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From the fatty acid content perspective, is it healthier to eat a hindquarter or a 
forequarter cut? Angus steers in pasture or concentrate systems 
Alejandra Terevinto a, Ali Saadoun a,b and María Cristina Cabrera a,b

aDepartamento de Producción Animal & Pasturas, Laboratorio Calidad de Alimentos, Facultad de Agronomía, Universidad de la República, 
Montevideo, Uruguay; bSección Fisiología & Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay

ABSTRACT
In this study, Biceps femoris (BF) and Triceps brachii (TB) of Aberdeen Angus steers, from the 
hindquarter and forequarter, respectively, were compared from their fatty acid composition, lipid 
health, and lipid enzyme activity indices points of view. For this, ten animals were produced in 
a pasture system and ten were finished in a concentrate-based system. TB presented a significantly 
higher intramuscular fat, saturated C14:0, C14:1, C16:1, CLA, and MUFA content. BF presented 
a significantly higher LA, ARA, EPA, DPA, DHA, PUFA, total n-6, and n-3 content, and 
a significantly higher PUFA/SFA ratio. Significant differences between muscles were found regarding 
lipid enzyme activity indices, but not concerning atherogenic and thrombogenic indices. Also, meat 
from different feeding systems was compared, where meat from pasture presented a better fatty 
acid composition regarding cardiovascular health aspects. In conclusion, BF presented a better 
composition in the most nutritionally relevant fatty acids, with exception of CLA.

Desde la perspectiva del contenido en ácidos grasos, ¿es más saludable comer 
un corte del cuarto trasero o del cuarto delantero? Novillos Angus en sistemas 
a pastura o concentrado

RESUMEN
Se comparó la composición en ácidos grasos, índices de salud y de actividad de enzimas lipídicas de 
los músculos Biceps femoris (BF) y Triceps brachii (TB) de novillos Aberdeen Angus, del cuarto trasero 
y delantero, respectivamente. Diez animales fueron producidos en un sistema pastura y otros diez 
terminados a base de concentrado. TB presentó un contenido significativamente mayor de grasa 
intramuscular, de C14:0, C14:1, C16:1, CLA y ácidos grasos monoinsaturados. BF presentó un 
contenido significativamente mayor de LA, ARA, EPA, DPA, DHA, PUFA, n-6 y n-3, y una mayor 
relación PUFA/SFA. Los músculos presentaron diferencias significativas en los índices de actividad 
de enzimas lipídicas, pero no en los índices aterogénico y trombogénico. La carne de animales en 
pastura presentó una mejor composición en ácidos grasos, en relación a la salud cardiovascular. En 
conclusión, BF presentó una mejor composición en ácidos grasos desde el punto de vista nutricio
nal, exceptuando el CLA.
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1. Introduction

In the past 30 years, there has been great concern about 
the increase in chronic diseases such as obesity and car
diovascular diseases. These diseases may be prevented by 
limiting the intake of fat (Stajic et al., 2011). In current 
dietary guidelines, a reduction in saturated fatty acid con
sumption (less than 10% of energy intake per day) is 
recommended as a key part of a healthy diet for the 
prevention of cardiovascular diseases (Kang et al., 2020). 
Human consumption of saturated fatty acids of 12–16 
carbon atoms increase blood total cholesterol concentra
tion and the LDL/HDL ratio, while polyunsaturated fatty 
acids (PUFA) tend to decrease LDL-cholesterol levels, and 
monounsaturated (MUFA) ones are probably neutral con
cerning the level of serum cholesterol (Hooper et al., 2018; 
Stajic et al., 2011). The impact of fat intake on the cardi
ovascular health in humans can be estimated through the 
calculus of atherogenicity (AI) and thrombogenicity (TI) 

indices, which include those fatty acids that could affect 
the change of serum cholesterol (Attia et al., 2015; Stajic 
et al., 2011; Ulbricht & Southgate, 1991). The current nutri
tional recommendations strongly encourage an increase in 
the intake of n-3 PUFA, in particular, eicosapentaenoic 
acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 
22:6n-3) (Costa et al., 2013; ISSFAL, 2019). Dietary n-3 
PUFA have anti-inflammatory, immunomodulatory and 
potential anticancer activity (Huerta-Yépez et al., 2016; 
Khadge et al., 2018) and are beneficial for many diseases, 
including cystic fibrosis, type II diabetes, dysmenorrhea, 
schizophrenia, and cardiovascular disease (Huerta-Yépez 
et al., 2016).

In contrast, the n-6 PUFA, especially arachidonic acid 
(ARA), which are much more abundant in our daily diet, 
are associated with many adverse effects on the human 
body, including cancer promotion. For instance, a high 
intake of n-6 has been found to correlate with a high risk 
of breast, prostate, and colon cancer incidence in many 
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animal and human studies, and the ratio of n-6 to n-3 was 
suggested to be a predictor of cancer progression (Huerta- 
Yépez et al., 2016; Song et al., 2018).

The negative effects of fats on human health overshadow 
the benefits associated with the consumption of ruminant- 
derived fat. Recent research, shows that n-3 PUFA, rumenic 
acid [RA; cis(c)9, trans(t)11–18:2], the main natural isomer of 
conjugated linoleic acid (CLA) and its precursor vaccenic acid 
(VA; t11-18:1) have many properties that seem to promote 
human health and wellbeing (Chikwanha et al., 2018).

In Uruguay, cattle for meat production has always been 
based on free access to pasture system, but in the last few 
years feedlot production system based on a 30–40% rough
age and 60–70% concentrate, has increased considerably. 
This fact leads to cattle production with different carcass 
and meat quality attributes. Both the amount of grass and 
duration of rearing on pasture has been shown to influence 
the potential to enrich 18:3 n-3, 20:5 n-3, and 22:6 n-3 in the 
bovine muscle (Alfaia et al., 2009; French et al., 2000; Noci 
et al., 2005). Conversely, feeding concentrates for a 2-month 
finishing period was shown to lower the proportion of n-3 
and increase the abundance of n-6 PUFA (Aldai et al., 2011). 
Compared with finishing on high-concentrate diets, rearing 
of cattle or lambs on forage-based systems is often asso
ciated with a decrease in muscle 16:0 and total SFA, and 
higher cis-9 18:1 concentrations (Aldai et al., 2011; Alfaia 
et al., 2009; Scollan et al., 2006; Sinclair, 2007). In this 
sense, information about the fatty acid composition of beef 
meat produced in Uruguay from these different production 
systems was generated (Cabrera & Saadoun, 2014; Realini 
et al., 2004). However, it is not easy to find information about 
lipid health indices, such as the atherogenic and thrombo
genic indices in meat produced by those feeding systems. 
Informed consumers generally consider meat finished on 
pasture, healthier than meat finished on grains (Cabrera & 
Saadoun, 2014; Van Elswyk & McNeill, 2014).

Besides, beef meat cuts from the hindquarter are com
mercially more valuable than cuts from the forequarter, so 
a higher retail price of the former cuts should be associated 
with a higher quality product. This work aimed to investigate 
if a hindquarter muscle (Biceps femoris) is healthier than 
a forequarter muscle (Triceps brachii) considering their fatty 
acid profile, as well as their calculated cardiovascular lipid 
health and lipid enzyme activity indices.

2. Materials and methods

2.1. Meat samples and animal diets

The two muscles, Triceps brachii (TB) and Biceps femoris (BF) 
were selected from twenty Aberdeen Angus steers (24–
30 months old) slaughtered in an authorized abattoir of 
Uruguay (Solis, BPU-NH group). After 36 hours postmortem, 
both muscles were kept frozen at −20 °C, until analysis 
determinations. Both muscles integrate typical cuts of the 
local Uruguayan meat market. Animals were raised in two 
different feeding systems that take place in Uruguay (Pasture 
and Concentrate) established for meat export. Pasture group 
(n = 10) was produced on natural and improved pastures 
consisting of tall fescue (Festuca arundinacea), white clover 
(Trifolium repens), and birdsfoot trefoil (Lotus subbiflorus), the 
last 130 days before slaughtering. These animals reached 
a mean live weight of 479.8 kg. Concentrate group (n = 10) 

was fed with natural and improved pastures (the same as in 
Pasture system) and afterward received a diet based on 
roughage:concentrate (30:60, on dry matter basis) consisting 
of whole plant sorghum silage and silo wet grain sorghum, 
soybean hulls, and wheat bran, minerals sources, urea and 
ionophore, the last 90 days before slaughter. These animals 
reached a mean live weight of 502.4 kg. Pasture-fed animals 
take longer than concentrate-fed animals to reach the 
weight required by the market.

2.2. Determination of total lipid content and fatty acid 
composition

For the intramuscular lipid extraction, the procedure of Folch 
et al. (1957) was performed. Briefly, 4 grams of meat were 
homogenized with 100 ml of chloroform: methanol (2:1) in 
a Virtis 45 at 35000 rpm for 1 min and then filtered to 
a separating funnel. After obtaining the dry lipids, they 
were dissolved in hexane and submitted to methylation 
with methanolic KOH according to Ichihara et al. (2010). 
The fatty acid analysis was performed by gas chromatogra
phy following the procedure described by Eder (1995). 
A Clarus 500 (Perkin Elmer Instruments, USA) split/splitless 
chromatograph with a fused-silica CPSIL-88 of 100 m capil
lary column, FID detector, and CPG grade hydrogen as car
rier gas (flow rate: 1 ml/min) was used. A temperature of 250 
°C was established for the injector and FID detector. Fatty 
acids methylated esters (FAMEs) were determined compar
ing the retention time to fatty acids standards (Sigma Corp., 
USA) and individual FAME were quantified as a percentage 
of total detected FAMEs. Total intramuscular fat content was 
expressed as grams per 100 g muscle.

2.3. Calculation of lipid health indices

Lipid health indices were calculated based on the data of 
intramuscular fatty acids. The atherogenic index (AI) indicates 
the relationship between the sum of the main saturated 
(proatherogenic) and the unsaturated (antiatherogenic) fatty 
acids and was calculated as [C12:0 + 4*(C14:0) + C16:0]/ 
[(ΣPUFA) + (ΣMUFA)]. The thrombogenic index (TI) estimates 
the potential to form clots in the blood vessels, determined by 
the relationship between the prothrombogenic (saturated) and 
the antithrombogenic fatty acids (sum of MUFA and PUFA) and 
was calculated as [C14:0 + C16:0 + C18:0]/[(0.5*ΣMUFA) + 
(0.5*n-6) + (3*n-3) + (n-3/n-6)]. Both indices were calculated 
as described by Ulbricht and Southgate (1991).

2.4. Calculation of lipid enzyme activity indices

The desaturase, elongase, and thioreductase enzyme activ
ities were estimated by relating the amount of the specific 
substrate to the corresponding product of the respective 
enzyme (Del Puerto et al., 2017). The activity of stearoyl- 
CoA desaturase (Δ9-desaturase) was estimated by calculat
ing the ratios 16:1 n-7 to 16:0, 18:1 n-9 to 18:0, 
16:1 n-7 + 18:1 n-9 to 16:0 + 18:0. The sum of Δ5 desaturase 
+ Δ6 desaturase was used as an index to estimate long-chain 
n-6 and n-3 formation starting from the corresponding pre
cursors C18:2n-6 and C18:3n-3 (Dal Bosco et al., 2012). The 
elongase activity was estimated as the ratio of 18:0 to 16:0 
and the thioesterase as the ratio of 16:0 to 14:0 (Haug et al., 
2014).
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2.5. Statistical analysis

Data on total fat content, intramuscular fatty acid composi
tion, lipid health indices, and lipid enzyme activity indices 
were reported as mean ± standard error of the media (SEM). 
The software used was the NCSS, 2007 (329 North 1000 East, 
Kaysville, UT 84037), and the level of significance was estab
lished at P < .05. Data were analyzed with an analysis of 
variance using the General Linear Model (GLM) procedure 
with feeding systems and muscle type as fixed effects and 
post hoc Tukey-Kramer test. Also, a one-way ANOVA was 
used to compare feeding systems in each muscle.

3. Results and discussion

TB muscle presented a significantly higher total intramuscu
lar fat content (P = .0001) and a significantly higher satu
rated C14:0 content (P = .01), an atherogenic fatty acid 
(Table 1). However, the level of C16:0, another known 
atherogenic fatty acid, is not different between the two 
muscles. CLA content was significantly higher in TB than BF 
(P = .002). CLA is a beneficial fatty acid detected (mainly its 
c9-t11 isomer), which has been shown to possess significant 
anticarcinogenic properties (Enser, 2001; Lock & Bauman, 
2003). Besides, TB presented a lower content of C18:2 n-6 
(P = .0001), ARA (P = .0001), DPA (P = .0007), EPA (P = .02), 
and DHA (P = .001) fatty acids compared to BF. The last two 
fatty acids are often suggested as important to prevent the 
occurrence of cardiovascular disease in humans (Harris et al., 
2008; Ramprasath et al., 2015). These results suggest that BF 

muscle presents a better fatty acid composition regarding 
human health.

Regarding the lipid health indices reported in Table 2, no 
differences between muscles were found in SFA content and 
n-6/n-3 ratio. Besides, the values obtained for the n-6/n-3 
ratio in both muscles were close to recommendations (4–5/ 
1) by FAO-WHO (2010). The balance between n-6 and n-3 
PUFA is an important determinant in decreasing the risk for 
cardiovascular disease and in the prevention of atherosclero
sis (Song et al., 2018). Furthermore, TB presented a higher 
MUFA content (P = .004), a lower PUFA content (P = .003), 
lower sums of n-6 (P = .0001), and n-3 (P = .007) fatty acids 
content, and a lower PUFA/SFA ratio (P = .002) than BF 
muscle. With regards to the atherogenic and thrombogenic 
indices, no significant differences were found between both 
muscles. Indices results showed that BF is better from the 
cardiovascular human health viewpoint than TB, mainly due 
to its higher PUFA content. Despite that the PUFA/SFA ratio 
is higher in BF muscle, the value obtained does not reach 
the advised value of 0.45 as recommended by FAO-WHO 
(2010).

When feeding systems were compared (pasture vs con
centrate), considering the results of both muscles, concen
trate feeding generated a significantly higher intramuscular 
fat content in meat (P = .003) (Table 1). This result was also 
found by other authors (Fruet et al., 2018; Mezgebo et al., 
2017; Realini et al., 2004) and it is explained by the fact that 
feeding grains increase the availability of net energy and 
glucose for fat synthesis and further deposition of lipid in 
the muscle (Scollan et al., 2006). Otherwise, no feeding effect 

Table 1. Total fat content (g/100 g muscle) and fatty acid composition (g/100 g fatty acids) in Triceps brachii (TB) and Biceps femoris (BF) muscles of Aberdeen 
Angus steers produced in pasture and concentrate. 
Tabla 1. Contenido total de lípidos (g/100 g de músculo) y composición en ácidos grasos (g/100 g de ácidos grasos) en los músculos Triceps brachii (TB) y Biceps 
femoris (BF) de novillos Aberdeen Angus producidos en pastura y concentrado.

Muscles Signification

Triceps brachii Biceps femoris Main effects

Pasture Concentrate Pasture Concentrate Muscle Feeding

Total fat (%) 3.25 ± 0.29 7.29 ± 1.28 1.51 ± 0.50 1.80 ± 0.18 0.0001 TB>BF 0.003 C > P

Fatty acids (g/100 g fatty acids)
C12:0 0.09 ± 0.05 0.12 ± 0.05 0.07 ± 0.02 0.06 ± 0.00 NS NS
C14:0 2.74 ± 1.03 3.81 ± 0.93 1.96 ± 0.47 1.99 ± 0.14 0.01 TB>BF NS
C15:0i 0.26 ± 0.09 0.21 ± 0.04 0.23 ± 0.05 0.12 ± 0.01 NS 0.02 P > C
C15:0ai 0.29 ± 0.09 0.21 ± 0.04 0.28 ± 0.06 0.14 ± 0.00 NS 0.01 P > C
C14:1 0.53 ± 0.20 0.95 ± 0.24 0.24 ± 0.07 0.34 ± 0.02 0.01 TB>BF 0.02 C > P
C15:0 0.68 ± 0.23 0.64 ± 0.11 0.73 ± 0.16 0.42 ± 0.01 NS NS
C16:0i 0.23 ± 0.03 0.20 ± 0.02 0.22 ± 0.04 0.16 ± 0.01 NS 0.008 P > C
C16:0 25.0 ± 3.64 29.6 ± 2.32 26.5 ± 2.82 25.5 ± 0.57 NS NS
C16:1 4.24 ± 1.04 5.20 ± 0.44 3.24 ± 0.36 3.19 ± 0.09 0.002 TB>BF NS
C17:0 1.18 ± 0.18 1.15 ± 0.03 1.22 ± 0.03 0.96 ± 0.01 NS 0.02 P > C
C17:1 1.06 ± 0.06 0.86 ± 0.07 0.95 ± 0.33 0.96 ± 0.01 NS NS
C18:0 15.2 ± 1.99 11.9 ± 1.17 16.0 ± 1.14 14.1 ± 0.26 NS 0.007 P > C
C18:1 c9 40.1 ± 3.22 39.8 ± 2.67 36.2 ± 1.56 40.1 ± 0.31 NS NS
C18:2 n6 LA 3.28 ± 0.63 2.15 ± 0.14 5.47 ± 0.31 5.91 ± 0.06 0.0001 BF>TB NS
C20:0 0.11 ± 0.08 0.05 ± 0.02 0.08 ± 0.05 0.09 ± 0.02 NS NS
C18:3n6 0.03 ± 0.02 0.07 ± 0.11 0.04 ± 0.01a 0.02 ± 0.01b NS NS
C20:1 0.17 ± 0.11 0.18 ± 0.05 0.14 ± 0.06 0.18 ± 0.00 NS NS
C18:3 n3ALA 0.71 ± 0.14a 0.21 ± 0.02b 0.90 ± 0.31 0.41 ± 0.01 NS 0.0001 P > C
CLA (c9-t11) 0.59 ± 0.13a 0.35 ± 0.04b 0.27 ± 0.07 0.30 ± 0.00 0.002 TB>BF 0.05 P > C
C20:4n6 ARA 0.50 ± 0.18 0.28 ± 0.09 1.02 ± 0.17 1.39 ± 0.06 0.0001 BF>TB NS
C20:5n3 EPA 0.07 ± 0.04 0.01 ± 0.01 0.12 ± 0.04 0.05 ± 0.00 0.02 BF>TB 0.003 P > C
C22:5 n3 DPA 0.03 ± 0.02 0.05 ± 0.02 0.07 ± 0.03 0.19 ± 0.01 0.0007 BF>TB 0.003 C > P
C22:6 n3 DHA 0.26 ± 0.16 0.10 ± 0.04 0.48 ± 0.18 0.57 ± 0.03 0.001 BF>TB NS
Unidentified 2.61 ± 0.16 1.85 ± 0.37 3.54 ± 0.35 2.88 ± 0.11 – - – -

Values are means ± SEM (n = 10). i: iso; ai: anteiso; LA: linoleic acid; ALA: alfa-linolenic acid; CLA: isomer c9t11 of conjugated linoleic acid; ARA: arachidonic acid; 
EPA: eicosapentaenoic acid; DPA: docosapentaenoic acid; DHA: docosahexaenoic acid; P: pasture; C: concentrate; NS: not significant. Different letters show 
significant differences (P < 0.05) between feeding systems in each muscle. 

Los valores son medias ± EEM (n = 10). i: iso; ai: anteiso; LA: ácido linoleico; ALA: ácido alfa-linolénico; CLA: isómero c9t11 del ácido linoleico conjugado; ARA: 
ácido araquidónico; EPA: ácido eicosapentaenoico; DPA: ácido docosapentaenoico; DHA: ácido docosahexaenoico; P: pastura; C: concentrado; NS: no 
significativo. Letras diferentes indican diferencias significativas (P < 0.05) entre sistemas de producción en cada músculo. 
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was observed for the atherogenic fatty acids C14:0 and C16:0 
(Table 1), for SFA, total n-6, PUFA, and PUFA/SFA ratio (Table 
2). Meat derived from pasture system presented 
a significantly higher C18:3 n-3 ALA (P = .0001), CLA 
(P = .05), EPA (P = .003), total n-3 (P = .02), and a lower 
DPA (P = .003) and MUFA (P = .03) content, as well as 
a significantly lower n-6/n-3 ratio (P = .002) than meat 
derived from concentrate system. In this sense, there are 
some studies (Fruet et al., 2018; Mezgebo et al., 2017; 
Realini et al., 2004) which found similar results and conclude 
that pasture-fed cattle present generally a higher C18:3 n-3, 
total n-3, CLA and a lower MUFA content and n-6/n-3 ratio, 
in the intramuscular fat of meat. The higher presence of the 
n-3 fatty acids in ruminant meat has been associated with 
the high levels of C18:3 n-3 fatty acids present in grasses 
(Body & Hansen, 1978; Engle & Spears, 2004; French et al., 
2000; Shorland, 1961).

As shown in Table 2, no differences between feeding 
systems were observed for the atherogenic and thrombo
genic indices. On behalf of these results, the meat coming 
from steers produced in the pasture system has a better 
fatty acid profile regarding human health, mainly due to its 
higher CLA and n-3 fatty acids content and lower n-6/n-3 
ratio, which are beneficial.

When feeding systems were compared in each muscle, 
the C18:3 n-6 content was significantly higher (P < .05) in BF 
from steers produced in pasture, and the C18:3 n-3 (P < .05), 
CLA (P < .05), total PUFA (P < .05) and total n-3 (P < .05) 

content were higher in TB muscle from steers produced in 
pasture compared to concentrate diet.

The de novo fatty acid synthesis yields 16:0 as the end 
product that can serve as a substrate for further elongation 
or desaturation (Shingfield et al., 2013). When lipid enzyme 
activity indices were calculated, some significant differences 
were found between the muscles studied (Table 3). TB pre
sented a higher Δ9-desaturase C14:0 (P = .0001), C16:0 
(P = .0002) and C18:0 (P = .0001), which reflects the higher 
content of C14:1 (P = .01) and C16:1 (P = .002). No significant 
differences between muscles were found for C18:1 content. 
TB also presented a significantly lower Δ5+ Δ6 desaturase 
and thioesterase indices compared to BF. As the Δ5+ Δ6 
desaturase index represents a tool to estimate the ability 
to synthesize long-chain fatty acids from precursors, it 
explains why BF presents a higher total PUFA content and 
particularly, EPA, DPA, and DHA.

When comparing meat from different feeding systems 
some differences were found in the lipid enzyme activity 
indices. Meat from the concentrate system presented 
a significantly higher Δ9-desaturase C14:0 (P = .0001) 
which reflects the higher C14:1 content (P = .02) found in 
meat from this system and a significantly higher 
Δ9-desaturase C18:0 (P = .0001). The elongase activity 
index was significantly higher in meat from the pasture 
system (P = .05), which agrees with the fact that the C18:0 
content was higher (P = .007) in meat coming from this 
feeding system.

Table 2. Lipid health indices in Triceps brachii (TB) and Biceps femoris (BF) muscles of Aberdeen Angus steers produced in pasture and concentrate. 
Tabla 2. Indices de salud lipídicos en los músculos Triceps brachii (TB) y Biceps femoris (BF) de novillos Aberdeen Angus producidos en pastura y concentrado.

Muscles Signification

Triceps brachii Biceps femoris Main effects

Pasture Concentrate Pasture Concentrate Muscle Feeding

SFA 45.86 ± 3.25 47.87 ± 2.30 47.35 ± 2.47 43.53 ± 0.45 NS NS
MUFA 46.06 ± 2.09 47.05 ± 2.10 40.75 ± 1.51 44.75 ± 0.20 0.004 TB>BF 0.03 C > P
PUFA 5.47 ± 1.32a 3.23 ± 0.44b 8.37 ± 1.08 8.84 ± 0.15 0.003 BF>TB NS
Σn-6 3.81 ± 0.83 2.51 ± 0.32 6.53 ± 0.48 7.32 ± 0.10 0.0001 BF>TB NS
Σn-3 1.07 ± 0.36a 0.37 ± 0.09b 1.57 ± 0.54 1.22 ± 0.05 0.007 BF>TB 0.02 P > C
n6/n3 3.67 ± 0.46 6.88 ± 0.88 4.53 ± 1.57 5.98 ± 0.19 NS 0.002 C > P
PUFA/SFA 0.12 ± 0.04 0.07 ± 0.01 0.18 ± 0.03 0.20 ± 0.01 0.002 BF>TB NS
AI 0.71 ± 0.20 0.90 ± 0.17 0.71 ± 0.14 0.63 ± 0.03 NS NS
TI 0.99 ± 0.25 1.29 ± 0.20 1.01 ± 0.22 0.92 ± 0.03 NS NS

Values are means ± SEM (n = 10). SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; AI: atherogenic index; TI: 
thrombogenic index; P: pasture; C: concentrate; NS: not significant. Different letters show significant differences (P < 0.05) between feeding systems in each 
muscle. 

Los valores son medias ± EEM (n = 10). SFA: ácidos grasos saturados; MUFA: ácidos grasos monoinsaturados; PUFA: ácidos grasos poliinsaturados; AI: índice 
aterogénico; TI: índice trombogénico; P: pastura; C: concentrado; NS: no significativo. Letras distintas indican diferencias significativas (P < 0.05) entre sistemas 
de producción en cada músculo. 

Table 3. Lipid enzyme activity indices in Triceps brachii (TB) and Biceps femoris (BF) muscles of Aberdeen Angus steers produced in pasture and concentrate. 
Tabla 3. Indices de actividad de enzimas lipídicas en los músculos Triceps brachii (TB) y Biceps femoris (BF) de novillos Aberdeen Angus producidos en pastura 
y concentrado.

Muscles Signification

Triceps brachii Biceps femoris Main effects

Pasture Concentrate Pasture Concentrate Muscle Feeding

Δ9 desaturases
C14:0 16.2 ± 0.09 19.9 ± 0.10 10.9 ± 0.28 14.6 ± 0.12 0.0001 TB>BF 0.0001 C > P
C16:0 14.3 ± 0.83 14.9 ± 0.05 10.9 ± 0.03 11.1 ± 0.03 0.0002 TB>BF NS
C18:0 72.5 ± 0.58 77.0 ± 0.32 69.3 ± 0.35 74.0 ± 0.12 0.0001 TB>BF 0.0001 C > P
C16:0+ C18:0 52.4 ± 1.30 52.0 ± 1.11 48.1 ± 1.01 52.2 ± 0.18 NS NS
Δ5+ Δ6 desaturases 17.0 ± 2.52 15.6 ± 2.12 20.7 ± 1.51 25.9 ± 0.29 0.004 BF>TB NS
Elongases 0.62 ± 0.10 0.41 ± 0.04 0.61 ± 0.06 0.55 ± 0.01 NS 0.05 P > C
Thioesterases 9.76 ± 1.41 7.99 ± 0.82 13.8 ± 1.00 12.9 ± 0.37 0.001 BF>TB NS

Values are means ± SEM (n = 10). P: pasture; C: concentrate; NS: not significant. 
Los valores son medias ± EEM (n = 10). P: pastura; C: concentrado; NS: no significativo. 
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4. Conclusions

From the results obtained in this work, we can conclude that 
the fatty acid profile is better, from the cardiovascular 
human health viewpoint, in a hindquarter muscle like 
Biceps femoris, than in a forequarter muscle such as Triceps 
brachii, of Aberdeen Angus steers. Therefore, it is reasonable 
to pay a greater price for a hindquarter than for 
a forequarter muscle. Also, we can conclude that the pasture 
system, for bovine meat production, is more recommended 
regarding the fatty acid composition of meat products. 
Indeed, meat produced in those systems presents higher 
contents of beneficial fatty acids, such as CLA and n-3, 
compared to concentrate finishing systems.
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