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El secreto para que las cosas sean hechas está en
hacerlas.

Dante Alighieri
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Resumen

El siguiente trabajo es el resultado de la tesis de maestŕıa de Fernando Suzacq.
La tesis se centró alrededor de la investigación sobre el reconocimiento facial en 3D,
sin la reconstrucción de la profundidad ni la utilización de modelos 3D genéricos.
Esta investigación resultó en la escritura de un paper y su posterior publicación
en IEEE Transactions on Pattern Analysis and Machine Intelligence.

Mediante el uso de iluminación activa, se mejora el reconocimiento facial en 2D
y se lo hace más robusto a condiciones de baja iluminación o ataques de falsificación
de identidad. La idea central del trabajo es la proyección de un patrón de luz de
alta frecuencia sobre la cara de prueba. De la captura de esta imagen, nos es
posible recuperar información real 3D, que se desprende de las deformaciones de
este patrón, junto con una imagen 2D de la cara de prueba. Este proceso evita
tener que lidiar con la dif́ıcil tarea de reconstrucción 3D. En el trabajo se presenta
la teoŕıa que fundamenta este proceso, se explica su construcción y se proveen los
resultados de distintos experimentos realizados que sostienen su validez y utilidad.

Para el desarrollo de esta investigación, fue necesario el estudio de la teoŕıa
existente y una revisión del estado del arte en este problema particular. Parte del
resultado de este trabajo se presenta también en este documento, como marco
teórico sobre la publicación.
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Summary

The following work is the result of Fernando Suzacq’s Master’s Thesis. This
thesis was focused on the investigation of 3D facial recognition, without recon-
structing depth nor using generic 3D models. As a result of this investigation
a paper was written that was later published in IEEE Transactions on Pattern
Analysis and Machine Intelligence.

With the usage of active illumination, 2D facial recognition is improved and
becomes more robust to low-light conditions or identity spoofing attacks. The main
idea presented in this work is the projection of a high frequency light pattern on
top of the test face. From a shot of this image, it is possible to decompose and
recover real 3D information that becomes available from the deformations of the
pattern according to the structure of the face, and also a 2D image of the test
face. This process lets us avoid having to deal with 3D reconstruction which is a
much harder task. In this work the theory behind this process is presented. Then a
detailed explanation of how it was constructed is made and different experimental
results are provided that proves its validity and usefulness.

For conducting this investigation, a previous study of the existing theory and
a review of the State of the Art in this specific problem was necessary. Part of
the result of this work is presented also in this document, as an introduction and
theoretical background to the published paper.
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Prefacio

A partir de la siguiente sección, la tesis se encuentra en inglés. La razón de
esto es que gran parte de la escritura se realizó en el contexto de la realización de
art́ıculos cient́ıficos y con colaboración de colegas extranjeros.

Fernando Suzacq
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Chapter 1

Introduction

The field of Artificial Intelligence has seen tremendous advancements over the
past decades. It is a field rather young (partly because it is extremely tied to
computing in general, which is also young), yet it has seen dramatic changes with
an amazing speed, producing astonishing results. Today, we are all impacted by
this field in some regard: be it a spam filter in our emails inboxes, a predictive
keyboard in our cellphones, an automatic person tagging service in any social
network.

The pervasiveness of these techniques in the latest years, coupled with some
results seen in recent years, makes it a topic interesting to be studied in depth.
This work was mainly centered on the application of machine learning techniques
to images. Although ML is being applied to different kinds of data, e.g., structured
data, text, time-series, images present some interesting challenges. On one hand,
images convey a lot of information, can be complex to understand and in the last
few years the amount of data generated and stored has increased dramatically.
On the other hand, there are already a lot of mature techniques, previous to the
advent of machine learning and particularly deep neural networks, that produced
good results and have an interesting relationship with newer techniques. The field
that tries to understand images programmatically and extract information and
sense out of them is called Computer Vision.

Latest advancements of computer vision were due to breakthroughs in a specific
Machine Learning technique: Neural Networks. Many discoveries were made in
recent years, from figuring out how to train them properly and how to initialize
them, to better architectures and techniques. Particularly, Convolutional Neural
Networks (CNN), a specific NN architecture, are a great match for computer vision
problems.

Machine Learning is a rather large body of knowledge. To gain some context
and set the appropiate stage for what will come later, in the first part of this work
we will try to summarize and explain some key ideas of the field. Focusing on deep
learning, we will review different seminal works throughout the years that shaped
this field into what it is today. We will try to explain some of the key components
of neural networks as clearly and succinctly as possible. Then, to sum up this
introduction to the field, we will move to view different architectures that have
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been proposed, specifically suited to be used in computer vision.
Computer Vision is comprised of a lot of subfields that tackle different prob-

lems. Some of them try to detect information present in the image such as objects,
human poses, detecting and recognizing faces, detecting and recognizing written
text, segmenting the area occupied by an object. Others deal with generating im-
ages: transferring style, generating objects from text or other input data.

There has been major advancements in the field of Face Recognition with the
usage of these techniques. Accuracy results of face identification and verification in
the latest datasets (which are composed of hundred of thousands of facial images)
are astonishingly good. However, one shared characteristic of all of the proposed
techinques is that they work with a 2D image taken from a 3D face. This presents
some drawbacks. On one hand, some representational power is being lost. On the
other hand, it is possible to confuse a verification system by presenting a 2D image
to it, which it would have a hard time distinguishing it from a 3D face. We propose
a method to recover real 3D information from a 2D image to mitigate this problem,
by projecting a structured light pattern over the original 3D face. In the second
part of this work, after presenting the problem of face recognition and the current
architectures and solutions to it, we will present and explain this method in depth,
both the theory in which it is based and experiments that have been made and
show its usefulness in practice.

This work is ordered as follows: In the next Chapter we will discuss what is
Machine Learning, and the different techniques of the field. Chapter 3 will focus
on Face Recognition. We will present what this problem consists of and briefly
approach related areas of study necessary for the next Chapter. Chapter 4 will focus
on the proposed novel approach, resulting from the article: 3D face recognition
without depth reconstruction nor usage of generic 3D models. Finally, in Chapter
5 we will provide the conclusions and lines of future work.

2



Chapter 2

Machine Learning

2.0.1. Definition & classifications

A Machine Learning algorithm is an algorithm that is able to learn from data
[28]. There are a couple of commonly used definitions to describe what is learning,
and one of them, presented by Mitchell in 1997 [64] is:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.

Essentially, we can see that there are three basic components: task, perfor-
mance, and experience. We need to be able to measure the performance of a
task T with P, and get better at that task with experience E. There are a lot of
different variations of T, P, and E, but informally, at the core of the definition,
is the idea that the performance improves by “experience” and not by manual
programming. Although the field is older, with other definitions tracing back to
1959, this definition is pretty clear and widely quoted. The main advantage that
these algorithms have is that they can solve problems that may be too difficult
to program, finding solutions that cannot be reached otherwise, automating and
optimizing processes.

Tasks are usually defined depending on how the example at hand should be pro-
cessed. An example can be thought of a particular instance of an experience E. Dif-
ferent tasks are: Classification (stating to which class an example belongs to), Re-
gression (predict a numerical value given an example), Transcription/Translation
(transform an example to another kind of representation - speech to text, span-
ish to english), synthesis and sampling (generate examples similar to those in the
training data). This list is by no means exhaustive.

The performance measure is specific to the task that we are learning. For
classification, the accuracy of the model is usually measured (right class - wrong
class), while for regression a different measure has to be defined, since the error
is a continuous value. The definition of the performance measure is extremely
important, not only to compare two different algorithms, but also it will impact
on how well and efficiently the algorithm will learn.
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Finally, the way examples are experienced separates ML algorithms in broadly
two groups: unsupervised and supervised learning.

Supervised learning algorithms deal with examples that have an associated
target or label. For example, we know the correct class for each example in the
training set in classification, or the correct translation in translation/transcription
tasks. After training it, the algorithm will predict the corresponding label when
given an unseen example. Algorithms are evaluated with a test set, that is, with a
set of examples not seen before.

Unsupervised learning algorithms deal with examples that do not have an as-
sociated target. They experience them, and learn properties about their structure.
They try to learn the entire probability distribution that generated a dataset. This
can be later used for tasks like clustering or synthesis.

Both problems are not completely separate since an unsupervised learning
problem of modelling p(x) can be converted to n supervised problems by making
use of the chain rule of probability in cases where we know the possible targets.
This is, given x ∈ RN we learn (x|xi) for i in 1..N, where xi are the targets. At
the same time, we can solve the supervised problem of learning p(y|x) by learning

the joint distribution of p(x, y) and then inferring p(y|x) = p(x,y)∑
y′p(x,y′) .

There are also other learning paradigms like semi-supervised learning (some
examples include targets while other do not), multi-instance learning (a collection
of examples is labeled as including an example of a class -or not- but individual
examples are not identified), reinforcement learning (instead of experiencing a
fixed dataset, the algorithm interacts with an environment and learns from its
experience with it), and so on.

2.0.2. Algorithms

There are many different machine learning algorithms e.g., Linear regression,
Support Vector Machines, Decision Trees, K-nearest neighbors, K-means clustering
and so on. It is beyond the scope of this work to describe in detail these algorithms;
there is abundant literature available addressing this issue, see for example, [7],
[31], [65]. We will focus on a particular learning technique: Neural Networks. In
particular, we will deal with Deep Learning, which is a specific architecture of
Neural Networks, as we will see in the following Section.

Machine learning algorithms are very diverse, building on lots of different ideas.
However, they share some generalities in the way they are trained and evaluated.
Since they will be shared with Neural Networks as well, we will present these ideas
in the following.

We can separate the process of working with machine learning models into two
distinct stages: training and prediction. Our main goal when training a model is
to be able to make predictions at a later time, but most importantly, on unseen
data. That is what makes these algorithms so powerful: the ability to generate
more information about an example in an automatic way, without intervention.
Therefore, to mimic this situation, the available data X will always be split into
two sets: Xtrain and Xtest. We will use the first set to train our model, as its name

4



implies, and we will use the second set only to evaluate the model’s output, to
have a similar situation to what the model would experience in a real scenario,
and have a sense of how well it works. There are some subtle considerations that
we must have when making this split, in order not to use data at training time
that will not be available at prediction time (this is called data leakage).

Stating that an algorithm performs well (or not) depends on having a quan-
tifiable definition of its performance. While it varies with the task at hand (e.g.,
classification vs. clustering), usually, a function is defined that conveys this value.
For example, on a regression task (e.g., a model that tries to predict the price of
a house), the Mean Squared Error can be used (the average of the squared error
between the predictions and the ground truth values, for each example considered
MSE = 1

m

∑

i(y
pred
i − ygti )2) or some other similar measure. If we are trying to do

a cluster analysis, we may use the intra and inter-class euclidean distance of the
clusters. In this way, we can compare the performance of two completely different
models, since it only depends on the outputs.

Predictions will be a function of the inputs. For example, in a linear regression,
this would be represented as ŷ = wT ·x, but on other types of models this can be a
lot more complex. Nevertheless, all of the algorithms share having a set of weights
w that will determine the output for a given input x.

2.0.3. Learning process

In most algorithms, learning involves using the evaluation measurements (or
related functions - cost functions) and optimization techniques to steer the outputs
of the models towards the correct value to minimize or maximize the evaluation
measurement. In practice, these optimization algorithms are used to tweak the
weights of the model and get better predictions, therefore getting a better perfor-
mance. When looking at neural networks, we will focus on a particular example,
stochastic gradient descent. Despite its simplicity, it has been the most widely used
optimization technique (or some variation of it), producing great results [28].

Most machine learning models also have settings that we can use to tune the
behavior of the algorithm and achieve better results. These are usually called
hyperparameters. For example, if we are trying to fit a curve through a set of
points, the degree of the polynomial that fits the data would be a hyperparameter.
They are not learned as part of the training algorithm and cannot be evaluated
as part of the training set. In the example presented above, if we try to determine
the degree of the polynomial by looking at the training data, we would end up
with the highest value possible that fits all data points, while it might not be the
best result. In order to deal with this problem, a validation set is usually defined:
a hold-out set from the training set used to evaluate the different selections of
hyperparameters.

When we train a machine learning model, we can compute an evaluation metric
or error on the training set, called training error. However, as stated before, we
want to be able to perform well on unseen inputs. Since the way we simulate
unseen samples is with our test set, our most important metric will be the test

5
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error: the error on the test set. This is the key difference that separates these type
of problems from optimization problems. As long as we keep the gap between the
training error and the test error small, we can focus on minimizing the former.
If the training error is considerably smaller than the test error, we will be facing
with the problem of having overfitted the training set. The model can represent
the training set well, but it does not generalize properly, which is seen on a poor
test error. On the other hand, if the training error is large, we will say that the
model is underfitting the training set. Often though, underfitting is an indication
that the model lacks the complexity the data requires, meaning, is too simple to
describe and learn the distribution of the data. This problem is usually related
to the capacity of the model and its representation power. Balancing the learning
process so that the learning algorithm fits the training set while at the same time
generalizing properly is one of the central challenges in machine learning.

These considerations stated above are shared amongst most machine learning
algorithms and set the general framework in which models are trained and evalu-
ated. In the following Section, we will focus on Neural Networks and revisit some
of the discussion introduced above. Having a concrete example might help clarify
some concepts. At the same time we have to note that there are considerations
that are particular to each method. This is what makes machine learning such an
interesting and challenging field of study.

2.1. Deep Learning

2.1.1. History

Deep learning is a family of machine learning methods based on artificial neural
networks. They learn the representation needed to perform a variety of tasks like
classification or regression, replacing manual feature engineering.

It is useful to have some historical context of the development of deep learning,
to understand how it has gotten to what it is today. Although it can be traced
back to the 1940s, it was relatively unpopular until recent years, going through
several name changes. The dramatic increase in available training data due to
the ubiquity of computer systems and cheap storage solutions, together with the
increase of computing power, has allowed the development of this field and enabled
it to get astonishing results.

Artificial neural networks (ANNs) initially drew their inspiration from neurons
in our brains, although lately, researchers have been trying to distance themselves
from the analogy. They were introduced in 1943 and have a lot of landmark break-
throughs in their history. In this 1943 paper [63], the artificial neuron was proposed.
It consists of one or more binary inputs and one binary output. The output acti-
vates when the number of activated inputs are above certain threshold. They can
be used to build a network that can compute any logical proposition.

Artificial neurons used on nowadays networks where introduced by Rosenblatt
in 1958 [74]. In his paper he introduced the Perceptron, one of the simplest ANN
architectures. It is based on linear threshold units (LTUs), and its difference with

6
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Figure 2.1: Diagram of an LTU. Xi correspond to the inputs and Wi to weights, one associated
to each input. Each input is multiplied by its corresponding weight, and the resulting terms
are summed up. Finally, the result of this sum is fed to a step function. Therefore, the output
of the LTU corresponds to the application of the step function to the inner product of vectors
X and W .

the artificial neuron previously explained is that inputs are numbers (instead of
0-1) and each input connection is associated with a weight. A weighted sum of
inputs is performed and a step function is applied to that output. A diagram of
its structure can be seen on Figure 2.1.

2.1.2. Perceptrons

An LTU can be used for a simple linear binary classification. Perceptrons, seen
on Figure 2.2, have only one LTUs layer, where each unit is connected to every
input. Inputs in general are represented by a pass-through neuron, that is, the
outputs are the same as the input. Additionally, a neuron is added that represents
bias, which always outputs 1.

To train a perceptron, examples of the training set are fed to the network one
at a time, getting a prediction out of it. If the prediction is wrong, connections
weights that would have led to a correct prediction are reinforced. This rule is
summed up in the following equation:

wt+1
i,j = wt

i,j + α(ygtj − ypredj )xi (2.1)

wt
i,j : is the connection weight between input i and output j on time t.

xi: is the i input value of the current training example.

7
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Figure 2.2: Diagram of a Perceptron. A Perceptron is a combination of a number of LTUs,
on a single layer. Each input is connected to each LTU, and an additional input, the bias, is
added.

ygtj : is the expected value for output j.

ypredj : is the predicted value for the output j in the current training example.

α: is the learning rate.

This learning rule is similar to Stochastic Gradient Descent, which is used to
train neural networks even at the present day.

Since the output of Perceptrons is linear, it can be proved that they are always
capable of solving patterns where the data is linearly separable. However, their
representation power is somewhat limited and they are unable of learning complex
patterns. For example, they cannot learn a representation where they can correctly
classify an XOR function (having two inputs, output is 0 if both inputs are equal
and 1 if they are different). This problem is solved by stacking Perceptrons, and
the resulting architecture is called Multi-Layer Perceptrons.

2.1.3. Multi-Layer Perceptrons

An MLP is composed of one input layer, one or more layers of LTUs (called
hidden layers) and one final output layer. Each output layer also contains one
neuron that is a bias, and each neuron is fully connected to the next layer. This
means that the output of each neuron is an input to each and every neuron of the
following layer. A diagram of an MLP can be seen on Figure 2.3.

One key decision in the definition of the LTU is the choice of the step function.
The step function has to be non-linear, so that the output of the network is not
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2.1. Deep Learning

Figure 2.3: Diagram of an MLP. An MLP is a composition of LTUs layers. Inner layers are
called hidden layers and the outermost layer is the output layer. Each hidden layer, in addition
to the LTUs, contains a neuron that is a bias.

linearly dependent on the input. This non-linearity is what prevents the network
from collapse into a unique linear combination and provides the network with more
representation power.

Usually, when the network contains two or more hidden layers they are called
Deep Neural Networks (DNN). Training them is no different than training any
other Machine Learning model: an optimization procedure is defined together with
a cost function. The nonlinearity present in these models causes loss functions to
become nonconvex. Therefore, these models are usually trained using iterative,
gradient-based optimizers that push the cost function to a low value.

2.1.4. Backpropagation

For many years, training these kinds of networks was considered problematic.
The introduction of the Backpropagation algorithm, in 1986, solved this problem.
It enables the application of Gradient Descent. It is done using reverse-mode auto-
matic differentiation (automatically calculating gradients applying the chain rule,
from the output layer to the input layer).

In a first stage, we make a prediction on each element of the training set while
storing the result of each layer. Weights were previously initialized randomically.
There are several ways of initializing the weights, each with a different impact
on the network, this will be discussed later. This first stage is called forward
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Chapter 2. Machine Learning

propagation or forward pass. A scalar cost J(θ) is computed as result of this
procedure.

The backpropagation algorithm allows the information from the cost function
to flow back through the network, to compute the gradient for each weight. Com-
puting an analytical expression for the gradient is straightforward but it can be
computationally expensive. Backpropagation allows us to compute the gradients
in a cheap and simple way. It is based on the chain rule of calculus, that states

that given y = g(x) and z = f(g(x)) = f(y),
dz

dx
=

dz

dy

dy

dx
. Using it, an algebraic

expression can be written for each gradient of the cost function with respect to
each weight. However, when evaluating these expressions, considerations must be
made since a lot of computations are involved.

The gradient of the loss function of the network is calculated. Then, how much
each neuron of the last hidden layer contributed to the error of each output neu-
ron’s error is measured by calculating the gradient of the outputs with respect
to the weights in the last hidden layer. This procedure is iteratively followed on
each hidden layer, until the input layer is reached. In this way, the error gradient
is propagated backward and calculated in each weight and bias. This is known as
backward pass. By performing it iteratively in this way unnecessary computa-
tions in the chain rule application are avoided.

Calculating the gradient for the loss with respect to each weight, enables the
application of Gradient Descent. Gradient Descent is an optimization algorithm
that finds the local minimum (maximum) of a differentiable function by taking
steps towards the negative (positive) direction of the gradient of the function.
A particular variation of gradient descent is usually used when training Neural
Networks: Stochastic Gradient Descent. The only difference is that instead of cal-
culating the gradient considering the whole training dataset, it takes an estimate
by calculating the gradient from a subset of the data.

2.1.5. Activation functions

One key modification in the MLPs architecture was necessary to be able to
apply Backpropagation algorithm. Activation function step had to be replaced.
The reason for this is that Gradient Descent cannot be applied on flat segments,
since gradient is 0 and it cannot “move” through the surface. This function only
had flat segments. Currently several activation functions are common:

Logistic function: σ(z) = 1
1+exp(z) - Original substitution, but nowadays is

rarely used.

Hyperbolic tangent function: tanh(z) = 2σ(2z)−1 - Similar to logistic func-
tion (S-shaped output), is continuous and differentiable, but is 0-centered,
having its output values between -1 and 1. This makes the output relatively
normalized, which sometimes helps speed up convergence.

Rectified Linear Unit (ReLU): ReLU(z) = max(0, z) - It is continuous and
differentiable except on 0. In practice is usually used since it works really
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2.1. Deep Learning

well and it is cheap to compute.

2.1.6. Hyperparameters

Neural networks are quite flexible. This is both an advantage and a disad-
vantage. There are lots of hyperparameters that need to be adjusted, which can
drastically change the output of a network. In the context of neural networks, we
call hyperparameters to those set when building the network, and determine its ar-
chitecture (in contrast to network’s parameters that are adjusted during training,
like weights and biases). Some of them are:

Number of hidden layers

Number of neurons per hidden layer

Activation functions

Number of hidden layers. The universal approximation theorem proves that neu-
ral networks with only one hidden layer are universal approximators. This means,
they can approximate arbitrarily well any real-value continuous function. Never-
theless, the theorem does not state steps for its construction, it just proves that it
is possible.

Neural networks with several layers have better efficiency in the usage of pa-
rameters: a network with more hidden layers can exponentially use fewer neurons
than a network with only one hidden layer. This makes it both faster to converge
and easier to train. In addition to it, it improves generalization on the dataset.

On the other hand, too many hidden layers can make it harder to train. Finding
the appropriate number of hidden layers is not currently well defined and it usually
depends on the experience of the practitioner (and his luck).

Number of neurons per hidden layer. The number of neurons in hidden layers
is tightly connected with the input and output of the network. If they are too
many, the network can essentially memorize every input and expected output,
failing to generalize. A common technique is to increase the number of neurons
until the training dataset is overfitted (predicting this set with 100% accuracy,
without considering the validation dataset), and then apply different regularization
techniques, like dropout or batch normalization to make the network generalize.

Like selecting the number of hidden layers, a procedure to find the best value
does not exist, and this number has to be selected by a combination of experience
and trials and errors.

Activation functions. Although the most used activation function is ReLU, there
are several alternatives. While some of them are completely different, others are
just variations over ReLU. One of the advantages of this function is that it is
extremely cheap to compute, and in practice it works extremely well. This is partly
due to the fact that it does not saturate its output on large input values (unlike
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tanh or sigmoid). We will see different activation functions in one of the following
Sections.

2.1.7. Deep neural networks

If we are tackling a complex problem, it may be necessary to increase the
complexity of the architecture of the network (e.g., increasing the number of hidden
layers or the number of neurons in them) to solve it correctly. However, this increase
can lead to several different problems:

Vanishing and/or exploding gradients: Backpropagation algorithm to train
the network propagates the error from the output layer to the input layer.
If we are dealing with a large network, gradients tend to become small (van-
ishing) or quite large (exploding) on each subsequent pass of the algorithm
to the next layer.

Training time: If the network is large and it contains millions of parameters,
training time can become really slow and a bottleneck in the development
of a solution to the problem.

Training set memorization: a large number of parameters risks overfitting
the training set and not generalize properly.

Vanishing and exploding gradients. The backpropagation algorithm works by
calculating the gradient of the cost function with respect to the output layer, and
then moving towards the input layer by propagating this error gradient in order
to calculate the error gradient corresponding to each parameter. In each step of
gradient descent, parameters are updated.

Gradients usually become smaller as the algorithm progresses towards the input
layer. The effect of this is that weights on the lower layers (those closer to the input
layer) are virtually unchanged, and it may take a lot of iterations to converge to a
solution (or it might even not converge at all). The opposite can happen as well,
where gradients increase towards the lower layers, weight updates are huge and
the algorithm diverges. This is more common in Recurrent Neural Networks. We
will see now some techniques to alleviate these problems.

Initializations. On a 2010 paper, Glorot and Bengio [27] analyzed and conclud-
ed that the standard way of initializing the weights together with the activation
function choice of logistic function was one of the main reasons of the difficulty
in training these networks. Weights where randomly initialized by taking samples
of a normal distribution with mean 0 and standard deviation 1. In that paper,
they showed that in that case the variance of the output is much greater than
the variance of the input. It increases on each layer until the activation function
saturates on the top layers.

When the input becomes large (both negative and positive), the logistic func-
tion saturates at either 1 or 0, and its derivative is extremely close to 0. Therefore,
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when backpropagation is applied, gradient is extremely close to 0 and it cannot
be propagated properly through the network. This problem is worse on each layer
since the gradient keeps getting diluted on each layer.

In order to solve this problem, an initialization was proposed to allow the
signal to flow in both directions. Since the objective is for the signal not to die
out but also not to explode, the authors argue that the variance of the outputs
must be equal to the variance of its inputs and also the gradients must have equal
variance before and after flowing through each layer. Then, weights are initializated
randomly sampling from:

A normal distribution with mean 0 and standard deviation σ =
√

2
ninputs+noutputs

A uniform distribution between -r and r with r =
√

6
ninputs+noutputs

While it does not guarantee that both conditions are met (and this is only pos-
sible when ninputs = noutputs) it is a good compromise that works well in practice.
These distributions depend on the choice of the activation function. The former
are known as Xavier initialization. Another well-known initialization technique is
the one used for the ReLU activation function, known as He initialization [33]:

Normal distribution with mean 0 and standard deviation σ =
√
2
√

2
ninputs+noutputs

Uniform distribution between -r and r with r =
√
2
√

6
ninputs+noutputs

2.1.8. Activations

The same 2010 paper [27] shown that part of the vanishing/exploding gradients
problem was due to the choice of the activation function. After that paper, logistic
activation function fell slowly out of fashion and was replaced by ReLU, mostly
because it does not saturate on positive values and it is fast to compute.

ReLU(z) = max(0, z) (2.2)

While they behave better than the logistic, they suffer from another set of
problems. In particular, they can die during training and output only 0s. This
happens after an update where the weighted sum of the neuron’s input is nega-
tive. In this case, it is unlikely that it will step out of this state. To solve this,
LeakyReLUs where proposed:

LeakyReLU(z) = max(αz, z) (2.3)

Other similar variants of ReLUs where proposed, such as randomized ReLUs,
parametric ReLUs, and perhaps the most interesting one, exponential linear units
(ELUs), that seem to outperform the other variants. However, it is more expensive
to compute.
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2.1.9. Optimizers

Having computed the analytic gradient with backpropagation, this result is
used to update the parameters. While the basic approach is to apply gradient
descent, there are several other variations. The basic update is done by: x =
x − α · dx, where x is a vector of parameters, α is the learning rate (the length
of the step taken) and dx is the gradient of the loss function with respect to the
parameters x.

Momentum is an alternative to this simple approach, that consist of adding
a term that takes into the account the movement that the algorithm has had in
previous iterations. If it is moving in some direction, it builds up a certain velocity.
The update rule is then: x = x−v where v = µ∗v−α ·dx. µ serves as a coefficient
of friction, usually taking values between 0.5 and 0.99, to slow the velocity. These
changes improve convergence times for the algorithm.

Nesterov momentum [6] is an improvement on the previous approach. Basi-
cally, the calculated momentum is going to modify the step taken in a way that is
known before calculating the gradient. Therefore, instead of calculating the gradi-
ent in the original position, it gets calculated in the modified position (also called
look-ahead position), getting in this way a more precise gradient step. Then, the
update has the form: x = x−v with v = µ ·v−α ·dxahead where xahead = x+µ ·v.

These methods use a unique learning rate through the whole process and in the
same way for all parameters. Since the learning rate is a hyperparameter that is
expensive to tune, methods have been devised to automatically adapt the learning
rate as part of the learning process.

In Adagrad [22], a cache the size of the gradient is kept. It is used to keep
track of the sum of the squared gradients: C = C + dx2. This cache is then used

to normalize the update step per parameter: x = x− α · dx√
C + ǫ

. In this way, weights

that receive high gradients get their learning rates reduced and viceversa. The ǫ
term is added to avoid divisions by zero.

RMSProp is a modification of Adagrad, because the latter is sometimes too
aggressive in decreasing the learning rate. The modification is done on the cache:
C = γ · C + (1 − γ) · dx2. In this way, the learning rate of each weight depends
on the gradients it receives, but since the cache is leaky (due to the first term),
learning rate do not get monotonically smaller.

Finally, Adam [44] is a combination of RMSProp and Momentum. Parameter

updates look like in RMSProp or Adagrad: x = x − α ·m√
v + ǫ

. m is a smoothed

version of the gradient: m = β1 ·m+ (1− β1) · dx and v acts as the cache, storing
the momentum per weight: v = β2 · v + (1− β2) · dx2

In practice, Adam is heavily used and recommended, and it is usually the
one that yields best results. However, running tests at the same time with SGD
together with Nesterov is also common.
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2.1.10. Regularization

Regularization is any modification made to reduce the generalization error (test
error) but not the training error. It might even be detrimental to the train error.
It tries to improve the generalization of the algorithm, this is, the performance on
unseen cases. It is a way of dealing with the problem of overfitting the training set.
There are many regularization strategies. To name some examples: some of them
put constraints on the values that the parameters can take, others add terms to
the objective function, and others modify the training algorithm. This list is by
no means exhaustive. We will discuss two techniques that are heavily used in deep
learning: Dropout and Batch Normalization.

Dropout. Dropout [82] is a computationally cheap strategy to regularize a wide
variety of models. The key idea in dropout is to randomly drop non-output units
and their connections with some probability, usually between 20% and 50%. This
prevents the network from relaying too much on a particular neuron, an input,
and on units to co-adapt too much. This strategy yields great results in terms of
regularization, is simple to implement and is fast to execute.

When making predictions, units are not dropped. Therefore, the output of the
neurons must be scaled to have the same expected outcome as the one that they
had in training time. For example, given a neuron with output x and dropout
rate p, the expected output would be px+ (1− p)0. At inference time, the output
would be x, so to have the same input that it was receiving at training time, x has
to be adjusted to px. Basically the activations are adjusted by the dropout rate.
In practice, instead of adjusting at inference time, this is considered at training
time and outputs are adjusted at that point. This is partly because to simplify
the implementation of the prediction, which has the advantage of being faster and
transparent to the techniques applied at training time.

Batch Normalization. Vanishing and exploding gradient problems can come back
during training. In a 2015 paper [40], Ioffe and Szegedy proposed a technique to
address them, called Batch Normalization. The distribution of the layer’s input
changes during training as the parameters of the previous layer changes (they
name it Internal Covariate Shift), and this technique tries to solve that.

Essentially, they add an operation before each activation which consists in
zero-centering and normalizing the inputs, and then scaling and shifting the result
using two new parameters (one for scaling and the other for shifting). In this way,
the model learns the optimal scale and shift of each input. Mean and standard
deviation needs to be estimated to center and normalize the inputs, so they are
calculated as a moving average, each time a mini-batch is fed to the network. Of
course, the downside is of increased complexity in the network and also a runtime-
penalty due to the extra computations.
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2.2. Convolutional Neural Networks

Several different neural network architectures have been proposed throughout
the years, with different results depending on the task at hand. Convolutional
neural networks are particularly suited to process data that has a grid-like topol-
ogy - locality is important. They are particularly suited to process images, given
that this kind of data possesses this characteristic: pixels that are next to each
other have a much more meaningful relationship than those that are far away.
Nevertheless, they are also applied in other types of data (e.g., Time-series).

CNNs are heavily inspired by the visual cortex of living organisms. In partic-
ular, works by Hubel and Wiesel in the 50s and 60s [37], [38], understanding the
visual cortex of cats and monkeys, are usually cited as inspiration for the design
of these networks. They were initially introduced by Fukushima in 1980 [26], with
the proposal of the neocognitron. With this network, two different types of layers
were introduced: convolutional layers and downsampling layers. These two remain
as key building blocks of CNNs even nowadays. First results with this type of
networks were presented by LeCun [50], applying them to understanding zip-code
handwritten characters, while also learning the kernels with backpropagation and
gradient descent. His research continued for several years, until the introduction of
LeNet-5 [49] in 1998. This network was used to recognize handwritten numbers in
checks, and became foundational in further research in computer vision problems.

2.2.1. Architecture

The neurons of the first convolutional layer are not connected to every pixel
in the input image. They have a small receptive field. In turn, those in the sec-
ond layer are also connected to a small rectangle in the first layer. The result of
this architecture is that the lower layers concentrate on low-level features, while
higher-level layers assemble them into higher-level features. A representation of
this process can be seen on Figure 2.4.

Weights in convolutional layers are 2D, and they are usually square matrices.
The operation made is a cross-correlation, where these matrices are multiplied by
the input, and then every value of the result is summed up to output just one
value. These 2D weights are called filters or convolution kernels, and the result
of the cross-correlation operation of each filter with each part of the image (re-
ceptive field) is called a feature map. Filters can be stacked together, resulting
in several stacked feature maps. Within one feature map, all neurons share the
same parameters (weight and biases), but different feature maps have different
parameters.

Having all neurons in a feature map share the same parameters reduces the
number of parameters in the model drastically, but most importantly, it means that
once the CNN has learned to recognize a pattern in one location, it can recognize
it in any other location. CNNs are translation-invariant.
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2.2. Convolutional Neural Networks

Figure 2.4: Representation of the process in a convolutional neural network. Each filter (W0
and W1) in turns, are slided over the input volume. In the step seen in the image, the filter
W1 is multiplied by the uppermost right part of the input volume. The sum of the result of the
multiplication (which is a cross-correlation), fills its corresponding value in the output volume.
Image taken from Stanford course cs231n [95].

Pooling Layers. The goal of pooling layers is to subsample the input image, in
order to reduce the computational load, memory usage and number of parameters.
It also helps the CNN tolerate a bit of image shift. Pooling layers, like convolutional
layers, are connected to a small rectangular receptive field. However, they have no
weights. All that it is done is to aggregate the inputs using a function like max or
mean. Pooling layers typically work on each channel independently. The two most
common pooling layers are MaxPooling and AvgPooling which use max and mean
as the aggregation function, respectively.

2.2.2. CNN architectures

Several architectures were proposed over the years. Most of them build on
the previous proposals, introducing new changes to get better results on different
tasks. We will discuss a few examples that had some major significance, either
because they were introducing a new important idea or because they were the best
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performing alternative when proposed.

LeNet5. Presented in 1998 [49], it was one of the first CNN that achieved great
results. It is considered to be a breaking point in the field, having triggered the in-
terest of many researchers in the field, and the inspiration of further advancement
that would come in later years. It is a simple architecture, containing two convo-
lutional layers and three fully connected layers, with a total of 60K parameters.

AlexNet. Another important breakthrough in the field was the proposal of AlexNet
[45] in 2012. It was presented in the ImageNet Large Scale Visual Recognition Com-
petition, and it won by a large margin over its contenders, which started a trend of
seeing increased application of CNNs in submissions to this type of challenges. It
contains 8 layers, 5 of them being convolutional layers while the remaining 3 are ful-
ly connected. Being significantly larger than LeNet, it contains 60M parameters.
Having this number of parameters, its training was computationally expensive,
and it was made possible due GPUs usage. This was a trend that would continue
to increase in the following years. Another interesting innovation was that they
changed the activation function, using ReLUs, which was something not common
at the time.

VGGNet. VGGNets [80] are another iteration on the same trend, making net-
works deeper, while maintaining pretty much the same architecture. The main
contribution in this paper is moving towards deeper architectures, which proved to
yield better results. They presented different variants of the networks: VGG-13, 16,
and 19, with 10, 13, and 16 convolutional layers respectively, and 3 fully connected
layers. VGG16, which was greatly used in other problems (both its architecture
and its weights with transfer learning), is comprised of 138M parameters.

ResNet. Introduced in 2016 [34], ResNets addressed a problem that CNNs where
suffering at the time: Increasing the depth of the networks improved the accuracy
up to a point, where it would start to saturate and then it would degrade rapidly.
This architecture introduced (or actually popularized) the usage of skip connec-
tions (also called residual connections). These skip connections link the input of
a layer with the output of a layer two or three levels before. These connections
simplify the network and reduce the impact of the vanishing gradients problem.
Combined with these, this network was also an early adopter of Batch Normaliza-
tion, benefiting from its advantages.

Inception & Xception. Around at the same time ResNet was proposed, another
family of architectures were proposed between 2014 and 2016. These are Inception-
v1 and Inception-v3, in 2014 [88], and 2015 [89], respectively, and Xception in
2017 [11]. The main idea behind both inception networks, was to improve the us-
age of computational resources inside the network. This is done by the usage of
1x1 convolutional layers, to reduce computational bottlenecks, and using parallel
towers of convolutions with different filter sizes, to cluster different features. v3
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performs some variations to further improve the usage of computational resources
by factorizing some convolutions. Xception takes the inception idea to the extreme
replacing the inception modules with depthwise separable convolutions. 1x1 con-
volutions are applied to each channel, thus capturing cross-channel correlations.
Then 3x3 or 5x5 convolutions are applied, capturing spatial correlations within
each channel.

Others. CNN architectures are an active area of research, and lots of other archi-
tectures were presented after the ones mentioned above: Inception-ResNet-v2 [87],
ResNeXt-50 [99], Efficient-Nets [92], etc. In this Chapter we reviewed some of the
key contributions that where made over the years, and that have had impact in
different problems in Computer Vision. In the next Chapter, we will focus in an
specific area of study in Computer Vision: Face Recognition.
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Chapter 3

Face recognition

Face recognition is a computer vision problem, in which we try to match the
identity of a person with a picture of her face. Two subproblems can be considered:

Face verification: Given an image of a face, it gets compared to a ground
truth image of a person’s face, and the challenge is to state if it is the same
person or not to verify its identity. It can be used, for example, as a biometric
safety measure to unlock a device such as a smartphone.

Face identification: Given an image of a face, and a database of images
of faces with associated identities and other information, the top-N most
similar ones are retrieved, to try to identify the person in the original image.
It can be used with missing people databases, with law enforcement or with
personalization of systems. The usage of these systems and the collection of
facial images, has been under heavy scrutiny due to privacy issues. We keep
these important ethical and practical considerations very present during all
our research.

In this Chapter, we will study the problem of face recognition and techniques
used in this area. Then, we will review Active Stereo Geometry fundamentals,
which will be necessary for Chapter 4.

3.1. Face Recognition

The process of identifying or verifying a person’s identity only using an image
of their face is a complex problem. How an image of a face is captured may impact
greatly in the accuracy of the system. For example, resolution, lightning, head
rotation or tilt affect the performance and the ability of the system to match
two faces (and therefore, two identities). Aging, occlusions, styles (e.g., facial hair-
style) are also variables to be considered. While results considering only some of the
problems presented above, achieve an extremely good accuracy (e.g., recognition
made from ID photos), other variables like aging, occlusions and lighting have
proven to be more challenging. They are still under active research.
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The general framework used for face recognition consist of three main steps:
detect the face, extract representational features and finally, compare those fea-
tures.

3.1.1. Face detection

It can be considered a specific case of object detection, in which the object to
detect is a face. The objective is to detect the presence of a face in an image, and
if detected, determine the location inside that picture. Usually, that location is
given by defining a bounding box that encloses the face with the pixel-location of
the four corners of the box, or stating the pixel-location of facial landmarks, such
as the corners of the eyes, nostrils, points on the chin, etc. It is a problem in itself
since it has applications other than face recognition.

Like face recognition, detection is a problem that has been studied for several
years now, with proposed techniques like Eigenfaces in 1987 [81] and Viola-Jones
in 2001 [96]. In latest years, new techniques based on CNN have been proposed,
improving substantially the state of the art. In 2016 MTCNN [101] was proposed,
in 2017 was Faceness-Net [106], and in 2019 RetinaFace [15] which is the best
method available today.

After faces are detected, and landmarks are identified, images are transformed,
trying to obtain a canonical alignment, in order to remove differences due to trans-
lation, scale and rotation. For most unconstrained problems, faces are detected “in
the wild” (no predetermined position of the face and camera). Therefore, this step
in the recognition pipeline has a significant importance to enable the extraction
of representative features of the face. To be representative, they must be invari-
ant to affine transformations. If the modifications needed for the problem at hand
are small (small rotations, translations), using simple geometrical transformations
may be enough. However, when dealing with datasets that contain faces in any
position, more complex techniques must be applied.

We will present RetinaFace in the following paragraph, as an example of one
of these techniques, to see the challenges and techniques that this task involves.

RetinaFace. RetinaFace combines a lot of techniques and improvements made
over the years in other publications, together with some original proposals.

Basically it works by applying feature pyramid levels on the different stages
of a ResNet. It gets feature levels at different scales, using top-down and lateral
connections. On each level, a set of anchors are defined where to search for faces.
75% of the anchors come from the lowest level, which correspond to tiny faces.
Then, that information is combined in context modules, one for each level. What
these context modules do is to enhance the receptive field and the rigid modelling
power. A representation of this architecture can be seen on Figure 3.1.

After processing this information, if the anchor corresponds to a negative ex-
ample (meaning it does not correspond to a face), only a simple classification loss
is applied. However, if the anchor corresponds to a positive sample, a multi-task
loss is applied. The application of this loss is what has improved the result of the
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Figure 3.1: RetinaFace architecture. Applies feature pyramid levels on different stages of a
ResNet. It uses top-down and lateral connections to get to P2 to P6 feature levels. P2 to P6
are fed to context modules. Image taken from [15].

Average Precision in face detection.

The loss is composed in the following way:

L = Lcls(pi, p
∗
i ) + λ1p

∗
iLbox(ti, t

∗
i ) + λ2p

∗
iLpts(li, l

∗
i ) + λ3p

∗
iLpixel (3.1)

Lcls corresponds to the classification loss, where pi is the prediction of the
anchor being a face or not, and p∗i is 0 for a negative anchor and 1 for a positive
anchor. Lbox corresponds to the regression loss for the bounding box around the
face, which is calculated with an smoothed-L1 loss. Lpts is the loss of the predicted
facial loss. As part of what was proposed in this paper, they manually annotated
5 facial landmark points: eyes centers, nose and the sides of the mouth. This
extra signal proved to improve the performance of the face detection. This loss
corresponds to the difference between the predicted points and ground truth points.

Finally, as part of the original proposals, they added a branch to predict the
shape of the face in 3D, in parallel to the other predictions (classification, bound-
ing box, facial landmark points). This loss, Lpixel, corresponds to the difference
between the prediction of the 3D shape and the prediction of the 3D shape done by
a different model (mesh decoder), which is taken as ground truth. In an ablation
study done also in this paper, they showed that the presence of this branch also
improves the performance.

As a result, the proposed method improves the state of the art performance in
WIDER FACE [100] dataset and also, when used together with ArcFace, improves
the state of the art performance in IJB-C [62] dataset for face verification.

3.1.2. Recognition architectures

Different recognition techniques were proposed throught the years. We will
analyze some examples presented in the last decade. Based on CNN architectures
and trained on large datasets, these networks have achieved astonishing results,
enabling its usage in different applications, even for the general population.

DeepFace. Deep face [90] was introduced by Facebook in 2014. On this paper,
they state that the modern face recognition pipeline has 4 stage: Detect → Align
→ Represent → Classify. They used a Deep Neural Network with 120 million
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parameters for the steps for Align and Represent. They improved by 27% the
accuracy in LFW [36] (unconstrained Face Recognition).

It was one of the first to use DL for this task, specially considering such a heavy
improvement on the accuracy of the current face recognition benchmark dataset.

Their contributions can be summarized as follow:

1. Development of a DNN that is trained on a very large labeled dataset and
obtains a representation that generalizes well to other datasets.

2. An effective face alignment system based on 3D modelling of the faces.

3. Advancements in state of the art in LFW reaching near human-performance
levels and YTF [98] decreasing error rate in more than 50%.

They developed a novel 3D-alignment technique to deal with out-of-plane ro-
tations that affect the recognition performance.

To perform the alignment, they start by detecting 6 fiducial points on the
detection crop, that correspond to the eyes (2), nose (1), sides and center of the
mouth (3). This detection is done with a simple Support Vector Regressor (SVR).
With these points, a 2D similarity transformation (scale, rotate and translate) is
calculated, taking these points to 6 anchor locations. Iterations on this process are
made with the new transformed image until no significant change is detected.

Then, on the resulting image, 67 fiducial points are detected, again with an
SVR. A generic 3D shape model is used (which is an average of samples from a
database with 3D scans of faces) in which 67 fiducial points were manually placed.
Using the correspondence between the two sets of points in 2D and 3D, an affine
3D-to-2D camera (P) is fitted.

Finally, with P calculated, a step that they call *frontalization* is made. A
relaxation of the target 3D points is made by adding the residuals of the previous
step to each fiducial point. This is because P is only an approximation and in
applying the transformation, identity-bearing factors would be distorted by the
warping made. Then, considering the Delauny triangulization from the 67 fiducial
points, a piece-wise affine transformation from 2D to 3D is made. The different
intermediate steps of the process can be seen on Figure 3.2.

A DNN is trained on a multi-class face recognition task. The DNN takes as
input the 3D-aligned RGB image. Its architecture, which can be seen in Figure 3.3,
consists of 7 layers. C1 and C3 are convolutional layers, with 32 11 by 11 filters
and 16 9 by 9 filters respectibly. M2 is a max pooling layer to be more robust to
local translations. L4, L5 and L6 are locally connected layers: they apply a filter
bank but every location on the feature map learns different filters. Finally, F7
and F8 are fully connected layers, with F7 being the representation vector for the
face, while F8 is connected to a softmax layer [29], used only for the purposes of
training. Dropout is applied on F7. As a last step, the resulting vector from F7 is
normalized to zero to one range, and then an L2-normalization is applied.

In order to generalize to different datasets, the verification metric for two faces
that they use is just the inner product of two normalized feature vectors. However,
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Figure 3.2: Alignment pipeline. (a) The detected face, with 6 initial fiducial points. (b) The
induced 2D-aligned crop. (c) 67 fiducial points on the 2D-aligned crop with their corresponding
Delaunay triangulation, triangles are added on the contour to avoid discontinuities. (d) The
reference 3D shape transformed to the 2D-aligned crop image-plane. (e) Triangle visibility w.r.t.
to the fitted 3D-2D camera; darker triangles are less visible. (f) The 67 fiducial points induced
by the 3D model that are used to direct the piece-wise affine warping. (g) The final frontalized
crop. (h) A new view generated by the 3D model. Image and caption taken from [90].

Figure 3.3: DeepFace architecture. The CNN architecture is composed of 2 convolutional layers
(C1 and C3), one max pool layer between them (M2), and then 3 locally connected layers (L4,
L5, and L6). Finally, F7 and F8 are fully connected layers. F7 is used as the representation
vector. The input image is frontalized as explained above. Figure taken from [90].
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Figure 3.4: FaceNet structure. A batch of images is fed to a CNN architecture. Its output is L2
normalized, getting the output embedding. During training, the embedding is used to calculate
the triplet loss. Image taken from [77].

in addition to that metric, they made tests with a weighted X2 distance and with
siamese networks.

This DNN is trained on a private dataset called Social Face Classification
presented on this paper, built from Facebook images. It contains 4.4M images of
4K identities. They performed several tests, achieving really good results on LFW
and YTF. The best results were achieved by an ensemble of DNNs, combining a
DNNs with different inputs: four with the 3D aligned image trained with different
random seeds, one with the 2D aligned image, one with the gray-level image plus
image gradient magnitude and orientation and one siamese network.

It was an important paper that accelerated the usage of deep learning in the
face recognition task.

FaceNet. FaceNet [77] was introduced by researchers at Google by mid 2015
(at that year’s CVPR). It’s main contribution is that the system learns direct-
ly a mapping from faces images to an Euclidean space, where distances on that
space correspond to a measure of the similarity of faces, while requiring minimal
alignment. In this way, to perform tasks of classification or verification, these em-
beddings can be used and then only a threshold needs to be defined (that separates
different classes, different identities). Previous methods (like DeepFace), needed to
add a classifier such as SVM on top, or perform some post-processing like PCA.

As a result of these improvements, they get a better representational efficiency,
since they use feature vectors of 128 dimensions, while improving the state of the
art in LFW and YTF.

While other methods used bottleneck layers in the network as a representation,
FaceNet objective is to learn this representation. Previous methods were indirect
and inefficient in the sense that the generalization to other faces is not always
ensured and that those layers were usually larger (around 1000 dimensions). To
learn this 128D embedding as the output of FaceNet, it is trained with a triplet-loss
function. The general structure of the system is as shown in Figure 3.4.

The triplet loss essentially involves taking triplets of images, where one is
the anchor, and the other two are one positive example (same identity) and one
negative example (different identity). The idea is for the squared distance of the
anchor to the positive example to be smaller than the squared distance from the
anchor to the negative example plus a margin. Therefore, the loss minimized is the
following: L =

∑N
i [||f(xai − xpi )||22 − ||f(xai − xni )||22 + α]. An idea of the process
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Figure 3.5: Triplet Loss process. Through training the network, the embeddings corresponding
to the anchor and the negative example are separated while the embeddings corresponding to
the anchor and the positive example are pulled together. The process of selecting triplets to
calculate the loss is extremely important to achieve good results. Image taken from [77].

can be seen in image 3.5.

Some considerations must be taken into account when selecting the triplets, in
order to get a fast convergence. Selecting all the possible triplets is impractical since
they do not contribute to the training but still take time. The goal is to select hard
examples. They provide two alternatives: generating the triplets offline or online
on each mini-batch. They focus on the online method. On each mini batch, they
use all the combinations of positives, while only selecting hard negatives: those
with the smallest distance to the anchor. They select examples with the smallest
distance to the anchor while also fulfilling that ||f(xai − xpi )||22 < ||f(xai − xni )||22,
that is, that they are inside the margin. This is because only selecting the hardest
examples can lead to bad local minima and a collapsed model. Due to the use
of this loss, they have to train with batch sizes close to 1000 examples, ensuring
having a minimum number of positive examples in each batch.

Regarding the architecture of the CNN, they performed several tests. They
used one architecture based in Zeiler&Fergus [105], that has 140M parameters.
They also used a set of architectures based on Inception [88], ones that have 7M
parameters and others that have around the same number of parameters but fewer
FLOPS per image, focused on running on mobile phones. Every network is trained
on 100M-200M images, of 8M identities.

Best results were achieved with one of the Inception architectures, improving
the state of the art in LFW and YTF. They also provided some analysis regarding
the number of parameters, FLOPS, amount of training data, image quality and
embedding dimensionality.

VGGFace. VGGFace [69] paper was introduced by the end of 2015, by the Visual
Geometry Group in Oxford. This paper can be considered in response to DeepFace
and FaceNet papers (together with papers about DeepId’s [83], [84], [85], [86]),
because they rightfully state that the recent advancements in Face Recognition
are in part due to the usage of extremely large datasets, which are impossible to
get for research groups. Datasets used by Facebook and Google had 4.4M and
200M images respectively, while the largest public dataset at that moment had
200K images.
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Figure 3.6: VGG architectures. The different configurations proposed in [80] are shown. While
they have similar structures, complexity increases to the right, adding more convolutional layers.
In VGGFace, A, B and D are used. Image taken from [80].

In this paper they present a procedure to gather a large dataset (2.6M images
of 2.6K identities) which they made publicly available, and also they presented
as simple architecture that was on par with the state of the art on LFW while
improving it in YTF. This was also in contrast with the latest DeepId papers, that
proposed ensembles of 200 CNN and were the reigning state of the art in LFW at
that time. We will omit reviewing the construction of the dataset.

The architecture that they used in their experiments is based on the VGG
network [80], which was the winner of some tasks in the 2014 ImageNet challenge.
Configurations A, B and D for VGG are used. They differ on the amount of weight
layers they have, with 11, 13 and 16 layers respectively. They can be seen on Figure
3.6.

Initially they train using a classifier on top with a softmax score. They use
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the dataset that they created, that contains 2,622 identities. There is no overlap
between the identities in that dataset and LFW or YTF. Each image in the dataset
is rescaled to 256x256, and during training random 224x224 crops are taken (from
each corner and the center) and also flipped horizontally with a 50% probability.
2D face alignment is performed.

The last fully connected layer (FC-4096) can be used as a representational
feature to perform face verification comparing euclidean distances. However, the
results can be greatly improved by fine-tunning them using a triplet-loss (as in
FaceNet). This two-stage training is done because they found that bootstrapping
the CNN with a classifier on top made the training significantly easier and faster.

To learn the optimal projection with a triplet-loss, they L2-normalize the out-
put of the previous net and add a FC-layer of dimension 1024. The triplets are
selected by considering all the (anchor, positive) pairs, and extending them with a
negative example, sampled randomly from those that violate the triplet-loss mar-
gin. The sample is done randomly instead of selecting the maximally violating
example in order not to swamp the network with bad examples. To train this lay-
er, the rest of the network is frozen. Best results were achieved with configuration
D (VGG-16) and performing embedding learning, getting to values on par with
the state of the art in LFW, and actually improving it in YTF. At the same time,
the network architecture is much simpler than those that were being used at that
time. VGG-16 would end up being used a lot in different tasks because it offers a
good compromise between performance and complexity.

ArcFace. ArcFace [14] is one of the newest papers about Face Recognition. It
was presented in 2019 by Deng, Guo et al. The paper focuses on proposing a new
loss function to maximize the discriminative power of the learned deep features
by the DCNNs. In this regard, they propose an Additive Angular Margin Loss,
which they call ArcFace. It builds up on previous losses such as SphereFace [57]
and CosFace [97]. These losses, that share some similarities, are an improvement
over softmax loss and triplet loss. However, in this paper, they present ArcFace as
the best of the group.

ArcFace has the advantage of having a clear geometrical interpretation, as it
corresponds to the geodesic distance in a hypersphere, while at the same time
improved the metrics of the state of the art in several benchmark datasets. On top
of this, the computational overhead is minimal.

ArcFace works in the following way. The softmax loss is defined as:

L1 = − 1

N

N
∑

i=1

log
eW

T
yi
xi+byi

∑n
j=1 e

WT
j xi+bj

(3.2)

xi is the deep feature of the i-th sample.

yi is the correct class for sample i.

Wj is the j-th column of the weight matrix W. If j = yi, the column is the
one corresponding to the correct class.
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Figure 3.7: DCNN architecture with ArcFace loss. Based on the feature xi and weight W
normalization, the cos θj (logit) is calculated for each class as WT

j xi. arc cos θyi
is calculated

to get the angle between the feature xi and the ground truth weight Wyi
. In fact, Wj provides

a kind of centre for each class. Then, an angular margin penalty m is added on the target
(ground truth) angle θyi

. After that, cos(θyi
+m) is calculated and all logits are multiplied by

the feature scales s. The logits then go through the softmax function and contribute to the
cross entropy loss. Image taken from [14].

byi is the bias for class y and sample i.

N is the batch size

n is the number of classes

Bias is set to 0 and the logit is transformed as W T
j xi = ||W T

j ||||xi||cosθj where
θj is the angle between the feature vector and the weight vector. W is L2 normalized
and the embedding feature x is also L2 normalized but also re-scaled to s. In this
way, by normalizing both vectors, the prediction depends only on the angle between
them. The embeddings are distributed on a hypersphere of radius s.

Finally, an angular margin m is added to maximize intra-class compactness and
inter-class separability. This margin penalty corresponds to the geodesic distance
in the hypersphere.

The resulting ArcFace loss is the following:

L3 = − 1

N

N
∑

i=1

log
es cos(θyi+m)

es cos(θyi+m) +
∑n

j=1,j 6=yi
es cosθj

(3.3)

.
In the paper, ArcFace is compared to SphereFace and CosFace. It is interesting

to understand their difference. They all propose angular margins, but in different
ways: SphereFace proposes a multiplicative angular margin (m1) while CosFace
proposes an additive cosine margin (m3). A combination of all the margins would
result in the following loss:

L4 = − 1

N

N
∑

i=1

log
es (cos(m1θyi+m2)−m3)

es (cos(m1θyi+m2)−m3) +
∑n

j=1,j 6=yi
es (cos(m1θj+m2)−m3)

(3.4)

.
Other losses proposed are Intra-Loss, Inter-Loss and Triplet-Loss, where terms

are added to L2 (L2 is equal to L3 without the margin added, it is omitted here),
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to improve the intra-class compactness, maximize the intra-class discrepancy and
maximize the angle between the triplet samples, respectively.

They performed an substantial amount of experimentation with different con-
figurations. They used two CNN configurations: ResNet 50 and ResNet 100, ap-
pending after the last convolutional layer a BN-Dropout-FC-BN structure to get
the final 512-D embbedding. They trained on CASIA on some scenarios and
MS1MV2 on others. We refer to the paper to analyze the different results, but
in summary, they found out that ArcFace yields the best results, compared to
SphereFace, CosFace and even to the combination of them.

They also confirmed experimentally that ArcFace perform better than adding
terms such as Intra-Loss, Inter-Loss and Triplet-Loss, being the best at minimizing
intra-class distance while at the same time maximizing inter-class distances. The
other terms may be a little bit better on one of the two tasks, but impacting
negatively at the other task, making it worse overall.

Finally, on top of that, they improved the results of the state-of-the-art in
several benchmarks, such as LFW, YTF, CALFW, CPLFW, MegaFace, and others

3.1.3. Spoofing

A complementary problem to the recognition problem is spoofing. Spoofing is
the attempt to deceive the system into falsely recognizing or verifying an identity.
Given that these systems are sometimes used as biometric safety measures (un-
locking a laptop or computer), it is imperative to study which is the extent of the
security provided, and in which cases the system can be misled into false positives.
At the same time, research in this area has shed light on the recognition problem
as a whole.

There are different techniques to spoof a system, these range from showing
the camera capturing the image a photograph of the person, to 3D printed masks,
with varying results. To defend a system from these attacks, there are several tech-
niques that can be employed, for example: liveness detection, challenge-response,
3D cameras, etc. In the following Chapter, we will propose a new approach that
by exploiting 3D information present in a 2D-captured image, virtually any 2D
attack can be prevented [17]. At the same time, the need for a 3D camera and
performing real 3D reconstruction is avoided. This is desirable, since 3D cameras
are usually expensive and hard to use.

3.2. Active Stereo Geometry

When a structured pattern of light is projected over a surface, it is perceived
with a certain deformation depending on the shape of the surface. For example, the
top left image in Figure 4.5 is acquired while horizontal stripes are projected over
the subject face. As we can see, fringes are no longer perceived as horizontal and
parallel to each other, this deformation codes rich information about the geometry
of the scene, which will be exploited to enhance 2D face recognition methods.
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Figure 3.8: Active stereo geometry. Left sensor illustrates the optical image plane of the device
projecting light (with optical center at point A), and the right sensor illustrates the camera
sensor (with optical center at B). A ray of light projected over a reference plane (at point E)
is perceived by the camera at the pixel position I. When the same ray of light is projected over
an arbitrary surface (at point G), it is perceived by the camera at a shifted location H. The
disparity IH is proportional to JG (height of the surface).

Figure 3.8 sketches the geometry of this situation as if we were looking at the
face from the side (vertical section). On the left, a light source project a ray of light
through the points AG (red line). When this ray is reflected by a reference plane
at the point E, it is viewed by the camera at the pixel location represented by I.
If instead, light is projected over an arbitrary (non-planar) surface, the reflection
is produced at point G and viewed by the camera at the shifted position H. From
now on, we denote the length of the shift IH as the disparity φ.

Similarity between triangles F̂BE-ĤBI and F̂GE-ÂGB leads to EF/DB =
IH/CB and FE/JG = AB/(DB − JG). Defining AB = b (baseline between the
lighting source and the camera sensor), BC = f (camera focal length), JG =
z (surface local height), BD = q (distance of the subject to the camera), and
assuming that q ≫ f, z we obtain,

φ = z
bf

q2
⇒ ∇φ ∝ ∇z. (3.5)

Equation (3.5) quantitatively relates the perceived shift (disparity) d of the
projected pattern and the surface 3D shape z. As the goal of the present work is
to provide local 3D features instead of performing an actual 3D reconstruction,
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the particular value of b, f and h are irrelevant as we shall see. Moreover, we
exploit the fact that the gradient of the local disparity codes information of the
depth gradient. This allows us to extract local geometrical features bypassing the
more challenging steps of 3D reconstruction: global matching and gradient field
integration [18,30,72,108].
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Chapter 4

3D Face Recognition without depth

reconstruction nor generic 3D models

In this Chapter, we will focus on a particular research topic: 3D face recog-

nition without depth reconstruction nor generic 3D models. We look into
the work done on this subject that was published in IEEE TPAMI [17] and present-
ed as a full paper in the International Conference in Computational Photography
2020 [68].

4.1. Abstract

Active illumination is a prominent complement to enhance 2D face recognition
and make it more robust, e.g., to spoofing attacks and low-light conditions. In the
published work, we show that it is possible to adopt active illumination to enhance
state-of-the-art 2D face recognition approaches with 3D features, while bypassing
the complicated task of 3D reconstruction. The key idea is to project over the test
face a high spatial frequency pattern, which allows us to simultaneously recover
real 3D information plus a standard 2D facial image. Therefore, state-of-the-art
2D face recognition solutions can be transparently applied, while from the high
frequency component of the input image, complementary 3D facial features are
extracted. Experimental results on ND-2006 dataset show that the proposed ideas
can significantly boost face recognition performance and dramatically improve the
robustness to spoofing attacks.

Two-dimensional face recognition has become extremely popular as it can be
ubiquitously deployed and large datasets are available. In the past several years,
tremendous progress has been achieved in making 2D approaches more robust and
useful in real-world applications. Though 2D face recognition has surpassed human
performance in certain conditions, challenges remain to make it robust to facial
poses, uncontrolled ambient illumination, aging, low-light conditions, and spoofing
attacks [19,42,66,90]. We address some of these issues by enhancing the captured
RGB facial image with 3D information, as illustrated in Figure 4.1.
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Figure 4.1: Real 3D face recognition is possible by capturing one single RGB image if a high
frequency pattern is projected. The low frequency components of the captured image can be
fed into a state-of-the-art 2D face recognition method, while the high frequency components
encode local depth information that can be used to extract 3D facial features. It is important to
highlight that, in contrast with most existing 3D alternatives, the proposed approach provides
real 3D information, not 3D hallucination from the RGB input. As a result, state-of-the-art 2D
face recognition methods can be enhanced with real 3D information.

High resolution cameras became ubiquitous, however, for 2D face recognition,
we only need a facial image of moderate or low resolution. For example latest
phones frontal camera have a very high resolution (e.g., 3088× 2320 pixels) while
the resolution of the input to most face recognition systems is limited to 224×224
pixels [14,69,77,90,117]. This means that, in the context of face recognition, we are
drastically underutilizing most of the resolution of captured images. We propose
an alternative to use the discarded portion of the spectra and extract real 3D
information by projecting a high frequency light pattern. Hence, a low resolution
version of the RGB image remains approximately invariant allowing the use of
standard 2D approaches, while 3D information is extracted efficiently from the
local deformation of the projected patterns.

The proposed solution to extract 3D facial features has some key differences
with the two common approaches presented in existing literature: 3D hallucination
[24,39,56,70] and 3D reconstruction [104,116]. We will discuss these differences in
detail in the following Section. We illustrate the main limitation of 3D hallucination
in the context of face recognition in Figure 4.2, which emphasizes the lack of real 3D
information on a standard RGB input image. We demonstrate that it is possible to
extract actual 3D facial features bypassing the ill-posed problem of explicit depth
estimation.

The contributions made by the paper are summarized as follows:

Analyzing the spectral content of thousands of facial images, we design a high
frequency light pattern that simultaneously allow us to retrieve a standard
2D low resolution facial image plus a 3D gradient facial representation.
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We propose an effective and modular solution that achieves 2D and 3D
information decomposition and facial feature extraction in a data-driven
fashion (bypassing a 3D facial reconstruction).

We show that by defining an adequate distance function in the space of
the feature embedding, we can leverage the advantages of both 2D and 3D
features. We can transparently exploit existing state-of-the-art 2D methods
and improve their robustness, e.g., to spoofing attacks.

4.3. Related Work

To recognize or validate the identity of a subject from a 2D color photograph
is a longstanding problem of computer vision and has been largely studied for over
forty years [41, 113]. Recent advances in machine learning, and in particular, the
success of deep neural networks, reshaped the field and yielded more efficient, accu-
rate, and reliable 2D methods such as: ArcFace [14], VGG-Face [69], DeepFace [90],
and FaceNet [77].

In spite of this, spoofing attacks and variations in pose, expression and illumi-
nation are still active challenges and significant efforts are being made to address
them [10, 32, 35, 46, 51, 59, 93, 103, 112, 116]. For example, Deng et al. [13] attempt
to handle large pose discrepancy between samples. To that end, they propose an
adversarial facial UV map completion GAN. Complementing previous approaches
that seek for robust feature representations, several works propose more robust
loss and metric functions [57, 97].

4.3.1. 3D hallucination from single RGB.

To enhance 2D approaches, a common trend is to hallucinate a 3D representa-
tion from an input RGB image which is used to extract 3D features [8, 20, 24, 39,
56,70].

For example, Cui et al. [12] introduce a cascade of networks that simultaneously
recover depth from an RGB input while seeking for separability of individual sub-
jects. The estimated depth information is then used as a complementary modality
to RGB.

Limitations of 3D hallucination in the context of face recognition. As discussed
in Section 4.3 3D hallucination methods have intrinsic limitations in the context
of face recognition. To complement the example illustrated in Figure 4.2, here we
show 5 3D facial models obtained by hallucinating 3D from a single RGB input
image. To that end, we apply the 3D morphable model (extremely popular in facial
applications). As we can see, even in the case of a planar spoofing attack, a face-
like 3D shape is retrieved despite that this is far form the actual 3D shape of the
actual scene. This is an expected result, as we discuss in Section 4.3 the problem
of 3D hallucination is ill-posed, and therefore priors need to be enforced in order
to obtain feasible implementations.
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Figure 4.2: Illustration of three different 3D surfaces that look equivalent from a monocular
view (single RGB image). On top, three surfaces (a), (b) and (c) are simulated, being (a)
and (c) flat and (b) the 3D shape of a test subject. We use classic projective geometry [30]
and simulate the image we obtain when photographing (a), (b) and (c) respectively. The
resulting images are shown at the bottom. As we illustrate with this simple example, the
relation between images and 3D scenes is not bijective and the problem of 3D hallucination
is ill-posed. To overcome this, 3D hallucination solutions enforce important priors about the
geometry of the scene. This is why we argue that these methods do not really add to the face
recognition task, actual 3D information. (A complementary example is presented in Figure 4.3.)

4.3.2. 3D face reconstruction.

The approaches described previously share an important practical advantage
that at the same time is their weakness, they extract all the information from a
standard (RGB) 2D photograph of the face. As depicted in Figure 4.2 a single
image does not contain actual 3D information.

To overcome this intrinsic limitation different ideas have been proposed and
datasets with 3D facial information are becoming more popular [117]. For example,
Zafeiriou et al. [104] propose a four-light source photometric stereo (PS). A similar
idea is elaborated by Zou et al. [116] who propose to use active near-infrared illu-
mination and combine a pair of input images to extract an illumination invariant
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Figure 4.3: Example of 3D hallucination [8] from photographs of live faces versus portraits.
Second row illustrates the 3D morphable model (second row) of images of live subjects (first
and fourth columns) and for photographs of portraits of the same subjects (second, third and
fifth columns). Results obtained using the code from [39]

face representation.

Despite the previous mentioned techniques, performing a 3D facial reconstruc-
tion is still a challenging and complicated task. Many strategies have been pro-
posed to tackle this problem, including time delay based [61], image cue based
[23,24,48,71,76], and triangulation based methods [4, 16, 52,75,109].

Although there has been great recent development, available technology for 3D
scanning is still too complicated to be ubiquitously deployed [18,30,107,108].

The proposed solution has two key features that make it, to the best of our
knowledge, different from existing alternatives. (a) Because the projected pattern
is of a high spatial frequency, we can recover a standard (low resolution) RGB facial
image that can be fed into state-of-the-art 2D face recognition methods. (b) We
avoid the complicated task of 3D facial reconstruction and instead, extract local
3D features from the local deformation of the projected pattern. In that sense our
ideas can be implemented exploiting existing and future 2D solutions. In addition,
our approach is different from those that hallucinate 3D information. As discussed
before and illustrated in Figure 4.2 this task requires a strong prior of the scene
which is ineffective, for example, if a spoofing attack is presented (Figure 4.3).

4.4. Gradient Information is Easy to Compute, Absolute

Depth is Hard.

One of the key ideas of the presented approach is to estimate local depth
descriptors instead of absolute depth information. While the former is an easier
task, absolute information is irrelevant for the sake of feature extraction. After all,
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a robust feature representation should be scale and translation invariant.
More precisely, we can define the problem of integrating the absolute depth z

from an empirical estimation of its gradient map (z̃x, z̃y) in a 2D domain Ω ∈ R2

as the optimization problem:

z∗ = argminz∈S

x

Ω

∥

∥∇z − (z̃x, z̃y)
T
∥

∥ ∂Ω. (4.1)

The solution of Equation (4.1) is non trivial. Noise, shadows, and facial dis-
continuities produce empirical gradient estimations (z̃x, z̃y) with irotational com-
ponents, i.e., for some pixels (xi, yi) the rotor of the field is different from zero
∇× (z̃x(xi, yi), z̃y(xi, yi))

T 6= 0. Therefore, the space of target functions S and the
minimization norm ‖ · ‖ must be carefully set in order to achieve a meaningful
solution to Equation (4.1). This is a complex mathematical problem and has been
extensively studied in the literature [1, 2, 21, 73,94].

4.5. Proposed Approach

Notation. Let I ⊂ RH×W×C denote the space of images with H ×W pixels and
C color channels, and Xn ⊂ Rn a space of n-dimensional column vectors (in the
context of this work associated to a facial feature embedding).

Irgb denotes the set of RGB images (C = 3), while I∇z is used to denote the
space of two channel images (C = 2) associated to the gradient of a single-channel
image z ∈ RH×W×1. The first/second channel represents the partial derivative
with respect to the first/second coordinate.

Figure 4.4: Architecture overview. First a network (illustrated in blue) is used to decompose the
input image that contains overlapped high frequency fringes into a lower resolution (standard)
texture facial image and depth gradient information. The former is used as the input of a
state-of-the-art 2D face recognition DNN (yellow blocks). Depth information is fed to another
network (green blocks) trained to extract discriminative (depth-based) facial features. Different
network architectures were tested, we provide implementation details in Section 4.7.

Combining depth and RGB information. The proposed approach consists of three
main modules as illustrated in Figure 4.4:
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g : Irgb → Irgb × I∇z performs a decomposition of the input image into
texture and depth information.

frgb : Irgb → Xn/2 extract facial features associated to the facial texture.

f∇z : I∇z → Xn/2 extract facial features associated to the facial depth.

These three components are illustrated in Figure 4.4 in blue, yellow, and green,
respectively. We decided to have three modules instead of a single end-to-end
design for several reasons that will be discussed below.

We denote the facial feature extraction from the input image as fθ : Irgb → Xn,
where fθ(I) = (frgb(Irgb), f∇z(I∇z))

T with {Irgb, I∇z} = g(I). The subscript θ
represent the parameters of the mapping f , which can be decomposed in three
groups θ = (θg, θrgb, θ∇z), associated to the image decomposition, RGB feature
extraction, and depth feature extraction respectively. In the following we discuss
how these parameters are optimized for each specific task, which is one of the
advantages of formulating the problem in a modular fashion.

Once texture and depth facial information is extracted into a suitable vector
representation x = fθ(I) (as illustrated in Algorithm 1), we can select a distance
measure d : Xn × Xn → R+ to compare facial samples and estimate whether they
have a high likelihood of belonging to the same subject or not. This process is
illustrated in algorithm 2.

It is worth noticing that faces are embedded into a space in which the first
half of the dimensions are associated to information extracted from the RGB
representation while the other half codes depth information. These two sources
of information may have associated different confidence levels (depending on the
conditions at deployment). We address this in detail in Section 4.5.3 and propose
an anisotropic distance adapted to our solution, and capable of leveraging the good
performance of 2D solutions in certain conditions, while improving robustness and
handling spoofing attacks in a continuous and unified fashion.

Algorithm 1 Compute 2D facial features enhanced with 3D information.

1: procedure FacialEmbedding(I)
Decompose the input image into texture and depth gradient information.

2: {Irgb, I∇z} = g(I)
Extract facial information from each component.

3: xrgb = frgb(Irgb)
4: x∇z = f∇z (I∇z)

Combine texture and depth information.
5: x = Concatenate(xrgb, x∇z)
6: return x ⊲ Facial embedding
7: end procedure
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Algorithm 2 The two most common cases of use: “Subject identification” is
to find the id candidates of a sample x by finding its k nearest neighbors on
a predefined gallery X. “Subject verification” verifies if two representations
x and xtemplate belong to the same subject by comparing their distance with
respect to a predefined threshold ǫ.

1: procedure SubjectIdentification(x,X)
Compare subject embedding x against the dataset X

2: ids = argsort(distance(x,X[i]))
3: return ids[: k] ⊲ k candidate ids.
4: end procedure

5: procedure SubjectVerification(x,xtemplate)
Compare the sample x against the template xtemplate

6: idVerified = distance(x, xtemplate) < ǫ

7: return idVerified
8: end procedure

4.5.1. Pattern design.

When a pattern of light p(x, y) is projected over a surface with a height map
z(x, y), it is perceived by a camera located along the x-axis with a deformation
given by p(x+φ(x, y), y) (φ(x, y) ∝ z(x, y)) (see Section 3.2). Let us denote I0(x, y)
the image we would acquire under homogeneous illumination, and p(x, y) the in-
tensity profile of the projected light. Without loss of generality we assume the
system baseline is parallel to the x axis. The image acquired by the camera when
the projected light is modulated with a profile p(x, y) is

I(x, y) = I0(x, y)p(x+ φ(x, y), y). (4.2)

We will restrict to periodic modulation patterns and let T denote the pattern

spatial period, we also define f0
def
= 1

T . To simplify the system design and analysis,
lets also restrict to periodic patterns that are invariant to the y coordinate. In
these conditions we can express p(x, y) =

∑+∞
n=−∞ an e

i2πnf0x where an represent
the coefficients of the Fourier series of p. Note that because of the invariance with
respect to the y coordinate, the coefficients an are constant instead of a function
of y.

Equation (4.2) can be expressed as

I(x, y) =

+∞
∑

n=−∞

I0(x, y) an e
i2πnf0(x+φ(x,y)). (4.3)

Defining qn(x, y)
def
= I0(x, y) an e

i2πnf0φ(x,y), Equation (4.3) can be expressed as [91]

I(x, y) =

+∞
∑

n=−∞

qn(x, y)e
i2πnf0x. (4.4)
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Applying the 2D Fourier Transform (FT) in both sides of Equation (4.4) and using
standard properties of the FT [78] we obtain

Ĩ(fx, fy) =

+∞
∑

n=−∞

q̃n(fx − nf0, fy). (4.5)

We denote as Ĩ the FT of I and use (fx, fy) to represent the 2D frequency domain
associated to x and y axis respectively.

Figure 4.5: 2D plus real 3D in a single rgb image. The first column illustrates the RGB image
acquired by a (standard) camera when horizontal stripes are projected over the face. The
second column isolates the low frequency components of the input image, and the third column
corresponds to the residual high frequency components (In all the cases the absolute value of
the Fourier Transform is represented in logarithmic scale). As can be seen, high frequency
patterns can be used to extract 3D information of the face (third column) while preserving a
lower resolution version of the facial texture (middle column).

Equation (4.5) shows that the FT of the acquired image can be decomposed
into the components q̃n centered at (nf0, 0). In the context of this section, we refer
to a function h(x, y) being smooth if

‖h̃(fx, fy)‖
‖h̃(0, 0)‖

< 10−3 ∀ |fx| >
f0
2
. (4.6)

Assuming I0(x, y) and φ(x, y) are smooth (we empirically validate this hypothesis
below), the components q̃n can be isolated as illustrated in Figure 4.5.

The central component is of particular interest, q0(x, y) = a0 I0(x, y) as it
captures the facial texture information and can be recovered from I(x, y) if f0 is

43



Chapter 4. 3D Face Recognition without depth reconstruction nor generic 3D

models

large enough (we provide a more precise quantitative analysis in what follows).
On the other hand, relative (gradient) 3D information can be retrieved from the
components {q0, q1} as we show in Proposition 1.

Proposition 1. Gradient depth information is encoded in the components {q0(x, y), q1(x, y)}.

Proof. We define the wrapping function W(u) = atan(tan(u)). This function
wraps the real set into the interval (−π/2, π/2] [72]. This definition can be extended
to vector inputs wrapping the modulus of the vector field while keeping its direction
unchanged, i.e., W(~u) = W(‖~u‖)

‖~u‖ ~u if ‖~u‖ 6= 0 and W(~u) = ~0 if ‖~u‖ = 0.

From q1(x, y) and q0(x, y) we can compute1

φW(x, y) =
1

2πf0
atan





Im{ q1(x,y)
q0(x,y)

}
Re{ q1(x,y)

q0(x,y)
}



 (4.7)

where φW denotes the wrapped version of φ. Moreover, φW(x, y) = φ(x, y) +
πk(x, y) with k(x, y) ∈ N (wrapping introduces shifts of magnitude multiple of π).
Computing the gradient both sides leads to ∇φW(x, y) = ∇φ(x, y) + π∇k(x, y)
where ‖∇k(x, y)‖ ∈ N. Assuming the magnitude of the gradient of φ(x, y) is
bounded by π/2 and considering that ‖∇k(x, y)‖ ∈ N, we can apply the wrapping
function both sides of the previous equality to obtain W(∇φW)(x, y) = ∇φ(x, y)
which proves (recall Equation (4.7)) that the gradient of φ can be extracted from
the components q0 and q1. To conclude the proof, we use the property of linearity
of the gradient operation and the fact that φ(x, y) is proportional to the depth
map of the scene (see Equation (3.5) and Section 3.2).

Analytic versus data-driven texture and gradient depth extraction The previous
analysis shows that closed forms can be obtained to extract texture and depth
gradient information. However, to compute these expressions is necessary to isolate
different spectral components q̃n. To that end, filters need to be carefully designed.
The design of these filters is challenging, e.g., one need to control over-smoothing
versus introducing ringing artifact which are drastically amplified by a posterior
gradient computation [16,109]. To overcome these challenges, we chose to perform
a depth (gradient) and texture decomposition in a data-driven fashion, which as
we show in Section 4.6, provides an efficient and effective solution.

Bounds on f0 and optimal spectral orientation. As discussed above, the projected
pattern p(x, y) should have a large fundamental frequency f0. In addition, the
orientation of the fringes and the system baseline can be optimized if faces present
a narrower spectral content in a particular direction. We study the texture and
depth spectrum of the facial images of ND-2006 dataset (this dataset provides
ground truth facial texture and depth information).

1We assume images are extended in an even fashion outside the image domain, to
guaranteed that a1 ∈ R and avoid an additional offset term.
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Figure 4.6: Faces average spectral content. The first column illustrates the mean luminance
and depth map for the faces in the dataset ND-2006. The second column shows the mean
Fourier Transform of the faces luminance and depth respectively. The third column shows the
profile across different sections of the 2D Fourier domain. Columns two and three represent
the absolute value of the Fourier transform in logarithmic scale. Faces are registered using the
eyes landmarks and the size normalized to 480× 480 pixels.

We observed (see Figure 4.6) that for facial images sampled at a 480 × 480
spatial resolution, most of the energy is concentrated in a third of the discrete
spectral domain (observe the extracted one dimensional profiles of the spectrum
shown at the left side of Figure 4.6). In addition, we observe that the spectral
content of facial images is approximately isotropic. See, for example, Figure 4.6
and observe how for 1-dimensional sections across different orientations the 2D
spectra envelope is almost constant. We conclude that the orientation of the fringes
does not play a significant role in the context of facial analysis. In addition, we
conclude that the fringes width should be smaller than 7mm (distance measured
over the face).2

4.5.2. Network training and the advantages of modularity.

As described previously, the parameters of the proposed solution can be split
in three groups θ = (θg, θrgb, θ∇z). This is an important practical property and we
designed the proposed solution to meet this condition (in contrast to an end-to-end

2This numerical result is obtained by approximating the bounding box of the face as
a 20cm× 20cm region, sampled with 480× 480 pixels which corresponds to a pixel length
of 2,4mm, a third of the spectral band correspond to signal of a period of 6 pixels which
leads to a binary fringe of at least 7,2mm wide.
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approach).

Let us define B1, B2, and B3 three datasets containing ground truth depth in-
formation, ground truth identity for rgb facial images, and ground truth identity for
depth facial images, respectively. More precisely, B1 = {(Ii(x, y), I0i(x, y), zi(x, y)), i =
1, ..., n1}, B2 = {(I0i(x, y), yi), i = 1, ..., n2}, and B3 = {(zi(x, y), yi), i =
1, ..., n3}, where Ii(x, y) denotes a (facial or generic) RGB image acquired un-
der the projection of the designed pattern, I0i(x, y) represents (facial or generic)
standard RGB images, zi(x, y) denotes a gray image representing the depth of the
scene, and yi a scalar integer representing the subject id.

We denote as {g1(I), g2(I)} = g(I) the RGB and gradient depth components
estimated by the decomposition operation g. We partitioned the parameters of g
into two sets of dedicated kernels θg = {θg1, θg2}, the first group focuses on retriev-
ing the texture component while the second group retrieves the depth gradient.
These parameters can be optimized as

θg1 = argmin
∑

(I0i,Ii)∈B1

‖g1(Ii)− I0i‖22 (4.8)

θg2 = argmin
∑

(zi,Ii)∈B1

‖g2(Ii)−∇zi‖22. (4.9)

We also evaluated training a shared set of kernels trained with an unified loss.
This alternative is harder to train in practice, due to the natural difference between
the dynamic range and sparsity of gradient images compared with texture images.

For texture and depth facial feature extraction, we tested models inspired in
the Xception architecture [11]. Additional details are provided in Section 4.7. To
train these models we add an auxiliary fully connected layer on top of the facial
embedding (with as many neurons as identities in the train set) and minimize the
cross-entropy between the ground truth and the predicted labels. More precisely, let
us denote f̂rgb(Irgb) = [p1, ..., pc] the output of the fully connected layer associated
to the embedding frgb(Irgb) where pi denotes the probability associated to the id
i,

θrgb = argmin
∑

(I0i,yi)∈B2

∑

c

−1yi=c log(f̂rgb(I0i)[c]) (4.10)

θ∇z = argmin
∑

(zi,yi)∈B3

∑

c

−1yi=c log(f̂∇z(∇zi)[c]) (4.11)

where 1yi=c denotes the indicator function. Of course, one can choose other alter-
native losses to train these modules, see e.g., [14, 57, 97,114].

As described above, the proposed design allows to leverage information from
three types of datasets (B1, B2, B3). This has an important practical advantage as
2D facial and 3D generic datasets are more abundant, and the pattern dependant
set B1 can be of modest size as #(θg) ≪ #(θrgb).
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4.5.3. Distance design.

Once different modules are set we can compute the facial embedding of test
images following the procedure described in Algorithm 1. Let us define xa ∈ Xn

and xb ∈ Xn the feature embedding of two facial images Ia and Ib respectively.
Recall that the first n/2 elements of x are associated to features extracted from (a
recovered) RGB facial image while the remaining elements are associated to depth
information, i.e., x = (xrgb[1], ..., xrgb[n/2], x∇z[1], ..., x∇z[n/2])

T .

We define the distance between two feature representations xa = (xargb, x
a
∇z),

and xb = (xbrgb, x
b
∇z) as

dα,β,γ(x
a, xb)

def
= (1− γ) dc(x

a
rgb, x

b
rgb)

+ γ dc(x
a
∇z, x

b
∇z)

(

1 +
(

dc(xa
∇z

, xb
∇z

)
β

)α)

.
(4.12)

dc : Xn/2 × Xn/2 → [0, 1] denotes the cosine distance, γ ∈ [0, 1] sets the relative
weight of RGB and depth features, and α, β ∈ R define a non-linear response for
the distance between depth features. As we will describe in the following, this
provides robustness against common cases of spoofing attacks.

Intuitively, γ allows us to set the relative confidence associated to RGB and
depth features, for example, γ = 1/2 gives the same weight to RGB and depth
features, while γ = 0 (γ = 1) ignores the distance between samples in the depth
(RGB) embedding space. This is important in practice, as is common to obtain
substantially more data to train RGB models than depth ones (|B2| ≫ |B3|).
This suggests that in good test conditions (e.g., good lighting) one may trust
more RGB features over depth features (γ < 1/2). As we will empirically show in
the following Section, when two facial candidates are compared, dα,∞,γ(x

a, xb) =
(1 − γ) δ(xargb, x

b
rgb) + γ δ(xa∇z, x

b
∇z) is an effective distance choice. However, it

does not handle robustly common cases of spoofing attacks. The most common
deployments of spoofing attacks imitate the facial texture more accurately than
the facial depth [9, 58, 110], therefore, the global distance between two samples
should be large when the distance of the depth features is large (i.e. above a certain
threshold). To that end, we introduce an additional non-linear term controlled by
parameters β and α, for δ(xa∇z, x

b
∇z) < β the standard cosine distance dominates

while for large values the distance will be amplified in a non-linear fashion.

4.6. Experiments and Discussion

Data. Three public dataset are used for experimental validation: FaceScrub [67],
CASIA Anti-spoofing [111], and ND-2006 [25]. FaceScrub contains 100k RGB (2D)
facial images of 530 different subjects, and is used to train the texture-based facial
embedding. CASIA dataset contains 150 genuine videos (recording a person) and
450 videos of different types of spoofing attacks, the data was collected for 50
subjects. We use this dataset to simulate and imitate the texture properties of
images of spoofing attacks. ND-2006 is one of the larges publicly available datasets
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Figure 4.7: Active light projection. From left to right: ground truth RGB facial image, 3D
facial scanner, and finally the image we would acquire if the designed high frequency pattern
is projected over the face. Two random samples from ND-2006 are illustrated.

with 2D and 3D facial information, it contains 13k images of 888 subjects. We
used this set to demonstrate that differential 3D features can be extracted from a
single RGB input, to compare RGB features with 3D features extracted from the
differential 3D input, and to show that when 2D and 3D information is properly
combined, the best properties of each can be obtained.

Texture and differential 3D decomposition. In Section 4.5.1 we discussed how
real 3D information and texture information can be coded and later extracted
using a single RGB image. In addition, we argue that this decomposition can be
learned efficiently and effectively in a data-driven fashion.

To that end, we tested simple network architectures composed of standard
convolutional layers (a full description of these architectures and the training pro-
tocols are provided in Section 4.7). Using ground truth texture and depth facial
information, we simulated the projection of the designed pattern over the 888 sub-
jects provided in ND-2006 dataset. Illustrative results are presented in Figure 4.7.
The 3D geometrical model and a detailed description of the simulation process is
provided in Section 4.7.1. Though the simulation of the deformation of a projected
pattern can be computed in a relatively simple manner (if the depth information
is known), the inverse problem is analytically hard [16,75,108].

Despite the previous, we observed that a stack of convolutional layers can effi-
ciently learn how to infer from the image with the projected pattern, both depth
gradient information, and the standard (2D) facial image. Figure 4.8 illustrates
some results for subjects in the test set. The first column corresponds to the input
to the network, the second column the ground truth texture information, and the
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Figure 4.8: Examples of the facial texture recovered from the image with the projected pattern.
The first column, shows the input image (denoted as I in Algorithm 1). The second column
shows the ground truth, and the third column the texture recovered by the network Irgb. This
examples are from the test set and the images associated to these subjects were never seen
during the training phase.

third column the retrieved texture information. The architecture of the network
and the training protocol is described in detail in Section 4.7. As we can see in
the examples illustrated in Figure 4.8, an accurate low resolution texture repre-
sentation of the face can be achieved in general, and visible artifact are observed
only in the regions where the depth is discontinuous (see for example, the regions
illustrated at the bottom of Figure 4.8).

Figure 4.9 illustrates the ground truth and the retrieved depth gradient (again,
for random samples from the test set). To estimate the 3D information, we feed to
a different branch of convolutional layers the gray version of the input image. These
layers are fully described in Table 4.5. A gray input image is considered instead of a
color one because the projected pattern is achromatic, and therefore, no 3D infor-
mation is encoded in the colors of the image. In addition, we crop the input image
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to exclude the edges of the face. (Facial registration and cropping is performed
automatically using dlib [43] facial landmarks.) As discussed in Section 4.5, and in
particular, in the proof of Proposition 1, the deformation of the projected fringes
only provide local gradient information if the norm of the gradient of the depth is
bounded. In other words, where the scene present depth discontinuities, no local
depth information can be extracted by our proposed approach. This is one of the
main reasons why differential 3D information can be exploited for face recognition,
while bypassing the more complicated task of a 3D facial reconstruction.

Figure 4.9: Differential depth information extracted from the image with the projected pattern.
The first row illustrates the input image (depth information can be extracted from a gray version
of the input as the designed patter is achromatic). The second and third row show the ground
truth and the retrieved x and y partial derivatives of the depth respectively.

One of the advantages of the proposed approach is that it extracts local depth
information, and therefore, the existence of depth discontinuities does not affect
the estimation on the smooth portion of the face. This is illustrated in Figure 4.10
(a)-(b), where a larger facial patch is fed into the network. The decomposition
module is composed exclusively of convolutional layers, and therefore, images of
arbitrary size can be evaluated. Figure 4.10-(a) shows the input to the network,
and Figure 4.10-(b) the first channel of the output (for compactness we display
only the x-partial derivative). As we can see, the existence of depth discontinuities
does not affect the prediction in the interior of the face (we consider the prediction
outside this region as noise and we replace it by 0 for visualization).

Several algorithms have been proposed to hallucinate 3D information from a
2D facial image [24, 39, 56, 70]. In order to verify that our decomposition network
is extracting real depth information (in lieu of hallucinating it from texture cues),
we simulated an image where the pattern is projected over a surface with identical
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Figure 4.10: Is the network really extracting depth information? In this Figure we show the
output of the network for two inputs generated using identical facial texture but different depth
ground truth data. (a) Image obtained when the projected pattern is projected over the face
with the real texture and the real 3D profile. (b) Output of the network when we input (a) (only
the x-partial derivative is displayed for compactness). (c) Image obtained when the projected
pattern is projected over a flat surface with the texture of the real face. (d) Output of the
network when the input is (c). None of these images were seen during training.

texture but with a planar 3D shape (as in the example illustrated in Figure 4.2).
Figure 4.10 (a) shows the image acquired when the fringes are projected over the
ground truth facial depth, and (c) when instead the depth is set to 0 (without
modifying the texture information). The first component of the output (x-partial
derivative) is shown in (b) and (d), as we can see, the network is actually extracting
true depth information (from the deformation of the fringes) and not hallucinating
3D information from texture cues. As we will see next, this property is particularly
useful for joint face recognition and spoofing prevention.

2D and 3D face recognition. Once the input image is decomposed into a (stan-
dard) texture image and depth gradient information, we can proceed to extract
2D and 3D facial features from each component. To this end, state-of-the-art net-
work architectures are evaluated. Our method is agnostic to the RGB and depth
feature extractors. Moreover, as the retrieved texture image is close to a standard
RGB facial images (in sense of the L2-norm), any pre-train 2D feature extractor
can be used (e.g., [14,69,77,90,117]). In the experiments presented in this Section
we tested a network based on the Xception architecture [11] (details are provid-
ed in Section 4.7). For the extraction of texture features, the network is trained
using FaceScrub [67] dataset (as we previously described, this is a public dataset
of 2D facial images). The module that extracts 3D facial features is trained using
2/3 of the subjects of ND-2006 dataset, leaving the remaining subjects exclusively
for testing. The output of each module is a 512-dimensional feature vector (see,
e.g., Figure 4.4), hence the concatenation of 2D+3D features leads to a 1024-
dimensional feature vector. Figure 4.11 illustrates a 2D embedding of the texture
features, the depth features, and the combination of both. The 2D mapping is
learned by optimizing the t-SNE [60] over the train partition and then a random
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Figure 4.11: Facial features low-dimensional embedding (for visualization purposes only). We
illustrate texture-based and depth-based features in a low dimensional embedding space. A
random set of subject of the test set is shown. From left to right: the embedding of depth-
features, texture-based features, and finally, the combination of texture and depth features.
t-SNE [60] algorithm is used for the low-dimensional embedding.

subset of test subjects are mapped for visualization. As we can see, 3D features
favor the compactness and increase the distance between clusters associated to
different subjects.

To test the recognition performance, the images of the test subjects are parti-
tioned into two sets: gallery and probe. For all the images in both sets, the 2D and
3D feature embedding is computed (using the pre-trained networks described be-
fore). Then, for each image in the probe set, the n nearest neighbors in the gallery
set are selected. The distance between each sample (in the embedding space) is
measured using the distance defined in Section 4.5, Equation (4.12). For each sam-
ple in the probe set, we consider the classification as accurate, if at least one of
the n nearest neighbors is a sample from the same subject. The rank-n accuracy
is the percentage of samples in the probe set accurately classified.

Figure 4.12 and Table 4.1 show the rank-n accuracy when: only 2D features
(γ = 0), only 3D features (γ = 1), or a combination of both (0 < γ < 1) is
considered. As explained in Section 4.5.3, the value of γ can be used to balance the
weight of texture and depth features. As we can see, in all the cases a combination
of texture and depth information outperforms each of them individually. This is
an expected result as classification tends to improve when independent sources
of information are combined [47]. γ is an hyper-parameter that should be set
depending on the conditions at deployment. In our particular experiments the
best results are obtained for γ = 0,3, which suggests that RGB features are slightly
more reliable than depth features. This is an expected result as the module that
extract RGB features is typically trained in a much larger datasets (2D facial
images became ubiquitous). We believe this may change if, for example, testing
is performed under low light conditions [51]. Testing this hypothesis is one of the
potential path for future research. In the experiment discussed so far, we ignored
the role of β and α (i.e., we set β = ∞ and α = 1). As we will discuss in the
following, these parameters become relevant to achieve jointly face recognition
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Figure 4.12: Rank-n accuracy for 2D, 3D, and 2D+3D face recognition. As discussed in Sec-
tion 4.5 the value of γ can be set to weight texture and depth information in the classification
decision. The extreme cases are γ = 0 (only texture is considered) and γ = 1 (only depth
is considered). These extreme cases are illustrated in yellow and purple respectively, while
intermediate solutions (0 < γ < 1) are presented in tones of green.

and spoofing prevention.

Robustness to spoofing attacks. Spoofing attacks are simulated to test face
recognition models, and in particular, how robust these frameworks are under
(unseen) spoofing attacks. As in the present work we focus on the combination of
texture and depth based features, the simulation of spoofing attacks must account
for realistic texture and depth models. The models for the synthesis of spoofing
attacks are described in detail in Section 4.7.3.

Figure 4.13 illustrates spoofing samples (first four rows) and genuine samples
(bottom five rows). The first two columns correspond to the ground truth texture
and depth information, the third column illustrates the input to our system, and
the last three columns correspond to the outputs of the decomposition network.
These three last images are fed into the feature extraction modules for the extrac-
tion of texture and depth based features respectively, as illustrated in Figure 4.4. It
is extremely important to highlight, that spoofing samples are included exclusively
at testing time. In other worlds, during all the training process the entire frame-
work is agnostic to the existence of spoofing examples. If the proposed framework
is capable of extracting real 3D facial features, it should be inherently robust to
most common types of spoofing attacks.
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Figure 4.13: Examples of samples from live subjects and spoofing attacks. From left to right:
(1) the ground truth texture, (2) the ground truth depth, (3) the input to our system (image
with the projected pattern), (4) the recovered texture component (one of the outputs of the
decomposition network), (5)/(6) recovered x/y depth partial derivative. The first four rows
correspond to spoofing samples (as explained in Section 4.7.3), and the bottom five rows to
genuine samples from live subjects.
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Table 4.1: Rank-n accuracy for 2D, 3D, and 2D+3D face recognition. As discussed in Sec-
tion 4.5 the value of γ can be set to weight the impact of texture and depth information. The
extreme cases are γ = 0 (only texture is considered) and γ = 1 (only depth is considered)

Rank-n Accuracy 1 2 5 10

RGB baseline
(γ = 0)

78,5 82,6 87,7 90,6

Depth baseline
(γ = 1)

77,2 81,4 87,4 90,1

(our) γ = 0,3 90,6 93,2 95,6 96,4

(our) γ = 0,5 88,6 91,0 94,4 94,9
(our) γ = 0,8 85,0 87,9 91,5 93,0

As discussed before, the combination of texture and depth based features im-
proves recognition accuracy. On the other hand, when spoofing attacks are includ-
ed, we observe that texture based features are more vulnerable to spoofing attacks
(see for example figure 4.13 and 4.15). To simultaneously exploit the best of each
feature component, we design a non-linear distance as described in Equation (4.12).
Figure 4.14 illustrates the properties of the defined distance for different values of
α and β. As it can be observed, for those genuine samples (relative distances lower
than β) the non linear component can be ignored and the distance behave as the
euclidean distance with a relative modulation set by γ. On the other hand, if the
distance between the depth components is above the threshold β, it will dominate
the overall distance achieving a more robust response to spoofing attacks.

Figure 4.14: Illustration of the properties of the distance function defined in (4.12). On the
left side we illustrate the role of the parameter α, and on the right, we compare the proposed
distance and the standard euclidean distance. As can be observed, both measures are numer-
ically equivalent in the region [−β/2, β/2] × [−β/2, β/2], but the proposed measure gives a
higher penalty to vectors whose u coordinate exceeds the value β.

To quantitatively evaluate the robustness against spoofing attacks, spoofing
samples are generated for all the subjects in the test set. As before, the test set is
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separated into a gallery and a probe set and the generated spoofing samples are
aggregated into the probe set. For each image in the probe set, the distance to a
sample of the same subject in the gallery set is evaluated. If this distance is below
a certain threshold λ, the image is labeled as genuine, otherwise, the image is
labeled as spoofing. Comparing the classification label with the ground truth label
we obtain the number of true positive (genuine classified as genuine), false positive
(spoofing classified as genuine), true negative (spoofing classified as spoofing), and
false negative (genuine classified as spoofing). Changing the value of the threshold
λ we can control the number of false positive versus the number of false negatives
as illustrated in Figure 4.15.

Figure 4.15: False acceptance rate and false rejection rate under the presence of spoofing
attacks. On color blue we illustrate the RGB baseline (γ = 0), on the other extreme, the red
curve illustrates the performance when only depth features are considered. The combination
of RGB and depth features is illustrated in tones of green for different values of α and β (in
this experiment we set γ = 0,3).

Figure 4.15 shows the ratio of false positive and false negative for λ ∈ [0, 2].
As before the distance between the samples is computed using the definition pro-
vided in (4.12), in blue/red the RGB/depth baseline is illustrated, the other set
of curves (displayed in green tones) correspond to a combination of texture and
depth features with γ = 0,3 and different values of α and β.

In Table 4.2 the ratio of true positive is reported for a fixed ratio of false
positives. The ACER measure (last column) corresponds to the average between
the ratio of spoofing and genuine samples misclassified.
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Table 4.2: Spoofing detection results. The ratio of true positive for a fixed ratio of false positive
and the ACER measure are reported. Texture and depth facial features are combined using the
distance defined in (4.12). As we can see, the parameters γ, α, and β can be set to obtain
better facial recognition performance and robustness against spoofing detection.

TPR%
@FPR=10−3

TPR%
@FPR=10−2 ACER%

RGB baseline (γ = 0) 21,8 24,0 38,9
Depth baseline
(γ = 1)

88,4 97,1 4,0

(our) γ = 0,3, β =
0,35 α = 2

85,5 96,9 4,5

(our) γ = 0,3, β =
0,35 α = 5

83,8 97,1 4,0

(our) γ = 0,3, β =
0,35 α = 10

85,0 95,6 3,9

(our) γ = 0,3, β =
0,4 α = 2

82,6 96,9 4,7

(our) γ = 0,3, β =
0,4 α = 5

86,4 97,1 4,4

(our) γ = 0,3, β =
0,4 α = 10

81,8 97,1 4,1

(our) γ = 0,3, β =
0,5 α = 2

86,4 96,4 5,3

(our) γ = 0,3, β =
0,5 α = 5

82,8 95,6 5,7

(our) γ = 0,3, β =
0,5 α = 10

85,0 94,4 5,9

Testing variations on the ambient illumination. To test the impact of variations
on lighting conditions we simulated test samples under different ambient illumina-
tion. Implementation details are described in Section 4.7.4. Table 4.3 compares the
rank-5 accuracy of 2D features and 2D+3D features as the power of the ambient
illumination increases. The ambient illumination is modeled with random orien-
tation, and therefore, the more powerful the illumination is the more diversity
between the test and the gallery samples is introduced.

In the present experiments, we assumed that both the projected pattern and
the ambient illumination have similar spectral content. In practice, one can project
the pattern, e.g., on the infrared band. This would make the system invisible to the
user, and reduce the sensitivity of 3D features to variations on the ambient illu-
minations. We provide a hardware implementation feasibility study and illustrate
how the proposed ideas can be deployed in practice in Section 4.8.
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Table 4.3: Recognition accuracy under different ambient illumination conditions. The power
of the additional ambient light is provided relative to the power of the projected light, i.e.,
power=200 % means that the added ambient illumination is twice as bright as the projected
pattern.

Rank-5 Accuracy power=100% power=150%
power=200%

RGB baseline (γ = 0) 89,2 81,2 53,9
(our) γ = 0,5 93,6 90,7 80,7

Table 4.4: Spoofing detection results for ArcFace and ArcFace enhanced with 3D features. Like
in Table 4.2, the ratio of true positive for a fixed ratio of false positive and the ACER measure
are reported.

TPR%
@FPR=10−3

TPR%
@FPR=10−2 ACER%

ArcFace (γ = 0) 0 0 46,2
ArcFace + 3D
(γ = 0,5)

84,7 94,7 7,9

Improving state of the art 2D face recognition. To test how the proposed ideas
can impact the performance of state-of-the-art 2D face recognition systems, we
evaluated our features in combination with texture based features obtained with
ArcFace [14]. ArcFace is a powerful method pre-trained on very large datasets,
on ND-2006 examples it achieves perfect recognition accuracy (100% rank-1 ac-
curacy). When ArcFace is combined with the proposed 3D features, the accuracy
remains excellent (100% rank-1 accuracy), i.e., adding the proposed 3D features
does not negatively affects robust 2D solutions. On the other hand, 3D features im-
prove ArcFace on challenging conditions as we discuss in the following. Interesting
results are observed when ArcFace is tested under spoofing attacks, as we show in
Table 4.4, ArcFace fails to detect spoofing attacks. ArcFace becomes more robust
when it is combined with 3D features, improving from nearly 0 TPR@FPR(10−3)
to 84%. In summary, as 2D methods improve and become more accurate, our 3D
features do not affect them negatively when they work well, while improve their
robustness in challenging situations.

4.7. Implementation details

4.7.1. Light projection

From ground truth depth and texture facial information, images under the
projection of different high frequency patterns can be simulated as illustrated in
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Figure 4.16: Samples from the nd2006 database. On the left column, the RGB images can be
seen, while on the right their corresponding depth images are shown.

Figure 4.17. A model of the physical configuration of the system as described in
Section 3.2, and different parameters for the baseline and the fringe width were
tested. We assumed in all our experiments a fixed focal length. The pseudo-code for
the generation of samples under active illumination is summarized in Algorithm 3.
It is important to highlight that though the problem of simulating the pattern
deformation from the depth is easy, the opposite is a very hard problem. This is
why we design a DNN-based approach that estimates from the deformation of the
pattern the gradient of the depth rather than the depth itself (see Section 4.5).

4.7.2. Networks architecture

Table 4.5 illustrates the architecture of the network that performs texture and
depth information decomposition (as described in Section 4.5). Table 4.6 illustrates
the architecture of the layers trained for facial feature extraction (illustrated as
yellow/green block in Figure 4.4). Each module of the proposed framework is
implemented using standard Tensorflow layers (version 1.13).

Training protocol. The training procedure consists of three phases, first we per-
form 10 epochs using stochastic gradient descend (SGD), then, we iterate 20 addi-
tional epochs using adam optimizer, and finally, we perform 10 epoch using SGD.
During these phases the learning rate is set to 10−3. These three steps are com-
monly refer in the literature as “network warmup”, “training”, and “fine-tuning”.
We observed that training each framework module following this protocol leads to
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Figure 4.17: Texture and shape information on a single RGB image. On the left side we
show the ground truth depth (top) and texture (bottom) facial information for one sample of
ND-2006 dataset. With the geometric model described in Section 3.2, we simulated images
acquired under the projection of a periodic fringe pattern. The absolute value of the Fourier
transform (in logarithmic scale) is illustrated at the right side of each example. From left to
right, we show how the baseline (distance between the light source and the camera) impact
the simulation. Recall the role of the baseline, defined as b in Equation 3.5. From the top
to the bottom, we show the effect of the width of the fringes, which define the fundamental
frequency of the pattern f0 = 1/T , see Section 4.5.1. Note that as we are displaying high
frequency patterns in the Figure, the reader may be observing aliasing artifacts due to a poor
pdf resolution (zooming into the image is recommended).

Algorithm 3 Active light projection. Model the resulting RGB image when
a pattern of structured light p(x, y) is projected over a surface with depth
profile D(x, y) and texture T (x, y).

1: procedure LightProjection(D(x, y), T (x, y))
Read the light pattern to be projected (pre-designed).

2: p(x, y) = loadLightProfile()
Simulate the local disparity (see (3.5)).

3: disparity(x, y) = bf
q2
D(x, y)

Compute local pattern deformation.
4: p̃(x, y) = bilinearInterpolation(p, (x+ d(x, y), y))

Account for the texture.
5: O(x, y) = p̃(x, y)T (x, y)
6: return O(x, y) ⊲ Image with active illumination.
7: end procedure
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Table 4.5: Decomposition network (illustrated in blue in Figure 4.4). Conv denotes convolution
layer, and BN batch normalization. Standard Tensorflow (v1.13) layers are used.

Input: 480×480×3 image with proj. fringes.
(A) RGB - branch
Layer A.1: Conv - 64 kernels 4×4 , BN, LeakyRelu.
Layer A.2: Conv - 4 kernels 3×3 , BN, LeakyRelu.
Layer A.3: Conv - 4 kernels 3×3 , BN, LeakyRelu.
Layer A.4: Conv - 2 kernels 1×1 , BN, LeakyRelu.
Layer A.5: Resize(112×112×3)
Output A: 112×112×3 recovered texture.
(B) Depth - branch
Layer B.1: Average(axis=3) (convert to gray).
Layer B.2: Conv - 64 kernels 4×4 , BN, LeakyRelu.
Layer B.3: Conv - 4 kernels 3×3 , BN, LeakyRelu.
Layer B.4: Conv - 4 kernels 3×3 , BN, LeakyRelu.
Layer B.5: Conv - 2 kernels 1×1 , BN, LeakyRelu.
Layer B.6: Resize(112×112×2)
Output B: 112×112×2 recovered {zx, zy}.

stable and satisfactory results (as reported in Section 4.6). However, we did not
focus in the present work on the optimization of the networks architecture, nor
the training protocols.

4.7.3. Simulation of spoofing attacks

Spoofing attacks are simulated to test face recognition models, in particular,
how robust these frameworks are under (unseen) spoofing attacks. As in the present
work we focus on the combination of texture and depth based features, the sim-
ulation of spoofing attacks must account for realistic texture and depth models.
Algorithm 4 summarizes the main steps for the simulation of spoofing attacks
(which are detailed next).

To simulate realistic texture conditions, CASIA dataset is analyzed [111]. This
dataset contains samples of videos collected under diverse spoofing attacks, e.g.,
video and photo attacks. 50 different subjects participated in the data collection,
and 600 video clips were collected. We extracted a subset of random frames from
these videos (examples are illustrated in Figure 4.18), and use them to identify
certain texture properties that characterize spoofing attacks, as we explain next.

Several works have been published in the recent years supporting that certain
texture patterns are characteristics of spoofing photographs [3, 53–55, 58, 102]. In
particular, differences in the Fourier domain have been reported [54], which provide
cues for certain classes of spoofing attacks [102]. Following these ideas, we propose
a simple model for the synthesis of spoofing attacks from genuine samples extracted
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Algorithm 4 Synthesis of the texture and depth of spoofing attacks.

1: procedure TransformText(T0) ⊲ Sim. spoofing texture
Init. optimal filter (this is done only once and off-line).

2: k(x, y) = InitKernel(RealEx., SpoofEx.) ⊲ (4.13)
Filter the genuine sample.

3: T (x, y) = filter(T0, k(x, y))
4: return T (x, y) ⊲ Simulated spoofing texture
5: end procedure

6: procedure TransformDepth ⊲ Sim. spoofing depth
Compute spoofing depth

7: z(x, y) = SpoofDepthModel() ⊲ E.g., (4.15),(4.16).
8: return z(x, y) ⊲ Simulated spoofing depth
9: end procedure

10: procedure SpoofingSample({T0, z0})
Simulate sample texture.

11: T (x, y) = TransformText(T0)
Simulate sample depth.

12: z(x, y) = TrasformDepth()
13: return {T, z}
14: end procedure

Figure 4.18: Spoofing and genuine examples from CASIA [111] dataset.
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Table 4.6: Feature embedding (illustrated in yellow/green in Figure 4.4). Conv denotes convolu-
tion layer, SepConv separable convolution, BN batch normalization, IN instance normalization.
Standard tensorflow (v1.13) layers are used.

Input: 112×112×c (c = 3 for texture, c = 2 for depth image).
Layer 1.1: Conv - 32 kernels 3×3 stride 2, IN, Relu.
Layer 1.2: Conv - 64 kernels 3×3 stride 2, IN, Relu.
Path A1

Layer A1.1: Conv - 128 kernels 1×1 stride 2, IN.
Path B1

Layer B1.1: SepConv - 128 kernels 3×3, IN, Relu.
Layer B1.2: SepConv - 128 kernels 3×3, IN, Relu.
Layer B1.3: MaxPooling 2×2.
Layer 2: Path A1 + Path B1 (output B1.3 + output A1.1)
Path A2

Layer A2.1: Conv - 384 kernels 1×1 stride 2, IN.
Path B2

Layer B2.1: SepConv - 384 kernels 3×3, IN, Relu.
Layer B2.2: SepConv - 384 kernels 3×3, IN, Relu.
Layer B2.3: MaxPooling 2×2.
Layer 3: x = Path A2 + Path B2 (output B2.3 + output A2.1)
Middle flow: x: 28× 28× 384 (Repeat 2 times)
Layer 4.1: SepConv - 384 kernels 3×3, IN, Relu.
Layer 4.2: SepConv - 384 kernels 3×3, IN, Relu.
Layer 4.3: SepConv - 384 kernels 3×3, IN, Relu.
Layer 4.4: Add(x, output Layer 4,3)
Exit flow: 28× 28× 256
Path A5

Layer A5.1: Conv - 512 kernels 1×1 stride 2, IN.
Path B5

Layer B5.1: SepConv - 256 kernels 3×3, IN, Relu.
Layer B5.2: SepConv - 512 kernels 3×3, IN, Relu.
Layer B5.3: MaxPooling 2×2.
Layer 6: Path A5 + Path B5 (output B5.3 + output A5.1)
Layer 7: SepConv - 512 kernels 3×3, IN, Relu.
Layer 8: SepConv - 512 kernels 3×3, IN, Relu.
Layer 9: Global Average Pooling 2D.
Output: 512× 1 facial features.

from ND-2006 dataset. We assume a generic linear model Ispoof (x, y) = Ireal(x, y)∗
k(x, y), where Ispoof represents the texture of the simulates spoofing attack for the
genuine sample Ireal and k an arbitrary kernel that will be set.
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Let us denote as gi(x, y) (i = 1, ...,M) a set of facial images associated to
spoofing attacks (here extracted from CASIA dataset), and qi(x, y) (i = 1, ..., N)
a set of genuine facial images (for example, from CASIA or ND-2006 datasets). As
in Section 4.5 we denote q̃(fx, fy) = F{q(x, y)} the 2D discrete Fourier transform
of q(x, y). Given ground truth examples of genuine and spoofing facial images (qi
and gi), we define the kernel k as

k(x, y) = F−1

{

Q(fx, fy)

G(fx, fy) + ǫ

}

, s.t. k(−x,−y) = k(x, y), (4.13)

where G and Q are defined as follow

G =
1

M

M
∑

i=1

‖g̃i(fx, fy)‖, Q =
1

N

N
∑

i=1

‖q̃i(fx, fy)‖. (4.14)

We set ǫ = 10−6 for numerical stability. Observe that G and Q account only for
the absolute value of the Fourier transform of real and spoofing samples, while
the phase information is discarded. In principle, an arbitrary phase factor can be
included. We constrain the solution to be a symmetric kernels, which is equivalent
to enforce a null phase. To perform the average defined in Equation (4.14), the
2D coordinates associated to the frequency domain must be refer to a common
coordinate frame, this allows to aggregate the frequency information of images of
heterogeneous resolution.

Figure 4.19-(a) shows the kernel obtained using 600 spoofing samples from
CASIA dataset and 600 genuine samples from ND-2006. As we can see, the re-
sulting kernel is composed of predominantly positive values, this suggest that the
application of it will produce essentially a blurred version of the original image.
This empirical result is in accordance with the findings reported in [54, 102]. Fig-
ure 4.19-(b) shows an example of an image of a genuine face (left), the result of
applying the estimated kernel k (center) and the different between them (right).

Finally, the depth profile of different types of spoofing attacks is simulated. To
this end, different kinds of polynomial forms were evaluated. We simulated planar
attacks, which take place when the attack is deployed using a phone or a tablet,
and non-planar attacks, common when the attacker uses a curved printed portrait.
We modeled the latter as random parabolic 3D shapes. The principal axis of each
surface is randomly oriented, presenting an angle θ ∼ N (0, (1/10 · π/2)2) with
respect to the vertical (as illustrates Figure 4.20). The depth profile z(x,y) is given
by

z(x, y) =
4a

w2

(

u(x, y)− c
w

2

)2
(4.15)

where u(x, y) = x cos(θ) + y sin(θ), w is a constant representing the width
of the spatial domain (here 480 pixels), a sets the curvature of and is a random
variable sampled from the normal distribution N (0, (2/10)2), and c (also a random
variable) sets the offset of the principal axis and is sampled from the distribution
N (0, (1/10)2). We also tested arbitrary polynomial forms with random coefficients,
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Figure 4.19: Texture simulation of spoofing attacks. (a) Illustrates the linear kernel optimized
such that the Fourier domain of real samples match that of spoofing samples. (b) Shows (left)
an example of an image of a genuine subject (from ND-2006 set), the simulated texture of a
spoofing attack (center), and finally (right) the different between the two.

e.g.,

z(x, y) =
∑

i=0,..,3
j=0,..,3

wij aij(x/w − bij)
i(y/h− cij)

j (4.16)

where the coefficients are samples from an uniform distribution aij , bij , cij ∼ U[0,1],

and wij = 10máx (0,i−1)máx (0,j−1) is a normalization factor.
Figure 4.20 illustrates (right side) some examples of spoofing depth profiles

generated.

4.7.4. Facial appearance under different illumination

Using the original texture and depth facial information, the appearance of the
face under novel illumination conditions can be simulated. One of the simplest
and more accepted models consists of considering the facial surface as a lamberti-
nan surface [5, 79, 115]. Hence, the amount of light reflected can be estimated as
proportional to the cosine of the angle between the surface local normal and the
direction in which the light approaches the surface.

More precisely,

I(x,y,z) = a(x,y,z) máx
(

~n(x,y,z) · p0~l, 0
)

, (4.17)

where I denotes the intensity of the light reflected, p0 the intensity of the incident
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Figure 4.20: Depth simulation of the spoofing attacks. On the left we illustrate the geometry
of the simulation process. The right side illustrates examples of the generated depth profiles
associates to spoofing attacks.

light, a represents the surface albedo, ~n is a unit vector normal to the surface, and
~l a unit vector indicating the direction in which the light rays approach the surface
at (x, y, z(x, y)).

If the depth profile z(x, y) is know, the normal vector to the surface at (x, y, z)
can be computed as

~n(x, y) =
1

√

(

∂z
∂x

)2
+

(

∂z
∂y

)2
+ 1

(

−∂z

∂x
,−∂z

∂y
, 1

)t

. (4.18)

Algorithm 5 summarizes the main steps for simulating new samples under novel
illumination conditions. Figure 4.21 shows some illustrative results for illuminants
of different intensity and located at different relatives positions with respect to the
face.

4.8. Hardware implementation: a feasibility study

We tested a potential hardware implementation of the proposed ideas using
commercially available hardware. To project the fringe pattern we used a projector
EPSON 3LCD with native resolution 1920 × 1080, and a webcam Logitech C615
with native resolution 1280× 720. The features of this particular hardware setup
are independent of the proposed ideas. One could choose, for example, projecting
infrared light, or design a specific setup to meet specific deployment conditions.
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Algorithm 5 Steps for the simulation of additional ambient light. The inputs
represent: I0 the facial albedo, z the facial depth map, p0 the intensity of the
source light, l the direction in which the light source is located. Examples
are shown in Figure 4.21.

1: procedure addAmbientLight(I0, z, p0, l)
Make sure the depth map is smooth and noise-free.

2: z = Denoising(z) ⊲ (Gradient op. amplifies noise.)
Compute depth gradient.

3: zx, zy = ComputeGradient(z)
Compute surface normals (4.18).

4: n = [−zx,−zy, 1]
5: n = n

‖n‖2

Additional light factor (due to the new source).
6: I+[x, y] = p0 máx (n(x, y) · l, 0)

For each color add the additional brightness.
7: I[x, y, c] = I0[x, y, c](1 + I+[x, y])

Model camera saturation.
8: I =clip(I, [0, 1])
9: return I

10: end procedure

Figure 4.21: Examples of new samples under different lighting conditions. The groups on the
left, middle and right, correspond to a light source located at the left, right, and top of the
scene respectively. The images on the bottom are created assuming a brighter light source
(higher value of p0, see Algorithm 5).

67



Chapter 4. 3D Face Recognition without depth reconstruction nor generic 3D

models

Figure 4.22: Testing the model on a hardware implementation. We projected the proposed
light pattern using a commercial projector (EPSON 3LCD) and captured facial images using
a standard webcam (Logitech C615). Side by side, we show the captured image (left) and the
x-partial derivative of the depth estimated by our DNN model. We tested projected patters of
different period, ranging from 10px to 27px (pixels measured in the projector sensor).
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Figure 4.23: Changing the distance to the camera and pose. Complementing the results shown
in Figure 4.22, we tested how our DNN model perform as the distance to the camera-project
system changes. The left column shows side by side the image captured by the camera and the
partial derivative of the depth estimated by our pre-trained model. The distance of the test
face to the camera ranged from 50cm to 70cm. The left column shows on the top the results
obtained for different head-poses, and on the bottom, the output when a planar facial portrait
is presented.

Figure 4.22 shows some empirical results obtained by photographing a man-
nequin at different relative positions and under different illumination. We quali-
tative tested how the width of the projected pattern affects the estimation per-
formance. In addition, we tested (see Figure 4.23) how the distance of the face to
the camera-projector system affects the prediction of the depth derivative. These
two experiments are related as changing the distance to the camera changes the
camera perception of the fringes width.

It is important to take into account that in this experiments we tested our
pre-trained models (completely agnostic to this particular hardware implementa-
tion), i.e., no fine-tuning or calibration was performed prior capturing the images
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presented in Figures 4.22 and 4.23. In production settings, in contrast, one would
fix a specific hardware setup, collect new ground truth data, and fine-tune the
models to optimize the setup at hand.

4.9. Conclusions

We proposed an effective and modular alternative to enhance 2D face recogni-
tion methods with actual 3D information. A high frequency pattern is designed to
exploit the high resolution cameras ubiquitous in modern smartphones and per-
sonal devices. Depth gradient information is coded in the high frequency spectrum
of the captured image while a standard texture facial image can be recovered to
exploit state-of-the-art 2D face recognition methods. We show that the proposed
method can be used to leverage 3D information and texture information simul-
taneously. This allows us to enhance state-of-the-art 2D methods improving their
accuracy and making them robust, e.g., to spoofing attack.
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Chapter 5

Conclusions and Future Work

Machine Learning and Deep Learning have had an enormous impact in a myr-
iad of fields. In Face Recognition, these techniques have speed up the development
of the area, achieving incredible results.

In this work we did a brief introduction to the concepts involved in Machine
Learning. We reviewed the ideas and the inner works in Deep Learning, keeping in
mind how it developed throughout the years. Then, we focused on Face Recogni-
tion, presenting the problem and diving into the different groundbreaking methods
that relied on neural networks proposed in the last few years. Finally, we focused
on our proposed novel method to perform Face Recognition with implicit 3D cues.
That is, without depth reconstruction.

Deep Learning techniques unlock a number of applications and possibilities,
and its proper use can help us to improve different processes. Studying the pro-
posed methods, understanding the different techniques involved and proposing new
techniques is important both to keep advancing the knowledge in the field, and
also being aware of what can be done with them. There are a number of reasons
why we need to be as efficient with our resources and processes as possible, and
the advancements made with deep learning are a step in that direction. At the
same time, there are some ethical and moral discussions to be had around these
techniques (which is usual with every technological and scientific advancement),
and this is not possible without a proper understanding of their inner workings
and capabilities.

In the context of this thesis, we proposed, presented internationally, and pub-
lished a novel face recognition technique. Personally, I was involved practical mat-
ters surrounding this article: code and perform experiments, graphs, build the
different networks used, and so on. Although I was part of theoretical discussions
as well, the ideas and theory behind this paper were proposed by my advisors
and coauthors, who are experts on this field. I was lucky enough to deepen my
knowledge in this area during this process by working closely with them.

In the future, it would be interesting to develop the proposed technique further.
In the presented work, it can be seen that most immediate benefits are seen in
preventing spoofing attacks. While it is proven that the performance accuracy is
not hurt by adding this network on top of another state of the art 2D recognition
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network, it would be interesting to try to find conditions in which identification is
improved. By having more representational power due to consider 3D information,
it is possible to imagine scenarios in which accuracy is also improved at the same
time that spoofing attacks are prevented.

Another possible area where this method can be enhanced is to try to optimize
it when deploying it in a real hardware configuration. It would be interesting to
explore and solve the challenges associated with a low-cost hardware implemen-
tation in a real scenario (e.g., interaction with ambient light). Facing them and
try to come up with solutions for them might improve the technique as a whole,
understanding better its limitations.

Finally, the training of the network can be studied more in depth and more
expermentation can be made. The code can be improved in order to be more
plug-and-play with different networks and frameworks. Two possible paths that
may be pursued are: gathering a larger dataset, with more variability, to improve
the robustness of the depth recovery network, and keep studying different networks
configurations of the network as a whole. The module that is tasked with separating
3D information from 2D can be also improved. In this work it is not trained with
spoofing samples. By feeding spoof samples, it might improve its performance when
recovering shapes that are planar, which can also translate to better separability
between real and spoof samples.

There are definitely a lot of areas in this work that can be studied more in
depth: Applying interpretability tools to dissect what DNNs are learning. Lever-
aging the power of novel and larger facial databases. Substituting the pre-defined
designed distance with a different one completely learnt from real and spoofing
samples. Performing ablation studies with different architectures to better identify
the contribution to facial identification from 3D and 2D components. It is my hope
that work on these areas is continued so a better understanding of this method
potential and drawbacks can be achieved.
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