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In a previous paper we discussed corrections to Hawking radiation from a collapsing shell due to
quantum fluctuations of the shell and the resulting horizon. For the computation of the quantum
corrections we used several approximations. In this paper we take into account effects that were
neglected in the previous one. We find important corrections including non-thermal contributions
to the radiation at high frequencies and a frequency dependent time scale at which the emission of
thermal radiation of frequency ω cuts off. Such scale tends to infinity in the limit of a classical shell.
The fact that one has almost from the outset non-thermal radiation has significant implications for
the information paradox. In particular the amount of non-thermality is considerably larger than
what we had estimated before. A naive estimate of the evaporation time leads to a much faster
evaporation than in the usual Hawking analysis.

I. INTRODUCTION

Hawking radiation has been studied for a collapsing shell going all the way back to Boulware in 1976 [1]. Most
studies have treated the shell as a classical collapsing object. In a previous paper [2] we have studied the Hawking
radiation produced by a collapsing quantum shell. We did it in the geometric optics approximation. In it, one
considers ingoing and outgoing light rays and how they relate to each other via the parameters of the shell, namely
its ADM mass and the position at past infinity from which the shell is launched. When the ADM mass and the
position are turned into quantum operators acting on a Hilbert space for the geometry created by the shell, so do
the relations between ingoing and outgoing rays. In the standard geometric optic treatment of Hawking radiation,
the relations are used to construct the Bogoliubov coefficients. In our case the latter become quantum operators
acting on the Hilbert space of the geometry. We found that the profile of the Hawking radiation as a function of
time contains information about the initial state of the collapsing quantum shell. In particular, certain correlations
of the Hawking radiation that vanish in the classical case, are non-vanishing in the quantum one. Since the Hawking
radiation for a large black hole occurs entirely in a low-curvature region of space-time, our calculation shows that
non-trivial quantum effects can occur in such types of regions. Our calculations involved several approximations,
which we study in greater detail in the current paper. We find important corrections. The main message is that, even
at rather short times, the radiation becomes non-thermal. The emission of the total mass of the black hole is faster
than in the case of traditional Hawking radiation. In section 2 we summarize the previous results, showing that they
correspond to a naive semi-classical limit that omits certain important quantum effects. Section 3 carries out the full
quantum calculation which we characterize in terms of effective c-number Bogoliubov coefficients. In section 4 we
compute the number of particles emitted, showing the non-thermal nature of their spectrum and bounds for the total
the total thermal energy emitted. We end with a discussion.

II. GENERAL FRAMEWORK

A. Summary of previous results

The computation of Hawking radiation using the geometric optics approximation has a long history going back all
the way to Hawking’s original 1975 calculation [3]. Boulware was the first to consider the radiation of a collapsing
null shell [1]. The metric of a collapsing shell is given by,

ds2 = −
(

1− 2Mθ(v − vs)
r

)
dv2 + 2dvdr + r2dΩ2, (1)

where vs represents the position of the shell (in ingoing Eddington–Finkelstein coordinates) and M its mass. We are
using units where G = c = 1 Its associated Penrose diagram is given in figure 1.

To use the geometric optics approximation one considers light rays that leave I− with coordinate v less than
v0 = vs− 4M and escape to I+ with the rest trapped in the black hole that forms. They reach I+ with a coordinate,

u(v) = v − 4M ln

(
v0 − v
4M0

)
, (2)
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FIG. 1: The Penrose diagram of collapsing shell. vs is the position at I− from which the shell is sent in. Light rays
sent in to the left of v0 make it to I+, and rays sent in to the right of v0 get trapped in the black hole.

where M0 is an arbitrary parameter that is usually chosen as M0 = M . In our case, since we are considering a
quantum black hole we will take M0 to be the mean value of the mass. M0 is related with the definition of the tortoise
coordinate u, which involves a constant of integration. One uses this identity to relate the “in” modes of the scalar
field at I−,

ψlmω′(r, v, θ, φ) =
e−iω

′v

4πr
√
ω′
Ylm(θ, φ),

with the “out” modes at I+,

χlmω(r, u, θ, φ) =
e−iωu

4πr
√
ω
Ylm(θ, φ),

to compute the Bogoliubov coefficients,

αωω′ = 〈χlmω, ψlmω′〉 ,

βωω′ = −〈χlmω, ψ∗lmω′〉 .

That was the summary of the calculation of Hawking radiation on the background of a classical collapsing shell in
the geometric optics approximation. To consider the case of quantum collapsing shells we recall that the ADM mass
M and the position at I− from which the shell is sent in are a complete set of Dirac observables and canonically
conjugate to each other [2, 4]. One can promote them to quantum operators with commutators,[

M̂, v̂s

]
= i~Î , (3)

with Î the identity operator. It is actually more convenient to use v0 = vs−4M instead of vs. In terms of the quantum
operators one can write a quantum operatorial relationship between the operator associated with the ingoing position
in I− of a light ray and the outgoing position at I+,

û
(
v, v̂0, M̂

)
= vÎ − 2

[
M̂ ln

(
v̂0 − vÎ

4M0

)
+ ln

(
v̂0 − vÎ

4M0

)
M̂

]
. (4)
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The operators act on states of the quantum geometry, which in the mass representation are given by ϕ(M). With the
above operators one can now promote the Bogoliubov coefficients to operators acting on the states of the quantum
geometry,

β̂ωω′ = − 1

2π

√
ω′

ω
lim
δ→0

∫ +∞

−∞
dvθ

(
v̂0 − vÎ

)
exp (−iωûδ(v)− iω′v) θ

(
v̂0 − vÎ

)
. (5)

The above computation requires the extension of the operator û to include all the range of rays that start at I−

including those that would fall into the black hole. Details can be seen in our previous paper [2]. The result is
the operator ûδ. We need to solve its eigenvalue problem. It turns out that the spectrum of ûδ is degenerate with
degeneracy two. This leads us to choose two independent eigenstates of û,

ψ1
u(x) =


1√

8π~|ln(δ)|
exp

(
iM0

~ (u− v) x−δln(δ)

)
, x < δ

1√
8π~|ln(x)|

exp
(
iM0

~ (u− v) [li (x)− li (δ)]
)
, δ ≤ x < 1

0, x ≥ 1

(6)

ψ2
u(x) =

{
0, x ≤ 1

1√
8π~|ln(x)|

exp
(
iM0

~ (u− v) [li (x)− li (δ)]
)
, x > 1 (7)

where x = (v0 − v)/(4M0) and we have chosen them as orthonormal. We adopt the notation |u, J〉δ with J = 1, 2 for
these states.

With this we can compute the expectation values of the Bogoliubov coefficients for different states of the quantum
geometry, 〈

β̂
〉
ωω′

= − 1

2π

√
ω′

ω
lim
δ→0
〈Φ|
∫ +∞

−∞
dv

∫ +∞

−∞
dv0 |v0〉 〈v0| θ

(
v̂0 − vÎ

)
e−iωûδ(v)−iω′v×

×
∑
J=1,2

∫ +∞

−∞
du |u, J〉δ 〈u, J |δ

∫ +∞

−∞
dv′0 |v′0〉 〈v′0| θ

(
v̂0 − vÎ

)
|Φ〉 .

We also found an expression for the expectation value of the density matrix of a scalar field on the background of
a quantum shell, 〈

ρQSω1ω2

〉
≡ 〈Φ| 〈0in| â†ω1

(M̂, v̂0)âω2
(M̂, v̂0) |0in〉 |Φ〉 =

∫ ∞
0

dω′
〈
β̂ω1ω′ β̂

∗
ω2ω′

〉
,

where |Φ〉 is the quantum state of the shell centered in given values M̄, v̄0 of the ADM mass and the position along I−

of the last light ray that escapes to I+ (as we mentioned, it is equivalent to use this quantity in lieu of the position of
the shell at I−). In the above expression â, â† are the annihilation and creation operators of the quantum field of the
Hawking radiation (we take it to be a scalar field for simplicity) and |0in〉 is the vacuum of the Hawking radiation.

We take a state for the shell that in the v0 representation can be written as,

ψ (v0) ≡ 〈v0| ϕ〉 =
1√
2π~

∫
dMϕ (M) exp

(
−iM [v0 − v̄0]

~

)
(8)

with ϕ(M) a complex function centered in M̄ that satisfies
∫
dM |ϕ (M)|2 = 1.

The result found in our previous paper [2] (equation above (39)) for the expectation value density matrix of the
Hawking radiation for a quantum shell is,

〈
ρQSω1ω2

〉
=

(2M0)
2

π2

∫ ∞
0

dω′
ω′

√
ω1ω2

∫ +∞

0

dxdx′ exp (−i4M0 [ω′ + ω2]x′) exp (i4M0 [ω′ + ω1]x)×

× exp (i4M0 [ω′ + ω̄] ∆ω1ω2
(x, x′))

√
|ln(x̄ω1(x))| |ln(x̄ω2(x′))|

|ln(x)| |ln(x′)|
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×
∫ +∞

−∞
dsei∆ωsψ∗(s− 2M0∆ω1ω2

(x, x′))ψ(s+ 2M0∆ω1ω2
(x, x′)),

where ∆ω1ω2(x, x′) = ∆ω2(x′)−∆ω1(x), ∆ω(x) = x− x̄ω(x) = x− li−1 (li(x)− δω), x̄ωi(x) = li−1 [li(x)− ωi~/M0], li
is the logarithmic integral, δω = ~ω

M0
, ∆ω = ω2 − ω1 and ω̄ = ω1+ω2

2 .
This can be rewritten as,

〈
ρQSω1ω2

〉
=

∫
dMϕ∗

(
M − ∆ω~

2

)
ϕ

(
M +

∆ω~
2

)∫ ∞
0

dω′βQSω1ω′
(M, ω̄)

[
βQSω2ω′

(M, ω̄)
]∗
, (9)

in terms of the c-number quantity,

βQSωω′(M, ω̄) = −2M0e
−i[ω+ω′]v̄0

π

√
ω′

ω

× lim
ε→0

∫ +∞

0

dx exp (−εx) exp (i4M0 [ω′ + ω]x)

√
|ln(x̄ω(x))|
|ln(x)|

exp

(
i4ωm(ω′, ω̄)

∆ω(x)

δω

)
, (10)

that plays the role of an effective Bogoliubov coefficient, with m(ω′, ω̄) = M−(ω′ + ω̄) ~. The regulator ε is introduced
in order to make the integral convergent since we are in a basis of plane waves.

B. Semiclassical approximation: naive version of corrections to the limit ~ → 0

Expression (9) has the complete information of the geometric optics approximation for Hawking radiation on the
background of a quantum shell and should therefore include the usual results for Hawking radiation from a classical
collapsing shell when ~ → 0 (the shell variables become classical but the radiation is kept quantum, otherwise it
vanishes). To take such a limit is to set ~→ 0 in the integrand of (10).One gets

βQSωω′(M, ω̄)→ βCSωω′(M) = −2M0e
−i[ω+ω′]v̄0

π

√
ω′

ω
lim
ε→0

∫ +∞

0

dxe−εx exp (i4M0 (ω′ + ω)x) exp (i4Mω ln(x))

that agrees with the standard result for Hawking radiation for classical shells (CS).
In our previous paper [2] we considered an approximation in which we kept the states of the quantum geometry

but took the limit ~→ 0 in the Bogoliubov coefficients in the manner discussed. We will call this approximation the
“naive limit”. We did this in the expectation that the corrections this approximation neglected were small. We will
see in this paper that they are not.

To evaluate the expectation value of the density matrix in the naive limit, we start with the change of variable
y = ln(x). The above expression becomes

βCSωω′(M) = −2M0e
−i[ω+ω′]v̄0

π

√
ω′

ω
lim
ε→0

∫ +∞

−∞
dy exp (− [ε− i4M0 (ω′ + ω)] ey) exp ((1 + i4Mω)y)

= −2M0e
−i[ω+ω′]v̄0

π

√
ω′

ω
lim
ε→0

[∫ +∞

0

dy exp
(
− [ε− i4M0 (ω′ + ω)] e−y

)
exp (−(1 + i4Mω)y)

+

∫ +∞

0

dy exp (− [ε− i4M0 (ω′ + ω)] ey) exp ((1 + i4Mω)y)

]
. (11)

Using the identities for the upper and lower incomplete Gamma functions,

Γ(a, z) = za
∫ +∞

0

exp
(
at− zet

)
dt, Re(z) > 0, (12)

γ(a, z) = za
∫ +∞

0

exp
(
−at− ze−t

)
dt, Re(a) > 0, (13)

Γ(a) = γ(a, z) + Γ(a, z).
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we get

βCSωω′(M) = −2M0e
−i[ω+ω′]v̄0

π

√
ω′

ω
lim
ε→0

exp (−(1 + i4Mω) ln [ε− i4M0 (ω′ + ω)]))

× [γ (1 + i4Mω, ε− i4M0 [ω′ + ω]) + Γ (1 + i4Mω, ε− i4M0 [ω′ + ω])]

=
−i exp (−i [ω + ω′] v̄0) e−2Mωπ

2π
√
ω

ω′

ω′ + ω

exp (−i4Mω ln (4M0 [ω′ + ω]))√
ω′

Γ (1 + i4Mω) . (14)

This is the expression of the Bogoliubov coefficient β that we obtained in the previous paper and that includes
Hawking radiation in the long time limit but includes non-thermal corrections for early times, as one expects for the
radiation of a collapsing shell. Substituting in (9) we get

〈
ρQSω1ω2

〉
Naive limit

=

∫
dMϕ∗

(
M − ∆ω~

2

)
ϕ

(
M +

∆ω~
2

)
8M2√ω1ω2 exp (i∆ωv̄0)

πe4Mω̄π
Γ (i4Mω1) Γ (−i4Mω2)

× 1

2π

∫ +∞

0

dω′

ω′
(ω′)2

(ω′ + ω1)(ω′ + ω2)
exp (i4M [ω2 ln (4M0 [ω′ + ω2])− ω1 ln (4M0 [ω′ + ω1])]) .(15)

Notice that we have taken βωω′ to be classical but kept the ~ dependence in the quantum states. This was the
approximation we used in our previous paper and only partially captures the departures from thermality of the
distribution of radiated energies. In this paper we will develop a better approximation and we will see significantly
different behavior.

C. Computation of the radiated energy in the naive limit

In order to compare with the result we will obtain in this paper we need an expression for the amount of energy
radiated as Hawking radiation in this naive limit. The radiated energy can be obtained from the diagonal terms
of (15), that is, the number of particles per unit frequency. From there, the time of evaporation of the black hole,
assuming the radiation maintains the same form (i.e. ignoring backreaction) can be estimated.

To compute the integral, we start by rewriting the Gamma function,

Γ(ix) =

√
π

x sinh(πx)
eiφ(x), (16)

with φ(x) = Im [ln (Γ(ix))] and carry out the change of variable,

t =
4M

∆ω
[ω2 ln (4M0 [ω′ + ω2])− ω1 ln (4M0 [ω′ + ω1])] , (17)

and recalling that x = 4Mω1 or x = −4Mω2, this leads to,

〈
ρQSω1ω2

〉
Naive limit

=

∫
dMϕ∗

(
M − ∆ω~

2

)
ϕ

(
M +

∆ω~
2

)
ei[φ(4Mω1)−φ(4Mω2)]ei∆ωv̄0

√
e8Mω1π − 1

√
e8Mω2π − 1

1

2π

∫ +∞

t0

dteit∆ω, (18)

with t0 = 4M
[
ω̄

∆ω ln
(
ω2

ω1

)
+ ln

(
4M0
√
ω1ω2

)]
. This density matrix is a distribution in ω1−ω2 whose diagonal yields

a divergent term proportional to the number of particles. The divergence stems from assuming a basis of waves of
definite frequency for the scalar field. As we will see later, the result can be made finite considering wavepackets with
a finite spread in frequency and time. Computing the diagonal terms we have,

〈
NQS
ω

〉
Naive limit

=
〈
ρQSω,ω

〉
Naive limit

=

∫
dM |ϕ (M)|2 1

e8Mωπ − 1

1

2π

∫ +∞

t̂0

dt, (19)

with t̂0 = 4M [1 + ln (4M0ω)]. The divergence in ω1 = ω2 = ω appears because we have computed the Bogoliubov
coefficients for a continuous basis of plane waves at I+,{

φω(u) =
1√
2πω

, e−iuω, ω > 0

}
,
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and therefore we have considered emission for all time. Formally, from here we can compute the total energy emitted
as

ENaive limit =

∫ ∞
0

dω~ω
〈
NQS
ω

〉
Naive limit

, (20)

and of course this will give an infinite result. We should compare this limit, where we consider fluctuations in the
quantum states, with the ordinary Hawking radiation calculation, where only the energies of the particles emitted are
quantized. Alternatively we can compute a bounded density matrix using a discrete basis of wavepackets,{

Φωj (un) =
1√
ε

∫ (j+1)ε

jε

dωφω(u)eiunω, j ∈ N, n ∈ Z

}
,

centered around time (un = n 2π
ε ) and frequency (ωj = [j + 1/2] ε), with ε << ωj a narrow frequency window. With

this, the density matrix for the wavepackets becomes,〈
ρQSωj ,ωk

〉
Naive limit

(un) =
1

ε

∫ (j+1)ε

jε

∫ (k+1)ε

kε

dω1dω2e
−iun∆ω

〈
ρQSω1ω2

〉
Naive limit

(21)

and the rate of emission of particles is,〈
NQS
ωj

〉
Naive limit

(un) =
〈
ρQSωj ,ωj

〉
Naive limit

(un).

Finally this leads to ENaive limit(un), the power emitted at time un, through integral (20). This way of computing the
energy allows us to deal with finite quantities and also shows us the role of the frequency ω′ which appears in the
calculation of the Bogoliubov coefficients and determines their evolution in terms of the physical time (un) at I.

To do the explicit calculation we need an expression for (18) that we can handle when ω1 ∼ ω2. Approximating
the integrand to the lowest order in ∆ω/ω̄ both in amplitude and in phase in all the factors involved, we get [5],

〈
ρQSω1ω2

〉
Naive limit

∼
∫
dM |ϕ(M)|2 eiσ

′(M)∆ω~ e
−i4M∆ω<[ψ(0)(i4Mω̄)]ei∆ωv̄0

e8Mω̄π − 1

1

2π

∫ +∞

t̃0

dteit∆ω, (22)

where the change of variable variable (17) from ω′ to t becomes

t = 4M [1 + ln (4M0 [ω′ + ω̄])] (23)

and therefore t̃0 = 4M [1 + ln (4M0ω̄)] .
In the previous expression we have expanded the phase of the function Γ of equation (16) as,

φ(x) =

∞∑
n=0

φ(n)(x0)
(x− x0)n

n!
,

where φ(n) = =
[
inψ(n−1)(ix)

]
and ψ(n) is the polygamma function of order n. We have also assumed that the

wavefunction in the mass representation takes the form,

ϕ(M) = |ϕ(M)| eiσ(M),

with σ a smooth function and we have expanded ϕ assuming that M >> ~∆ω. It is convenient to reorder the
expression (22) in the following way,

〈
ρQSω1ω2

〉
Naive limit

∼
∫
dM

|ϕ(M)|2

e8Mω̄π − 1

1

2π

∫ +∞

T0(ω̄)

dtei∆ωt,

absorbing the phase in t such that,

t→ t+ σ′(M)~− 4M<
[
ψ(0)(i4Mω̄)

]
+ v̄0, (24)

and therefore,

T0(ω̄) = σ′(M)~− 4M<
[
ψ(0)(i4Mω̄)

]
+ v̄0 + 4M + 4M ln (4M0ω̄) . (25)
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We are now in position to incorporate the wavepackets by computing,

〈NQS
ωj 〉Naive limit(un) =

1

ε

∫ ∫ (j+1)ε

jε

dω1dω2e
−un∆ωi

〈
ρQSω1ω2

〉
Naive limit

∼

∼
∫
dM

|ϕ(M)|2

e8Mωjπ − 1

1

2πε

∫ ε

−ε
d (∆ω)

∫ ωj+
ε−|∆ω|

2

ωj− ε−|∆ω|2

∫ +∞

T0(ω̄)

dte−(un−t)∆ωidω̄ ∼

∼
∫
dM

|ϕ(M)|2

e8Mωjπ − 1

1

2π

∫ +∞

T0(ωj)

dt

∫ ε

−ε
d (∆ω)

ε− |∆ω|
ε

e−(un−t)∆ωi =

=

∫
dM

|ϕ(M)|2

e8Mωjπ − 1

ε

2π

∫ +∞

T0(ωj)

dt sinc2
[ ε

2
(un − t)

]
≡
∫
dM

|ϕ(M)|2

e8Mωjπ − 1
S [un − T0(ωj)] , (26)

where sinc(x) = sin(x)/x is the cardinal sine function and integrates to a function S which is a smooth version of the
Heaviside function. This expression represents a superposition of thermal radiation that starts at time un = T0(ωj)
and continues to be emitted for later times. The expression for the emitted power is

ENaive limit(un) ∼
∫
dM |ϕ(M)|2

∫ ∞
0

dω
~ω

e8Mωπ − 1
S [un − T0(ω)] . (27)

Although this is a computation for a quantum shell, by choosing a state with small uncertainty in the mass (and taking
the naive limit ~→ 0 in the Bogoliubov coefficients), we are effectively obtaining the classical limit and therefore the
final result coincides with the usual one quoted for ordinary Hawking radiation for a classical collapsing shell.

III. CORRECTIONS TO THE BOGOLIUBOV COEFFICIENTS

To develop a better approximation, we will evaluate βQSωω′ without taking the limit ~→ 0 in the integral (10). The
latter expression depends on ~ through ∆ω(x), δω and m(ω′, ω̄). We will show that the approximation described in
the previous section fails to capture important properties of the radiation, in particular its non-thermal aspects. To
see this, it is convenient to examine the region x = 0 of the integral making the change of variable y = ln(x). Given
that the dependence in ~ is in the function x̄ω(x) we redefine,

ln [x̄ω(x)] = ln
(
li−1(li(x)− δω)

)
= Ei−1 (Ei(y)− δω) ≡ yω(y), (28)

with Ei the exponential integral. In figure 2 we show this function and the approximations to it we will later use. Notice
that yω[y] → y for large values of y. The function yω(y) involves the exponential integral and is not straightforward
to integrate. This will require the use of approximations.

The effective Bogoliubov coefficients (10) of the quantum shell can be rewritten in terms of y as,

βQSωω′(M, ω̄) = −2M0e
−i[ω+ω′]v̄0

π

√
ω′

ω
lim
ε→0

∫ +∞

−∞
dy exp (y − εey) exp (i4M0 [ω′ + ω] ey)

×

√
|yω(y)|
|y|

exp

(
i4ωm(ω′, ω̄)

exp(y)− exp(yω(y))

δω

)
. (29)

As we see in figure (2a) there exists a region of the integral where it is incorrect to take the limit δω → 0 (which is
equivalent to yω = y) in order to approximate yω(y) for small values of x, which corresponds to negative values of y.
In particular for large negative values yω(y) becomes constant. As figure (2a) shows, such constant

ȳω ≡ yω(−∞) = Ei−1(−δω),

is a good indicator of the value of y where such departure takes place.
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(a) Function yω(y) and its asymptotes.
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(b) Approximation for exp (yω(y)) (dotted line) and the exact value.
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∣∣∣ (dotted line) and the exact value.

FIG. 2: Approximations to the function yω(y) and derived functions including the regions at both sides of y = ȳω.
Plots correspond to δω = 10−2 in order to have visible departures from the exact functions.
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A. Asymptotic Approximation

To take into account these two zones in the calculation of the integral we can approximate the function (28) using its
asymptotic forms for y � ȳω and y � ȳω. When y > ȳω we have that |Ei(y)| > δω so we consider the approximations,

exp [yω(y > ȳω)] ≈ exp[y]− yδω, (30)√
|yω(y > ȳω)|

|y|
≈ 1, (31)

and we will explain why we keep an order less in the square root shortly. This can be obtained expanding (28) around
Ei(y). Analogously, when y < ȳω, |Ei(y)| < δω and we approximate,

exp [yω(y < ȳω)] ≈ exp[ȳω] + ȳωEi(y), (32)√
|yω(y < ȳω)|

|y|
≈

√
|ȳω|
|y|

. (33)

As we show in figure (2), the two approximations considered coincide when y = ȳω.
These approximations will be used to represent the phase and modulus in the integral (29). The integral is more

sensitive to the phase, that is why we keep an additional order of approximation in the exponential with respect to
the one taken in the square roots.

The point where both approximations agree is also where they give their worst result so is crucial to place a bound
on the error introduced in that region and to find conditions such that the error is small. Studying the phase and
modulus in (29) and comparing the approximations with the exact values, the conditions are,

4M0

~
|m(ω′, ω)| |exp[ȳω]− ȳωδω − exp [ȳ2ω]| � 1, (34)√

|ȳ2ω| −
√
|ȳω|√

|ȳ2ω|
� 1, (35)

where ȳ2ω = yω(y = ȳω) = Ei (−2δω). The first condition is imposed because the approximation appears in the phase
of the integrand and the second because the approximation appears in its modulus. It is important to notice that the
first condition imposes limits for the range of ω′ and the other one in the range of ω for which the approximation is

valid. We will now use these expressions to compute βQSωω′ .

B. Approximate computation of the effective Bogoliubov coefficients

Considering approximations (30, 31, 32 and 33) we get the following expression for the effective Bogoliubov coeffi-
cients by breaking up the integral into the two regions involved,

βQSωω′(M, ω̄) ≡ βQS(+)
ωω′ (M, ω̄) + β

QS(−)
ωω′ (M, ω̄),

with

β
QS(+)
ωω′ (M, ω̄) ∼ −2M0e

−i[ω+ω′]v̄0

π

√
ω′

ω
lim
ε→0

∫ +∞

ȳω

dy exp (−(ε− i4M0 [ω′ + ω])ey) exp ([1 + i4ωm(ω′, ω̄)] y) , (36)

for the region y > ȳω and,

β
QS(−)
ωω′ (M, ω̄) ∼ −2M0e

−i[ω+ω′]v̄0

π

√
ω′

ω

∫ ȳω

−∞
dy exp (y) exp (i4M0 [ω′ + ω] ey)

×

√
|ȳω|
|y|

exp

(
i4ωm(ω′, ω̄)

ey − eȳω − ȳωEi(y)

δω

)
, (37)

for the region y < ȳω. We will now study these expressions assuming δω � 1. The latter is essentially the energy
of the emitted particle divided by the mass of the black hole, so it is very well satisfied. We also need to recall that
these expressions are valid only when conditions (34) and (35) are met.
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1. Study of β
QS(+)

ωω′

We start by computing β
QS(+)
ωω′ . The integral in (36) can be computed with the change of variable t = y− ȳω. Thus,

β
QS(+)
ωω′ (M, ω̄) = −2M0 exp (−i [ω + ω′] v̄0)

π

√
ω′

ω
lim
ε→0

exp ([1 + i4ωm(ω′, ω̄)] ȳω)

×
∫ +∞

0

dt exp
(
−(ε− i4M0 [ω′ + ω])eȳωet

)
exp ([1 + i4ωm(ω′, ω̄)] t) , (38)

and carrying out the integral in t,

β
QS(+)
ωω′ (M, ω̄) = − i exp (−i [ω + ω′] v̄0)

2π

exp (−2m(ω′, ω̄)ωπ)√
ω′ω

ω′

ω′ + ω
exp (−i4ωm(ω′, ω̄) ln (4M0 [ω′ + ω]))

×Γ [1 + i4ωm(ω′, ω̄),−iξ(ω, ω′,M0)] (39)

where Γ (a, z) is the incomplete Gamma function and where,

ξ(ω, ω′,M0) ≡ 4M0 [ω′ + ω] exp (ȳω) .

Expression (39) reduces to the classical expression (14) when m(ω′, ω̄)→M and ξ → 0 (equivalent to ~→ 0, which
implies ȳω → −∞), but outside this regime, it has a very different behavior as can be seen in figure (3), particularly
for large values of ω′/ω0.

Notice that in these plots the pre-factor

− i exp (−i [ω + ω′] v̄0)

2π

√
ω′

ω

1

ω′ + ω
(40)

is omitted and instead of ω′ the plot is made against the dimensionless variable log
(
ω′+ω
ω0

)
with ω0 ∼

2.82144/(8πMBH) the principal frequency, at which the peak of Hawking emission occurs. The reasons for the
choice of the logarithm will be apparent in the next section.

2. Study of β
QS(−)

ωω′

Let us now concentrate on β
QS(−)
ωω′ given by (37). In this case we do not know how to compute the integral in closed

form. However, unlike β
QS(+)
ωω′ this contribution is an integral that converges very fast (due to the real exponentials

in the integrand). The change of variable t =
√
|y| makes it very explicit,

β
QS(−)
ωω′ (M, ω̄) ∼ −2M0e

−i[ω+ω′]v̄0

π

√
ω′

ω

∫ +∞

√
|ȳω|

2dt exp
(
−t2

)
exp

(
i4M0 [ω′ + ω] e−t

2
)

×
√
|ȳω| exp

(
i4ωm(ω′, ω̄)

e−t
2 − eȳω − ȳωEi(−t2)

δω

)
. (41)

In fact this integral converges absolutely to, √
π|ȳω|Erfc(

√
|ȳω|),

where Erfc is the complementary error function. In this case the limit ~→ 0 corresponds to ȳω → −∞ and therefore,

β
QS(−)
ωω′ (M, ω̄)→ 0, (42)

as is expected for the classical shell. In figure (4) we see the significant departure of this expression from the
corresponding contribution in the case of the Hawking radiation for the classical shell, particularly for large values of
ω′/ω0.
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FIG. 3: Comparison between β
QS(+)
ωω′ (solid line) and β

CS(+)
ωω′ (dashed line). The latter is the integral of the ordinary

Hawking calculation in the t variable starting in
√
|ȳω|. The plot considers ω = ω0 (frequency of maximum emission

for Hawking radiation) and M0 = M .
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FIG. 4: Comparison between β
QS(−)
ωω′ (solid line) and β

CS(−)
ωω′ (dashed line). The latter is the integral of the ordinary

Hawking calculation in the t variable ending in
√
|ȳω|. The plot considers ω = ω0 (frequency of maximum emission

for Hawking radiation) and M0 = M .
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3. βQS
ωω′ vs βCS

ωω′

Adding the two contributions previously discussed, we get an expression for the effective Bogoliubov coefficients

βQSωω′ that can be compared with the result (14) for the classical shell. In particular, the modulus
∣∣∣βQSωω′ ∣∣∣, evaluated

numerically, departs from that of the classical shell,

∣∣βCSωω′ ∣∣ =

√
4M

2π

ω′

ω′ + ω

1

exp(8Mωπ)− 1
. (43)

Figure (5) depicts this departure which is most apparent in (5a). The oscillatory behavior at the end of the plot
is not to be trusted. At this point the frequencies approach the regime where condition (34) is violated and the
numerical result is no longer valid.

In the next section we will discuss the computation of the number of particles and energy emitted for which the
Bogoliubov coefficients β are the basic ingredient. We will use this numerical result to comment on the departure
from the result for the classical shell.

IV. NUMBER OF PARTICLES AND ENERGY EMISSION BASED ON THE PREVIOUS
APPROXIMATIONS

Here we will use the expressions developed in the previous section for effective Bogoliubov coefficients to compute
the number of radiated particles and the energy emitted. We will compare this result with the corresponding one that
appears in the naive limit discussed in (II B). In the first place we are interested in the formal integral for continuous
frequencies,

〈
NQS
ω

〉
=
〈
ρQSω,ω

〉
=

∫
dM |ϕ (M)|2

∫ ∞
0

dω′
∣∣∣βQSωω′(M)

∣∣∣2 , (44)

and finally in the energy

E =

∫ ωP

0

dω~ω
〈
NQS
ω

〉
=

∫
dM |ϕ (M)|2

∫ ωP

0

dω~ω
∫ ∞

0

dω′
∣∣∣βQSωω′(M)

∣∣∣2 . (45)

In this expression we have chosen to cutoff the frequency at the Planck frequency ~ωP = MP with MP the Planck
mass. Higher frequencies would lead to quantum gravity effects and our analysis would not be valid.

Since these are divergent integrals we can not compare them directly with (26) and (27). We could, for example,
consider an alternative basis of modes (like the wave packets considered in section II B). However, since we lack an
analytic expression for the effective Bogoliubov coefficients it would require a numerical evaluation that turns out to
be very expensive from a computational point of view. Instead, we will study the integrand and compare it to the
one already studied in the naive limit ~→ 0.

Assuming the wave function of the shell is highly peaked around the expectation value for the mass M̄ , we can
ignore the integration in M and focus in the double integral in ω and ω′. As we did before, we choose to study these

expressions as functions of log
(
ω′+ω
ω0

)
and ω

ω0
where ω0 is the principal frequency of emission. These are not only

dimensionless but also better related to the physical variables of the problem (time and energy). Also, we need to fix
the free parameter M0. We chose to set it to M̄ because is the usual choice for a classical shell and also because it
makes the conditions ~ω � M̄ (negligible back-reaction) and δω = ~ω

M0
� 1 (semi-classical regime) coincide.

In figure (6) we plot the naive limit
∣∣∣βQSωω′(M)Naive limit

∣∣∣2,
∣∣∣βQSωω′(M)

∣∣∣2 and its two contributions
∣∣∣βQS(+)
ωω′ (M)

∣∣∣2 and∣∣∣βQS(−)
ωω′ (M)

∣∣∣2. As we did before we omit the prefactor,

1

(2π)2ω

ω′

(ω′ + ω)
2 . (46)

We see that
∣∣∣βQSωω′(M)

∣∣∣2 approaches the naive limit when ω′ → 0 and also that this behavior is controlled by the∣∣∣βQS(+)
ωω′ (M)

∣∣∣2 contribution. This implies the existence of a regime in which the radiation is thermal and a strong
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FIG. 5: Comparison between βQSωω′ (solid line) and βCSωω′ (dashed line). The plot considers ω = ω0 (frequency of
maximum emission for Hawking radiation) and M0 = M .
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FIG. 6: Comparison between the numerical calculation for
∣∣∣βQSωω′ ∣∣∣2, its (+) and (−) contributions and the naive limit

~→ 0 (corresponding to a superposition of Hawking radiation). The plot considers ω = ω0 and M0 = M . The
double line represents the bound log[ M~ω0

] for the independent variable. In addition to the plotted squares there are
contributions of crossed terms in the evaluation of the density matrix, not shown.

departure when ω′ grows characterized by an increased rate of emission. The condition m(ω′, ω) = 0 sets an upper
bound for region of thermal radiation. This is not the only (or best) bound we can find but is has the advantage of

being frequency independent in the variable log
(
ω′+ω
ω0

)
, corresponding to the constant value log

(
M
~ω0

)
. From these

qualitative analyses we can estimate the amount of energy radiated as Hawking radiation and also the time when the
departure starts.

Assuming the radiation is thermal until m(ω′, ω) = 0 then the amount of thermal radiation is,

Ethermal =

∫
dM |ϕ (M)|2

∫ ωP

0

dω~ω
∫ m(ω′,ω)=0

0

dω′
∣∣∣βQSωω′(M)~=0

∣∣∣2 = (47)

=

∫
dM |ϕ (M)|2

∫ ωP

0

dω~ω
1

exp(8Mωπ)− 1

4M

2π

∫ m(ω′,ω)=0

0

dω′
ω′

(ω′ + ω)2
= (48)

=

∫
dM |ϕ (M)|2

∫ ωP

0

dω~ω
1

exp(8Mωπ)− 1

4M

2π

[
log

(
M

~ω

)
+

~ω
M
− 1

]
= (49)

=

∫
dM |ϕ (M)|2M × I

(
M

MP

)
, (50)

where

I(x) = x2

∫ MP /M

0

ds
s

exp(8πx2s)− 1

s− 1− log(s)

2π
. (51)

This estimate represents less that 0.1% of the mass of any black hole with a mass larger than the Planck mass.
Finally we can make an estimation of the amount of time thermal radiation lasts. Introducing the same basis of

wave packets of section (II B) and performing the same calculation, in particular the change of variable (23) and the
subsequent phase absorption (24), we arrive to the analogous expression for the rate of emitted particles

〈NQS
ωj 〉thermal(un) =

∫
dM

|ϕ(M)|2

e8Mωjπ − 1

ε

2π

∫ Tf (ωj)

T0(ωj)

dt sinc2
[ ε

2
(un − t)

]
, (52)

where Tf (ωj) = T0(ωj) + 4M log
(
M
~ωj

)
. This expression represents thermal radiation lasting

∆T = 4M log

(
M

~ωj

)
, (53)



16

which ranges from ∆T = 4M log(M/MP ) for ωj → ωP to ∆T = +∞ for ωj → 0.

V. CONCLUSIONS

By considering Hawking radiation on the background of a quantum collapsing null shell, we discovered significant
deviations from the usual Hawking radiation on classical backgrounds. To begin with, we obtain thermal radiation
that is emitted for a short time (of the order of the scrambling time, one millisecond for a solar mass black hole),
insufficient to emit a substantial portion of the mass of the black hole. After that, a different type of radiation appears
with a non-thermal profile and that can be emitted by a long enough time to evaporate the black hole. The details
of this interval of time depend on trans-Planckian physics that our model does not capture. For low frequencies we
get thermal radiation that cuts off after a time that depends on the frequency, giving way to non-thermal radiation
of larger intensity. For lower frequencies the longer the time of emission of thermal radiation. It always holds that
the limit time of emission of thermal radiation is infinite in the classical limit when ~→ 0 whereas the emission time
of the non-thermal radiation tends to zero in that limit and the radiation is always the usual one. It should be noted
that the approximations made are only valid for relatively short periods of emission. They do not allow to compute
correctly the emitted energy for an arbitrary time of emission. A naive estimate of the evaporation time with the new
type of radiation found, leads to black holes evaporating considerably faster that what traditional Hawking radiation
predicts.

The fact that one has non thermal radiation may imply that there does not exist an information paradox, although
a detailed analysis would be needed of how information could be retrieved, particularly for collapsing situations that
are more realistic than a simple shell.
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