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Abstract
Wepresent a simple argument leading to a fundamentalminimumuncertainty in the determination
of times. It only relies in the uncertainty principle and time dilation in a gravitationalfield. It implies
any attempt tomeasure timeswill have a fundamental level of uncertainty. Implications are briefly
outlined.

The issue of if the fundamental theories of physics impose limitations on the accuracy of howwe can determine
physical quantities has been analyzed by several authors over the years. Salecker andWigner [1] considered an
idealized clock consisting of twomirrors with light bouncing between them and concluded that theminimum
uncertainty of such a clockwas proportional to the square root of the ratio of the time to bemeasured and the
mass of the clock. Such argument is based exclusively on quantummechanics. Several authors [2] have
combined that argument with ingredients coming fromgravity and reached the conclusion that the clock’s
precision has a bound proportional to fractional power of the time to bemeasured. In particular the fact that one
cannot concentrate arbitrarily large quantities of energy in a finite region, as a black hole forms The
constructions require the introduction of several elements, like specificmodels for clocks or assumptions about
the extent of regions of strong gravitational fields. A separate argument byNg and Lloyd [3] uses theMargolus–
Levitin theorem and reaches similar conclusions. Here wewould like to present a streamlined argument that
only relies on the uncertainty principle and the time dilation in gravitational fields and basic error propagation
theory to put bounds on the precision of a clock.

The existence of fundamental limitations in themeasurements of physical quantities can have profound
conceptual implications. For instance, ordinary formulations of quantummechanics treat time as a classical
variable, which implicitly implies that it can bemeasuredwith arbitrary precision. Other variables are certainly
not treated this way. The limitations in timemeasurementmay lead to a loss of unitarity in the formulation, as
variablesmeasured by real clocks cannot track the ideal classical time assumed in the formulation of the
Schrödinger equation [4]. In fact, limitations on themeasurements of space and time have led us to propose a
new interpretation of quantummechanics, theMontevideo Interpretation [5].

We here consider amicroscopic quantum systemplaying the role of a clock and amacroscopic observer that
interacts with the clock interchanging signals.We start by considering the time-energy uncertainty relation,

( )D D > E t . 1c

whereΔtc is of the order of the period of oscillation of the systembeing considered. The clock does not
necessarily have to be associated to a periodicmotion. Busch et al [6] have proposed extensions that allow to
consider time as an observable even in the case of non periodic clocks. Nomatter what type of systemwe
consider, theHelstrom–Holevo bound [7] sets limits to themeasurement of the evolution time of any quantum
state. The uncertainty in any estimation of the evolution time of the state through themeasurement of an
arbitrary observable satisfies the time energy condition.

Wenow consider the relationship between the timemeasured by the clock locally, tc, and an observer at an
infinite distance from it, t. The gravitational time dilationwasfirst described byAlbert Einstein in 1907 as a
consequence of special relativity in accelerated frames of reference. In general relativity, it is considered to be a
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difference in the passage of proper time at different positions as described by a themetric tensor of space-time.
The relevance of this effect in the determination of fundamental limitations to timemeasurements was
emphasized by Frenkel [8]. It is given by,

( )=
-

t
t

1
, 2c

r

r
S

with rS the Schwarzschild radius of the clock in question, =r GE c2s
4 withE the energy of the clock and r its

radius.Wewill assume that an observer cannot be arbitrarily close to the clock. For a standard atomic clock this
effectmay seemnegligible but for an optimal clock it would be important aswe shall see. The best clocks we can
consider are quantum systems that aremicroscopic. In such a case an observer will not be able to get close to the
clock, and its distance, for all practical purposes can be taken to be infinite (at least compared to themicroscopic
value of r).

As an example (see figure 1), take an atomic clock based on the transition of an electron between energy levels
in an atom.We construct an electromagnetic source at the frequency thatmaximizes the probability that an
electron transition between levels. This is a frequency standard. The source emits photons that interact with the
atomandmake the electron transition.We repeat this formany atoms and check howmany are excited. This
allows tomaximize the transition probability. In reality the photon, after being emitted, falls in the gravitational
field of the atom, allowing to use (2) to compute the red shift of the photon’s frequency. There is an uncertainty
in the frequency of the emitted photon. This uncertainty will suffer the correction due to time dilation described
above.Nowadays, the best clocks we have taken as reference are based on low energy atomic transitions. It would
be desirable to have transitions of higher frequency, but stability presents an experimental challenge.We are
neglecting other possible quantum gravitational effects sincewe are considering processes that always occur in
clocks larger than their Schwarzschild radius, andwewill encode thefluctuations of themetric in the
uncertainties of the Schwarzschild radius.

Wewould like to establish the uncertainty in the observed period of oscillation. Using the standard
technique for the propagation of errors of ameasurement, taking differentials of the above expression, we have
that,
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and from the definition of the Schwarzschild radius,
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and therefore for the clock thatminimizes the uncertaintyΔt the following holds,
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Figure 1.A schematic description of the setup.
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And substituting (5) in (3), we get,
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this indicates thatΔtcwill be bounded since it appears in the numerator and the denominator.We observe that
- r r1 S is a positive quantity less than one, since the size of the clock cannot be smaller than its Schwarzschild

radius, and using (2) to translate tc to t, one has that,
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and assuming that the clock has size r and that the oscillationwithin it takes place at themean speed vwehave
that p = Dr v t2 c. Then, differentiating with respect toΔtc tofind theminimumvalue of the time uncertainty
and get, that theminimumoccurs at,

( ) ( )p
D =t

c t t
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with lPlanck Planck’s length. This expression isminimizedwhen v is the speed of light, yielding,

( ) ( )pD =t tt2 , 9c
1 3

Planck
2 1 3

with tPlanck Planck’s time, and this corresponds to a value of the error in the observed time of

( )pD >t t t3 . 101 3 1 3
Planck
2 3

This bound depends on t, for t=1 second is ten orders ofmagnitude smaller than the accuracy of the best
current clocks,Δt/t is smaller the larger the time t. One can also estimateΔE/E, which turns out to be smaller
than 10−20 for themeasurement of a one second interval and decreases as the interval to bemeasured increases.
Using equation (2) it can be easily seen that this bound is saturated by a clockwith a radius approximately given
by =r r3 S.

This limit is similar to the ones obtained by previous authors but it did not assume any particularmodel of
the clock, only the uncertainty principle and the formula for time dilation in a gravitational field. It also suggests,
taking into account equations (2), (9) and (10)what is the ideal clock, a clock that saturates the bound, an
oscillation given by a particle orbiting the black hole near r3 S, the innermost stable circular orbit of a non-
rotating black hole. Itmight be possible to go beyond thatwith orbits at slightly lower radius, respecting the
bound of equation (10), but it would be difficult to create a stable system.

Summarizing, it is possible to obtain a bound for the accuracy reachable by a clock using only fundamental
bounds of quantummechanics and taking into account the gravitational time dilationwithout having to go into
the details of the practical implementation of the clock. The analysis is interpretation independent.

Acknowledgments

We thank an anonymous referee for bringing theHelstrom–Holevo bound argument to our attention. This
workwas supported in part byGrantsNSF-PHY-1603630, NSF-PHY-1903799, funds of theHearne Institute for
Theoretical Physics, CCT-LSU, Pedeciba and FondoClemente Estable FCE_1_2019_1_155865.

ORCID iDs

Jorge Pullin https://orcid.org/0000-0001-8248-603X

References

[1] SaleckerH andWigner E P 1958Phys. Rev. 109 571
[2] Karolyhazy F 1966Nuo. Cim.A 42 390

NgY J and vanDamH1994Mod. Phys. Lett.A 9 335
NgY J and vanDamH1995Ann.N. Y. Acad. Sci. 755 579
Amelino-Camelia G 1994Mod. Phys. Lett.A 9 3415

[3] NgY J and Lloyd S 2004 Sci. Am. 291 53
[4] Gambini R, Porto R and Pullin J 2007Gen. Rel. Grav. 39 1143
[5] Gambini R and Pullin J 2018Entropy 20 413
[6] Busch P,GrabovskiM and Lahti P J 1997Operational QuantumPhysics. Lect. Notes Phys.m31 (Berlin: Springer)

3

J. Phys. Commun. 4 (2020) 065008 RGambini and J Pullin

https://orcid.org/0000-0001-8248-603X
https://orcid.org/0000-0001-8248-603X
https://orcid.org/0000-0001-8248-603X
https://orcid.org/0000-0001-8248-603X
https://doi.org/10.1103/PhysRev.109.571
https://doi.org/10.1007/BF02717926
https://doi.org/10.1142/S0217732394000356
https://doi.org/10.1111/j.1749-6632.1995.tb38998.x
https://doi.org/10.1142/S0217732394003245
https://doi.org/10.1007/s10714-007-0451-1
https://doi.org/10.3390/e20060413


[7] Montanaro A 2008Prof. IEEE Information TheoryWorkshop 378 [arXiv:0711.2012]
Braunstein S L, Caves CMandMilburnG J 1996Ann. Phys. 247 135
HolevoA S 1982Probabilistic and Statistical Aspects of QuantumTheory (Amsterdam:North-Holland)

[8] Frenkel A 2015 Found. Phys. 45 1561

4

J. Phys. Commun. 4 (2020) 065008 RGambini and J Pullin

http://arxiv.org/abs/0711.2012
https://doi.org/10.1006/aphy.1996.0040
https://doi.org/10.1007/s10701-015-9938-x

	Acknowledgments
	References



