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RESUMEN

En esta tesis nos enfocamos en el estudio de los grandes desvíos (GD) para sucesiones
de procesos de Markov que describen el comportamiento de ciertos algoritmos de exploración
greedy sobre grafos aleatorios con el fin de construir conjuntos independientes en esos grafos.
Nos centramos en cuatro aspectos de los GD para estos procesos:

• Probar los GD para las trayectorias de dichos procesos de Markov,

• Deducir el límite fluido a partir de la función de tasa del GD,

• Encontrar la trayectoria que minimiza la función de tasa sobre un conjunto de trayectorias,

• Concluir resultados de GD para el tamaño del conjunto independiente construido medi-
ante el algoritmo greedy.

Para demostrar el PGD (Principio de Grandes Desvíos) para las sucesiones de procesos de
interés, utilizamos la estrategia propuesta por [Feng and Kurtz, 2006] para el estudio de GD
de procesos estocásticos, la que se basa en la convergencia de semigrupos no lineales asociados
a dichos procesos.

La tesis se desarrolla de la siguiente manera. Comenzamos presentando brevemente el
trabajo de [Feng and Kurtz, 2006] en el contexto de procesos de Markov sobre espacios de
estados compactos. En el Capítulo 3, analizamos los cuatro aspectos de los GD mencionados
antes para una sucesión de procesos de Markov relacionados a un algoritmo greedy definido sobre
un grafo de Erdös-Rényi dado con el objetivo de construir un conjunto independiente, cuando
el tamaño del grafo tiene a infinito. En el Capítulo 4, repetimos este análisis para un algoritmo
en el que simultáneamente se construye un grafo d-regular y un conjunto independiente en ese
grafo. Finalmente, en el Capítulo 5 extendemos los resultados del capítulo anterior para grafos
aleatorios uniformes más generales.

Además de presentar resultados originales sobre los GD para los procesos de interés, creemos
que el aporte de este trabajo consiste en mostrar de forma entendible la herramienta poderosa
propuesta en el trabajo de [Feng and Kurtz, 2006] para el estudio de GD de procesos, con
posibles aplicaciones a diversas áreas.

Palabras claves:
Grandes Desvíos, Algoritmos Greedy.
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ABSTRACT

In this thesis, we focus on the study of large deviations (LD) for sequences of Markov processes
that describe the behaviour of greedy exploration algorithms on random graphs in order to
build independent sets. We focus on four aspects of the LD for these processes:

• Proving the path-state LD for these Markov processes,

• Deducing the fluid limit from the LD rate function,

• Finding the trajectory that minimises the LD rate function over a set of trajectories,

• Concluding LD results for the size of the independent set constructed by the greedy
algorithm.

To prove the LDP (Large Deviation Principle) for the sequences of processes of interest, we
use the general strategy to study LDP of processes proposed by [Feng and Kurtz, 2006], which
is based on the convergence of non-linear semigroups.

The thesis is developed as follows. We begin by briefly introducing the work of
[Feng and Kurtz, 2006] in the context of Markov processes on compact state spaces. Then,
in Chapter 3, we analyse the four aspects of LD mentioned above for a sequence of Markov
processes related to a greedy algorithm defined on a given Erdös-Rényi graph to construct an
independent set when the size of the graph goes to infinity. In Chapter 4, we repeat this anal-
ysis for an algorithm that simultaneously constructs a d-regular graph and an independent set
on that graph. Finally, in Chapter 5, we extend the results of the previous chapter to more
general uniform random graphs.

In addition to presenting original results on large deviations for the processes of interest, we
believe that the contribution of this thesis is to present in a comprehensive way the powerful tool
proposed in the work of [Feng and Kurtz, 2006] for the study of large deviations of processes,
with possible applications to many areas.

Keywords:
Large Deviations, Greedy Algorithms.
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Chapter 1

Introduction

In this thesis, we study large deviations for Markov processes modelling certain random graph
exploration algorithms in order to build independent sets. This introduction briefly describes
what large deviations are, what a random graph is, what an independent set is, which random
graph exploration algorithms are considered in this thesis and why the study of large deviations
may be of interest for these algorithms.

1.1 What are the large deviations?

The study of large deviations (LD) is concerned with studying the probabilities of very rare
events. To understand why certain rare events might matter, one need only think of the
enormous impact that winning the lottery (if we played) would have on our lives. Of course,
this is in the case of a rare event with positive repercussions. But, on the other hand, we could
also think of the enormous impact that rare events with catastrophic consequences can have
on our lives, whether in terms of environment, economy, means of transport, communication,
and so on.

Already the history of the study of large deviations begins with a very practical problem
in Esscher’s work [Esscher, 1932], in which rare events are analysed for a financial situation
where the total claim amount exceeds the reserved amount (in insurance terms). In that case,
the number of claim amounts was modelled by independent random variables with identical
Poisson distribution. The rare event was that the average of these variables was much larger
than the expected value of this variable. This was to be a preamble to Cramer’s future work
in [Cramér, 1938], in which the same question is analysed for the average of random variables
with any distribution.

Since then, it has been necessary to define mathematically what it means for an event to
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be rare. A unified formalisation of the large deviation theory was developed in 1966 in a paper
by Varadhan [Varadhan, 1966]. The large deviation principle (LDP) characterises the limiting
behaviour, as N → +∞, of a sequence of probability measures {PN}N defined on (X ,B) in
terms of a rate function I. This characterisation is via asymptotic upper and lower exponential
bounds on the values that PN assigns to measurable sets of X .

Starting with Donsker and Varadhan, a general foundation was laid that allowed one to point
out several “general tricks” that seem to work in diverse situations. Moreover, large deviations
estimates have proved to be the crucial tool required to handle many questions in statistics,
engineering, statistical mechanics, and applied probability. So then, because of the diversity of
applications, the theory has evolved one step at a time to cover more general scenarios.

Now, there are at least two approaches in the literature to prove an LDP. The traditional
approach to LDP is via the so-called change of measure method. Indeed, beginning with the
work of [Cramér, 1938] and including the fundamental work on large deviations for stochas-
tic processes by [Freidlin and Wentzell, 1984] and [Donsker and Varadhan, 1975], much of the
results has been obtained from a change of measure techniques. In this approach, a tilted or ref-
erence measure is identified under which the event of interest has a high probability. Then, the
probability of the event under the original measure is bounded in terms of the Radon-Nikodym
density relating to both measures.

Another approach is analogous to the Prohorov compactness approach to weak con-
vergence of probability measures (by studying the tightness of these measures). It is
sometimes referred to as the exponential tightness method. This has been established
by [Puhalskii, 1994], [O’Brien and Vervaat, 1995], [de Acosta, 1997], [Dupuis and Ellis, 1997],
[Fleming, 1985], [Evans and Ishii, 1985], and others. In this approach, exponential tightness
plays the same role in large deviations theory as tightness does in weak convergence theory,
exploiting the idea that large deviations can be thought of as a type of weak convergence at an
exponential level.

In this thesis, we focus on the study of LD for sequences of Markov processes that describe
the behaviour of greedy exploration algorithms on random graphs in order to build independent
sets. To prove an LDP for those sequences, we use the general strategy to study large devia-
tions of processes proposed by [Feng and Kurtz, 2006], based on the convergence of non-linear
semigroups. This strategy belongs to the exponential tightness method mentioned above.

1.2 Random graphs

A graph is a structure composed by vertices and edges. The usual notation is G = (V,E),
where V = {vi}i is the set of vertices vi (finite or not), and E = {(vi, vj)}i,j denotes the edges
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connecting those vertices. All the graphs considered in this thesis are undirected (which means
that all the graph edges are bidirectional), being the size of V a parameter N that goes to
infinity.

Given two vertices v1, v2 ∈ V , we say that v1 is a neighbour of v2 if (v1, v2) ∈ E (and
(v2, v1) ∈ E since the graph is undirected). We say that v has degree k if it has k neighbours.

We are interested in constructing independent sets of a graph G, i.e., subsets of vertices
S ⊂ V such that if the vertices v1, v2 belongs to S, then (v1, v2) /∈ E. An independent set is
said to be maximal if there is no larger independent set containing it as a subset, and it is
maximum if there is no other independent set of larger size.

Both the construction of maximum independent sets and the calculation of its size are
known to be NP-hard problems (see [Karp, 1972]), that is, problems for which all the existing
algorithms that solve them have running times that grows faster than polynomially with N .
A natural way to try to efficiently produce a large independent set in an input graph G is to
output a maximal independent set. While in principle a badly chosen maximal independent set
can be very small (like, for example, the star center in a star), one might hope that quite few
of the maximal independent sets will have size comparable in some sense to the independence
number of G (the size of the maximum independent set).

Random graphs were introduced by [Erdős, 1959] to give a probabilistic construction of a
graph with large girth 1 and large chromatic number. 2 While there is earlier work using
random graphs, for example, in [Moreno and Jennings, 1938] where a “chance sociogram” (a
directed Erdös-Rényi model) was considered in studies comparing the fraction of reciprocated
links in their network data with the random model, it was not until the work of [Erdős, 1959]
and [Erdős and Rényi, 1959] that a systematic work began on random graphs as objects of
interest in their own right, see [Frieze and Karoński, 2016].

Precisely, the first random graph considered in this thesis in Chapter 3 is the random graph
known as the Erdös-Rényi graph. This is a finite graph obtained by setting an edge between
each pair of vertices independently and with the same probability. An Erdös-Rényi graph is
then G(N, p), such that N is the number of vertices V = {v1, . . . , vN} of the graph and p is the
probability that two vertices are connected (i.e. (vi, vj) ∈ E with probability p). If X is the
number of neighbours of any vertex (i.e., the number of vertices with which it shares an edge),
then X has a Binomial distribution Bin(N − 1, p).

In this case, it is possible to obtain bounds for the size of the maximum independent set
by means of combinatorial theory tools. In 1962, Erdös proved that if αN is the size of the

1The girth of a graph is the size of the smallest cycle contained in the graph.
2The chromatic number of a graph is the smallest number of colours needed to color the vertices of so that

no two adjacent vertices share the same colour.
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maximum independet set of G(N, pN) and NpN ≥ 3, then a.s. αN ≤ −2 log(NpN )
log(1−pN )

. Then, for
Erdös-Rényi graphs, we know at least a bound for the independence number (even if we do
not know how to find it in polynomial time). On the other hand, for the case of Erdös-Rényi
graphs G

(
N, pN = c

N

)
with c < e, the a.s. limiting proportion of the maximum independent

set αN
N

is known, and it is given by σ∗(c) = w(c) + c
2
w(c)2 with w(c) = e−W (c) and W (x) the

Lambert function, see [Jonckheere and Saenz, 2019].

The second type of random graphs considered in this thesis are d-regular graphs. Those are
graphs where each vertex v shares a fixed number d of edges with other graph vertices. The d
neighbours of a vertex are uniformly randomly chosen. In this case, we allow a vertex to share
more than one edge with the same neighbour (multi-edges) and share edges with itself (loops).

One only has to draw a few pictures (or watch Episode 407 of the TV serie NUMB3RS)
to be convinced that it is not so easy to construct d-regular graphs. Therefore, we will consider
a method known as configurational model for constructing d-regular random graphs.

Moreover, we can construct and work with more general uniform random graphs using this
method. Therefore, we briefly define below how this method works, see [Bollobás, 1980] for
example. Consider a sequence d1, . . . , dN of degrees (di ≥ 0) such that d1 + · · · + dN is even.
If V = {v1, . . . , vN} is the set of vertices, we assume that the vertex vi has degree di, i.e. a
number di of half-edges available to be paired with the half-edges of other vertices. Next we
describe how these half-edges are paired as the random graph is sequentially constructed:

• select (somehow) a vertex v,

• match uniformly each unpaired half-edge from v with another one which is unpaired too,

• repeat until all vertices of the graph have paired their half-edges.

As mentioned before, this sequential construction results in a random graph that may contain
multiple edges and loops. However, the probability of this happening converges to 0 when the
size of the graph N goes to infinity (see [Brightwell et al., 2017]).

1.3 Random graphs exploration algorithms analysed in

this thesis

First, it should be clarified that these algorithms are not the most efficient since they do
not find independent sets of maximum size (see [Gamarnik and Sudan, 2017]). Still, they are
quite intuitive and fit many practical models, where maximum independent sets are not always
sought. Moreover, their importance lies in the fact that those algorithms are easy to program,
analyse mathematically, and usually have polynomial complexity.
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The random exploration algorithms considered in this thesis are usually referred to as
“greedy algorithms”, see for instance the definition of an unweighted greedy algorithm in
[Jungnickel, 2005]. Those algorithms build independents sets by selecting (somehow) sequen-
tially a vertex v ∈ V , and adding v to the independent set if the resulting set does not span
any edge.

Due to its simplicity, the greedy algorithms have been studied extensively by various authors
in different fields (see [Krivelevich et al., 2020]), ranging from combinatorics [Wormald, 1995],
probability [Rahman and Virág, 2017] and computer science [Fischer and Noever, 2020] to
chemistry [Flory, 1939]. In communication sciences and wireless networks in particular, it
allows representing the number of connections for CSMA-like algorithms in a given time-slot,
for a given spatial configuration of terminals (see [Kleinrock and Takagi, 1985] for a classical
reference on the protocol definition).

As early as 1931, this model was studied by chemists under the name random sequential
adsorption (RSA), focusing primarily on d-dimensional grids. The 1-dimensional case was
solved by [Flory, 1939], who showed that the expected value of the proportion of the independent
set size obtained (known as the greedy independence ratio) converges to T ∗ = 1

2
(1− e−2) as the

path length goes to infinity. A continuous analogue, in which “cars” of unit length “park” at
random free locations on the interval [0, T ], was introduced (and solved) by [Rényi, 1958], under
the name of car-parking process. The limiting density, as T goes to infinity, is therefore called
Rényi’s parking constant, and T ∗ may be considered as its discrete counterpart. Following this
terminology, the final state of the car-parking process is often called the jamming limit of the
graph, and the density of this state is called the jamming constant. In combinatorics, the greedy
algorithm for finding a maximal independent set was analysed in order to give a lower bound
on the (usually asymptotic) typical independence number of (random) graphs. The asymptotic
greedy independence ratio of binomial random graphs with linear edge density was studied by
[McDiarmid, 1990]. The asymptotic greedy independence ratio of random regular graphs was
studied by [Wormald, 1995], who used the so-called differential equation method. His result
was further extended in [Lauer and Wormald, 2007] for any sequence of regular graphs with
growing girth. More recently, the case of uniform random graphs with given degree sequences
was studied in [Bermolen et al., 2017b] and [Brightwell et al., 2017].

The first sequential exploration algorithm considered in this thesis works as follows. We
start with a given graph G = (V,E) for which V = {vi}i=1,...,N is the set of N vertices and
E is the set of edges. At each step k = 0, 1, . . . , we consider that each vertex is either active,
blocked, or unexplored. Accordingly, the set of vertices will be split into three components: the
set of active vertices, the set of blocked vertices, and the set of unexplored vertices. Initially,
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all the vertices are declared as unexplored. At each step, this algorithm selects randomly and
uniformly within the set of unexplored nodes a vertex and changes its state into active. After
this, it takes all of its unexplored neighbours and changes their states into blocked. The active
and blocked vertices are considered as explored and removed from the set of unexplored vertices.
The algorithm keeps repeating this procedure until the step T ∗N at which all the vertices are
either active or blocked (or equivalently, the set of the unexplored vertex is empty). Observe
that at any step k, the active vertices conform to an independent set and that T ∗N is the size of
the independent set constructed by the algorithm. Chapter 3 considered this greedy exploration
algorithm on a given Erdös-Rényi graph.

The other sequential exploration algorithm considered in this thesis consists of building the
independent set simultaneously with the random graph in a configurational model. It works as
follows. Given a set of vertices V = {v1, . . . , vN} and a sequence of given degrees d1, . . . , dN

(such that d1 + · · ·+ dN is even) where we assume that the vertex vi has degree di, the random
graph and the independent set are sequentially constructed in the following way. Initially, each
vertex vi has a number di of half-edges available to be paired with the half-edges of other
vertices. At each step k = 0, 1, . . . , this algorithm:

• selects a vertex v uniformly from the set of vertices that still have all their half-edges
unpaired, and puts it into the independent set (or changes its state into active),

• matches each unpaired half-edge from v uniformly with another one which is unpaired
too.

The algorithm keeps repeating this procedure until the step T ∗N at which there are no more
vertices with all their half-edges unpaired. At this point, there may still be some unpaired half-
edges pointing out from vertices that have previously paired some of their half-edges. These
may be paired off uniformly at random to complete the construction of the graph.

Chapter 4 considered this greedy exploration algorithm for constructing a d-regular graph
simultaneously with an independet set in this graph. Then, in this case the degrees di are
constants (di = d for all i).

Chapter 5 considered this greedy exploration algorithm for constructing more general uni-
form random graphs simultaneously with independent sets in those graphs. In this case, we
assume that each degree di is bounded.

6



1.4 Why study large deviations for these random graphs

exploration algorithms?

To begin with, the study of large deviations is of interest in itself from a mathematical point
of view. The richness of the LD partly derives from the fact that it is non-linear (since it is a
type of weak convergence at the exponential level), which contributes to much of the difficulty
of its analysis. Moreover, LD theory widely generalises the notion of convergence of probability
measures.

Moreover, this theory has applications to many areas, including statistics, communication
networks and queueing systems, information theory, statistical mechanics, risk-sensitive control,
and finances. This is because, as mentioned above, it allows working on scenarios in which very
rare events with catastrophic consequences occur. Moreover, it allows predicting the most likely
scenario once a rare event has occurred.

In communication networks and queueing systems, see [Shwartz and Weiss, 1995],
[Weiss, 1995] (and references therein) for an introduction to some LD techniques used to anal-
yse models of communication networks. In most cases analysed there, communication networks
are modelled by Poisson point processes.

In the context of equilibrium statistical mechanics, the theory of large deviations provides
exponential-order estimates of probabilities that refine and generalise Einstein’s theory of fluc-
tuations, see [Touchette, 2009]. [Touchette, 2009] reviews this and other connections between
large deviation theory and statistical mechanics to show that the mathematical language of
statistical mechanics is the language of large deviation theory. In addition, large deviations
make it possible to describe phase transitions considered in statistical mechanics.

[Dembo, 1994] explores some connections between LD and information theory. Moreover,
connections between control problems and LD results were first made by [Fleming, 1985] and
[Fleming, 1978]. [Dupuis and Ellis, 1997] systematically develop these connection showing that,
in many cases, one can represent a large class of functionals of the processes as the minimal
cost functions of stochastic control problems and then verify convergence of the functionals to
the minimal cost functions of limiting deterministic control problem.

In finance, large deviations arise in various contexts. For example, they occur in risk man-
agement to compute the probability of significant losses of a portfolio subject to market risk or
the default probabilities of a portfolio under credit risk. LD methods are largely used in rare
events simulation and appear naturally in the approximation of option pricing, particularly for
barrier options and far from the money options. See [Pham, 2007] for some applications of LD
in finance and insurance. As mentioned above, the history of large deviations already begins
with the analysis of a financial situation in Esscher’s work [Esscher, 1932].
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On the other hand, random graphs can model networks that are presented everywhere.
From social networks such as Facebook, Twitter or LinkedIn, the World Wide Web and the
Internet to the complex interactions between proteins in the cells of our bodies, we face the
challenge of understanding their structure and development. In general, natural networks grow
unpredictably, and this is often modelled by a random construction. We can then work on these
random constructions to predict the occurrence of rare events. Moreover, as a consequence of
obtaining results of large deviations on these constructions, the average behaviour can also be
deduced.

1.5 Objective and main results obtained

In addition to presenting original results on large deviations for the processes of interest, we
believe that the contribution of this thesis is to present in a comprehensive way the powerful tool
proposed in the work of [Feng and Kurtz, 2006] for the study of large deviations of processes,
with possible applications to many areas.

In this thesis, we focus on the study of LD for sequences of Markov processes
{
XN
}
N

with
XN =

{
XN
t

}
t∈[0,1]

that describe the behaviour of greedy exploration algorithms on random
graphs in order to build independent sets. Informally, this means that if A is a set containing
possible trajectories x of the process XN , then there exists a rate function I such that the
(possibly very small) probability that the process XN belongs to A can be approximated by

P(XN ∈ A) ≈ e
−N inf

x∈A
I(x)

.

We focus on four aspects of the LD for these processes:

• Proving the path-state LD for these Markov processes,

• Deducing the fluid limit (a result of the type of the law of large numbers for stochastic
processes which consists in a convergence of a sequence of stochastic processes to a de-
terministic function, usually subject to some type of rescaling, when a parameter N goes
to infinity) from the LD rate function,

• Finding the trajectory that minimises the LD rate function over a set of trajectories,

• Deducing LD results for the size of the independent set constructed by the greedy algo-
rithm.

In each chapter, we prove a large deviation principle (LDP) for the sequence of processes
of interest using the general strategy to study large deviations of processes proposed by
[Feng and Kurtz, 2006], based on the convergence of non-linear semigroups.
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The remarkable work of [Feng and Kurtz, 2006] consists of combining the tools of probabil-
ity, analysis, and control theory used in the works of [de Acosta, 1997], [Dupuis and Ellis, 1997],
[Evans and Ishii, 1985], [Fleming, 1978], [Puhalskii, 1994], and others to propose a general
strategy for the study of large deviations of processes. In the case of Markov processes, this
program is carried out in four steps:

1. The first step consists of proving the convergence of non-linear generators HN and derive
the limit operator H.

2. The second step consists of verifying the exponential compact containment condition.

3. The third step consists of proving that H generates a semigroup V = {Vt}t. This issue
is nontrivial and follows, for example, by showing that the Hamilton-Jacobi equation
f(x)− βH (x,∇f(x))− h(x) = 0 has a unique solution f for sufficiently many h ∈ C(E)

and β > 0 in a viscosity sense, when H(f)(x) = H (x,∇f(x)). The rate function is
constructed in terms of that limit V.

4. This limiting semigroup usually admits a variational form known as Nisio semigroup in
control theory. Then, the fourth step consists of constructing a variational representation
for the rate function from this variational representation of V.

In a nutshell, as a consequence of the first two steps, the process verifies the exponential
tightness condition, the third step assures the existence of an LDP, and the fourth step provides
an applicable version of the rate.

In the cases analysed in this thesis, after working on the four steps mentioned before, we
deduce a variational form of the rate function and prove that it can be expressed as an action
integral of a cost function L, that is, if x is a possible trajectory for the process, then the rate
function can be written as

I(x) =

∫ 1

0

L (x(t), ẋ(t)) dt.

Additionally, in each case, the cost function L has a simple interpretation in terms of local
deviations for the average of random variables, whose distribution approximates the jumps
distribution of the process.

Moreover, we find the trajectory that minimises the LD rate function over a set of trajecto-
ries (i.e., the most probable trajectory) by studying the Hamiltonian dynamics associated with
the rate function obtained.

The following is a brief description of the content of chapters 3, 4 and 5.

9



Large Deviations for the greedy exploration algorithm over Erdös-

Rényi graphs

In Chapter 3, we consider the greedy exploration algorithm previously defined over Erdös-
Rényi graphs. Let G

(
N, c

N

)
be a given Erdös-Rényi graph, and ZN

k be the number of explored
vertices at time k. Thanks to the great amount of independence and symmetry of the edges’
collection in this sparse Erdös-Rényi graph, the greedy exploration algorithm is characterized
by the simple one-dimensional Markov process

{
ZN
k

}
k
. Consequently, a functional law of

large numbers described by a differential equation can be employed to get the macroscopic
size of the constructed independent set when the number of vertices N goes to infinity (see
[Bermolen et al., 2017a] and references in [McDiarmid, 1990]). Diffusion approximations for the
process and central limit theorem derived from it for the size T ∗N of the associated independent
set are also known, see [Bermolen et al., 2017a]. Moreover, in [Pittel, 1982], exponential bounds
are proved for the probability that the stopping times tf (G(N, p/N)) of the f -driven algorithms
(in particular, T ∗N) belong to certain intervals. However, to the best of our knowledge, there is no
characterization of a large deviation principle for both the discrete-time Markov process

{
ZN
k

}
k

and the random variable T ∗N , which can give various types of useful information both on the
greedy exploration and on the independent set landscape. For example, this allows estimating
the (low) probability of getting independent sets with sizes comparable to the independence
number using a greedy algorithm. Moreover, it allows determining the most probable trajectory
for which the independent set’s size is bigger/smaller than selected bounds.

The topic of Chapter 3 is a refined analysis of this simple algorithm by studying the large
deviations for a rescaling of the sequence of processes

{
ZN
k

}
k
, when the number N of vertices

goes to infinity.

To prove our main result, we use the general strategy to study large deviations of processes
proposed by [Feng and Kurtz, 2006], which is presented in Section 2.2. The rate function can
be expressed in a closed-form formula, and associated optimization problems can be solved
explicitly, providing the large deviation trajectory. Also, we derive large deviations results for
the size of the maximum independent set discovered by such an algorithm and analyse the
probability that it exceeds known bounds for the maximal independent set. Moreover, we
explore the link between these results and the landscape complexity of the independent set and
the exploration dynamic.

The results of this chapter were accepted for publication inALEA (Latin American Journal
of Probability and Mathematical Statistics). It can be consulted at [Bermolen et al., 2021b].
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Large Deviations for the greedy exploration process on d-regular

graphs

In Chapter 4, we prove large deviations for the greedy exploration of configuration models by
jointly constructing a d-regular graph and discovering an independent set in this graph. We
consider a time-discretized version of the method proposed by [Bermolen et al., 2017b] and
[Brightwell et al., 2017] for creating more general uniform random graphs from a given degree
sequence. We consider a discrete-time Markov process describing the evolution of this algorithm
and prove a large deviation principle for a rescaling of this process. In this case, the algorithm
is described by the Markov process

{
XN
k

}
k
such that XN

k =
(
SNk , U

N
k , E

N
k

)
, being

• SNk , the number of vertices that have already been placed into the independent set at
step k,

• UN
k , the total number of unpaired half-edges at step k,

• EN
k , the number of vertices such that none of their d half-edges were paired at step k.

As a corollary, we derive large deviations results for the independent set size constructed by
this algorithm. Finally, we retrieve known results about the independent set size obtained and
the change that occurs in the dynamics when d = 2 or d > 2.

Large deviations for the greedy exploration process on configuration
models

In Chapter 5, we extend the results presented in Chapter 4 to the greedy exploration of
configuration models, building on a time-discretized version of the method proposed by
[Bermolen et al., 2017b] and [Brightwell et al., 2017] by jointly constructing general uniform
random graphs from a given degree sequence and its exploration.

We start with a set of vertices VN = {1, 2, . . . , N} such that each vertex i has a bounded
degree deg(i) ≤ D < ∞, and such that the initial distribution of degrees 1

N
# {i : deg(i) = j}

converges to pj ≥ 0, when the number of vertices N goes to infinity, for all j = 0, . . . , D (with
D∑
j=0

pj = 1). Each vertex i of the graph has a number deg(i) of half-edges available to be paired

with the half-edges of other vertices. We prove an LDP for a rescaling of the sequence of Markov
processes

{
XN
}
N
, where XN =

{
XN
k

}
k
and XN

k =
(
SNk , U

N
k , E

N
k (0), EN

k (1), . . . , EN
k (D)

)
is

such that

• SNn is the number of vertices that have already been placed into the independent set at
step k,
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• UN
k is the total number of unpaired half-edges at step k,

• EN
k (j) is the number of vertices with degree j such that none of their j half-edges were

paired at step k.

Again, the proof of this result follows the general strategy to study large deviations of processes
proposed by [Feng and Kurtz, 2006]. As a corollary, we deduce the corresponding fluid limit
and LD results for the independent set size discovered by this exploration algorithm.

The results of this chapter were submitted to Electronic Communications in Proba-
bility including the results of Chapter 4 as a particular case. It can be consulted at
[Bermolen et al., 2021a].

1.6 Thesis structure

Finally, we briefly describe the structure of the thesis.

In Chapter 2, we present the main results used in this thesis to study large deviations for
sequences of Markov processes defined on a compact state space.

In Section 2.1, we present some generalities about large deviations, including the definition
of a Large Deviation Principle, the connection with Laplace’s Principle, and the analogy with
the weak convergence of probability measures. In Section 2.2, we present the main results
of [Feng and Kurtz, 2006] for the study of large deviations of stochastic processes in the con-
text of Markov processes defined on a compact state space. In Section 2.3, we present the
tools we use to study the uniqueness of viscosity solutions of Hamilton-Jacobi equations. This
uniqueness is an essential requirement for the study of large deviations, according to the work
of [Feng and Kurtz, 2006]. Since in the cases analysed in this thesis the large deviations rate
function can be written as an action functional, in Section 2.4 we present tools from the calculus
of variations to find the trajectory that minimises the rate function over a set of trajectories (i.e.
the optimal trajectory). In Section 2.5, we show that the fluid limit of a sequence of Markov
processes can be deduced from the study of the large deviations. Finally, since it is impossible
to talk about large deviations for Markov processes without mentioning the pioneering work
of [Freidlin and Wentzell, 1984], we present in Section 2.6 a synthesis of their results in the
context of the work of [Feng and Kurtz, 2006].

In Chapter 3, we study large deviations for a greedy exploration algorithm over Erdös-Rényi
graphs when the number of vertices goes to infinity.

In Section 3.1, we introduce the greedy algorithm over Erdös-Rényi graphs and known results
about the independent set size obtained by such an algorithm. In Section 3.2, we formally define
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the sequence of processes related to the greedy algorithm over a given Erdös-Rényi graph. In
Section 3.3, we present the main result: a path-state LDP for the greedy exploration process.
The proof of this result is deferred to Section 3.4. As a corollary, we obtain LD results for the
size of the independent set discovered by such an algorithm and analyse its implications.

In Chapter 4, we study large deviations for the greedy exploration on a configuration model
for constructing d-regular graphs when the number of vertices goes to infinity.

In Section 4.1, we give a brief introduction to the chapter. In Section 4.2, we define the
dynamic analysed in this chapter. Moreover, we define a sequence of Markov processes related
to this construction. In Section 4.3, we present the main result: a path-state LDP for the
sequence of Markov processes defined in Section 4.2. The detailed proof is deferred to Section
4.4. As a corollary, we obtain the corresponding fluid limit and large deviations results for the
size of the independent set constructed.

In Chapter 5, we extend the results from Chapter 4 to the greedy exploration of
configuration models, building on a time-discretized version of the method proposed by
[Bermolen et al., 2017b] and [Brightwell et al., 2017] for constructing a random graph from a
given degree sequence and its exploration.

In Section 5.1, we give a brief introduction to the chapter. In Section 5.2, we define the
dynamic analysed in this chapter. Moreover, we define a sequence of Markov processes related
to this algorithm. In Section 5.3, we present the main result of this chapter: a path-state
LDP for the sequence of Markov processes defined in Section 5.2 along with the heuristic that
motivates the result. The detailed proof is deferred to Section 5.4. As a corollary, we deduce
the fluid limit of the process and LD results for the size of the independent set constructed by
the exploration algorithm.
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Chapter 2

Large deviations for Markov processes

Abstract
In this chapter, we present the main results used in this thesis to study large deviations for sequences
of Markov processes defined on a compact state space.

This chapter is organised as follows. In Section 2.1, we present some generalities about large
deviations, including the definition of a Large Deviation Principle, the connection with Laplace’s
Principle, and the analogy with the weak convergence of probability measures. In Section
2.2, we present the main results of [Feng and Kurtz, 2006] for the study of large deviations
of stochastic processes in the context of Markov processes defined on a compact state space.
In Section 2.3, we present the tools we use to study the uniqueness of viscosity solutions of
Hamilton-Jacobi equations. This uniqueness is an essential requirement for the study of large
deviations, according to the work of [Feng and Kurtz, 2006]. Since in the cases analysed in this
thesis the large deviations rate function can be written as an action functional, in Section 2.4
we present tools from the calculus of variations to find the trajectory that minimises the rate
function over a set of trajectories (i.e. the optimal trajectory). In Section 2.5, we show that
the fluid limit of a sequence of Markov processes can be deduced from the study of the large
deviations. Finally, since it is impossible to talk about large deviations for Markov processes
without mentioning the pioneering work of [Freidlin and Wentzell, 1984], we present in Section
2.6 a synthesis of their results in the context of the work of [Feng and Kurtz, 2006].
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2.1 Generalities about large deviations

The theory of large deviations is concerned with the asymptotic estimation of probabilities of
rare events. Consider a complete and separable metric space (X , d) and a sequence (it can be a
net) of probability measures {PN}N defined on B (X ), the σ-algebra of all Borel subsets of X .

Definition 2.1.1 (Large Deviation Principle, Varadhan) The sequence of probability
measures {PN}N verifies a large deviation principle (LDP) if there exists a lower semicon-
tinuous function I : X → [0,+∞] such that for each open set A,

lim inf
N→+∞

1

N
logPN(A) ≥ − inf

x∈A
I(x),

and for each closed set B,

lim sup
N→+∞

1

N
logPN(B) ≤ − inf

x∈B
I(x).

I is called the rate function for the large deviation principle. A rate function I is good if for
each a ∈ [0,+∞) the set {x : I(x) ≤ a} is (in addition to being closed) a compact subset of X .

This definition can be thought of as a type of weak convergence at an exponential level. The
analogy becomes much more clearly if we recall the following equivalent formulation of weak
convergence:

Proposition 2.1.1 (Portmanteau) The following are equivalents:

1. {PN}N converge weakly to P
2.
∫
f(x)dPN(x) →

∫
f(x)dP(x) for all f ∈ Cb (X ), being Cb (X ) the space of bounded and

continuous functions f : X → R.
3. lim inf

N→+∞
PN(A) ≥ P(A) for all open A ∈ B (X ).

4. lim sup
N→+∞

PN(B) ≤ P(B) for all closed B ∈ B (X ).

That is, large deviations are an exponential version of properties 3 and 4 from the Portman-
teau theorem, so it is not surprising that the study of large deviations involves many concepts
that are analogous to concepts in the study of weak convergence. Note, however, that we as-
sume both an upper and lower bound for a large deviation principle instead of the equivalence
that holds in the case of weak convergence.

If (Ω,A,P) is a probability space and {XN}N is a sequence of random variables XN : Ω→
X , we say that {XN}N verifies an LDP if their push-forward measures defined by PN(A) =

P (XN ∈ A) for all A ∈ B (X ) verify an LDP.
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Remark 2.1.1 Let us introduce some comments about the LDP definition.

1. Weak LDP: Definition of LDP with “closed set B” replaced by “compact set B” is called
the weak large deviation principle (see [Dembo and Zeitouni, 1998], for example).

2. The LDP is equivalent to the assertion that for each A ∈ B (X ) it is verified that

− inf
x∈Å

I(x) ≤ lim inf
N→∞

1

N
logPN(A) ≤ lim sup

N→∞

1

N
logPN(A) ≤ − inf

x∈Ā
I(x),

where Å and Ā are respectively the interior and closure of A. Moreover, the set A is said
to be a good set for I if in the previous equation the inequalities are all an equality.

3. Uniqueness of the rate function: Note that, if I is a lower semicontinuous function,
then

I(x) = lim
ε→0+

inf
y∈Bε(x)

I(y),

being Bε(x) = {y ∈ X : d(x, y) < ε}. If {PN}N verifies an LDP with rate function I,
then

− inf
y∈Bε(x)

I(y) ≤ lim inf
N→∞

1

N
logPN (Bε(x)) ≤ lim sup

N→∞

1

N
logPN

(
Bε(x)

)
≤ − inf

y∈Bε(x)
I(y).

This implies that

−I(x) = lim
ε→0

lim inf
N→∞

1

N
logPN (Bε(x)) = lim

ε→0
lim sup
N→∞

1

N
logPN

(
Bε(x)

)
,

and it follows that the semicontinuity requirement of I assures the uniqueness of the rate
function.

4. An equivalent formulation of the LDP: The LDP is equivalent to the Laplace prin-
ciple (LP). As we show below, the formulation of the LDP⇒LP implication is known
as Varadhan’s lemma. The formulation of LP⇒LDP appears as Theorem 1.2.3 in
[Dupuis and Ellis, 1997]. Consider a sequence of random variables {XN}N defined on
a probability space (Ω,A,P).

Definition 2.1.2 (Laplace’s Principle) Let I be a rate function defined on X . The
sequence {XN}N is said to satisfy the Laplace’s Principle (LP) on X with rate function
I if

lim
N→∞

1

N
logE

[
e−Nf(XN )

]
= − inf

x∈X
{f(x) + I(x)} , ∀f ∈ Cb (X ) .

Varadhan’s lemma generalises the well known method of Laplace for studying the asymp-
totics of certain integrals on R. That is, given f ∈ Cb[0, 1], Laplace’s method states
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that

lim
N→∞

1

N
log

1∫
0

e−Nf(x)dx = − inf
x∈[0,1]

f(x).

Theorem 2.1.2 (Varadhan’s lemma) Assume that the sequence {XN}N satisfies an
LDP with rate function I, then

lim
N→∞

1

N
logE

[
e−Nf(XN )

]
= − inf

x∈X
{f(x) + I(x)} , ∀f ∈ Cb (X ) .

That is, LDP⇒ LP. The following non-rigorous calculation shows why this result is veri-
fied. If we summarize the LDP by the notation P(XN ∈ dx) � e−NI(x)dx, then

E
[
e−Nf(XN )

]
=

∫
X
e−Nf(x)P(XN ∈ dx) �

∫
X
e−N(f(x)+I(x))dx,

and

lim
N→∞

1

N
logE

[
e−Nf(XN )

]
= lim

N→∞

1

N
log

∫
X
e−N(f(x)+I(x))dx = − inf

x∈X
{f(x) + I(x)} .

That is, as in Laplace’s method, Varadhan’s lemma states that to exponential order
the main contribution to the integral is due to the largest value of the exponent. The
next theorem, proves the converse, highlighting a basic feature of the weak convergence
approach:

Theorem 2.1.3 (Theorem 1.2.3. from [Dupuis and Ellis, 1997]) If I is a rate
function on X and the limit

Λ(f) = lim
N→∞

1

N
logE

[
e−Nf(XN )

]
= − inf

x∈X
{f(x) + I(x)} ,

is valid for all f ∈ Cb (X ), then {XN}N satisfies an LDP on X with rate function I.

This theorem is related to another converse to Varadhan’s lemma due to Bryc. As we
show below, Bryc’s theorem states that if the sequence {XN}N is exponentially tight and
the limit

Λ(f) = lim
N→∞

1

N
logE

[
e−Nf(XN )

]
exists for all f ∈ Cb (X ), then the rate function can be written as

I(x) = − inf
f∈Cb(X )

{f(x) + Λ(f)} .
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In general, there are at least two approaches in the literature to prove an LDP. The tra-
ditional approach to LDP is via the so-called change of measure method. Indeed, beginning
with the work of [Cramér, 1938] and including the fundamental work on large deviations for
stochastic processes by [Freidlin and Wentzell, 1984] and [Donsker and Varadhan, 1975], much
of the analysis has been based on a change of measure techniques. In this approach, a tilted
or reference measure is identified under which the event of interest has a high probability. The
probability of the event under the original measure is bounded in terms of the Radon-Nikodym
density relating to both measures.

Another approach is analogous to the Prohorov compactness approach to weak con-
vergence of probability measures (by studying the tightness of these measures). It is
sometimes referred to as the exponential tightness method. This has been established
by [Puhalskii, 1994], [O’Brien and Vervaat, 1995], [de Acosta, 1997], [Dupuis and Ellis, 1997],
[Fleming, 1985], [Evans and Ishii, 1985], [Feng and Kurtz, 2006], and others.

According to this approach, we recall now the well-known Prohorov theorem to show the
analogy between the study of weak convergence and large deviations.

Proposition 2.1.4 (Prohorov) If the sequence of probabilities {PN}N defined on X is tight,
then there exists a subsequence {Nk}k and a probability P such that {PNk}k converges weakely
to P.

Definition 2.1.3 (Tightness) A sequence {PN}N of probability measures defined on X is
tight if for each α > 0 there exits a compact set Kα ⊂ X such that sup

N
PN (Kc

α) ≤ α.

Then, the proof of weak convergence results typically involves the verification of relative
compactness or tightness for the sequence and the unique characterization of the possible limit
distribution. The analogous approach to large deviations involves verifying exponential tightness
(that we define next) and unique characterization of the possible rate function.

Definition 2.1.4 (Exponential tightness) A sequence {PN}N of probability measures de-
fined on X is exponentially tight if for each α > 0 there exits a compact set Kα ⊂ X such that

lim sup
N→∞

1

N
logPN (Kc

α) ≤ −α.

Exponential tightness plays the same role in large deviations theory as tightness does in
weak convergence theory. The following theorem, proved separately by [Puhalskii, 1991] and
[O’Brien and Vervaat, 1991], is the analogue of the Prohorov compactness theorem:

Proposition 2.1.5 (Puhalskii, O’Brien-Vervaat) Let (X , d) be a metric space and {PN}N
a sequence of tight probability measures on the Borel σ-algebra of X 1. Suppose that {PN}N is

1Recall that if X is complete and separable, then every probability measure is tight.
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exponentially tight. Then, there exists a subsequence {Nk}k along which the LDP holds with a
good rate function.

Moreover, one consequence of the exponential tightness is that if a sequence is exponentially
tight, then the large deviation principle holds if and only if the weak large deviation principle
holds (see [Dembo and Zeitouni, 1998], for example). Perhaps, the best-known result according
to this approach is Bryc’s theorem, or inverse of Varadhan’s Lemma, which we recall below:

Proposition 2.1.6 (Bryc) If the sequence of probability measures {PN}N defined on X is
exponentially tight and the following limit exists:

Λ(f) = lim
N→∞

1

N
log

[∫
eNf(x)dPN(x)

]
for all f ∈ Cb (X ), then {PN}N verifies an LDP with rate function I : X → [0,+∞] given by

I(x) = sup
f∈Cb(X )

{f(x)− Λ(f)} ,

where Cb (X ) is the space of bounded and continuous functions f : X → R.

That is, if X is a topological vector space, then I(x) = Λ∗(x) with the product of duality
〈f, x〉 = f(x).

In this thesis, we are in the case in which the sequence of probability measures {PN}N
comes from a sequence of Markov processes

{
XN
}
N

(in discrete or continuous-time) with
state spaces EN , being EN a subset of a compact set E of Rn (n ∈ N fixed). Then, we
consider X = DE[0,∞), equipped with the Skorohod topology. There are in the literature
conditions that ensure the exponential tightness in this case, but the calculation of Λ(f) =

lim
N→∞

1

N
logE

[
eNf(X

N)
]
is difficult or impossible.

The work of [Feng and Kurtz, 2006], which we present in the following section, solves both
this problem and that of exponential tightness. Since the transitions characterize the Markov
process, instead of calculating Λ(f), the time t ≥ 0 is fixed, and the convergence of the following
non-linear semigroups is considered: V N

t : Dom
(
V N
t

)
⊂ B(EN)→ B(EN) such that V N

t (x) =
1
N

logE
[
eNf(X

N
t )∣∣XN

0 = x
]
, being B(EN) the space of bounded, Borel measurable functions

(i.e. t is fixed and the domain of the functions f is EN instead of the much more complex space
DE [0,∞)). It is proved that, under certain assumptions, the convergence of these non-linear
semigroups ensures an LDP.

Actually, instead of studying the convergence of the non-linear semigroups V N =
{
V N
t

}
t
,

the convergence of their (non-linear) generatorsHN (defined in the next section) is studied. The
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reason why we study the convergence of the sequence of operators HN instead of V N is because
the variational representations for the sequence of functionals V N can be difficult to obtain.
Then, we first verify convergence of these semigroups by methods that only require convergence
of the corresponding generators HN and conditions on the limiting generator H. Working
only with the sequence of generators frequently provides conditions that are easier to verify
than conditions that give a convergent sequence of variational representations. Variational
representations for the limit {Vt}t are still important, however, as they provide methods for
obtaining simple representations of the large deviation rate function.

2.2 Large deviations for Markov processes - the work of

Feng and Kurtz

In this section, we present the main results of [Feng and Kurtz, 2006] for the study of large
deviations of stochastic processes in the context of Markov processes defined on a compact
state space.

The remarkable work of [Feng and Kurtz, 2006] consists of combining the tools of probabil-
ity, analysis, and control theory used in the works of [de Acosta, 1997], [Dupuis and Ellis, 1997],
[Evans and Ishii, 1985], [Fleming, 1978], [Fleming, 1999], [Puhalskii, 1994], and others to pro-
pose a general strategy for the study of large deviations of processes. In this subsection, we
briefly describe their work in the context of Markov processes with state spaces included on
a compact subset E ⊂ Rn. However, many of the results presented in [Feng and Kurtz, 2006]
apply to more general stochastic processes on metric spaces (E, r).

Throughout, E will be a compact subset of Rn. M(E) will denote the space of real-valued
Borel measurable functions on E, and B(E) ⊂M(E), the space of bounded, Borel measurable
functions. An operator A = (A,Dom(A)) is given by a domainDom(A) ⊂M(E) and a map A :

Dom(A) → M(E). Also we write A for the graph of the map A = {(f, A(f)) : f ∈ Dom(A)}
and write, for example, A ⊂ Cb(E) × Cb(E) if the domain Dom(A) and the range R(A)

are contained in Cb(E). In some cases, A can be multi-valued and non-linear. The space of
E-valued, càdlàg functions on [0,∞) with the Skorohod topology will be denoted by DE[0,∞).

• Continuous-time Markov processes: An E-valued Markov process X = {Xt}t is
usually characterized in terms of its generator, a linear operator A ⊂ B(E)×B(E). One
approach to the characterization of X is to requiere that all the processes of the form

f (Xt)− f (X0)−
t∫

0

A(f) (Xs) ds, (2.1)
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be martingales w.r.t. some filtration {Ft}t independent of f (see [Kurtz, 1971], for ex-
ample). If X satisfies this condition is said to be a solution of the martingale problem
for A. If f is bounded away from zero, then the process defined by Equation (2.1) is a
martingale if and only if

f (Xt)

f (X0)
e−

∫ t
0
A(f)(Xs)
f(Xs)

ds

is a martingale. Consequently, if we define Dom(H) =
{
f ∈ B(E) : ef ∈ Dom(A)

}
and

set
H(f) = e−fA

(
ef
)
,

then we can define the exponential martingale problem by requiring that

exp

f (Xt)− f (X0)−
t∫

0

H(f) (Xs) ds

 (2.2)

to be a martingale w.r.t. a filtration independent of f . Moreover, the process defined
by Equation (2.2) is a martingale if and only if (2.1) is a martingale. It follows that X
is a solution of the linear martingale problem for A if and only if it is a solution of the
exponential martingale problem for H. As we will see, large deviations for sequences of
Markov processes

{
XN
}
N

are strongly connected to the convergence of these operators
H.
Weak convergence results for a sequence of Markov processes

{
XN
}
N

can be based on
convergence of the corresponding linear-semigroups TN =

{
TNt
}
t
defined by

TNt : Dom(TNt ) ⊂ B(EN)→M(EN), TNt (f)(x) = E
[
f
(
XN
t

)
|XN

0 = x
]
.

This linear-semigroup TN satisfies

d

dt
TNt (f) = AN

(
TNt
)

(f), TN0 (f) = f,

where AN is the linear-generator for XN . An analogous approach to large deviations
results is suggested by [Fleming, 1985] using the nonlinear contraction (in the supremum
norm) semigroup V N =

{
V N
t

}
t
given by

V N
t : Dom(V N

t ) ⊂ B(EN)→M(EN), V N
t (f)(x) =

1

N
logE

[
eNf(X

N
t )|XN

0 = x
]
.

(2.3)

21



Again, at least formally, V N should satisfy

d

dt
V N
t (f) =

1

N
HN

(
NV N

t (f)
)

=
1

N
e−NV

N
t (f)AN

(
eNV

N
t (f)

)
,

which leads us to define the non-linear generator

HN(f) =
1

N
e−NfAN

(
eNf
)
. (2.4)

Note that the process defined by

exp

Nf (XN
t

)
−Nf

(
XN

0

)
−

t∫
0

NHN(f)
(
XN
s

)
ds


is a martingale (since the process defined by Equation (2.2) is a martingale).

• Discrete-time Markov processes: Consideration of discrete-time Markov processes
leads to slightly different formulations of the two martingale problems defined before.
As a consequence, the non-linear generators considered for the discrete-time case are
slightly different. Let {Yk}k be a time-homogeneous Markov chain with state space E
and transition operator

T : Dom(T ) ⊂ B(E)→M(E), T (f)(x) = E [f (Yk+1) |Yk = x] = E [f (Y1) |Y0 = x] .

For ε > 0, define Xε
t = Y[t/ε]. Then, setting FXε

t the σ-algebra generated by the sets
{Xε

s : s ≤ t}, for f ∈ B(E) we have that the process given by

f (Xε
t )− f (Xε

0)−
[t/ε]−1∑
k=0

(T (f) (Yk)− f (Yk))

= f (Xε
t )− f (Xε

0)−
∫ [t/ε]ε

0

1

ε
(T − Id) (f) (Xε

s ) ds

is an
{
FXε

t

}
t
-martingale, and the process

exp

f (Xε
t )− f (Xε

0)−
[t/ε]ε∫
0

1

ε
log
(
e−fT

(
ef
)

(Xε
s )
)
ds


is an

{
FXε

t

}
t
-martingale too.

Consider now the sequences of Markov chains
{
Y N
}
N

defined on EN , and {εN}N with
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εN → 0. Then, for the sequence XN
t = Y N

[t/εN ], we define the operators

AN(f) =
1

εN

(
TN − Id

)
(f) and HN(f) =

1

NεN
log
(
e−NfTN

(
eNf
))
, (2.5)

(TN is the transition operator of Y N), so that

f
(
XN
t

)
− f

(
XN

0

)
−

[t/εN ]εN∫
0

AN(f)
(
XN
s

)
ds

and

exp

Nf (XN
t

)
−Nf

(
XN

0

)
−

[t/εN ]εN∫
0

NHN(f)
(
XN
s

)
ds


are martingales.

As mentioned before, one of our main assumptions should be the convergence of the sequence
of non-linear generators

{
HN
}
N

defined on Equations (2.4) and (2.5) for the continuous and
discrete-time case, where the type of convergence may depend on the particular problem.

The general idea is that if there is a functional H such that HN → H, H generates a
semigroup V = {Vt}t and the exponential compact containment condition is verified, then the
sequence of Markov processes

{
XN
}
N
(defined in the continuous or discrete-time case) verifies

an LDP with rate function I that depends on V. Moreover, if H is such that H(f)(x) =

H (x,∇f(x)) for all f ∈ C1 (E) and Conditions 8.9, 8.10 and 8.11 from [Feng and Kurtz, 2006]
are also verified, we obtain a variational representation of I. Moreover, in the cases analised in
this thesis, the rate will be written as an action integral of the Legendre-Fenchel transform of
H given by L (x, β) = sup

α∈Rn
{〈α, β〉 −H (x, α)}.

A typical application of the results presented in [Feng and Kurtz, 2006] (here we only present
the main results that we will use later) requires the following steps:

Step 1: Verify the convergence of the sequence of operators HN and derive the
limit operator H.

In general, the convergence of the sequence HN may be in an extended limit (see Definition
A.12 from [Feng and Kurtz, 2006]) or graph sense, that is, if the process XN is defined on EN

and we have maps ηN : EN → E, we can define new maps η̂N : B(E) → B(EN) such that
η̂N(f) = f ◦ ηN . If HN ⊂ B(EN) × B(EN), the extended limit of

{
HN
}
N

is the collection of

23



(f, g) ∈ B(E)×B(E) such that there exists (fN , gN) ∈ HN satisfying

lim
N→∞

‖fN − η̂N(f)‖+ ‖gN − η̂N(g)‖ = 0.

In some examples, the limit is described in terms of a pair of operators, (H‡,H†), where H† is
the lim sup of

{
HN
}
N
, and H‡ is the lim inf.

In the cases analysed in this thesis, the operator H follows naturally from the definition
of HN and the fact that the domain considered for HN is C1(E). Moreover, the operator H

will be of the form H(f)(x) = H (x,∇f(x)) for all f ∈ C1 (E), where H : E × Rn → R is
sufficiently regular on E̊ × Rn and convex w.r.t. the second variable.

Step 2: Verify the exponential compact containment condition.

The convergence of operators HN typically gives exponential tightness, provided we can verify
the exponential compact containment condition that we define next.

Definition 2.2.1 (Exponential compact containment condition) The sequence
{
XN
}
N

verifies the exponential compact containment condition if for all α > 0, there exists Kα ⊂ E

compact such that lim sup
N

1
N

logP
({
∃ t : XN

t /∈ Kα

})
≤ −α.

Note that, unlike Definition 2.1.4, a compact subset of E is needed and not from the more
complex space DE[0,∞).

Step 3: Verify the comparison principle for the limiting operator H.

This step consists of proving that the limiting operator H generates a semigroup V = {Vt}t.
This is the most technical step. By definition, V N

t verifies

d
dt
V N
t (f) = HN

(
V N
t (f)

)
, V N

0 (f) = f.

Then, H generates a semigroup if there exists a semigroup V = {Vt}t such that for all f ∈
Dom(V),

d
dt
Vt(f) = H (Vt(f)) , V0(f) = f.

The following theorem from [Crandall and Liggett, 1971] states that the map µNt =(
Id− t

N
H
)−N converges to the solution of the previous equation if H is m-dissipative.

Definition 2.2.2 (m-dissipativity) We say that an operator (H, Dom(H)) defined on X×X
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is dissipative if for all β > 0, we have

‖(f − βH(f))− (g − βH(g))‖ ≥ ‖f − g‖ , ∀f, g ∈ Dom(H).

A dissipative operator H is called m-dissipative if for all β > 0 the map (Id− βH) is surjec-
tive on X (i.e., the range of Id − βH verifies R (Id− βH) = X ). We say that an operator
(H, Dom(H)) satisfies the range condition if for all β > 0 the range of the map (Id− βH) is
dense in X .

It can be shown that the closure
(
H, Dom

(
H
))

(in the product topology of X ×X ) of a dis-
sipative operator (H, Dom(H)) is itself dissipative and satisfies R

(
Id− βH

)
= R (Id− βH).

Hence, if an operator (H, Dom(H)) is dissipative and satisfies the range condition, its closure
has the property that R

(
Id− βH

)
= X for all β > 0. On the other hand, the map Id − βH

is injective by the dissipativity of H. Hence, we can invert the map and define (as in the well
known Hille-Yosida theorem for the linear semigroups case):

R
(
β,H

)
: X → Dom(H) R

(
β,H

)
(f) =

(
Id− βH

)−1
(f). (2.6)

We present bellow the Crandall-Liggett theorem.

Theorem 2.2.1 For a densely defined, dissipative operator (H, Dom(H)) on a Banach space
X , the following are equivalents:

(i) The closure H of H generates a contraction semigroup in the sense that there exists

Vt(f) = lim
N→∞

R

(
t

N
,H

)N
(f),

uniformly for t in compact intervals. R
(
β,H

)
is the map defined on Equation (2.6).

(ii) The range condition holds, that is, the range of (Id− βH) is dense in X for some (hence
all, as consequence of Lemma 5.2 from [Feng and Kurtz, 2006]) β > 0.

We say that (H, Dom(H)) is densely defined if Dom(H) is dense in X .
In this thesis, the limiting operatorH is defined on the space X = C(E) (with the supremum

norm). For operators defined on function spaces, the verification of the dissipativity can often
be checked via the positive maximum principle:

Definition 2.2.3 (The positive maximum principle) Let E be a compact subset of Rn,
and H : Dom(H) ⊂ C(E) → C(E) be an operator. We say that H satisfies the positive
maximum principle if for any two functions f, g ∈ Dom(H), we have:
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(i) If x0 ∈ E is such that f(x0)− g(x0) = sup
x∈E
{f(x)− g(x)}, then H(f)(x0)−H(g)(x0) ≤ 0.

(ii) If x0 ∈ E is such that f(x0)− g(x0) = inf
x∈E
{f(x)− g(x)}, then H(f)(x0)−H(g)(x0) ≥ 0.

Lemma 2.2.2 If an operator (H, Dom(H)) satisfies the positive maximum principle, then it
is dissipative.

Moreover, the dissipativity of H follows from the fact that H is the limit of dissipative
operators HN .

On the other hand, checking the range condition for non-linear operators might to ve very
hard or even impossible. In the cases analysed in this thesis, the non-linear operator H is such
that H(f) = H (x,∇f(x)) if x ∈ E and f ∈ C1(E). Then, Dom(H) = C1(E), H : C1(E) →
C(E), and the range condition consists on proving that for sufficiently many h ∈ C(E) and
β > 0, there exists f ∈ C1(E) such that

f − βH(f) = h. (2.7)

However the verification of this property can be a formidable obstacle. Consider for example
the case where h ∈ C(E)rC1(E). If there exists f ∈ C1(E) such that f(x)−βH (x,∇f(x)) =

h(x) for all x ∈ E, then f(x) = h(x) + βH (x,∇f(x)). But unless h is canceled by some
term of βH (x,∇f(x)) (which in principle is C0(E) too), this cannot happen because otherwise
f /∈ C1(E). One way out is to work with viscosity solutions (see Definition 2.3.1). Moreover,
due to Theorem 6.14 of [Feng and Kurtz, 2006], it is enough to prove that the comparison
principle (see Definition 2.3.2) is verified for the Hamilton-Jacobi equation defined by Equation
(2.7) since this ensures the uniqueness of the viscosity solution f ∈ C(E) constructed in the
proof of Lemma 6.9.

If the comparison principle is verified, then the operator H can be extended to Ĥ

such that Ĥ is m-dissipative and generates a semigroup V = {Vt}t (see Theorem 8.27 of
[Feng and Kurtz, 2006]). As mentioned by [Feng and Kurtz, 2006], the verification of the com-
parison principle is an analytic issue and often gives the impression of being rather involved and
disconnected from the probabilistic large deviations problems. An in-depth study of the com-
parison principle for Hamilton-Jacobi equations in this context is presented in [Kraaij, 2016],
using results from [Crandall et al., 1992] and Chapter 9 of [Feng and Kurtz, 2006]. In Sec-
tion 2.3, we present the main results from [Crandall et al., 1992], [Feng and Kurtz, 2006] and
[Kraaij, 2016] that we use to prove the comparison principle in the cases analysed in this thesis.

Once we have verified the three steps mentioned before, Theorem 6.14 from
[Feng and Kurtz, 2006] assures that the sequence of processes

{
XN
}
N
(actually, for the process
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X̂N
t = ηN

(
XN
t

)
), defined for the continuous or discrete-time Markov processes, is exponentially

tight and satisfies an LDP with rate function I defined implicitly in terms of Vt.

Theorem 2.2.3 (6.14 from [Feng and Kurtz, 2006]) Let EN , E ⊂ Rn. Let ηN : EN → E

be Borel measurable, and define η̂N : B(E) → B(EN) by η̂N(f) = f ◦ ηN . Assume that
E = lim

N
ηN(EN). Assume that one of the following holds:

1. Continuous-time case: For each N , AN ⊂ B(EN)×B(EN) and existence and unique-
ness holds for the DEN [0,∞)− martingale problem for AN . The process XN is solution
of the martingale problem for AN , and

HN(f) =
1

N
e−NfAN

(
eNf
)
, if eNf ∈ Dom(AN).

2. Discrete-time case: For each N , TN is a transition operator on B(EN) for a Markov
chain, εN > 0 and εN → 0,

{
Y N
k

}
k
is a discrete-time Markov chain with time-step εN

and transition operator TN , and

HN(f) =
1

NεN
log
[
e−NfTN

(
eNf
)]
, f ∈ B(EN).

Let
{
V N
t

}
t
be the non-linear semigroup generated by HN . Let H ⊂ C(E)×B(E) with Dom(H)

dense in C(E). Suppose that for each f ∈ Dom(H), there exists fN ∈ Dom(HN) such that∥∥η̂N(f)− fN
∥∥→ 0, sup

N

∥∥HN(fN)
∥∥ <∞, and for each x ∈ E and sequence xN ∈ EN satisfying

ηN(xN)→ x, it is verified that

lim
N
HN(fN)(xN) = H(f)(x).

Fix β0 > 0. Suppose that for each 0 < β < β0, there exists a dense subset Dβ ⊂ C(E) such that
for each h ∈ Dβ, the comparison principle holds for

(Id− βH) (f) = h.

Define X̂N = ηN(XN). Suppose that the sequence of initial conditions
{
X̂N

0

}
N

satisfies an
LDP with good rate function I0. Then,

1. The operator Ĥ =
⋃
β

{(
R (β, h) , R(β,h)−h

β

)
: h ∈ C(E)

}
generates a semigroup on C(E)

given by Vt(h) = lim
N
R
(
t
N
, h
)N . With abuse of notation, R (β, h) is the unique viscosity

solution of Equation (2.7) (constructed in the proof of Lemma 6.9) for β > 0 and h ∈
C(E).
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2. In the continuous-time case, lim
N→∞

∥∥η̂N (Vt(f))− V N
t (fN)

∥∥ = 0, whenever f ∈ C(E),

fN ∈ B(EN), and
∥∥η̂N(f)− fN

∥∥→ 0.

3. In the discrete-time case,

lim
N→∞

∥∥η̂N (Vt(f))− V N
t (fN)

∥∥+
∥∥η̂N (Vt(f))− V N

t+εN
(fN)

∥∥ = 0,

whenever f ∈ C(E), fN ∈ B(EN), and
∥∥η̂N(f)− fN

∥∥→ 0.

4.
{
X̂N
}
N

is exponentially tight and satisfies an LDP with rate funtion I : DE[0,∞) →
[0,+∞] given by

I(x) = sup
{ti}i∈∆c

x

I0(x(0)) +
∑
i

Iti−ti−1
(x(ti)|x(ti−1)) , (2.8)

where 0 ≤ t1 ≤ t2 ≤ · · · ≤ ti ≤ . . . , ∆x ⊂ [0,∞) is the set of continuity points of x, and

It(y|x) = sup
f∈C(E)

{f(y)− Vt(f)(x)} .

This is a theoretical result but does not provide an applicable characterization of the rate. The
next step provides a simplified version of the rate that can be used in practice.

Step 4: Construct a variational representation for the limiting semigroup V = {Vt}t

Typically, we can identify the limiting semigroup V = {Vt}t as the Nisio semigroup for a control
problem that is constructed in terms of the limiting operator H(f)(x) = H (x,∇f(x)). The
control problem then gives an alternative and more explicit representation of the rate function.

Assume that Dom(H) = C1(E) and H is such that H(f)(x) = H (x,∇f(x)), where H :

E × Rn is continuously differentiable on E̊ × Rn and convex w.r.t. the second variable. This
step consists of proving that Vt = Vt, where the semigroup Vt is given as a variational problem
where one optimises a pay-off f (x(t)), but where a cost is paid that depends on the whole
trajectory {x(s) : 0 ≤ s ≤ t}. This cost is accumulated over time and is given in a Lagrangian
form.

Consider the Legendre-Fenchel transform of H given by

L (x, β) = sup
α∈Rn

{〈α, β〉 −H (x, α)} = sup
f∈C1(E)

{〈∇f(x), β〉 −H(f)(x)} .

Since H is continuous and convex w.r.t. α, the Fenchel-Moreau theorem states that L is
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continuous, convex w.r.t. β, and

H (x, α) = sup
α∈Rn

{〈α, β〉 − L (x, β)}

(we write L↔ H for short). This gives us the following variational representation of H:

H(f)(x) = H (x,∇f(x)) = sup
β∈Rn
{〈∇f(x), β〉 − L (x, β)} . (2.9)

Although we formally define the Nisio semigroup in terms of relaxed controls measures,
using Jensen’s inequality, it can be proved that in this case, the Nisio semigroup Vt turns out
to be

Vt(f)(x0) = sup
x∈AC:x(0)=x0

f (x(t))−
t∫

0

L (x(s), ẋ(s)) ds

 , (2.10)

where AC represents the space of all absolutely continuous functions x : [0,∞) → E. The
following informal calculation shows why Vt should be the semigroup generated by H (i.e.,
Vt = Vt):

[
d

dt
Vt(f)(x0)

]
t=0

= sup
x∈AC:x(0)=x0

d

dt

f (x(t))−
t∫

0

L (x(s), ẋ(s)) ds


t=0

= sup
x∈AC:x(0)=x0

{〈∇f (x0) , ẋ(0)〉 − L (x0, ẋ(0))}

= sup
β∈Rn
{〈∇f (x0) , β〉 − L (x0, β)}

= H(f)(x0) = H (V0(f)) (x0).

Next, we formally define the Nisio semigroup Vt. We present conditions 8.9, 8.10, and 8.11
from [Feng and Kurtz, 2006], and Theorem 2.2.7, which is a direct consequence of theorems
8.14, 8.23, 8.27, and 8.29 from [Feng and Kurtz, 2006].

Definition 2.2.4 (Control set of a linear operator and Nisio semigroup) Let U and
E be complete and separable metric spaces. Let A : Dom(A) ⊂ B(E) → M (E × U) be a
single valued linear operator. Let Mm(U) be the space of Borel measures λ on U × [0,∞)

satisfying λ (U × [0, t]) = t for all t ≥ 0. The measure λ is known as a relaxed control. We
say that the pair (x, λ) ∈ DE[0,∞)×Mm(U) satisfies the relaxed control equation for A if and
only if:

1.
∫∫

U×[0,t]
|A(f)(x(s), u)|λ (du× ds) <∞ ∀f ∈ Dom(A), ∀t ≥ 0;
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2. f (x(t))− f (x(0)) =
∫∫

U×[0,t]
A(f)(x(s), u)λ (du× ds) ∀f ∈ Dom(A), ∀t ≥ 0.

We denote the collection of pairs satisfying the above properties by Y. If Γ ⊂ E × U , define

YΓ =

{
(x, λ) ∈ Y :

∫∫
U×[0,t]

1Γ (x(s), u)λ (du× ds) = t, t ≥ 0

}
.

The Nisio semigroup corresponding to the control problem determined by the linear operator A
and the cost function −L is:

Vt(f)(x0) = sup
{(x,λ)∈YΓ: x(0)=x0}

{
f(x(t))−

∫∫
U×[0,t]

L(x(s), u)λ (du× ds)
}

(2.11)

for each x0 ∈ E (the supremum of an empty set is defined to be −∞).

Note that the operator A appears in the definition of the control set. Next, we present
conditions 8.9, 8.10, and 8.11 for the particular case at which H‡ = H = H†.

Condition 2.2.4 (Condition 8.9 from [Feng and Kurtz, 2006]) The functions A, L de-
fined before verify:

1. A ⊂ C(E) × C(E × U) is single-valued and Dom(A) separates points (that is, for any
x 6= y ∈ E, there exists f ∈ Dom(A) such that f(x) 6= f(y)).

2. Γ ⊂ E × U is closed, and for each x0 ∈ E, there exists (x, λ) ∈ YΓ such that x(0) = x0.

3. L : E × U → [0,∞] is a lower-semicontinuous function, and for each c > 0 and compact
K ⊂ E, the set {(x, u) ∈ Γ : L(x, u) ≤ c} ∩ (K × U) is relatively compact.

4. For each compact K ⊂ E, T > 0, and 0 ≤ M < ∞, there exists a compact K̂ =

K̂(K,T,M) ⊂ E such that if (x, λ) ∈ YΓ, x(0) ∈ K, and∫∫
U×[0,T ]

L (x(s), u)λ (du× ds) ≤M,

then x(t) ∈ K̂ for all 0 ≤ t ≤ T .

5. For each f ∈ Dom(A) and compact set K ⊂ E, there exits a right continuous, nonde-
creasing function ψf,K : [0,∞)→ [0,∞) such that

|A(f)(x, u)| ≤ ψf,K (L(x, u)) , ∀(x, u) ∈ Γ ∩ (K × U) ,

and lim
r→∞

1
r
ψf,K(r) = 0.
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Condition 2.2.5 (Condition 8.10 from [Feng and Kurtz, 2006]) For each x0 ∈ E,
there exists (x, λ) ∈ YΓ such that x(0) = x0 and∫∫

U×[0,∞)

L (x(s), u)λ (du× ds) = 0.

Condition 2.2.6 (Condition 8.11 from [Feng and Kurtz, 2006]) For each x0 ∈ E and
f ∈ Dom(H), there exists (x, λ) ∈ YΓ such that x(0) = x0, and∫ t

0

H(f) (x(s)) ds =

∫∫
U×[0,t]

(A(f) (x(s), u)− L (x(s), u))λ (ds× du) , t ≥ 0.

Finally, the much more useful version of the rate function that we present for the cases
analysed in this thesis derives from the theorem that we present below. It is a presentation of
theorems 8.14, 8.23, 8.27 and 8.29 from [Feng and Kurtz, 2006].

Theorem 2.2.7 Assume that conditions from Theorem 2.2.3 are verified for the continuous
or dicrete-time case. If Conditions 8.9, 8.10 and 8.11 from [Feng and Kurtz, 2006] are also
verified, then:

1. Vt (f) = Vt (f) for all f ∈ Dom (V), where Vt = {Vt}t is the Nisio semigroup associated
to the cost function −L defined on Equation (2.11).

2. I(x) = I0(x(0)) + inf
{λ: (x,λ)∈Y}

{∫∫
U×[0,∞)

L(x(s), u)λ(du× ds)
}
.

2.3 Theory of viscosity solutions for Hamilton-Jacobi

equations

In this section, we present the tools we use in this thesis to study the uniqueness of viscosity
solutions of Hamilton-Jacobi equations. This uniqueness is an essential requirement for the
study of large deviations, according to the results presented in the previous section.

Theories of viscosity solutions of (deterministic) differential equations and probability are
doubly connected. On the one hand, some viscosity solutions are built from the limit of pro-
cesses related to “probabilistic games”. On the other hand, the study of viscosity solutions of
differential equations allows solving probabilistic problems. The work of [Feng and Kurtz, 2006]
focuses on this second aspect. That is, they use the theory of viscosity solutions to prove the
existence of the semigroup {Vt}t associated with the non-linear operator H.

The theory of viscosity solutions applies to certain differential equations of the form
F
(
x, u(x), Du(x), . . . , Dku(x)

)
= 0. The primary virtues of this theory are that it allows
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merely continuous (or semi-continuous) functions to be solutions of fully nonlinear differential
equations. In the expression F

(
x, u(x), Du(x), . . . , Dku(x)

)
, u is a real-valued function defined

on some subset E ⊂ Rn (or even on a metric space), and Du(x), . . . , Dku(x) corresponds to
derivatives of u. However, these derivatives do not have a classical meaning, as we present
below.

Let E ⊂ Rn be some compact set. Consider a function F : E × R × Rn → R. It is known
that for many equations it is not possible to solve the first-order differential equation:

F (x, u(x),∇u(x)) = 0 (2.12)

in a classical sense. A well known example is the Eikonal equation on E = [−1, 1], given by|u′(x)| − 1 = 0,

u(−1) = u(1) = 0.

Classical solutions to this problem do not exist due to Rolle’s theorem, then solutions are
sought in a relaxed sense. For this example, there exists infinitely many solutions that solve
this equation almost everywhere. For example, u1(x) = 1− |x| or u2(x) = |x| − 1, but only one
of them is a viscosity solution in the sense that we define below.

Definition 2.3.1 (Viscosity solutions) We say that u is a viscosity subsolution of Equation
(2.12) if it is bounded, upper-semicontinuous and if for every φ ∈ C1(E) and x0 ∈ E such that
u(x0)− φ(x0) = sup

x∈E
{u(x)− φ(x)}, it is verified that:

F (x0, u(x0),∇φ(x0)) ≤ 0.

We say that v is a viscosity supersolution of Equation (2.12) if it is bounded, lower-
semicontinuous and if for every ψ ∈ C1(E) and x0 ∈ E such that v(x0) − ψ(x0) =

inf
x∈E
{v(x)− ψ(x)}, it is verified that:

F (x0, v(x0),∇ψ(x0)) ≥ 0.

We say that u is a viscosity solution of Equation (2.12) if it is both a sub and supersolution.

Note that an upper semi-continuous function always attains its supremum in a compact set
(analogously, a lower semi-continuous function always attains its infimum). Consider the case
at which u(x0)−φ(x0) = 0, then Definition 2.3.1 says that u is a subsolution of Equation (2.12)
if every time we touch it from above in (x0, u(x0)) by a function φ ∈ C1(E), it is verified that
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F (x0, u(x0),∇φ(x0)) ≤ 0. Notice that we replace the derivatives of u (which might not exist)
with the derivatives of φ. Analogously, v is a supersolution if every time we touch it from below
in (x0, v(x0)) by a function ψ ∈ C1(E), it is verified that F (x0, v(x0),∇ψ(x0)) ≥ 0.

Remark 2.3.1 Let us introduce some comments about the definition of viscosity solutions.

1. There are other definitions of viscosity solutions in the literature for higher-order differ-
ential equations and the case in which the set E is not compact (so there would not have
to exist x0 such that u(x0)− φ(x0) = sup

x∈E
{u(x)− φ(x)}).

2. Since a viscosity solution u is an upper and lower-semicontinuous function, it must be a
bounded and continuous function, which contrasts with the weak solution method based
on Sobolev spaces. Sobolev spaces require that the function and its derivatives belong to
Lp (to integrate them).

3. Of course, if the differential equation has a classical solution, this solution will also be a
solution in the viscosity sense that we have just defined.

In the case of the Eikonal equation, the only viscosity solution turns out to be u1(x) = 1−|x|.
Since it is differentiable everywhere except in x = 0, the point of interest turns out to be x0 = 0.
Since every function φ ∈ C1(E) that touches u1 at (0, 1) from above has to verify φ′(0) ∈ [−1, 1],
u1 is a viscosity subsolution of the Eikonal equation. Moreover, there exists no ψ ∈ C1(E) that
touches u1 from below at the point (0, 1), which implies that u1 is a viscosity supersolution
too. With a similar argument, it can be proved that u2 is a subsolution, but it can’t be a
supersolution since for any ψ ∈ C1(E) that touches u2 below at the point (0,−1), it is verified
that ψ′(0) ∈ (−1, 1). The uniqueness of u1 as viscosity solution of the Eikonal equation is
established via the comparison principle that we defined below.

Definition 2.3.2 (Comparison Principle) We say that Equation (2.12) satisfies the com-
parison principle if for any subsolution u and supersolution v it is verified that u ≤ v.

Remark 2.3.2 Note that if the comparison principle is satisfied, then a viscosity solution
is unique: if u1 and u2 are viscosity solutions, then u1 ≤ u2 since u1 is subsolution and u2

is supersolution. Moreover, u2 ≤ u1 since u2 is subsolution and u1 is supersolution. Then,
u1 = u2.

Next, we state the results from [Crandall et al., 1992], [Kraaij, 2016], and Chapter 9 from
[Feng and Kurtz, 2006] to prove the comparison principle for the cases analysed in this thesis.
As mentioned before, in these cases, the Hamilton-Jacobi equations are of the form

f(x)− βH (x,∇f(x))− h(x) = 0, x ∈ E, (2.13)
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where h ∈ C(E) and β > 0 are fixed, E ⊂ Rn is compact, and H : E × Rn → R is continuous
and convex w.r.t. the second variable. Then, in this case, the function F is Fβ,h (x, u, α) =

u− βH(x, α)− h(x), and the Hamilton-Jacobi equation is

Fβ,h (x, f(x),∇f(x)) = 0, x ∈ E.

Let u and v be respectively a viscosity subsolution and supersolution of Equation (2.13). We
want to prove that u − v ≤ 0. The first step to prove this inequality, first proposed by
[Crandall et al., 1992] and then in Chapter 9 of [Feng and Kurtz, 2006] for more general spaces,
consists in constructing sequences xα and yα (α → ∞) that converge to a maximising point
z ∈ E such that u(z)− v(z) = sup

x∈E
{u(x)− v(x)}.

Proposition 2.3.1 ([Crandall et al., 1992], Lemma 3.1 and Proposition 3.7) Let E

be a compact subset of Rn, let u : E → R be an upper-semicontinous function, v : E → R
be a lower-semicontinous function, and let ψ : E ×E → R be a lower-semicontinuous function
such that ψ ≥ 0 and ψ(x, y) = 0 if and only if x = y. For α > 0 (α→∞), let xα, yα ∈ E such
that 1:

u (xα)− v (yα)− αψ (xα, yα) = sup
x,y∈E

{u(x)− v(y)− αψ(x, y)} .

Then, the following hold:

1. lim
α→∞

αψ (xα, yα) = 0,

2. all the limiting points of the sequence (xα, yα) are of the form (z, z), and for these points
it is verified that u(z)− v(z) = sup

x∈E
{u(x)− v(x)}.

The entire Chapter 9 of [Feng and Kurtz, 2006] is devoted to extend the conditions imposed
in [Crandall et al., 1992] to ensure the comparison principle for more general spaces, even for
the case in which there is not a limit operator H, but there is an upper bound H† and a lower
bound H‡, which are presented as graphs (instead of operators). Since, in our case, there
exists a limit operator H, and it verifies H(f)(x) = H (x,∇f(x)), with H(x, α) continuous and
convex w.r.t. α, we use the simplest conditions presented as Proposition 2 and Lemma 5 in
[Kraaij, 2016].

Definition 2.3.3 (Good penalization function) The function ψ : E × E → R is a good
penalization function if ψ ≥ 0, ψ(x, y) = 0 if and only if x = y, it is continuously differentiable
in both components, and if ψx(x, y) = −ψy(x, y) for all x, y ∈ E. ψx and ψy denote the
derivatives of ψ w.r.t. x and y.

1There exist since E × E is compact and the function gα(x, y) = u(x) − v(y) − αψ(x, y) is upper-
semicontinuous.
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Proposition 2.3.2 (Proposition 2 and Lemma 5 from [Kraaij, 2016] )
Let (H, Dom (H)) be an operator such that Dom (H) = C1(E) and H(f)(x) = H (x,∇f(x)).
Let u be a subsolution and v a supersolution of Equation (2.13) for some β > 0 and h ∈ C(E).
Let ψ be a good penalization function and let xα, yα (α→∞) satisfying

u (xα)− v (yα)− αψ (xα, yα) = sup
x,y∈E

{u(x)− v(y)− αψ(x, y)} .

1. If
lim inf
α→∞

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) ≤ 0, (2.14)

then u ≤ v. i.e. Equation (2.13) satisfies the comparison principle.

2. Moreover, sup
α
H (yα, αψx (xα, yα)) <∞.

Since the proof of this proposition is typical for the comparison principle problem, we include
the proof of the first part of this proposition for completeness.

Proof. Let β > 0 and h ∈ C(E) be fixed. Let u be a subsolution and v a supersolution
to Equation (2.13). We want to prove that sup

x∈E
{u(x) − v(x)} ≤ 0 (i.e., u ≤ v). Suppose by

contradiction that δ = sup
x∈E
{u(x)− v(x)} > 0. For α > 0 (α→∞), let xα, yα be such that

u (xα)− v (yα)− αψ (xα, yα) = sup
x,y∈E

{u(x)− v(y)− αψ(x, y)} .

Since αψ (xα, yα)→ 0 and for any limiting point z we have u(z)− v(z) = sup
x∈E
{u(x)− v(x)} =

δ > 0, then for α large enough, u (xα)− v (yα) ≥ δ
2
.

For every α, the map φ1,α(x) := v (yα) + αψ (x, yα) is in C1(E) and u(x) − φ1,α(x) has a
maximum at xα.

On the other hand, φ2,α(y) := u (xα)− αψ (xα, y) is also in C1(E) and v(y)− φ2,α(y) has a
minimum at yα.

As u is subsolution and v is supersolution to Equation (2.13), we have:

u (xα)− h (xα)

β
≤ H (xα,∇φ1,α(xα)) = H (xα, αψx (xα, yα)) , (2.15)

and

v (yα)− h (yα)

β
≥ H (yα,∇φ2,α(yα)) = H (yα,−αψy (xα, yα)) = H (yα, αψx (xα, yα)) . (2.16)
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It follows that for α large enough we have

0 <
1

β

δ

2
≤ u (xα)− v (yα)

β
=
u (xα)− h (xα)

β
− v (yα)− h (yα)

β
+

1

β
(h (xα)− h (yα)) (2.17)

≤ H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) +
1

β
(h (xα)− h (yα)) . (2.18)

As h ∈ C(E), lim
α

(h (xα)− h (yα)) = 0 (since xα, yα → z). Together with the assumption of
the proposition, we find that the lim inf as α → ∞ is bounded above by 0, which contradicts
the assumption that δ > 0. �

Then, for the cases analysed in this thesis, it is enough to prove that the function H (x, α)

verifies the inequality presented in Equation (2.14).

2.4 Rate function optimization

Since in the cases analysed in this thesis, the large deviation rate function can be written as
an action functional, in this section, we present tools from the calculus of variations to find
the trajectory that minimises the rate function over a set of trajectories (i.e. the optimal
trajectory).

We focus in to solve the following optimization problem: given a set of possible trajectories
A ⊂ DE[0, 1] and a functional I : DE[0, 1]→ [0,∞] given by

I (x) =


∫ 1

0
L (x(t), ẋ(t)) dt, if x ∈ AC,

+∞, in other cases,

we want to found the trajectory (or trajectories) that solves

(P1) inf
x∈A

I(x). (2.19)

We use the notation AC to refer to the set of all absolutely continuous functions x : [0, 1]→ E.
L is a cost function given in a Lagrangian form L : E × Rn → R such that

L (x, β) = sup
α∈Rn

{〈α, β〉 −H (x, α)} .

The function H : E × Rn → is differentiable on E̊ × Rn and convex w.r.t. α. As α 7→ H (x, α)
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is convex and continuous, it follows by the Fenchel-Moreau theorem that also

H (x, α) = sup
β∈Rn
{〈α, β〉 − L (x, β)} .

We use the notation H ↔ L for short and call H the Hamiltonian function.
Techniques from classical mechanics can be used to obtain information about the rate func-

tion I which would be very difficult to get from the law of the related stochastic process itself.
Euler-Lagrange equations, presented in Equation (2.20), give us conditions for a curve x to

be a stationary curve for the functional I (see [Arnold, 1987], for example):

Lx (x, ẋ)− d
dt
Lβ (x, ẋ) = 0 (Euler-Lagrange). (2.20)

Here Lx and Lβ denote the derivatives of L w.r.t. the first and second coordinate. Note that
Equation (2.20) turns out to be a second-order differential equation.

In many cases (as in Chapter 5), we cannot find the function L explicitly, but we do explicitly
have the Hamiltonian function H. Then, we can switch Equation (2.20) to the easier first-
order Hamilton equations by doubling the dimension of the problem. By adding the variable
α(t) = Lβ (x(t), ẋ(t)), and rewriting the Euler-Lagrange equations, we find that (x(t), α(t))

must satisfy the Hamilton equations (see [Arnold, 1987], for example):ẋ = Hα (x, α) , (Hamilton)

α̇ = −Hx (x, α) .
(2.21)

Similar to the notation for L, Hx and Hα denote the derivatives of H w.r.t. the first and second
coordinate.

Then, problem (P1) becomes problem (P2), where, in our case, the closure of the set A ⊂
DE[0, 1] is considered w.r.t. the Skorohod topology in DE[0, 1]:

(P2) inf
{
I (xα) : xα is solution of Equation (2.21) and xα ∈ Ā

}
. (2.22)

2.5 Fluid limit

In this section, we show that the fluid limit of a sequence of Markov processes can be deduced
from the study of the large deviations.

In each chapter of this thesis, we deduce fluid limit results as a corollary from the LDP for
the sequences of Markov processes of interest. These results are nothing more than a particular
case of the theorem that we recall below, which ensures that large deviations imply almost-sure
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convergence to the set of minimizers of the rate function.

Proposition 2.5.1 (LD imply almost-sure convergence) Let (Ω,A,P) be a probability
space and {XN}N , XN : Ω → X , be a sequence of random variables in a complete and sep-
arable metric space (X , d). Assume that {XN}N satisfies an LDP with good rate function
I : X → [0,∞]. Then,

d (XN , {I = 0})→ 0 almost-sure as N →∞,

where {I = 0} = {x ∈ X : I(x) = 0} is the set of minimizers of I.

Since only the definition of large deviations and Borel-Cantelli lemma are required to prove this
theorem, we include a simple proof of this result for completeness.

Proof. It is enought to prove that the sum
∞∑
N=1

P (d (XN , {I = 0}) ≥ ε) is finite, since Borel-

Cantelli Lemma assures that P ({d (XN , {I = 0}) ≥ ε} infinitely often ) = 0, and almost-sure
convergence follows as

P (d (XN , {I = 0})→ 0 is not true) = P

[
∞⋃
k=1

∞⋂
m=1

⋃
N≥m

{
d (XN , {I = 0}) ≥ 1

k

}]

≤
∑
k

P

[
∞⋂
m=1

⋃
N≥m

{
d (XN , {I = 0}) ≥ 1

k

}]

=
∑
k

P
[{

d (XN , {I = 0}) ≥ 1

k

}
infinitely often

]
= 0.

Then, we show that for any ε > 0, there exists a δ > 0 such that for large N , we have:

P [d (XN , {I = 0}) ≥ ε] ≤ e−N
δ
2 .

Let ε > 0. The set Uε = {x ∈ X : d (x, {I = 0}) < ε} is an open neighborhood of the set of
minimizers {I = 0}. Since I is a good rate function, for any open nighborhood U of the set of
minimizers, there exists a δ > 0 such that {I ≤ δ} ⊂ U . Thus, there exists a δ > 0 such that
{I ≤ δ} ⊂ Uε. By the LD upper bound, for any closed set B and any η > 0, there exists an
integer N0 = N0(η) such that for all N ≥ N0, we have:

P [XN ∈ B] ≤ e−N(I(B)−η),
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where I(B) = inf
x∈B

I(x). As X \ Uε is closed and is contained in {I > δ}, we obtain for N0 =

N0

(
δ
2

)
large enough that for all N ≥ N0,

P [XN ∈ X \ Uε] ≤ e−N(I(X\Uε)− δ2) ≤ e−N(I({I>δ})− δ2) ≤ e−N
δ
2 ,

since inf
x∈{I>δ}

I(x) ≥ δ. �

In our case, the random variables of interest are stochastic processes, more precisely,
Markov processes. Then, the previous theorem assures that the fluid limit for these pro-
cesses is contained in the set of minimizers {x ∈ DE[0, 1] : I(x) = 0} of the good rate function
I : DE[0, 1]→ [0,+∞]. We use the term fluid limit (first introduced in [Kurtz, 1971]) to refer
to results of the type of the law of large numbers for sequences of Markov processes.

2.6 The theory of Freidlin and Wentzell in the context

of the work of Feng and Kurtz

Finnaly, since it is impossible to talk about large deviations for Markov processes without
mentioning the pioneering work of [Freidlin and Wentzell, 1984], we present in this section a
synthesis of their results in the context of the work of [Feng and Kurtz, 2006].

Discontinuous Markov processes which can be considered as a result of random perturbations
of dynamical systems arise in various problems. Freidlin and Wentzell consider a sequence of
diffusion processes

{
XN
}
N
, with XN

t ∈ Rn (n fixed), satisfying the Itô equation:

XN
t = x+

1√
N

t∫
0

σ
(
XN
s

)
dWs +

t∫
0

b
(
XN
s

)
ds,

where {Ws}s is a standar Brownian motion, b : Rn → Rn is such that b(x) = (b1(x), . . . , bn(x)),
and σ : Rn → Mn×n(R) is such that σ(x) = (σi,j(x))i,j (here Mn×n(R) is the set of real
matrices n×n). For large values of N , the corresponding Markov process

{
XN
t

}
t
is essentially

a solution of the ordinary differential equation

ẋ = b(x),

and the corresponding large deviation theory is concerned with the probabilities of sample paths
significantly different from the solution of this equation. [Freidlin and Wentzell, 1984] impose
conditions to a Lagrangian function L related to the process XN

· in order to prove an LDP.
However, we don’t have the function L explicitly in many cases, so it can’t be easy to verify
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these conditions. From [Feng and Kurtz, 2006], we can analyse those conditions from the point
of view of the function H.

Next, we present results for this type of processes, from the simplest case of perturbation
of a Brownian motion to the more general case considered in [Freidlin and Wentzell, 1984].

Schilder theorem

Let {Wt}t∈[0,1] denote a standard Brownian motion in Rn. Consider the process W ε
t =
√
εWt

with ε → 0, and let νε be the probability measure induced by W ε on C0[0, 1], the space of all
continuous functions x : [0, 1] → Rn such that x(0) = 0, equipped with the supremum norm
topology.

Starting from approximating the processW ε
t by an average of random variables with normal

distribution and Cramér’s theorem (see Mogulskii’s theorem in [Dembo and Zeitouni, 1998], for
example), Schilder’s theorem states that the sequence of measures {νε}ε satisfies an LDP in
X = C0[0, 1] with good rate function I : X → [0,+∞] given by

I(x) =


1
2

∫ 1

0
|ẋ(t)|2 dt, if x ∈ H1 :=

{∫ t
0
f(s)ds : f ∈ L2[0, 1]

}
,

+∞, otherwise.

L2[0, 1] is the space of square integrable functions f : [0, 1] → Rn, and |.| denotes the usual
Euclidean norm in Rn.

Schilder theorem plus Contraction principle

Let {Xε
t }t∈[0,1] be the diffusion process that is the unique solution of the stochastic differential

equation dXε
t = b (Xε

t ) dt+
√
εdWt,

Xε
0 = 0,

(2.23)

where b : Rn → Rn is a uniformly continuous function. The existence and uniqueness of the
strong solution of Equation (2.23) is standard.

Let µ̃ε denote the probability measure induced by Xε
t on C0[0, 1]. Then, µ̃ε = µε ◦ F−1,

where µε is the measure induced by {
√
εWt}t, and F : C0[0, 1] → C0[0, 1] is the deterministic

function given by F (g) = f if f is the unique continuous solution of

f(t) =

∫ t

0

b (f(s)) ds+ g(t) ∀t ∈ [0, 1].

Since F is a continuous function, the LDP associated with {Xε}ε is a direct application of the
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contraction principle (see [Dembo and Zeitouni, 1998], for example) w.r.t. the map F . {Xε}ε
satisfies an LDP in X = C0[0, 1] with good rate function I : X → [0,+∞] given by

I (x) =

1
2

∫ 1

0
|ẋ(t)− b (x(t))|2 dt, if x ∈ H1,

+∞, if x /∈ H1.

LDP for diffusion processes with non-constant diffusion coefficients (Chapters 3
and 4 from [Freidlin and Wentzell, 1984])

Now, let
{
XN
t

}
t∈[0,1]

be the diffusion process that is the unique solution of the stochastic
differential equation dXN

t = b
(
XN
t

)
dt+ 1√

N
σ
(
XN
t

)
dWt,

XN
0 = x,

(2.24)

where x ∈ Rn is fixed, b : Rn → Rn is a uniformly Lipschitz continuous function, all elements
of the diffusion matrix σ are bounded, uniformly Lipschitz continuous functions, and Wt is a
standar Brownian motion in Rn (the existence and uniqueness of the strong solution

{
XN
t

}
t

of Equation (2.24) is standard). Note that the map defined by the process XN
· on C[0, 1] is

measurable but need not be continuous, therefore the contraction principle can not be used
directly. Indeed, this non-continuity is strikingly demonstrated by the fact that the solution of
Equation (2.24), when Wt is replaced by its polygonal approximation, differs in the limit from
XN
. by a non-zero correction term. On the other hand, this correction term is of the orden

of 1
N
, so it is non expected to influence the LD results. In [Freidlin and Wentzell, 1984] it is

proved that the solution of Equation (2.24) satisfies an LDP on X = C[0, 1] with good rate
function I : X → [0,∞] given by

Ix(x) = inf

1

2

∫ 1

0

|ġ(t)|2 dt : g ∈ H1, and x(t) = x+

t∫
0

b (x(s)) ds+

t∫
0

σ (x(s)) ġ(s)ds

 ,

(2.25)
where the infimum over an empty set is taken as +∞.

Let a(x) = σ(x) · σt(x), where σt(x) denotes the transpose of the matrix (or vector) σ(x),
and · denotes the product of matrices. Note that for this case, the linear generator of the
process XN

. is

AN(f)(x) =
1

2N

∑
i,j

ai,j(x)
∂2f

∂xi∂xj
(x) +

∑
i

bi(x)
∂f

∂xi
(x),

where we can take the domain of AN to be the space of twice continuously differentiable
functions with compact support C2

c (Rn). Then, the non-linear generator suggested by
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[Feng and Kurtz, 2006] is

HN(f)(x) =
1

2N

∑
i,j

ai,j(x)
∂2f

∂xi∂xj
(x) +

1

2

∑
i,j

ai,j(x)
∂f

∂xi
(x)

∂f

∂xj
(x) +

∑
i

bi(x)
∂f

∂xi
(x).

Consequently, the limiting non-linear generator is H(f) = lim
N→∞

HN(f) such that

H(f)(x) =
1

2
(∇f(x))t · a(x) · ∇f(x) + (b(x))t · ∇f(x) = H (x,∇f(x)) ,

being H : Rn × Rn → R such that

H (x, α) =
1

2
αt · a(x) · α + (b(x))t · α =

1

2

∣∣σt(x) · α
∣∣2 + (b(x))t · α.

Since H (x, α) is convex w.r.t. α, H ↔ L, being L (x, β) = sup
α∈Rn

{α · β −H (x, α)}. Therefore,

the limiting non-linear generator can be written as

H(f)(x) = sup
u∈Rn
{A(f)(x, u)− L(x, u)} ,

where A(f)(x, u) = (∇f(x))t · u for f ∈ C2
c (Rn). Applying Corollary 8.28 from

[Feng and Kurtz, 2006], the rate function for the sequence
{
XN
}
, where XN

. is solution of
Equation (2.24), is

I(x) = inf
{u:(x,u)∈Y}

1∫
0

L (x(s), u(s)) ds,

where Y is the collection of solutions of the functional equation:

f (x(t))− f(x) =

t∫
0

A(f) (x(s), u(s)) ds, ∀f ∈ C2
c (Rn) , 0 ≤ t ≤ 1.

In the present setting, this equation reduces to ẋ(t) = u(t), then the rate function can be
written as

I(x) =


∫ 1

0
L (x(s), ẋ(s)) ds, if x ∈ AC,

+∞, otherwise.

One can use other variational representations of the operator H and arrive at different expres-
sions for the rate function I. For example, if we choose

A(f)(x, u) = ut ·
(
σt(x) · ∇f(x)

)
+ (b(x))t · ∇f(x), ∀f ∈ C2

c (Rn) ,
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L(x, u) = 1
2
|u|2, and define H(f)(x) = sup

u∈Rn
{A(f)(x, u)− L(x, u)}, then H = H and the rate

function can be expressed as

Ix(x) = inf

1

2

∫ 1

0

|u(t)|2 dt : u ∈ L2[0, 1], and x(t) = x+

t∫
0

b (x(s)) ds+

t∫
0

σ (x(s))u(s)ds

 ,

which coincides with the form of the rate presented in Equation (2.25).

More general case of Freidlin-Wentzell theory

More generally, we can consider
{
XN
t

}
t≥0

to be a Markov process in Rn with right contin-
uous trajectories and infinitesimal generator AN defined for twice continuously differentiable
functions with compact support by the formula

AN(f)(x) = N

∫
Rn

(
f

(
x+

1

N
z

)
− f(x)− 1

N
zt · ∇f(x)

)
η (x, dz) (2.26)

+
1

2N

∑
i,j

ai,j(x)
∂2f

∂xi∂xj
(x) + (b(x))t · ∇f(x), (2.27)

where for each x ∈ Rn, η (x, ·) is a measure defined on B (Rn) such that∫
Rn\{0}

|z|2 η (x, dz) < +∞,

and for each B ∈ B (Rn), η (·, B) is a Borel-measurable function. Note that, if XN corresponds
to AN , then XN

t = 1
N
XNt, where the process {Xt}t has the generator A given by

A(f)(x) =

∫
Rn

(
f (x+ z)− f(x)− zt · ∇f(x)

)
η (x, dz)

+
1

2

∑
i,j

ai,j(x)
∂2f

∂xi∂xj
(x) + (b(x))t · ∇f(x).

In Chapter 5 of [Freidlin and Wentzell, 1984], the following recipe is presented to study the
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large deviations in this case: assume that for all α = (α1, . . . , αn) , the expression

H (x, α) =
∑
i

bi(x)αi +
1

2

∑
i,j

ai,j(x)αiαj (2.28)

+

∫
Rn\{0}

(
e
∑
i αizi − 1−

∑
i

αizi

)
η (x, dz) (2.29)

is finite. The function H is convex and analytic w.r.t. α, and it vanishes at zero.
[Freidlin and Wentzell, 1984] describe the connection of H with the Markov process XN in
the following way: if we apply the operator AN defined in Equation (2.26) to the function
e
∑
i αixi , then we obtain NH

(
x, 1

N
α
)
e
∑
i αixi . If L (x, β) denote the Legendre-Fenchel transform

of H (x, α) w.r.t. α, then [Freidlin and Wentzell, 1984] prove in Theorem 2.1 of Chapter 5 that
the sequence

{
XN
}
N

verifies an LDP if the following conditions on L are verified:

I. There exists an everywhere finite nonnegative convex function H̄(α) such that H̄(0) = 0

and H (x, α) ≤ H̄(α) for all x, α.

II. The function L (x, β) is finite for all values of the arguments, for any R > 0

there exists positive constants M and m such that L (x, β) ≤ M , |Lβ (x, β)| ≤ M ,∑
i,j

∂2L
∂βi∂βj

(x, β) cicj ≥ m
∑

i c
2
i for all x, c ∈ Rn and all β with |β| < R.

III. ∆L(δ) := sup
|y−y′|<δ

sup
β

L(y′,β)−L(y,β)
1+L(y,β)

→ 0 if δ → 0.

It is proved that the functional I given by

I (x) = IT1,T2 (x) =


∫ T2

T1
L (x(t), ẋ(t)) dt, if x ∈ AC and the integral is convergent,

+∞, otherwise,
(2.30)

is the LD rate function (or NI (x) is an action functional in terms
of [Freidlin and Wentzell, 1984]) for the sequence

{
XN
}
N

with XN =
{
XN
t

}
T1≤t≤T2

. They
prove the upper and lower bounds from a suitable change of measure.

However, we do not have the function L explicitly in many cases, so it can be a formidable
taks to verify conditions I, II, and III in practice. From [Feng and Kurtz, 2006], we can analyse
those conditions from the point of view of the function H. In this case, the non-linear generator
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of the process is

HN(f)(x) =

∫
Rn

(
eN(f(x+ 1

N
z)−f(x)) − 1− (∇f(x))t · z

)
η (x, dz) + (b(x))t · ∇f(x)

+
1

2

∑
i,j

ai,j(x)
∂f

∂xi
(x)

∂f

∂xj
(x) +

1

N

∑
i,j

ai,j(x)
∂2f

∂xi∂xj
(x).

Now, assuming that
∫
Rn
(
eα

t·z − 1− αt · z
)
η (x, dz) < ∞ for each α ∈ Rn, the limiting semi-

group H(f) = lim
N
HN(f) is given by

H(f)(x) =

∫
Rn

(
e(∇f(x))t·z − 1− (∇f(x))t · z

)
η (x, dz)+

1

2

∑
i,j

ai,j(x)
∂f

∂xi
(x)

∂f

∂xj
(x)+(b(x))t·∇f(x).

A variational representation of H can be constructed as before. Define

H (x, α) =

∫
Rn

(
eα

t·z − 1− αt · z
)
η (x, dz) +

1

2

∣∣σt(x)α
∣∣2 + (b(x))t · α,

and L (x, β) = sup
α∈Rn

{α · β −H (x, α)}. Then

H(f)(x) = H (x,∇f(x)) = sup
u∈Rn
{A(f)(x, u)− L(x, u)} ,

where A(f)(x, u) = (∇f(x))t · u for all f ∈ C2
c (Rn), and the rate function is given by

I (x) =


∫∞

0
L (x(t), ẋ(t)) dt, if x ∈ AC and the integral is convergent,

+∞, otherwise,

which coincides with the rate function defined in Equation (2.30).
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Chapter 3

Large deviations for the greedy
exploration algorithm over
Erdös-Rényi graphs

Abstract
In this chapter, we prove large deviations for a greedy exploration process over Erdös-Rényi (ER)
graphs, when the number of nodes goes to infinity. To prove our main result, we use the general strategy
to study large deviations of processes proposed by [Feng and Kurtz, 2006], which is presented in
Section 2.2. The rate function can be expressed in a closed-form formula, and associated optimization
problems can be solved explicitly, providing the large deviation trajectory. Also, we derive large
deviations results for the size of the maximum independent set discovered by such an algorithm and
analyse the probability that it exceeds known bounds for the maximal independent set. Moreover, we
explore the link between these results and the landscape complexity of the independent set and the
exploration dynamic.

The results of this chapter were accepted for publication in ALEA (Latin Ameri-
can Journal of Probability and Mathematical Statistics). They are currently visible in
[Bermolen et al., 2021b].

This chapter is organized as follows. In Section 3.1, we introduce the greedy algorithm over
Erdös-Rényi graphs and known results about the independent set size obtained by such an
algorithm. In Section 3.2, we formally define the sequence of processes related to the greedy
algorithm over a given Erdös-Rényi graph. In Section 3.3, we present the main result: a path-
state LDP for the greedy exploration process. The proof of this result is deferred to Section
3.4. As a corollary, we obtain an LDP for the size of the independent set discovered by such
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an algorithm and analyse its implications.

3.1 Introduction

In this section, we introduce the greedy algorithm over Erdös-Rényi graphs and known results
about the independent set size obtained by such an algorithm.

Consider a finite, possibly random, graph G for which V is the set of N nodes or vertices.
A typical sequential exploration algorithm, usually referred to as “greedy algorithm” 1 works as
follows. Initially, all the vertices are declared as unexplored. At each step, it selects a vertex
and changes its state into active. After this, it takes all of its unexplored neighbours and
changes their states into blocked. The active and blocked vertices are considered as explored
and removed from the set of unexplored vertices. The algorithm keeps repeating this procedure
until the step T ∗N at which all vertices are either active or blocked (or equivalently, the set of
the unexplored vertex is empty). Observe that at any step k, the active vertices conform to an
independent set (i.e. there are no edges between the nodes of this set) and that T ∗N is the size
of the independent set constructed by the algorithm. Let ZN

k be the number of explored nodes
at time k, then ZN

T ∗N
= N .

Our motivation to study such an exploration process on random graphs is twofold. On the
one hand, exploration processes have received a great amount of attention in spatial structures.
It has been considered on discrete structures like Zd (see [Ritchie, 2006, Ferrari et al., 2002]) and
point processes (see [Penrose, 2001, Baccelli and Tien Viet, 2012]). In physics and biological
sciences, where it is usually referred to as random sequential absorption, it models phenomena
of deposition of colloidal particles or proteins on surfaces (see [Evans, 1993]). In communication
sciences and wireless networks in particular, it allows representing the number of connections
for CSMA-like algorithms in a given time-slot, for a given spatial configuration of terminals
(see [Kleinrock and Takagi, 1985] for a classical reference on the protocol definition).

On the other hand, these dynamics are the simplest procedure to construct (maximal)
independent sets and have been extensively studied for specific graphs. Explicit results for
the size of these sets have been obtained for regular graphs in [Wormald, 1995], exploit-
ing their particular structure; see also [Gamarnik and Sudan, 2017] for graphs with large
girths, and [Bermolen et al., 2017b] for more general configuration models. In this context,
the greedy algorithm is the simplest instance of a local algorithm, i.e., using only local in-
formation available at each vertex and using some randomness. Recently, it was proven in
[Gamarnik and Sudan, 2017] that contrary to previously stated conjectures (for instance, in

1It is called greedy although there is no policy to choose the optimal vertex in each step, see for instance
the definition of an unweighted greedy algorithm in [Jungnickel, 2005].
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[Hatami et al., 2014]), local algorithms can not discover asymptotically maximum independent
sets (independent set of maximum size) and stay sub-optimal, up to multiplicative constant, for
regular graphs with large girth. Hence, it is natural to look at related questions for Erdös-Rényi
(ER) graphs: we focus on giving estimates of reaching a given size of maximum independent
sets by studying the large deviations of the exploration process.

Thanks to the great amount of independence and symmetry of the edges’ collection in a
sparse ER graph G(N, c/N), the greedy exploration algorithm is characterized by the simple
one-dimensional Markov process

{
ZN
k

}
k
. Consequently, a functional law of large numbers de-

scribed by a differential equation can be employed to get the macroscopic size of the constructed
independent set when the number of nodes goes to infinity (see [Bermolen et al., 2017a] and
references in [McDiarmid, 1990]). Diffusion approximations for the process and central limit
theorem derived from it for the size T ∗N of the associated independent set are also known, see
[Bermolen et al., 2017a]. Moreover, in [Pittel, 1982], exponential bounds are proved for the
probability that the stopping times tf (G(N, p/N)) of the f -driven algorithms (in particular,
T ∗N) belong to certain intervals. However, to the best of our knowledge, there is no charac-
terization of a large deviation principle for both the discrete-time Markov process

{
ZN
k

}
k
and

the random variable T ∗N , which can give various types of useful information both on the greedy
exploration and on the independent set landscape. For example, it allows determining the most
probable trajectory for which the independent set’s size is bigger/smaller than selected bounds.

The topic of this chapter is a refined analysis of this simple algorithm by studying the large
deviations for the sequence of processes

{
ZN
k

}
k
. As a corollary, we obtain LD results for the

size of the independent set constructed by the algorithm.

Although
{
ZN
k

}
k

is a simple Markov process, as far as we know, computing its
LDP does not directly follow from classical results. Indeed, the well-known work of
[Freidlin and Wentzell, 1984] is not directly applicable to this process since both the drift
and the jump measure involved in the underlying stochastic differential equation depend on
the scaling parameter. An LD upper bound for a general family of processes, including pro-
cesses whose (discontinuous) drift and jump measure depends on the scaling, is presented in
[Dupuis et al., 1991]. However, the authors do not provide sufficient conditions to ensure that
the general upper bound obtained for simpler processes is still valid for this case.

We prove that its LD upper bound not only works for a continuous-time version of
{
ZN
k

}
k
,

but is also effectively the LD rate function. To prove this LDP, we use the general strategy to
study large deviations of processes proposed by [Feng and Kurtz, 2006], presented in Section
2.2. After working on the four steps presented in Section 2.2, we deduce not only a variational
form of the rate function but also prove that it can be expressed as an action integral of a cost
function L. Moreover, by solving the associated Hamilton’s equations, the rate optimization
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over a set of trajectories can be transformed into a real parametric function optimization.
Additionally, the cost function L has a simple interpretation in terms of local deviations for

the average of Poisson random variables. As such, this is a first step to understand how such
local algorithms behave in complicated landscapes.

This result also allows us to derive quantitative results about the independent set’s size
constructed by this algorithm. For instance, we can compute the probability that this size
lets be larger than the asymptotic Erdös bound for the maximum independent set when c ≥ 3

and for the maximum independent set’s exact value when c < e. In particular, it sheds light
on the relation between the complexity of the landscape and the exploration algorithm. It is
known (and coined as the e-phenomena in [Spitzer, 1975, Jonckheere and Saenz, 2019]) that
for G(N, c/N) with c < e, an improved local algorithm 1 is asymptotically optimal. The
computation of LD estimates for the greedy exploration (using the asymptotic Erdös bound)
allows us to give evidence of a phase transition for the independent set landscape around e

(we lose some precision here because of using a bound instead of the true asymptotic value
of the independent set), but it hints at an interesting connection between complexity phase
transitions and explicit large deviations results.

3.2 Greedy exploration algorithm

In this section, we formally define the sequence of processes related to the greedy algorithm
over a given Erdös-Rényi graph.

Let G
(
N, c

N

)
be a sparse Erdös-Rényi graph for which V is the set of N vertices. At

any step k = 0, 1, 2, . . ., we consider that each vertex is either active, blocked, or unexplored.
Accordingly, the set of vertices will be split into three components: the set of active vertices
Ak, the set of blocked vertices Bk, and the set of unexplored vertices Uk.

The greedy exploration algorithm in discrete-time on a graph G can be described as follows.
Initially, it sets U0 = V , A0 = ∅ and B0 = ∅. To explore the graph, at the (k + 1)-th step it
selects uniformly a vertex ik+1 ∈ Uk and changes its state into active. After this, it takes all
of its unexplored neighbors, i.e. the set Nik+1

= {w ∈ Uk|ik+1 shares and edge with w}, and
changes their states into blocked. This means that the resulting set of vertices will be given
by Uk+1 = Uk\{ik+1 ∪ Nik+1

}, Ak+1 = Ak ∪ {ik+1} and Bk+1 = Bk ∪ Nik+1
. The algorithm

iterates this procedure until the step T ∗N at which all vertices are either active or blocked (or
equivalently UT ∗N = ∅). Observe that at any step k, the active vertices conform an independent
set and that AT ∗N is a maximal independent set (because each of the vertices in V \ AT ∗N is a

1The degree-greedy algorithm, which is an improvement of the modification of the greedy algorithm pre-
sented in the earlier paper of [Karp and Sipser, 1981].
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neighbour of at least one vertice of AT ∗N ).

Let ZN
k =

∣∣ANk ∪ BNk ∣∣ be the number of explored vertices at step k. By construction,
ZN
k+1 = ZN

k + 1 + ζNk+1, where ζNk+1 is the number of unexplored neighbors of the selected active
vertex at step k + 1. The distribution of ζNk+1 depends only on the number of already explored
vertices ZN

k , that is the distribution is Binomial with updated parameter N − ZN
k − 1 and the

same edge probability c/N . The process
{
ZN
k

}
k
is then a discrete-time Markov chain with

state space {0, 1, 2, ..., N}, increasing, time-homogeneous and with an absorbing state N . We
are interested in T ∗N ∈ {0, 1, 2, ..., N}, the time at which

{
ZN
k

}
k
reaches N , since T ∗N coincides

with the size of the maximal independent set constructed by this algorithm.

We use the notation presented in Section 2.2 for the discrete-time Markov processes case.
Let Y N =

{
Y N
k

}
k≥0

be a scaled version of the described process: Y N
k =

ZNk
N
. The transition

operator of the process Y N for x ∈ EN =
{
k
N

: k = 0, 1, ..., N
}
is:

TN (f) (x) := TY N (f) (x) = E
[
f

(
x+

1

N
+

1

N
ζN,x

)]
, (3.1)

where ζN,x is the number of unexplored neighbors of the selected active vertex given that there
are already Nx explored vertices. Then ζN,x has a Binomial distribution with parameters
n = N −Nx−1 and p = c

N
. We consider the embedding maps ηN : EN → E, where E = [0, 1].

Define the following continuous process:

XN
t = Y N

[Nt] =
Z[Nt]

N
if t ∈ [0, 1] . (3.2)

This process is a semimartingale. Moreover, it can be decomposed as

XN
t =

∫ t

0

[
1 + c

(
1−XN

s −
1

N

)]
ds+

MN
tN

N
,

where
{
MN

t

}
t
is a FN =

{
FNt
}
t
martingale with FNt = σ

(
ZN

[Ns] : 0 ≤ s ≤ t
)
.

In [Bermolen et al., 2017a] it is proved that the sequence of processes
{
XN
}
N
, contained in

the space of càdlàg functions DE [0, 1], converges in the Skorohod topology to {ẑ(t)}t, where

ẑ(t) =

z(t), if t ≤ T ∗,

1, if t > T ∗,
being z(t) the solution of

ż = 1 + c (1− z) ,

z(0) = 0,
(3.3)

and T ∗ = inf {t ∈ [0, 1] : z(t) ≥ 1}. This equation has an explicit solution given by z(t) =
1+c
c

(1− e−ct). Moreover, a law of large numbers can be deduced for the proportion of vertices
that conform to the independent set constructed by the algorithm. In particular, it is proved
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that T ∗N
N

converges in probability to T ∗ = 1
c

log (1 + c).

In the same paper [Bermolen et al., 2017a] and for a different scaling of the process, a diffu-
sion result is also proved from which a central limit theorem for T ∗N

N
is deduced:

√
N
(
T ∗N
N
− T ∗

)
converges in distribution to a centered normal random variable with variance σ2 = c

2(c+1)2 .

Now, we study an LDP for both the sequence of processes
{
XN
}
N
and for

{
T ∗N
N

}
N
. It is known

that results of central limit theorems and large deviations types are independent of each other,
and neither is stronger than the other. However, as we mentioned in Section 2.5, the LDP also
automatically provides results of the law of large numbers type.

3.3 Main Results

In this section, we present the main results of this chapter. In Subsection 3.3.1, we present an
LDP for the sequence of processes

{
XN
}
N

given by XN =
{
XN
t

}
0≤t≤1

and deduce its fluid
limit. Moreover, we provide a way to find the trajectory that minimices the LD rate function
over a set of trajectories. In Subsection 3.3.2, we prove large deviations for the sequence of
random variables

{
T ∗N
N

}
N
. This theorem provides quantitative results for the probability of

the independent set’s size being bigger/smaller than selected bounds, which are presented in
Subsection 3.3.3.

3.3.1 Large Deviation Principle

Now, we present a more refined analysis of the simple exploration algorithm presented in the
previous section. As a corollary, in the next subsection, we deduce an LDP for the sequence of
random variables

{
T ∗N
N

}
N
.

Theorem 3.3.1 (LDP for
{
XN
}
N
) The sequence

{
XN
}
N

with XN =
{
XN
t

}
0≤t≤1

, where

XN
t =

ZN
[Nt]

N
, verifies an LDP on DE [0, 1] with good rate function I : DE[0, 1] → [0,+∞] such

that

I(x) =


∫ 1

0
L (x(t), ẋ(t)) dt if x ∈ HL,

+∞ in other case,
(3.4)
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where E = [0, 1], L : E × R→ R is the cost function given by

L(x, β) =



(β − 1)
[
log
(

β−1
c(1−x)

)
− 1
]

+ c(1− x), if x < 1 and β > 1,

c(1− x), if x < 1 and β = 1,

0, if x = 1 and β = 0,

+∞ in other cases ,

(3.5)

and HL is the set of all absolutely continuous function x : [0, 1] → [0, 1] with value 0 at 0 and
such that the integral

∫ 1

0
L (x(t), ẋ(t)) dt exists and it is finite.

The proof is deferred to Section 3.4.

Remark 3.3.1 Let us introduce some comments about the cost function L. The function
defined in Equation (3.5) is the Legendre transform w.r.t the second variable of the function
H : E × R→ R given by

H (x, α) =

α + c (1− x) (eα − 1) , if 0 ≤ x < 1,

0, if x = 1,
(3.6)

that is L (x, β) = sup
α∈R
{αβ −H (x, α)}. Since H (x, α) is convex w.r.t. α, the function L is also

convex w.r.t. β and verifies H (x, α) = sup
β∈R
{αβ − L (x, β)}.

Then, as a consequence of Theorem 3.3.1 and Proposition 2.5.1, we can deduce the fluid
limit for the sequence

{
XN
}
N
.

Corollary 3.3.2 (Fluid limit of
{
XN
}
N
) The sequence of processes

{
XN
}
N

converges
almost-sure as N →∞ to the function ẑ(t) defined in Equation (3.3).

Proof. As L (x, β) = 0 if and only if β = Hα (x, 0), where Hα (x, α) is the partial derivative
of H (x, α) w.r.t. α, the trajectories with zero cost are the ones that verify ẋ = Hα (x, 0) =

1 + c(1 − x). For the initial condition x(0) = 0, as expected, the unique trajectory that has
zero cost is the fluid limit ẑ defined in Equation (3.3), i.e. I(ẑ) = 0 and I(x) > 0 for all x 6= ẑ.
�

The following proposition gives an intuitive interpretation of the cost function L(x, β) in
terms of the rate function for the average of independent Poisson random variables.

Proposition 3.3.3 For x < 1 and β > 1, it is verified that L (x, β) = Λ∗c(1−x) (β − 1) , where
Λ∗λ(u) is the LD rate function for the average of independent Poisson random variables with
parameter λ.
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Proof. The rate function given by Crámer’s theorem for the average of indepen-
dent random variables Poisson with parameter λ is Λ∗λ(u) = u

(
log
(
u
λ

)
− 1
)

+ λ (see
[Dembo and Zeitouni, 1998] for example). To complete the proof it is enough to observe that
L(x, β) coincides with Λ∗λ(u) when λ = c(1− x) and u = β − 1. �

The previous result can be explained using the following heuristics (which, of course, are
far from a proof but give some intuition):

• The graph sparsity implies that the graph is locally tree-like and that the exploration
does not see neighbours of a given vertex being neighbours between them.

• The asymptotic distribution of the number of unexplored neighbours of the selected active
vertex is Poisson with a time-varying mean. In other words, the exploration does not
change the Poisson nature of the degree distribution, which can be explained by the fact
that the biased size distribution of Poisson distribution is again Poisson.

More precisely, the cost of a given curve x(t) such that x ∈ HL with ẋ(t) > 1 for all t ∈ [0, 1]

is given by L (x(t), ẋ(t)) = Λ∗λ(t) (ẋ(t)− 1), with λ(t) = c (1− x(t)). For a fixed t ∈ (0, 1), the
curve x(t) represents the macroscopic proportion of explored vertices at time t. Then, the
infinitesimal increment ẋ(t) ≈ x(t+h)−x(t)

h
corresponds to the mean number of new explored

nodes in one step (the new active node and its unexplored blocked neighbours), that is:

XN
t+h −XN

t

h
=

1

Nh

[Nt+Nh]∑
k=[Nt]+1

(
1 + ζNk

)
≈ 1 +

1

Nh

[Nt+Nh]∑
k=[Nt]+1

ζNk ,

where ζNk has a Binomial distribution with parameters N − Zk − 1 and c
N
. For large values

of N and k ∈ [[Nt] + 1, [Nt + Nh]], if Zk
N

is close to x(t), then ζNk can be approximated by
a Poisson random variable with parameter (N − Zk − 1) c

N
≈ c(1 − x(t)). Observe that, in

particular, the mean macroscopic behavior z(t) should verify ż(t) = 1 + c(1 − z(t)), which is
the fluid limit we have already seen. Moreover, the global cost of a deviation to a trajectory
x(t) can be interpreted as a consequence of the accumulated cost of microscopic deviations of
the average of Poisson random variables with parameter c(1− x(t)).

Rare event probability estimation.

We now use the previous theorem to estimate probabilities of rare events related to
{
XN
}
N
.

In the next section, we apply these results to derive an LDP for the size of the independent set
constructed by the algorithm.

As a consequence of Theorem 3.3.1, if A ⊂ DE[0, 1] is a good set for I (or an I-continuous
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set, see [Dembo and Zeitouni, 1998]), then lim
N

1
N

logP
(
XN ∈ A

)
= − inf

x∈A
I(x) . The next propo-

sition will facilitate the computation of this infimum for the sets A of interest.

Proposition 3.3.4 (Rate function optimization) Let I : DE[0, 1] → [0,+∞] be the rate
function defined in Equation (3.4). Then,

1. The optimization problem for the rate over a set of trajectories A ⊂ DE[0, 1] can be
reduced to a one-dimensional optimization problem:

inf
x∈A

I(x) = inf
{α0∈R: x̂α0∈Ā}

F (α0) ,

where the closure of A is considered w.r.t. the Skorohod topology. The real function F is
defined by

F (α0) =

∫ Tα0

0

L (xα0(t), ẋα0(t)) dt, (3.7)

being xα0 the solution of the following differential equation:ẋ = 1 + c(1− x)eα, x(0) = 0,

α̇ = c(eα − 1), α(0) = α0,
(3.8)

Tα0 = inf{t ∈ [0, 1] : xα0(t) ≥ 1}, and x̂α0(t) =

xα0(t), if t ≤ Tα0 ,

1, if t > Tα0 .

2. The explicit solution of Equation (3.8) is the fluid limit (3.3) when α0 = 0. For α 6= 0 it
is given by:

xα0(t) =

[
1

ck0

log

(
1− k0

1− k0ect

)
+

1

e−ct − k0

− 1

1− k0

] (
e−ct − k0

)
, (3.9)

where k0 = 1− e−α0. In this case, F (α0) can be written as

F (α0) =

∫ Tα0

0

c (1− xα0(t))
[
eα(t) (α(t)− 1) + 1

]
dt, (3.10)

where α(t) = − log (1− k0e
ct).

Then, in other words, Theorem 3.3.1 and the previous proposition ensure that, given that the
process XN belongs to A, one might expect that sup

t∈[0,1]

∣∣XN
t − x̂α∗0(t)

∣∣ ≈ 0 for some α∗0 such that

x̂α∗0 ∈ Ā.
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Figure 3.1: Graph of x̂α0 for same value of α0 < 0 (left graph) and α0 > 0 (right graph) compared
with the fluid limit ẑ.

Proof. To prove the first statement, note that if x ∈ HL is such that x(t) = 1 for all t ≥ t0,
then I(x) =

∫ 1

0
L(x, ẋ)dt =

∫ t0
0
L(x, ẋ)dt, so just consider the Euler-Lagrange (EL) equation

presented in Equation (2.20) for x < 1 and β > 1. In this case, the path {x(t)}t is a stationary
curve of I if it satisfies the following ODE:

(x− 1)ẍ+ (cx− (1 + c)) ẋ− cx+ (1 + c) = 0,

x(0) = 0,

ẋ(0) = v0.

(3.11)

To solve Equation (3.11), we consider Hamilton’s equations, which are equivalent to (EL):ẋ = Hα(x, α),

α̇ = −Hx(x, α),
(Hamilton), (3.12)

where α is an auxiliary function. Hx and Hα are the partial derivatives of H w.r.t. x and α.
In our case these equations give Equation (3.8). We are interested in solutions xα0 of Equation
(3.8) until the time at which they reach the value 1, then we take x̂α0 as in the proposition
and get inf

x∈A
I (x) = inf

{α0: x̂α0∈Ā}
I (x̂α0) . The uniqueness of solution for Equation (3.11) ensures

that a monotony property with respect to the initial condition α0 holds. This implies that
xα0(t) > t for all t if α0 > −∞, then Tα0 = inf {t ∈ [0, 1] : xα0(t) ≥ 1} ≤ 1 and I (x̂α0) = F (α0)

with F (α0) defined in Equation (3.10). Figure 3.1 contains the graph of x̂α0 for same value of
α0 < 0 and α0 > 0 compared with the fluid limit ẑ. To prove the second part of the proposition,
observe that the fluid limit (3.3) (until it reaches x = 1) is a solution of ż = 1 + c(1− z), so it is
a solution of Equation (3.8) with α = 0. If α0 6= 0, the solution xα0 can be found explicitly and
it is given in Equation (3.9). We use that xα0 is solution of Equation (3.8) for the simplification
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Figure 3.2: Graph of the function F (α0) = I (x̂α0), that is, a parametric version of the rate function.

of the cost function L (xα0 , ẋα0). Figure 3.2 contains the graph of F (α0) = I (x̂α0) as a function
of α0. �

Remark 3.3.2 Let us introduce some comments about the previous result:

1. The ODE continuity theorem is verified with respect to the initial condition for Equation
(3.8). Then, the solution x̂α0 with initial conditions x(0) = 0 and α(0) = α0 ≈ 0, is close
to the fluid limit ẑ.

2. The system defined by Equation (3.12) is conservative: if u(t) = (x(t), α(t)) is the solution

of (3.12) with initial conditions u0 = (0, α0), it verifies u̇ = J∇H(u) with J =

(
0 1

−1 0

)
.

Since J is an antisymmetric matrix, it results that d
dtH(u) = (∇H(u))t J∇H(u) = 0 for

all t. Then, the solutions of the general equation of (3.12) are contained in the level sets
of the Hamiltonian H.

3.3.2 Large deviations for the independent set size

In the previous subsection, we present a path-space LDP for the exploration process defined
in Section 3.1. Now, we derive from this theorem and the previous proposition about the rate
optimization over a specific set, LD results for the sequence of random variables

{
T ∗N
N

}
N
. This

theorem provides quantitative results for the probability of the independent set’s size being
bigger/smaller than selected bounds, which are presented in the next subsection.

Theorem 3.3.5 Consider T ∗N defined before as the stopping time of the greedy exploration
process over G(N, c

N
).
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1. If ε > 0 is such that T ∗ + ε < 1, then

lim
N

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= −F (α0(T ∗ + ε)) ,

where α0(T ∗ + ε) is the unique real number α0 < 0 such that Tα0 = T ∗ + ε.

2. If ε > 0 is such that T ∗ − ε > 0, then

lim
N

1

N
logP

(
T ∗N
N
≤ T ∗ − ε

)
= −F (α0(T ∗ − ε)) ,

where α0(T ∗ − ε) is the unique real number α0 > 0 such that Tα0 = T ∗ − ε.

In both cases F (α0) and Tα0 are as in Proposition 3.3.4.

Proof. We only prove the first statement because the proof of the second one is analogous.
Define the set Aε such that Aε = {x ∈ DE [0, 1] : x(0) = 0,x is increasing, 0 ≤ x(t) ≤ 1 for all
t and inf {t : x(t) = 1} ≥ T ∗ + ε}. By construction, Aε is a good set for I, then

lim
N

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= lim

N

1

N
logP

(
XN ∈ Aε

)
= − inf
{α0: x̂α0∈Āε}

F (α0) .

Let xα0 be the solution of the homogenous ODE defined in Equation (3.11) with initial
velocity v0 = ẋα0(0) = 1 + ceα0 . The uniqueness of the solution ensures that the following
monotony property with respect to the initial condition is verified:

if α0 < α1 ⇒ xα0(t) < xα1(t) for all t⇒ Tα0 > Tα1 .

In addition, it can be seen that for all T ∈ (T ∗, 1), there exists a unique value α0 = α0(T ) < 0

such that xα0(T ) = 1 (i.e. T = Tα0). Then, there is only one α∗0 < 0 such that xα∗0 (T ∗ + ε) = 1

and

• if α0 ≤ α∗0 ⇒ Tα0 ≥ T ∗ + ε⇒ x̂α0 ∈ Aε,
• if α0 > α∗0 ⇒ Tα0 < T ∗ + ε⇒ x̂α0 /∈ Aε,

which implies that inf
{α0:x̂α0∈Āε}

F (α0) = inf
{α0≤α∗0}

F (α0). To complete the proof, it suffices to prove

that inf
{α0≤α∗0}

F (α0) = F (α∗0). Let h(α0, t) = L(xα0 , ẋα0) and α1 < α2 < 0. Using the monotony

that we mentioned before, it can be seen that ∂
∂α0

h(α0, t) < 0 for all α0 < 0 and t ∈ [0, 1], that
is h(α1, t) > h(α2, t) for all t. Finally, since Tα1 > Tα2 we obtain:

F (α2) =

∫ Tα2

0

L(xα2 , ẋα2)dt ≤
∫ Tα2

0

L(xα1 , ẋα1)dt <
∫ Tα1

0

L(xα1 , ẋα1)dt = F (α1),
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which completes the proof. �

3.3.3 On the size of the maximum independent set

The problem of finding the maximum independent sets in deterministic graphs is known to be
NP-hard. Thus, an interesting research question is to find classes on random graphs where
finding maximum independent sets can be (at least at the first order in N) obtained with poly-
nomial complexity. This question is, of course, an instance of a more general viewpoint which
aims at identifying phase transitions in the analysis of combinatorial optimization problems,
allowing to describe drastically different scenarios depending on a few macroscopic parameters,
sometimes called order-parameters.

This type of results has been proven to hold for Erdös-Rényi graphs and configuration models
in [Spitzer, 1975] and [Jonckheere and Saenz, 2019]. The order-parameter being c, the mean
number of neighbours of a given node. Interestingly the phase transition does not correspond
for the graph to be subcritical (c < 1) but to a much finer property of the landscape of maximal
independent sets. The phase transition corresponds to c < e and differentiates between regimes
where a simple degree-greedy algorithm reaches (asymptotically) the maximum independent
set or not. This same phase transition is reflected in the properties of the spectrum of the
graph, see [Coste and Salez, 2018].

We conjecture that the large deviations characteristics of the greedy algorithm for discov-
ering the maximum independent set also have an interesting transition for values of c around
e. Since the exact optimal order-one asymptotic value of the maximal independent set’s size
is known only for values of c < e, we cannot yet display a complete characterization of this
phenomenon. We can, however, obtain interesting numerical results by using the Erdös bound,
instead of the true value. Let σN the maximum size of the independent set of an ER graph
G(N, c/N), then a.s. σN ≤ 2 log(c)

c
N(1 + o(N)) if c ≥ 3. In Figure 3.3 we compute the large

deviation rate corresponding to the event {T
∗
N

N
≥ σ∗i (c)} for i = 1, 2. Here σ∗1 is the exact

proportion of the maximum independent set of an ER graph G(N, c/N) when c < e and it is
given by σ∗1(c) = w(c) + c

2
(w(c))2 with w(c) = e−W (c) and W (x) the Lambert function, see

[Jonckheere and Saenz, 2019]. The value σ∗2(c) = 2
c

log(c) is the Erdös upper bound for the
proportion of the maximum independent set for c ≥ 3.

Though the numerical computations for c > e could give largely overestimated values; we
believe it nevertheless illustrates the clear change of regime around the value e. It shows that the
independent sets geometry changes, leading to significantly greater large deviations constants
for the greedy exploration when c gets larger than e. This characterization of the “energy"
landscape is a usual situation in statistical physics where interesting phase transitions can be
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Figure 3.3: Evolution of F (α0(σ
∗
1(c))) for 0 < c < e and F (α0(σ

∗
2(c))) for c ≥ 3.

well described through large deviations, see [Touchette, 2009].

3.4 Proof of Theorem 3.3.1

In this section, we prove that the previously defined sequence of processes {XN}N verifies the
assumptions from [Feng and Kurtz, 2006] presented in Section 2.2. We organize the proof of
Theorem 3.3.1 using the steps mentioned in Section 2.2, which are presented as propositions.

In a nutshell, as a consequence of the first two steps, the process {XN}N verifies the ex-
ponential tightness condition. Then, Step 3 assures an LDP via the comparison principle, and
finally, Step 4 provides an applicable version of the rate.

Step 1: Convergence of nonlinear operators

Let TN be the transition operator defined in Equation (3.1), and HN : Dom(HN) ⊂ B(E) →
B(E) given by HN(f) = log

[
e−Nf(x)TN

(
eNf
)

(x)
]
.

Proposition 3.4.1 There exists a functional H such that HN converges to H when N → ∞
in the following sense: lim

N→∞
sup
x∈EN

|HN(f)(x)−H(f)(x)| = 0 for all f ∈ C1(E). The functional

59



H : C1(E)→ B(E) is such that H(f)(x) = H(x, f ′(x)), where H : E × R→ R is defined by

H(x, α) =

α + c(1− x) (eα − 1) , if x < 1,

0, if x = 1.
(3.13)

Proof. Let us first consider the case where f ∈ C2(E). Let x ∈ EN with x 6= 1, and ζN,x

be the number of unexplored neighbours of the selected vertex in one step of the algorithm,
given that there are already Nx explored vertices. Then, ζN,x has a Binomial distribution with
parameters N (1− x)− 1 and p = c

N
, and operator HN can be written as

HN(f)(x) =

logE
[
e
N
(
f
(
x+ 1

N
+
ζN,x
N

)
−f(x)

)]
, for 0 ≤ x < 1

0, for x = 1.

It is enough to prove that

lim
N→∞

sup
x∈EN\{1}

E
[
e
N
(
f
(
x+ 1

N
+
ζN,x
N

)
−f(x)

)]
− E

[
ef
′(x)(1+ζN,x)

]
= 0,

which is presented as Proposition 3.4.2 below. Then,

lim
N
HN(f)(x) = lim

N
logE

[
ef
′(x)(1+ζN,x)

]
= f ′(x) + c(1− x)

(
ef
′(x) − 1

)
= H (x, f ′(x)) ,

with H : E × R → R defined in Equation (3.13). If x = 1, then HN(f)(1) = H(f)(1) = 0 for
all N .

The result can be extended for f ∈ C1(E) by taking a sequence {fm}m ⊂ C2(E) such that
lim
m→∞

sup
x∈E
|fm(x)− f(x)| = 0 and the triangular inequality. �

Proposition 3.4.2 If f ∈ C2(E), then

lim
N→∞

sup
x∈EN\{1}

E
[
e
N
(
f
(
x+ 1

N
+
ζN,x
N

)
−f(x)

)]
− E

[
ef
′(x)(1+ζN,x)

]
= 0.

Proof. Let f ∈ C2(E) be fixed, then N
(
f
(
x+ k+1

N

)
− f(x)

)
= f ′(x)(k + 1) + f ′′ (θk,x)

(k+1)2

2N
,

with θk,x ∈
(
x, x+ k+1

N

)
. Then, it is enough to prove that

E

[
ef
′(x)(ζN,x+1)

(
ef
′′(θN,x)

(ζN,x+1)
2

2N − 1

)]
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converges to zero, being θN,x (with abuse of notation) the r.v. θζN,x,x ∈
(
x, x+

ζN,x+1

N

)
defined

from Taylor’s theorem. To prove this convergence, we bound f ′′ (θN,x) by Mf = sup
θ∈[0,1]

|f ′′(θ)| <

∞, and get

E
[
ef
′(x)(ζN,x+1)

(
e−

Mf
2

(ζN,x+1)2

N − 1

)]
≤ E

[
ef
′(x)(ζN,x+1)

(
e
f ′′(θN,x)

2

(ζN,x+1)2

N − 1

)]

≤ E
[
ef
′(x)(ζN,x+1)

(
e
Mf
2

(ζN,x+1)2

N − 1

)]
.

Then, it is enough to prove that both E
[
ef
′(x)(ζN,x+1)

(
e±

Mf
2

(ζN,x+1)2

N − 1

)]
converge to zero.

Thus, we prove the first convergence, and the second one can be proved analogously.

Let UN,f = ef
′(x)(ζN,x+1) and VN,f =

(
e
Mf
2

(ζN,x+1)2

N − 1

)
. As (E(UN,fVN,f ))

2 ≤

E
(
U2
N,f

)
E
(
V 2
N,f

)
, just prove that E

(
U2
N,f

)
E
(
V 2
N,f

)
→ 0. Observe that

E
(
U2
N,f

)
= E

[
e2f ′(x)(ζN,x+1)

]
= e2f ′(x)

[
(e2f ′(x) − 1)

c

N
+ 1
]N(1−x)−1

→ e
2f ′(x)+c(1−x)

(
e2f
′(x)−1

)
,

which is bounded, then it is enough to prove that E(V 2
N,f ) converges to zero.

Let ϕN,f (t) =
(
e
Mf
2

(t+1)2

N − 1
)2

and BN > 0, then E(V 2
N,f ) = E (ϕN,f (ζN,x)) can be decom-

posed as

E(V 2
N,f ) = E

(
ϕN,f (ζN,x) 1{ζN,x≤BN}

)
+ E

(
ϕN,f (ζN,x) 1{ζN,x>BN}

)
. (3.14)

For the first term, a generalization of Jensen’s inequality allows to get the following upper
bound:

E
(
ϕN,f (ζN,x) 1{ζN,x≤BN}

)
≤ ϕN,f (E(ζN,x)) +

1

2

(
sup

t∈[0,BN ]

ϕ′′N,f (t)

)
var (ζN,x) ,

which converges to zero if we take BN such that B2
N

N
→ 0. For the second term, we have:

E
(
ϕN,f (ζN,x)1{ζN,x>BN}

)
≤

N(1−x)∑
k=BN+2

(
e
Mf
2

k2

N − 1
)2

P(ζN,x = k),

if BN > E(ζN,x) = c(1 − x) − c
N
. Let aN,k =

(
e
Mf
2

k2

N − 1
)2

P(ζN,x = k). Then, 0 ≤ aN,k ≤
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(e
Mf
2
k − 1)2 (c(1− x))k 1

k!
:= ck. As lim

k

ck+1

ck
= 0, we have:

0 ≤ E
(
ϕN,f (ζN,x)1{ζN,x>BN}

)
≤

N(1−x)∑
k=BN+2

aN,k ≤
+∞∑

k=BN+2

ck,

which converges to zero since it is the tail of a convergent serie if BN → +∞. Finally, taking
BN = c(1− x) +N

1
3 we obtain that both terms in Equation (3.14) converge to zero. �

Step 2: Verify the exponential compact containment condition

In this case, E = [0, 1] is compact, so the exponential compact containment condition from
Definition 2.2.1 is trivially verified by taking Kα = E.

Step 3: Comparison principle

As mentioned in Section 2.2, the verification that for all β > 0 and sufficiently many h ∈ C(E)

there exists a solution f ∈ C1(E) for the following ODE

f(x)− βH (x, f ′(x))− h(x) = 0, x ∈ E, (3.15)

is difficult or impossible. An alternative is to prove the existence (and uniqueness) of viscosity
solutions. Moreover, due to Theorem 6.14 of [Feng and Kurtz, 2006], it is enough to prove
that the comparison principle is verified for this Hamilton-Jacobi equation. In Section 2.3,
we presented the tools taken from [Kraaij, 2016], Chapter 9 of [Feng and Kurtz, 2006], and
[Crandall et al., 1992] to prove the comparison principle in this case.

Proposition 3.4.3 For each β > 0 and h ∈ C(E) the comparison principle is satisfied for
Equation (3.15).

Proof. Let µ be a subsolution and v a supersolution of Equation (3.15). Let ψ : [0, 1]2 → R+

be the good penalization function given by ψ(x, y) = 1
2

(x− y)2, and let xα, yα ∈ E be such
that

µ(xα)− v(yα)− αψ(xα, yα) = sup
x,y∈E

{µ(x)− v(y)− αψ(x, y)} .

As a consequence of Proposition 2.3.2, it is enough to prove that the following inequality holds:

lim inf
α→∞

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) ≤ 0,
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where ψx is the derivative of ψ w.r.t. x. If z ∈ [0, 1), then

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) = −c
(
eα(xα−yα) − 1

)
(xα − yα) .

By Proposition 2.3.1, we know that xα − yα → 0 and due to the second part of Proposition
2.3.2 we have:

sup
α
H (yα, α (xα − yα)) = sup

α
α (xα − yα) + c (1− yα)

(
eα(xα−yα) − 1

)
<∞,

which implies that sup
α
α (xα − yα) < ∞. Then {α (xα − yα)}α has a convergent subsequence.

Let A be its limit. Then,

lim inf
α→∞

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) ≤ H (z, A)−H (z, A) = 0.

For z = 1, we repeat the previous analysis, being careful with cases in which xα = 1 or yα = 1

after a certain α0. �

Step 4: Variational representation of the rate function

Finally, we prove that the rate function can be written as an action functional. As a consequence
of the results presented in Subsection 2.2, it is enough to prove that Conditions 8.9, 8.10, and
8.11 from [Feng and Kurtz, 2006] (which are presented as Conditions 2.2.4, 2.2.5, and 2.2.6) are
verified in this case. We present them as propositions. Also, the role of absolutely continuous
functions in the definition of the rate function I is explained.

As H(f)(x) = H (x, f ′(x)) for each x ∈ E = [0, 1] and H ↔ L, we have that H can be
written as

H(f)(x) = sup
u∈U
{A(f)(x, u)− L(x, u)} ,

where U = R and A : C1(E) → M (E × U) is the linear operator A(f)(x, u) = f ′(x)u. As L
is convex w.r.t. β, it follows that a deterministic control λ (du× ds) = δu(s)(du)ds is allways
the control with smallest cost by Jensen’s inequality. Moreover, if x : E → R is an absolutely
continuous function, then

f (x(t))− f (x(0)) =

t∫
0

f ′ (x(s)) ẋ(s)ds =

∫∫
R×[0,t]

f ′ (x(s)) uλ(du× ds),
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if we define λ = λ(x) such that λ(du×ds) = δẋ(s)(du)ds. Let Γ = E×U . Then, the supremum in
Equation (2.11) for the Nisio semigroup definition is reached on {(x, λ) : x ∈ AC, x(0) = x0} ⊂
YΓ.

Proposition 3.4.4 Conditions 8.9 of [Feng and Kurtz, 2006] (Condition 2.2.4) are verified.

Proof.

1. It is trivially verified since A is a function and Id ∈ Dom(A) = C1(E).

2. Γ is closed and for all x0 ∈ E there exists x ∈ AC such that x(0) = x0.

3. L (x, β) is a lower-semicontinuous function since L(x, β)↔ H(x, α) (if {fλ}λ is a family of
continuous functions, then f(x) = sup

λ
fλ(x) is l.s.c.), then L−1({c}) = {(x, u) : L(x, u) ≤

c} is a closed subset of [0, 1] × R. Then, it is enough to prove that it is bounded too.
Suppose that it is not bounded, then there exist {un}n ⊂ R such that un → ∞ and
L(x, un) ≤ c for all n. But L(x, un) = sup

α
{unα−H(x, α)} ≥ un−H(x, 1)→ +∞, which

is a contradiction.

4. It is trivially verified since we can always take the compact set K̂ = E.

5. We construct Ψf as in Lemma 10.21 from [Feng and Kurtz, 2006]: if f ∈ Dom(A) =

C1(E), then there exists Cf such that |f ′(x)| ≤ Cf for all x ∈ E. For each s ≥ 0, define:

ϕ(s) := s inf
x∈[0,1]

inf
|u|≥s

L(x, u)

|u|
,

and for each r ≥ 0 define the function Ψf (r) = Cfϕ
−1(r). Finally, as it works for all

(x, u) ∈ Γ, we can take the function ψf,K = ψf .

�

Proposition 3.4.5 Condition 8.10 from [Feng and Kurtz, 2006] (Condition 2.2.5) is verified.

Proof. Since L(x, u) = 0 ⇔ u = Hα(x, 0), the function q(x) = Hα(x, 0) = 1 + c(1 − x) solves
the equation L(x, q(x)) = 0 for all x ∈ E. Note that the fluid limit verifies ż = q(z) with the
initial condition z(0) = 0. Given x0 ∈ E, there exists t0 ∈ [0, 1] such that z(t0) = x0, then
z (t+ t0) is the solution of ẋ = q(x) with x(0) = x0. Define x(t) = z(t+ t0) ∧ 1 for all t ∈ [0, 1]

and λ such that λ (du× ds) = δ{q(x(s))}(du) × ds, then (x, λ) ∈ YΓ and verifies the required
condition. �

Proposition 3.4.6 Condition 8.11 from [Feng and Kurtz, 2006] (Condition 2.2.6) is verified.
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Proof. Let x0 ∈ E and f ∈ C1(E) be fixed. Then, we need to find (x, λ) ∈ YΓ such that
x(0) = x0 and

t∫
0

H (x(s), f ′ (x(s))) ds =

∫∫
U×[0,t]

(f ′ (x(s))u− L (x(s), u))λ (ds× du) , (3.16)

for all t ∈ [0, 1]. If we define qf (x) = Hα(x, f ′(x)), then H(x, f ′(x)) = f ′(x)qf (x)− L (x, qf (x))

and Equation (3.16) is verified if we take λ (du× ds) = δ{qf (x(s))}(du) ds. Now we have to add
conditions so that in addition (x, λ) belongs to YΓ. In particular, (x, λ) must verify:

t∫
0

g′ (x(s)) qf (x(s)) ds = g (x(t))− g (x(0)) ∀t ∈ [0, 1], ∀g ∈ C1(E).

Then we look for a path that solves the following problem:
x is differentiable almost everywhere and ẋ(t) = qf (x(t)) ,

x(0) = x0,

x(t) ∈ [0, 1] for all t ≥ 0.

(3.17)

Let x0 ∈ [0, 1). Note that qf (x) = 1 + c(1 − x)ef
′(x) > 1 is continuous, then from Peano’s

theorem (see [Crandall, 1972]), we know that the ODE

ẋ(t) = qf (x(t))

x(t0) = x0

has a local solution

x : J → R, being J an open neighbourhood of t0, it is also increasing and verifies x(t) ≥ t for
all t ∈ [0, 1]. Since we are looking for a càdlàg function, we can paste these local solutions until
the time Tx0 at which it reaches 1 and define x(t) = 1 for Tx0 ≤ t ≤ 1. If x0 = 1, we take x ≡ 1.
�
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Chapter 4

Large deviations for the greedy
exploration process on d-regular graphs

Abstract
In this chapter, we prove large deviations for the greedy exploration on a configuration model by jointly
constructing a d-regular graph and discovering an independent set in this graph. We consider a time-
discretized version of the method proposed by [Bermolen et al., 2017b] and [Brightwell et al., 2017] for
creating more general uniform random graphs from a given degree sequence. We consider a discrete-
time Markov process describing the evolution of this algorithm and prove a large deviation principle
for a rescaling of this process. The proof of this result follows the general strategy to study large
deviations of processes proposed by [Feng and Kurtz, 2006], which is presented in Section 2.2. As a
corollary, we derive large deviations results for the independent set size constructed by this algorithm.
Finally, we retrieve known results about the independent set size obtained and the change that occurs
in the dynamics when d = 2 or d > 2.

This chapter is organised as follows. In Section 4.1, we give a brief introduction to the
chapter. In Section 4.2, we define the dynamic analysed in this chapter, which consists of
simultaneously constructing a d-regular graph and an independent set in this graph. Moreover,
we define a sequence of Markov processes related to this construction. In Section 4.3, we present
the main result: a path-state LDP for the sequence of Markov processes defined in Section 4.2.
The detailed proof is deferred to Section 4.4. As a corollary, we obtain the corresponding fluid
limit and large deviations results for the size of the independent set constructed.
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4.1 Introduction

In this chapter, we analyse a simple greedy algorithm to construct an independent set in a d-
regular graph. We use a simultaneous construction of the random graph in a configuration model
and an exploration discovering an independent set. This idea was first used by [Wormald, 1995]
for d-regular graphs and then for [Bermolen et al., 2017b] and [Brightwell et al., 2017] for more
general uniform random graphs. We consider a time-discretized version of the algorithm pro-
posed by [Brightwell et al., 2017]. Moreover, in Chapter 5, we extend the results presented in
this chapter for random graphs constructed in the same way from an initial degree sequence.

We prove a large deviation principle, when the number N of vertices of the graph goes to
infinity, for a rescaled version XN

t =
XN

[Nt]

N
(t ∈ [0, 1]) of the Markov chain

{
XN
n

}
n
that counts

the number of vertices that have already been placed into the independent set, and the number
of empty (or non-explored) vertices at each step n of the algorithm.

The proof of this result follows the general strategy to study large deviations of processes
proposed by Feng and Kurtz in [Feng and Kurtz, 2006], which is presented in Section 2.2.

In our case, after working on the four steps mentioned in Section 2.2, we prove that the rate
function can be expressed as an action integral. Moreover, its cost function has an intuitive
interpretation in terms of Crámer’s theorem for the average of random variables approximating
the distribution of new explored vertices, conditioned to the number of explored vertices, in
each step of the algorithm.

We provide a way to find the trajectory that minimises the LD rate function over a set of
trajectories (i.e., the most probable trajectory) by studying the Hamiltonian dynamics associ-
ated with the rate function obtained. As a corollary, we deduce LD results for the independent
set size obtained. Finally, we retrieve known results about the independent set size and the
changes in the dynamics when d = 2 or d > 2.

4.2 Description of the dynamics

In this section, we define the dynamic analysed in this chapter, which consists of simultaneously
constructing a d-regular graph and an independent set in this graph. Moreover, we define a
sequence of Markov processes related to this construction.

We consider the following greedy algorithm for constructing an independent set SN in an
N -vertex d-regular (possibly multi) graph G(N, d). We start with a set of vertices VN =

{1, 2, . . . , N}, each one with degree d. At each step n = 0, 1, . . . , N , the set VN is partitioned
into three classes:

• a set SNn of vertices that have already been placed into the independent set, with all their
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half-edges paired with vertices out of SNn ;

• a set BNn of blocked vertices, where at least one of its half-edges has been paired with a
half-edge from SNn ;

• a set ENn of empty vertices, from which no half-edge has yet been paired.

Initially, all the vertices are empty, i.e. EN0 = VN and SN0 = ∅. At step n, a vertex v

is selected uniformly from ENn , it is placed into SNn , and all its half-edges are paired, draw-
ing uniformly within the available half-edges. This pairing procedure results in the following
updates:

1. v is moved from ENn to SNn ,

2. each half-edge pointing out from v is paired in turn with some other uniformly randomly
chosen vertices among the currently unpaired half-edges,

3. the vertices in ENn with some half-edges already paired with a half-edge from v are moved
to BNn .

Note that some half-edges pointing out from v may be paired with half-edges from BNn , or
indeed with other half-edges from v, and no change in the status of those vertices results from
such pairings. At each step n, the only paired edges are those with at least one endpoint in
SNn .

This algorithm terminates at the first step n = T ∗N at which ENn = ∅. At this point, there
may still be some unpaired half-edges attached to blocked vertices. These may be paired off
uniformly at random to complete the construction of the graph G(N, d). Note that T ∗N coincides
with the size of the independent set constructed by this algorithm. The expected value of T ∗N

N

is usually called the jamming constant of the graph.
For each n ∈ {0, 1, . . . , N}, let be XN

n =
(
SNn , U

N
n , E

N
n

)
with:

• SNn =
∣∣SNn ∣∣, the number of vertices that have already been placed into the independent

set at step n;

• UN
n , the total number of unpaired half-edges (corresponding to empty or blocked nodes)

at step n;

• EN
n =

∣∣ENn ∣∣, the number of empty vertices at step n.

For each N ,
{
XN
n

}
n
is a discrete-time Markov process. By construction, this Markov chain is

updated in step n+ 1 as follows:

• The vertex v is placed into SNn . Then SNn+1 = SNn + 1.
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• Each one of the half-edges pointing out from v is paired in turn with some other uniformly
randomly chosen among the currently unpaired half-edge. Let HN be the number of half-
edges from v that are paired with another vertex different from v (blocked or empty), i.e.
that do not form loops. Then, UN

n+1 = UN
n −d−HN . Note that HN has a Hypergeometric

distribution
Hyper

(
UN
n , U

N
n − d, d

)
.

• We have to distribute those HN half-edges between the UN
n − dEN

n half-edges corre-
sponding to blocked vertices and the dEN

n half-edges corresponding to empties. Let BN

be the number of half-edges from v that are paired to blocked vertices, then BN has a
Hypergeometric distribution (conditioned to HN)

Hyper
(
UN
n − d, UN

n − dEN
n , H

N
)
.

• Finally, let WN = HN − BN be the number of half-edges pointing out from v that are
paired to some empty vertex, and let W̃N be the number of empty vertices that share at
least one edge with v. Then, EN

n+1 = EN
n − 1− W̃N .

According to the following lemma, the distribution of W̃N can be approximated by the distri-
bution corresponding to WN .

Lemma 4.2.1 Let x̂ = (ŝ, û, ê) be an element in the state space of
{
XN
n

}
n
, then

lim
N→∞

P
(
W̃N = ω|XN

n = x̂, HN = h,BN = b,WN = ω
)

= 1

for all ω = h− b with 0 ≤ b ≤ h ≤ d.

Proof. See Equation 17 from [Bermolen et al., 2017b]. In the article notation: WN =

Y (µt−) (d) and W̃N = Ỹ (µt−) (d). �

Let XN
t :=

XN
[Nt]

N
be a rescaled version of XN

n with t ∈ [0, 1]. The state-space of this process
is EN , being

EN =

{
1

N
(ŝ, û, ê) : ŝ, ê ∈ {0, . . . , N}; û ∈ {0, . . . , dN}; û ≥ dê

}
,

which is included in the compact set E := {(x1, x2, x3) ∈ [0, 1]× [0, d]× [0, 1] : x2 ≥ dx3}.
In next section, we study an LDP for both

{
XN
}
N

and
{
T ∗N
N

}
N
. As a corollary, we deduce

results of the law of large numbers type for both sequences and retrieve known results about
the independence set size obtained and the change that occurs in the dynamics of the graph
construction when d = 2 or d > 2.
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4.3 Main Results

In this section, we present the main results of this chapter. In Subsection 4.3.1, we present
an LDP for the sequence of processes

{
XN
}
N

given by XN =
{
XN
t

}
0≤t≤1

and deduce its
fluid limit. In Subsection 4.3.2, we deduce an LDP for the sequence that counts the vertices
remaining in the empty set and interpret the cost function L̂ in terms of local deviations for
the average of Binomial random variables. In Subsection 4.3.3, we provide a way to find the
trajectory that minimises the LD rate function over a set of trajectories. Finally, in Subsection
4.3.4, we deduce large deviations results for the size of the independent set constructed by such
an algorithm.

4.3.1 LDP for
{
XN
}
N

The theorem that we state below in the most important result in this chapter.

Theorem 4.3.1 (LDP for
{
XN
}
N
) The sequence

{
XN
}
N

with XN =
{
XN
t

}
0≤t≤1

verifies
an LDP on DE [0, 1] with good rate function I : DE[0, 1]→ [0,+∞] such that

I(x) =


∫ 1

0
L (x(t), ẋ(t)) dt, if x ∈ HL,

+∞, in other case.
(4.1)

L : E × R3 → R is the cost function given by

L(x, β) =



(β3 + 1)α∗3 − d log
[
1 +

(
e−α

∗
3 − 1

)
dx3

x2

]
with α∗3 = log

[
dx3

dx3−x2

(
d

β3+1
+ 1
)]
, if β1 = 1, β2 = −2d, β3 ≥ −(d+ 1);

0, if x3 = β3 = 0;

+∞, in other cases,
(4.2)

and HL is the set of all absolutely continuous function x : [0, 1]→ E, x(t) = (x1(t), x2(t), x3(t))

with initial value x(0) = (0, d, 1) and such that the integral
∫ 1

0
L (x(t), ẋ(t)) dt exists and it is

finite.

The proof of this theorem, which is based in the results from [Feng and Kurtz, 2006] pre-
sented in Section 2.2, is deferred to Section 4.4.

Remark 4.3.1 Let us introduce some comments about the cost function L. The function
defined in Equation (4.2) is the Legendre transform w.r.t α of the function H : E × R3 → R
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given by

H (x, α) =

α1 − 2dα2 − α3 + d log
[
1 + (e−α3 − 1) dx3

x2

]
, if x3 > 0,

0, if x3 = 0,
(4.3)

where x = (x1, x2, x3) and α = (α1, α2, α3), i.e. L (x, β) = sup
α∈R3

{〈α, β〉 −H (x, α)}.

Since H (x, α) is convex w.r.t. α (this result is easily proved in Subsection 4.4), the function
L is also convex w.r.t. β and verifies H (x, α) = sup

β∈R3

{〈α, β〉 − L (x, β)}.

Then, as a consequence of Theorem 4.3.1 and Proposition 2.5.1, we deduce the fluid limit
for the sequence

{
XN
}
N
.

Corollary 4.3.2 (Fluid limit of
{
XN
}
N
) Let

{
XN
}
N

be the sequence of processes defined
before. Then,

1. The sequence
{
XN
}
N
converges almost-sure, as N →∞, to the deterministic function x̂ :

[0, 1]→ E, given by x̂(t) =

x(t), if t ≤ T ∗,

(T ∗, 0, 0) , if t > T ∗.
The function x(t) = (s(t), u(t), e(t))

is the solution of the following ODE:

ṡ = 1,

u̇ = −2d,

ė = −1− d2e
u
,

x(0) = (0, d, 1),

(4.4)

and T ∗ is defined by T ∗ = inf {t ∈ [0, 1] : e(t) = 0}.
2. Moreover, if d ≥ 3, the unique solution of Equation (4.4) is x(t) = (s(t), u(t), e(t)) with:

s(t) = t,

u(t) = d(−2t+ 1),

e(t) = 1
d−2

[
2t− 1 + (d− 1)(1− 2t)

d
2

]
,

(4.5)

and the jamming constant is T ∗ = 1
2

[
1−

(
1
d−1

) 2
d−2

]
.
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3. If d = 2, then x(t) = (s(t), u(t), e(t)) with:
s(t) = t,

u(t) = 2(−2t+ 1),

e(t) = (1− 2t)
[

1
2

log(1− 2t) + 1
]
,

(4.6)

and the jamming constant is T ∗ = 1−e−2

2
.

Remark 4.3.2 The value of the jamming constant T ∗ for the case d ≥ 3 coincides with the
known result from [Wormald, 1995], and the value for d = 2 coincides with the known result
from the earlier work of [Flory, 1939].

Proof. As L (x, β) = 0 if and only if β = Hα (x, 0), where Hα (x, α) are the partial
derivatives of H (x, α) w.r.t. α = (α1, α2, α3), the trajectories with zero cost are the ones that
verify ẋ = Hα (x, 0). If x(t) = (s(t), u(t), e(t)), then x verifies ẋ = Hα (x, 0) if it verifies the
ODE presented in Equation (4.4). For the initial condition x(0) = (0, d, 1), the unique solution
of Equation (4.4) is x(t), which is presented in Equation (4.5) and (4.6) for the case d ≥ 3 and
d = 2. �

4.3.2 LDP for
{
EN
}
N

Since the trajectories with positive probability for XN
t , when N → ∞, are those x(t) =

(s(t), u(t), e(t)) such that s(t) = t and u(t) = d(−2t + 1), we can directly deduce an LDP
for a rescale of the process that counts the number of unexplored vertices in each step of the
algorithm.

Theorem 4.3.3 (LDP for
{
EN
}
N
) Let

{
EN
t

}
t
be a rescale of the process that counts the

number of unexplored vertices in each step given by EN
t :=

EN
[Nt]

N
. Then, the sequence of processes{

EN
}
N

such that EN =
{
EN
t

}
t∈[0,1]

verifies an LDP in D[0,1][0, 1] with good rate function

Î : D[0,1][0, 1]→ [0,+∞] such that Î(x) =
∫ 1

0
L̂ (t, x(t), ẋ(t)) dt if x is an absolutely continuous

function with initial condition x(0) = 1, and it is +∞ in other case. The cost function L̂ is
given by

L̂(t, x, y) = L ((t, u(t), x) , (1,−2d, y))

= (y + 1) log

[
dx

dx− u(t)

y + 1 + d

y + 1

]
− d log

[
d(u(t)− dx)

u(t)(y + 1 + d)

]
,

where u(t) = d(−2t+ 1).
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Proof. It is deduced directly from Theorem 4.3.1. �

In this case, the cost function has a simple interpretation in terms of the LD rate function
for the average of random variables with Binomial distribution, which approximates the distri-
bution corresponding to the number of the new explored vertices in each step of the algorithm.

Proposition 4.3.4 The cost function L̂(t, x, y) verifies L̂(t, x, y) = Λ∗Wt,x
(y), being Λ∗Wt,x

(y) the
LD rate function for the average of i.i.d. random variables

{
W i
t,x

}
i∈N, where Wt,x = Bt,x−d−1

and Bt,x has a Binomial distribution with parameters n = d and p = 1− dx
u(t)

.

Proof. The rate function given by Crámer’s theorem for the average of the random variables{
W i
t,x

}
i∈N is:

Λ∗Wt,x
(y) = sup

α∈R

{
αy − ΛWt,x(α)

}
,

where ΛWt,x(α) = logE
(
eαWt,x

)
(see [Dembo and Zeitouni, 1998] for example). To complete the

proof it is enough to observe that Λ∗Wt,x
(y) = Λ∗Bt,x(y + d + 1) coincides with the cost function

L̂(t, x, y). �

Remark 4.3.3 The previous result can be explained using the following heuristics. Consider
a curve x(t) such that 0 < dx(t) ≤ u(t) for all t ∈ [0, 1], and EN

t ≈ x(t). Then, the infinitesimal
increment ẋ(t) corresponds to the mean number of new explored vertices in one step, that is:

ẋ(t) ≈ x(t+ h)− x(t)

h
≈
EN

[N(t+h)] − EN
[Nt]

Nh
=

1

Nh

[Nt+Nh]∑
k=[Nt]+1

−
(

1 + W̃N
k

)
, (4.7)

where W̃N
k is the number of new explored nodes that share at least one half-edge with v,

the selected node in step k. As mentioned before, with high probability, W̃N
k = WN

k , be-
ing WN

k the number of half-edges pointing out from v paired with non-explored vertices at
step k. If none of the half-edges of v form loops (which happens with high probability, see
[Brightwell et al., 2017]), then WN

k = d − BN
k , where BN

k is the number of half-edges from v

paired with a previously blocked node. The r.v. BN
k has a Hypergeometric distribution with

parameters UN
k − d, UN

k − dEN
k and d. For large values of N and k ∈ [[Nt] + 1, [Nt + Nh]],

if ENk
N

is closed to x(t), then BN
k can be approximated by a Binomial random variable with

parameters n = d and p = lim
N

UNk −dE
N
k

UNk −d
= 1− dx(t)

u(t)
. Then,

ẋ(t) ≈ 1

Nh

[Nt+Nh]∑
k=[Nt]+1

−
(

1 + W̃N
k

)
≈ −1− d+

1

Nh

[Nt+Nh]∑
k=[Nt]+1

BN
k . (4.8)
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Observe that, in particular, the mean macroscopic behaviour e(t) should verify

ė(t) = −1− d+ E
(
Bt,e(t)

)
= −1− d+ d

(
1− de(t)

u(t)

)
= −1− d2e(t)

u(t)
,

which is the fluid limit we have already seen in Equation (4.4).
Then, the global cost of a deviation of the process EN

t to a trajectory x(t) can be interpreted
as a consequence of the accumulated cost of microscopic deviations of the average of Binomial
random variables with parameters n = d and p = 1− dx(t)

u(t)
.

4.3.3 Optimization of the rate function Î

Moreover, the optimization problem for the rate Î over a set of trajectories A ⊂ D[0,1][0, 1] can
be reduced to a one-dimensional optimization problem:

Proposition 4.3.5 (Rate function optimization) Let Î be the rate function defined in
Theorem 4.3.3. Then,

1. If A is a subset of D[0,1][0, 1], then inf
x∈A

Î(x) = inf
{α0∈R:x̂α0∈Ā}

F (α0), where the closure of A

is considered w.r.t. the Skorohod topology, F (α0) =
∫ Tα0

0
L̂ (t, xα0(t), ẋα0(t)) dt, and xα0

is such that (xα0 , yα0) is the solution of the following ODE
ẋ = −1 + dx

ey(2t−1+x)−x ,

ẏ = d(1−ey)
ey(2t−1+x)−x ,

x(0) = 1, y(0) = α0.

(4.9)

The time Tα0 is defined by Tα0 = inf {t ∈ [0, 1] : xα0(t) ≤ 0}, and

x̂α0(t) =

xα0(t), if 0 ≤ t ≤ Tα0 ,

0, if t > Tα0 .

2. Moreover, the real function F (α0) can be written as

F (α0) =

∫ Tα0

0

d

eyα0 (2t− 1 + xα0)− xα0

[
xα0yα0 + (1− eyα0 )

(
d

eyα0 (2t− 1 + xα0)− xα0

+ 1

)]
dt,

being (xα0(t), yα0(t)) the solution of Equation (4.9).

Remark 4.3.4 Let us introduce some comments about the previous proposition.
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Figure 4.1: Evolution of F (α0) as function of α0 for d = 2, . . . , 10.

1. In Figure 4.1, the evolution of F as a function of α0 is represented for d = 2, 3, . . . , 10.
The change that occurs in the graph of F (α0) for d = 2 and d > 2 appears to reflect the
well-known abrupt change in the geometry for d-regular graphs when d = 2 or d > 2.

2. As expected, for α0 = 0, x̂α0(t) coincides with the fluid limit e(t) (i.e., F (0) = 0) and
yα0(t) = 0 for all t. In Figure 4.2, the graphs of x̂α0(t) and the fluid limit e(t) are compared
for α0 < 0 and α0 > 0.

3. Moreover, note from Equation (4.9) that for any α0, the initial velocity of xα0(t) is
ẋα0(0) = −1 − d. This makes sense since there are no blocked nodes in the initial
step of the process, then d + 1 empty vertices will always have to be blocked (since the
probability of having multiple-edges converges to zero).

Proof. To prove the first part of Proposition 4.3.5, note that if x = (x1, x2, x3) ∈ HL is
such that x3(t) = 0 for all t ≥ t0, then I(x) =

∫ 1

0
L(x, ẋ)dt =

∫ t0
0
L(x, ẋ)dt, then just consider

Hamilton’s equations:
ẋ = Hα(x, α),

α̇ = −Hx(x, α),

x(0) = (0, d, 1), α(0) = (α1(0), α2(0), α3(0)) ,

(Hamilton), (4.10)
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Figure 4.2: Graph of x̂α0 for same value of α0 < 0 (left) and α0 > 0 (right) compared with the fluid
limit e(t).

for the case x3 > 0. In Equation (4.10), α is an auxiliary function, and Hx, Hα are the vectors
of partial derivatives of H w.r.t. x and α. The function H is defined in Equation (4.3) and
Equation (4.10) becomes:

ẋ1 = 1⇒ x1(t) = t,

ẋ2 = −2d⇒ x2(t) = d(−2t+ 1),

ẋ3 = −1− d2x3e−α3

x2+(e−α3−1)dx3
= −1− dx3

eα3 (2t−1+x3)−x3
,

α̇1 = 0,

α̇2 =
d2(e−α3−1)dx3

x2(x2+(e−α3−1)dx3)
,

α̇2 =
−d2(e−α3−1)

x2+(e−α3−1)dx3
= d(1−eα3 )

eα3 (2t−1+x3)−x3
,

x1(0) = 0, x2(0) = d, x3(0) = 1.

(4.11)

Since the equations in α are auxiliary, with the change of notation x = x3, y = α3, the system
that we need to solve is presented in Equation (4.9). We are interested in the solution xα0 of
(4.9) until the time at which it reaches the value 0, then we take x̂α0 as in the proposition, and
get inf

x∈A
I (x) = inf

{α0: x̂α0∈Ā}
I (x̂α0) .

To prove the second part of the proposition, we use that xα0 is solution of Equation (4.9)
for the simplification of the cost function L̂ (t, xα0 , ẋα0). �
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4.3.4 Large deviations for the independent set size

Let T ∗N ∈ {0, . . . , N} be the first discrete-time at which the set of empty vertices remains
empty. Note that T ∗N

N
coincides with the proportion size of the independent set constructed by

the greedy algorithm. In this subsection, we derive large deviation results from Theorem 4.3.3
and Proposition 4.3.5 for the sequence of random variables

{
T ∗N
N

}
N
.

Theorem 4.3.6 Let T ∗N be the stopping time of the greedy exploration process over a d-regular
graph G(N, d).

1. If ε > 0 is such that T ∗ + ε < 1, then

lim
N→∞

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= −F (α0(T ∗ + ε)) ,

where α0(T ∗ + ε) is the unique real number α0 > 0 such that Tα0 = T ∗ + ε.

2. If ε > 0 is such that T ∗ − ε > 0, then

lim
N→∞

1

N
logP

(
T ∗N
N
≤ T ∗ − ε

)
= −F (α0(T ∗ − ε)) ,

where α0(T ∗ − ε) is the unique real number α0 < 0 such that Tα0 = T ∗ − ε.

In both cases F (α0) and Tα0 are as in Proposition 4.3.5.

Figure 4.3 shows the evolution of F (α0(T ∗ ± ε)) as a function of ε ∈
[
0, T

∗

4

]
for d = 3, 4, 5,

6, 7, 8 and 9, compared with ε ∈
[
0, T

∗

6

]
for d = 2. Note that in each case the time T ∗ depends

on d. Again, the abrupt change in the dynamics is observed for d = 2 and d > 2.
Proof. We only prove the first statement. Define the setAε such thatAε = {x ∈ D[0,1] [0, 1] :

x(0) = 1, x is decreasing, 0 ≤ x(t) ≤ 1 for all t and inf {t : x(t) = 0} ≥ T ∗+ε}. By construction,

lim
N→∞

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= lim

N→∞

1

N
logP

(
EN ∈ Aε

)
= − inf
{α0: x̂α0∈Āε}

F (α0) .

Let xα0 be the solution of Equation (4.9) with y(0) = α0. The uniqueness of the solution ensures
that the following monotony property with respect to the initial condition α0 is verified:

if α0 < α1 ⇒ xα0(t) < xα1(t) for all t⇒ Tα0 < Tα1 .

In addition, it can be seen that for all T ∈ (T ∗, 1), there exists a unique value α0 = α0(T ) > 0

such that xα0(T ) = 1 (i.e. T = Tα0). Then, there is only one α∗0 > 0 such that xα∗0 (T ∗ + ε) = 1

and
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Figure 4.3: Evolution of F (α∗0(T
∗ ± ε)) as a function of ε > 0.

• if α0 ≥ α∗0 ⇒ Tα0 ≥ T ∗ + ε⇒ x̂α0 ∈ Aε,
• if α0 < α∗0 ⇒ Tα0 < T ∗ + ε⇒ x̂α0 /∈ Aε,

which implies that inf
{α0:x̂α0∈Āε}

F (α0) = inf
{α0≥α∗0}

F (α0) = F (α∗0) . �

4.4 Proof of Theorem 4.3.1

In this section, we prove that the sequence of processes
{
XN
}
N

defined in Section 4.2 verifies
the assumptions from [Feng and Kurtz, 2006] presented in Section 2.2. We organize the proof
of Theorem 4.3.1 in the steps mentioned in Section 2.2, which are presented as propositions.

As mentioned before, Step 1 and Step 2 assure that
{
XN
}
N
verifies the exponential tightness

condition. Then, Step 3 ensures an LDP via the comparison principle, and finally, Step 4
provides the applicable version of the rate, given as an action integral function.

Step 1: Convergence of the nonlinear operators

Let TN be the linear generator of
{
XN
n

N

}
n
, being

{
XN
n

}
n
the discrete-time Markov process

defined in Section 4.2 by XN
n =

(
SNn , U

N
n , E

N
n

)
. Let HN : Dom(HN) ⊂ B(E) → B(E) be the

non-linear generator given by HN(f)(x) = log
[
e−Nf(x)TN

(
eNf
)

(x)
]
.

Proposition 4.4.1 There exists a functional H such that HN converges to H when N → ∞
in the following sense: lim

N→∞
sup
x∈EN

|HN(f)(x)−H(f)(x)| = 0 for all f ∈ C1(E). The functional
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H : C1(E)→ B(E) is such that H(f)(x) = H(x,∇f(x)), where H : E × R3 → R is given by

H (x, α) =

α1 − 2dα2 − α3 + d log
[
1 + (e−α3 − 1) dx3

x2

]
, if x3 > 0,

0, if x3 = 0.
(4.12)

Proof. Let x = 1
N

(ŝN , ûN , êN) be an element of EN with ŝN , êN ∈ {0, 1, . . . , N}, ûN ∈
{0, 1, . . . , dN}, and ûN ≥ dêN > 0. Then,

TN(f)(x) = E
[
f

(
XN
n+1

N

) ∣∣∣XN
n

N
= x

]
= E

[
f

(
1

N

(
SNn + 1, UN

n − d−HN , EN
n − 1− W̃N

)) ∣∣∣XN
n

N
= x

]
= E

[
f

(
x+

1

N

(
1,−d−HN ,−1− W̃N

)) ∣∣∣XN
n

N
= x

]
=

d∑
h=0

h∑
b=0

h−b∑
w̃=0

f

(
x+

1

N
(1,−d− h,−1− w̃)

)
pN(x, h, b, w̃),

since W̃N ≤ WN = HN −BN . By construction (see Section 4.2),

pN(x, h, b, w̃) = P
(
XN
n+1

N
= x+

1

N
(1,−d− h,−1− w̃)

∣∣∣XN
n

N
= x

)
= P

(
W̃N = w̃

∣∣∣BN = b; HN = h;
XN
n

N
= x

)
× P

(
BN = b

∣∣∣HN = h;
XN
n

N
= x

)
× P

(
HN = h

∣∣∣XN
n

N
= x

)
.

As is mentioned in Section 4.2, the random variable HN has a Hypergeometric distribution

HN ∼ Hyper (Nu,N(u− de), d) ,

BN has a (conditioned) Hypergeometric distribution

BN ∼ Hyper
(
Nu− d,N(u− de), HN

)
,

and

lim
N

P
(
W̃N = w̃

∣∣∣BN = b; HN = h;
XN
n

N
= x

)
= lim

N
P
(
WN = w̃

∣∣∣BN = b; HN = h;
XN
n

N
= x

)
,
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by Lemma 4.2.1. Then,

e−Nf(x)TN
(
eNf
)

(x) ≈
d∑

h=0

h∑
b=0

eN(f(x+ 1
N

(1,−d−h,−1−(h−b)))−f(x))pN(x, h, b, h− b).

If f ∈ C2(E), then

lim
N→∞

e−Nf(x)TN
(
eNf
)

(x) =
d∑

h=0

h∑
b=0

e〈∇f(x),(1,−d−h,−1−h+b)〉 lim
N→∞

pN(x, h, b, h− b).

Using Stirling’s formula, we obtain that

lim
N→∞

pN(x, h, b, h− b) =

 d!
(d−b)!b!

(
1− de

u

)b (de
u

)d−b
, if 0 < b ≤ h = d,

0, if h < d.

If ∇f(x) = α = (α1, α2, α3), then

lim
N→∞

e−Nf(x)TN
(
eNf
)

(x) = eα1−2dα2+(1−d)α3

d∑
b=0

eα3b
d!

(d− b)!b!

(
1− de

u

)b(
de

u

)d−b
= eα1−2dα2+(1−d)α3

(
de

u
+

(
1− de

u

)
eα3

)d
.

Then, lim
N→∞

HN(f)(x) = H (x,∇f(x)) with H(x, α) defined in Equation (4.12).

If x = 1
N

(ŝN , ûN , 0), then TN(f)(x) = f(x) and HN(f)(x) = 0. Finally, this result is ex-
tended for f ∈ C1(E) by taking a sequence {fm}m ⊂ C2(E) such that lim

m→∞
sup
x∈E
|fm(x)− f(x)| =

0 and the triangular inequality. �

Proposition 4.4.2 The function H defined in Equation (4.12) is convex w.r.t. α.

Proof. Let x be fixed, and M (x, α) be the Hessian matrix of the function H(x, α) w.r.t.
α = (α1, α2, α3). Then,

M(x, α) =
(
Hαiαj(x, α)

)
i,j=1,2,3

=

0 0 0

0 0 0

0 0 m(x, α)

 ,

being m(x, α) = −d2x3(x2−dx3)eα3

(eα3 (x2−dx3)+dx3)2 ≥ 0. Since the eigenvalues of M(x, α) are 0 and m(x, α) ≥ 0,
M(x, α) is a positive semi-definite matrix and this implies that H is convex w.r.t. α. �
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Step 2: Verify the exponential compact containment condition

In this case, E = [0, 1] is compact, so the exponential compact containment condition from
Definition 2.2.1 is trivially verified by taking Kα = E.

Step 3: Comparison principle

In this subsection, we prove that for each β > 0 and h ∈ C(E) the comparison principle (see
Definition 2.3.2) is verified for the following equation:

f(x)− βH (x,∇f(x))− h(x) = 0. (4.13)

Proposition 4.4.3 For each β > 0 and h ∈ C(E) the comparison principle is satisfied for
Equation (4.13).

Proof. Let µ be a subsolution and v a supersolution of Equation (4.13). Let ψ : E×E → R+

be the good penalization function given by ψ(x, y) = 1
2
‖x− y‖2, and consider the sequences

xα, yα (with α→ +∞) defined by (see Section 2.3)

µ(xα)− v(yα)− αψ(xα, yα) = sup
x,y∈E

{µ(x)− v(y)− αψ(x, y)} .

By Proposition 2.3.1, the sequence (xα, yα) converges to (z, z) and z = (z1, z2, z3) verifies
µ(z)− v(z) = sup

x∈E
{µ(x)− v(x)}. As a consequence of Proposition 2.3.2, it is enough to prove

that the following inequality holds:

lim inf
α→∞

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) ≤ 0,

where ψx(x, y) = (∇ψ (., y)) (x) is the vector of partial derivatives of ψ w.r.t. x = (x1, x2, x3).
If z3 > 0, then

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) = d log

1 +
(
e−α(xα3−yα3 ) − 1

) dxα3
xα2

1 +
(
e−α(xα3−yα3 ) − 1

) dyα3
yα2

 ,
and lim inf

α→∞
H (xα, αψx (xα, yα)) − H (yα, αψx (xα, yα)) = 0. For z3 = 0, we repeat the pre-

vious analysis, being careful with cases in which xα3 = 0 or yα3 = 0 after a certain α0 (i.e.
H (xα, αψx (xα, yα)) = 0 or H (yα, αψx (xα, yα)) = 0 for all α > α0). �
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Step 4: Variational representation of the rate function

Finally, we prove that the rate function can be written as an action functional. As a consequence
of the results presented in Subsection 2.2, it is enough to prove that Conditions 8.9, 8.10, and
8.11 from [Feng and Kurtz, 2006] (which are presented as Conditions 2.2.4, 2.2.5, and 2.2.6)
are verified in this case. We present them as propositions.

In this case, as H(f)(x) = H (x,∇f(x)) for each x ∈ E and H ↔ L, we have that H can be
written as H(f)(x) = sup

u∈U
{A(f)(x, u)− L(x, u)} , where U = R3 and A : C1(E)→M (E × U)

is the linear operator given by A(f)(x, u) = 〈∇f(x), u〉. As L is convex w.r.t. β, it follows that
a deterministic control λ (du× ds) = δu(s)(du)ds is allways the control with smallest cost by
Jensen’s inequality. Moreover, if x : E → R3 is an absolutely continuous function , then

f (x(t))− f (x(0)) =

t∫
0

〈∇f (x(s)) , ẋ(s)〉 ds =

∫∫
R3×[0,t]

A(f) (x(s), u)λ(du× ds),

if define λ = λ(x) such that λ(du× ds) = δẋ(s)(du)ds. Let Γ = E×U . Then, the supremum in
Equation (2.11) for the Nisio semigroup definition is reached on {(x, λ) : x ∈ AC, x(0) = x0} ⊂
YΓ.

Proposition 4.4.4 Conditions 8.9 from [Feng and Kurtz, 2006] (Condition 2.2.4) are veri-
fied.

The proof of this proposition is identical to that of Proposition 3.4.4, so we omit it.

Proposition 4.4.5 Condition 8.10 from [Feng and Kurtz, 2006] (Condition 2.2.5) is verified.

Proof. Since L(x, β) = 0 ⇔ β = Hα(x, 0), the function q(x) = Hα(x, 0) solves the equation
L(x, q(x)) = 0 for all x ∈ E. Note that the fluid limit x(t) = (s(t), u(t), e(t)) verifies ẋ = q(x)

with the initial condition x(0) = (0, d, 1). If x is solution of ẋ = q(x) with initial condition
x(0) = x0 and define λ by λ (du× ds) = δ{q(x(s))}(du) × ds, then (x, λ) ∈ YΓ and verifies the
required condition. �

Proposition 4.4.6 Condition 8.11 from [Feng and Kurtz, 2006] (Condition 2.2.6) is verified.

Proof. Let x0 = (s0, u0, e0) ∈ E and f ∈ C1(E) be fixed with e0 > 0. Since H(f)(x) =

sup
β∈R3

{〈∇f(x), β〉 − L(x, β)}, we need to find (x, λ) ∈ YΓ such that

t∫
0

H (x(s),∇f (x(s))) ds =

∫∫
U×[0,t]

(〈∇f (x(s)) , u〉 − L (x(s), u))λ (ds× du) , (4.14)
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for all t ∈ [0, 1] and x(0) = x0. If define qf (x) = Hα (x,∇f(x)), then H (x,∇f(x)) =

〈∇f(x), qf (x)〉−L (x, qf (x)) and Equation (4.14) is verified for any path x if define λ (du× ds) =

δ{qf (x(s))}(du) ds. Now, we have to add conditions so that in addition (x, λ) belongs to YΓ with
x(0) = x0. In particular, (x, λ) must verify:

t∫
0

〈∇g (x(s)) , qf (x(s))〉 ds = g (x(t))− g (x(0)) ∀t ∈ [0, 1], ∀g ∈ C1(E).

Then, we look for a path that solves the following problem:
x is differentiable almost everywhere and ẋ(t) = qf (x(t)) ,

x(0) = x0,

x(t) ∈ E for all t ≥ 0.

(4.15)

If x verifies Equation (4.15), then the other conditions for (x, λ) to be in YΓ are easily verified.
x(t) = (x1(t), x2(t), x3(t)) verifies ẋ = qf (x) if and only if:

ẋ1(t) = 1,

ẋ2(t) = −2d,

ẋ3(t) = −1− d2x3(t)

e
∂f
∂x3

(x1(t),x2(t),x3(t))
(x2(t)−dx3(t))+dx3(t)

,

x(0) = (s0, u0, e0) ( with u0 ≥ de0).

Then, x1(t) = s0 + t, x2(t) = −2dt + u0 and x3(t) verifies ẋ3 = hf (t, x3) with hf (t, x3) =

−1− d2x3

e
∂f
∂x3

(x1(t),x2(t),x3)
(x2(t)−dx3)+dx3

. Note that hf (t, x3) is a continuous function (it does not have

to be Lipschitz) and hf (t, x3) ≤ 0. Then, x3(t) must be decreasing and we can paste local
solutions from Peano’s Theorem (see [Crandall, 1972]) until the time T0 at which x3(T0) = 0.

If e0 = 0, the only possible initial condition is x0 = (0, 0, 0) and the equality is verified with
λ (du× ds) = δ0(u)ds. �
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Chapter 5

Large deviations for the greedy
exploration process on configuration
models

Abstract
In this chapter, we extend the results presented in Chapter 4 to the greedy exploration on configuration
models, building on a time-discretized version of the method proposed by [Bermolen et al., 2017b]
and [Brightwell et al., 2017] by jointly constructing a random graph from a given degree sequence
and discovering an independent set in this graph. We prove an LDP for a sequence of Markov
processes related to this exploration. The proof of this result follows the general strategy to study
large deviations of processes proposed by [Feng and Kurtz, 2006], which is presented in Section 2.2.
Moreover, we provide an intuitive interpretation of the LD cost function using Crámer’s theorem
for the average of random variables with appropriate distribution, depending on the explored vertices
distribution. As a corollary, we deduce the corresponding fluid limit and LD results for the independent
set size discovered by this exploration algorithm.

The results of this chapter were submitted to Electronic Communications in Probability
including the results of Chapter 4 as a particular case.

This chapter is organised as follows. In Section 5.1, we give a brief introduction to the
chapter. In Section 5.2, we define the dynamic analysed in this chapter, which consists of
simultaneously constructing a random graph and an independent set from an initial distribution
of degrees. Moreover, we define a sequence of Markov processes related to this algorithm. In
Section 5.3, we present the main result of this chapter: a path-state LDP for the sequence of
Markov processes defined in Section 5.2 along with the heuristic that motivates the result. The
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detailed proof is deferred to Section 5.4. As a corollary, we deduce the fluid limit of the process
and LD results for the size of the independent set constructed by the exploration algorithm.

5.1 Introduction

In this chapter, we analyse a simple greedy algorithm to construct an independent set over
a random graph chosen uniformly from those with a given degree. We use a simultaneous
construction of the random graph from a given degree sequence (i.e., a configuration model)
and an independent set exploration. This idea was first used by [Wormald, 1995] for d-regular
graphs and then for [Bermolen et al., 2017b] and [Brightwell et al., 2017] for more general uni-
form random graphs. We consider a time-discretized version of the algorithm proposed by
[Brightwell et al., 2017] for a bounded degree sequence.

We prove a large deviation principle, when the number N of vertices of the graph goes to
infinity, for a rescaled version XN

t =
XN

[Nt]

N
(t ∈ [0, 1]) of the multidimensional Markov chain{

XN
n

}
n
that counts the number of vertices that have already been placed into the independent

set, and the number of empty (or non-explored) vertices from each degree at each step n of the
algorithm.

The proof of this result follows the general strategy to study large deviations of processes
proposed by Feng and Kurtz in [Feng and Kurtz, 2006], which is presented in Section 2.2.

In this case, after working on the four steps mentioned in Section 2.2, we prove that the rate
function can be expressed as an action integral. Moreover, its cost function has an intuitive in-
terpretation in terms of Crámer’s theorem for the average of random variables with appropriate
distribution, depending on the explored vertices distribution in each step of the algorithm.

As a corollary, we deduce the corresponding fluid limit and LD results for independent set
size discovered by such an algorithm.

5.2 Description of the model

In this section, we present the dynamics considered in this chapter, which consist of a simul-
taneous construction of a random graph and an independent set from an initial distribution of
degrees.

We start with a set of vertices VN = {1, 2, . . . , N}, such that deg(i) ≤ D < ∞ for all i
and such that the initial distribution of degrees 1

N
# {i : deg(i) = j} converges to pj ≥ 0, when

the number of vertices N goes to infinity, for all j = 0, . . . D with
D∑
j=0

pj = 1. Let us denote

λ =
∑

j jpj. Each vertex i of the graph has a number deg(i) of half-edges available to be paired
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with the half-edges of other vertices. Next we describe how these half-edges are paired as the
random graph is constructed.

At each step n = 0, 1, . . . , N , the set VN is partitioned into three classes:

• a set SNn of vertices that have already been placed into the independent set, with all
half-edges paired with vertices out of SNn ;

• a set BNn of blocked vertices, where at least one of its half-edges has been paired with a
half-edge from SNn ;

• a set ENn of empty vertices, from which no half-edge has yet been paired. ENn can be

decomposed as ENn =
D⋃
j=0

ENn (j), where ENn (j) is the set of empty vertices of degree j at

step n.

Initially, all vertices are empty, i.e. EN0 = VN and SN0 = ∅. At step n, a vertex v is selected
uniformly from ENn , it is placed into SNn , and all its half-edges are paired, drawing uniformly
within the available half-edges. This pairing procedure results in the following updates:

• v is moved from ENn to SNn ,

• each half-edge incident to v (if it has some) is paired with some other uniformly randomly
chosen vertices among the currently unpaired half-edges,

• all vertices in ENn with some half-edges already paired with a half-edge from v are moved
to BNn .

Note that some half-edges from v may be paired with half-edges from BNn , or in-
deed with other half-edges from v, and no change in the status of a vertex results
from such pairings. At each step n, the only paired edges are those with at least
one endpoint in SNn . This is the main difference between the dynamics described in
[Bermolen et al., 2017b] and [Brightwell et al., 2017] for a continuous-time version of this algo-
rithm. In [Bermolen et al., 2017b], the neighbours of blocked vertices are revealed at each step,
meaning that degrees of empty vertices can change over time. For simplicity, we do not do this.

The algorithm terminates at the first step n = T ∗N at which ENn = ∅. At this point, there
may still be some unpaired half-edges pointing out from blocked vertices. These may be paired
off uniformly at random to complete the construction of the graph G (N, (deg(1), . . . , deg(N))).
Note that T ∗N coincides with the size of the independent set constructed by the algorithm. As
we mentioned before, the expected value of T ∗N

N
is the jamming constant of the graph.

For each n ∈ {0, 1, . . . , N}, let us denote XN
n =

(
SNn , U

N
n , E

N
n (0), EN

n (1), . . . , EN
n (D)

)
with:

• SNn =
∣∣SNn ∣∣, the number of vertices that have already been placed into the independent

set at step n;
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• UN
n , the total number of unpaired half-edges (corresponding to empty or blocked vertices)

at step n;

• EN
n (j) =

∣∣ENn (j)
∣∣, the number of empty vertices with degree j at step n.{

XN
n

}
n
is a discrete-time Markov process in RD+3. By construction, it is updated at step n+ 1

as follows:

• The vertex v is placed into SNn . Then, SNn+1 = SNn + 1.

• If v ∈ ENn (k) with k 6= 0, then:

1. Each one of the k half-edges pointing out from v is paired in turn with some other
uniformly randomly chosen between the currently unpaired half-edges. Let HN be
the number of half-edges from v that are paired with another vertex different from v

(blocked or empty), i.e., that do not form loops. Then, UN
n+1 = UN

n − k−HN . Note
that HN has a Hypergeometric distribution:

HN ∼ Hyper
(
UN
n , U

N
n − k, k

)
.

2. We have to distribute those HN half-edges between the UN
n −

∑
j jE

N
n (j) half-edges

corresponding to blocked vertices and the
∑

j jE
N
n (j) half-edges corresponding to

empties. Let BN be the number of half-edges of v that are paired to blocked vertices,
then BN has a Hypergeometric (conditioned to HN) distribution:

BN ∼ Hyper

(
UN
n − k, UN

n −
D∑
j=1

jEN
n (j), HN

)
.

3. Now, if HN = h (with h ≤ k) and BN = b (with b ≤ h), there are h − b half-edges
to distribute among the empties. Let WN

j be the number of half-edges from v that
are connected to some w ∈ ENn (j). Note that

(
WN

1 , . . . ,W
N
D

)
has a (multivariate)

Hypergeometric distribution:

Hyper

(∑
j

jEN
n (j)− k,EN

n (1), . . . , k
(
EN
n (k)− 1

)
, . . . , DEN

n (D), h− b

)
.

4. Finally, let W̃N
j be the number of empty vertices of degree j that share at least

one edge with v. Then, EN
n+1(0) = EN

n (0), EN
n+1(j) = EN

n (j) − W̃N
j if j 6= k and

EN
n+1(k) = EN

n (k)− 1− W̃N
k .

• If deg(v) = 0, then SNn+1 = SNn +1, UN
n+1 = UN

n , EN
n+1(0) = EN

n (0)−1 and EN
n+1(j) = EN

n (j)

for all j 6= 0.
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As in the previous chapter, the following lemma assures that the distribution of(
W̃1, . . . , W̃D

)
can be approximated by the Hypergeometric distribution corresponding to

(W1, . . . ,WD).

Lemma 5.2.1 Let x̂ = (ŝ, û, ê0, . . . , êD) be an element in the state space of
{
XN
n

}
n
, and (ωj)j

with 0 ≤ ωj ≤ êj such that
∑

j ωj ≤ h− b. Then,

lim
N→∞

P
((

W̃N
j

)
j

= (ωj)j

∣∣∣XN
n = x̂;deg(v) = k;HN = h;BN = b;

(
WN
j

)
j

= (ωj)j

)
= 1

Proof. See Equation 17 from [Bermolen et al., 2017b]. In the article notation: WN
j =

Y (µt−) (j) and W̃N
j = Ỹ (µt−) (j). �

Let XN
t :=

XN
[Nt]

N
be a rescaled version of XN

n with t ∈ [0, 1]. The state space of XN
t is

EN =
{

1
N

(ŝ, û, ê0, . . . , êD) : ŝ, êi ∈ {0, . . . , N};
∑

j jêj ≤ û
}

which is included in the compact

set E :=
{

(s, u, e0, e1, . . . , eD) ∈ [0, 1]× R× [0, 1]D+1 :
∑

j jej ≤ u ≤ λ
}
. Moreover, the size of

the independent set constructed by such an algorithm is given by

T ∗N = inf

{
n :
∑
j

EN
n (j) = 0

}
= N inf

{
t ∈ [0, 1] :

∑
j

EN
[Nt](j) = 0

}
.

In this chapter, we extend the results presented in the previous chapter for more general
uniform random graphs by analysing large deviations results for both

{
XN
.

}
N

and
{
T ∗N
N

}
N
.

5.3 Main Results

In this section, we present the main results of this chapter. In Subsection 5.3.1, we present
an LDP for XN =

{
XN
t

}
0≤t≤1

and a heuristic description to derive this result. The proof of
this theorem is based on the work of [Feng and Kurtz, 2006] and is deferred to Section 5.4.
In Subsection 5.3.2, we deduce the corresponding fluid limit. In Subsection 5.3.3, we provide
a way of finding the trajectory that minimises the LD rate function over a set of trajectories
(i.e., the most probable trajectory) by studying the Hamiltonian dynamics associated with the
rate function obtained. Finally, in Subsection 5.3.4, we deduce large deviations results for the
independent set size discovered by such an algorithm.

5.3.1 LDP for
{
XN
}
N

The theorem that we state below is the most important result of this chapter.
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Theorem 5.3.1 (LDP for
{
XN
}
N
) The sequence

{
XN
}
N

with XN =
{
XN
t

}
0≤t≤1

veri-
fies an LDP on DE [0, 1] with good rate function I : DE[0, 1] → [0,+∞] such that I (x) =∫ 1

0
L (x(t), ẋ(t)) dt if x ∈ HL and it is +∞ in other case. L : E × RD+3 → R is the cost

function
L(x, β) = sup

α∈RD+3

{〈α, β〉 −H (x, α)} , (5.1)

where H : E × RD+3 → R is the convex function w.r.t. the second variable given by

H (x, α) =


log

∑
k

eαs−2kαu−αk

(
1 +

D∑
j=1

(e−αj − 1)
jej
u

)k

ek∑
j ej

 , if
∑

j ej > 0

0, if
∑

j ej = 0,

(5.2)

with x = (s, u, e0, e1, . . . , eD) and α = (αs, αu, α0, α1, . . . , αD). HL is the set of all absolutely
continuous function x : [0, 1] → E, x(t) = (s(t), u(t), e0(t), e1(t), . . . , eD(t)) with initial value
x(0) = (0, λ, p0, p1, . . . , pD) and such that s(t) is increasing, u(t) and ej(t) are decreasing, and
the integral

∫ 1

0
L (x(t), ẋ(t)) dt exists and it is finite.

A detailed proof of this theorem is deferred to Section 5.4. The convexity of H (x, α) w.r.t. α
is stated in Proposition 5.4.2.

Remark 5.3.1 Though we believe that the case of unbounded degree distribution support
would not raise different conclusions (under appropriate conditions on tails), the proof would
become much more technical. We leave it for future work.

In what follows we provide an intuitive way to construct the cost function L in terms of the
rate function provided by Cramer’s theorem for the average of the approximated distribution
of the new explored vertices in one step conditioning to the number of explored vertices.

Consider a curve x(t) = (s(t), u(t), e0(t), . . . , eD(t)) contained in E and such thatXN
t ≈ x(t).

Then, the infinitesimal increments ẋ(t) = (ṡ(t), u̇(t), ė0(t), . . . , ėD(t)) correspond to the mean
number of new explored vertices from each degree in one step, as can be deduced from the
following statement:

ẋ(t) ≈ x(t+ h)− x(t)

h
≈
XN

[N(t+h)] −XN
[Nt]

Nh
=

1

Nh

[N(t+h)]−1∑
n=[Nt]

(
XN
n+1 −XN

n

)
.

Proposition 5.3.2 The distribution of the number of new explored vertices in one step XN
n+1−

XN
n , conditioning to XN

t ≈ x(t) = (s(t), u(t), e0(t), . . . , eD(t)), can be approximated by the

89



random vector:

Zx(t) =

(1, 0,−1, 0, . . . , 0) , with probability e0(t)∑
j ej(t)

,

(1,−2k, 0,−M1, . . . ,−1−Mk, . . . ,−MD) , with probability ek(t)∑
j ej(t)

(1 ≤ k ≤ D).

(5.3)
In Equation (5.3), the coordinates Mi correspond to

(M1, . . . ,MD) ∼Mult (K −B, q1, . . . , qD) ,

a Multinomial vector depending on K ∈ {0, . . . , D} such that P(K = k) = ek(t)∑
j ej(t)

,

B = B(K) ∼ Bin
(
K, 1−

∑
j jej(t)

u(t)

)
, and qi = iei(t)∑

j jej(t)
.

Proof. At step n, the vertex v ∈ ENn (k) is drawn uniformly.
If k 6= 0, then XN

n+1 −XN
n =

(
1,−k −HN , 0,−W̃N

1 , . . . ,−1− W̃N
k , . . . ,−W̃N

D

)
, where

• HN is the number of half-edges from v that are joined to another vertex different from v.
As the probability of loops converges to zero (see [Brightwell et al., 2017]), then HN ≈ k.

• Lemma 5.2.1 assures that W̃N
j ≈ WN

j , where
(
WN

1 , . . . ,W
N
D

)
has a (multivariate) Hy-

pergeometric distribution with parameters
∑

j jE
N
n (j) − k, EN

n (1), . . . , jEN
n (j), . . . ,

k
(
EN
n (k)− 1

)
, . . . , DEN

n (D), and k −BN .
Note that BN can be approximated by a Binomial random variable B with parameters
n = k and p = limN

UNn −
∑
j jE

N
n (j)

UNn −k
= 1 −

∑
j jej(t)

u(t)
. Moreover,

(
WN

1 , . . . ,W
N
D

)
can be ap-

proximated by the Multinomial random vector (M1, . . . ,MD) ∼Mult (k −B, q1, . . . , qD),
with qi = iei(t)∑

j jej(t)
.

If v ∈ ENn (0), then XN
n+1 −XN

n = (1, 0,−1, 0, . . . , 0). �

Proposition 5.3.3 The cost function L (x(t), ẋ(t)) defined in Equation (5.1) coincides with
the LDP rate function for the average of i.i.d random variables

{
Z

x(t)
i

}
i∈N

distributed as Zx(t):

L (x(t), ẋ(t)) = sup
α∈RD+3

{〈α, ẋ(t)〉 −H (x(t), α)} = Λ∗Zx(t) (ẋ(t)) .

Proof. Assuming that the random variables
{
Z

x(t)
i

}
i
are i.i.d., Cramér’s theorem states that

the LDP rate function for the average of these variables is

I(x) = Λ∗Zx(t)(x) = sup
α∈RD+3

{〈α, x〉 − ΛZx(t)(α)} , with ΛZx(t)(α) = logE
[
e〈α,Zx(t)〉

]
.
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In this case, with α = (αs, αu, α0, . . . , αD), we have that ΛZx(t)(α) = H (x(t), α) , being H(x, α)

(H : E ×RD+3 → R) the log of the moment-generating function of the (conditioned) Multino-
mial vector Zx (with x ∈ E) evaluated in α, which is presented in Equation (5.2).

Defining L : E × RD+3 → R as in Equation (5.1), results that L (x(t), ẋ(t)) =

sup
α
{〈α, ẋ(t)〉 −H (x(t), α)} coincides with Λ∗

Zx(t) (ẋ(t)). �

This means that the global cost of a deviation of
{
XN
t

}
t
to a trajectory x(t) can be inter-

preted as a consequence of the accumulated cost of microscopic deviations of the average of
(conditioned) Multinomial random vectors, representing the degrees of the new explored nodes
in one step.

Remark 5.3.2 (Fluid limit) Observe that, in particular, the mean macroscopic behaviour
x(t) should verify:

ẋ(t) ≈ E
(
Zx(t)

)
= (1, 0,−1, 0, . . . , 0)

e0(t)∑
j ej(t)

+
D∑
k=1

(
1,−2k, 0,−ke1(t)

u(t)
, . . . ,−kjej(t)

u(t)
, . . . ,−1− kkek(t)

u(t)
, . . . ,−kDeD(t)

u(t)

)
ek(t)∑
j ej(t)

,

which coincides with the fluid limit that we formally prove in the following subsection.

5.3.2 Fluid limit of the process
{
XN
t

}
t

In this subsection, we formally deduce the fluid limit of
{
XN
t

}
t
as a consequence of Theorem

5.3.1 and Proposition 2.5.1.

Proposition 5.3.4 (Fluid limit) The sequence of processes
{
XN
}
N

converges almost-sure,
as N →∞, to the deterministic function x̂ : [0, 1]→ E given by

x̂(t) =

(s(t), û(t), ê0(t), . . . , êD(t)) , if t ≤ T ∗,

(T ∗, 0, . . . , 0) , if t > T ∗,
where êi(t) =

ei(t), if t ≤ ti,

0, if t > ti.

The times ti are defined by ti = inf {t ∈ [0, 1] : ei(ti) ≤ 0} and x(t) = (s(t), u(t), e0(t), . . . , eD(t))

is (the) solution of the following ordinary differential equation:

ṡ = 1,

u̇ =
−2
∑
k kek∑
k ek

,

ėi =
−ei−

iei
u

∑
k kek∑

k ek
, i = 0, . . . , D,

s(0) = 0, u(0) = λ, ei(0) = pi.

(5.4)
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û is the solution of Equation (5.4) replacing ei by êi and T ∗ = inf {t ∈ [0, 1] :
∑

k êk(t) = 0} =

max {t0, . . . , tD}.

Note that the dynamics described by Equation (5.4) and the fluid limit for the process
considered in [Brightwell et al., 2017] differ only because of the term

∑
k ek, which corresponds

to the rate at which the clock of an unexplored vertex rings in the continuous-time case.
Proof. The cost function L(x, β) defined in Equation (5.1) satisfies L(x, β) ≥ 0 and

L (x, β) = 0 if and only if β = Hα (x, 0), where Hα (x, α) are the partial derivatives of H (x, α)

w.r.t. α = (αs, αu, α0, . . . , αD). Then, the trajectories with zero cost are the ones that verify
ẋ = Hα (x, 0). If in addition we impose the condition x(0) = (0, λ, p0, . . . , pD), we obtain the
autonomous Equation (5.4). Cauchy-Peano existence theorem ensures the existence of at least
one solution of such equation. Let D = {x ∈ E : ei > 0 ∀i} and f(x) = Hα (x, 0). Then f

is a C1-function on D, i.e. it is a locally Lipschitz continuous function on D. This implies

the uniqueness of solutions ei(t) for equation

ẋ = f(x),

x(0) = x0 ∈ D,
until the time ti at which

ei(ti) = 0, and then we take the solution ei(t) = 0 for all t ≥ ti. �

5.3.3 Optimization of the rate function.

The following proposition consists transforms the optimization problem of the rate function I
over a set of trajectories into a real optimization problem.

Proposition 5.3.5 (Rate function optimization) Let A be a subset of DE[0, 1]. Then,

inf
x∈A

I(x) = inf
{α0∈RD+3:x̂α0∈Ā}

I (x̂α0) ,

where the closure of A is considered w.r.t. the Skorohod topology,

x̂α0(t) =

(sα0(t), ûα0(t), ê0,α0(t), . . . , êD,α0(t)) , if t ≤ Tα0 ,

(Tα0 , 0, . . . , 0) , if t > Tα0 ,

êi,α0(t) =

ei,α0(t), if t ≤ ti,α0 ,

0, if t > ti,α0 ,
ti,α0 = inf {t ∈ [0, 1] : ei,α0(t) ≤ 0},

and xα0(t) = (sα0(t), uα0(t), e0,α0(t), . . . , eD,α0(t)) is (the) solution of the following ordinary
differential equation: 

ẋ = Hα(x, α),

α̇ = −Hx(x, α),

x(0) = (0, λ, p0, . . . , pD) , α(0) = α0.

(5.5)
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Hx and Hα are the vectors of partial derivatives of H w.r.t. x and α,
and Tα0 = inf {t ∈ [0, 1] :

∑
k êk,α0(t) = 0}.

Remark 5.3.3 As expected, for α0 = (0, 0, . . . , 0), x̂α0(t) coincides with the fluid limit, which
is solution of Equation (5.4), and α(t) = (0, . . . , 0) for all t. Then inf

x∈A
I(x) = 0 if the fluid limit

belongs to A.

Proof. Note that if x ∈ HL is such that x(t) = (s(t), u(t), e0(t), . . . , eD(t)) and
∑

k ek(t) = 0

for all t ≥ t0, then I(x) =
∫ 1

0
L(x, ẋ)dt =

∫ t0
0
L(x, ẋ)dt, so just consider Hamilton’s equations

for the case
∑

k ek > 0. Hamilton’s equations, presented in Equation (5.5), give conditions for
a function x to be a stationary curve of the functional I. Note that α is an auxiliary function.
�

5.3.4 Large deviations for the independent set size

From previous results, we can deduce an LDP for the sequence of stopping times T ∗N
N
, which

coincide with the proportion size of the independent set constructed by the algorithm.

Theorem 5.3.6 Consider T ∗N defined before as the stopping time of the algorithm presented in
Section 5.2.

1. If ε > 0 is such that T ∗ + ε < 1, then

lim
N

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= −F+ (T ∗ + ε) ,

being F+ (T ∗ + ε) = inf
{
I (x̂α0) : Tα0 ≥ T ∗ + ε, α0 ∈ RD+3

}
.

2. If ε > 0 is such that T ∗ − ε > 0, then

lim
N

1

N
logP

(
T ∗N
N
≤ T ∗ − ε

)
= −F− (T ∗ − ε) ,

being F− (T ∗ − ε) = inf
{
I (x̂α0) : Tα0 ≤ T ∗ − ε, α0 ∈ RD+3

}
.

In both cases x̂α0 and Tα0 are as in Proposition 5.3.5.

Proof. We only prove the first statement. Define the set Aε, that contains the trajectories
x ∈ DE[0, 1] such that x(t) = (s(t), u(t), e0(t), . . . , eD(t)), x(0) = (0, λ, p0, . . . , pd), coordi-
nates ei(t), u(t) are decreasing, s(t) is increasing, 0 ≤ ei(t), s(t) ≤ 1 for all t, and such that
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inf {t :
∑

k ek(t) = 0} ≥ T ∗ + ε. Then, Proposition 5.3.5 implies that

lim
N

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= lim

N

1

N
logP

(
XN
. ∈ Aε

)
= − inf
{α0∈RD+3: x̂α0∈Āε}

I (x̂α0) = F+ (T ∗ + ε) .

�

5.4 Proof of Theorem 5.3.1

Finally, in this section we prove that the sequence of processes
{
XN
}
N

defined in Section 5.2
verifies the assumptions from [Feng and Kurtz, 2006] presented in Section 2.2. We organize
the proof of Theorem 5.3.1 in the steps mentioned in Section 2.2, which are presented as
propositions.

Step 1: Convergence of the nonlinear operators

Let TN be the linear generator of
{
XN
n

N

}
n
, being

{
XN
n

}
n
the discrete-time Markov process

defined in Section 5.2 by XN
n =

(
SNn , U

N
n , E

N
n (0), EN

n (1), . . . , EN
n (D)

)
. Let HN : Dom(HN) ⊂

B(E)→ B(E) be the non-linear generator given by HN(f)(x) = log
[
e−Nf(x)TN

(
eNf
)

(x)
]
.

Proposition 5.4.1 There exists a functional H such that HN converges to H when N → ∞
in the following sense: lim

N→∞
sup
x∈EN

|HN(f)(x)−H(f)(x)| = 0 for all f ∈ C1(E). The functional

H : C1(E)→ B(E) is such that H(f)(x) = H(x,∇f(x)), where H : E × R→ R is given by

H (x, α) =



log


D∑
k=0

eαs−2kαu−αk

(
1 +

D∑
j=1

(
e−αj − 1

) jej
u

)k

ek
D∑
j=0

ej

 ,
if
∑D

j=0 ej > 0,

0, if
D∑
j=0

ej = 0.

(5.6)

Proof. Let be x = (s, u, e0, . . . , eD) ∈ EN such that x = 1
N

(ŝN , ûN , ê0,N , . . . , êD,N) with
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ŝN , êi,N ∈ {0, 1, . . . , N},
∑

j jêj,N ≤ ûN ≤ λN , and
∑

j êj,N > 0. Then,

TN(f)(x) = E
[
f

(
XN
n+1

N

) ∣∣∣XN
n

N
= x

]
= f

(
x+

1

N
(1, 0,−1, 0, . . . , 0)

)
e0∑
j ej

+
D∑
k=1

k∑
h=0

h∑
b=0

∑
w̃j :
∑
w̃j≤h−b

f

(
x+

1

N
(1,−k − h, 0,−w̃1, . . . ,−1− w̃k, . . . ,−w̃D)

)
× pN

(
x, k, h, b, (w̃j)j

)
,

(see Section 5.2). The probability pN
(
x, k, h, b, (w̃j)j

)
is given by

pN

(
x, k, h, b, (w̃j)j

)
= P

((
W̃N
j

)
j

= (w̃j)j

∣∣∣XN
n

N
= x; v ∈ ENn (k);HN = h;BN = b;

(
WN
j

)
j

= (w̃j)j

)
× P

((
WN
j

)
j

= (w̃j)j

∣∣∣XN
n

N
= x; v ∈ ENn (k);HN = h;BN = b

)
× P

(
BN = b

∣∣∣XN
n

N
= x; v ∈ ENn (k);HN = h

)
× P

(
HN = h

∣∣∣XN
n

N
= x; v ∈ ENn (k)

)
× P

(
v ∈ ENn (k)

∣∣∣XN
n

N
= x

)
,

where HN ∼ Hyper (Nu,Nu− k, k), BN ∼ Hyper
(
Nu− k,Nu−

∑
j jNej, H

N
)
, and

lim
N→∞

P
((

W̃N
j

)
j

= (w̃j)j

∣∣∣XN
n

N
= x; v ∈ ENn (k);HN = h;BN = b;

(
WN
j

)
j

= (w̃j)j

)
= 1

by Lemma 5.2.1. Then,

e−Nf(x)TN
(
eNf
)

(x) = eN(f(x+ 1
N

(1,0,−1,0,...,0))−f(x)) e0∑
j ej

+
D∑
k=1

k∑
h=0

h∑
b=0

∑
w̃j :
∑
w̃j≤h−b

eN(f(x+ 1
N

(1,−k−h,0,−w̃1,···−1−w̃k,...,−w̃d))−f(x))

× pN
(
x, k, h, b, (w̃j)j

)
.
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If f ∈ C2(E), then

lim
N→∞

e−Nf(x)TN
(
eNf
)

(x) = e〈∇f(x),(1,0,−1,0,...,0)〉 e0∑
j ej

+
D∑
k=1

k∑
h=0

h∑
b=0

∑
w̃j :
∑
w̃j≤h−b

e〈∇f(x),(1,−k−h,0,−w̃1,...,−1−w̃k,...,−w̃D)〉

× lim
N→∞

pN

(
x, k, h, b, (w̃j)j

)
.

Using Stirling’s formula, we obtain that

lim
N→∞

pN

(
x, k, h, b, (w̃j)j

)
=



ek∑
j ej

Ckb (u−
∑
j jej)

b
(
∑
j jej)

k−b

uk
× (k−b)!

w̃1!...w̃D!

∏
j:ej>0

(jej)
w̃j(∑

j jej

)k−b ,
if h = k and

∑
j w̃j = h− b,

0, in other cases.
(5.7)

If ∇f(x) = α = (αs, αu, α0, . . . , αD), then

lim
N→∞

e−Nf(x)TN
(
eNf
)

(x) =
D∑
k=0

eαs−2kαu−αk

(
1 +

D∑
j=1

(
e−αj − 1

) jej
u

)k

ek∑
j ej

,

and lim
N→∞

HN(f)(x) = H (x,∇f(x)) with H(x, α) defined in Equation (5.6).

If x = 1
N

(ŝN , ûN , 0, . . . , 0), then TN(f)(x) = f(x) and HN(f)(x) = 0. This result is
extended to f ∈ C1(E) by taking a sequence {fm}m ⊂ C2(E) such that lim

m
sup
x∈E
|fm(x)− f(x)| =

0 and the triangular inequality. �

As we mentioned before, for each x ∈ E the function H (x, α) obtained is convex w.r.t. α.
We state this result in the following proposition.

Proposition 5.4.2 The function H : E×RD+3 → R defined in Equation (5.6) is convex w.r.t.
α.

Proof. Let x ∈ E be fixed. We want to prove that for all α, β ∈ RD+3, and λ ∈ [0, 1] it is
verified that

H (x, λα + (1− λ)β) ≤ λH(x, α) + (1− λ)H(x, β).

For each α ∈ RD+3, define the linear function fα : E → R given by fα(x) = 〈α, x〉, then
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fα ∈ C1(E) and

H(x, α) = H (x,∇fα(x)) = H(fα)(x) = lim
N→∞

HN(fα)(x).

Then, it is enough to prove that

HN
(
fλα+(1−λ)β

)
(x) ≤ λHN (fα) (x) + (1− λ)HN (fβ) (x), x ∈ EN .

Note that for each α, HN(fα)(x) = logE
[
e〈α,XN

k+1−X
N
k 〉
∣∣∣∣XN

k

N
= x

]
. Then,

λHN(fα)(x) + (1− λ)HN(fβ)(x)

= log

[(
E
(
e〈α,XN

k+1−X
N
k 〉
∣∣∣∣XN

k

N
= x

))λ]
+ log

[(
E
(
e〈β,XN

k+1−X
N
k 〉
∣∣∣∣XN

k

N
= x

))1−λ
]

= log

[(
E
(
e〈α,XN

k+1−X
N
k 〉
∣∣∣∣XN

k

N
= x

))λ(
E
(
e〈β,XN

k+1−X
N
k 〉
∣∣∣∣XN

k

N
= x

))1−λ
]

≥ logE
[(
e〈α,XN

k+1−X
N
k 〉
)λ (

e〈β,XN
k+1−X

N
k 〉
)1−λ

∣∣∣∣XN
k

N
= x

]
,

since log is an increasing function and Hölder’s inequality allows us to prove that for each
random variable X and λ ∈ [0, 1] it is verified that

(E(f(X)))λ (E(g(X)))1−λ ≥ E
[
f(X)λg(X)1−λ] , ∀f, g.

Finally,

λHN(fα)(x) + (1− λ)HN(fβ)(x) ≥ logE
[
e〈λα+(1−λ)β,XN

k+1−X
N
k 〉
∣∣∣∣XN

k

N
= x

]
= HN

(
fλα+(1−λ)β

)
(x).

�

Step 2: Verify the exponential compact containment condition

Since E is a compact subset of RD+3, the exponential compact containment condition from
Definition 2.2.1 is trivially verified by taking Kα = E.
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Step 3: Comparison principle

In this subsection, we prove that for each β > 0 and h ∈ C(E) the comparison principle (see
Definition 2.3.2) is verified for the following equation:

f(x)− βH (x,∇f(x))− h(x) = 0. (5.8)

Proposition 5.4.3 For each β > 0 and h ∈ C(E) the comparison principle is satisfied for
Equation (5.8).

Proof. Let µ be a subsolution and v a supersolution of Equation (5.8). Let ψ : E×E → R+

be the good penalization function given by ψ(x, y) = 1
2
‖x− y‖2, and consider the sequences

xα, yα (with α→ +∞) defined by

xα =
(
sx

α

, ux
α

, ex
α

0 , . . . , ex
α

D

)
and yα =

(
sy

α

, uy
α

, ey
α

0 , . . . , ey
α

D

)
such that (see Section 2.3)

µ(xα)− v(yα)− αψ(xα, yα) = sup
x,y∈E

{µ(x)− v(y)− αψ(x, y)} .

By Proposition 2.3.1, the sequence (xα, yα) converges to (z, z) and z = (zs, zu, z0, . . . , zD) verifies
µ(z)− v(z) = sup

x∈E
{µ(x)− v(x)}. As a consequence of Proposition 2.3.2, it is enough to prove

that the following inequality holds:

lim inf
α→∞

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) ≤ 0,

where ψx(x, y) = (∇ψ (., y)) (x) is the vector of partial derivatives of ψ w.r.t. x =

(s, u, e0, . . . , eD). If
∑

j zj > 0, then

lim inf
α→∞

H (xα, α (xα − yα))−H (yα, α (xα − yα))

≤ lim inf
α→∞

log


∑
k

e
−2kα(ux

α−uyα)−α
(
ex
α

k −e
yα

k

)(
1 +

∑
j

(
e
−α
(
ex
α

j −e
yα

j

)
− 1

)
jzj
zu

)k
zk∑
j zj∑

k

e
−2kα(ux

α−uyα)−α
(
ex
α

k −e
yα

k

)(
1 +

∑
j

(
e
−α
(
ex
α

j −e
yα

j

)
− 1

)
jzj
zu

)k
zk∑
j zj


= 0.
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For
∑
j

zj = 0, we repeat the previous analysis, being careful with the cases in which
∑
j

ex
α

j = 0

or
∑
j

ey
α

j = 0 after a certain α0 (i.e. H (xα, αψx (xα, yα)) = 0 or H (yα, αψx (xα, yα)) = 0 for

all α > α0). �

Step 4: Variational representation of the rate function

Finally, we prove that the rate function can be written as an action functional. As a consequence
of the results presented in Subsection 2.2, it is enough to prove that Conditions 8.9, 8.10, and
8.11 from [Feng and Kurtz, 2006] (which are presented as Conditions 2.2.4, 2.2.5, and 2.2.6)
are verified in this case. We present them as propositions.

In this case, as H(f)(x) = H (x,∇f(x)) for each x ∈ E and H ↔ L, the functional H
can be written as H(f)(x) = sup

u∈U
{A(f)(x, u)− L(x, u)} , where U = RD+3 and A : C1(E) →

M (E × U) is the linear operator given by A(f)(x, u) = 〈∇f(x), u〉. Since H(x, α) is convex
w.r.t. α, it follows that L(x, β) is convex w.r.t. β and a deterministic control µ (du× ds) =

δu(s)(du)ds is allways the control with smallest cost by Jensen’s inequality. Moreover, if x :

E → RD+3 is an absolutely continuous function, then

f (x(t))− f (x(0)) =

t∫
0

〈∇f (x(s)) , ẋ(s)〉 ds =

∫∫
RD+3×[0,t]

A(f) (x(s), u)µ(du× ds),

if define µ = µ(x) such that µ(du×ds) = δẋ(s)(du)ds. Let Γ = E×U . Then, the supremum in
Equation (2.11) for the Nisio semigroup definition is reached on {(x, µ) : x ∈ AC, x(0) = x0} ⊂
YΓ.

Proposition 5.4.4 Conditions 8.9 from [Feng and Kurtz, 2006] (Condition 2.2.4) are veri-
fied.

The proof of this proposition is identical to that of Proposition 3.4.4, so we omit it.

Proposition 5.4.5 Condition 8.10 from [Feng and Kurtz, 2006] (Condition 2.2.5) is verified.

Proof. Since L(x, β) = 0 ⇔ β = Hα(x, 0), the function q(x) = Hα(x, 0) solves the equation
L(x, q(x)) = 0 for all x ∈ E. Note that the fluid limit x(t) = (s(t), u(t), e0(t), . . . , eD(t)) verifies
ẋ = q(x) with the initial condition x(0) = (0, λ, p0, . . . , pD). If x is solution of ẋ = q(x) with
initial condition x(0) = x0 and define µ by µ (du× ds) = δ{q(x(s))}(du) × ds, then (x, µ) ∈ YΓ

and verifies the required condition. �

Proposition 5.4.6 Condition 8.11 from [Feng and Kurtz, 2006] (Condition 2.2.6) is verified.
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Proof. Let x0 = (s0, u0, e0,0, . . . , eD,0) ∈ E and f ∈ C1(E) be fixed with
∑

j ej,0 > 0. Since
H(f)(x) = sup

β∈RD+3

{〈∇f(x), β〉 − L(x, β)}, we look for a pair (x, µ) ∈ YΓ that verifies x(0) = x0

and

t∫
0

H (x(s),∇f (x(s))) ds =

∫∫
U×[0,t]

[〈∇f (x(s)) , u〉 − L (x(s), u)]µ (ds× du) , ∀t. (5.9)

If define qf (x) = Hα (x,∇f(x)), thenH (x,∇f(x)) = 〈∇f(x), qf (x)〉−L (x, qf (x)) and Equation
(5.9) is verified for any path x if take µ (du× ds) = δ{qf (x(s))}(du) ds. Now we have to add
conditions such that in addition (x, µ) belongs to YΓ with x(0) = x0. In particular, (x, µ) must
verify:

t∫
0

〈∇g (x(s)) , qf (x(s))〉 ds = g (x(t))− g (x(0)) ∀t ∈ [0, 1], ∀g ∈ C1(E).

Then, we look for a path that solves the following problem:
x is differentiable almost everywhere and ẋ(t) = qf (x(t)) ,

x(0) = x0,

x(t) ∈ E for all t ≥ 0.

(5.10)

x(t) = (s(t), u(t), e0(t), . . . , eD(t)) verifies ẋ = qf (x) if and only if:

ṡ = 1,

u̇ = Hαu (x,∇f(x)) ,

ėi = Hαi (x,∇f(x)) ,

x(0) = (s0, u0, e0,0, . . . , eD,0) with u0 ≥
∑

j jej,0.

Note that for each i: hf,i(x) = Hαi (x,∇f(x)) is a continuous function and hf,i(x) ≤ 0 if
x ∈ E, then ei(t) is decreasing and we can paste local solutions from Peano’s Theorem (see
[Crandall, 1972]) until the time ti at which ei(ti) = 0, and put ei(t) = 0 for all t ≥ ti.

If
∑

j ej,0 = 0, the only possible initial condition is x0 = (0, 0, 0, . . . , 0) and the equality is
verified by taking µ (du× ds) = δ0(u)ds. �
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