
	Messaging and reminders
	Interoperability
	Consultation accuracy

	Clinical knowledge model to follow physician reasoning
	Clinical knowledge base
	Unit of thought
	Conceptual element
	Conceptual component
	Case type
	Message Agents

	Patient representation
	Patient structure
	Patient medical records
	New medical record

	Consultation flows
	Starting attention of a patient
	Selecting an already defined case type
	Chronic patients flow
	Usual attention flow
	New case type flow
	Temporal case type flow
	Multiple case types flow

	Instance-based learning
	Instance-based learning method
	Register editor
	Learning method
	Using suggested case types

	Similarity metric
	Similarity metric definition
	Similarity between components
	Similarity metric algorithm

	Implementation of similarity metric
	Compare units by canonical form
	Zero similarity value
	Comparing with empty components
	Discard non-promising candidates
	Cache of previous similarity values

	Experimental analysis
	Problem instances
	Prerequisites for building case type instances
	Building case type instances

	Parameter settings of similarity weight
	Performance evaluation
	Execution platform of performance evaluation
	Execution time
	Execution time projection
	Comparison with a Bayesian learning approach

	Testing the applicability of the instance-based learning approach
	Comparison with original Praxis
	Improvement using a pre-loaded CBK
	Survey about the proposed approach

	Interoperability of health information
	Summary of results

	Conclusions and future work
	Conclusion
	Future work

	Bibliography

