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Abstract The material identification problem addressed consists of determining the con-

stitutive parameters distribution of a linear elastic solid using displacement measurements.

This problem has been considered in important applications such as the design of method-

ologies for breast cancer diagnosis. Since the resolution of real life problems involves high

computational costs, there is great interest in the development of efficient methods. In this

paper two new efficient formulations of the problem are presented. The first formulation

leads to a second-order cone optimization problem, and the second one leads to a quadratic

optimization problem, both allowing the resolution of the problem with high efficiency and

precision. Numerical examples are solved using synthetic input data with error. A regular-

ization technique is applied using the Morozov criterion along with an automatic selection

strategy of the regularization parameter. The proposed formulations present great advantages

in terms of efficiency, when compared to other formulations that require the application of

general nonlinear optimization algorithms.

Keywords Identification · Inverse problems · Kinematic field measurements · Second-order

cone programming

1 Introduction

The direct linear elasticity problem of solid mechanics consists of obtaining the displace-

ment, strain and stress fields inside an elastic body. External loads, supports and the material

properties of the elastic body are considered known. However, in certain important appli-

cations the material properties are unknown, and must be estimated from measurements of
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displacements, strains and stresses caused by a known external action, i.e. a Material Iden-

tification Problem (MIP) must be formulated and solved. The reader may find an extensive

survey about the theoretical aspects and practical solution strategies for the MIP and other

inverse problems in Elasticity in [9].

One of the applications where MIPs are formulated is in structural damage identification

[29,38,41]. The MIPs are also formulated in the development of new techniques for diag-

nosis of diseases, in situations where the tissue health can be inferred from its constitutive

material properties [23,15,42]. Motivated by these important applications, several groups of

researchers in the scientific community have made a great effort in the development of new

methods for the solution of the MIP. This article contributes with two new formulations for

the MIP, along with their respective efficient solution methodologies.

The MIP, like other inverse problems, is an ill-posed problem, i.e. the solution does not

satisfy all the Hadamard conditions: existence, uniqueness and continuous dependence on

the given data [27]. There have been some recent results about the existence and uniqueness

of the solution in certain MIPs, such as sufficient conditions for an incompressible solid [6],

and for a compressible solid under dynamical tests using complete displacement information

[33]. However, one of the main challenges of the MIPs, as well as other ill-posed inverse

problems in engineering, is the high sensitivity of the solution with respect to measurement

errors in the given data, which are invariably present. On the other hand, large scale real

life problems are still challenging for the most frequently used MIP methods, and the high

computational costs associated to practical applications have fueled intense research on new

efficient methods of solution. Since the contribution made by Ophir et al. where Elastogra-

phy is presented [35] to the recent results in [23], there has been an important advance in

the development of new techniques for one of the most important applications: breast cancer

diagnosis.

A brief bibliographical review of the historical development of MIP resolution methods

is presented in the following. The papers [26,12] are among the first references dealing with

mechanical parameters identification problems where optimization problems are formulated

and solved. In [35] the Elastography is presented as a technique that allows the estimation of

material properties, using data obtained by applying ultrasound technology. In [25,16] the

identification of mechanical properties of tissues is performed by formulating and solving

an optimization problem. In this kind of formulation the design variables are values of the

mechanical properties of each part of certain partition of the solid and the objective func-

tional is a measure of the distance between the experimentally measured displacements and

the displacements provided by a numerical model, i.e. if the vector x represents the set of n

unknown mechanical parameters, the optimization problem is:

min
x∈Rn

∥U(x)−Um∥2. (1)
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where Um is the vector of measured displacements and U(x) is the vector of the same dis-

placements computed by certain numerical method. An iterative optimization algorithm is

used to find an optimal solution. A survey of iterative methods for general material identi-

fication is presented in [15]. Gradient-based techniques [32] are usually applied, as in [14,

11] where the authors identify the Young modulus in arteries. In other material identifica-

tion articles derivative-free algorithms are used [38]. A previous analysis must be done to

determine which type of algorithm should be used for each application, taking into account

the differences between the diverse optimization strategies available [1].

A particular case of MIP arises when complete information of the displacement field of

the body is at hand. The Full-field Measurement (FFM) methods were developed in the last

decades for this case. In these methods the displacements of all the nodes in a given mesh

are assumed known. Since the development of new image processing techniques and the

availability of equipments at accessible prices, the use of FFM-based methods has increased.

Avril et. al [3] present an extensive overview of FFM methods. These methods have been

applied to the characterization of several materials, such as alloy plates [3], PVC plates [37],

and even Biomechanics applications [2,23]. In this article we will focus on the development

of numerical methods based on FFM data.

Our goal is to propose new formulations capable to obtain an important reduction of

the time required by the MIP resolution without losing precision in the solution. In order

to achieve this goal, the formulations should admit the use of known efficient optimization

algorithms, and the application of effective regularization techniques.

Unidimensional example

In order to look for efficient formulations we start with a simple question: What norms are

the most appropriate for the problem formulated in Equation (1)? A simple unidimensional

example is considered here to illustrate the importance of using a convenient formulation of

the MIP.

Let us consider a bar with length ℓ and constant cross-sectional area A. The left section

of the bar is fixed and a load P = 1 N is applied on the right section. The direct elasticity

problem is solved numerically using a discretization of nE = 20 finite elements with equal

size and with a known Young modulus Ei at each element i. In this case, given the nodal

displacements, the MIP consists of obtaining the Young modulus at each element. The ref-

erence displacements Ur are computed as the solution of the direct problem using the Young

modulus distribution Er, which is given by: E = 1 Pa for the first 10 elements and E = 2 Pa

for the following 10 elements (from left to right).

The inverse problem is formulated as the following optimization problem:

min
E∈RnE

∥U(E)−Um∥2 +αR(E) (2)
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where Um are the measured displacements (which can differ from Ur due to the presence of

errors), R(E) is a regularization term and α is the regularization parameter that determines

the weight of the regularization term in the cost functional. We also consider that each Young

modulus Ei belongs to the known interval IE = [0.5,2.5].

Let us start with a reformulation of Problem (2) in the following equivalent way:

(FU)


min
E,U

∥U−Um∥2 +αR(E)

s.t.

K(E)U = F
E ∈ InE

E U ∈ RnU

(3)

where K and F are the stiffness matrix and external load vector, respectively, obtained

through the application of the finite element discretization, and nU is the number of de-

grees of freedom (in this example nE = nU = 20). An alternative formulation is given by the

following expression:

(FR)


min
E,R

∥R∥2 +αR(E)

s.t.

K(E)Um = F+R
E ∈ InE

E R ∈ RnU

(4)

where R is a residual load vector introduced to eliminate the U variable. In both formulations

∥ ·∥ represents a norm in RnU . In this example we will see the advantages and disadvantages

of each formulation when the euclidean norm is considered, comments will be made about

the use of other norms in the following section.

The formulation FU is equivalent to the one given by Equation (2), and using the eu-

clidean norm it is one of the most used formulations of the literature. Note that the equality

constraints of FU are nonlinear and define a nonconvex feasible set. Hence, in spite of the

simplicity of the formulation, general algorithms for nonlinear optimization problems must

be used to solve it, and the solution found could be a local minimum, i.e. a bad-quality

solution far away from the global minimum.

The formulation FR has a convex quadratic cost functional (for euclidean norm) and

its constraints are linear, thus the optimization problem is a convex quadratic programming

problem. For these problems there exist very efficient algorithms for obtaining a global

minimum [8].

Let us compare the solutions of FU and FR when data with error (Um) is used. The

displacements Um are computed as the solution of the direct problem using a Young modulus

distribution Em, different from Er. Em is given by: E = 1 Pa for the first 10 elements, E =

3 Pa for the 11-th element and E = 2 Pa for the following 9 elements. This distribution has a

50% error in the 11-th element, therefore errors are introduced in U. For both formulations

the euclidean norm was used. When the optimization problem is solved without considering
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the regularization term (α = 0), we obtain the results presented in Figure 1(a). The figure
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(a) results obtained without regulariza-
tion
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(b) results obtained with regularization

Fig. 1 Results unidimensional example.

shows that the constraint E11 ≤ 2.5 Pa becomes active at the solution, and that the values

obtained for E in the elements around the 11-th element present a considerable error. The

effect of the active constraint is much more negative for the formulation FR.

Let us consider now a regularization term given by the Total Variation cost functional

(TV) that will be discussed later (see Equation (39)). To choose an appropriate regularization

parameter α , the Morozov criterion is applied in a similar fashion as in [23]. The values

obtained are α = 0.018 for the FU formulation and α = 0.044 for the FR formulation, and

in both cases the respective Morozov parameter is M(α) = 0.99. The Morozov parameter

will be introduced in Section 2.4.

The results obtained are presented in Figure 1(b), where we can see the effect of the

regularization term in the solution. The solution of FU is highly improved, providing for

a correct identification of the reference E. However, the regularization does not produce a

similar effect in the solution of FR. The solution for the best value of α has almost the same

error in E11. A larger value of α can decrease the value of E11, but decreases also the values

of E in the elements 12 to 20, producing an increase of the global error of the solution.

In short, there are three main aspects that can be used to compare formulations FU and

FR: convexity, computational cost, and applicability of regularization. The formulation FR

is convex, so that it cannot present non-global local minima, which represents an important

advantage over FU. Another important advantage of FR is that it admits the use of specific

very efficient optimization algorithms, whereas FU requires the use of algorithms for general

nonlinear optimization problems. The last aspect presents a critical disadvantage of FR. The

results obtained show that the TV regularization cannot be successfully applied to the FR

formulation, so that the FR, in its actual form, cannot be reliably used to solve the MIP.
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In the comparison presented above the euclidean norm was considered in the objective

functional of both formulations. This means the objective functionals were defined after dis-

cretization, so that their values can strongly depend on the particular mesh used, as well as

the solution of the optimization problem. To avoid a strong mesh dependence, the identifi-

cation formulation should be stated instead in the continuous setting. In the search for new

appropriate formulations of the MIP we will try to get the following features:

– convexity: the optimization problem should be ideally convex,

– continuum formulation: the formulation should be established before the domain dis-

cretization to avoid a strong mesh dependence of the solution,

– efficiency: the solution should be obtained efficiently. Then, known efficient algorithm

of solution for large scale problems should be available,

– regularization: the formulation should admit a regularization technique to reduce the

effect of the error in the data over the solution.

In the following section new formulations satisfying the above requirements are pre-

sented. In Section 3 numerical results are presented showing the efficiency of the proposed

formulations and conclusions are presented in Section 4.

2 Formulations of the material identification problem

In this section we describe several known formulations of the MIP and also introduce new

formulations taking into consideration the desired features listed above. The formulations

are stated for the two-dimensional case, but admit straightforward generalizations for three-

dimensional problems. We start by describing the Linear Elasticity Problem (LEP), which

will be our direct problem. Then the MIP formulations are presented as optimization prob-

lems in a continuous domain with their respective discrete versions.

2.1 Linear Elasticity Problem: direct problem

Let us consider a linear elastic solid occupying the region Ω with boundary ∂Ω . The bound-

ary is a disjoint union of Γt and Γu, i.e. ∂Ω = Γu ∪Γt and Γu ∩Γt = /0. In Γt the surface loads

are given by the known vector field t̂, whilst in Γu the displacements are given by û. A plane

strain state is assumed, with zero external volume loads.

2.1.1 Strong formulation

In the strong formulation of the LEP, the symmetric Cauchy stress tensor σσσ must satisfy

the equilibrium equations given by Equation (5a) and the boundary conditions given by

Equation (5d). The solid is formed by a linear elastic heterogeneous material, therefore the
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strain-stress relation is given by the known fourth-order tensor field C and the constitutive

equation (5b), where εεε is the infinitesimal strain tensor. The tensor εεε must also satisfy the

strain-displacement relation given by Equation (5c) and u must satisfy the boundary con-

ditions given by Equation (5e). These equations define the LEP in its strong form, which

consists of finding the displacements field u : Ω →V 2, the stress field σσσ : Ω → Sym and the

strain field εεε : Ω → Sym, that satisfy:



∇ ·σσσ = 0 in Ω

σσσ = C[εεε] in Ω

εεε =
∇u+∇Tu

2
in Ω

σσσ [n] = t̂ on Γt

u = û on Γu,

(5a)

(5b)

(5c)

(5d)

(5e)

where V 2 is the space of two-dimensional vectors and Sym is the space of second-order

symmetric tensors.

2.1.2 Weak formulation

The LEP can also be formulated in its weak form. Considering all the hypothesis of the last

section for the solid Ω , the weak formulation consists of finding u ∈ U satisfying:

aC(u,v) = ℓ(v) ∀v ∈ V (6)

where the bilinear operator aC(u,v), given by:

aC(u,v) =
∫

Ω

C[εεε(u)] : εεε(v)dV (u,v) ∈ U ×V , (7)

represents the internal virtual work, whilst ℓ(v) is the external virtual work:

ℓ(v) =
∫

Γt
v · t̂dΓ v ∈ V . (8)

U is the set of the kinematically admissible displacements:

U =
{

u ∈ H1(Ω)2 : u = û on Γu
}
, (9)

and V is the set of the virtual displacements:

V =
{

v ∈ H1(Ω)2 : v = 000 on Γu
}
. (10)
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2.2 Material Identification Problem: continuum formulations

Let us consider now that instead of knowing the field of material properties C, we know

the displacement field of the solid. This displacement field is measured at each point of the

solid and denoted as um. Then the general MIP consists of determining the field C∈C which

characterizes the material that forms the solid, where C is the set of constitutive tensor fields,

defined as in [21]:

C =
{
C ∈ (L∞(Ω))3×3;C= CT,C[εεε] : εεε ≥ γ|εεε|2

γ > 0 ∀εεε, C[εεε] : εεε
′ ≤ ξ |εεε||εεε ′| ξ > 0 ∀(εεε,εεε ′)

}
, (11)

where L∞(Ω) is the space of real measurable bounded functions in Ω .

The characterization problem in the continuum can be written as an optimization prob-

lem in the following manner

min
C∈C

J (u(C)−um) (12)

where u(C) is the solution of the direct problem of Equation (6) for the field C.

As it was seen in the unidimensional example, the quality of the MIP solution obtained

depends on the formulation used. In the following section we will describe two of the most

used formulations at the moment as well as introduce new proposals. We will show that

the new proposed formulations have the recommended features listed in the introduction,

producing results with high computational efficiency.

2.2.1 Quadratic Error in displacements

One of the most used formulations is the one we call quadratic error in displacements. This is

a widely used formulation defined in the continuum [22,23,5] or in the discretized domain

as in the formulation FU [16,11,18]. Let us consider the error defined in the continuous

domain as:

J2(C) =
1
2
∥u(C)−um∥2

L2(Ω)2 (13)

where ∥ · ∥L2(Ω)2 is the norm given by

∥u∥L2(Ω)2 =

√∫
Ω

|u|2 dV . (14)

2.2.2 Error in Constitutive Equation

In [28] Ladeveze and Leguillon presented a procedure for efficient refinement of FEM

meshes using a functional based on a quadratic error in the constitutive law. After that,

similar functionals where proposed and used to obtain new MIP formulations, producing
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a new class of functionals called Error in Constitutive Equation (ECE). One of the most

remarkable functionals is the one called Constitutive Equation Gap (CEG), given by:

Ẽ (w,σσσ ,C) =
1
2

∫
Ω

(σσσ −C[εεε(w)]) : C−1 [σσσ −C[εεε(w)]] dV. (15)

being w ∈ U a kinematically admissible displacement field, σσσ ∈ Σ a statically admissible

stress field and C ∈ C the constitutive tensor field.

In order to use this functional to solve the MIP, the measured displacement information

um must be taken into account. One of the ways to do that is to impose w = um. This

variant is called Constitutive Equation Gap Method (CEGM) [17,36], and consists basically

of solving the following optimization problem:

min
C∈C

JCEG(C) JCEG(C) = min
σσσ∈Σ

E (σσσ ,C), (16)

where the functional E is obtained by substitution in the definition of Ẽ :

E (σσσ ,C) =
1
2

∫
Ω

(σσσ −C[εεε(um)]) : C−1 [σσσ −C[εεε(um)]] dV (17)

and Σ is the set of statically admissible Cauchy stress tensor fields. In our case this is equiv-

alent to:

Σ =
{

σσσ ∈ Hdiv(Ω) : ∇ ·σσσ = 0 in Ω , σσσ [n] = t̂ on Γt

}
, (18)

where Hdiv(Ω) is:

Hdiv(Ω) = {σσσ ∈ (L2(Ω))4 : σσσ = σσσ
T, ∇ ·σσσ ∈ (L2(Ω))2}. (19)

In accordance with the results described in [3] it can be said that this is one of the

most appropriate functionals for the MIP resolution by the moment. In the last years other

variants of methods inspired in the CEGM have been presented, as in [43], however there

are still aspects to improve. The functional E presents important properties for the MIP

resolution such as convexity [21], however, we have not seen in the literature formulations

of the problem where efficient convex optimization algorithms [8] were applied. That is why

in this article we present formulations for addressing this issue.

The resolution of Problem (16) is equivalent to solve the following problem:

min
(σσσ ,C)∈Σ×C

E (σσσ ,C). (20)

One of the challenges of these kind of methods is the construction of the set Σ , particularly

when high-order finite elements are used. Using the virtual work principle we can rewrite
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the problem as: 

min
σσσ ,C

E (σσσ ,C)

s.t. ∫
Ω

σσσ : εεε(v)dV = l(v) ∀v ∈ V

C ∈ C σσσ ∈ Hdiv(Ω)

(21)

This form of the problem allow us to introduce a modification which will be presented in

the following section.

2.2.3 Quadratic Error in Constitutive Equation

Now let us present a new formulation that can be solved using efficient algorithms as it was

done using the formulation FR, maintaining some of the good features of the CEGM. This

formulation was not seen by the authors during the research of the literature.

Let us consider the problem where the functional is given by Equation (17) and let us

consider C−1 as a known tensor field (C(k))−1. We obtain the modified functional:

E
(k)
q (σσσ ,C) =

1
2

∫
Ω

(σσσ −C[εεε(um)]) :
(
C(k)

)−1
[σσσ −C[εεε(um)]] dV. (22)

Now let us apply the change of variables s = σσσ −C[εεε(um)] ∈ S . Rewriting the problem of

Equation (21) we obtain:

min
C,s

1
2

∫
Ω

s :
(
C(k)

)−1
[s]dV

s.t. ∫
Ω

C [εεε(um)] : εεε(v)dV +
∫

Ω

s : εεε(v)dV = l(v) ∀v ∈ V

C ∈ C s ∈ S

(23)

The formulation above is an optimization problem with a convex quadratic objective

functional and linear constraints, i.e. a convex quadratic programming problem. This en-

ables to use efficient algorithms for convex quadratic programming as in the case of the

formulation FR. Comments about its relation with formulations FU and FR will be made

later. It will be shown that this formulation provides solutions which are similar to those

given by the other formulations described.

2.3 Material Identification Problem: discrete formulations

From now on we establish an hypothesis about the constitutive model assumed for the solid.

We will assume that the material is isotropic and that the Poisson ratio ν is known, therefore

the constitutive tensor field can be written as C(x) = E(x)C1 for any point x ∈ Ω , being

C1 the constitutive tensor corresponding to a material with unitary Young modulus. The
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inverse problem now consists of finding the Young modulus scalar field E : Ω → R+. This

hypothesis is valid in many MIP applications, and was applied in recent numerical studies

of mechanical properties characterization in carotid arteries [18,19].

In order to obtain numerical solutions of the optimization problems it is necessary to

apply a discretization procedure to define unknowns in a finite-dimensional space. We will

apply the FEM and discretize the domain using nE triangular elements with linear interpo-

lation functions. The Young modulus is approximated by a constant function within each

element, thus the Young scalar function E is defined by a vector E with nE entries. Ad-

missible intervals are considered for the Young modulus values as in [11], which define the

following entry-by-entry inequalities Emin ≤ E ≤ Emax.

The FEM equation for the LEP is:

K(E)U = F (24)

where K(E) is the stiffness matrix of the structure, F is the vector of external equivalent

nodal loads and U is the vector of nodal displacements. From now on U(E) will denote the

(unique) solution of the linear system of Equation (24) for the mechanical properties E. The

stiffness matrix depends linearly on E by:

K(E) =
nE

∑
i=1

EiKi (25)

where Ki is the stiffness matrix of the i-th element for unitary Young modulus. For ease of

notation the element matrices are in their extended form, i.e., Ki is obtained by assembling

the usual element matrix in a larger null matrix.

2.3.1 Formulation NPQED

Applying the FEM to the functional of Equation (13) the following formulation is obtained:

(NPQED)


min

E

1
2
∥U(E)−Um∥2

Mu

s.t.

Emin ≤ E ≤ Emax

(26)

where Mu is a positive definite symmetric matrix, Um is the vector of measured nodal dis-

placements and the norm ∥ · ∥Mu is defined as:

∥U∥Mu =
√

UTMuU U ∈ RnU . (27)

Since U(E) is a nonlinear nonconvex function of E, the objective functional is non-

linear as well, thus a general algorithm for nonlinear nonconvex optimization (nonlinear

programming) problems must be used. That is why this formulation will be called Nonlin-
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ear Programming Quadratic Error in Displacement (NPQED). The gradient of the functional

can be easily calculated, therefore gradient-based algorithms should be used and eventually

the Hessian matrix can be calculated for convergence improvement. However, this formu-

lation does not fully exploit the sparse structure of K(E) so that the time needed for the

identification procedure tends to be high and depends strongly on the initial point used.

Note that NPQED would be obtained if the norm ∥·∥Mu is considered in the formulation

FU or if the norm ∥ · ∥K(E)−1MuK(E)−1 is used in the formulation FR, although the positive

features of FR are lost.

2.3.2 Formulation NPCEG

Let us consider the formulation CEGM given by Equation (21). In order to eliminate the

stress tensor as a variable we apply a procedure suggested in [36] which consists of assuming

that the stress field σσσ derives from a certain displacement field w, i.e. σσσ = C[εεε(w)]. By

applying the FEM discretization we obtain:

min
E,W

1
2
∥W−Um∥2

K(E)

s.t.

K(E)W = F
Emin ≤ E ≤ Emax

W ∈ RnU

(28)

Finally we can use the constraint to eliminate the variable W to obtain:

(NPCEG)


min

E

1
2
∥U(E)−Um∥2

K(E)

s.t.

Emin ≤ E ≤ Emax

(29)

As in the formulation NPQED, a general nonlinear programming algorithm must be

applied to solve this formulation and that is why this formulation is called Nonlinear Pro-

gramming Constitutive Equation Gap (NPCEG). Although the functional is nonlinear, it is

convex, hence each local minimum is a global solutions of the optimization problem. This

property is very important, particularly when gradient-based algorithms are used, as it is

done in many articles in the literature [17,18,19]. This formulation will be solved using a

gradient-based algorithm.

It is seen that NPCEG would be obtained if the norm ∥ ·∥K(E) is used in the formulation

FU, or if the norm ∥·∥K(E)−1 is used in the formulation FR. Once again, the positive features

of FR are lost.
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2.3.3 Formulation CPCEG

In this section we introduce a new formulation that presents strong advantages in computa-

tional efficiency compared to the ones described above. The formulation consists of a Conic

Programming problem and it was not seen by the authors in the literature.

Let us consider the functional of the formulation NPCEG. Using that K(E)U(E) = F
with K(E) symmetric, we have

1
2
∥U(E)−Um∥2

K(E) =
1
2

FTK−1(E)F− (Um)TF+
1
2
(Um)TK(E)Um. (30)

Since (Um)TF does not depend on E, the NPCEG can be expressed as:
min

E
1
2 (U

m)TK(E)Um + 1
2 FTK−1(E)F

s.t.

Emin ≤ E ≤ Emax

(31)

The problem above can be expressed equivalently as:

min
E,τU ,τF

1
2 τU + 1

2 τF

s.t.

(Um)T K(E)Um ≤ τU

FT K(E)−1 F ≤ τF

Emin ≤ E ≤ Emax

(32)

The stiffness matrix can be written in the following way:

K(E) =
nE

∑
i=1

Ei BT
i C1Bi Ωi t =

nE

∑
i=1

Ei B̃T
i B̃i (33)

where Bi is the matrix of interpolation function derivatives of the i-th element in its extended

form, and B̃T
i =

√
Ωit BT

i C
1
2
1 , t is the thickness of the solid and Ωi is the area of the i-th

element. Using the procedure described in [7] the nonlinear constraint FT K(E)−1 F ≤ τF is

replaced by a set of linear constraints and a set of second-order cone constraints. The final

formulation has the following expression:

(CPCEG)



min
E,τU ,τF ,e,σ̃σσ

1
2 τU + 1

2 τF

s.t.

(Um)T K(E)Um ≤ τU

∑
nE
i=1 ei ≤ τF

∑
nE
i=1 B̃T

i σ̃σσ i = F
∥σ̃σσ i∥2 ≤ Ei ei i = 1, . . . ,nE

Emin ≤ E ≤ Emax

(34)
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where e = (e1, . . . ,enE ) ∈ RnE and σ̃σσ i ∈ R3nE with (i = 1, . . . ,nE) are auxiliary variables.

At the solution, the vector σ̃σσ i is directly related with the statically admissible stress, i.e.,

σσσ =
√

Ω tC
1
2
1 σ̃σσ . The vectors are presented in the extended form. The tensor field σσσ is the

stress obtained when the LEP is solved using the solution mechanical parameters. Let us

remark that this formulation can also be obtained from Equation (21).

The formulation obtained is a second-order cone programming problem. We will call

this formulation Conic Programming Constitutive Equation Gap (CPCEG). There exist effi-

cient algorithms for the resolution of this kind of problems [8]. Moreover, since the obtained

formulation is equivalent to the NPCEG, it inherits the listed positive theoretical properties.

2.3.4 Formulation QPCEG

In this section we apply the discretization to the formulation given by Equation (23). The

tensor field s leads to an internal auxiliary stress vector S ∈ R3nE , and Si is a vector with

the respective entries of the i-th element. The following equality is obtained for isotropic

material with constant Poisson ratio:

1
2

∫
Ω

s : (C(k))−1[s]dV =
nE

∑
i=1

1

E(k)
i

(Si)
TC−1

1 (Si)Ωi t. (35)

To simplify the notation, let us define the matrix M(k)

M(k) =


M(k)

1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 M(k)
nE

 M(k)
i =

tΩi

E(k)
i

C−1
1 (36)

Using these expressions and applying the discretization to Equation (23) we obtain:

(QPCEG)



min
E,S

1
2 ST M(k) S

s.t.

K(E)Um +BTS = F
Emin ≤ E ≤ Emax

E ∈ RnE , S ∈ R3nE

(37)

where B is the assemble matrix of the derivatives of the interpolation functions BT =[
BT

1 . . .B
T
nE

]
.

The optimization problem has a convex quadratic objective functional, nU linear con-

straints, 2nE box constraints and 4nE variables, thus it is a convex quadratic programming

optimization problem, and we call the formulation Quadratic Programming Constitutive

Equation Gap (QPCEG). This enables us to use efficient quadratic programming algorithms,
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as in the formulation FR, maintaining the convexity feature. It will be seen that this formu-

lation is appropriate for the application of regularization techniques.

2.4 Regularization term

Since experimental measurements always have error, every identification formulation needs

the application of certain regularization technique. The application of regularization tech-

niques reduces the numerical instability of the solution of an ill-posed problem. In order to

use these techniques some information or assumption about the real material distribution

must be considered. One of the most used approaches, specially when optimization formu-

lations are used, is the addition of a regularization term to the objective functional [40]:

Fα(E) = J (E)+α R(E) (38)

where R(E) is the regularization term, which depends on the unknown field, and α is a

regularization factor that controls how much the solution is regularized.

In the MIP formulations considered in this article the Total Variation (TV) regularization

will be considered:

R(E) = ∥∇E∥L1(Ω)2 =
∫

Ω

|∇E|dΩ . (39)

This functional penalizes distributions presenting high gradients in Ω , such as highly oscil-

lating distributions. However, this functional does not penalizes excessively high gradients

concentrated in sets of zero measure, such as surfaces or curves. Therefore the TV is consid-

ered appropriate when the solutions are expected to be piecewise smooth distributions [40].

One important disadvantage of the TV is that it is a non-differentiable function of E.

This feature may impede the use of gradient-based optimization algorithms. To avoid this

issue, in [40] Vogel recommends the use of the modified term ∥
√
|∇E|2 +β 2∥L1(Ω) instead

of R, where β is a real parameter. The requirement of an additional parameter β , which

requires an effective tuning strategy, represents a disadvantage of the methodology, however

it can be applied as in [22,23]. In this paper an equivalent differentiable form the discrete

version of the optimization problem is used, hence the original TV is used and the parameter

β is not needed.

If the finite element mesh contains nseg interior segments, where each one separates two

elements, it can be easily shown that the TV of Equation (39), can be computed as:

R(E) =
nseg

∑
m=1

|PmE|= ∥PE∥1 (40)
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where P is a nseg × nE matrix having Pm as its m-th row. If the segment m separates the

elements p and q, with p < q, the matrix P is given by:

Pm j =


ℓm if j = p

−ℓm if j = q

0 if j ̸= q and j ̸= p

(41)

where ℓm is the length of the segment m.

This regularization term is nonlinear and non-differentiable thus the following equiva-

lence is considered:

∥PE∥1 ≡



min
Z

1T
nseg Z

s.t.

PE−Z ≤ 0

−PE−Z ≤ 0

Z ∈ Rnseg

(42)

where 111T
nseg =(1, . . . ,1)∈Rnseg . Using the expression presented above, an optimization prob-

lem defined by differentiable functions is obtained.

2.4.1 Regularization factor analysis

One of the most important aspects of the regularization technique is the selection of the

regularization factor α . In this article the Morozov criterion is considered for the selection

of α [40], as it is done in some examples of the literature [22]. In this methodology it is

established that α should be the largest value such that M(α) ≤ Mob j, where M(α) is the

Morozov coefficient defined as:

M(α) =
∥u∗

α −um∥L2(Ω)2

δe
, (43)

where δe is an estimated error level and u∗
α is the displacement field obtained using the

solution of the MIP with the regularization factor α . In real life problems the error level

δe should be defined taking into account the precision of the instruments, the error level

introduced by the image processing methods used to obtain um, etc. In the examples solved

in this article we set

δe = β ∥ur −um∥L2(Ω)2 . (44)

For the automatic selection of α the bisection method in a logarithmic scale was applied.

The target Morozov parameter Mob j = 0.95 should be reached within the tolerance 0.05.

Note that the bisection method implies an iteration where each step requires the complete

solution of one optimization problem.
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3 Numerical Results

In order to compare the performance of the described formulations, in this section we solve

four numerical examples. The problems are similar to the most used in the recent material

identification literature. In all the numerical examples solved, errors are introduced in the

data in order to avoid committing an inverse crime [24].

About the software used To solve the optimization problems of the formulations NPQED

and NPCEG the MATLAB fmincon function is used with the following options: Algorithm:

interior-point, TolFun: 10−9 , TolX: 10−9. Function derivatives provided to fmincon are

computed by evaluating the analytical expressions. The second order cone programming

problem CPCEG is solved using Sedumi v1.30 [39] in MATLAB. The formulation QPCEG

is solved using the MATLAB function quadprog. For the elasticity problem a FEM code

implemented by the first author was used, using GMSH as mesh generator [20] and Paraview

for the visualization [4]. All the examples were solved using an Intel Core i7, 8 GB RAM

computer. The optimization algorithms always succeeded to obtain a solution satisfying the

stopping criteria, unless otherwise indicated.

Error measurements To measure the error of the obtained solutions in each example we use

different norms of the relative error ∆E and the norms L1(Ω) and L2(Ω) as follows:

δELp =
∥∆E∥Lp(Ω)

∥1∥Lp(Ω)

p = 1,2 ∆E =
|E∗−Er|

Er (45)

where Er is the reference or solution Young modulus field and E∗ is the Young modulus

obtained using the identification method. We will also use the sup norm as follows:

δE∞ =
∥∆E∥L∞(Ω)

∥1∥L∞(Ω)

= sup
x∈Ω

∆E . (46)

3.1 Example 1

The aim of this example is to obtain a first performance comparison of the formulations

described. This is done through the resolution of a reference problem widely used in the

literature [17,31,34]. In particular we are interested in the numerical confirmation of the

equivalence between the formulations CPCEG and NPCEG, and the evaluation of the effec-

tiveness of the TV-based regularization technique with the proposed formulations.

The problem consists of a solid occupying a square region with side ℓ = 0.01 m and

unitary thickness, formed by a linear elastic material and submitted to a plane strain state.

The Poisson ratio is ν = 0.3 and the Young modulus is defined in two regions as it is seen

in Figure 2, with the reference values Er
1 = 1 MPa and Er

2 = 2 MPa. The applied load is
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q

0.4ℓ0.3ℓ 0.3ℓ

0.
3ℓ

0.
3ℓ

0.
4ℓ

E2

E1

Fig. 2 Example 1 geometry, boundary conditions and mesh with 200 elements.

q= 1 MPa. In the articles cited, this example is used to perform identification of Poisson and

Young parameters, but no regularization is applied. In this case we will identify the Young

modulus only and apply the described regularization technique to reduce the effect of the

data error over the solution obtained.

In order to emulate the experimentally measured displacements error is added to the

reference displacements as it is done in numerous articles in the literature. In this example

two different sets of synthetic data will be used, considering two different sources of error:

random error in the reference Young modulus and error produced by interpolation of the

displacements between different meshes. A justification for the mesh interpolation error is

presented later.

Since one of the goals is to compare the formulations NPQED and NPCEG, the same

stopping criterion parameters shall be used. In both formulations the functional is scaled

using the norm of the functional gradient at the initial point. The initial point is the uniform

distribution E(x) = 1.5 MPa. The identification for α(k+1) is done using as initial point

the Young modulus values obtained as solution using α(k). For the formulation CPCEG

no initial point is provided (the algorithm does not require it) and the options used for the

Sedumi are pars.eps=0 and pars.bigeps=10−30. The formulation QPCEG is solved with

the quadprog MATLAB function. It does not require an initial point, but the uniform value

E(x) = 1.5 MPa was used as E(k) in the functional of Equation (37). In the case of the

formulation QPCEG the E∗ obtained for each α value is used as E(k) for the identification

using the next α defined by the strategy used for the α selection. For the initialization of

the bisection process it is considered the initial interval [αle f t ,αright ] with αle f t = 10−40 and

αright = 105.
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3.1.1 Results for random error in E

In this case the error is obtained by introducing random error in the reference Young modu-

lus, this methodology is similar to the procedure applied in [10].

The reference Young modulus and the structured mesh of 200 linear triangular elements

shown in Figure 2 are used to solve the direct problem and to generate the reference dis-

placements Ur. The reference displacements are shown in Figure 3. Then, errors are added

Fig. 3 Example 1 reference displacements, scale factor 0.3.

to the reference material parameters Er obtaining noisy parameters Em, which are used to

calculate the measured displacements Um by solving the direct problem with the same mesh

of 200 elements.

The Young reference value of each element Er
i is modified adding a normal distributed

random value dEi as follows:

Em
i = Er

i (1+dEi) i = 1, . . . ,nE (47)

where the standard deviation is set such that the introduced error level ηE is independent of

the mesh. The E error level ηE is defined as follows:

ηE =
∥dE∥L1(Ω)

∥1∥L1(Ω)
=

∥∥∥ |Em−Er |
Er

∥∥∥
L1(Ω)

|Ω |
, (48)

where |Ω | represents the area of the domain Ω .

If all the elements have approximately the same area, then the quantity dEi |Ωi| can be

considered as a normal distributed random variable X ∼ N (0,σ2
E). Substituting this in the

definition of ηE and using the properties of the expected value, it can be shown that the
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standard deviation should be

σE = ηE

√
π

2
|Ω |
nE

, (49)

in order to obtain a Young modulus distribution with error level ηE .

The displacements Um are obtained solving the direct problem using the material pa-

rameters Em. Three levels of error are considered: ηE = 0.01, 0.05 and 0.1.

To select the regularization parameter α , the procedure described in the Section 2.4.1 is

applied for all the formulations using β = 1 in Equation (44). Table 1 presents the results

obtained for the different error levels ηE . In the table CPCEGNR means CPCEG without

Form ηE = 0.01 ηE = 0.05 ηE = 0.1
δEL1 δE∞ time (s) δEL1 δE∞ time (s) δEL1 δE∞ time (s)

NPQED 1.096 19.544 23252.9 3.753 39.662 19992.7 6.373 37.996 18643.0
NPCEG 0.510 5.139 15067.0 2.485 14.556 14676.6 4.737 27.488 12740.0
CPCEG 0.510 5.096 29.4 2.485 14.501 27.4 4.737 27.486 24.4
QPCEG 0.525 6.120 7.6 2.321 15.920 8.2 4.511 29.913 7.7
CPCEGNR 1.344 5.906 2.7 4.530 16.959 2.8 10.289 48.388 2.7

Table 1 Example 1 results for synthetic data obtained applying error in E.

regularization (α = 0) and ‘time’ means the total time required to obtain the final solution.

The first important observation is that the results obtained by the formulations NPCEG

and CPCEG are almost identical in the error, confirming that these formulations are equiv-

alent. However the CPCEG requires nearly 500 times less time than NPCEG, which repre-

sents an important advantage. It can also be seen that the formulation NPQED requires a

time 40% higher than that of NPCEG, obtaining a slightly higher error in E. Finally we see

that the formulation QPCEG provides, in this case, results which are comparable to those

given by NPCEG and CPCEG. Moreover, the time required by QPCEG is a third of the time

needed by the formulation CPCEG.

3.1.2 Results for interpolation error in U

In this case the data with error is obtained through the interpolation between different

meshes. This kind of error can be present in real life problems when the data displace-

ments are measured in a set of points different to the nodes of the FEM mesh used for the

resolution of the inverse problem as in [18].

The reference displacements are generated using the reference Young modulus and the

structured mesh with 20000 elements. After that, those displacements are interpolated to the

mesh with 200 elements used in the previous section. This interpolation introduces an error
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level ηu = 1.77%, where the error level is given by:

ηu =
∥um −ur∥L2(Ω)2

∥ur∥L2(Ω)2
. (50)

The error levels ηu obtained in the previous section were ηU = 0.27%, 0.94% and 2.4%

which correspond to ηE = 0.01, 0.05 and 0.1 respectively. However it is important to remark

that this error has a different nature. Given Um with interpolation error, it may not exist any

field E solving exactly the inverse problem.

In Table 2 we see the error of the solutions obtained as well as the times required for the

identifications. In the table ‘time’ means the total time required to obtain the final solution,

Form δEL1 δE∞ α M(α) time(s) its time/its (s)
NPQED 5.613 40.59 2.690 0.957 24115 7 3445
NPCEG 0.747 3.811 20.35 0.962 15622 8 1953
CPCEG 0.747 3.811 20.35 0.962 21 8 2.7
QPCEG 0.559 3.386 4.5×10−12 0.916 7 8 0.9
CPCEGNR 39.32 110.4 0 - 2.8 1 2.8

Table 2 Example 1 results for synthetic data obtained applying error in U.

‘its’ represents the number of iterations required by the bisection method, hence the value

‘time/its’ indicates the average time required by each formulation to perform the identifica-

tion for a given value of α . The values α and M(α) correspond to the last iteration of the

bisection method.

We note that the formulation NPQED requires a time considerably higher than the other

formulations, and provides a solution with a higher error. The formulation NPCEG achieves

a solution with lower error in less time that NPQED, and this will be our reference formu-

lation. The formulation CPCEG provides results which are identical to that of NPCEG in

nearly 1000 times less time. The formulation QPCEG obtained a solution with lower error

than the other formulations in one third of the time required by CPCEG.

To see the results graphically we present plots of mechanical properties (blue color scale)

and relative error maps (red-yellow color scale). In Figure 4 we start with the mechanical

properties and relative error plots obtained when the identification is performed without

regularization (CPCEGNR) using the data with error in U.

The plots presented in Figure 5 represent the mechanical properties obtained when the

four formulations are applied using data with error introduced in U. In Figure 6 the plots of

the respective Young modulus relative error can be seen.

Looking at the results obtained for the formulations NPCEG and CPCEG we confirm

what was expected: both formulations are equivalent, and that is why they provide almost
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(a) Properties CPCEGNR (b) Errors CPCEGNR

Fig. 4 Example 1 results obtained without regularization for synthetic data obtained applying error in U.

(a) NPQED (b) NPCEG

(c) CPCEG (d) QPCEG

Fig. 5 Example 1 Young modulus results for synthetic data obtained applying error in U.

identical Young modulus distributions. However, we see that the formulation CPCEG is

more efficient, since it requires a considerably lower time. This is why we will not use the

formulation NPCEG in the following examples, as well as for the formulation NPQED. We

also note that in this example, the formulation QPCEG presents results as good as those

obtained by the formulation CPCEG, and lower times were required. Analyzing the results

obtained when no regularization is used, we conclude that it is needed to add a regularization

term to improve the quality of the E distributions obtained.
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(a) NPQED (b) NPCEG

(c) CPCEG (d) QPCEG

Fig. 6 Example 1 Young modulus relative errors results for synthetic data obtained applying error in U.

3.2 Example 2

This example is considered to obtain a more complete performance comparison between the

formulations CPCEG and QPCEG. The geometry considered in this case also corresponds

to a problem usually used in the literature [5]. We start by describing the problem, and after

that, we present the results obtained when different kinds of errors are introduced in the data.

The geometry of the problem consists of a square domain with side of length ℓ= 0.1 m

with two circular inclusions with radius 0.0125 m and boundary conditions seen in Figure 7.

The reference Young modulus considered are: Er
1 = 2.5 MPa, Er

2 = 10 MPa and Er
3 = 5 MPa.

The material is assumed linear elastic and isotropic with known uniform Poisson ratio ν =

0.2. A displacement field is generated by solving the direct problem with an applied load

q = 1 Mpa.

3.2.1 Results for random error in E

We start introducing error in the Young modulus in the same fashion as it was done in

Section 3.1.1, using ηE = 0.1. As it was done in the previous example, the bound val-

ues for E considered are Emin = 10 Pa and Emax = 109 Pa. The stopping criterion used for

the algorithms are the same as in the previous example. An unstructured mesh with 1078
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0.5ℓ

E1

q

E2

0.25ℓ

0.25ℓ

ℓ

E3

Fig. 7 Example 2 geometry, boundary conditions and mesh with 1552 elements.

triangular elements is used for the generation of the displacements and the identification

procedure. The selection of the α is done automatically using the methodology described in

Section 2.4.1, with αle f t = 10−40 and αright = 105.

In Table 3 we see the results obtained when the formulations CPCEG and QPCEG are

applied. We see that the Young modulus distributions obtained by both formulations present

Form δEL1 δE∞ time(s) its time/its (s)
CPCEG 3.705 23.405 667.5 8 83.4
QPCEG 3.612 23.819 53.0 9 5.9

Table 3 Example 2 results, error in E, ηE = 0.1.

similar errors, while the formulation QPCEG requires less than a tenth of the time needed

by the CPCEG.

Let us see the results graphically, in Figure 8 the Young modulus values obtained are

presented. We can see that both formulations successfully identify the geometry of the in-

clusions, however there exists a notorious error in the Young modulus value in one of the

inclusions. This can be seen more clearly in Figure 9 which shows the relative error plots

obtained with each formulation. In these images we can see that in region 2 both formula-

tions obtain solutions with 23% of relative error, while in region 3, the CPCEG produces

a slightly lower error than the QPCEG. However we conclude that for this example both

formulations allow a correct identification, being the formulation QPCEG remarkably more

efficient than CPCEG.
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(a) CPCEG (b) QPCEG

Fig. 8 Example 2 Young modulus results for synthetic data obtained applying error in E.

(a) CPCEG (b) QPCEG

Fig. 9 Example 2 Young modulus relative errors results for synthetic data obtained applying error in E.

3.2.2 Results for interpolation error in U

In this case it is considered an error included directly in the displacements vector by using

the procedure applied in [5,43]. The results obtained in this work and in the papers cited are

not directly comparable since more than one displacement field is used, thus a different MIP

is solved.

To produce the “measured” displacements the direct problem is solved using the refer-

ence Young modulus and an unstructured mesh with 12312 elements. The nodal displace-

ments obtained are called reference displacements Ur and random error is added as follows:

Um
i =U r

i (1+δU ri) (51)

where ri is the i-th entry of a normal distributed random vector with zero mean and unitary

variance, and δU = 0.01. These nodal displacements are finally interpolated to the mesh

used for the identification, which have a lower number of elements. In this example we will

consider three meshes with 1,078, 1,552 and 3,186 elements, where the final error levels

ηU are: 0.59%,0.58% and 0.57%, respectively. In Figure 10 the interpolated displacements

Um are shown for the mesh with 1552 elements.
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Fig. 10 Example 2 measured displacements, scale factor 0.3.

In Table 4 we see the results obtained after the identification. Once again we see that the

Form nE δEL1 δE∞ α time(s)

CPCEG 1078 5.810 47.215 1.19×10−4 91.3
QPCEG 1078 7.499 47.502 2.15×10−14 7.8
CPCEG 1552 5.805 40.936 1.19×10−4 249.9
QPCEG 1552 8.161 45.972 9.43×10−15 9.6
QPCEG 3186 11.74 68.070 2.03×10−15 23.7

Table 4 Example 2 results, error in U, δU = 0.01.

formulation QPCEG requires less time than CPCEG (10 times less), however in this case

the error obtained by the QPCEG is 30% higher. We also see that as the mesh size increases

the formulation CPCEG slightly reduces the error obtained, which does not occurs for the

formulation QPCEG. The formulation CPCEG requires higher memory resources, and this

is why it could not be applied for the mesh with 3186 elements. The formulation QPCEG is

able to solve this large problem due to the low number of variables and the efficiency of the

quadratic programming algorithms used.

In Figure 11 we see the Young modulus obtained for both formulations using the mesh

with 1552 elements. Both formulations achieve an acceptable identification of the inclu-

sions, however the formulation CPCEG provides results with higher precision.

In Figure 12 we see the relative errors obtained for both formulations using the mesh

with 1552 elements.

The results seen in this example establish a first clear difference between the formula-

tions QPCEG and CPCEG: the formulation CPCEG provides solutions with less error while

QPCEG provides results with acceptable error in less time. Since the formulation CPCEG



Efficient formulations of the material identification problem 27

(a) CPCEG (b) QPCEG

Fig. 11 Example 2 Young modulus results for synthetic data obtained applying error in U with δU = 0.01.

(a) CPCEG (b) QPCEG

Fig. 12 Example 2 error results for synthetic data obtained applying error in U with δU = 0.01.

has shown to provide more precise results, only this formulation will be used in the follow-

ing example.

3.3 Example 3

In Biomechanics applications, the direct problem involves nonlinear models, for instance in

[23] a nonlinear elastic model is considered for identification of the mechanical properties

of mammary tumors.

In this example we study the results obtained when the simulated measures are obtained

considering the non-linearities of finite elasticity. In addition we assume that there is no

information about the internal interfaces, location of inclusions, etc, therefore for the MIP

resolution a structured mesh is used. In particular we study an example where the internal

interfaces cannot be found as element boundaries. In this example, the formulation CPCEG

is applied.

The problem considered consists of a square domain with side of length ℓ = 1 m, with

one circular inclusion of radius 0.25 m and boundary conditions shown in Figure 13. The
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0.5ℓ0.25ℓ 0.25ℓ

0.5ℓ
E2

E1

q

0.25ℓ

0.25ℓ

Fig. 13 Example 3 geometry, boundary conditions and mesh with 1250 elements.

hyperelastic behavior of the material is given by the Curnier model [13], thus the strain-

energy function is

Ψ(L) = λ (J− log(J)−1)+µTr(L2) (52)

where J = det(I+∇u), L = 1
2 (∇u+∇T u+∇T u∇u) is the Lagrange deformation tensor

and λ and µ are positive parameters. It can be seen that λ and µ are the Lamé parameters

of the linearized constitutive model. The reference mechanical parameters are λ = 20/3 Pa

and µ = 4 Pa for the inclusion, while for the rest of the domain the parameters are λ = 2/3

Pa and µ = 0.4 Pa. Then, if small strains are considered, the linearized model has ν = 0.25

and E = 1 Pa for the square, and ν = 0.25 and E = 10 Pa for the inclusion.

The applied load q = 0.12 Pa produces the large deformations in the solid depicted

in Figure 14. The direct problem is solved using an unstructured mesh formed by 2254

triangular elements. In Figure 14 the deformed and undeformed meshes are shown, as well

as the magnitude of the displacement field.

The displacements are interpolated to a regular grid of 26×26 points obtaining the mea-

sured displacements Um. These points of the grid define a structured mesh of 1250 elements

shown in Figure 15. This mesh will be considered for the inverse problem, therefore, the

inclusion interfaces are not represented by boundaries of the finite elements.

The stopping criteria considered for the SeDuMi executions are the same as in the previ-

ous examples. For the bisection process αle f t = 10−10 and αright = 102 are considered, and

β = 1.15 is used.

The result for α = 5.62× 10−4 is shown in Figure 15. The figure shows that the in-

clusion boundary is adequately identified. Moreover, although the measured displacements

correspond to a nonlinear model, the mechanical parameters of the linearized model are

correctly estimated.
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Fig. 14 Example 3 nonlinear behavior.

Fig. 15 Example 3 Young modulus results.

The results shown let us conclude that the proposed methodology allows to identify

important information of the constitutive model even when the solid is submitted to large

deformations. However, a formal extension of the method for identification of mechanical

properties in nonlinear models must be developed in future works.

3.4 Example 4

In this example we solve another problem seen in the literature, where the mechanical prop-

erties and loads considered are in the order of those considered in the modeling of a carotid

artery cross section with a considerable stenosis. The example is inspired in the analysis

presented in [30], however the hypothesis that we will consider are similar to those assumed

in [18].
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The geometry of the problem can be seen in Figure 16, where the domain is divided

in 16 partitions. Two supports are considered so that rigid movements are eliminated and

a uniform internal pressure q = 5 kPa is applied as can be seen in the figure. The finite

1

2

4

14

8

6

16

7
15

5
13

3

11
9

10

12

q

Fig. 16 Example 4 geometry, boundary conditions and mesh formed by 1492 elements with 16 partitions.

element mesh used to solve the inverse problem is formed by 1492 triangular elements.

The considered mechanical properties correspond to three materials associated with ar-

terial wall components. The exterior ring is considered as healthy tissue, or healthy artery

(HA) and its Young modulus value is EHA = 600 kPa, in the figure this region corresponds

to the partitions 1 to 6. Then, in contact with this region we consider diseased tissue (DT)

with a slightly superior Young modulus EDT = 800 kPa, in the region formed by the parti-

tions 9 to 16. Finally we find a lipidic core (LC) where a low Young modulus is considered

ELC = 10 kPa, in the partitions 7 and 8. As it is considered in [18] a plane strain state is as-

sumed. Since the FEM analysis code solves compressible solid problems, the Poisson ratio

used is ν = 0.3 instead of 0.49.

The direct problem is solved using Er and a mesh with 12770 elements and the displace-

ments are interpolated to the mesh with 1492 elements obtaining the reference displacements

Ur. The displacements obtained when the direct problem is solved using the mesh with 1492

elements and the Er Young modulus, present a level of error ηU = 4.52%.

In [18] a variable E is considered for each material region of the wall, this means that

three variables are considered for the identification of the whole domain. In this article we

consider the same three groups considered in the paper cited and also consider 16 element

groups defined by the partitions in Figure 16. Finally we will consider one Young modu-
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lus variable for each element of the mesh. In the first two cases no regularization will be

applied, since the grouping of elements might produce a regularization effect. In a real life

application this grouping of elements might be justified by a previous appropriate image

segmentation, where different structures could be recognized. In the following we present

the results obtained when the identification is performed using each one of these three ele-

ment grouping. The identifications are performed using Sedumi with the same parameters

as in the previous examples.

Identification with three groups Let us consider now that the elements are grouped as fol-

lows: HA includes the elements in the partitions 1 to 6, LC includes the elements in the

partitions 7 and 8, and DT includes the partitions 9 to 16. The identification is performed us-

ing the formulation CPCEG without regularization term, the minimum and maximum Young

modulus values are Emin = 10 Pa and Emax = 109 Pa. One variable E is considered for each

group, it means that three values E will be identified.

In Table 5 the identification results are presented, where the Young modulus obtained are

E∗ and the relative error is calculated as δE = |E∗−Er |
Er . We can see that the error obtained

Region Er (kPa) E∗ (kPa) δE(%)

HA 600 581.66 3.06
LC 10 8.90 11.00
DT 800 764.82 4.40

Table 5 Example 4 results with 3 element groups.

in the values E is acceptable, thus we confirm that the grouping of elements produce a

regularization effect.

Identification with 16 element groups Let us now consider that each one of the partitions

shown in Figure 16 will have one Young modulus variable to identify. Once again the iden-

tification is performed with the same parameters as above.

In Table 6 we see the results obtained for each group of elements. In this case we ob-

tain slightly higher errors than in the previous case. In Figure 17(a) the plots of the Young

modulus obtained after the identification are presented. In Figure 17(b) the plots of the ab-

solute value of the relative error are presented. We see that the partitions with higher error

are the 13 and 14, and in second place we see the 7 and 8. Although errors are present in the

solutions, we remark that the stiffness relations between different partitions is conserved,

providing a reasonable identification.

Identification without groups Finally in this case the identification is performed considering

one Young modulus variable per each element, which means that no grouping is applied. In

this case regularization must be applied.
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Region Er (kPa) E∗ (kPa) δE(%)

1 600 568.41 5.27
2 600 568.39 5.27
3 600 560.06 6.66
4 600 559.96 6.67
5 600 568.65 5.22
6 600 568.63 5.23
7 10 8.42 15.76
8 10 8.42 15.76
9 800 773.22 3.35
10 800 773.34 3.33
11 800 764.63 4.42
12 800 764.63 4.42
13 800 629.80 21.28
14 800 629.89 21.26
15 800 728.04 8.99
16 800 728.00 9.00

Table 6 Example 4 results using 16 elements groups.

(a) Young modulus (b) Relative errors

Fig. 17 Example 4 results for 16 element groups.

In this case the methodology presented does not provide a solution for which the in-

terfaces to the right of the domain can be correctly identified. In order to see if the low

quality of the solution is related to the Morozov criterion, solutions were obtained for α in

a wide range of values. The results obtained show that in this example there is no value α

for which all the material interfaces can be identified. In Figure 18(b) a solution obtained

using a relatively large value α is shown. In this case only the interfaces located to the left

of the domain can be detected. As the value α decreases the solutions become similar to

the material distribution shown in Figure 18(a). The error plots are presented in Figure 19.

It is observed that the solution looses regularity (the field E presents large oscillations) to

the left of the domain. This loss of regularity occurs before the interfaces to the right can be
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identified. Therefore, with the error introduced in the measurements and the regularization

considered, there is no value α such that all the interfaces of the reference solution can be

adequately identified.

(a) Youngs obtained with α = 10−7 (b) Youngs obtained with α = 3.0×10−6

Fig. 18 Example 4 Young modulus results without groups of elements.

(a) Errors for α = 10−7 (b) Errors for α = 3.0×10−6

Fig. 19 Example 4 relative errors results without groups.

Looking at the results we can say that this example represents a challenge for identi-

fication methods with the regularization technique applied. The authors have not seen this

example solved using one variable E per element in the literature.

Execution times In Table 7 we see the times required for each identification grouping scheme.

Since the software and computers used for this article are not the same as those used in [18]

it is not possible to do a direct comparison of the times of execution. However, we can con-

sider as a reference the time required to solve the direct problem (FEM analysis), and look

at the relation with the identification time. In the table tI/tA represents the time required for
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Scheme time (s) tI/tA
analysis 0.56 -
3 groups 26.1 46.6
16 groups 29.7 53.0
no groups 276.1 493.0

Table 7 Example 3 identification times.

identification over the time required for analysis. The direct problem solved in [18] involves

higher complexity due to the constitutive model, the finer mesh and the order of the elements

used. However, the time required for each FEM analysis is similar to the time required by

the code used in this paper, showing that the tools used in this work provide a lower perfor-

mance. Taking this into account we can reinforce the conclusion about the efficiency of the

formulation CPCEG.

4 Conclusions

Two new formulations of the material identification problem using full-field displacement

measurements were presented. The first one, called CPCEG, defines a second order cone

optimization problem, while the second one, called QPCEG, defines a convex quadratic pro-

gramming problem. Thefore, both formulations are based on convex optimization problems

which can be solved using efficient interior-point algorithms. It was shown that the use of

these approaches leads to a considerable reduction in the time of resolution when compared

against other currently used formulations. In addition, it was shown how the TV regulariza-

tion technique can be applied without losing the key features of the proposed formulations.

The Morozov criterion was applied to define a suitable value for the regularization parame-

ter.

The proposed formulation CPCEG is based in the CEGM and, since they are both equiv-

alent, theoretical results support the application of the CPCEG. The QPCEG was obtained as

a modified formulation of the CEGM and although there are no theoretical results support-

ing its use, the numerical results obtained in Example 1 show that this formulation produces

solutions of similar quality to those provided by the CPCEG, requiring even lower execution

times.

It was shown that the formulations CPCEG and QPCEG can obtain solutions for the

MIP appropriate for material identification even when the measurements have random and

interpolation error. Although both formulations are able to solve large problems, the QPCEG

requires less computational resources, therefore if low memory resources are available the

QPCEG might be a good alternative. It is important to remark that a solution with a slightly

higher error was obtained when using QPCEG. In short, the formulation QPCEG showed
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promising results in terms of precision and computational costs. However, theoretical as-

pects of this formulation must be addressed in future studies.

In Example 3 it was shown that the proposed method allows to identify important fea-

tures of the solution even when the solid is submitted to large deformations. An extension

of the method for identification of mechanical properties of nonlinear models must be de-

veloped in future works.

The results obtained for Example 4 show that the geometry and the values of material

properties of the stenosed arterial cross section are very difficult to identify correctly, even

when a low error is considered. The grouping of elements leads to a better identification,

but such technique is possible only if a priori information is available, e.g. a reliable image

segmentation.

Since Example 4 is inspired in a cardiovascular disease diagnosis problem, the search

for more effective formulations must be continued in future works. For instance, the pro-

posed formulations could be generalized to consider several load cases. Extensions for the

identification of material properties of anisotropic elastic or viscoelastic materials must be

also studied in future works.
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