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Abstract The solution of sparse triangular linear systems (the sptrsv
kernel) presents itself as the computational bottleneck of many numeri-
cal methods, and therefore is one of the most important building blocks
in sparse Numerical Linear Algebra. For this reason, it is crucial to count
with e�cient implementations of such kernel, at least for the hardware
platforms that are more commonly used for numerical computations.
In this sense, Field�Programmable Gate Arrays (FPGAs) have evolved
greatly in the last years, entering the HPC hardware ecosystem mostly
due to their superior energy�e�ciency relative to more established accel-
erators. Up until recently, the design of a solution for FPGA implied the
use of low�level Hardware Description Languages (HDL) such as VHDL
or Verilog. Nowadays, manufacturers are making a large e�ort to adopt
High Level Synthesis languages like C/C++, System C or OpenCL, but
the gap between their performance and that of HDLs is not yet fully
studied. This work focuses on the performance o�ered by FPGAs to
compute the sptrsv using OpenCL. For this purpose, we implement dif-
ferent parallel variants of this kernel and experimentally evaluate several
optimization setups, varying parameters such as the work�group size, the
number of compute units, the unroll�factor and the vectorizacion�factor.

Keywords: FPGAs, sparse linear algebra, sparse triangular linear systems,
power consumption

1 Introduction

Many numerical methods in engineering and scienti�c applications entail the
solution of sparse triangular linear systems (sptrsv kernel). A typical example
is the solution of general sparse linear systems of equations by means of direct
methods, or using iterative methods combined with incomplete LU precondi-
tioners, where the sptrsv kernel is the most computationally costly stage of the
whole process [7,15]. This situation motivates the development of e�cient im-
plementations of such kernel, at least for the hardware platforms that are more
commonly used for numerical computations.



The e�cient parallelization of this kernel is specially di�cult. Similar to
other sparse linear algebra kernels, the sptrsv is a highly memory�bound oper-
ation and presents an irregular data access pattern. In addition, the triangular
structure of the nonzero entries is tied to load imbalance between threads when
organizing the computations by rows or columns, and the data dependencies
between equations severely constrain the available parallelism.

Propelled by the popularization of using massive-parallel devices such as
GPUs and Intel Xeon Phi processors for scienti�c computations, High Perfor-
mance Computing (HPC) hardware platforms experienced a revolution in the
last decade. As a product of this revolution and the massive scale of nowadays
clusters and supercomputers, there is a growing concern in the HPC commu-
nity about the energy consumption of hardware and the e�ciency of computing
devices [1,3,8,5,12]. It is in this context that Field�Programmable Gate Arrays
(FPGAs) have renewed their importance, emerging as a low-energy-consuming
alternative to other hardware accelerators. As a result, the former use of FPGAs
in highly specialized niches of application is now expanded to address general
purpose problems.

One of the major drawbacks that prevented the massive use of FPGAs was
the mandatory use of low�level Hardware Description Languages (HDL) such as
VHDL or Verilog. These impose a radically di�erent programming model than
standard programming languages, with longer development periods and com-
plex debugging. Furthermore, their use requires specialized knowledge of the
underlying hardware, which explains why FPGAs are not massively adopted by
the HPC community. To overcome this disadvantage, manufacturers are mak-
ing e�orts to adopt High Level Synthesis languages like C/C++, System C or
OpenCL. The most relevant evidence of this is the introduction of SDKs for
OpenCL by prominent FPGAs manufacturers such as Intel [6] and Xilinx [23].

OpenCL is an open�source, royalty� free parallel programming standard,
which allows describing task parallelism using an abstract model independent of
the underlying hardware. It considerably reduces development times and allows
portability between platforms. Although this has enabled a greater adoption
of FPGAs as hardware acceleration by the software community, there is still
much to investigate regarding the performance attainable by OpenCL kernels
in FPGAs, the role played by speci�c platform optimizations and how much
knowledge of the underlying hardware is required.

In this e�ort we implement di�erent parallel variants of the sptrsv kernel
for the FPGA using OpenCL. Additionally, we perform a deep evaluation of
several FPGA optimization techniques. Concretely, the major contributions of
this article are:

� The implementation of a NDRange and a Single Work�Item variant of the sp-
trsv kernel. To the best of our knowledge, this is the �rst implementation of
the sptrsv for FPGAs, excluding our preliminar e�ort in the Power�Aware
Computing � PACO2019 [13].



� The experimental evaluation of several FPGA optimizations, such as the
use of threads, vectorization and unrolling, for each parallelism paradigm,
employing a set of real problems extracted from the SuiteSparse Matrix
Collection3 (formerly the University of Florida Sparse Matrix Collection).

� The advance towards a characterization of the performance of sparse prob-
lems in FPGAs, that allows to choose the computational method and the
optimization set e�ciently.

The rest of the article is structured as follows. Section 2 summarizes the
main aspects related with the solution of sparse triangular linear systems as
well as the use of OpenCL to compute with the FPGAs. Later, in Section 3
we describe our proposal to estimate the degree of parallelism o�ered by the
sparse triangular linear systems. The experimental evaluation performed follows
in Section 4. Finally, in Section 5, we present the main conclusions arrived at in
this work and discuss future lines of work.

2 Work context

This section presents the theorical background of our work. It starts with a
mathematical description of the sptrsv kernel and its parallelization, followed
by a brief introduction to FPGAs, with special attention to the OpenCL frame-
work. The section closes with a summary of related work about using FPGAs
to tackle NLA operations.

2.1 The sptrsv kernel

Given a (lower) triangular sparse matrix L ∈ Rn×n and a vector b ∈ Rn, the
usual approach to obtain x ∈ Rn such that

Lx = b, (1)

is the procedure known as forward-substitution. This procedure is presented in
Algorithm 1 for the case where the sparse matrix L is stored in the CSR sparse
storage format [11].

The algorithm starts by trivially solving the �rst equation (with only one
unknown) and then, in each step, it replaces the solved unkowns by their values
in the following equations, solving at least one equation per step. To obtain the
unknown xi it is necessary to multiply the sub-diagonal entries lij of row i by
the value of xj , subtracting the result from bi and dividing by the diagonal entry
lii. It is evident that if lij is nonzero, the unknown xj needs to be solved before
xi, which constrains the parallelism of the operation.

3 http://faculty.cse.tamu.edu/davis/suitesparse.html



Algorithm 1: Serial solution of sparse lower triangular systems for
matrices stored in the CSR format. The vector val stores the nonzero
values of L by row, while row_ptr stores the indices that correspond to
the beginning of each row in vector val, and col_idx stores the column
index of each element in the original matrix. The nonzero elements of
each row are ordered by column index.

1 Input: row_ptr, col_idx, val, b
2 Output: x

x = b
for i = 0 to n− 1 do

for j = row_ptr[i] to row_ptr[i+ 1]− 2 do

x[i] = x[i]− val[j]× x[col_idx[j]]
end for

x[i] = x[i]/val[row_ptr[i+ 1]− 1]
end for

2.2 Developing in FPGAs

Unlike other heterogeneous HPC hardware platforms (for example GPUs), FP-
GAs have no pre�designed high level architecture. They are composed by a
matrix of con�gurable logic blocks (logic elements) and hard�coded blocks (such
as memories, hardware multipliers and clock managers) connected through a re-
con�gurable routing structure. As there is no object code running over a general
processor inside the FPGA, they are not �programmable� in a software sense.
In fact, a real electrical circuit is synthesized inside the device, interconnecting
the con�gurable and hard coded blocks, which allows to exploit �ne�grained
parallelism with a very low latency.

FPGAs are usually seen as a middle�ground between Application Speci�c
Integrated Circuits (ASICs) and general purpose processors. The main di�er-
ence with ASICs is that FPGAs can be reprogrammed after the manufacturing
process. FPGAs clock operating frequency depends on the synthesized circuit
but, to support recon�gurability, it is usually lower if compared to other het-
erogeneous devices. FPGAs also o�er less peak �oating point performance than
GPUs and less memory bandwidth, but this may change shortly, as FPGAs
manufacturers are making e�orts to compete with GPUs performance.

Traditionally, FPGAs have been a good option for �xed�point, data�ow
streaming applications, were they achieve high speeds with a power consump-
tion considerably lower to that of other co-processors. However, they have been
generally disregarded as HPC computing platforms due to factors such as their
poor performance in �oating point arithmetic, the complex development pro-
cess, and di�cult integration with other processors. This tendency is currently
changing, as modern high�end FPGAs integrate up to millions of logic elements
and thousands of DSP blocks (that provide TFLOP peformance), with a high
memory bandwidth. These improvements, combined with the emergence of HLS



tools that facilitate the development, contribute to their adoption in the HPC
domain.

OpenCL framework

In the past years, FPGA manufacturers have made big e�orts to improve
their HLS tools in order to gain more acceptance in the software community.
Among the available frameworks, OpenCL is an interesting alternative because
as it is a widely used, open�source, cross�platform standard. As such, it has a
vast user community and allows the reuse of the code from other heterogeneous
platforms.

The OpenCL framework is based on a platform�independent API that pro-
vides an abstraction model of the underlying hardware. In the typical scenario,
there is a host (generally a traditional CPU) that o�oads computing�intensive
tasks to one or more parallel devices, hiding the complexity of controlling and
communicating with the accelerator to the programmer. The device code is a C
like language and its called kernel code.

In the OpenCL model, a device consist on multiple Compute Units (CU),
each one having several Procesing Elements (PEs). In turn, the programming
model de�nes a single thread as a work�item, and groups them into work�groups.
Work�items in a work�group, as well as multiple work�groups can be executed
in parallel. The number of threads and work�groups that can run per CU and
PEs is platform dependent.

OpenCL also de�nes a memory model, in which every work�item has its
own private memory and shares local memory with the rest of the threads in
the work�group. The only memory shared between work�groups is global mem-
ory, which is usually o��chip, slow, and abundant (in the order of Gbytes). In
contrast, local memory is scarce but much faster.

The number of threads per work�group is referred to as local_work_size and
the total number of work�items required to solve a given task (execute a kernel to
completion) is called global_work_size. The standard organizes the work�items
in a work�group in up to three dimensions, in which each work�item is assigned
an index according to the number of dimensions used. This is called NDRange
model.

The Intel FPGA SDK for OpenCL allows the user to interface with the
FPGA accelerator using the device�agnostic OpenCL programming model. This
hides the complexity of interfacing and exchanging data between FPGA and
host CPU, which is not an easy task to do in traditional HDL�based design.
The OpenCL SDK allows to greatly reduce the development time, at the cost of
some performance degradation.

There are some minor but relevant di�erences in the OpenCL approach be-
tween the usual processor based heterogeneous device (i.e. GPUs) and the FP-
GAs. For example, Kernels cannot be compiled at runtime because of the long
compilation times (up to several hours) of the FPGA. Other di�erence is that
as opposed as the NDRange programming model suggest, the FPGAs does not



provide real thread�level parallelism by default, instead it creates a deep pipeline
which processes all work�items one after the other. Thread�level parallelism can
be achieved through kernel vectorization, which increases the width of the data
pipeline and process work�items in a SIMD fashion. Also, the pipeline can be
replicated using Compute Unit Replication, which has the same e�ect of adding
thread�level parallelism but is usually more resource-demanding.

In addition to NDRange, Intel introduces a di�erent programming model
called Single Work�Item. Instead of using of work�groups and work�items, the
model structures the kernel to be executed as a single thread, were every loop is
pipelined. It is the equivalent of launching a kernel with NDRange size of (1,1,1).
This model adapts better to the FPGA architecture.

In general, an OpenCL NDRange kernel would launch multiple work�items
to work in parallel. This model does not allow to easily share �ne�grained data
between threads, so Intel recommends structuring the kernel as a Single Work�

Item for better performance.
To obtain high�throughput execution in Single Work�Item kernels, the com-

piler processes multiple loop iterations in parallel. This is achieved by pipelining
the iterations of loops. In order to maximize performance, loop iterations must
be processed with no delay between each other. The number of clock cycles be-
tween two consecutive loop iterations is called Initiation Interval (II). For better
performance, an II of 1 is desired.

In the Single Work�Item model, higher parallelism can be obtained at iteration�
level by using loop unrolling. This reduces the number of iterations in a loop at
the expense of more resources.

2.3 NLA in FPGAs

Several e�orts have addressed the use of FPGAs to process NLA operations, tipi-
cally considering both, performance and energy consumption. The most spread
works are focused on dense NLA kernels. Some of the most prominent works are
the Kestur et al. [17,16] that advance with some BLAS [9] operations, the [20]
for the general matrix�matrix multplication using OpenCL, and more recently,
the both e�orts for achieve a BLAS implementation in FPGAs, i.e. fBLAS [18]
and Vitis BLAS [2].

In the sparse counterpart, the SpMV operation is the tipically studied kernel
(or other solvers building over this kernel). The importnace of this kernel on the
one hand, and, in the other hand, the low�level data dependecies in comparison
with other sparse NLA kernels (e.g. sptrsv), make this operation attractive to
implement in HPC hardware. Some highlight e�orts in this directions are the J.
Fowers et al. article [14], the Umuroglu and Jahre e�ort [22] and the thesis of
K. Townsend [21].

3 Proposal

In this section we detail our process for the development of the sptrsv kernels.
Our e�ort is focused in the use of the OpenCL framework, and in particular



we employ two di�erent OpenCL paradigms, NDRange and Single Work Item
Kernels. For each paradigm we included a set of optimization techniques. We
describe the most important ones.

3.1 NDRange Kernels

Intel recommends structuring the kernels as Single Work�Item whenever pos-
sible, in order to bene�t from the coarse�grained parallelism available in this
model. However, there may be cases where the explicit de�nition of concurrent
threads of the NDRange model may be bene�cial. In particular, when data or
memory dependencies prevent achieving low II values. Given the nature of the
parallel sptrsv algorithm, where there is plenty of indirection in memory ac-
cesses, we �rst opted for the NDRange approach. Moreover, we choose as a start-
ing point a GPU implementation following a similar model where good results
were obtained.

We developed two NDRange kernels for the parallel sptrsv, both based on
the level�set approach. One work�group is issued for every row, following the
order of the iorder vector (array containing the rows ordered by levels). Each
work�item enters a for loop where it fetches one element from the matrix and
its corresponding x vector element, performs the product and accumulation, and
then moves forward local_group_size elements to process another pair. The loop
iterates until all the non�zero elements of the row are processed.

Before processing a row, the algorithm requires that all its dependencies are
resolved. The two kernels resolve this matter di�erently. In the �rst variant,
referred to as NDRwait, each work�item reads form memory its corresponding x
element and veri�es if it is solved. If it is, it performs the multiplication with its
corresponding matrix element and sets the corresponding �ag. When the �ags
from all work�items within a work�group are set, all work�items move forward
to process the next local_work_size elements. When all elements in a row are
ready, the accumulated products of each work�item are reduced and then the x
value is obtained by subtracting the accumulated products to the b value and
then dividing the result by the diagonal element.

To verify that x is solved, the array is preloaded with the �oat representation
of infinit before executing the kernel. This allows the kernel to determine if the
x value is ready by checking if its value di�ers from infinit. The accumulated
products and �ags are stored in local memory in order to be visible by all threads.
Threads within each work�group are synchronized using barriers.

The Intel SDK for OpenCL does not provide reduction functions across work�
items, so this operation was implemented manually using operations to local
memory and barriers.

As the order in which work�groups are issued is not de�ned, it is necessary
to maintain a counter, in global memory, to go through the iorder vector in the
correct sequence. To avoid race conditions between work�groups in the writing
of this counter an atomic add is required.

In an e�ort so simplify the kernel and obtain a better performance a second
version was explored, in which there is no need to perform the veri�cation on the



x values. Instead, the kernel is launched as many times as levels are, meaning
that each execution process only the rows on a given level. As long as the kernels
are executed following the order of the iorder vector, it is guaranteed that all
dependencies are met for each row. All kernel executions work on the same x
vector, and after each execution the x values are updated in global memory. We
refer to the second NDRange kernel as NDRmulti.

In order to control which rows are processed on each run, the ilevels vector
must be used. This vector contains indexes pointing to the �rst row of each level
in the iorder vector. By eliminating the veri�cation on the x values, this version
allows to structure the kernel in a way that the loops for memory access and the
computations loop can be partially unrolled.

For both kernels, the update of the x values is performed by only one thread
per work�group.

3.2 Single Work Item Kernels

For the Single Work�Item approach we tested three di�erent versions: SWIsimple,
SWIchannel and SWIhash.

The SWIsimple is a rather naive implementation that consist on three nested
loops, where the outermost iterates over the number of levels, the middle one
over the number of rows per level and the innermost over the non�zero elements
of each row. The innermost loops is where computations are performed. In order
to add parallelism this loop is partially unrolled.

Memory dependencies over x values prevent this kernel from being fully
pipelined with II equal to 1.

For the SWIchannel version two kernels are used. One is responsible for all
memory read and write operations, and the other implements the calculations.
The kernels communicate with each other using channels. These are mechanism
for passing data between kernels and synchronizing kernels with high e�ciency
and low latency. Three channels are used, one to send the number of non�zero
elements per row, other for exchanging the x values, and the last one for the
matrix coe�cients. Moving away the memory accesses from the computations
allows the kernel to be fully pipelined.

The kernel that performs the read and write to global memory is structured as
tree nested loops similarly to the SWIsimple version. In order to allow pipelining,
the kernel is told to ignore memory dependencies using the ivdep pragma in the
middle loop. As the outermost loop, which is responsible for issuing the levels
one by one, is serialized, this guarantees that dependencies are met for every
row.

We improved over this last version by adding a hash to store the solved x.
This hash consists on a local memory array that stores a portion of the x values.
This allows to access the x values much faster, as opposed to reading them from
global memory. We refer to this last version as SWIhash. We actually tested two
di�erent versions of the SWIhash, one that updates the x in global memory at
the same time it is stored in the hash, and another one that impacts all x values



from the hash to global memory at the end. This last version proved to be faster
for most of the matrix tested.

4 Experimental Evaluation

In this section we present the experimental evaluation performed to validate our
proposal. It begins with a description of the hardware platform and test cases
employed, which is followed by a discussion of the experimental results.

4.1 Experimental platform

The hardware platform employed is a DE10�nano board from Terasic. This
FPGA board is based on a Cyclone V SoC form Intel and includes a dual�
core Cortex�A9 processor and around 110K Logic Elements of programmable
logic. The board is equipped with 1GB of high�speed DDR3 memory shared
between the processor and the FPGA. The FPGA has 6 MB of on�chip memory
that can be used as scratchpad memory and 112 variable precision DSP blocks
(capable of a peak performance of 22.4 GFLOPS).

We used the Intel FPGA SDK for OpenCL v18.1 to compile our kernels.
To measure power consumption we used a FLUKE 45 multimeter (4.5 dig-

its, accuracy: 0.2%+6), automated using pmlib software [4]. The runtime was
obtained by the pro�ling functions of OpenCL.

4.2 Test cases

To perform the experimental evaluation we used a set of matrices from the
SuiteSparse Matrix Collection (formerly the UF Sparse Matrix Collection). We
selected 10 matrices with similar dimensions, between 17,000 and 40,000 rows,
and large di�erences in the number of non�zero coe�cients (nnz), i.e. nnz be-
tween 14,765 and 16,171,169. Table 1 summarizes the characteristics of the ma-
trices used.

Table 1. Number of rows (n), non�zero elements (nnz) and levels of the employed
sparse matrices.

Matrix Called n nnz levels

Bcsstm35 BcsS 30237 32645 6
Chipcool0 ChipC 20082 281150 534
Gyro Gyro 17361 519260 2796
Godwin_40 GodW 17922 561677 739
TSOPF162 T162 20374 812749 114
Thread Thread 29736 2249892 1446
TSOPF_RS_b300 T300 28338 2943887 112
Ndk Ndk 18000 3457658 5621
TSOPF_RS_b2052 T2052 25626 6761100 61



4.3 Experimental results

All the runtime results presented in this section are the average of 10 independent
executions.

Considering that the static power consumption of our experimental platform
is elevated in comparison with the dynamic one, in the �rst stage of our analysis
we focused only in the runtime of the di�erent variants.

Table 2. Runtime (in ms) for the NDRmulti variant of sptrsv kernel with di�erent
optimizations.

BS CU UF VW ChipC T162 T300 Gyro GodW BcsS T2052 Thread Ndk

1 1 2 1 30.6 19.0 23.4 216.9 50.6 1.2 39.1 209.3 946.4
1 1 4 1 30.7 15.5 20.9 211.3 49.1 1.3 36.2 192.7 906.3
1 2 2 1 34.3 14.3 26.5 238.4 54.9 1.1 37.2 238.0 1121.8
1 2 4 1 31.4 13.0 22.8 221.7 52.0 1.1 35.0 205.5 995.3
2 2 2 1 31.0 12.5 21.8 205.1 48.4 1.3 39.7 172.7 774.4
2 2 2 2 33.5 22.3 60.5 225.7 54.3 1.1 132.2 230.3 1068.2
2 2 4 1 30.7 12.1 20.8 194.3 47.6 1.3 35.7 162.6 732.8
4 1 2 1 29.3 13.3 22.5 154.2 41.6 2.5 36.4 128.4 528.4
4 1 2 2 30.3 16.4 30.3 164.0 45.0 1.6 59.1 148.9 603.2
4 1 4 1 29.5 12.4 22.2 150.2 41.5 2.5 33.3 124.3 472.5
4 1 4 2 30.7 14.5 29.6 163.1 46.6 1.7 54.8 146.5 537.2
4 2 2 1 30.2 13.0 21.6 169.5 44.1 1.7 34.8 141.6 612.6
4 2 4 1 30.9 12.5 21.2 163.2 46.5 1.8 34.3 135.0 542.1
16 1 2 1 41.9 19.5 32.7 150.8 50.2 15.8 45.8 112.2 368.4
16 1 2 2 36.5 15.9 34.4 153.0 46.4 8.6 62.3 126.6 396.2
16 1 4 1 42.9 18.9 30.5 155.9 51.9 16.7 43.8 118.8 361.9

16 1 4 2 40.0 16.1 32.3 159.7 50.9 9.5 60.4 135.4 411.6

Our �rst study is for the NDRmulti variant. Table 2 presents the runtime at-
tained to solve the di�erent sparse matrices by the NDRmulti solver. We explore
the use of several OpenCL optimization, particularly:

� BS: the work group size, with values of 1, 2, 4 and 16.
� CU: the number of compute unit, with values of 1 and 2.
� UF: the unroll factor, with values of 1, 2 and 4.
� VW: the vectorizacion (SIMD) factor, with values of 1, 2 and 4.

It should be noted that the vectorization factor must be less or equal than
the work group size, i.e. VW ≤ BS. Additionally, our board does not allow
many combinations of the optimization parameters due to hardware resource
restrictions.

In the �rst place, the experimental results reached by NDRmulti variant show
that there is not a single con�guration of the optimization parameters that
obtains the best results for all the matrices. From the work-group size perspective
it seems that the higher the cost of solving the system is, the better it is to have



a large BS. The number of compute units (CU), a priori, does not show any
recongizable pattern. On the other hand, for the unroll�factor (UF) it appears
that higher numbers are better. Most of the best runtimes occur for an unroll�
factor of 4 and a few for a value of 2. Finally, the vectorization does not o�er any
gains, in all cases the variant with a vectorization-factor of 1 outperforms the
other options. This is because the compiler is failing to vectorize the memory
accesses, since these are not contiguous.

Taking the general behavior of this variant into account, it can be observed
that the number of levels strongly a�ects the performance. Thus, this feature is
more important than the number of nonzeros of each matrix. This situation is
aligned with other works over the sptrsv kernel with di�erent hardware plat-
forms, see [19,10,19].

Table 3. Runtime (in ms) for the NDRwait variant of sptrsv kernel with di�erent
optimizations.

BS CU UF VW ChipC T162 T300 Gyro GodW BcsS T2052 Thread Ndk

4 1 1 1 8.0 15.8 52.5 52.7 12.5 4.5 132.5 51.9 143.6

4 1 1 2 8.6 18.9 58.0 54.4 13.7 4.0 143.2 67.5 144.3
8 1 1 1 9.7 25.9 86.9 78.2 20.9 7.0 200.3 75.5 162.0
8 1 1 2 8.6 18.6 51.3 89.5 17.5 4.4 113.6 57.6 200.3
16 1 1 1 18.0 36.4 116.2 102.8 29.1 17.9 264.5 99.6 224.6
16 1 1 2 16.2 18.8 59.7 115.8 30.3 9.3 133.6 65.6 208.6

Table 3 summarizes the experimental results for the NDRwait variant of the
sptrsv. In this version the number of compute units and the unroll�factor are
kept in 1, since incrementing the number of computational units did not produce
any runtime improvements and the structure of the kernel does not allow to
implement unrolling.

When comparing the attained performances with the NDRmulti counterpart,
it is clear that NDRwait version strongly improves the runtime for linear systems
with a large number of levels, and it is not a good option for the smallest case
and the TSOPF problem family. Additionally, the best optimization con�gura-
tions in this variant are less scattered. And, more important, when this variant
outperforms the previous one, the better con�guration is in all cases the same
(work group size equal to 4 and a vectorization value of 1).

For the Single Work Item Kernels, the OpenCL optimization space is more
reduced. Only the unroll�factor is explored with values of 1, 2, 4 and 8. The
other di�erences involve changing the algorithm strategy in each variant, i.e.
wether or not using a hash as a cache memory.

Table 4 summarizes the runtime results reached by the SWIchannel variant.
The experimental results reveal that the use of 1 and 2 for the unroll�factor
are the best options for all test cases. Also, the di�erences between both con�g-
urations are negligible. Studying the general behavior of this variant, we need
to highlight that the runtime di�erences between the test cases is closer than



Table 4. Runtime (in ms) for the SWIchannel variant of sptrsv kernel with di�erent
optimizations.

BS CU UF VW ChipC T162 T300 Gyro GodW BcsS T2052 Thread Ndk

1 1 1 1 11.3 12.0 32.3 20.7 11.5 11.4 66.5 29.4 59.6
1 1 2 1 12.3 11.7 31.4 21.8 12.4 10.9 57.3 31.7 58.9

1 1 4 1 12.4 15.4 47.8 24.5 13.9 12.3 89.2 40.8 72.0
1 1 8 1 14.1 22.1 64.2 30.6 16.6 15.8 122.6 51.3 96.6

in previous kernels. In NDRmulti version runtime ranges from 1.1 to 361.9 and
in NDRwait from 4.0 to 143.6, while in the current variant the interval is be-
tween 10.9 and 58.9. Additionally, it seems that the runtime performance is more
related to the nnz value of each matrix.

Table 5. Runtime (in ms) for the SWIhash variant of sptrsv kernel with di�erent
optimizations.

BS CU UF VW ChipC T162 T300 Gyro GodW BcsS T2052 Thread Ndk

1 1 1 1 11.8 22.0 69.1 24.0 12.5 12.1 150.5 55.3 99.9
1 1 2 1 12.7 11.3 22.3 19.9 12.4 13.7 42.2 25.3 46.8
1 1 4 1 14.0 12.1 18.1 20.9 13.4 15.3 30.6 25.1 42.2

The runtime results for SWIhash are presented in Table 5. First, we can see
in the table that the results obtained for the di�erent matrices are closer to each
other, even more than in the SWIchannel version. This is because the SWIhash
variant o�ers more bene�ts for matrices with large nnz, i.e. reduced runtime for
the most costly test cases. Additionally, the use of the hash in the smallest test
cases does not o�er any bene�ts, increasing the runtime only marginally. Finally,
in this variant the optimization con�guration (the value for unroll factor) is
guided by the nnz of each matrix.

Table 6. Version, optimization con�guration and runtime (in ms) for the best variant
of sptrsv kernel for the di�erent test cases.

Matrix Version BS CU UF VW Runtime

ChipC NDRwait 4 1 1 1 8.0
T162 SWIhash 1 1 2 1 11.3
T300 SWIhash 1 1 4 1 18.1
Gyro SWIhash 1 1 2 1 19.9
GodW SWIchannel 1 1 1 1 11.5
BcsS NDRmulti 1 2 2 1 1.1
T2052 SWIhash 1 1 4 1 30.6
Thread SWIhash 1 1 4 1 25.1
Ndk SWIhash 1 1 4 1 42.2



Table 6 consolidates the runtime results. The �rst conclusion from the nu-
merical values is that all version are the best for at least one case. The NDRange
Kernels seem to be the best option for smallest test cases, while the Single Work
Item Kernels are the best choice for matrices with large nnz. From the OpenCL
optimization con�guration perspective, our proposals are neither able to lever-
age the vectorization nor the use of more than one compute unit (only one best
case used 2 as a CU, but the di�erence is negligible when comparing against the
non replicating version). On the other hand, the use of di�erent values for the
unroll�factor o�ers some bene�ts. In concrete, large test cases take advantages
of larger unroll factors.

Table 7. Power (in W) and Energy consumption (in mJ) for the best performing
kernels.

Matrix Version Runtime(ms) Power(W) Energy(mJ)

ChipC NDRwait 8.0 5.65 45.0
T162 SWIhash 11.3 6.60 74.3
T300 SWIhash 18.1 6.55 118.3
Gyro SWIhash 19.9 5.45 108.6
GodW SWIchannel 11.5 5.25 60.3
BcsS NDRmulti 1.1 5.50 6.1
T2052 SWIhash 30.6 6.80 208.2
Thread SWIhash 25.1 6.15 154.4
Ndk SWIhash 42.2 6.00 253.1

The last study is from energy consumption perspective. In this line, Table 7
o�ers the Power and Energy consumption involving for the di�erent test cases
when the best kernel is employed. In Figure 1 we plot the number of nonzeros
(×103) processed by mJ of energy consumed for each test case, as the nnz is
considered the best estimation of the e�ort implied by the sptrsv for a partic-
ular sparse system. It should be noted that the cases that require more Power
(e.g. the T2052 case) are the more e�cient from the perspective of this metric.
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Figure 1. Thousands of nnz processed by energy consumption (1 mJ) for the tested
sparse matrices.



5 Final remarks and future work

We have studied the performance of several kernels for the solution of sparse tri-
angular linear systems (sptrsv) in FPGAs. In particular, we presented OpenCL
implementations for the sptrsv kernel following two di�erent parallel execution
paradigms, the NDRange and a Single Work�Item. Additionally, our study ex-
plores the most relevant OpenCL optimization con�gurations, such as the use of
threads, vectorization and unrolling.

The experimental evaluation performed on a low�end FPGA shows that the
best method varies from one the test case to the other. This situation is aligned
with other e�orts for the sptrsv kernel on masivelly-parallel devices. Addition-
ally, the runtimes achieved by the best con�guration of each case are competitive
considering those found in the literature and our previous experience, while the
energy consumption is clearly less.

In future work we plan to address the combination of OpenCL with low-
level developments in order to strongly improve the kernel performance. Also, it
would be interesting to evaluate the performance of our solvers in other FPGAs
and for a larger number of test cases, particularly including high-end boards and
large linear systems. Finally, we will try to advance in the characterization of
the FPGA performance and energy consumption of each technique.
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